Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / GlobalISel / LegalizerHelper.cpp
blob298a91671f3a104c3750c0e7cff129a5744de30c
1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
27 #define DEBUG_TYPE "legalizer"
29 using namespace llvm;
30 using namespace LegalizeActions;
32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
33 ///
34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
35 /// with any leftover piece as type \p LeftoverTy
36 ///
37 /// Returns -1 if the breakdown is not satisfiable.
38 static int getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
39 assert(!LeftoverTy.isValid() && "this is an out argument");
41 unsigned Size = OrigTy.getSizeInBits();
42 unsigned NarrowSize = NarrowTy.getSizeInBits();
43 unsigned NumParts = Size / NarrowSize;
44 unsigned LeftoverSize = Size - NumParts * NarrowSize;
45 assert(Size > NarrowSize);
47 if (LeftoverSize == 0)
48 return NumParts;
50 if (NarrowTy.isVector()) {
51 unsigned EltSize = OrigTy.getScalarSizeInBits();
52 if (LeftoverSize % EltSize != 0)
53 return -1;
54 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
55 } else {
56 LeftoverTy = LLT::scalar(LeftoverSize);
59 return NumParts;
62 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
63 GISelChangeObserver &Observer,
64 MachineIRBuilder &Builder)
65 : MIRBuilder(Builder), MRI(MF.getRegInfo()),
66 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
67 MIRBuilder.setMF(MF);
68 MIRBuilder.setChangeObserver(Observer);
71 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
72 GISelChangeObserver &Observer,
73 MachineIRBuilder &B)
74 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
75 MIRBuilder.setMF(MF);
76 MIRBuilder.setChangeObserver(Observer);
78 LegalizerHelper::LegalizeResult
79 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
80 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
82 auto Step = LI.getAction(MI, MRI);
83 switch (Step.Action) {
84 case Legal:
85 LLVM_DEBUG(dbgs() << ".. Already legal\n");
86 return AlreadyLegal;
87 case Libcall:
88 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
89 return libcall(MI);
90 case NarrowScalar:
91 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
92 return narrowScalar(MI, Step.TypeIdx, Step.NewType);
93 case WidenScalar:
94 LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
95 return widenScalar(MI, Step.TypeIdx, Step.NewType);
96 case Lower:
97 LLVM_DEBUG(dbgs() << ".. Lower\n");
98 return lower(MI, Step.TypeIdx, Step.NewType);
99 case FewerElements:
100 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
101 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
102 case MoreElements:
103 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
104 return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
105 case Custom:
106 LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
107 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
108 : UnableToLegalize;
109 default:
110 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
111 return UnableToLegalize;
115 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts,
116 SmallVectorImpl<unsigned> &VRegs) {
117 for (int i = 0; i < NumParts; ++i)
118 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
119 MIRBuilder.buildUnmerge(VRegs, Reg);
122 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy,
123 LLT MainTy, LLT &LeftoverTy,
124 SmallVectorImpl<unsigned> &VRegs,
125 SmallVectorImpl<unsigned> &LeftoverRegs) {
126 assert(!LeftoverTy.isValid() && "this is an out argument");
128 unsigned RegSize = RegTy.getSizeInBits();
129 unsigned MainSize = MainTy.getSizeInBits();
130 unsigned NumParts = RegSize / MainSize;
131 unsigned LeftoverSize = RegSize - NumParts * MainSize;
133 // Use an unmerge when possible.
134 if (LeftoverSize == 0) {
135 for (unsigned I = 0; I < NumParts; ++I)
136 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
137 MIRBuilder.buildUnmerge(VRegs, Reg);
138 return true;
141 if (MainTy.isVector()) {
142 unsigned EltSize = MainTy.getScalarSizeInBits();
143 if (LeftoverSize % EltSize != 0)
144 return false;
145 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
146 } else {
147 LeftoverTy = LLT::scalar(LeftoverSize);
150 // For irregular sizes, extract the individual parts.
151 for (unsigned I = 0; I != NumParts; ++I) {
152 unsigned NewReg = MRI.createGenericVirtualRegister(MainTy);
153 VRegs.push_back(NewReg);
154 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
157 for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
158 Offset += LeftoverSize) {
159 unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
160 LeftoverRegs.push_back(NewReg);
161 MIRBuilder.buildExtract(NewReg, Reg, Offset);
164 return true;
167 void LegalizerHelper::insertParts(unsigned DstReg,
168 LLT ResultTy, LLT PartTy,
169 ArrayRef<unsigned> PartRegs,
170 LLT LeftoverTy,
171 ArrayRef<unsigned> LeftoverRegs) {
172 if (!LeftoverTy.isValid()) {
173 assert(LeftoverRegs.empty());
175 if (!ResultTy.isVector()) {
176 MIRBuilder.buildMerge(DstReg, PartRegs);
177 return;
180 if (PartTy.isVector())
181 MIRBuilder.buildConcatVectors(DstReg, PartRegs);
182 else
183 MIRBuilder.buildBuildVector(DstReg, PartRegs);
184 return;
187 unsigned PartSize = PartTy.getSizeInBits();
188 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
190 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
191 MIRBuilder.buildUndef(CurResultReg);
193 unsigned Offset = 0;
194 for (unsigned PartReg : PartRegs) {
195 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
196 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
197 CurResultReg = NewResultReg;
198 Offset += PartSize;
201 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
202 // Use the original output register for the final insert to avoid a copy.
203 unsigned NewResultReg = (I + 1 == E) ?
204 DstReg : MRI.createGenericVirtualRegister(ResultTy);
206 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
207 CurResultReg = NewResultReg;
208 Offset += LeftoverPartSize;
212 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
213 switch (Opcode) {
214 case TargetOpcode::G_SDIV:
215 assert((Size == 32 || Size == 64) && "Unsupported size");
216 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32;
217 case TargetOpcode::G_UDIV:
218 assert((Size == 32 || Size == 64) && "Unsupported size");
219 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32;
220 case TargetOpcode::G_SREM:
221 assert((Size == 32 || Size == 64) && "Unsupported size");
222 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
223 case TargetOpcode::G_UREM:
224 assert((Size == 32 || Size == 64) && "Unsupported size");
225 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
226 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
227 assert(Size == 32 && "Unsupported size");
228 return RTLIB::CTLZ_I32;
229 case TargetOpcode::G_FADD:
230 assert((Size == 32 || Size == 64) && "Unsupported size");
231 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
232 case TargetOpcode::G_FSUB:
233 assert((Size == 32 || Size == 64) && "Unsupported size");
234 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
235 case TargetOpcode::G_FMUL:
236 assert((Size == 32 || Size == 64) && "Unsupported size");
237 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
238 case TargetOpcode::G_FDIV:
239 assert((Size == 32 || Size == 64) && "Unsupported size");
240 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
241 case TargetOpcode::G_FEXP:
242 assert((Size == 32 || Size == 64) && "Unsupported size");
243 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
244 case TargetOpcode::G_FREM:
245 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
246 case TargetOpcode::G_FPOW:
247 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
248 case TargetOpcode::G_FMA:
249 assert((Size == 32 || Size == 64) && "Unsupported size");
250 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
251 case TargetOpcode::G_FSIN:
252 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
253 return Size == 128 ? RTLIB::SIN_F128
254 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
255 case TargetOpcode::G_FCOS:
256 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
257 return Size == 128 ? RTLIB::COS_F128
258 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
259 case TargetOpcode::G_FLOG10:
260 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
261 return Size == 128 ? RTLIB::LOG10_F128
262 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
263 case TargetOpcode::G_FLOG:
264 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
265 return Size == 128 ? RTLIB::LOG_F128
266 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
267 case TargetOpcode::G_FLOG2:
268 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
269 return Size == 128 ? RTLIB::LOG2_F128
270 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
272 llvm_unreachable("Unknown libcall function");
275 LegalizerHelper::LegalizeResult
276 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
277 const CallLowering::ArgInfo &Result,
278 ArrayRef<CallLowering::ArgInfo> Args) {
279 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
280 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
281 const char *Name = TLI.getLibcallName(Libcall);
283 MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
284 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall),
285 MachineOperand::CreateES(Name), Result, Args))
286 return LegalizerHelper::UnableToLegalize;
288 return LegalizerHelper::Legalized;
291 // Useful for libcalls where all operands have the same type.
292 static LegalizerHelper::LegalizeResult
293 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
294 Type *OpType) {
295 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
297 SmallVector<CallLowering::ArgInfo, 3> Args;
298 for (unsigned i = 1; i < MI.getNumOperands(); i++)
299 Args.push_back({MI.getOperand(i).getReg(), OpType});
300 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
301 Args);
304 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
305 Type *FromType) {
306 auto ToMVT = MVT::getVT(ToType);
307 auto FromMVT = MVT::getVT(FromType);
309 switch (Opcode) {
310 case TargetOpcode::G_FPEXT:
311 return RTLIB::getFPEXT(FromMVT, ToMVT);
312 case TargetOpcode::G_FPTRUNC:
313 return RTLIB::getFPROUND(FromMVT, ToMVT);
314 case TargetOpcode::G_FPTOSI:
315 return RTLIB::getFPTOSINT(FromMVT, ToMVT);
316 case TargetOpcode::G_FPTOUI:
317 return RTLIB::getFPTOUINT(FromMVT, ToMVT);
318 case TargetOpcode::G_SITOFP:
319 return RTLIB::getSINTTOFP(FromMVT, ToMVT);
320 case TargetOpcode::G_UITOFP:
321 return RTLIB::getUINTTOFP(FromMVT, ToMVT);
323 llvm_unreachable("Unsupported libcall function");
326 static LegalizerHelper::LegalizeResult
327 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
328 Type *FromType) {
329 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
330 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
331 {{MI.getOperand(1).getReg(), FromType}});
334 LegalizerHelper::LegalizeResult
335 LegalizerHelper::libcall(MachineInstr &MI) {
336 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
337 unsigned Size = LLTy.getSizeInBits();
338 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
340 MIRBuilder.setInstr(MI);
342 switch (MI.getOpcode()) {
343 default:
344 return UnableToLegalize;
345 case TargetOpcode::G_SDIV:
346 case TargetOpcode::G_UDIV:
347 case TargetOpcode::G_SREM:
348 case TargetOpcode::G_UREM:
349 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
350 Type *HLTy = IntegerType::get(Ctx, Size);
351 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
352 if (Status != Legalized)
353 return Status;
354 break;
356 case TargetOpcode::G_FADD:
357 case TargetOpcode::G_FSUB:
358 case TargetOpcode::G_FMUL:
359 case TargetOpcode::G_FDIV:
360 case TargetOpcode::G_FMA:
361 case TargetOpcode::G_FPOW:
362 case TargetOpcode::G_FREM:
363 case TargetOpcode::G_FCOS:
364 case TargetOpcode::G_FSIN:
365 case TargetOpcode::G_FLOG10:
366 case TargetOpcode::G_FLOG:
367 case TargetOpcode::G_FLOG2:
368 case TargetOpcode::G_FEXP: {
369 if (Size > 64) {
370 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n");
371 return UnableToLegalize;
373 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
374 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
375 if (Status != Legalized)
376 return Status;
377 break;
379 case TargetOpcode::G_FPEXT: {
380 // FIXME: Support other floating point types (half, fp128 etc)
381 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
382 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
383 if (ToSize != 64 || FromSize != 32)
384 return UnableToLegalize;
385 LegalizeResult Status = conversionLibcall(
386 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx));
387 if (Status != Legalized)
388 return Status;
389 break;
391 case TargetOpcode::G_FPTRUNC: {
392 // FIXME: Support other floating point types (half, fp128 etc)
393 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
394 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
395 if (ToSize != 32 || FromSize != 64)
396 return UnableToLegalize;
397 LegalizeResult Status = conversionLibcall(
398 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx));
399 if (Status != Legalized)
400 return Status;
401 break;
403 case TargetOpcode::G_FPTOSI:
404 case TargetOpcode::G_FPTOUI: {
405 // FIXME: Support other types
406 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
407 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
408 if (ToSize != 32 || (FromSize != 32 && FromSize != 64))
409 return UnableToLegalize;
410 LegalizeResult Status = conversionLibcall(
411 MI, MIRBuilder, Type::getInt32Ty(Ctx),
412 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
413 if (Status != Legalized)
414 return Status;
415 break;
417 case TargetOpcode::G_SITOFP:
418 case TargetOpcode::G_UITOFP: {
419 // FIXME: Support other types
420 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
421 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
422 if (FromSize != 32 || (ToSize != 32 && ToSize != 64))
423 return UnableToLegalize;
424 LegalizeResult Status = conversionLibcall(
425 MI, MIRBuilder,
426 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
427 Type::getInt32Ty(Ctx));
428 if (Status != Legalized)
429 return Status;
430 break;
434 MI.eraseFromParent();
435 return Legalized;
438 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
439 unsigned TypeIdx,
440 LLT NarrowTy) {
441 MIRBuilder.setInstr(MI);
443 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
444 uint64_t NarrowSize = NarrowTy.getSizeInBits();
446 switch (MI.getOpcode()) {
447 default:
448 return UnableToLegalize;
449 case TargetOpcode::G_IMPLICIT_DEF: {
450 // FIXME: add support for when SizeOp0 isn't an exact multiple of
451 // NarrowSize.
452 if (SizeOp0 % NarrowSize != 0)
453 return UnableToLegalize;
454 int NumParts = SizeOp0 / NarrowSize;
456 SmallVector<unsigned, 2> DstRegs;
457 for (int i = 0; i < NumParts; ++i)
458 DstRegs.push_back(
459 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg());
461 unsigned DstReg = MI.getOperand(0).getReg();
462 if(MRI.getType(DstReg).isVector())
463 MIRBuilder.buildBuildVector(DstReg, DstRegs);
464 else
465 MIRBuilder.buildMerge(DstReg, DstRegs);
466 MI.eraseFromParent();
467 return Legalized;
469 case TargetOpcode::G_ADD: {
470 // FIXME: add support for when SizeOp0 isn't an exact multiple of
471 // NarrowSize.
472 if (SizeOp0 % NarrowSize != 0)
473 return UnableToLegalize;
474 // Expand in terms of carry-setting/consuming G_ADDE instructions.
475 int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
477 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
478 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
479 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
481 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1));
482 MIRBuilder.buildConstant(CarryIn, 0);
484 for (int i = 0; i < NumParts; ++i) {
485 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
486 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
488 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
489 Src2Regs[i], CarryIn);
491 DstRegs.push_back(DstReg);
492 CarryIn = CarryOut;
494 unsigned DstReg = MI.getOperand(0).getReg();
495 if(MRI.getType(DstReg).isVector())
496 MIRBuilder.buildBuildVector(DstReg, DstRegs);
497 else
498 MIRBuilder.buildMerge(DstReg, DstRegs);
499 MI.eraseFromParent();
500 return Legalized;
502 case TargetOpcode::G_SUB: {
503 // FIXME: add support for when SizeOp0 isn't an exact multiple of
504 // NarrowSize.
505 if (SizeOp0 % NarrowSize != 0)
506 return UnableToLegalize;
508 int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
510 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
511 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
512 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
514 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
515 unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
516 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
517 {Src1Regs[0], Src2Regs[0]});
518 DstRegs.push_back(DstReg);
519 unsigned BorrowIn = BorrowOut;
520 for (int i = 1; i < NumParts; ++i) {
521 DstReg = MRI.createGenericVirtualRegister(NarrowTy);
522 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
524 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
525 {Src1Regs[i], Src2Regs[i], BorrowIn});
527 DstRegs.push_back(DstReg);
528 BorrowIn = BorrowOut;
530 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
531 MI.eraseFromParent();
532 return Legalized;
534 case TargetOpcode::G_MUL:
535 return narrowScalarMul(MI, TypeIdx, NarrowTy);
536 case TargetOpcode::G_EXTRACT:
537 return narrowScalarExtract(MI, TypeIdx, NarrowTy);
538 case TargetOpcode::G_INSERT:
539 return narrowScalarInsert(MI, TypeIdx, NarrowTy);
540 case TargetOpcode::G_LOAD: {
541 const auto &MMO = **MI.memoperands_begin();
542 unsigned DstReg = MI.getOperand(0).getReg();
543 LLT DstTy = MRI.getType(DstReg);
544 if (DstTy.isVector())
545 return UnableToLegalize;
547 if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
548 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
549 auto &MMO = **MI.memoperands_begin();
550 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO);
551 MIRBuilder.buildAnyExt(DstReg, TmpReg);
552 MI.eraseFromParent();
553 return Legalized;
556 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
558 case TargetOpcode::G_ZEXTLOAD:
559 case TargetOpcode::G_SEXTLOAD: {
560 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
561 unsigned DstReg = MI.getOperand(0).getReg();
562 unsigned PtrReg = MI.getOperand(1).getReg();
564 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
565 auto &MMO = **MI.memoperands_begin();
566 if (MMO.getSize() * 8 == NarrowSize) {
567 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
568 } else {
569 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD
570 : TargetOpcode::G_SEXTLOAD;
571 MIRBuilder.buildInstr(ExtLoad)
572 .addDef(TmpReg)
573 .addUse(PtrReg)
574 .addMemOperand(&MMO);
577 if (ZExt)
578 MIRBuilder.buildZExt(DstReg, TmpReg);
579 else
580 MIRBuilder.buildSExt(DstReg, TmpReg);
582 MI.eraseFromParent();
583 return Legalized;
585 case TargetOpcode::G_STORE: {
586 const auto &MMO = **MI.memoperands_begin();
588 unsigned SrcReg = MI.getOperand(0).getReg();
589 LLT SrcTy = MRI.getType(SrcReg);
590 if (SrcTy.isVector())
591 return UnableToLegalize;
593 int NumParts = SizeOp0 / NarrowSize;
594 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
595 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
596 if (SrcTy.isVector() && LeftoverBits != 0)
597 return UnableToLegalize;
599 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
600 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
601 auto &MMO = **MI.memoperands_begin();
602 MIRBuilder.buildTrunc(TmpReg, SrcReg);
603 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO);
604 MI.eraseFromParent();
605 return Legalized;
608 return reduceLoadStoreWidth(MI, 0, NarrowTy);
610 case TargetOpcode::G_CONSTANT: {
611 // FIXME: add support for when SizeOp0 isn't an exact multiple of
612 // NarrowSize.
613 if (SizeOp0 % NarrowSize != 0)
614 return UnableToLegalize;
615 int NumParts = SizeOp0 / NarrowSize;
616 const APInt &Cst = MI.getOperand(1).getCImm()->getValue();
617 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
619 SmallVector<unsigned, 2> DstRegs;
620 for (int i = 0; i < NumParts; ++i) {
621 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
622 ConstantInt *CI =
623 ConstantInt::get(Ctx, Cst.lshr(NarrowSize * i).trunc(NarrowSize));
624 MIRBuilder.buildConstant(DstReg, *CI);
625 DstRegs.push_back(DstReg);
627 unsigned DstReg = MI.getOperand(0).getReg();
628 if(MRI.getType(DstReg).isVector())
629 MIRBuilder.buildBuildVector(DstReg, DstRegs);
630 else
631 MIRBuilder.buildMerge(DstReg, DstRegs);
632 MI.eraseFromParent();
633 return Legalized;
635 case TargetOpcode::G_SELECT:
636 return narrowScalarSelect(MI, TypeIdx, NarrowTy);
637 case TargetOpcode::G_AND:
638 case TargetOpcode::G_OR:
639 case TargetOpcode::G_XOR: {
640 // Legalize bitwise operation:
641 // A = BinOp<Ty> B, C
642 // into:
643 // B1, ..., BN = G_UNMERGE_VALUES B
644 // C1, ..., CN = G_UNMERGE_VALUES C
645 // A1 = BinOp<Ty/N> B1, C2
646 // ...
647 // AN = BinOp<Ty/N> BN, CN
648 // A = G_MERGE_VALUES A1, ..., AN
650 // FIXME: add support for when SizeOp0 isn't an exact multiple of
651 // NarrowSize.
652 if (SizeOp0 % NarrowSize != 0)
653 return UnableToLegalize;
654 int NumParts = SizeOp0 / NarrowSize;
656 // List the registers where the destination will be scattered.
657 SmallVector<unsigned, 2> DstRegs;
658 // List the registers where the first argument will be split.
659 SmallVector<unsigned, 2> SrcsReg1;
660 // List the registers where the second argument will be split.
661 SmallVector<unsigned, 2> SrcsReg2;
662 // Create all the temporary registers.
663 for (int i = 0; i < NumParts; ++i) {
664 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
665 unsigned SrcReg1 = MRI.createGenericVirtualRegister(NarrowTy);
666 unsigned SrcReg2 = MRI.createGenericVirtualRegister(NarrowTy);
668 DstRegs.push_back(DstReg);
669 SrcsReg1.push_back(SrcReg1);
670 SrcsReg2.push_back(SrcReg2);
672 // Explode the big arguments into smaller chunks.
673 MIRBuilder.buildUnmerge(SrcsReg1, MI.getOperand(1).getReg());
674 MIRBuilder.buildUnmerge(SrcsReg2, MI.getOperand(2).getReg());
676 // Do the operation on each small part.
677 for (int i = 0; i < NumParts; ++i)
678 MIRBuilder.buildInstr(MI.getOpcode(), {DstRegs[i]},
679 {SrcsReg1[i], SrcsReg2[i]});
681 // Gather the destination registers into the final destination.
682 unsigned DstReg = MI.getOperand(0).getReg();
683 if(MRI.getType(DstReg).isVector())
684 MIRBuilder.buildBuildVector(DstReg, DstRegs);
685 else
686 MIRBuilder.buildMerge(DstReg, DstRegs);
687 MI.eraseFromParent();
688 return Legalized;
690 case TargetOpcode::G_SHL:
691 case TargetOpcode::G_LSHR:
692 case TargetOpcode::G_ASHR:
693 return narrowScalarShift(MI, TypeIdx, NarrowTy);
694 case TargetOpcode::G_CTLZ:
695 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
696 case TargetOpcode::G_CTTZ:
697 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
698 case TargetOpcode::G_CTPOP:
699 if (TypeIdx != 0)
700 return UnableToLegalize; // TODO
702 Observer.changingInstr(MI);
703 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
704 Observer.changedInstr(MI);
705 return Legalized;
706 case TargetOpcode::G_INTTOPTR:
707 if (TypeIdx != 1)
708 return UnableToLegalize;
710 Observer.changingInstr(MI);
711 narrowScalarSrc(MI, NarrowTy, 1);
712 Observer.changedInstr(MI);
713 return Legalized;
714 case TargetOpcode::G_PTRTOINT:
715 if (TypeIdx != 0)
716 return UnableToLegalize;
718 Observer.changingInstr(MI);
719 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
720 Observer.changedInstr(MI);
721 return Legalized;
725 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
726 unsigned OpIdx, unsigned ExtOpcode) {
727 MachineOperand &MO = MI.getOperand(OpIdx);
728 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()});
729 MO.setReg(ExtB->getOperand(0).getReg());
732 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
733 unsigned OpIdx) {
734 MachineOperand &MO = MI.getOperand(OpIdx);
735 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy},
736 {MO.getReg()});
737 MO.setReg(ExtB->getOperand(0).getReg());
740 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
741 unsigned OpIdx, unsigned TruncOpcode) {
742 MachineOperand &MO = MI.getOperand(OpIdx);
743 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
744 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
745 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt});
746 MO.setReg(DstExt);
749 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
750 unsigned OpIdx, unsigned ExtOpcode) {
751 MachineOperand &MO = MI.getOperand(OpIdx);
752 unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
753 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
754 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc});
755 MO.setReg(DstTrunc);
758 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
759 unsigned OpIdx) {
760 MachineOperand &MO = MI.getOperand(OpIdx);
761 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
762 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
763 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0);
764 MO.setReg(DstExt);
767 LegalizerHelper::LegalizeResult
768 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
769 LLT WideTy) {
770 if (TypeIdx != 1)
771 return UnableToLegalize;
773 unsigned DstReg = MI.getOperand(0).getReg();
774 LLT DstTy = MRI.getType(DstReg);
775 if (!DstTy.isScalar())
776 return UnableToLegalize;
778 unsigned NumOps = MI.getNumOperands();
779 unsigned NumSrc = MI.getNumOperands() - 1;
780 unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
782 unsigned Src1 = MI.getOperand(1).getReg();
783 unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg();
785 for (unsigned I = 2; I != NumOps; ++I) {
786 const unsigned Offset = (I - 1) * PartSize;
788 unsigned SrcReg = MI.getOperand(I).getReg();
789 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
791 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg);
793 unsigned NextResult = I + 1 == NumOps ? DstReg :
794 MRI.createGenericVirtualRegister(DstTy);
796 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset);
797 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt);
798 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
799 ResultReg = NextResult;
802 MI.eraseFromParent();
803 return Legalized;
806 LegalizerHelper::LegalizeResult
807 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
808 LLT WideTy) {
809 if (TypeIdx != 0)
810 return UnableToLegalize;
812 unsigned NumDst = MI.getNumOperands() - 1;
813 unsigned SrcReg = MI.getOperand(NumDst).getReg();
814 LLT SrcTy = MRI.getType(SrcReg);
815 if (!SrcTy.isScalar())
816 return UnableToLegalize;
818 unsigned Dst0Reg = MI.getOperand(0).getReg();
819 LLT DstTy = MRI.getType(Dst0Reg);
820 if (!DstTy.isScalar())
821 return UnableToLegalize;
823 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits();
824 LLT NewSrcTy = LLT::scalar(NewSrcSize);
825 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits();
827 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg);
829 for (unsigned I = 1; I != NumDst; ++I) {
830 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I);
831 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt);
832 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl);
835 Observer.changingInstr(MI);
837 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg());
838 for (unsigned I = 0; I != NumDst; ++I)
839 widenScalarDst(MI, WideTy, I);
841 Observer.changedInstr(MI);
843 return Legalized;
846 LegalizerHelper::LegalizeResult
847 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
848 LLT WideTy) {
849 if (TypeIdx != 1)
850 return UnableToLegalize;
852 unsigned SrcReg = MI.getOperand(1).getReg();
853 LLT SrcTy = MRI.getType(SrcReg);
854 if (!SrcTy.isVector())
855 return UnableToLegalize;
857 unsigned DstReg = MI.getOperand(0).getReg();
858 LLT DstTy = MRI.getType(DstReg);
859 if (DstTy != SrcTy.getElementType())
860 return UnableToLegalize;
862 unsigned Offset = MI.getOperand(2).getImm();
863 if (Offset % SrcTy.getScalarSizeInBits() != 0)
864 return UnableToLegalize;
866 Observer.changingInstr(MI);
867 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
869 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
870 Offset);
871 widenScalarDst(MI, WideTy.getScalarType(), 0);
872 Observer.changedInstr(MI);
873 return Legalized;
876 LegalizerHelper::LegalizeResult
877 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
878 LLT WideTy) {
879 if (TypeIdx != 0)
880 return UnableToLegalize;
881 Observer.changingInstr(MI);
882 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
883 widenScalarDst(MI, WideTy);
884 Observer.changedInstr(MI);
885 return Legalized;
888 LegalizerHelper::LegalizeResult
889 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
890 MIRBuilder.setInstr(MI);
892 switch (MI.getOpcode()) {
893 default:
894 return UnableToLegalize;
895 case TargetOpcode::G_EXTRACT:
896 return widenScalarExtract(MI, TypeIdx, WideTy);
897 case TargetOpcode::G_INSERT:
898 return widenScalarInsert(MI, TypeIdx, WideTy);
899 case TargetOpcode::G_MERGE_VALUES:
900 return widenScalarMergeValues(MI, TypeIdx, WideTy);
901 case TargetOpcode::G_UNMERGE_VALUES:
902 return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
903 case TargetOpcode::G_UADDO:
904 case TargetOpcode::G_USUBO: {
905 if (TypeIdx == 1)
906 return UnableToLegalize; // TODO
907 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
908 {MI.getOperand(2).getReg()});
909 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
910 {MI.getOperand(3).getReg()});
911 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
912 ? TargetOpcode::G_ADD
913 : TargetOpcode::G_SUB;
914 // Do the arithmetic in the larger type.
915 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
916 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
917 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits());
918 auto AndOp = MIRBuilder.buildInstr(
919 TargetOpcode::G_AND, {WideTy},
920 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())});
921 // There is no overflow if the AndOp is the same as NewOp.
922 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp,
923 AndOp);
924 // Now trunc the NewOp to the original result.
925 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp);
926 MI.eraseFromParent();
927 return Legalized;
929 case TargetOpcode::G_CTTZ:
930 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
931 case TargetOpcode::G_CTLZ:
932 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
933 case TargetOpcode::G_CTPOP: {
934 if (TypeIdx == 0) {
935 Observer.changingInstr(MI);
936 widenScalarDst(MI, WideTy, 0);
937 Observer.changedInstr(MI);
938 return Legalized;
941 unsigned SrcReg = MI.getOperand(1).getReg();
943 // First ZEXT the input.
944 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
945 LLT CurTy = MRI.getType(SrcReg);
946 if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
947 // The count is the same in the larger type except if the original
948 // value was zero. This can be handled by setting the bit just off
949 // the top of the original type.
950 auto TopBit =
951 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
952 MIBSrc = MIRBuilder.buildOr(
953 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
956 // Perform the operation at the larger size.
957 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
958 // This is already the correct result for CTPOP and CTTZs
959 if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
960 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
961 // The correct result is NewOp - (Difference in widety and current ty).
962 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
963 MIBNewOp = MIRBuilder.buildInstr(
964 TargetOpcode::G_SUB, {WideTy},
965 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)});
968 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
969 MI.eraseFromParent();
970 return Legalized;
972 case TargetOpcode::G_BSWAP: {
973 Observer.changingInstr(MI);
974 unsigned DstReg = MI.getOperand(0).getReg();
976 unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy);
977 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
978 unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
979 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
981 MI.getOperand(0).setReg(DstExt);
983 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
985 LLT Ty = MRI.getType(DstReg);
986 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
987 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
988 MIRBuilder.buildInstr(TargetOpcode::G_LSHR)
989 .addDef(ShrReg)
990 .addUse(DstExt)
991 .addUse(ShiftAmtReg);
993 MIRBuilder.buildTrunc(DstReg, ShrReg);
994 Observer.changedInstr(MI);
995 return Legalized;
997 case TargetOpcode::G_ADD:
998 case TargetOpcode::G_AND:
999 case TargetOpcode::G_MUL:
1000 case TargetOpcode::G_OR:
1001 case TargetOpcode::G_XOR:
1002 case TargetOpcode::G_SUB:
1003 // Perform operation at larger width (any extension is fines here, high bits
1004 // don't affect the result) and then truncate the result back to the
1005 // original type.
1006 Observer.changingInstr(MI);
1007 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1008 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1009 widenScalarDst(MI, WideTy);
1010 Observer.changedInstr(MI);
1011 return Legalized;
1013 case TargetOpcode::G_SHL:
1014 Observer.changingInstr(MI);
1016 if (TypeIdx == 0) {
1017 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1018 widenScalarDst(MI, WideTy);
1019 } else {
1020 assert(TypeIdx == 1);
1021 // The "number of bits to shift" operand must preserve its value as an
1022 // unsigned integer:
1023 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1026 Observer.changedInstr(MI);
1027 return Legalized;
1029 case TargetOpcode::G_SDIV:
1030 case TargetOpcode::G_SREM:
1031 Observer.changingInstr(MI);
1032 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1033 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1034 widenScalarDst(MI, WideTy);
1035 Observer.changedInstr(MI);
1036 return Legalized;
1038 case TargetOpcode::G_ASHR:
1039 case TargetOpcode::G_LSHR:
1040 Observer.changingInstr(MI);
1042 if (TypeIdx == 0) {
1043 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1044 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1046 widenScalarSrc(MI, WideTy, 1, CvtOp);
1047 widenScalarDst(MI, WideTy);
1048 } else {
1049 assert(TypeIdx == 1);
1050 // The "number of bits to shift" operand must preserve its value as an
1051 // unsigned integer:
1052 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1055 Observer.changedInstr(MI);
1056 return Legalized;
1057 case TargetOpcode::G_UDIV:
1058 case TargetOpcode::G_UREM:
1059 Observer.changingInstr(MI);
1060 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1061 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1062 widenScalarDst(MI, WideTy);
1063 Observer.changedInstr(MI);
1064 return Legalized;
1066 case TargetOpcode::G_SELECT:
1067 Observer.changingInstr(MI);
1068 if (TypeIdx == 0) {
1069 // Perform operation at larger width (any extension is fine here, high
1070 // bits don't affect the result) and then truncate the result back to the
1071 // original type.
1072 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1073 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1074 widenScalarDst(MI, WideTy);
1075 } else {
1076 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1077 // Explicit extension is required here since high bits affect the result.
1078 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1080 Observer.changedInstr(MI);
1081 return Legalized;
1083 case TargetOpcode::G_FPTOSI:
1084 case TargetOpcode::G_FPTOUI:
1085 if (TypeIdx != 0)
1086 return UnableToLegalize;
1087 Observer.changingInstr(MI);
1088 widenScalarDst(MI, WideTy);
1089 Observer.changedInstr(MI);
1090 return Legalized;
1092 case TargetOpcode::G_SITOFP:
1093 if (TypeIdx != 1)
1094 return UnableToLegalize;
1095 Observer.changingInstr(MI);
1096 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1097 Observer.changedInstr(MI);
1098 return Legalized;
1100 case TargetOpcode::G_UITOFP:
1101 if (TypeIdx != 1)
1102 return UnableToLegalize;
1103 Observer.changingInstr(MI);
1104 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1105 Observer.changedInstr(MI);
1106 return Legalized;
1108 case TargetOpcode::G_LOAD:
1109 case TargetOpcode::G_SEXTLOAD:
1110 case TargetOpcode::G_ZEXTLOAD:
1111 Observer.changingInstr(MI);
1112 widenScalarDst(MI, WideTy);
1113 Observer.changedInstr(MI);
1114 return Legalized;
1116 case TargetOpcode::G_STORE: {
1117 if (TypeIdx != 0)
1118 return UnableToLegalize;
1120 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1121 if (!isPowerOf2_32(Ty.getSizeInBits()))
1122 return UnableToLegalize;
1124 Observer.changingInstr(MI);
1126 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1127 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1128 widenScalarSrc(MI, WideTy, 0, ExtType);
1130 Observer.changedInstr(MI);
1131 return Legalized;
1133 case TargetOpcode::G_CONSTANT: {
1134 MachineOperand &SrcMO = MI.getOperand(1);
1135 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1136 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits());
1137 Observer.changingInstr(MI);
1138 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1140 widenScalarDst(MI, WideTy);
1141 Observer.changedInstr(MI);
1142 return Legalized;
1144 case TargetOpcode::G_FCONSTANT: {
1145 MachineOperand &SrcMO = MI.getOperand(1);
1146 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1147 APFloat Val = SrcMO.getFPImm()->getValueAPF();
1148 bool LosesInfo;
1149 switch (WideTy.getSizeInBits()) {
1150 case 32:
1151 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1152 &LosesInfo);
1153 break;
1154 case 64:
1155 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1156 &LosesInfo);
1157 break;
1158 default:
1159 return UnableToLegalize;
1162 assert(!LosesInfo && "extend should always be lossless");
1164 Observer.changingInstr(MI);
1165 SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1167 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1168 Observer.changedInstr(MI);
1169 return Legalized;
1171 case TargetOpcode::G_IMPLICIT_DEF: {
1172 Observer.changingInstr(MI);
1173 widenScalarDst(MI, WideTy);
1174 Observer.changedInstr(MI);
1175 return Legalized;
1177 case TargetOpcode::G_BRCOND:
1178 Observer.changingInstr(MI);
1179 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1180 Observer.changedInstr(MI);
1181 return Legalized;
1183 case TargetOpcode::G_FCMP:
1184 Observer.changingInstr(MI);
1185 if (TypeIdx == 0)
1186 widenScalarDst(MI, WideTy);
1187 else {
1188 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1189 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1191 Observer.changedInstr(MI);
1192 return Legalized;
1194 case TargetOpcode::G_ICMP:
1195 Observer.changingInstr(MI);
1196 if (TypeIdx == 0)
1197 widenScalarDst(MI, WideTy);
1198 else {
1199 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1200 MI.getOperand(1).getPredicate()))
1201 ? TargetOpcode::G_SEXT
1202 : TargetOpcode::G_ZEXT;
1203 widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1204 widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1206 Observer.changedInstr(MI);
1207 return Legalized;
1209 case TargetOpcode::G_GEP:
1210 assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
1211 Observer.changingInstr(MI);
1212 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1213 Observer.changedInstr(MI);
1214 return Legalized;
1216 case TargetOpcode::G_PHI: {
1217 assert(TypeIdx == 0 && "Expecting only Idx 0");
1219 Observer.changingInstr(MI);
1220 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1221 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1222 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1223 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1226 MachineBasicBlock &MBB = *MI.getParent();
1227 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1228 widenScalarDst(MI, WideTy);
1229 Observer.changedInstr(MI);
1230 return Legalized;
1232 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1233 if (TypeIdx == 0) {
1234 unsigned VecReg = MI.getOperand(1).getReg();
1235 LLT VecTy = MRI.getType(VecReg);
1236 Observer.changingInstr(MI);
1238 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1239 WideTy.getSizeInBits()),
1240 1, TargetOpcode::G_SEXT);
1242 widenScalarDst(MI, WideTy, 0);
1243 Observer.changedInstr(MI);
1244 return Legalized;
1247 if (TypeIdx != 2)
1248 return UnableToLegalize;
1249 Observer.changingInstr(MI);
1250 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1251 Observer.changedInstr(MI);
1252 return Legalized;
1254 case TargetOpcode::G_FADD:
1255 case TargetOpcode::G_FMUL:
1256 case TargetOpcode::G_FSUB:
1257 case TargetOpcode::G_FMA:
1258 case TargetOpcode::G_FNEG:
1259 case TargetOpcode::G_FABS:
1260 case TargetOpcode::G_FCANONICALIZE:
1261 case TargetOpcode::G_FDIV:
1262 case TargetOpcode::G_FREM:
1263 case TargetOpcode::G_FCEIL:
1264 case TargetOpcode::G_FFLOOR:
1265 case TargetOpcode::G_FCOS:
1266 case TargetOpcode::G_FSIN:
1267 case TargetOpcode::G_FLOG10:
1268 case TargetOpcode::G_FLOG:
1269 case TargetOpcode::G_FLOG2:
1270 case TargetOpcode::G_FSQRT:
1271 case TargetOpcode::G_FEXP:
1272 assert(TypeIdx == 0);
1273 Observer.changingInstr(MI);
1275 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
1276 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
1278 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1279 Observer.changedInstr(MI);
1280 return Legalized;
1281 case TargetOpcode::G_INTTOPTR:
1282 if (TypeIdx != 1)
1283 return UnableToLegalize;
1285 Observer.changingInstr(MI);
1286 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1287 Observer.changedInstr(MI);
1288 return Legalized;
1289 case TargetOpcode::G_PTRTOINT:
1290 if (TypeIdx != 0)
1291 return UnableToLegalize;
1293 Observer.changingInstr(MI);
1294 widenScalarDst(MI, WideTy, 0);
1295 Observer.changedInstr(MI);
1296 return Legalized;
1300 LegalizerHelper::LegalizeResult
1301 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
1302 using namespace TargetOpcode;
1303 MIRBuilder.setInstr(MI);
1305 switch(MI.getOpcode()) {
1306 default:
1307 return UnableToLegalize;
1308 case TargetOpcode::G_SREM:
1309 case TargetOpcode::G_UREM: {
1310 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty);
1311 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
1312 .addDef(QuotReg)
1313 .addUse(MI.getOperand(1).getReg())
1314 .addUse(MI.getOperand(2).getReg());
1316 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty);
1317 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
1318 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
1319 ProdReg);
1320 MI.eraseFromParent();
1321 return Legalized;
1323 case TargetOpcode::G_SMULO:
1324 case TargetOpcode::G_UMULO: {
1325 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
1326 // result.
1327 unsigned Res = MI.getOperand(0).getReg();
1328 unsigned Overflow = MI.getOperand(1).getReg();
1329 unsigned LHS = MI.getOperand(2).getReg();
1330 unsigned RHS = MI.getOperand(3).getReg();
1332 MIRBuilder.buildMul(Res, LHS, RHS);
1334 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
1335 ? TargetOpcode::G_SMULH
1336 : TargetOpcode::G_UMULH;
1338 unsigned HiPart = MRI.createGenericVirtualRegister(Ty);
1339 MIRBuilder.buildInstr(Opcode)
1340 .addDef(HiPart)
1341 .addUse(LHS)
1342 .addUse(RHS);
1344 unsigned Zero = MRI.createGenericVirtualRegister(Ty);
1345 MIRBuilder.buildConstant(Zero, 0);
1347 // For *signed* multiply, overflow is detected by checking:
1348 // (hi != (lo >> bitwidth-1))
1349 if (Opcode == TargetOpcode::G_SMULH) {
1350 unsigned Shifted = MRI.createGenericVirtualRegister(Ty);
1351 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty);
1352 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
1353 MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
1354 .addDef(Shifted)
1355 .addUse(Res)
1356 .addUse(ShiftAmt);
1357 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
1358 } else {
1359 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
1361 MI.eraseFromParent();
1362 return Legalized;
1364 case TargetOpcode::G_FNEG: {
1365 // TODO: Handle vector types once we are able to
1366 // represent them.
1367 if (Ty.isVector())
1368 return UnableToLegalize;
1369 unsigned Res = MI.getOperand(0).getReg();
1370 Type *ZeroTy;
1371 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1372 switch (Ty.getSizeInBits()) {
1373 case 16:
1374 ZeroTy = Type::getHalfTy(Ctx);
1375 break;
1376 case 32:
1377 ZeroTy = Type::getFloatTy(Ctx);
1378 break;
1379 case 64:
1380 ZeroTy = Type::getDoubleTy(Ctx);
1381 break;
1382 case 128:
1383 ZeroTy = Type::getFP128Ty(Ctx);
1384 break;
1385 default:
1386 llvm_unreachable("unexpected floating-point type");
1388 ConstantFP &ZeroForNegation =
1389 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
1390 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
1391 MIRBuilder.buildInstr(TargetOpcode::G_FSUB)
1392 .addDef(Res)
1393 .addUse(Zero->getOperand(0).getReg())
1394 .addUse(MI.getOperand(1).getReg());
1395 MI.eraseFromParent();
1396 return Legalized;
1398 case TargetOpcode::G_FSUB: {
1399 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
1400 // First, check if G_FNEG is marked as Lower. If so, we may
1401 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
1402 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
1403 return UnableToLegalize;
1404 unsigned Res = MI.getOperand(0).getReg();
1405 unsigned LHS = MI.getOperand(1).getReg();
1406 unsigned RHS = MI.getOperand(2).getReg();
1407 unsigned Neg = MRI.createGenericVirtualRegister(Ty);
1408 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS);
1409 MIRBuilder.buildInstr(TargetOpcode::G_FADD)
1410 .addDef(Res)
1411 .addUse(LHS)
1412 .addUse(Neg);
1413 MI.eraseFromParent();
1414 return Legalized;
1416 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
1417 unsigned OldValRes = MI.getOperand(0).getReg();
1418 unsigned SuccessRes = MI.getOperand(1).getReg();
1419 unsigned Addr = MI.getOperand(2).getReg();
1420 unsigned CmpVal = MI.getOperand(3).getReg();
1421 unsigned NewVal = MI.getOperand(4).getReg();
1422 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
1423 **MI.memoperands_begin());
1424 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
1425 MI.eraseFromParent();
1426 return Legalized;
1428 case TargetOpcode::G_LOAD:
1429 case TargetOpcode::G_SEXTLOAD:
1430 case TargetOpcode::G_ZEXTLOAD: {
1431 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
1432 unsigned DstReg = MI.getOperand(0).getReg();
1433 unsigned PtrReg = MI.getOperand(1).getReg();
1434 LLT DstTy = MRI.getType(DstReg);
1435 auto &MMO = **MI.memoperands_begin();
1437 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) {
1438 // In the case of G_LOAD, this was a non-extending load already and we're
1439 // about to lower to the same instruction.
1440 if (MI.getOpcode() == TargetOpcode::G_LOAD)
1441 return UnableToLegalize;
1442 MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
1443 MI.eraseFromParent();
1444 return Legalized;
1447 if (DstTy.isScalar()) {
1448 unsigned TmpReg = MRI.createGenericVirtualRegister(
1449 LLT::scalar(MMO.getSize() /* in bytes */ * 8));
1450 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1451 switch (MI.getOpcode()) {
1452 default:
1453 llvm_unreachable("Unexpected opcode");
1454 case TargetOpcode::G_LOAD:
1455 MIRBuilder.buildAnyExt(DstReg, TmpReg);
1456 break;
1457 case TargetOpcode::G_SEXTLOAD:
1458 MIRBuilder.buildSExt(DstReg, TmpReg);
1459 break;
1460 case TargetOpcode::G_ZEXTLOAD:
1461 MIRBuilder.buildZExt(DstReg, TmpReg);
1462 break;
1464 MI.eraseFromParent();
1465 return Legalized;
1468 return UnableToLegalize;
1470 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1471 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1472 case TargetOpcode::G_CTLZ:
1473 case TargetOpcode::G_CTTZ:
1474 case TargetOpcode::G_CTPOP:
1475 return lowerBitCount(MI, TypeIdx, Ty);
1476 case G_UADDE: {
1477 unsigned Res = MI.getOperand(0).getReg();
1478 unsigned CarryOut = MI.getOperand(1).getReg();
1479 unsigned LHS = MI.getOperand(2).getReg();
1480 unsigned RHS = MI.getOperand(3).getReg();
1481 unsigned CarryIn = MI.getOperand(4).getReg();
1483 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty);
1484 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty);
1486 MIRBuilder.buildAdd(TmpRes, LHS, RHS);
1487 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn);
1488 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
1489 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
1491 MI.eraseFromParent();
1492 return Legalized;
1494 case G_USUBO: {
1495 unsigned Res = MI.getOperand(0).getReg();
1496 unsigned BorrowOut = MI.getOperand(1).getReg();
1497 unsigned LHS = MI.getOperand(2).getReg();
1498 unsigned RHS = MI.getOperand(3).getReg();
1500 MIRBuilder.buildSub(Res, LHS, RHS);
1501 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
1503 MI.eraseFromParent();
1504 return Legalized;
1506 case G_USUBE: {
1507 unsigned Res = MI.getOperand(0).getReg();
1508 unsigned BorrowOut = MI.getOperand(1).getReg();
1509 unsigned LHS = MI.getOperand(2).getReg();
1510 unsigned RHS = MI.getOperand(3).getReg();
1511 unsigned BorrowIn = MI.getOperand(4).getReg();
1513 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty);
1514 unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty);
1515 unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
1516 unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
1518 MIRBuilder.buildSub(TmpRes, LHS, RHS);
1519 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn);
1520 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
1521 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS);
1522 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS);
1523 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
1525 MI.eraseFromParent();
1526 return Legalized;
1531 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
1532 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
1533 SmallVector<unsigned, 2> DstRegs;
1535 unsigned NarrowSize = NarrowTy.getSizeInBits();
1536 unsigned DstReg = MI.getOperand(0).getReg();
1537 unsigned Size = MRI.getType(DstReg).getSizeInBits();
1538 int NumParts = Size / NarrowSize;
1539 // FIXME: Don't know how to handle the situation where the small vectors
1540 // aren't all the same size yet.
1541 if (Size % NarrowSize != 0)
1542 return UnableToLegalize;
1544 for (int i = 0; i < NumParts; ++i) {
1545 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1546 MIRBuilder.buildUndef(TmpReg);
1547 DstRegs.push_back(TmpReg);
1550 if (NarrowTy.isVector())
1551 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1552 else
1553 MIRBuilder.buildBuildVector(DstReg, DstRegs);
1555 MI.eraseFromParent();
1556 return Legalized;
1559 LegalizerHelper::LegalizeResult
1560 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
1561 LLT NarrowTy) {
1562 const unsigned Opc = MI.getOpcode();
1563 const unsigned NumOps = MI.getNumOperands() - 1;
1564 const unsigned NarrowSize = NarrowTy.getSizeInBits();
1565 const unsigned DstReg = MI.getOperand(0).getReg();
1566 const unsigned Flags = MI.getFlags();
1567 const LLT DstTy = MRI.getType(DstReg);
1568 const unsigned Size = DstTy.getSizeInBits();
1569 const int NumParts = Size / NarrowSize;
1570 const LLT EltTy = DstTy.getElementType();
1571 const unsigned EltSize = EltTy.getSizeInBits();
1572 const unsigned BitsForNumParts = NarrowSize * NumParts;
1574 // Check if we have any leftovers. If we do, then only handle the case where
1575 // the leftover is one element.
1576 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size)
1577 return UnableToLegalize;
1579 if (BitsForNumParts != Size) {
1580 unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy);
1581 MIRBuilder.buildUndef(AccumDstReg);
1583 // Handle the pieces which evenly divide into the requested type with
1584 // extract/op/insert sequence.
1585 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) {
1586 SmallVector<SrcOp, 4> SrcOps;
1587 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
1588 unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy);
1589 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset);
1590 SrcOps.push_back(PartOpReg);
1593 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy);
1594 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
1596 unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy);
1597 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset);
1598 AccumDstReg = PartInsertReg;
1599 Offset += NarrowSize;
1602 // Handle the remaining element sized leftover piece.
1603 SmallVector<SrcOp, 4> SrcOps;
1604 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
1605 unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy);
1606 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(),
1607 BitsForNumParts);
1608 SrcOps.push_back(PartOpReg);
1611 unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy);
1612 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
1613 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts);
1614 MI.eraseFromParent();
1616 return Legalized;
1619 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
1621 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs);
1623 if (NumOps >= 2)
1624 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs);
1626 if (NumOps >= 3)
1627 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs);
1629 for (int i = 0; i < NumParts; ++i) {
1630 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
1632 if (NumOps == 1)
1633 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags);
1634 else if (NumOps == 2) {
1635 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags);
1636 } else if (NumOps == 3) {
1637 MIRBuilder.buildInstr(Opc, {DstReg},
1638 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags);
1641 DstRegs.push_back(DstReg);
1644 if (NarrowTy.isVector())
1645 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1646 else
1647 MIRBuilder.buildBuildVector(DstReg, DstRegs);
1649 MI.eraseFromParent();
1650 return Legalized;
1653 // Handle splitting vector operations which need to have the same number of
1654 // elements in each type index, but each type index may have a different element
1655 // type.
1657 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
1658 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
1659 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
1661 // Also handles some irregular breakdown cases, e.g.
1662 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
1663 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
1664 // s64 = G_SHL s64, s32
1665 LegalizerHelper::LegalizeResult
1666 LegalizerHelper::fewerElementsVectorMultiEltType(
1667 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
1668 if (TypeIdx != 0)
1669 return UnableToLegalize;
1671 const LLT NarrowTy0 = NarrowTyArg;
1672 const unsigned NewNumElts =
1673 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
1675 const unsigned DstReg = MI.getOperand(0).getReg();
1676 LLT DstTy = MRI.getType(DstReg);
1677 LLT LeftoverTy0;
1679 // All of the operands need to have the same number of elements, so if we can
1680 // determine a type breakdown for the result type, we can for all of the
1681 // source types.
1682 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0);
1683 if (NumParts < 0)
1684 return UnableToLegalize;
1686 SmallVector<MachineInstrBuilder, 4> NewInsts;
1688 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs;
1689 SmallVector<unsigned, 4> PartRegs, LeftoverRegs;
1691 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
1692 LLT LeftoverTy;
1693 unsigned SrcReg = MI.getOperand(I).getReg();
1694 LLT SrcTyI = MRI.getType(SrcReg);
1695 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
1696 LLT LeftoverTyI;
1698 // Split this operand into the requested typed registers, and any leftover
1699 // required to reproduce the original type.
1700 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
1701 LeftoverRegs))
1702 return UnableToLegalize;
1704 if (I == 1) {
1705 // For the first operand, create an instruction for each part and setup
1706 // the result.
1707 for (unsigned PartReg : PartRegs) {
1708 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
1709 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
1710 .addDef(PartDstReg)
1711 .addUse(PartReg));
1712 DstRegs.push_back(PartDstReg);
1715 for (unsigned LeftoverReg : LeftoverRegs) {
1716 unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
1717 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
1718 .addDef(PartDstReg)
1719 .addUse(LeftoverReg));
1720 LeftoverDstRegs.push_back(PartDstReg);
1722 } else {
1723 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
1725 // Add the newly created operand splits to the existing instructions. The
1726 // odd-sized pieces are ordered after the requested NarrowTyArg sized
1727 // pieces.
1728 unsigned InstCount = 0;
1729 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
1730 NewInsts[InstCount++].addUse(PartRegs[J]);
1731 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
1732 NewInsts[InstCount++].addUse(LeftoverRegs[J]);
1735 PartRegs.clear();
1736 LeftoverRegs.clear();
1739 // Insert the newly built operations and rebuild the result register.
1740 for (auto &MIB : NewInsts)
1741 MIRBuilder.insertInstr(MIB);
1743 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
1745 MI.eraseFromParent();
1746 return Legalized;
1749 LegalizerHelper::LegalizeResult
1750 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
1751 LLT NarrowTy) {
1752 if (TypeIdx != 0)
1753 return UnableToLegalize;
1755 unsigned DstReg = MI.getOperand(0).getReg();
1756 unsigned SrcReg = MI.getOperand(1).getReg();
1757 LLT DstTy = MRI.getType(DstReg);
1758 LLT SrcTy = MRI.getType(SrcReg);
1760 LLT NarrowTy0 = NarrowTy;
1761 LLT NarrowTy1;
1762 unsigned NumParts;
1764 if (NarrowTy.isVector()) {
1765 // Uneven breakdown not handled.
1766 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
1767 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
1768 return UnableToLegalize;
1770 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
1771 } else {
1772 NumParts = DstTy.getNumElements();
1773 NarrowTy1 = SrcTy.getElementType();
1776 SmallVector<unsigned, 4> SrcRegs, DstRegs;
1777 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
1779 for (unsigned I = 0; I < NumParts; ++I) {
1780 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
1781 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode())
1782 .addDef(DstReg)
1783 .addUse(SrcRegs[I]);
1785 NewInst->setFlags(MI.getFlags());
1786 DstRegs.push_back(DstReg);
1789 if (NarrowTy.isVector())
1790 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1791 else
1792 MIRBuilder.buildBuildVector(DstReg, DstRegs);
1794 MI.eraseFromParent();
1795 return Legalized;
1798 LegalizerHelper::LegalizeResult
1799 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
1800 LLT NarrowTy) {
1801 unsigned DstReg = MI.getOperand(0).getReg();
1802 unsigned Src0Reg = MI.getOperand(2).getReg();
1803 LLT DstTy = MRI.getType(DstReg);
1804 LLT SrcTy = MRI.getType(Src0Reg);
1806 unsigned NumParts;
1807 LLT NarrowTy0, NarrowTy1;
1809 if (TypeIdx == 0) {
1810 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
1811 unsigned OldElts = DstTy.getNumElements();
1813 NarrowTy0 = NarrowTy;
1814 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
1815 NarrowTy1 = NarrowTy.isVector() ?
1816 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
1817 SrcTy.getElementType();
1819 } else {
1820 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
1821 unsigned OldElts = SrcTy.getNumElements();
1823 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
1824 NarrowTy.getNumElements();
1825 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
1826 DstTy.getScalarSizeInBits());
1827 NarrowTy1 = NarrowTy;
1830 // FIXME: Don't know how to handle the situation where the small vectors
1831 // aren't all the same size yet.
1832 if (NarrowTy1.isVector() &&
1833 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
1834 return UnableToLegalize;
1836 CmpInst::Predicate Pred
1837 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1839 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
1840 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
1841 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
1843 for (unsigned I = 0; I < NumParts; ++I) {
1844 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
1845 DstRegs.push_back(DstReg);
1847 if (MI.getOpcode() == TargetOpcode::G_ICMP)
1848 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
1849 else {
1850 MachineInstr *NewCmp
1851 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
1852 NewCmp->setFlags(MI.getFlags());
1856 if (NarrowTy1.isVector())
1857 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1858 else
1859 MIRBuilder.buildBuildVector(DstReg, DstRegs);
1861 MI.eraseFromParent();
1862 return Legalized;
1865 LegalizerHelper::LegalizeResult
1866 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
1867 LLT NarrowTy) {
1868 unsigned DstReg = MI.getOperand(0).getReg();
1869 unsigned CondReg = MI.getOperand(1).getReg();
1871 unsigned NumParts = 0;
1872 LLT NarrowTy0, NarrowTy1;
1874 LLT DstTy = MRI.getType(DstReg);
1875 LLT CondTy = MRI.getType(CondReg);
1876 unsigned Size = DstTy.getSizeInBits();
1878 assert(TypeIdx == 0 || CondTy.isVector());
1880 if (TypeIdx == 0) {
1881 NarrowTy0 = NarrowTy;
1882 NarrowTy1 = CondTy;
1884 unsigned NarrowSize = NarrowTy0.getSizeInBits();
1885 // FIXME: Don't know how to handle the situation where the small vectors
1886 // aren't all the same size yet.
1887 if (Size % NarrowSize != 0)
1888 return UnableToLegalize;
1890 NumParts = Size / NarrowSize;
1892 // Need to break down the condition type
1893 if (CondTy.isVector()) {
1894 if (CondTy.getNumElements() == NumParts)
1895 NarrowTy1 = CondTy.getElementType();
1896 else
1897 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
1898 CondTy.getScalarSizeInBits());
1900 } else {
1901 NumParts = CondTy.getNumElements();
1902 if (NarrowTy.isVector()) {
1903 // TODO: Handle uneven breakdown.
1904 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
1905 return UnableToLegalize;
1907 return UnableToLegalize;
1908 } else {
1909 NarrowTy0 = DstTy.getElementType();
1910 NarrowTy1 = NarrowTy;
1914 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
1915 if (CondTy.isVector())
1916 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
1918 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
1919 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
1921 for (unsigned i = 0; i < NumParts; ++i) {
1922 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
1923 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
1924 Src1Regs[i], Src2Regs[i]);
1925 DstRegs.push_back(DstReg);
1928 if (NarrowTy0.isVector())
1929 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1930 else
1931 MIRBuilder.buildBuildVector(DstReg, DstRegs);
1933 MI.eraseFromParent();
1934 return Legalized;
1937 LegalizerHelper::LegalizeResult
1938 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
1939 LLT NarrowTy) {
1940 // FIXME: Don't know how to handle secondary types yet.
1941 if (TypeIdx != 0)
1942 return UnableToLegalize;
1944 MachineMemOperand *MMO = *MI.memoperands_begin();
1946 // This implementation doesn't work for atomics. Give up instead of doing
1947 // something invalid.
1948 if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
1949 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
1950 return UnableToLegalize;
1952 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
1953 unsigned ValReg = MI.getOperand(0).getReg();
1954 unsigned AddrReg = MI.getOperand(1).getReg();
1955 LLT ValTy = MRI.getType(ValReg);
1957 int NumParts = -1;
1958 LLT LeftoverTy;
1959 SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs;
1960 if (IsLoad) {
1961 NumParts = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
1962 } else {
1963 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
1964 NarrowLeftoverRegs))
1965 NumParts = NarrowRegs.size();
1968 if (NumParts == -1)
1969 return UnableToLegalize;
1971 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
1973 unsigned TotalSize = ValTy.getSizeInBits();
1975 // Split the load/store into PartTy sized pieces starting at Offset. If this
1976 // is a load, return the new registers in ValRegs. For a store, each elements
1977 // of ValRegs should be PartTy. Returns the next offset that needs to be
1978 // handled.
1979 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs,
1980 unsigned Offset) -> unsigned {
1981 MachineFunction &MF = MIRBuilder.getMF();
1982 unsigned PartSize = PartTy.getSizeInBits();
1983 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
1984 Offset += PartSize, ++Idx) {
1985 unsigned ByteSize = PartSize / 8;
1986 unsigned ByteOffset = Offset / 8;
1987 unsigned NewAddrReg = 0;
1989 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
1991 MachineMemOperand *NewMMO =
1992 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
1994 if (IsLoad) {
1995 unsigned Dst = MRI.createGenericVirtualRegister(PartTy);
1996 ValRegs.push_back(Dst);
1997 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
1998 } else {
1999 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
2003 return Offset;
2006 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
2008 // Handle the rest of the register if this isn't an even type breakdown.
2009 if (LeftoverTy.isValid())
2010 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
2012 if (IsLoad) {
2013 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
2014 LeftoverTy, NarrowLeftoverRegs);
2017 MI.eraseFromParent();
2018 return Legalized;
2021 LegalizerHelper::LegalizeResult
2022 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
2023 LLT NarrowTy) {
2024 using namespace TargetOpcode;
2026 MIRBuilder.setInstr(MI);
2027 switch (MI.getOpcode()) {
2028 case G_IMPLICIT_DEF:
2029 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
2030 case G_AND:
2031 case G_OR:
2032 case G_XOR:
2033 case G_ADD:
2034 case G_SUB:
2035 case G_MUL:
2036 case G_SMULH:
2037 case G_UMULH:
2038 case G_FADD:
2039 case G_FMUL:
2040 case G_FSUB:
2041 case G_FNEG:
2042 case G_FABS:
2043 case G_FCANONICALIZE:
2044 case G_FDIV:
2045 case G_FREM:
2046 case G_FMA:
2047 case G_FPOW:
2048 case G_FEXP:
2049 case G_FEXP2:
2050 case G_FLOG:
2051 case G_FLOG2:
2052 case G_FLOG10:
2053 case G_FCEIL:
2054 case G_FFLOOR:
2055 case G_INTRINSIC_ROUND:
2056 case G_INTRINSIC_TRUNC:
2057 case G_FCOS:
2058 case G_FSIN:
2059 case G_FSQRT:
2060 case G_BSWAP:
2061 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
2062 case G_SHL:
2063 case G_LSHR:
2064 case G_ASHR:
2065 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
2066 case G_ZEXT:
2067 case G_SEXT:
2068 case G_ANYEXT:
2069 case G_FPEXT:
2070 case G_FPTRUNC:
2071 case G_SITOFP:
2072 case G_UITOFP:
2073 case G_FPTOSI:
2074 case G_FPTOUI:
2075 case G_INTTOPTR:
2076 case G_PTRTOINT:
2077 case G_ADDRSPACE_CAST:
2078 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
2079 case G_ICMP:
2080 case G_FCMP:
2081 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
2082 case G_SELECT:
2083 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
2084 case G_LOAD:
2085 case G_STORE:
2086 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
2087 default:
2088 return UnableToLegalize;
2092 LegalizerHelper::LegalizeResult
2093 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
2094 const LLT HalfTy, const LLT AmtTy) {
2096 unsigned InL = MRI.createGenericVirtualRegister(HalfTy);
2097 unsigned InH = MRI.createGenericVirtualRegister(HalfTy);
2098 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2100 if (Amt.isNullValue()) {
2101 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH});
2102 MI.eraseFromParent();
2103 return Legalized;
2106 LLT NVT = HalfTy;
2107 unsigned NVTBits = HalfTy.getSizeInBits();
2108 unsigned VTBits = 2 * NVTBits;
2110 SrcOp Lo(0), Hi(0);
2111 if (MI.getOpcode() == TargetOpcode::G_SHL) {
2112 if (Amt.ugt(VTBits)) {
2113 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2114 } else if (Amt.ugt(NVTBits)) {
2115 Lo = MIRBuilder.buildConstant(NVT, 0);
2116 Hi = MIRBuilder.buildShl(NVT, InL,
2117 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2118 } else if (Amt == NVTBits) {
2119 Lo = MIRBuilder.buildConstant(NVT, 0);
2120 Hi = InL;
2121 } else {
2122 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
2123 auto OrLHS =
2124 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
2125 auto OrRHS = MIRBuilder.buildLShr(
2126 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2127 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2129 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2130 if (Amt.ugt(VTBits)) {
2131 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2132 } else if (Amt.ugt(NVTBits)) {
2133 Lo = MIRBuilder.buildLShr(NVT, InH,
2134 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2135 Hi = MIRBuilder.buildConstant(NVT, 0);
2136 } else if (Amt == NVTBits) {
2137 Lo = InH;
2138 Hi = MIRBuilder.buildConstant(NVT, 0);
2139 } else {
2140 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2142 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2143 auto OrRHS = MIRBuilder.buildShl(
2144 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2146 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2147 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
2149 } else {
2150 if (Amt.ugt(VTBits)) {
2151 Hi = Lo = MIRBuilder.buildAShr(
2152 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2153 } else if (Amt.ugt(NVTBits)) {
2154 Lo = MIRBuilder.buildAShr(NVT, InH,
2155 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2156 Hi = MIRBuilder.buildAShr(NVT, InH,
2157 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2158 } else if (Amt == NVTBits) {
2159 Lo = InH;
2160 Hi = MIRBuilder.buildAShr(NVT, InH,
2161 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2162 } else {
2163 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2165 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2166 auto OrRHS = MIRBuilder.buildShl(
2167 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2169 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2170 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
2174 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()});
2175 MI.eraseFromParent();
2177 return Legalized;
2180 // TODO: Optimize if constant shift amount.
2181 LegalizerHelper::LegalizeResult
2182 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
2183 LLT RequestedTy) {
2184 if (TypeIdx == 1) {
2185 Observer.changingInstr(MI);
2186 narrowScalarSrc(MI, RequestedTy, 2);
2187 Observer.changedInstr(MI);
2188 return Legalized;
2191 unsigned DstReg = MI.getOperand(0).getReg();
2192 LLT DstTy = MRI.getType(DstReg);
2193 if (DstTy.isVector())
2194 return UnableToLegalize;
2196 unsigned Amt = MI.getOperand(2).getReg();
2197 LLT ShiftAmtTy = MRI.getType(Amt);
2198 const unsigned DstEltSize = DstTy.getScalarSizeInBits();
2199 if (DstEltSize % 2 != 0)
2200 return UnableToLegalize;
2202 // Ignore the input type. We can only go to exactly half the size of the
2203 // input. If that isn't small enough, the resulting pieces will be further
2204 // legalized.
2205 const unsigned NewBitSize = DstEltSize / 2;
2206 const LLT HalfTy = LLT::scalar(NewBitSize);
2207 const LLT CondTy = LLT::scalar(1);
2209 if (const MachineInstr *KShiftAmt =
2210 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
2211 return narrowScalarShiftByConstant(
2212 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
2215 // TODO: Expand with known bits.
2217 // Handle the fully general expansion by an unknown amount.
2218 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
2220 unsigned InL = MRI.createGenericVirtualRegister(HalfTy);
2221 unsigned InH = MRI.createGenericVirtualRegister(HalfTy);
2222 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2224 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
2225 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
2227 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
2228 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
2229 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
2231 unsigned ResultRegs[2];
2232 switch (MI.getOpcode()) {
2233 case TargetOpcode::G_SHL: {
2234 // Short: ShAmt < NewBitSize
2235 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt);
2237 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt);
2238 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
2239 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
2241 // Long: ShAmt >= NewBitSize
2242 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
2243 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
2245 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
2246 auto Hi = MIRBuilder.buildSelect(
2247 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
2249 ResultRegs[0] = Lo.getReg(0);
2250 ResultRegs[1] = Hi.getReg(0);
2251 break;
2253 case TargetOpcode::G_LSHR: {
2254 // Short: ShAmt < NewBitSize
2255 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt);
2257 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt);
2258 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
2259 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
2261 // Long: ShAmt >= NewBitSize
2262 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
2263 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part.
2265 auto Lo = MIRBuilder.buildSelect(
2266 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
2267 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
2269 ResultRegs[0] = Lo.getReg(0);
2270 ResultRegs[1] = Hi.getReg(0);
2271 break;
2273 case TargetOpcode::G_ASHR: {
2274 // Short: ShAmt < NewBitSize
2275 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt);
2277 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt);
2278 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack);
2279 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
2281 // Long: ShAmt >= NewBitSize
2283 // Sign of Hi part.
2284 auto HiL = MIRBuilder.buildAShr(
2285 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1));
2287 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part.
2289 auto Lo = MIRBuilder.buildSelect(
2290 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
2292 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
2294 ResultRegs[0] = Lo.getReg(0);
2295 ResultRegs[1] = Hi.getReg(0);
2296 break;
2298 default:
2299 llvm_unreachable("not a shift");
2302 MIRBuilder.buildMerge(DstReg, ResultRegs);
2303 MI.eraseFromParent();
2304 return Legalized;
2307 LegalizerHelper::LegalizeResult
2308 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
2309 LLT MoreTy) {
2310 MIRBuilder.setInstr(MI);
2311 unsigned Opc = MI.getOpcode();
2312 switch (Opc) {
2313 case TargetOpcode::G_IMPLICIT_DEF: {
2314 Observer.changingInstr(MI);
2315 moreElementsVectorDst(MI, MoreTy, 0);
2316 Observer.changedInstr(MI);
2317 return Legalized;
2319 default:
2320 return UnableToLegalize;
2324 LegalizerHelper::LegalizeResult
2325 LegalizerHelper::narrowScalarMul(MachineInstr &MI, unsigned TypeIdx, LLT NewTy) {
2326 unsigned DstReg = MI.getOperand(0).getReg();
2327 unsigned Src0 = MI.getOperand(1).getReg();
2328 unsigned Src1 = MI.getOperand(2).getReg();
2329 LLT Ty = MRI.getType(DstReg);
2330 if (Ty.isVector())
2331 return UnableToLegalize;
2333 unsigned Size = Ty.getSizeInBits();
2334 unsigned NewSize = Size / 2;
2335 if (Size != 2 * NewSize)
2336 return UnableToLegalize;
2338 LLT HalfTy = LLT::scalar(NewSize);
2339 // TODO: if HalfTy != NewTy, handle the breakdown all at once?
2341 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty);
2342 unsigned Lo = MRI.createGenericVirtualRegister(HalfTy);
2343 unsigned Hi = MRI.createGenericVirtualRegister(HalfTy);
2344 unsigned ExtLo = MRI.createGenericVirtualRegister(Ty);
2345 unsigned ExtHi = MRI.createGenericVirtualRegister(Ty);
2346 unsigned ShiftedHi = MRI.createGenericVirtualRegister(Ty);
2348 SmallVector<unsigned, 2> Src0Parts;
2349 SmallVector<unsigned, 2> Src1Parts;
2351 extractParts(Src0, HalfTy, 2, Src0Parts);
2352 extractParts(Src1, HalfTy, 2, Src1Parts);
2354 MIRBuilder.buildMul(Lo, Src0Parts[0], Src1Parts[0]);
2356 // TODO: Use smulh or umulh depending on what the target has.
2357 MIRBuilder.buildUMulH(Hi, Src0Parts[1], Src1Parts[1]);
2359 MIRBuilder.buildConstant(ShiftAmt, NewSize);
2360 MIRBuilder.buildAnyExt(ExtHi, Hi);
2361 MIRBuilder.buildShl(ShiftedHi, ExtHi, ShiftAmt);
2363 MIRBuilder.buildZExt(ExtLo, Lo);
2364 MIRBuilder.buildOr(DstReg, ExtLo, ShiftedHi);
2365 MI.eraseFromParent();
2366 return Legalized;
2370 LegalizerHelper::LegalizeResult
2371 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
2372 LLT NarrowTy) {
2373 if (TypeIdx != 1)
2374 return UnableToLegalize;
2376 uint64_t NarrowSize = NarrowTy.getSizeInBits();
2378 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
2379 // FIXME: add support for when SizeOp1 isn't an exact multiple of
2380 // NarrowSize.
2381 if (SizeOp1 % NarrowSize != 0)
2382 return UnableToLegalize;
2383 int NumParts = SizeOp1 / NarrowSize;
2385 SmallVector<unsigned, 2> SrcRegs, DstRegs;
2386 SmallVector<uint64_t, 2> Indexes;
2387 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
2389 unsigned OpReg = MI.getOperand(0).getReg();
2390 uint64_t OpStart = MI.getOperand(2).getImm();
2391 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
2392 for (int i = 0; i < NumParts; ++i) {
2393 unsigned SrcStart = i * NarrowSize;
2395 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
2396 // No part of the extract uses this subregister, ignore it.
2397 continue;
2398 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
2399 // The entire subregister is extracted, forward the value.
2400 DstRegs.push_back(SrcRegs[i]);
2401 continue;
2404 // OpSegStart is where this destination segment would start in OpReg if it
2405 // extended infinitely in both directions.
2406 int64_t ExtractOffset;
2407 uint64_t SegSize;
2408 if (OpStart < SrcStart) {
2409 ExtractOffset = 0;
2410 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
2411 } else {
2412 ExtractOffset = OpStart - SrcStart;
2413 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
2416 unsigned SegReg = SrcRegs[i];
2417 if (ExtractOffset != 0 || SegSize != NarrowSize) {
2418 // A genuine extract is needed.
2419 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
2420 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
2423 DstRegs.push_back(SegReg);
2426 unsigned DstReg = MI.getOperand(0).getReg();
2427 if(MRI.getType(DstReg).isVector())
2428 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2429 else
2430 MIRBuilder.buildMerge(DstReg, DstRegs);
2431 MI.eraseFromParent();
2432 return Legalized;
2435 LegalizerHelper::LegalizeResult
2436 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
2437 LLT NarrowTy) {
2438 // FIXME: Don't know how to handle secondary types yet.
2439 if (TypeIdx != 0)
2440 return UnableToLegalize;
2442 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
2443 uint64_t NarrowSize = NarrowTy.getSizeInBits();
2445 // FIXME: add support for when SizeOp0 isn't an exact multiple of
2446 // NarrowSize.
2447 if (SizeOp0 % NarrowSize != 0)
2448 return UnableToLegalize;
2450 int NumParts = SizeOp0 / NarrowSize;
2452 SmallVector<unsigned, 2> SrcRegs, DstRegs;
2453 SmallVector<uint64_t, 2> Indexes;
2454 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
2456 unsigned OpReg = MI.getOperand(2).getReg();
2457 uint64_t OpStart = MI.getOperand(3).getImm();
2458 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
2459 for (int i = 0; i < NumParts; ++i) {
2460 unsigned DstStart = i * NarrowSize;
2462 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
2463 // No part of the insert affects this subregister, forward the original.
2464 DstRegs.push_back(SrcRegs[i]);
2465 continue;
2466 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
2467 // The entire subregister is defined by this insert, forward the new
2468 // value.
2469 DstRegs.push_back(OpReg);
2470 continue;
2473 // OpSegStart is where this destination segment would start in OpReg if it
2474 // extended infinitely in both directions.
2475 int64_t ExtractOffset, InsertOffset;
2476 uint64_t SegSize;
2477 if (OpStart < DstStart) {
2478 InsertOffset = 0;
2479 ExtractOffset = DstStart - OpStart;
2480 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
2481 } else {
2482 InsertOffset = OpStart - DstStart;
2483 ExtractOffset = 0;
2484 SegSize =
2485 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
2488 unsigned SegReg = OpReg;
2489 if (ExtractOffset != 0 || SegSize != OpSize) {
2490 // A genuine extract is needed.
2491 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
2492 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
2495 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
2496 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
2497 DstRegs.push_back(DstReg);
2500 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
2501 unsigned DstReg = MI.getOperand(0).getReg();
2502 if(MRI.getType(DstReg).isVector())
2503 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2504 else
2505 MIRBuilder.buildMerge(DstReg, DstRegs);
2506 MI.eraseFromParent();
2507 return Legalized;
2510 LegalizerHelper::LegalizeResult
2511 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
2512 LLT NarrowTy) {
2513 if (TypeIdx != 0)
2514 return UnableToLegalize;
2516 unsigned CondReg = MI.getOperand(1).getReg();
2517 LLT CondTy = MRI.getType(CondReg);
2518 if (CondTy.isVector()) // TODO: Handle vselect
2519 return UnableToLegalize;
2521 unsigned DstReg = MI.getOperand(0).getReg();
2522 LLT DstTy = MRI.getType(DstReg);
2524 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs;
2525 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs;
2526 SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs;
2527 LLT LeftoverTy;
2528 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
2529 Src1Regs, Src1LeftoverRegs))
2530 return UnableToLegalize;
2532 LLT Unused;
2533 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
2534 Src2Regs, Src2LeftoverRegs))
2535 llvm_unreachable("inconsistent extractParts result");
2537 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
2538 auto Select = MIRBuilder.buildSelect(NarrowTy,
2539 CondReg, Src1Regs[I], Src2Regs[I]);
2540 DstRegs.push_back(Select->getOperand(0).getReg());
2543 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
2544 auto Select = MIRBuilder.buildSelect(
2545 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
2546 DstLeftoverRegs.push_back(Select->getOperand(0).getReg());
2549 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
2550 LeftoverTy, DstLeftoverRegs);
2552 MI.eraseFromParent();
2553 return Legalized;
2556 LegalizerHelper::LegalizeResult
2557 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2558 unsigned Opc = MI.getOpcode();
2559 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2560 auto isSupported = [this](const LegalityQuery &Q) {
2561 auto QAction = LI.getAction(Q).Action;
2562 return QAction == Legal || QAction == Libcall || QAction == Custom;
2564 switch (Opc) {
2565 default:
2566 return UnableToLegalize;
2567 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
2568 // This trivially expands to CTLZ.
2569 Observer.changingInstr(MI);
2570 MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
2571 Observer.changedInstr(MI);
2572 return Legalized;
2574 case TargetOpcode::G_CTLZ: {
2575 unsigned SrcReg = MI.getOperand(1).getReg();
2576 unsigned Len = Ty.getSizeInBits();
2577 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) {
2578 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
2579 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF,
2580 {Ty}, {SrcReg});
2581 auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
2582 auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
2583 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
2584 SrcReg, MIBZero);
2585 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
2586 MIBCtlzZU);
2587 MI.eraseFromParent();
2588 return Legalized;
2590 // for now, we do this:
2591 // NewLen = NextPowerOf2(Len);
2592 // x = x | (x >> 1);
2593 // x = x | (x >> 2);
2594 // ...
2595 // x = x | (x >>16);
2596 // x = x | (x >>32); // for 64-bit input
2597 // Upto NewLen/2
2598 // return Len - popcount(x);
2600 // Ref: "Hacker's Delight" by Henry Warren
2601 unsigned Op = SrcReg;
2602 unsigned NewLen = PowerOf2Ceil(Len);
2603 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
2604 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i);
2605 auto MIBOp = MIRBuilder.buildInstr(
2606 TargetOpcode::G_OR, {Ty},
2607 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty},
2608 {Op, MIBShiftAmt})});
2609 Op = MIBOp->getOperand(0).getReg();
2611 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op});
2612 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
2613 {MIRBuilder.buildConstant(Ty, Len), MIBPop});
2614 MI.eraseFromParent();
2615 return Legalized;
2617 case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
2618 // This trivially expands to CTTZ.
2619 Observer.changingInstr(MI);
2620 MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
2621 Observer.changedInstr(MI);
2622 return Legalized;
2624 case TargetOpcode::G_CTTZ: {
2625 unsigned SrcReg = MI.getOperand(1).getReg();
2626 unsigned Len = Ty.getSizeInBits();
2627 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) {
2628 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
2629 // zero.
2630 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF,
2631 {Ty}, {SrcReg});
2632 auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
2633 auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
2634 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
2635 SrcReg, MIBZero);
2636 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
2637 MIBCttzZU);
2638 MI.eraseFromParent();
2639 return Legalized;
2641 // for now, we use: { return popcount(~x & (x - 1)); }
2642 // unless the target has ctlz but not ctpop, in which case we use:
2643 // { return 32 - nlz(~x & (x-1)); }
2644 // Ref: "Hacker's Delight" by Henry Warren
2645 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
2646 auto MIBNot =
2647 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1});
2648 auto MIBTmp = MIRBuilder.buildInstr(
2649 TargetOpcode::G_AND, {Ty},
2650 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty},
2651 {SrcReg, MIBCstNeg1})});
2652 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
2653 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
2654 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
2655 MIRBuilder.buildInstr(
2656 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
2657 {MIBCstLen,
2658 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})});
2659 MI.eraseFromParent();
2660 return Legalized;
2662 MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
2663 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg());
2664 return Legalized;