Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / LiveDebugVariables.cpp
blobf5afa15bdb29e9dcaacd7342f8fd336ae7bdede5
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
19 //===----------------------------------------------------------------------===//
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/CodeGen/LexicalScopes.h"
31 #include "llvm/CodeGen/LiveInterval.h"
32 #include "llvm/CodeGen/LiveIntervals.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/VirtRegMap.h"
46 #include "llvm/Config/llvm-config.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <memory>
62 #include <utility>
64 using namespace llvm;
66 #define DEBUG_TYPE "livedebugvars"
68 static cl::opt<bool>
69 EnableLDV("live-debug-variables", cl::init(true),
70 cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
73 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
75 char LiveDebugVariables::ID = 0;
77 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
78 "Debug Variable Analysis", false, false)
79 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
80 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
81 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
82 "Debug Variable Analysis", false, false)
84 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
85 AU.addRequired<MachineDominatorTree>();
86 AU.addRequiredTransitive<LiveIntervals>();
87 AU.setPreservesAll();
88 MachineFunctionPass::getAnalysisUsage(AU);
91 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
92 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
95 enum : unsigned { UndefLocNo = ~0U };
97 /// Describes a location by number along with some flags about the original
98 /// usage of the location.
99 class DbgValueLocation {
100 public:
101 DbgValueLocation(unsigned LocNo, bool WasIndirect)
102 : LocNo(LocNo), WasIndirect(WasIndirect) {
103 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
104 assert(locNo() == LocNo && "location truncation");
107 DbgValueLocation() : LocNo(0), WasIndirect(0) {}
109 unsigned locNo() const {
110 // Fix up the undef location number, which gets truncated.
111 return LocNo == INT_MAX ? UndefLocNo : LocNo;
113 bool wasIndirect() const { return WasIndirect; }
114 bool isUndef() const { return locNo() == UndefLocNo; }
116 DbgValueLocation changeLocNo(unsigned NewLocNo) const {
117 return DbgValueLocation(NewLocNo, WasIndirect);
120 friend inline bool operator==(const DbgValueLocation &LHS,
121 const DbgValueLocation &RHS) {
122 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
125 friend inline bool operator!=(const DbgValueLocation &LHS,
126 const DbgValueLocation &RHS) {
127 return !(LHS == RHS);
130 private:
131 unsigned LocNo : 31;
132 unsigned WasIndirect : 1;
135 /// Map of where a user value is live, and its location.
136 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
138 /// Map of stack slot offsets for spilled locations.
139 /// Non-spilled locations are not added to the map.
140 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
142 namespace {
144 class LDVImpl;
146 /// A user value is a part of a debug info user variable.
148 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
149 /// holds part of a user variable. The part is identified by a byte offset.
151 /// UserValues are grouped into equivalence classes for easier searching. Two
152 /// user values are related if they refer to the same variable, or if they are
153 /// held by the same virtual register. The equivalence class is the transitive
154 /// closure of that relation.
155 class UserValue {
156 const DILocalVariable *Variable; ///< The debug info variable we are part of.
157 const DIExpression *Expression; ///< Any complex address expression.
158 DebugLoc dl; ///< The debug location for the variable. This is
159 ///< used by dwarf writer to find lexical scope.
160 UserValue *leader; ///< Equivalence class leader.
161 UserValue *next = nullptr; ///< Next value in equivalence class, or null.
163 /// Numbered locations referenced by locmap.
164 SmallVector<MachineOperand, 4> locations;
166 /// Map of slot indices where this value is live.
167 LocMap locInts;
169 /// Set of interval start indexes that have been trimmed to the
170 /// lexical scope.
171 SmallSet<SlotIndex, 2> trimmedDefs;
173 /// Insert a DBG_VALUE into MBB at Idx for LocNo.
174 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
175 SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
176 unsigned SpillOffset, LiveIntervals &LIS,
177 const TargetInstrInfo &TII,
178 const TargetRegisterInfo &TRI);
180 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
181 /// is live. Returns true if any changes were made.
182 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
183 LiveIntervals &LIS);
185 public:
186 /// Create a new UserValue.
187 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
188 LocMap::Allocator &alloc)
189 : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
190 locInts(alloc) {}
192 /// Get the leader of this value's equivalence class.
193 UserValue *getLeader() {
194 UserValue *l = leader;
195 while (l != l->leader)
196 l = l->leader;
197 return leader = l;
200 /// Return the next UserValue in the equivalence class.
201 UserValue *getNext() const { return next; }
203 /// Does this UserValue match the parameters?
204 bool match(const DILocalVariable *Var, const DIExpression *Expr,
205 const DILocation *IA) const {
206 // FIXME: The fragment should be part of the equivalence class, but not
207 // other things in the expression like stack values.
208 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
211 /// Merge equivalence classes.
212 static UserValue *merge(UserValue *L1, UserValue *L2) {
213 L2 = L2->getLeader();
214 if (!L1)
215 return L2;
216 L1 = L1->getLeader();
217 if (L1 == L2)
218 return L1;
219 // Splice L2 before L1's members.
220 UserValue *End = L2;
221 while (End->next) {
222 End->leader = L1;
223 End = End->next;
225 End->leader = L1;
226 End->next = L1->next;
227 L1->next = L2;
228 return L1;
231 /// Return the location number that matches Loc.
233 /// For undef values we always return location number UndefLocNo without
234 /// inserting anything in locations. Since locations is a vector and the
235 /// location number is the position in the vector and UndefLocNo is ~0,
236 /// we would need a very big vector to put the value at the right position.
237 unsigned getLocationNo(const MachineOperand &LocMO) {
238 if (LocMO.isReg()) {
239 if (LocMO.getReg() == 0)
240 return UndefLocNo;
241 // For register locations we dont care about use/def and other flags.
242 for (unsigned i = 0, e = locations.size(); i != e; ++i)
243 if (locations[i].isReg() &&
244 locations[i].getReg() == LocMO.getReg() &&
245 locations[i].getSubReg() == LocMO.getSubReg())
246 return i;
247 } else
248 for (unsigned i = 0, e = locations.size(); i != e; ++i)
249 if (LocMO.isIdenticalTo(locations[i]))
250 return i;
251 locations.push_back(LocMO);
252 // We are storing a MachineOperand outside a MachineInstr.
253 locations.back().clearParent();
254 // Don't store def operands.
255 if (locations.back().isReg()) {
256 if (locations.back().isDef())
257 locations.back().setIsDead(false);
258 locations.back().setIsUse();
260 return locations.size() - 1;
263 /// Ensure that all virtual register locations are mapped.
264 void mapVirtRegs(LDVImpl *LDV);
266 /// Add a definition point to this value.
267 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
268 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
269 // Add a singular (Idx,Idx) -> Loc mapping.
270 LocMap::iterator I = locInts.find(Idx);
271 if (!I.valid() || I.start() != Idx)
272 I.insert(Idx, Idx.getNextSlot(), Loc);
273 else
274 // A later DBG_VALUE at the same SlotIndex overrides the old location.
275 I.setValue(Loc);
278 /// Extend the current definition as far as possible down.
280 /// Stop when meeting an existing def or when leaving the live
281 /// range of VNI. End points where VNI is no longer live are added to Kills.
283 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
284 /// data-flow analysis to propagate them beyond basic block boundaries.
286 /// \param Idx Starting point for the definition.
287 /// \param Loc Location number to propagate.
288 /// \param LR Restrict liveness to where LR has the value VNI. May be null.
289 /// \param VNI When LR is not null, this is the value to restrict to.
290 /// \param [out] Kills Append end points of VNI's live range to Kills.
291 /// \param LIS Live intervals analysis.
292 void extendDef(SlotIndex Idx, DbgValueLocation Loc,
293 LiveRange *LR, const VNInfo *VNI,
294 SmallVectorImpl<SlotIndex> *Kills,
295 LiveIntervals &LIS);
297 /// The value in LI/LocNo may be copies to other registers. Determine if
298 /// any of the copies are available at the kill points, and add defs if
299 /// possible.
301 /// \param LI Scan for copies of the value in LI->reg.
302 /// \param LocNo Location number of LI->reg.
303 /// \param WasIndirect Indicates if the original use of LI->reg was indirect
304 /// \param Kills Points where the range of LocNo could be extended.
305 /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here.
306 void addDefsFromCopies(
307 LiveInterval *LI, unsigned LocNo, bool WasIndirect,
308 const SmallVectorImpl<SlotIndex> &Kills,
309 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
310 MachineRegisterInfo &MRI, LiveIntervals &LIS);
312 /// Compute the live intervals of all locations after collecting all their
313 /// def points.
314 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
315 LiveIntervals &LIS, LexicalScopes &LS);
317 /// Replace OldReg ranges with NewRegs ranges where NewRegs is
318 /// live. Returns true if any changes were made.
319 bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
320 LiveIntervals &LIS);
322 /// Rewrite virtual register locations according to the provided virtual
323 /// register map. Record the stack slot offsets for the locations that
324 /// were spilled.
325 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
326 const TargetInstrInfo &TII,
327 const TargetRegisterInfo &TRI,
328 SpillOffsetMap &SpillOffsets);
330 /// Recreate DBG_VALUE instruction from data structures.
331 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
332 const TargetInstrInfo &TII,
333 const TargetRegisterInfo &TRI,
334 const SpillOffsetMap &SpillOffsets);
336 /// Return DebugLoc of this UserValue.
337 DebugLoc getDebugLoc() { return dl;}
339 void print(raw_ostream &, const TargetRegisterInfo *);
342 /// A user label is a part of a debug info user label.
343 class UserLabel {
344 const DILabel *Label; ///< The debug info label we are part of.
345 DebugLoc dl; ///< The debug location for the label. This is
346 ///< used by dwarf writer to find lexical scope.
347 SlotIndex loc; ///< Slot used by the debug label.
349 /// Insert a DBG_LABEL into MBB at Idx.
350 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
351 LiveIntervals &LIS, const TargetInstrInfo &TII);
353 public:
354 /// Create a new UserLabel.
355 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
356 : Label(label), dl(std::move(L)), loc(Idx) {}
358 /// Does this UserLabel match the parameters?
359 bool match(const DILabel *L, const DILocation *IA,
360 const SlotIndex Index) const {
361 return Label == L && dl->getInlinedAt() == IA && loc == Index;
364 /// Recreate DBG_LABEL instruction from data structures.
365 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);
367 /// Return DebugLoc of this UserLabel.
368 DebugLoc getDebugLoc() { return dl; }
370 void print(raw_ostream &, const TargetRegisterInfo *);
373 /// Implementation of the LiveDebugVariables pass.
374 class LDVImpl {
375 LiveDebugVariables &pass;
376 LocMap::Allocator allocator;
377 MachineFunction *MF = nullptr;
378 LiveIntervals *LIS;
379 const TargetRegisterInfo *TRI;
381 /// Whether emitDebugValues is called.
382 bool EmitDone = false;
384 /// Whether the machine function is modified during the pass.
385 bool ModifiedMF = false;
387 /// All allocated UserValue instances.
388 SmallVector<std::unique_ptr<UserValue>, 8> userValues;
390 /// All allocated UserLabel instances.
391 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
393 /// Map virtual register to eq class leader.
394 using VRMap = DenseMap<unsigned, UserValue *>;
395 VRMap virtRegToEqClass;
397 /// Map user variable to eq class leader.
398 using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
399 UVMap userVarMap;
401 /// Find or create a UserValue.
402 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
403 const DebugLoc &DL);
405 /// Find the EC leader for VirtReg or null.
406 UserValue *lookupVirtReg(unsigned VirtReg);
408 /// Add DBG_VALUE instruction to our maps.
410 /// \param MI DBG_VALUE instruction
411 /// \param Idx Last valid SLotIndex before instruction.
413 /// \returns True if the DBG_VALUE instruction should be deleted.
414 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
416 /// Add DBG_LABEL instruction to UserLabel.
418 /// \param MI DBG_LABEL instruction
419 /// \param Idx Last valid SlotIndex before instruction.
421 /// \returns True if the DBG_LABEL instruction should be deleted.
422 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
424 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
425 /// for each instruction.
427 /// \param mf MachineFunction to be scanned.
429 /// \returns True if any debug values were found.
430 bool collectDebugValues(MachineFunction &mf);
432 /// Compute the live intervals of all user values after collecting all
433 /// their def points.
434 void computeIntervals();
436 public:
437 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
439 bool runOnMachineFunction(MachineFunction &mf);
441 /// Release all memory.
442 void clear() {
443 MF = nullptr;
444 userValues.clear();
445 userLabels.clear();
446 virtRegToEqClass.clear();
447 userVarMap.clear();
448 // Make sure we call emitDebugValues if the machine function was modified.
449 assert((!ModifiedMF || EmitDone) &&
450 "Dbg values are not emitted in LDV");
451 EmitDone = false;
452 ModifiedMF = false;
455 /// Map virtual register to an equivalence class.
456 void mapVirtReg(unsigned VirtReg, UserValue *EC);
458 /// Replace all references to OldReg with NewRegs.
459 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
461 /// Recreate DBG_VALUE instruction from data structures.
462 void emitDebugValues(VirtRegMap *VRM);
464 void print(raw_ostream&);
467 } // end anonymous namespace
469 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
470 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
471 const LLVMContext &Ctx) {
472 if (!DL)
473 return;
475 auto *Scope = cast<DIScope>(DL.getScope());
476 // Omit the directory, because it's likely to be long and uninteresting.
477 CommentOS << Scope->getFilename();
478 CommentOS << ':' << DL.getLine();
479 if (DL.getCol() != 0)
480 CommentOS << ':' << DL.getCol();
482 DebugLoc InlinedAtDL = DL.getInlinedAt();
483 if (!InlinedAtDL)
484 return;
486 CommentOS << " @[ ";
487 printDebugLoc(InlinedAtDL, CommentOS, Ctx);
488 CommentOS << " ]";
491 static void printExtendedName(raw_ostream &OS, const DINode *Node,
492 const DILocation *DL) {
493 const LLVMContext &Ctx = Node->getContext();
494 StringRef Res;
495 unsigned Line;
496 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
497 Res = V->getName();
498 Line = V->getLine();
499 } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
500 Res = L->getName();
501 Line = L->getLine();
504 if (!Res.empty())
505 OS << Res << "," << Line;
506 if (auto *InlinedAt = DL->getInlinedAt()) {
507 if (DebugLoc InlinedAtDL = InlinedAt) {
508 OS << " @[";
509 printDebugLoc(InlinedAtDL, OS, Ctx);
510 OS << "]";
515 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
516 OS << "!\"";
517 printExtendedName(OS, Variable, dl);
519 OS << "\"\t";
520 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
521 OS << " [" << I.start() << ';' << I.stop() << "):";
522 if (I.value().isUndef())
523 OS << "undef";
524 else {
525 OS << I.value().locNo();
526 if (I.value().wasIndirect())
527 OS << " ind";
530 for (unsigned i = 0, e = locations.size(); i != e; ++i) {
531 OS << " Loc" << i << '=';
532 locations[i].print(OS, TRI);
534 OS << '\n';
537 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
538 OS << "!\"";
539 printExtendedName(OS, Label, dl);
541 OS << "\"\t";
542 OS << loc;
543 OS << '\n';
546 void LDVImpl::print(raw_ostream &OS) {
547 OS << "********** DEBUG VARIABLES **********\n";
548 for (auto &userValue : userValues)
549 userValue->print(OS, TRI);
550 OS << "********** DEBUG LABELS **********\n";
551 for (auto &userLabel : userLabels)
552 userLabel->print(OS, TRI);
554 #endif
556 void UserValue::mapVirtRegs(LDVImpl *LDV) {
557 for (unsigned i = 0, e = locations.size(); i != e; ++i)
558 if (locations[i].isReg() &&
559 TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
560 LDV->mapVirtReg(locations[i].getReg(), this);
563 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
564 const DIExpression *Expr, const DebugLoc &DL) {
565 UserValue *&Leader = userVarMap[Var];
566 if (Leader) {
567 UserValue *UV = Leader->getLeader();
568 Leader = UV;
569 for (; UV; UV = UV->getNext())
570 if (UV->match(Var, Expr, DL->getInlinedAt()))
571 return UV;
574 userValues.push_back(
575 llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
576 UserValue *UV = userValues.back().get();
577 Leader = UserValue::merge(Leader, UV);
578 return UV;
581 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
582 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
583 UserValue *&Leader = virtRegToEqClass[VirtReg];
584 Leader = UserValue::merge(Leader, EC);
587 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
588 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
589 return UV->getLeader();
590 return nullptr;
593 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
594 // DBG_VALUE loc, offset, variable
595 if (MI.getNumOperands() != 4 ||
596 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
597 !MI.getOperand(2).isMetadata()) {
598 LLVM_DEBUG(dbgs() << "Can't handle " << MI);
599 return false;
602 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
603 // register that hasn't been defined yet. If we do not remove those here, then
604 // the re-insertion of the DBG_VALUE instruction after register allocation
605 // will be incorrect.
606 // TODO: If earlier passes are corrected to generate sane debug information
607 // (and if the machine verifier is improved to catch this), then these checks
608 // could be removed or replaced by asserts.
609 bool Discard = false;
610 if (MI.getOperand(0).isReg() &&
611 TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
612 const unsigned Reg = MI.getOperand(0).getReg();
613 if (!LIS->hasInterval(Reg)) {
614 // The DBG_VALUE is described by a virtual register that does not have a
615 // live interval. Discard the DBG_VALUE.
616 Discard = true;
617 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
618 << " " << MI);
619 } else {
620 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
621 // is defined dead at Idx (where Idx is the slot index for the instruction
622 // preceeding the DBG_VALUE).
623 const LiveInterval &LI = LIS->getInterval(Reg);
624 LiveQueryResult LRQ = LI.Query(Idx);
625 if (!LRQ.valueOutOrDead()) {
626 // We have found a DBG_VALUE with the value in a virtual register that
627 // is not live. Discard the DBG_VALUE.
628 Discard = true;
629 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
630 << " " << MI);
635 // Get or create the UserValue for (variable,offset) here.
636 bool IsIndirect = MI.getOperand(1).isImm();
637 if (IsIndirect)
638 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
639 const DILocalVariable *Var = MI.getDebugVariable();
640 const DIExpression *Expr = MI.getDebugExpression();
641 UserValue *UV =
642 getUserValue(Var, Expr, MI.getDebugLoc());
643 if (!Discard)
644 UV->addDef(Idx, MI.getOperand(0), IsIndirect);
645 else {
646 MachineOperand MO = MachineOperand::CreateReg(0U, false);
647 MO.setIsDebug();
648 UV->addDef(Idx, MO, false);
650 return true;
653 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
654 // DBG_LABEL label
655 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
656 LLVM_DEBUG(dbgs() << "Can't handle " << MI);
657 return false;
660 // Get or create the UserLabel for label here.
661 const DILabel *Label = MI.getDebugLabel();
662 const DebugLoc &DL = MI.getDebugLoc();
663 bool Found = false;
664 for (auto const &L : userLabels) {
665 if (L->match(Label, DL->getInlinedAt(), Idx)) {
666 Found = true;
667 break;
670 if (!Found)
671 userLabels.push_back(llvm::make_unique<UserLabel>(Label, DL, Idx));
673 return true;
676 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
677 bool Changed = false;
678 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
679 ++MFI) {
680 MachineBasicBlock *MBB = &*MFI;
681 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
682 MBBI != MBBE;) {
683 // Use the first debug instruction in the sequence to get a SlotIndex
684 // for following consecutive debug instructions.
685 if (!MBBI->isDebugInstr()) {
686 ++MBBI;
687 continue;
689 // Debug instructions has no slot index. Use the previous
690 // non-debug instruction's SlotIndex as its SlotIndex.
691 SlotIndex Idx =
692 MBBI == MBB->begin()
693 ? LIS->getMBBStartIdx(MBB)
694 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
695 // Handle consecutive debug instructions with the same slot index.
696 do {
697 // Only handle DBG_VALUE in handleDebugValue(). Skip all other
698 // kinds of debug instructions.
699 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
700 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
701 MBBI = MBB->erase(MBBI);
702 Changed = true;
703 } else
704 ++MBBI;
705 } while (MBBI != MBBE && MBBI->isDebugInstr());
708 return Changed;
711 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
712 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
713 LiveIntervals &LIS) {
714 SlotIndex Start = Idx;
715 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
716 SlotIndex Stop = LIS.getMBBEndIdx(MBB);
717 LocMap::iterator I = locInts.find(Start);
719 // Limit to VNI's live range.
720 bool ToEnd = true;
721 if (LR && VNI) {
722 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
723 if (!Segment || Segment->valno != VNI) {
724 if (Kills)
725 Kills->push_back(Start);
726 return;
728 if (Segment->end < Stop) {
729 Stop = Segment->end;
730 ToEnd = false;
734 // There could already be a short def at Start.
735 if (I.valid() && I.start() <= Start) {
736 // Stop when meeting a different location or an already extended interval.
737 Start = Start.getNextSlot();
738 if (I.value() != Loc || I.stop() != Start)
739 return;
740 // This is a one-slot placeholder. Just skip it.
741 ++I;
744 // Limited by the next def.
745 if (I.valid() && I.start() < Stop) {
746 Stop = I.start();
747 ToEnd = false;
749 // Limited by VNI's live range.
750 else if (!ToEnd && Kills)
751 Kills->push_back(Stop);
753 if (Start < Stop)
754 I.insert(Start, Stop, Loc);
757 void UserValue::addDefsFromCopies(
758 LiveInterval *LI, unsigned LocNo, bool WasIndirect,
759 const SmallVectorImpl<SlotIndex> &Kills,
760 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
761 MachineRegisterInfo &MRI, LiveIntervals &LIS) {
762 if (Kills.empty())
763 return;
764 // Don't track copies from physregs, there are too many uses.
765 if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
766 return;
768 // Collect all the (vreg, valno) pairs that are copies of LI.
769 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
770 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
771 MachineInstr *MI = MO.getParent();
772 // Copies of the full value.
773 if (MO.getSubReg() || !MI->isCopy())
774 continue;
775 unsigned DstReg = MI->getOperand(0).getReg();
777 // Don't follow copies to physregs. These are usually setting up call
778 // arguments, and the argument registers are always call clobbered. We are
779 // better off in the source register which could be a callee-saved register,
780 // or it could be spilled.
781 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
782 continue;
784 // Is LocNo extended to reach this copy? If not, another def may be blocking
785 // it, or we are looking at a wrong value of LI.
786 SlotIndex Idx = LIS.getInstructionIndex(*MI);
787 LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
788 if (!I.valid() || I.value().locNo() != LocNo)
789 continue;
791 if (!LIS.hasInterval(DstReg))
792 continue;
793 LiveInterval *DstLI = &LIS.getInterval(DstReg);
794 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
795 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
796 CopyValues.push_back(std::make_pair(DstLI, DstVNI));
799 if (CopyValues.empty())
800 return;
802 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
803 << '\n');
805 // Try to add defs of the copied values for each kill point.
806 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
807 SlotIndex Idx = Kills[i];
808 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
809 LiveInterval *DstLI = CopyValues[j].first;
810 const VNInfo *DstVNI = CopyValues[j].second;
811 if (DstLI->getVNInfoAt(Idx) != DstVNI)
812 continue;
813 // Check that there isn't already a def at Idx
814 LocMap::iterator I = locInts.find(Idx);
815 if (I.valid() && I.start() <= Idx)
816 continue;
817 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
818 << DstVNI->id << " in " << *DstLI << '\n');
819 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
820 assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
821 unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
822 DbgValueLocation NewLoc(LocNo, WasIndirect);
823 I.insert(Idx, Idx.getNextSlot(), NewLoc);
824 NewDefs.push_back(std::make_pair(Idx, NewLoc));
825 break;
830 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
831 const TargetRegisterInfo &TRI,
832 LiveIntervals &LIS, LexicalScopes &LS) {
833 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
835 // Collect all defs to be extended (Skipping undefs).
836 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
837 if (!I.value().isUndef())
838 Defs.push_back(std::make_pair(I.start(), I.value()));
840 // Extend all defs, and possibly add new ones along the way.
841 for (unsigned i = 0; i != Defs.size(); ++i) {
842 SlotIndex Idx = Defs[i].first;
843 DbgValueLocation Loc = Defs[i].second;
844 const MachineOperand &LocMO = locations[Loc.locNo()];
846 if (!LocMO.isReg()) {
847 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
848 continue;
851 // Register locations are constrained to where the register value is live.
852 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
853 LiveInterval *LI = nullptr;
854 const VNInfo *VNI = nullptr;
855 if (LIS.hasInterval(LocMO.getReg())) {
856 LI = &LIS.getInterval(LocMO.getReg());
857 VNI = LI->getVNInfoAt(Idx);
859 SmallVector<SlotIndex, 16> Kills;
860 extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
861 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
862 // if the original location for example is %vreg0:sub_hi, and we find a
863 // full register copy in addDefsFromCopies (at the moment it only handles
864 // full register copies), then we must add the sub1 sub-register index to
865 // the new location. However, that is only possible if the new virtual
866 // register is of the same regclass (or if there is an equivalent
867 // sub-register in that regclass). For now, simply skip handling copies if
868 // a sub-register is involved.
869 if (LI && !LocMO.getSubReg())
870 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
871 LIS);
872 continue;
875 // For physregs, we only mark the start slot idx. DwarfDebug will see it
876 // as if the DBG_VALUE is valid up until the end of the basic block, or
877 // the next def of the physical register. So we do not need to extend the
878 // range. It might actually happen that the DBG_VALUE is the last use of
879 // the physical register (e.g. if this is an unused input argument to a
880 // function).
883 // The computed intervals may extend beyond the range of the debug
884 // location's lexical scope. In this case, splitting of an interval
885 // can result in an interval outside of the scope being created,
886 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
887 // this, trim the intervals to the lexical scope.
889 LexicalScope *Scope = LS.findLexicalScope(dl);
890 if (!Scope)
891 return;
893 SlotIndex PrevEnd;
894 LocMap::iterator I = locInts.begin();
896 // Iterate over the lexical scope ranges. Each time round the loop
897 // we check the intervals for overlap with the end of the previous
898 // range and the start of the next. The first range is handled as
899 // a special case where there is no PrevEnd.
900 for (const InsnRange &Range : Scope->getRanges()) {
901 SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
902 SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
904 // At the start of each iteration I has been advanced so that
905 // I.stop() >= PrevEnd. Check for overlap.
906 if (PrevEnd && I.start() < PrevEnd) {
907 SlotIndex IStop = I.stop();
908 DbgValueLocation Loc = I.value();
910 // Stop overlaps previous end - trim the end of the interval to
911 // the scope range.
912 I.setStopUnchecked(PrevEnd);
913 ++I;
915 // If the interval also overlaps the start of the "next" (i.e.
916 // current) range create a new interval for the remainder (which
917 // may be further trimmed).
918 if (RStart < IStop)
919 I.insert(RStart, IStop, Loc);
922 // Advance I so that I.stop() >= RStart, and check for overlap.
923 I.advanceTo(RStart);
924 if (!I.valid())
925 return;
927 if (I.start() < RStart) {
928 // Interval start overlaps range - trim to the scope range.
929 I.setStartUnchecked(RStart);
930 // Remember that this interval was trimmed.
931 trimmedDefs.insert(RStart);
934 // The end of a lexical scope range is the last instruction in the
935 // range. To convert to an interval we need the index of the
936 // instruction after it.
937 REnd = REnd.getNextIndex();
939 // Advance I to first interval outside current range.
940 I.advanceTo(REnd);
941 if (!I.valid())
942 return;
944 PrevEnd = REnd;
947 // Check for overlap with end of final range.
948 if (PrevEnd && I.start() < PrevEnd)
949 I.setStopUnchecked(PrevEnd);
952 void LDVImpl::computeIntervals() {
953 LexicalScopes LS;
954 LS.initialize(*MF);
956 for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
957 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
958 userValues[i]->mapVirtRegs(this);
962 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
963 clear();
964 MF = &mf;
965 LIS = &pass.getAnalysis<LiveIntervals>();
966 TRI = mf.getSubtarget().getRegisterInfo();
967 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
968 << mf.getName() << " **********\n");
970 bool Changed = collectDebugValues(mf);
971 computeIntervals();
972 LLVM_DEBUG(print(dbgs()));
973 ModifiedMF = Changed;
974 return Changed;
977 static void removeDebugValues(MachineFunction &mf) {
978 for (MachineBasicBlock &MBB : mf) {
979 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
980 if (!MBBI->isDebugValue()) {
981 ++MBBI;
982 continue;
984 MBBI = MBB.erase(MBBI);
989 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
990 if (!EnableLDV)
991 return false;
992 if (!mf.getFunction().getSubprogram()) {
993 removeDebugValues(mf);
994 return false;
996 if (!pImpl)
997 pImpl = new LDVImpl(this);
998 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
1001 void LiveDebugVariables::releaseMemory() {
1002 if (pImpl)
1003 static_cast<LDVImpl*>(pImpl)->clear();
1006 LiveDebugVariables::~LiveDebugVariables() {
1007 if (pImpl)
1008 delete static_cast<LDVImpl*>(pImpl);
1011 //===----------------------------------------------------------------------===//
1012 // Live Range Splitting
1013 //===----------------------------------------------------------------------===//
1015 bool
1016 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
1017 LiveIntervals& LIS) {
1018 LLVM_DEBUG({
1019 dbgs() << "Splitting Loc" << OldLocNo << '\t';
1020 print(dbgs(), nullptr);
1022 bool DidChange = false;
1023 LocMap::iterator LocMapI;
1024 LocMapI.setMap(locInts);
1025 for (unsigned i = 0; i != NewRegs.size(); ++i) {
1026 LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1027 if (LI->empty())
1028 continue;
1030 // Don't allocate the new LocNo until it is needed.
1031 unsigned NewLocNo = UndefLocNo;
1033 // Iterate over the overlaps between locInts and LI.
1034 LocMapI.find(LI->beginIndex());
1035 if (!LocMapI.valid())
1036 continue;
1037 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1038 LiveInterval::iterator LIE = LI->end();
1039 while (LocMapI.valid() && LII != LIE) {
1040 // At this point, we know that LocMapI.stop() > LII->start.
1041 LII = LI->advanceTo(LII, LocMapI.start());
1042 if (LII == LIE)
1043 break;
1045 // Now LII->end > LocMapI.start(). Do we have an overlap?
1046 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
1047 // Overlapping correct location. Allocate NewLocNo now.
1048 if (NewLocNo == UndefLocNo) {
1049 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
1050 MO.setSubReg(locations[OldLocNo].getSubReg());
1051 NewLocNo = getLocationNo(MO);
1052 DidChange = true;
1055 SlotIndex LStart = LocMapI.start();
1056 SlotIndex LStop = LocMapI.stop();
1057 DbgValueLocation OldLoc = LocMapI.value();
1059 // Trim LocMapI down to the LII overlap.
1060 if (LStart < LII->start)
1061 LocMapI.setStartUnchecked(LII->start);
1062 if (LStop > LII->end)
1063 LocMapI.setStopUnchecked(LII->end);
1065 // Change the value in the overlap. This may trigger coalescing.
1066 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
1068 // Re-insert any removed OldLocNo ranges.
1069 if (LStart < LocMapI.start()) {
1070 LocMapI.insert(LStart, LocMapI.start(), OldLoc);
1071 ++LocMapI;
1072 assert(LocMapI.valid() && "Unexpected coalescing");
1074 if (LStop > LocMapI.stop()) {
1075 ++LocMapI;
1076 LocMapI.insert(LII->end, LStop, OldLoc);
1077 --LocMapI;
1081 // Advance to the next overlap.
1082 if (LII->end < LocMapI.stop()) {
1083 if (++LII == LIE)
1084 break;
1085 LocMapI.advanceTo(LII->start);
1086 } else {
1087 ++LocMapI;
1088 if (!LocMapI.valid())
1089 break;
1090 LII = LI->advanceTo(LII, LocMapI.start());
1095 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
1096 locations.erase(locations.begin() + OldLocNo);
1097 LocMapI.goToBegin();
1098 while (LocMapI.valid()) {
1099 DbgValueLocation v = LocMapI.value();
1100 if (v.locNo() == OldLocNo) {
1101 LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
1102 << LocMapI.stop() << ")\n");
1103 LocMapI.erase();
1104 } else {
1105 // Undef values always have location number UndefLocNo, so don't change
1106 // locNo in that case. See getLocationNo().
1107 if (!v.isUndef() && v.locNo() > OldLocNo)
1108 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
1109 ++LocMapI;
1113 LLVM_DEBUG({
1114 dbgs() << "Split result: \t";
1115 print(dbgs(), nullptr);
1117 return DidChange;
1120 bool
1121 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1122 LiveIntervals &LIS) {
1123 bool DidChange = false;
1124 // Split locations referring to OldReg. Iterate backwards so splitLocation can
1125 // safely erase unused locations.
1126 for (unsigned i = locations.size(); i ; --i) {
1127 unsigned LocNo = i-1;
1128 const MachineOperand *Loc = &locations[LocNo];
1129 if (!Loc->isReg() || Loc->getReg() != OldReg)
1130 continue;
1131 DidChange |= splitLocation(LocNo, NewRegs, LIS);
1133 return DidChange;
1136 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1137 bool DidChange = false;
1138 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1139 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1141 if (!DidChange)
1142 return;
1144 // Map all of the new virtual registers.
1145 UserValue *UV = lookupVirtReg(OldReg);
1146 for (unsigned i = 0; i != NewRegs.size(); ++i)
1147 mapVirtReg(NewRegs[i], UV);
1150 void LiveDebugVariables::
1151 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1152 if (pImpl)
1153 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1156 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1157 const TargetInstrInfo &TII,
1158 const TargetRegisterInfo &TRI,
1159 SpillOffsetMap &SpillOffsets) {
1160 // Build a set of new locations with new numbers so we can coalesce our
1161 // IntervalMap if two vreg intervals collapse to the same physical location.
1162 // Use MapVector instead of SetVector because MapVector::insert returns the
1163 // position of the previously or newly inserted element. The boolean value
1164 // tracks if the location was produced by a spill.
1165 // FIXME: This will be problematic if we ever support direct and indirect
1166 // frame index locations, i.e. expressing both variables in memory and
1167 // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1168 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1169 SmallVector<unsigned, 4> LocNoMap(locations.size());
1170 for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1171 bool Spilled = false;
1172 unsigned SpillOffset = 0;
1173 MachineOperand Loc = locations[I];
1174 // Only virtual registers are rewritten.
1175 if (Loc.isReg() && Loc.getReg() &&
1176 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1177 unsigned VirtReg = Loc.getReg();
1178 if (VRM.isAssignedReg(VirtReg) &&
1179 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1180 // This can create a %noreg operand in rare cases when the sub-register
1181 // index is no longer available. That means the user value is in a
1182 // non-existent sub-register, and %noreg is exactly what we want.
1183 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1184 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1185 // Retrieve the stack slot offset.
1186 unsigned SpillSize;
1187 const MachineRegisterInfo &MRI = MF.getRegInfo();
1188 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1189 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1190 SpillOffset, MF);
1192 // FIXME: Invalidate the location if the offset couldn't be calculated.
1193 (void)Success;
1195 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1196 Spilled = true;
1197 } else {
1198 Loc.setReg(0);
1199 Loc.setSubReg(0);
1203 // Insert this location if it doesn't already exist and record a mapping
1204 // from the old number to the new number.
1205 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1206 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1207 LocNoMap[I] = NewLocNo;
1210 // Rewrite the locations and record the stack slot offsets for spills.
1211 locations.clear();
1212 SpillOffsets.clear();
1213 for (auto &Pair : NewLocations) {
1214 bool Spilled;
1215 unsigned SpillOffset;
1216 std::tie(Spilled, SpillOffset) = Pair.second;
1217 locations.push_back(Pair.first);
1218 if (Spilled) {
1219 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1220 SpillOffsets[NewLocNo] = SpillOffset;
1224 // Update the interval map, but only coalesce left, since intervals to the
1225 // right use the old location numbers. This should merge two contiguous
1226 // DBG_VALUE intervals with different vregs that were allocated to the same
1227 // physical register.
1228 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1229 DbgValueLocation Loc = I.value();
1230 // Undef values don't exist in locations (and thus not in LocNoMap either)
1231 // so skip over them. See getLocationNo().
1232 if (Loc.isUndef())
1233 continue;
1234 unsigned NewLocNo = LocNoMap[Loc.locNo()];
1235 I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1236 I.setStart(I.start());
1240 /// Find an iterator for inserting a DBG_VALUE instruction.
1241 static MachineBasicBlock::iterator
1242 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1243 LiveIntervals &LIS) {
1244 SlotIndex Start = LIS.getMBBStartIdx(MBB);
1245 Idx = Idx.getBaseIndex();
1247 // Try to find an insert location by going backwards from Idx.
1248 MachineInstr *MI;
1249 while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1250 // We've reached the beginning of MBB.
1251 if (Idx == Start) {
1252 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1253 return I;
1255 Idx = Idx.getPrevIndex();
1258 // Don't insert anything after the first terminator, though.
1259 return MI->isTerminator() ? MBB->getFirstTerminator() :
1260 std::next(MachineBasicBlock::iterator(MI));
1263 /// Find an iterator for inserting the next DBG_VALUE instruction
1264 /// (or end if no more insert locations found).
1265 static MachineBasicBlock::iterator
1266 findNextInsertLocation(MachineBasicBlock *MBB,
1267 MachineBasicBlock::iterator I,
1268 SlotIndex StopIdx, MachineOperand &LocMO,
1269 LiveIntervals &LIS,
1270 const TargetRegisterInfo &TRI) {
1271 if (!LocMO.isReg())
1272 return MBB->instr_end();
1273 unsigned Reg = LocMO.getReg();
1275 // Find the next instruction in the MBB that define the register Reg.
1276 while (I != MBB->end() && !I->isTerminator()) {
1277 if (!LIS.isNotInMIMap(*I) &&
1278 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1279 break;
1280 if (I->definesRegister(Reg, &TRI))
1281 // The insert location is directly after the instruction/bundle.
1282 return std::next(I);
1283 ++I;
1285 return MBB->end();
1288 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1289 SlotIndex StopIdx, DbgValueLocation Loc,
1290 bool Spilled, unsigned SpillOffset,
1291 LiveIntervals &LIS, const TargetInstrInfo &TII,
1292 const TargetRegisterInfo &TRI) {
1293 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1294 // Only search within the current MBB.
1295 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1296 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1297 // Undef values don't exist in locations so create new "noreg" register MOs
1298 // for them. See getLocationNo().
1299 MachineOperand MO = !Loc.isUndef() ?
1300 locations[Loc.locNo()] :
1301 MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1302 /* isKill */ false, /* isDead */ false,
1303 /* isUndef */ false, /* isEarlyClobber */ false,
1304 /* SubReg */ 0, /* isDebug */ true);
1306 ++NumInsertedDebugValues;
1308 assert(cast<DILocalVariable>(Variable)
1309 ->isValidLocationForIntrinsic(getDebugLoc()) &&
1310 "Expected inlined-at fields to agree");
1312 // If the location was spilled, the new DBG_VALUE will be indirect. If the
1313 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1314 // that the original virtual register was a pointer. Also, add the stack slot
1315 // offset for the spilled register to the expression.
1316 const DIExpression *Expr = Expression;
1317 bool IsIndirect = Loc.wasIndirect();
1318 if (Spilled) {
1319 auto Deref = IsIndirect ? DIExpression::WithDeref : DIExpression::NoDeref;
1320 Expr =
1321 DIExpression::prepend(Expr, DIExpression::NoDeref, SpillOffset, Deref);
1322 IsIndirect = true;
1325 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1327 do {
1328 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1329 IsIndirect, MO, Variable, Expr);
1331 // Continue and insert DBG_VALUES after every redefinition of register
1332 // associated with the debug value within the range
1333 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1334 } while (I != MBB->end());
1337 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1338 LiveIntervals &LIS,
1339 const TargetInstrInfo &TII) {
1340 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1341 ++NumInsertedDebugLabels;
1342 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1343 .addMetadata(Label);
1346 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1347 const TargetInstrInfo &TII,
1348 const TargetRegisterInfo &TRI,
1349 const SpillOffsetMap &SpillOffsets) {
1350 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1352 for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1353 SlotIndex Start = I.start();
1354 SlotIndex Stop = I.stop();
1355 DbgValueLocation Loc = I.value();
1356 auto SpillIt =
1357 !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
1358 bool Spilled = SpillIt != SpillOffsets.end();
1359 unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1361 // If the interval start was trimmed to the lexical scope insert the
1362 // DBG_VALUE at the previous index (otherwise it appears after the
1363 // first instruction in the range).
1364 if (trimmedDefs.count(Start))
1365 Start = Start.getPrevIndex();
1367 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1368 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1369 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1371 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1372 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1373 TRI);
1374 // This interval may span multiple basic blocks.
1375 // Insert a DBG_VALUE into each one.
1376 while (Stop > MBBEnd) {
1377 // Move to the next block.
1378 Start = MBBEnd;
1379 if (++MBB == MFEnd)
1380 break;
1381 MBBEnd = LIS.getMBBEndIdx(&*MBB);
1382 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1383 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1384 TRI);
1386 LLVM_DEBUG(dbgs() << '\n');
1387 if (MBB == MFEnd)
1388 break;
1390 ++I;
1394 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
1395 LLVM_DEBUG(dbgs() << "\t" << loc);
1396 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1398 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1399 insertDebugLabel(&*MBB, loc, LIS, TII);
1401 LLVM_DEBUG(dbgs() << '\n');
1404 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1405 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1406 if (!MF)
1407 return;
1408 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1409 SpillOffsetMap SpillOffsets;
1410 for (auto &userValue : userValues) {
1411 LLVM_DEBUG(userValue->print(dbgs(), TRI));
1412 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1413 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1415 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1416 for (auto &userLabel : userLabels) {
1417 LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1418 userLabel->emitDebugLabel(*LIS, *TII);
1420 EmitDone = true;
1423 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1424 if (pImpl)
1425 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1428 bool LiveDebugVariables::doInitialization(Module &M) {
1429 return Pass::doInitialization(M);
1432 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1433 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1434 if (pImpl)
1435 static_cast<LDVImpl*>(pImpl)->print(dbgs());
1437 #endif