1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
73 #define DEBUG_TYPE "interleaved-access"
75 static cl::opt
<bool> LowerInterleavedAccesses(
76 "lower-interleaved-accesses",
77 cl::desc("Enable lowering interleaved accesses to intrinsics"),
78 cl::init(true), cl::Hidden
);
82 class InterleavedAccess
: public FunctionPass
{
86 InterleavedAccess() : FunctionPass(ID
) {
87 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
90 StringRef
getPassName() const override
{ return "Interleaved Access Pass"; }
92 bool runOnFunction(Function
&F
) override
;
94 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
95 AU
.addRequired
<DominatorTreeWrapperPass
>();
96 AU
.addPreserved
<DominatorTreeWrapperPass
>();
100 DominatorTree
*DT
= nullptr;
101 const TargetLowering
*TLI
= nullptr;
103 /// The maximum supported interleave factor.
106 /// Transform an interleaved load into target specific intrinsics.
107 bool lowerInterleavedLoad(LoadInst
*LI
,
108 SmallVector
<Instruction
*, 32> &DeadInsts
);
110 /// Transform an interleaved store into target specific intrinsics.
111 bool lowerInterleavedStore(StoreInst
*SI
,
112 SmallVector
<Instruction
*, 32> &DeadInsts
);
114 /// Returns true if the uses of an interleaved load by the
115 /// extractelement instructions in \p Extracts can be replaced by uses of the
116 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
117 /// replacements are also performed.
118 bool tryReplaceExtracts(ArrayRef
<ExtractElementInst
*> Extracts
,
119 ArrayRef
<ShuffleVectorInst
*> Shuffles
);
122 } // end anonymous namespace.
124 char InterleavedAccess::ID
= 0;
126 INITIALIZE_PASS_BEGIN(InterleavedAccess
, DEBUG_TYPE
,
127 "Lower interleaved memory accesses to target specific intrinsics", false,
129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
130 INITIALIZE_PASS_END(InterleavedAccess
, DEBUG_TYPE
,
131 "Lower interleaved memory accesses to target specific intrinsics", false,
134 FunctionPass
*llvm::createInterleavedAccessPass() {
135 return new InterleavedAccess();
138 /// Check if the mask is a DE-interleave mask of the given factor
140 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
141 static bool isDeInterleaveMaskOfFactor(ArrayRef
<int> Mask
, unsigned Factor
,
143 // Check all potential start indices from 0 to (Factor - 1).
144 for (Index
= 0; Index
< Factor
; Index
++) {
147 // Check that elements are in ascending order by Factor. Ignore undef
149 for (; i
< Mask
.size(); i
++)
150 if (Mask
[i
] >= 0 && static_cast<unsigned>(Mask
[i
]) != Index
+ i
* Factor
)
153 if (i
== Mask
.size())
160 /// Check if the mask is a DE-interleave mask for an interleaved load.
162 /// E.g. DE-interleave masks (Factor = 2) could be:
163 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
164 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
165 static bool isDeInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
166 unsigned &Index
, unsigned MaxFactor
) {
170 // Check potential Factors.
171 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++)
172 if (isDeInterleaveMaskOfFactor(Mask
, Factor
, Index
))
178 /// Check if the mask can be used in an interleaved store.
180 /// It checks for a more general pattern than the RE-interleave mask.
181 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
182 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
183 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
184 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
186 /// The particular case of an RE-interleave mask is:
187 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
188 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
189 static bool isReInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
190 unsigned MaxFactor
, unsigned OpNumElts
) {
191 unsigned NumElts
= Mask
.size();
195 // Check potential Factors.
196 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
197 if (NumElts
% Factor
)
200 unsigned LaneLen
= NumElts
/ Factor
;
201 if (!isPowerOf2_32(LaneLen
))
204 // Check whether each element matches the general interleaved rule.
205 // Ignore undef elements, as long as the defined elements match the rule.
206 // Outer loop processes all factors (x, y, z in the above example)
208 for (; I
< Factor
; I
++) {
209 unsigned SavedLaneValue
;
210 unsigned SavedNoUndefs
= 0;
212 // Inner loop processes consecutive accesses (x, x+1... in the example)
213 for (J
= 0; J
< LaneLen
- 1; J
++) {
214 // Lane computes x's position in the Mask
215 unsigned Lane
= J
* Factor
+ I
;
216 unsigned NextLane
= Lane
+ Factor
;
217 int LaneValue
= Mask
[Lane
];
218 int NextLaneValue
= Mask
[NextLane
];
220 // If both are defined, values must be sequential
221 if (LaneValue
>= 0 && NextLaneValue
>= 0 &&
222 LaneValue
+ 1 != NextLaneValue
)
225 // If the next value is undef, save the current one as reference
226 if (LaneValue
>= 0 && NextLaneValue
< 0) {
227 SavedLaneValue
= LaneValue
;
231 // Undefs are allowed, but defined elements must still be consecutive:
232 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
233 // Verify this by storing the last non-undef followed by an undef
234 // Check that following non-undef masks are incremented with the
235 // corresponding distance.
236 if (SavedNoUndefs
> 0 && LaneValue
< 0) {
238 if (NextLaneValue
>= 0 &&
239 SavedLaneValue
+ SavedNoUndefs
!= (unsigned)NextLaneValue
)
249 // Check that the start of the I range (J=0) is greater than 0
251 } else if (Mask
[(LaneLen
- 1) * Factor
+ I
] >= 0) {
252 // StartMask defined by the last value in lane
253 StartMask
= Mask
[(LaneLen
- 1) * Factor
+ I
] - J
;
254 } else if (SavedNoUndefs
> 0) {
255 // StartMask defined by some non-zero value in the j loop
256 StartMask
= SavedLaneValue
- (LaneLen
- 1 - SavedNoUndefs
);
258 // else StartMask remains set to 0, i.e. all elements are undefs
262 // We must stay within the vectors; This case can happen with undefs.
263 if (StartMask
+ LaneLen
> OpNumElts
*2)
267 // Found an interleaved mask of current factor.
275 bool InterleavedAccess::lowerInterleavedLoad(
276 LoadInst
*LI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
280 SmallVector
<ShuffleVectorInst
*, 4> Shuffles
;
281 SmallVector
<ExtractElementInst
*, 4> Extracts
;
283 // Check if all users of this load are shufflevectors. If we encounter any
284 // users that are extractelement instructions, we save them to later check if
285 // they can be modifed to extract from one of the shufflevectors instead of
287 for (auto UI
= LI
->user_begin(), E
= LI
->user_end(); UI
!= E
; UI
++) {
288 auto *Extract
= dyn_cast
<ExtractElementInst
>(*UI
);
289 if (Extract
&& isa
<ConstantInt
>(Extract
->getIndexOperand())) {
290 Extracts
.push_back(Extract
);
293 ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(*UI
);
294 if (!SVI
|| !isa
<UndefValue
>(SVI
->getOperand(1)))
297 Shuffles
.push_back(SVI
);
300 if (Shuffles
.empty())
303 unsigned Factor
, Index
;
305 // Check if the first shufflevector is DE-interleave shuffle.
306 if (!isDeInterleaveMask(Shuffles
[0]->getShuffleMask(), Factor
, Index
,
310 // Holds the corresponding index for each DE-interleave shuffle.
311 SmallVector
<unsigned, 4> Indices
;
312 Indices
.push_back(Index
);
314 Type
*VecTy
= Shuffles
[0]->getType();
316 // Check if other shufflevectors are also DE-interleaved of the same type
317 // and factor as the first shufflevector.
318 for (unsigned i
= 1; i
< Shuffles
.size(); i
++) {
319 if (Shuffles
[i
]->getType() != VecTy
)
322 if (!isDeInterleaveMaskOfFactor(Shuffles
[i
]->getShuffleMask(), Factor
,
326 Indices
.push_back(Index
);
329 // Try and modify users of the load that are extractelement instructions to
330 // use the shufflevector instructions instead of the load.
331 if (!tryReplaceExtracts(Extracts
, Shuffles
))
334 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI
<< "\n");
336 // Try to create target specific intrinsics to replace the load and shuffles.
337 if (!TLI
->lowerInterleavedLoad(LI
, Shuffles
, Indices
, Factor
))
340 for (auto SVI
: Shuffles
)
341 DeadInsts
.push_back(SVI
);
343 DeadInsts
.push_back(LI
);
347 bool InterleavedAccess::tryReplaceExtracts(
348 ArrayRef
<ExtractElementInst
*> Extracts
,
349 ArrayRef
<ShuffleVectorInst
*> Shuffles
) {
350 // If there aren't any extractelement instructions to modify, there's nothing
352 if (Extracts
.empty())
355 // Maps extractelement instructions to vector-index pairs. The extractlement
356 // instructions will be modified to use the new vector and index operands.
357 DenseMap
<ExtractElementInst
*, std::pair
<Value
*, int>> ReplacementMap
;
359 for (auto *Extract
: Extracts
) {
360 // The vector index that is extracted.
361 auto *IndexOperand
= cast
<ConstantInt
>(Extract
->getIndexOperand());
362 auto Index
= IndexOperand
->getSExtValue();
364 // Look for a suitable shufflevector instruction. The goal is to modify the
365 // extractelement instruction (which uses an interleaved load) to use one
366 // of the shufflevector instructions instead of the load.
367 for (auto *Shuffle
: Shuffles
) {
368 // If the shufflevector instruction doesn't dominate the extract, we
369 // can't create a use of it.
370 if (!DT
->dominates(Shuffle
, Extract
))
373 // Inspect the indices of the shufflevector instruction. If the shuffle
374 // selects the same index that is extracted, we can modify the
375 // extractelement instruction.
376 SmallVector
<int, 4> Indices
;
377 Shuffle
->getShuffleMask(Indices
);
378 for (unsigned I
= 0; I
< Indices
.size(); ++I
)
379 if (Indices
[I
] == Index
) {
380 assert(Extract
->getOperand(0) == Shuffle
->getOperand(0) &&
381 "Vector operations do not match");
382 ReplacementMap
[Extract
] = std::make_pair(Shuffle
, I
);
386 // If we found a suitable shufflevector instruction, stop looking.
387 if (ReplacementMap
.count(Extract
))
391 // If we did not find a suitable shufflevector instruction, the
392 // extractelement instruction cannot be modified, so we must give up.
393 if (!ReplacementMap
.count(Extract
))
397 // Finally, perform the replacements.
398 IRBuilder
<> Builder(Extracts
[0]->getContext());
399 for (auto &Replacement
: ReplacementMap
) {
400 auto *Extract
= Replacement
.first
;
401 auto *Vector
= Replacement
.second
.first
;
402 auto Index
= Replacement
.second
.second
;
403 Builder
.SetInsertPoint(Extract
);
404 Extract
->replaceAllUsesWith(Builder
.CreateExtractElement(Vector
, Index
));
405 Extract
->eraseFromParent();
411 bool InterleavedAccess::lowerInterleavedStore(
412 StoreInst
*SI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
416 ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(SI
->getValueOperand());
417 if (!SVI
|| !SVI
->hasOneUse())
420 // Check if the shufflevector is RE-interleave shuffle.
422 unsigned OpNumElts
= SVI
->getOperand(0)->getType()->getVectorNumElements();
423 if (!isReInterleaveMask(SVI
->getShuffleMask(), Factor
, MaxFactor
, OpNumElts
))
426 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI
<< "\n");
428 // Try to create target specific intrinsics to replace the store and shuffle.
429 if (!TLI
->lowerInterleavedStore(SI
, SVI
, Factor
))
432 // Already have a new target specific interleaved store. Erase the old store.
433 DeadInsts
.push_back(SI
);
434 DeadInsts
.push_back(SVI
);
438 bool InterleavedAccess::runOnFunction(Function
&F
) {
439 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
440 if (!TPC
|| !LowerInterleavedAccesses
)
443 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F
.getName() << "\n");
445 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
446 auto &TM
= TPC
->getTM
<TargetMachine
>();
447 TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
448 MaxFactor
= TLI
->getMaxSupportedInterleaveFactor();
450 // Holds dead instructions that will be erased later.
451 SmallVector
<Instruction
*, 32> DeadInsts
;
452 bool Changed
= false;
454 for (auto &I
: instructions(F
)) {
455 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
))
456 Changed
|= lowerInterleavedLoad(LI
, DeadInsts
);
458 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
459 Changed
|= lowerInterleavedStore(SI
, DeadInsts
);
462 for (auto I
: DeadInsts
)
463 I
->eraseFromParent();