Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / InterleavedAccessPass.cpp
blob2f8012aeeefb06af5e99e6111bf8bbd1654cb1ff
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <cassert>
69 #include <utility>
71 using namespace llvm;
73 #define DEBUG_TYPE "interleaved-access"
75 static cl::opt<bool> LowerInterleavedAccesses(
76 "lower-interleaved-accesses",
77 cl::desc("Enable lowering interleaved accesses to intrinsics"),
78 cl::init(true), cl::Hidden);
80 namespace {
82 class InterleavedAccess : public FunctionPass {
83 public:
84 static char ID;
86 InterleavedAccess() : FunctionPass(ID) {
87 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
90 StringRef getPassName() const override { return "Interleaved Access Pass"; }
92 bool runOnFunction(Function &F) override;
94 void getAnalysisUsage(AnalysisUsage &AU) const override {
95 AU.addRequired<DominatorTreeWrapperPass>();
96 AU.addPreserved<DominatorTreeWrapperPass>();
99 private:
100 DominatorTree *DT = nullptr;
101 const TargetLowering *TLI = nullptr;
103 /// The maximum supported interleave factor.
104 unsigned MaxFactor;
106 /// Transform an interleaved load into target specific intrinsics.
107 bool lowerInterleavedLoad(LoadInst *LI,
108 SmallVector<Instruction *, 32> &DeadInsts);
110 /// Transform an interleaved store into target specific intrinsics.
111 bool lowerInterleavedStore(StoreInst *SI,
112 SmallVector<Instruction *, 32> &DeadInsts);
114 /// Returns true if the uses of an interleaved load by the
115 /// extractelement instructions in \p Extracts can be replaced by uses of the
116 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
117 /// replacements are also performed.
118 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
119 ArrayRef<ShuffleVectorInst *> Shuffles);
122 } // end anonymous namespace.
124 char InterleavedAccess::ID = 0;
126 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
127 "Lower interleaved memory accesses to target specific intrinsics", false,
128 false)
129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
130 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
131 "Lower interleaved memory accesses to target specific intrinsics", false,
132 false)
134 FunctionPass *llvm::createInterleavedAccessPass() {
135 return new InterleavedAccess();
138 /// Check if the mask is a DE-interleave mask of the given factor
139 /// \p Factor like:
140 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
141 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
142 unsigned &Index) {
143 // Check all potential start indices from 0 to (Factor - 1).
144 for (Index = 0; Index < Factor; Index++) {
145 unsigned i = 0;
147 // Check that elements are in ascending order by Factor. Ignore undef
148 // elements.
149 for (; i < Mask.size(); i++)
150 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
151 break;
153 if (i == Mask.size())
154 return true;
157 return false;
160 /// Check if the mask is a DE-interleave mask for an interleaved load.
162 /// E.g. DE-interleave masks (Factor = 2) could be:
163 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
164 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
165 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
166 unsigned &Index, unsigned MaxFactor) {
167 if (Mask.size() < 2)
168 return false;
170 // Check potential Factors.
171 for (Factor = 2; Factor <= MaxFactor; Factor++)
172 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
173 return true;
175 return false;
178 /// Check if the mask can be used in an interleaved store.
180 /// It checks for a more general pattern than the RE-interleave mask.
181 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
182 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
183 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
184 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
186 /// The particular case of an RE-interleave mask is:
187 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
188 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
189 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
190 unsigned MaxFactor, unsigned OpNumElts) {
191 unsigned NumElts = Mask.size();
192 if (NumElts < 4)
193 return false;
195 // Check potential Factors.
196 for (Factor = 2; Factor <= MaxFactor; Factor++) {
197 if (NumElts % Factor)
198 continue;
200 unsigned LaneLen = NumElts / Factor;
201 if (!isPowerOf2_32(LaneLen))
202 continue;
204 // Check whether each element matches the general interleaved rule.
205 // Ignore undef elements, as long as the defined elements match the rule.
206 // Outer loop processes all factors (x, y, z in the above example)
207 unsigned I = 0, J;
208 for (; I < Factor; I++) {
209 unsigned SavedLaneValue;
210 unsigned SavedNoUndefs = 0;
212 // Inner loop processes consecutive accesses (x, x+1... in the example)
213 for (J = 0; J < LaneLen - 1; J++) {
214 // Lane computes x's position in the Mask
215 unsigned Lane = J * Factor + I;
216 unsigned NextLane = Lane + Factor;
217 int LaneValue = Mask[Lane];
218 int NextLaneValue = Mask[NextLane];
220 // If both are defined, values must be sequential
221 if (LaneValue >= 0 && NextLaneValue >= 0 &&
222 LaneValue + 1 != NextLaneValue)
223 break;
225 // If the next value is undef, save the current one as reference
226 if (LaneValue >= 0 && NextLaneValue < 0) {
227 SavedLaneValue = LaneValue;
228 SavedNoUndefs = 1;
231 // Undefs are allowed, but defined elements must still be consecutive:
232 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
233 // Verify this by storing the last non-undef followed by an undef
234 // Check that following non-undef masks are incremented with the
235 // corresponding distance.
236 if (SavedNoUndefs > 0 && LaneValue < 0) {
237 SavedNoUndefs++;
238 if (NextLaneValue >= 0 &&
239 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
240 break;
244 if (J < LaneLen - 1)
245 break;
247 int StartMask = 0;
248 if (Mask[I] >= 0) {
249 // Check that the start of the I range (J=0) is greater than 0
250 StartMask = Mask[I];
251 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
252 // StartMask defined by the last value in lane
253 StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
254 } else if (SavedNoUndefs > 0) {
255 // StartMask defined by some non-zero value in the j loop
256 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
258 // else StartMask remains set to 0, i.e. all elements are undefs
260 if (StartMask < 0)
261 break;
262 // We must stay within the vectors; This case can happen with undefs.
263 if (StartMask + LaneLen > OpNumElts*2)
264 break;
267 // Found an interleaved mask of current factor.
268 if (I == Factor)
269 return true;
272 return false;
275 bool InterleavedAccess::lowerInterleavedLoad(
276 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
277 if (!LI->isSimple())
278 return false;
280 SmallVector<ShuffleVectorInst *, 4> Shuffles;
281 SmallVector<ExtractElementInst *, 4> Extracts;
283 // Check if all users of this load are shufflevectors. If we encounter any
284 // users that are extractelement instructions, we save them to later check if
285 // they can be modifed to extract from one of the shufflevectors instead of
286 // the load.
287 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
288 auto *Extract = dyn_cast<ExtractElementInst>(*UI);
289 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
290 Extracts.push_back(Extract);
291 continue;
293 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
294 if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
295 return false;
297 Shuffles.push_back(SVI);
300 if (Shuffles.empty())
301 return false;
303 unsigned Factor, Index;
305 // Check if the first shufflevector is DE-interleave shuffle.
306 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
307 MaxFactor))
308 return false;
310 // Holds the corresponding index for each DE-interleave shuffle.
311 SmallVector<unsigned, 4> Indices;
312 Indices.push_back(Index);
314 Type *VecTy = Shuffles[0]->getType();
316 // Check if other shufflevectors are also DE-interleaved of the same type
317 // and factor as the first shufflevector.
318 for (unsigned i = 1; i < Shuffles.size(); i++) {
319 if (Shuffles[i]->getType() != VecTy)
320 return false;
322 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
323 Index))
324 return false;
326 Indices.push_back(Index);
329 // Try and modify users of the load that are extractelement instructions to
330 // use the shufflevector instructions instead of the load.
331 if (!tryReplaceExtracts(Extracts, Shuffles))
332 return false;
334 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
336 // Try to create target specific intrinsics to replace the load and shuffles.
337 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
338 return false;
340 for (auto SVI : Shuffles)
341 DeadInsts.push_back(SVI);
343 DeadInsts.push_back(LI);
344 return true;
347 bool InterleavedAccess::tryReplaceExtracts(
348 ArrayRef<ExtractElementInst *> Extracts,
349 ArrayRef<ShuffleVectorInst *> Shuffles) {
350 // If there aren't any extractelement instructions to modify, there's nothing
351 // to do.
352 if (Extracts.empty())
353 return true;
355 // Maps extractelement instructions to vector-index pairs. The extractlement
356 // instructions will be modified to use the new vector and index operands.
357 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
359 for (auto *Extract : Extracts) {
360 // The vector index that is extracted.
361 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
362 auto Index = IndexOperand->getSExtValue();
364 // Look for a suitable shufflevector instruction. The goal is to modify the
365 // extractelement instruction (which uses an interleaved load) to use one
366 // of the shufflevector instructions instead of the load.
367 for (auto *Shuffle : Shuffles) {
368 // If the shufflevector instruction doesn't dominate the extract, we
369 // can't create a use of it.
370 if (!DT->dominates(Shuffle, Extract))
371 continue;
373 // Inspect the indices of the shufflevector instruction. If the shuffle
374 // selects the same index that is extracted, we can modify the
375 // extractelement instruction.
376 SmallVector<int, 4> Indices;
377 Shuffle->getShuffleMask(Indices);
378 for (unsigned I = 0; I < Indices.size(); ++I)
379 if (Indices[I] == Index) {
380 assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
381 "Vector operations do not match");
382 ReplacementMap[Extract] = std::make_pair(Shuffle, I);
383 break;
386 // If we found a suitable shufflevector instruction, stop looking.
387 if (ReplacementMap.count(Extract))
388 break;
391 // If we did not find a suitable shufflevector instruction, the
392 // extractelement instruction cannot be modified, so we must give up.
393 if (!ReplacementMap.count(Extract))
394 return false;
397 // Finally, perform the replacements.
398 IRBuilder<> Builder(Extracts[0]->getContext());
399 for (auto &Replacement : ReplacementMap) {
400 auto *Extract = Replacement.first;
401 auto *Vector = Replacement.second.first;
402 auto Index = Replacement.second.second;
403 Builder.SetInsertPoint(Extract);
404 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
405 Extract->eraseFromParent();
408 return true;
411 bool InterleavedAccess::lowerInterleavedStore(
412 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
413 if (!SI->isSimple())
414 return false;
416 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
417 if (!SVI || !SVI->hasOneUse())
418 return false;
420 // Check if the shufflevector is RE-interleave shuffle.
421 unsigned Factor;
422 unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
423 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
424 return false;
426 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
428 // Try to create target specific intrinsics to replace the store and shuffle.
429 if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
430 return false;
432 // Already have a new target specific interleaved store. Erase the old store.
433 DeadInsts.push_back(SI);
434 DeadInsts.push_back(SVI);
435 return true;
438 bool InterleavedAccess::runOnFunction(Function &F) {
439 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
440 if (!TPC || !LowerInterleavedAccesses)
441 return false;
443 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
445 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
446 auto &TM = TPC->getTM<TargetMachine>();
447 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
448 MaxFactor = TLI->getMaxSupportedInterleaveFactor();
450 // Holds dead instructions that will be erased later.
451 SmallVector<Instruction *, 32> DeadInsts;
452 bool Changed = false;
454 for (auto &I : instructions(F)) {
455 if (LoadInst *LI = dyn_cast<LoadInst>(&I))
456 Changed |= lowerInterleavedLoad(LI, DeadInsts);
458 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
459 Changed |= lowerInterleavedStore(SI, DeadInsts);
462 for (auto I : DeadInsts)
463 I->eraseFromParent();
465 return Changed;