Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / MachineBlockPlacement.cpp
bloba246717cad615308d62621f49a087bff962954fe
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Allocator.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "block-placement"
75 STATISTIC(NumCondBranches, "Number of conditional branches");
76 STATISTIC(NumUncondBranches, "Number of unconditional branches");
77 STATISTIC(CondBranchTakenFreq,
78 "Potential frequency of taking conditional branches");
79 STATISTIC(UncondBranchTakenFreq,
80 "Potential frequency of taking unconditional branches");
82 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
83 cl::desc("Force the alignment of all "
84 "blocks in the function."),
85 cl::init(0), cl::Hidden);
87 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
88 "align-all-nofallthru-blocks",
89 cl::desc("Force the alignment of all "
90 "blocks that have no fall-through predecessors (i.e. don't add "
91 "nops that are executed)."),
92 cl::init(0), cl::Hidden);
94 // FIXME: Find a good default for this flag and remove the flag.
95 static cl::opt<unsigned> ExitBlockBias(
96 "block-placement-exit-block-bias",
97 cl::desc("Block frequency percentage a loop exit block needs "
98 "over the original exit to be considered the new exit."),
99 cl::init(0), cl::Hidden);
101 // Definition:
102 // - Outlining: placement of a basic block outside the chain or hot path.
104 static cl::opt<unsigned> LoopToColdBlockRatio(
105 "loop-to-cold-block-ratio",
106 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
107 "(frequency of block) is greater than this ratio"),
108 cl::init(5), cl::Hidden);
110 static cl::opt<bool> ForceLoopColdBlock(
111 "force-loop-cold-block",
112 cl::desc("Force outlining cold blocks from loops."),
113 cl::init(false), cl::Hidden);
115 static cl::opt<bool>
116 PreciseRotationCost("precise-rotation-cost",
117 cl::desc("Model the cost of loop rotation more "
118 "precisely by using profile data."),
119 cl::init(false), cl::Hidden);
121 static cl::opt<bool>
122 ForcePreciseRotationCost("force-precise-rotation-cost",
123 cl::desc("Force the use of precise cost "
124 "loop rotation strategy."),
125 cl::init(false), cl::Hidden);
127 static cl::opt<unsigned> MisfetchCost(
128 "misfetch-cost",
129 cl::desc("Cost that models the probabilistic risk of an instruction "
130 "misfetch due to a jump comparing to falling through, whose cost "
131 "is zero."),
132 cl::init(1), cl::Hidden);
134 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
135 cl::desc("Cost of jump instructions."),
136 cl::init(1), cl::Hidden);
137 static cl::opt<bool>
138 TailDupPlacement("tail-dup-placement",
139 cl::desc("Perform tail duplication during placement. "
140 "Creates more fallthrough opportunites in "
141 "outline branches."),
142 cl::init(true), cl::Hidden);
144 static cl::opt<bool>
145 BranchFoldPlacement("branch-fold-placement",
146 cl::desc("Perform branch folding during placement. "
147 "Reduces code size."),
148 cl::init(true), cl::Hidden);
150 // Heuristic for tail duplication.
151 static cl::opt<unsigned> TailDupPlacementThreshold(
152 "tail-dup-placement-threshold",
153 cl::desc("Instruction cutoff for tail duplication during layout. "
154 "Tail merging during layout is forced to have a threshold "
155 "that won't conflict."), cl::init(2),
156 cl::Hidden);
158 // Heuristic for aggressive tail duplication.
159 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
160 "tail-dup-placement-aggressive-threshold",
161 cl::desc("Instruction cutoff for aggressive tail duplication during "
162 "layout. Used at -O3. Tail merging during layout is forced to "
163 "have a threshold that won't conflict."), cl::init(4),
164 cl::Hidden);
166 // Heuristic for tail duplication.
167 static cl::opt<unsigned> TailDupPlacementPenalty(
168 "tail-dup-placement-penalty",
169 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
170 "Copying can increase fallthrough, but it also increases icache "
171 "pressure. This parameter controls the penalty to account for that. "
172 "Percent as integer."),
173 cl::init(2),
174 cl::Hidden);
176 // Heuristic for triangle chains.
177 static cl::opt<unsigned> TriangleChainCount(
178 "triangle-chain-count",
179 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
180 "triangle tail duplication heuristic to kick in. 0 to disable."),
181 cl::init(2),
182 cl::Hidden);
184 extern cl::opt<unsigned> StaticLikelyProb;
185 extern cl::opt<unsigned> ProfileLikelyProb;
187 // Internal option used to control BFI display only after MBP pass.
188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
189 // -view-block-layout-with-bfi=
190 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
192 // Command line option to specify the name of the function for CFG dump
193 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
194 extern cl::opt<std::string> ViewBlockFreqFuncName;
196 namespace {
198 class BlockChain;
200 /// Type for our function-wide basic block -> block chain mapping.
201 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
203 /// A chain of blocks which will be laid out contiguously.
205 /// This is the datastructure representing a chain of consecutive blocks that
206 /// are profitable to layout together in order to maximize fallthrough
207 /// probabilities and code locality. We also can use a block chain to represent
208 /// a sequence of basic blocks which have some external (correctness)
209 /// requirement for sequential layout.
211 /// Chains can be built around a single basic block and can be merged to grow
212 /// them. They participate in a block-to-chain mapping, which is updated
213 /// automatically as chains are merged together.
214 class BlockChain {
215 /// The sequence of blocks belonging to this chain.
217 /// This is the sequence of blocks for a particular chain. These will be laid
218 /// out in-order within the function.
219 SmallVector<MachineBasicBlock *, 4> Blocks;
221 /// A handle to the function-wide basic block to block chain mapping.
223 /// This is retained in each block chain to simplify the computation of child
224 /// block chains for SCC-formation and iteration. We store the edges to child
225 /// basic blocks, and map them back to their associated chains using this
226 /// structure.
227 BlockToChainMapType &BlockToChain;
229 public:
230 /// Construct a new BlockChain.
232 /// This builds a new block chain representing a single basic block in the
233 /// function. It also registers itself as the chain that block participates
234 /// in with the BlockToChain mapping.
235 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
236 : Blocks(1, BB), BlockToChain(BlockToChain) {
237 assert(BB && "Cannot create a chain with a null basic block");
238 BlockToChain[BB] = this;
241 /// Iterator over blocks within the chain.
242 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
243 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
245 /// Beginning of blocks within the chain.
246 iterator begin() { return Blocks.begin(); }
247 const_iterator begin() const { return Blocks.begin(); }
249 /// End of blocks within the chain.
250 iterator end() { return Blocks.end(); }
251 const_iterator end() const { return Blocks.end(); }
253 bool remove(MachineBasicBlock* BB) {
254 for(iterator i = begin(); i != end(); ++i) {
255 if (*i == BB) {
256 Blocks.erase(i);
257 return true;
260 return false;
263 /// Merge a block chain into this one.
265 /// This routine merges a block chain into this one. It takes care of forming
266 /// a contiguous sequence of basic blocks, updating the edge list, and
267 /// updating the block -> chain mapping. It does not free or tear down the
268 /// old chain, but the old chain's block list is no longer valid.
269 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
270 assert(BB && "Can't merge a null block.");
271 assert(!Blocks.empty() && "Can't merge into an empty chain.");
273 // Fast path in case we don't have a chain already.
274 if (!Chain) {
275 assert(!BlockToChain[BB] &&
276 "Passed chain is null, but BB has entry in BlockToChain.");
277 Blocks.push_back(BB);
278 BlockToChain[BB] = this;
279 return;
282 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
283 assert(Chain->begin() != Chain->end());
285 // Update the incoming blocks to point to this chain, and add them to the
286 // chain structure.
287 for (MachineBasicBlock *ChainBB : *Chain) {
288 Blocks.push_back(ChainBB);
289 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
290 BlockToChain[ChainBB] = this;
294 #ifndef NDEBUG
295 /// Dump the blocks in this chain.
296 LLVM_DUMP_METHOD void dump() {
297 for (MachineBasicBlock *MBB : *this)
298 MBB->dump();
300 #endif // NDEBUG
302 /// Count of predecessors of any block within the chain which have not
303 /// yet been scheduled. In general, we will delay scheduling this chain
304 /// until those predecessors are scheduled (or we find a sufficiently good
305 /// reason to override this heuristic.) Note that when forming loop chains,
306 /// blocks outside the loop are ignored and treated as if they were already
307 /// scheduled.
309 /// Note: This field is reinitialized multiple times - once for each loop,
310 /// and then once for the function as a whole.
311 unsigned UnscheduledPredecessors = 0;
314 class MachineBlockPlacement : public MachineFunctionPass {
315 /// A type for a block filter set.
316 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
318 /// Pair struct containing basic block and taildup profitability
319 struct BlockAndTailDupResult {
320 MachineBasicBlock *BB;
321 bool ShouldTailDup;
324 /// Triple struct containing edge weight and the edge.
325 struct WeightedEdge {
326 BlockFrequency Weight;
327 MachineBasicBlock *Src;
328 MachineBasicBlock *Dest;
331 /// work lists of blocks that are ready to be laid out
332 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
333 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
335 /// Edges that have already been computed as optimal.
336 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
338 /// Machine Function
339 MachineFunction *F;
341 /// A handle to the branch probability pass.
342 const MachineBranchProbabilityInfo *MBPI;
344 /// A handle to the function-wide block frequency pass.
345 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
347 /// A handle to the loop info.
348 MachineLoopInfo *MLI;
350 /// Preferred loop exit.
351 /// Member variable for convenience. It may be removed by duplication deep
352 /// in the call stack.
353 MachineBasicBlock *PreferredLoopExit;
355 /// A handle to the target's instruction info.
356 const TargetInstrInfo *TII;
358 /// A handle to the target's lowering info.
359 const TargetLoweringBase *TLI;
361 /// A handle to the post dominator tree.
362 MachinePostDominatorTree *MPDT;
364 /// Duplicator used to duplicate tails during placement.
366 /// Placement decisions can open up new tail duplication opportunities, but
367 /// since tail duplication affects placement decisions of later blocks, it
368 /// must be done inline.
369 TailDuplicator TailDup;
371 /// Allocator and owner of BlockChain structures.
373 /// We build BlockChains lazily while processing the loop structure of
374 /// a function. To reduce malloc traffic, we allocate them using this
375 /// slab-like allocator, and destroy them after the pass completes. An
376 /// important guarantee is that this allocator produces stable pointers to
377 /// the chains.
378 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
380 /// Function wide BasicBlock to BlockChain mapping.
382 /// This mapping allows efficiently moving from any given basic block to the
383 /// BlockChain it participates in, if any. We use it to, among other things,
384 /// allow implicitly defining edges between chains as the existing edges
385 /// between basic blocks.
386 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
388 #ifndef NDEBUG
389 /// The set of basic blocks that have terminators that cannot be fully
390 /// analyzed. These basic blocks cannot be re-ordered safely by
391 /// MachineBlockPlacement, and we must preserve physical layout of these
392 /// blocks and their successors through the pass.
393 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
394 #endif
396 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
397 /// if the count goes to 0, add them to the appropriate work list.
398 void markChainSuccessors(
399 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
400 const BlockFilterSet *BlockFilter = nullptr);
402 /// Decrease the UnscheduledPredecessors count for a single block, and
403 /// if the count goes to 0, add them to the appropriate work list.
404 void markBlockSuccessors(
405 const BlockChain &Chain, const MachineBasicBlock *BB,
406 const MachineBasicBlock *LoopHeaderBB,
407 const BlockFilterSet *BlockFilter = nullptr);
409 BranchProbability
410 collectViableSuccessors(
411 const MachineBasicBlock *BB, const BlockChain &Chain,
412 const BlockFilterSet *BlockFilter,
413 SmallVector<MachineBasicBlock *, 4> &Successors);
414 bool shouldPredBlockBeOutlined(
415 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
416 const BlockChain &Chain, const BlockFilterSet *BlockFilter,
417 BranchProbability SuccProb, BranchProbability HotProb);
418 bool repeatedlyTailDuplicateBlock(
419 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
420 const MachineBasicBlock *LoopHeaderBB,
421 BlockChain &Chain, BlockFilterSet *BlockFilter,
422 MachineFunction::iterator &PrevUnplacedBlockIt);
423 bool maybeTailDuplicateBlock(
424 MachineBasicBlock *BB, MachineBasicBlock *LPred,
425 BlockChain &Chain, BlockFilterSet *BlockFilter,
426 MachineFunction::iterator &PrevUnplacedBlockIt,
427 bool &DuplicatedToLPred);
428 bool hasBetterLayoutPredecessor(
429 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
430 const BlockChain &SuccChain, BranchProbability SuccProb,
431 BranchProbability RealSuccProb, const BlockChain &Chain,
432 const BlockFilterSet *BlockFilter);
433 BlockAndTailDupResult selectBestSuccessor(
434 const MachineBasicBlock *BB, const BlockChain &Chain,
435 const BlockFilterSet *BlockFilter);
436 MachineBasicBlock *selectBestCandidateBlock(
437 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
438 MachineBasicBlock *getFirstUnplacedBlock(
439 const BlockChain &PlacedChain,
440 MachineFunction::iterator &PrevUnplacedBlockIt,
441 const BlockFilterSet *BlockFilter);
443 /// Add a basic block to the work list if it is appropriate.
445 /// If the optional parameter BlockFilter is provided, only MBB
446 /// present in the set will be added to the worklist. If nullptr
447 /// is provided, no filtering occurs.
448 void fillWorkLists(const MachineBasicBlock *MBB,
449 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
450 const BlockFilterSet *BlockFilter);
452 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
453 BlockFilterSet *BlockFilter = nullptr);
454 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
455 const MachineBasicBlock *OldTop);
456 MachineBasicBlock *findBestLoopTop(
457 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
458 MachineBasicBlock *findBestLoopExit(
459 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
460 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
461 void buildLoopChains(const MachineLoop &L);
462 void rotateLoop(
463 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
464 const BlockFilterSet &LoopBlockSet);
465 void rotateLoopWithProfile(
466 BlockChain &LoopChain, const MachineLoop &L,
467 const BlockFilterSet &LoopBlockSet);
468 void buildCFGChains();
469 void optimizeBranches();
470 void alignBlocks();
471 /// Returns true if a block should be tail-duplicated to increase fallthrough
472 /// opportunities.
473 bool shouldTailDuplicate(MachineBasicBlock *BB);
474 /// Check the edge frequencies to see if tail duplication will increase
475 /// fallthroughs.
476 bool isProfitableToTailDup(
477 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
478 BranchProbability QProb,
479 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
481 /// Check for a trellis layout.
482 bool isTrellis(const MachineBasicBlock *BB,
483 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
484 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
486 /// Get the best successor given a trellis layout.
487 BlockAndTailDupResult getBestTrellisSuccessor(
488 const MachineBasicBlock *BB,
489 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
490 BranchProbability AdjustedSumProb, const BlockChain &Chain,
491 const BlockFilterSet *BlockFilter);
493 /// Get the best pair of non-conflicting edges.
494 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
495 const MachineBasicBlock *BB,
496 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
498 /// Returns true if a block can tail duplicate into all unplaced
499 /// predecessors. Filters based on loop.
500 bool canTailDuplicateUnplacedPreds(
501 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
502 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
504 /// Find chains of triangles to tail-duplicate where a global analysis works,
505 /// but a local analysis would not find them.
506 void precomputeTriangleChains();
508 public:
509 static char ID; // Pass identification, replacement for typeid
511 MachineBlockPlacement() : MachineFunctionPass(ID) {
512 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
515 bool runOnMachineFunction(MachineFunction &F) override;
517 bool allowTailDupPlacement() const {
518 assert(F);
519 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
522 void getAnalysisUsage(AnalysisUsage &AU) const override {
523 AU.addRequired<MachineBranchProbabilityInfo>();
524 AU.addRequired<MachineBlockFrequencyInfo>();
525 if (TailDupPlacement)
526 AU.addRequired<MachinePostDominatorTree>();
527 AU.addRequired<MachineLoopInfo>();
528 AU.addRequired<TargetPassConfig>();
529 MachineFunctionPass::getAnalysisUsage(AU);
533 } // end anonymous namespace
535 char MachineBlockPlacement::ID = 0;
537 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
539 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
540 "Branch Probability Basic Block Placement", false, false)
541 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
542 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
543 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
544 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
545 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
546 "Branch Probability Basic Block Placement", false, false)
548 #ifndef NDEBUG
549 /// Helper to print the name of a MBB.
551 /// Only used by debug logging.
552 static std::string getBlockName(const MachineBasicBlock *BB) {
553 std::string Result;
554 raw_string_ostream OS(Result);
555 OS << printMBBReference(*BB);
556 OS << " ('" << BB->getName() << "')";
557 OS.flush();
558 return Result;
560 #endif
562 /// Mark a chain's successors as having one fewer preds.
564 /// When a chain is being merged into the "placed" chain, this routine will
565 /// quickly walk the successors of each block in the chain and mark them as
566 /// having one fewer active predecessor. It also adds any successors of this
567 /// chain which reach the zero-predecessor state to the appropriate worklist.
568 void MachineBlockPlacement::markChainSuccessors(
569 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
570 const BlockFilterSet *BlockFilter) {
571 // Walk all the blocks in this chain, marking their successors as having
572 // a predecessor placed.
573 for (MachineBasicBlock *MBB : Chain) {
574 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
578 /// Mark a single block's successors as having one fewer preds.
580 /// Under normal circumstances, this is only called by markChainSuccessors,
581 /// but if a block that was to be placed is completely tail-duplicated away,
582 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
583 /// for just that block.
584 void MachineBlockPlacement::markBlockSuccessors(
585 const BlockChain &Chain, const MachineBasicBlock *MBB,
586 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
587 // Add any successors for which this is the only un-placed in-loop
588 // predecessor to the worklist as a viable candidate for CFG-neutral
589 // placement. No subsequent placement of this block will violate the CFG
590 // shape, so we get to use heuristics to choose a favorable placement.
591 for (MachineBasicBlock *Succ : MBB->successors()) {
592 if (BlockFilter && !BlockFilter->count(Succ))
593 continue;
594 BlockChain &SuccChain = *BlockToChain[Succ];
595 // Disregard edges within a fixed chain, or edges to the loop header.
596 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
597 continue;
599 // This is a cross-chain edge that is within the loop, so decrement the
600 // loop predecessor count of the destination chain.
601 if (SuccChain.UnscheduledPredecessors == 0 ||
602 --SuccChain.UnscheduledPredecessors > 0)
603 continue;
605 auto *NewBB = *SuccChain.begin();
606 if (NewBB->isEHPad())
607 EHPadWorkList.push_back(NewBB);
608 else
609 BlockWorkList.push_back(NewBB);
613 /// This helper function collects the set of successors of block
614 /// \p BB that are allowed to be its layout successors, and return
615 /// the total branch probability of edges from \p BB to those
616 /// blocks.
617 BranchProbability MachineBlockPlacement::collectViableSuccessors(
618 const MachineBasicBlock *BB, const BlockChain &Chain,
619 const BlockFilterSet *BlockFilter,
620 SmallVector<MachineBasicBlock *, 4> &Successors) {
621 // Adjust edge probabilities by excluding edges pointing to blocks that is
622 // either not in BlockFilter or is already in the current chain. Consider the
623 // following CFG:
625 // --->A
626 // | / \
627 // | B C
628 // | \ / \
629 // ----D E
631 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
632 // A->C is chosen as a fall-through, D won't be selected as a successor of C
633 // due to CFG constraint (the probability of C->D is not greater than
634 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
635 // when calculating the probability of C->D, D will be selected and we
636 // will get A C D B as the layout of this loop.
637 auto AdjustedSumProb = BranchProbability::getOne();
638 for (MachineBasicBlock *Succ : BB->successors()) {
639 bool SkipSucc = false;
640 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
641 SkipSucc = true;
642 } else {
643 BlockChain *SuccChain = BlockToChain[Succ];
644 if (SuccChain == &Chain) {
645 SkipSucc = true;
646 } else if (Succ != *SuccChain->begin()) {
647 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
648 << " -> Mid chain!\n");
649 continue;
652 if (SkipSucc)
653 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
654 else
655 Successors.push_back(Succ);
658 return AdjustedSumProb;
661 /// The helper function returns the branch probability that is adjusted
662 /// or normalized over the new total \p AdjustedSumProb.
663 static BranchProbability
664 getAdjustedProbability(BranchProbability OrigProb,
665 BranchProbability AdjustedSumProb) {
666 BranchProbability SuccProb;
667 uint32_t SuccProbN = OrigProb.getNumerator();
668 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
669 if (SuccProbN >= SuccProbD)
670 SuccProb = BranchProbability::getOne();
671 else
672 SuccProb = BranchProbability(SuccProbN, SuccProbD);
674 return SuccProb;
677 /// Check if \p BB has exactly the successors in \p Successors.
678 static bool
679 hasSameSuccessors(MachineBasicBlock &BB,
680 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
681 if (BB.succ_size() != Successors.size())
682 return false;
683 // We don't want to count self-loops
684 if (Successors.count(&BB))
685 return false;
686 for (MachineBasicBlock *Succ : BB.successors())
687 if (!Successors.count(Succ))
688 return false;
689 return true;
692 /// Check if a block should be tail duplicated to increase fallthrough
693 /// opportunities.
694 /// \p BB Block to check.
695 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
696 // Blocks with single successors don't create additional fallthrough
697 // opportunities. Don't duplicate them. TODO: When conditional exits are
698 // analyzable, allow them to be duplicated.
699 bool IsSimple = TailDup.isSimpleBB(BB);
701 if (BB->succ_size() == 1)
702 return false;
703 return TailDup.shouldTailDuplicate(IsSimple, *BB);
706 /// Compare 2 BlockFrequency's with a small penalty for \p A.
707 /// In order to be conservative, we apply a X% penalty to account for
708 /// increased icache pressure and static heuristics. For small frequencies
709 /// we use only the numerators to improve accuracy. For simplicity, we assume the
710 /// penalty is less than 100%
711 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
712 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
713 uint64_t EntryFreq) {
714 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
715 BlockFrequency Gain = A - B;
716 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
719 /// Check the edge frequencies to see if tail duplication will increase
720 /// fallthroughs. It only makes sense to call this function when
721 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
722 /// always locally profitable if we would have picked \p Succ without
723 /// considering duplication.
724 bool MachineBlockPlacement::isProfitableToTailDup(
725 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
726 BranchProbability QProb,
727 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
728 // We need to do a probability calculation to make sure this is profitable.
729 // First: does succ have a successor that post-dominates? This affects the
730 // calculation. The 2 relevant cases are:
731 // BB BB
732 // | \Qout | \Qout
733 // P| C |P C
734 // = C' = C'
735 // | /Qin | /Qin
736 // | / | /
737 // Succ Succ
738 // / \ | \ V
739 // U/ =V |U \
740 // / \ = D
741 // D E | /
742 // | /
743 // |/
744 // PDom
745 // '=' : Branch taken for that CFG edge
746 // In the second case, Placing Succ while duplicating it into C prevents the
747 // fallthrough of Succ into either D or PDom, because they now have C as an
748 // unplaced predecessor
750 // Start by figuring out which case we fall into
751 MachineBasicBlock *PDom = nullptr;
752 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
753 // Only scan the relevant successors
754 auto AdjustedSuccSumProb =
755 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
756 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
757 auto BBFreq = MBFI->getBlockFreq(BB);
758 auto SuccFreq = MBFI->getBlockFreq(Succ);
759 BlockFrequency P = BBFreq * PProb;
760 BlockFrequency Qout = BBFreq * QProb;
761 uint64_t EntryFreq = MBFI->getEntryFreq();
762 // If there are no more successors, it is profitable to copy, as it strictly
763 // increases fallthrough.
764 if (SuccSuccs.size() == 0)
765 return greaterWithBias(P, Qout, EntryFreq);
767 auto BestSuccSucc = BranchProbability::getZero();
768 // Find the PDom or the best Succ if no PDom exists.
769 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
770 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
771 if (Prob > BestSuccSucc)
772 BestSuccSucc = Prob;
773 if (PDom == nullptr)
774 if (MPDT->dominates(SuccSucc, Succ)) {
775 PDom = SuccSucc;
776 break;
779 // For the comparisons, we need to know Succ's best incoming edge that isn't
780 // from BB.
781 auto SuccBestPred = BlockFrequency(0);
782 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
783 if (SuccPred == Succ || SuccPred == BB
784 || BlockToChain[SuccPred] == &Chain
785 || (BlockFilter && !BlockFilter->count(SuccPred)))
786 continue;
787 auto Freq = MBFI->getBlockFreq(SuccPred)
788 * MBPI->getEdgeProbability(SuccPred, Succ);
789 if (Freq > SuccBestPred)
790 SuccBestPred = Freq;
792 // Qin is Succ's best unplaced incoming edge that isn't BB
793 BlockFrequency Qin = SuccBestPred;
794 // If it doesn't have a post-dominating successor, here is the calculation:
795 // BB BB
796 // | \Qout | \
797 // P| C | =
798 // = C' | C
799 // | /Qin | |
800 // | / | C' (+Succ)
801 // Succ Succ /|
802 // / \ | \/ |
803 // U/ =V | == |
804 // / \ | / \|
805 // D E D E
806 // '=' : Branch taken for that CFG edge
807 // Cost in the first case is: P + V
808 // For this calculation, we always assume P > Qout. If Qout > P
809 // The result of this function will be ignored at the caller.
810 // Let F = SuccFreq - Qin
811 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
813 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
814 BranchProbability UProb = BestSuccSucc;
815 BranchProbability VProb = AdjustedSuccSumProb - UProb;
816 BlockFrequency F = SuccFreq - Qin;
817 BlockFrequency V = SuccFreq * VProb;
818 BlockFrequency QinU = std::min(Qin, F) * UProb;
819 BlockFrequency BaseCost = P + V;
820 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
821 return greaterWithBias(BaseCost, DupCost, EntryFreq);
823 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
824 BranchProbability VProb = AdjustedSuccSumProb - UProb;
825 BlockFrequency U = SuccFreq * UProb;
826 BlockFrequency V = SuccFreq * VProb;
827 BlockFrequency F = SuccFreq - Qin;
828 // If there is a post-dominating successor, here is the calculation:
829 // BB BB BB BB
830 // | \Qout | \ | \Qout | \
831 // |P C | = |P C | =
832 // = C' |P C = C' |P C
833 // | /Qin | | | /Qin | |
834 // | / | C' (+Succ) | / | C' (+Succ)
835 // Succ Succ /| Succ Succ /|
836 // | \ V | \/ | | \ V | \/ |
837 // |U \ |U /\ =? |U = |U /\ |
838 // = D = = =?| | D | = =|
839 // | / |/ D | / |/ D
840 // | / | / | = | /
841 // |/ | / |/ | =
842 // Dom Dom Dom Dom
843 // '=' : Branch taken for that CFG edge
844 // The cost for taken branches in the first case is P + U
845 // Let F = SuccFreq - Qin
846 // The cost in the second case (assuming independence), given the layout:
847 // BB, Succ, (C+Succ), D, Dom or the layout:
848 // BB, Succ, D, Dom, (C+Succ)
849 // is Qout + max(F, Qin) * U + min(F, Qin)
850 // compare P + U vs Qout + P * U + Qin.
852 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
854 // For the 3rd case, the cost is P + 2 * V
855 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
856 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
857 if (UProb > AdjustedSuccSumProb / 2 &&
858 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
859 Chain, BlockFilter))
860 // Cases 3 & 4
861 return greaterWithBias(
862 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
863 EntryFreq);
864 // Cases 1 & 2
865 return greaterWithBias((P + U),
866 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
867 std::max(Qin, F) * UProb),
868 EntryFreq);
871 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
872 /// successors form the lower part of a trellis. A successor set S forms the
873 /// lower part of a trellis if all of the predecessors of S are either in S or
874 /// have all of S as successors. We ignore trellises where BB doesn't have 2
875 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
876 /// are very uncommon and complex to compute optimally. Allowing edges within S
877 /// is not strictly a trellis, but the same algorithm works, so we allow it.
878 bool MachineBlockPlacement::isTrellis(
879 const MachineBasicBlock *BB,
880 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
881 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
882 // Technically BB could form a trellis with branching factor higher than 2.
883 // But that's extremely uncommon.
884 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
885 return false;
887 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
888 BB->succ_end());
889 // To avoid reviewing the same predecessors twice.
890 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
892 for (MachineBasicBlock *Succ : ViableSuccs) {
893 int PredCount = 0;
894 for (auto SuccPred : Succ->predecessors()) {
895 // Allow triangle successors, but don't count them.
896 if (Successors.count(SuccPred)) {
897 // Make sure that it is actually a triangle.
898 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
899 if (!Successors.count(CheckSucc))
900 return false;
901 continue;
903 const BlockChain *PredChain = BlockToChain[SuccPred];
904 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
905 PredChain == &Chain || PredChain == BlockToChain[Succ])
906 continue;
907 ++PredCount;
908 // Perform the successor check only once.
909 if (!SeenPreds.insert(SuccPred).second)
910 continue;
911 if (!hasSameSuccessors(*SuccPred, Successors))
912 return false;
914 // If one of the successors has only BB as a predecessor, it is not a
915 // trellis.
916 if (PredCount < 1)
917 return false;
919 return true;
922 /// Pick the highest total weight pair of edges that can both be laid out.
923 /// The edges in \p Edges[0] are assumed to have a different destination than
924 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
925 /// the individual highest weight edges to the 2 different destinations, or in
926 /// case of a conflict, one of them should be replaced with a 2nd best edge.
927 std::pair<MachineBlockPlacement::WeightedEdge,
928 MachineBlockPlacement::WeightedEdge>
929 MachineBlockPlacement::getBestNonConflictingEdges(
930 const MachineBasicBlock *BB,
931 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
932 Edges) {
933 // Sort the edges, and then for each successor, find the best incoming
934 // predecessor. If the best incoming predecessors aren't the same,
935 // then that is clearly the best layout. If there is a conflict, one of the
936 // successors will have to fallthrough from the second best predecessor. We
937 // compare which combination is better overall.
939 // Sort for highest frequency.
940 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
942 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp);
943 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp);
944 auto BestA = Edges[0].begin();
945 auto BestB = Edges[1].begin();
946 // Arrange for the correct answer to be in BestA and BestB
947 // If the 2 best edges don't conflict, the answer is already there.
948 if (BestA->Src == BestB->Src) {
949 // Compare the total fallthrough of (Best + Second Best) for both pairs
950 auto SecondBestA = std::next(BestA);
951 auto SecondBestB = std::next(BestB);
952 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
953 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
954 if (BestAScore < BestBScore)
955 BestA = SecondBestA;
956 else
957 BestB = SecondBestB;
959 // Arrange for the BB edge to be in BestA if it exists.
960 if (BestB->Src == BB)
961 std::swap(BestA, BestB);
962 return std::make_pair(*BestA, *BestB);
965 /// Get the best successor from \p BB based on \p BB being part of a trellis.
966 /// We only handle trellises with 2 successors, so the algorithm is
967 /// straightforward: Find the best pair of edges that don't conflict. We find
968 /// the best incoming edge for each successor in the trellis. If those conflict,
969 /// we consider which of them should be replaced with the second best.
970 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
971 /// comes from \p BB, it will be in \p BestEdges[0]
972 MachineBlockPlacement::BlockAndTailDupResult
973 MachineBlockPlacement::getBestTrellisSuccessor(
974 const MachineBasicBlock *BB,
975 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
976 BranchProbability AdjustedSumProb, const BlockChain &Chain,
977 const BlockFilterSet *BlockFilter) {
979 BlockAndTailDupResult Result = {nullptr, false};
980 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
981 BB->succ_end());
983 // We assume size 2 because it's common. For general n, we would have to do
984 // the Hungarian algorithm, but it's not worth the complexity because more
985 // than 2 successors is fairly uncommon, and a trellis even more so.
986 if (Successors.size() != 2 || ViableSuccs.size() != 2)
987 return Result;
989 // Collect the edge frequencies of all edges that form the trellis.
990 SmallVector<WeightedEdge, 8> Edges[2];
991 int SuccIndex = 0;
992 for (auto Succ : ViableSuccs) {
993 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
994 // Skip any placed predecessors that are not BB
995 if (SuccPred != BB)
996 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
997 BlockToChain[SuccPred] == &Chain ||
998 BlockToChain[SuccPred] == BlockToChain[Succ])
999 continue;
1000 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1001 MBPI->getEdgeProbability(SuccPred, Succ);
1002 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1004 ++SuccIndex;
1007 // Pick the best combination of 2 edges from all the edges in the trellis.
1008 WeightedEdge BestA, BestB;
1009 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1011 if (BestA.Src != BB) {
1012 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1013 // we shouldn't choose any successor. We've already looked and there's a
1014 // better fallthrough edge for all the successors.
1015 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1016 return Result;
1019 // Did we pick the triangle edge? If tail-duplication is profitable, do
1020 // that instead. Otherwise merge the triangle edge now while we know it is
1021 // optimal.
1022 if (BestA.Dest == BestB.Src) {
1023 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1024 // would be better.
1025 MachineBasicBlock *Succ1 = BestA.Dest;
1026 MachineBasicBlock *Succ2 = BestB.Dest;
1027 // Check to see if tail-duplication would be profitable.
1028 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1029 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1030 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1031 Chain, BlockFilter)) {
1032 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1033 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1034 dbgs() << " Selected: " << getBlockName(Succ2)
1035 << ", probability: " << Succ2Prob
1036 << " (Tail Duplicate)\n");
1037 Result.BB = Succ2;
1038 Result.ShouldTailDup = true;
1039 return Result;
1042 // We have already computed the optimal edge for the other side of the
1043 // trellis.
1044 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1046 auto TrellisSucc = BestA.Dest;
1047 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1048 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1049 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1050 << ", probability: " << SuccProb << " (Trellis)\n");
1051 Result.BB = TrellisSucc;
1052 return Result;
1055 /// When the option allowTailDupPlacement() is on, this method checks if the
1056 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1057 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1058 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1059 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1060 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1061 if (!shouldTailDuplicate(Succ))
1062 return false;
1064 // For CFG checking.
1065 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1066 BB->succ_end());
1067 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1068 // Make sure all unplaced and unfiltered predecessors can be
1069 // tail-duplicated into.
1070 // Skip any blocks that are already placed or not in this loop.
1071 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1072 || BlockToChain[Pred] == &Chain)
1073 continue;
1074 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1075 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1076 // This will result in a trellis after tail duplication, so we don't
1077 // need to copy Succ into this predecessor. In the presence
1078 // of a trellis tail duplication can continue to be profitable.
1079 // For example:
1080 // A A
1081 // |\ |\
1082 // | \ | \
1083 // | C | C+BB
1084 // | / | |
1085 // |/ | |
1086 // BB => BB |
1087 // |\ |\/|
1088 // | \ |/\|
1089 // | D | D
1090 // | / | /
1091 // |/ |/
1092 // Succ Succ
1094 // After BB was duplicated into C, the layout looks like the one on the
1095 // right. BB and C now have the same successors. When considering
1096 // whether Succ can be duplicated into all its unplaced predecessors, we
1097 // ignore C.
1098 // We can do this because C already has a profitable fallthrough, namely
1099 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1100 // duplication and for this test.
1102 // This allows trellises to be laid out in 2 separate chains
1103 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1104 // because it allows the creation of 2 fallthrough paths with links
1105 // between them, and we correctly identify the best layout for these
1106 // CFGs. We want to extend trellises that the user created in addition
1107 // to trellises created by tail-duplication, so we just look for the
1108 // CFG.
1109 continue;
1110 return false;
1113 return true;
1116 /// Find chains of triangles where we believe it would be profitable to
1117 /// tail-duplicate them all, but a local analysis would not find them.
1118 /// There are 3 ways this can be profitable:
1119 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1120 /// longer chains)
1121 /// 2) The chains are statically correlated. Branch probabilities have a very
1122 /// U-shaped distribution.
1123 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1124 /// If the branches in a chain are likely to be from the same side of the
1125 /// distribution as their predecessor, but are independent at runtime, this
1126 /// transformation is profitable. (Because the cost of being wrong is a small
1127 /// fixed cost, unlike the standard triangle layout where the cost of being
1128 /// wrong scales with the # of triangles.)
1129 /// 3) The chains are dynamically correlated. If the probability that a previous
1130 /// branch was taken positively influences whether the next branch will be
1131 /// taken
1132 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1133 void MachineBlockPlacement::precomputeTriangleChains() {
1134 struct TriangleChain {
1135 std::vector<MachineBasicBlock *> Edges;
1137 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1138 : Edges({src, dst}) {}
1140 void append(MachineBasicBlock *dst) {
1141 assert(getKey()->isSuccessor(dst) &&
1142 "Attempting to append a block that is not a successor.");
1143 Edges.push_back(dst);
1146 unsigned count() const { return Edges.size() - 1; }
1148 MachineBasicBlock *getKey() const {
1149 return Edges.back();
1153 if (TriangleChainCount == 0)
1154 return;
1156 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1157 // Map from last block to the chain that contains it. This allows us to extend
1158 // chains as we find new triangles.
1159 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1160 for (MachineBasicBlock &BB : *F) {
1161 // If BB doesn't have 2 successors, it doesn't start a triangle.
1162 if (BB.succ_size() != 2)
1163 continue;
1164 MachineBasicBlock *PDom = nullptr;
1165 for (MachineBasicBlock *Succ : BB.successors()) {
1166 if (!MPDT->dominates(Succ, &BB))
1167 continue;
1168 PDom = Succ;
1169 break;
1171 // If BB doesn't have a post-dominating successor, it doesn't form a
1172 // triangle.
1173 if (PDom == nullptr)
1174 continue;
1175 // If PDom has a hint that it is low probability, skip this triangle.
1176 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1177 continue;
1178 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1179 // we're looking for.
1180 if (!shouldTailDuplicate(PDom))
1181 continue;
1182 bool CanTailDuplicate = true;
1183 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1184 // isn't the kind of triangle we're looking for.
1185 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1186 if (Pred == &BB)
1187 continue;
1188 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1189 CanTailDuplicate = false;
1190 break;
1193 // If we can't tail-duplicate PDom to its predecessors, then skip this
1194 // triangle.
1195 if (!CanTailDuplicate)
1196 continue;
1198 // Now we have an interesting triangle. Insert it if it's not part of an
1199 // existing chain.
1200 // Note: This cannot be replaced with a call insert() or emplace() because
1201 // the find key is BB, but the insert/emplace key is PDom.
1202 auto Found = TriangleChainMap.find(&BB);
1203 // If it is, remove the chain from the map, grow it, and put it back in the
1204 // map with the end as the new key.
1205 if (Found != TriangleChainMap.end()) {
1206 TriangleChain Chain = std::move(Found->second);
1207 TriangleChainMap.erase(Found);
1208 Chain.append(PDom);
1209 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1210 } else {
1211 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1212 assert(InsertResult.second && "Block seen twice.");
1213 (void)InsertResult;
1217 // Iterating over a DenseMap is safe here, because the only thing in the body
1218 // of the loop is inserting into another DenseMap (ComputedEdges).
1219 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1220 for (auto &ChainPair : TriangleChainMap) {
1221 TriangleChain &Chain = ChainPair.second;
1222 // Benchmarking has shown that due to branch correlation duplicating 2 or
1223 // more triangles is profitable, despite the calculations assuming
1224 // independence.
1225 if (Chain.count() < TriangleChainCount)
1226 continue;
1227 MachineBasicBlock *dst = Chain.Edges.back();
1228 Chain.Edges.pop_back();
1229 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1230 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1231 << getBlockName(dst)
1232 << " as pre-computed based on triangles.\n");
1234 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1235 assert(InsertResult.second && "Block seen twice.");
1236 (void)InsertResult;
1238 dst = src;
1243 // When profile is not present, return the StaticLikelyProb.
1244 // When profile is available, we need to handle the triangle-shape CFG.
1245 static BranchProbability getLayoutSuccessorProbThreshold(
1246 const MachineBasicBlock *BB) {
1247 if (!BB->getParent()->getFunction().hasProfileData())
1248 return BranchProbability(StaticLikelyProb, 100);
1249 if (BB->succ_size() == 2) {
1250 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1251 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1252 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1253 /* See case 1 below for the cost analysis. For BB->Succ to
1254 * be taken with smaller cost, the following needs to hold:
1255 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1256 * So the threshold T in the calculation below
1257 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1258 * So T / (1 - T) = 2, Yielding T = 2/3
1259 * Also adding user specified branch bias, we have
1260 * T = (2/3)*(ProfileLikelyProb/50)
1261 * = (2*ProfileLikelyProb)/150)
1263 return BranchProbability(2 * ProfileLikelyProb, 150);
1266 return BranchProbability(ProfileLikelyProb, 100);
1269 /// Checks to see if the layout candidate block \p Succ has a better layout
1270 /// predecessor than \c BB. If yes, returns true.
1271 /// \p SuccProb: The probability adjusted for only remaining blocks.
1272 /// Only used for logging
1273 /// \p RealSuccProb: The un-adjusted probability.
1274 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1275 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1276 /// considered
1277 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1278 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1279 const BlockChain &SuccChain, BranchProbability SuccProb,
1280 BranchProbability RealSuccProb, const BlockChain &Chain,
1281 const BlockFilterSet *BlockFilter) {
1283 // There isn't a better layout when there are no unscheduled predecessors.
1284 if (SuccChain.UnscheduledPredecessors == 0)
1285 return false;
1287 // There are two basic scenarios here:
1288 // -------------------------------------
1289 // Case 1: triangular shape CFG (if-then):
1290 // BB
1291 // | \
1292 // | \
1293 // | Pred
1294 // | /
1295 // Succ
1296 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1297 // set Succ as the layout successor of BB. Picking Succ as BB's
1298 // successor breaks the CFG constraints (FIXME: define these constraints).
1299 // With this layout, Pred BB
1300 // is forced to be outlined, so the overall cost will be cost of the
1301 // branch taken from BB to Pred, plus the cost of back taken branch
1302 // from Pred to Succ, as well as the additional cost associated
1303 // with the needed unconditional jump instruction from Pred To Succ.
1305 // The cost of the topological order layout is the taken branch cost
1306 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1307 // must hold:
1308 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1309 // < freq(BB->Succ) * taken_branch_cost.
1310 // Ignoring unconditional jump cost, we get
1311 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1312 // prob(BB->Succ) > 2 * prob(BB->Pred)
1314 // When real profile data is available, we can precisely compute the
1315 // probability threshold that is needed for edge BB->Succ to be considered.
1316 // Without profile data, the heuristic requires the branch bias to be
1317 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1318 // -----------------------------------------------------------------
1319 // Case 2: diamond like CFG (if-then-else):
1320 // S
1321 // / \
1322 // | \
1323 // BB Pred
1324 // \ /
1325 // Succ
1326 // ..
1328 // The current block is BB and edge BB->Succ is now being evaluated.
1329 // Note that edge S->BB was previously already selected because
1330 // prob(S->BB) > prob(S->Pred).
1331 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1332 // choose Pred, we will have a topological ordering as shown on the left
1333 // in the picture below. If we choose Succ, we have the solution as shown
1334 // on the right:
1336 // topo-order:
1338 // S----- ---S
1339 // | | | |
1340 // ---BB | | BB
1341 // | | | |
1342 // | Pred-- | Succ--
1343 // | | | |
1344 // ---Succ ---Pred--
1346 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1347 // = freq(S->Pred) + freq(S->BB)
1349 // If we have profile data (i.e, branch probabilities can be trusted), the
1350 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1351 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1352 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1353 // means the cost of topological order is greater.
1354 // When profile data is not available, however, we need to be more
1355 // conservative. If the branch prediction is wrong, breaking the topo-order
1356 // will actually yield a layout with large cost. For this reason, we need
1357 // strong biased branch at block S with Prob(S->BB) in order to select
1358 // BB->Succ. This is equivalent to looking the CFG backward with backward
1359 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1360 // profile data).
1361 // --------------------------------------------------------------------------
1362 // Case 3: forked diamond
1363 // S
1364 // / \
1365 // / \
1366 // BB Pred
1367 // | \ / |
1368 // | \ / |
1369 // | X |
1370 // | / \ |
1371 // | / \ |
1372 // S1 S2
1374 // The current block is BB and edge BB->S1 is now being evaluated.
1375 // As above S->BB was already selected because
1376 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1378 // topo-order:
1380 // S-------| ---S
1381 // | | | |
1382 // ---BB | | BB
1383 // | | | |
1384 // | Pred----| | S1----
1385 // | | | |
1386 // --(S1 or S2) ---Pred--
1387 // |
1388 // S2
1390 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1391 // + min(freq(Pred->S1), freq(Pred->S2))
1392 // Non-topo-order cost:
1393 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1394 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1395 // is 0. Then the non topo layout is better when
1396 // freq(S->Pred) < freq(BB->S1).
1397 // This is exactly what is checked below.
1398 // Note there are other shapes that apply (Pred may not be a single block,
1399 // but they all fit this general pattern.)
1400 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1402 // Make sure that a hot successor doesn't have a globally more
1403 // important predecessor.
1404 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1405 bool BadCFGConflict = false;
1407 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1408 if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1409 (BlockFilter && !BlockFilter->count(Pred)) ||
1410 BlockToChain[Pred] == &Chain ||
1411 // This check is redundant except for look ahead. This function is
1412 // called for lookahead by isProfitableToTailDup when BB hasn't been
1413 // placed yet.
1414 (Pred == BB))
1415 continue;
1416 // Do backward checking.
1417 // For all cases above, we need a backward checking to filter out edges that
1418 // are not 'strongly' biased.
1419 // BB Pred
1420 // \ /
1421 // Succ
1422 // We select edge BB->Succ if
1423 // freq(BB->Succ) > freq(Succ) * HotProb
1424 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1425 // HotProb
1426 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1427 // Case 1 is covered too, because the first equation reduces to:
1428 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1429 BlockFrequency PredEdgeFreq =
1430 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1431 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1432 BadCFGConflict = true;
1433 break;
1437 if (BadCFGConflict) {
1438 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1439 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1440 return true;
1443 return false;
1446 /// Select the best successor for a block.
1448 /// This looks across all successors of a particular block and attempts to
1449 /// select the "best" one to be the layout successor. It only considers direct
1450 /// successors which also pass the block filter. It will attempt to avoid
1451 /// breaking CFG structure, but cave and break such structures in the case of
1452 /// very hot successor edges.
1454 /// \returns The best successor block found, or null if none are viable, along
1455 /// with a boolean indicating if tail duplication is necessary.
1456 MachineBlockPlacement::BlockAndTailDupResult
1457 MachineBlockPlacement::selectBestSuccessor(
1458 const MachineBasicBlock *BB, const BlockChain &Chain,
1459 const BlockFilterSet *BlockFilter) {
1460 const BranchProbability HotProb(StaticLikelyProb, 100);
1462 BlockAndTailDupResult BestSucc = { nullptr, false };
1463 auto BestProb = BranchProbability::getZero();
1465 SmallVector<MachineBasicBlock *, 4> Successors;
1466 auto AdjustedSumProb =
1467 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1469 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1470 << "\n");
1472 // if we already precomputed the best successor for BB, return that if still
1473 // applicable.
1474 auto FoundEdge = ComputedEdges.find(BB);
1475 if (FoundEdge != ComputedEdges.end()) {
1476 MachineBasicBlock *Succ = FoundEdge->second.BB;
1477 ComputedEdges.erase(FoundEdge);
1478 BlockChain *SuccChain = BlockToChain[Succ];
1479 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1480 SuccChain != &Chain && Succ == *SuccChain->begin())
1481 return FoundEdge->second;
1484 // if BB is part of a trellis, Use the trellis to determine the optimal
1485 // fallthrough edges
1486 if (isTrellis(BB, Successors, Chain, BlockFilter))
1487 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1488 BlockFilter);
1490 // For blocks with CFG violations, we may be able to lay them out anyway with
1491 // tail-duplication. We keep this vector so we can perform the probability
1492 // calculations the minimum number of times.
1493 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1494 DupCandidates;
1495 for (MachineBasicBlock *Succ : Successors) {
1496 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1497 BranchProbability SuccProb =
1498 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1500 BlockChain &SuccChain = *BlockToChain[Succ];
1501 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1502 // predecessor that yields lower global cost.
1503 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1504 Chain, BlockFilter)) {
1505 // If tail duplication would make Succ profitable, place it.
1506 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1507 DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1508 continue;
1511 LLVM_DEBUG(
1512 dbgs() << " Candidate: " << getBlockName(Succ)
1513 << ", probability: " << SuccProb
1514 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1515 << "\n");
1517 if (BestSucc.BB && BestProb >= SuccProb) {
1518 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1519 continue;
1522 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1523 BestSucc.BB = Succ;
1524 BestProb = SuccProb;
1526 // Handle the tail duplication candidates in order of decreasing probability.
1527 // Stop at the first one that is profitable. Also stop if they are less
1528 // profitable than BestSucc. Position is important because we preserve it and
1529 // prefer first best match. Here we aren't comparing in order, so we capture
1530 // the position instead.
1531 if (DupCandidates.size() != 0) {
1532 auto cmp =
1533 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
1534 const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
1535 return std::get<0>(a) > std::get<0>(b);
1537 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
1539 for(auto &Tup : DupCandidates) {
1540 BranchProbability DupProb;
1541 MachineBasicBlock *Succ;
1542 std::tie(DupProb, Succ) = Tup;
1543 if (DupProb < BestProb)
1544 break;
1545 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1546 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1547 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1548 << ", probability: " << DupProb
1549 << " (Tail Duplicate)\n");
1550 BestSucc.BB = Succ;
1551 BestSucc.ShouldTailDup = true;
1552 break;
1556 if (BestSucc.BB)
1557 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1559 return BestSucc;
1562 /// Select the best block from a worklist.
1564 /// This looks through the provided worklist as a list of candidate basic
1565 /// blocks and select the most profitable one to place. The definition of
1566 /// profitable only really makes sense in the context of a loop. This returns
1567 /// the most frequently visited block in the worklist, which in the case of
1568 /// a loop, is the one most desirable to be physically close to the rest of the
1569 /// loop body in order to improve i-cache behavior.
1571 /// \returns The best block found, or null if none are viable.
1572 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1573 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1574 // Once we need to walk the worklist looking for a candidate, cleanup the
1575 // worklist of already placed entries.
1576 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1577 // some code complexity) into the loop below.
1578 WorkList.erase(llvm::remove_if(WorkList,
1579 [&](MachineBasicBlock *BB) {
1580 return BlockToChain.lookup(BB) == &Chain;
1582 WorkList.end());
1584 if (WorkList.empty())
1585 return nullptr;
1587 bool IsEHPad = WorkList[0]->isEHPad();
1589 MachineBasicBlock *BestBlock = nullptr;
1590 BlockFrequency BestFreq;
1591 for (MachineBasicBlock *MBB : WorkList) {
1592 assert(MBB->isEHPad() == IsEHPad &&
1593 "EHPad mismatch between block and work list.");
1595 BlockChain &SuccChain = *BlockToChain[MBB];
1596 if (&SuccChain == &Chain)
1597 continue;
1599 assert(SuccChain.UnscheduledPredecessors == 0 &&
1600 "Found CFG-violating block");
1602 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1603 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1604 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1606 // For ehpad, we layout the least probable first as to avoid jumping back
1607 // from least probable landingpads to more probable ones.
1609 // FIXME: Using probability is probably (!) not the best way to achieve
1610 // this. We should probably have a more principled approach to layout
1611 // cleanup code.
1613 // The goal is to get:
1615 // +--------------------------+
1616 // | V
1617 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1619 // Rather than:
1621 // +-------------------------------------+
1622 // V |
1623 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1624 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1625 continue;
1627 BestBlock = MBB;
1628 BestFreq = CandidateFreq;
1631 return BestBlock;
1634 /// Retrieve the first unplaced basic block.
1636 /// This routine is called when we are unable to use the CFG to walk through
1637 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1638 /// We walk through the function's blocks in order, starting from the
1639 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1640 /// re-scanning the entire sequence on repeated calls to this routine.
1641 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1642 const BlockChain &PlacedChain,
1643 MachineFunction::iterator &PrevUnplacedBlockIt,
1644 const BlockFilterSet *BlockFilter) {
1645 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1646 ++I) {
1647 if (BlockFilter && !BlockFilter->count(&*I))
1648 continue;
1649 if (BlockToChain[&*I] != &PlacedChain) {
1650 PrevUnplacedBlockIt = I;
1651 // Now select the head of the chain to which the unplaced block belongs
1652 // as the block to place. This will force the entire chain to be placed,
1653 // and satisfies the requirements of merging chains.
1654 return *BlockToChain[&*I]->begin();
1657 return nullptr;
1660 void MachineBlockPlacement::fillWorkLists(
1661 const MachineBasicBlock *MBB,
1662 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1663 const BlockFilterSet *BlockFilter = nullptr) {
1664 BlockChain &Chain = *BlockToChain[MBB];
1665 if (!UpdatedPreds.insert(&Chain).second)
1666 return;
1668 assert(
1669 Chain.UnscheduledPredecessors == 0 &&
1670 "Attempting to place block with unscheduled predecessors in worklist.");
1671 for (MachineBasicBlock *ChainBB : Chain) {
1672 assert(BlockToChain[ChainBB] == &Chain &&
1673 "Block in chain doesn't match BlockToChain map.");
1674 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1675 if (BlockFilter && !BlockFilter->count(Pred))
1676 continue;
1677 if (BlockToChain[Pred] == &Chain)
1678 continue;
1679 ++Chain.UnscheduledPredecessors;
1683 if (Chain.UnscheduledPredecessors != 0)
1684 return;
1686 MachineBasicBlock *BB = *Chain.begin();
1687 if (BB->isEHPad())
1688 EHPadWorkList.push_back(BB);
1689 else
1690 BlockWorkList.push_back(BB);
1693 void MachineBlockPlacement::buildChain(
1694 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1695 BlockFilterSet *BlockFilter) {
1696 assert(HeadBB && "BB must not be null.\n");
1697 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1698 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1700 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1701 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1702 MachineBasicBlock *BB = *std::prev(Chain.end());
1703 while (true) {
1704 assert(BB && "null block found at end of chain in loop.");
1705 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1706 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1709 // Look for the best viable successor if there is one to place immediately
1710 // after this block.
1711 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1712 MachineBasicBlock* BestSucc = Result.BB;
1713 bool ShouldTailDup = Result.ShouldTailDup;
1714 if (allowTailDupPlacement())
1715 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1717 // If an immediate successor isn't available, look for the best viable
1718 // block among those we've identified as not violating the loop's CFG at
1719 // this point. This won't be a fallthrough, but it will increase locality.
1720 if (!BestSucc)
1721 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1722 if (!BestSucc)
1723 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1725 if (!BestSucc) {
1726 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1727 if (!BestSucc)
1728 break;
1730 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1731 "layout successor until the CFG reduces\n");
1734 // Placement may have changed tail duplication opportunities.
1735 // Check for that now.
1736 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1737 // If the chosen successor was duplicated into all its predecessors,
1738 // don't bother laying it out, just go round the loop again with BB as
1739 // the chain end.
1740 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1741 BlockFilter, PrevUnplacedBlockIt))
1742 continue;
1745 // Place this block, updating the datastructures to reflect its placement.
1746 BlockChain &SuccChain = *BlockToChain[BestSucc];
1747 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1748 // we selected a successor that didn't fit naturally into the CFG.
1749 SuccChain.UnscheduledPredecessors = 0;
1750 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1751 << getBlockName(BestSucc) << "\n");
1752 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1753 Chain.merge(BestSucc, &SuccChain);
1754 BB = *std::prev(Chain.end());
1757 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1758 << getBlockName(*Chain.begin()) << "\n");
1761 // If bottom of block BB has only one successor OldTop, in most cases it is
1762 // profitable to move it before OldTop, except the following case:
1764 // -->OldTop<-
1765 // | . |
1766 // | . |
1767 // | . |
1768 // ---Pred |
1769 // | |
1770 // BB-----
1772 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1773 // layout the other successor below it, so it can't reduce taken branch.
1774 // In this case we keep its original layout.
1775 bool
1776 MachineBlockPlacement::canMoveBottomBlockToTop(
1777 const MachineBasicBlock *BottomBlock,
1778 const MachineBasicBlock *OldTop) {
1779 if (BottomBlock->pred_size() != 1)
1780 return true;
1781 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1782 if (Pred->succ_size() != 2)
1783 return true;
1785 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1786 if (OtherBB == BottomBlock)
1787 OtherBB = *Pred->succ_rbegin();
1788 if (OtherBB == OldTop)
1789 return false;
1791 return true;
1794 /// Find the best loop top block for layout.
1796 /// Look for a block which is strictly better than the loop header for laying
1797 /// out at the top of the loop. This looks for one and only one pattern:
1798 /// a latch block with no conditional exit. This block will cause a conditional
1799 /// jump around it or will be the bottom of the loop if we lay it out in place,
1800 /// but if it it doesn't end up at the bottom of the loop for any reason,
1801 /// rotation alone won't fix it. Because such a block will always result in an
1802 /// unconditional jump (for the backedge) rotating it in front of the loop
1803 /// header is always profitable.
1804 MachineBasicBlock *
1805 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
1806 const BlockFilterSet &LoopBlockSet) {
1807 // Placing the latch block before the header may introduce an extra branch
1808 // that skips this block the first time the loop is executed, which we want
1809 // to avoid when optimising for size.
1810 // FIXME: in theory there is a case that does not introduce a new branch,
1811 // i.e. when the layout predecessor does not fallthrough to the loop header.
1812 // In practice this never happens though: there always seems to be a preheader
1813 // that can fallthrough and that is also placed before the header.
1814 if (F->getFunction().optForSize())
1815 return L.getHeader();
1817 // Check that the header hasn't been fused with a preheader block due to
1818 // crazy branches. If it has, we need to start with the header at the top to
1819 // prevent pulling the preheader into the loop body.
1820 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1821 if (!LoopBlockSet.count(*HeaderChain.begin()))
1822 return L.getHeader();
1824 LLVM_DEBUG(dbgs() << "Finding best loop top for: "
1825 << getBlockName(L.getHeader()) << "\n");
1827 BlockFrequency BestPredFreq;
1828 MachineBasicBlock *BestPred = nullptr;
1829 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1830 if (!LoopBlockSet.count(Pred))
1831 continue;
1832 LLVM_DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has "
1833 << Pred->succ_size() << " successors, ";
1834 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1835 if (Pred->succ_size() > 1)
1836 continue;
1838 if (!canMoveBottomBlockToTop(Pred, L.getHeader()))
1839 continue;
1841 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1842 if (!BestPred || PredFreq > BestPredFreq ||
1843 (!(PredFreq < BestPredFreq) &&
1844 Pred->isLayoutSuccessor(L.getHeader()))) {
1845 BestPred = Pred;
1846 BestPredFreq = PredFreq;
1850 // If no direct predecessor is fine, just use the loop header.
1851 if (!BestPred) {
1852 LLVM_DEBUG(dbgs() << " final top unchanged\n");
1853 return L.getHeader();
1856 // Walk backwards through any straight line of predecessors.
1857 while (BestPred->pred_size() == 1 &&
1858 (*BestPred->pred_begin())->succ_size() == 1 &&
1859 *BestPred->pred_begin() != L.getHeader())
1860 BestPred = *BestPred->pred_begin();
1862 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
1863 return BestPred;
1866 /// Find the best loop exiting block for layout.
1868 /// This routine implements the logic to analyze the loop looking for the best
1869 /// block to layout at the top of the loop. Typically this is done to maximize
1870 /// fallthrough opportunities.
1871 MachineBasicBlock *
1872 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
1873 const BlockFilterSet &LoopBlockSet) {
1874 // We don't want to layout the loop linearly in all cases. If the loop header
1875 // is just a normal basic block in the loop, we want to look for what block
1876 // within the loop is the best one to layout at the top. However, if the loop
1877 // header has be pre-merged into a chain due to predecessors not having
1878 // analyzable branches, *and* the predecessor it is merged with is *not* part
1879 // of the loop, rotating the header into the middle of the loop will create
1880 // a non-contiguous range of blocks which is Very Bad. So start with the
1881 // header and only rotate if safe.
1882 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1883 if (!LoopBlockSet.count(*HeaderChain.begin()))
1884 return nullptr;
1886 BlockFrequency BestExitEdgeFreq;
1887 unsigned BestExitLoopDepth = 0;
1888 MachineBasicBlock *ExitingBB = nullptr;
1889 // If there are exits to outer loops, loop rotation can severely limit
1890 // fallthrough opportunities unless it selects such an exit. Keep a set of
1891 // blocks where rotating to exit with that block will reach an outer loop.
1892 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1894 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
1895 << getBlockName(L.getHeader()) << "\n");
1896 for (MachineBasicBlock *MBB : L.getBlocks()) {
1897 BlockChain &Chain = *BlockToChain[MBB];
1898 // Ensure that this block is at the end of a chain; otherwise it could be
1899 // mid-way through an inner loop or a successor of an unanalyzable branch.
1900 if (MBB != *std::prev(Chain.end()))
1901 continue;
1903 // Now walk the successors. We need to establish whether this has a viable
1904 // exiting successor and whether it has a viable non-exiting successor.
1905 // We store the old exiting state and restore it if a viable looping
1906 // successor isn't found.
1907 MachineBasicBlock *OldExitingBB = ExitingBB;
1908 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1909 bool HasLoopingSucc = false;
1910 for (MachineBasicBlock *Succ : MBB->successors()) {
1911 if (Succ->isEHPad())
1912 continue;
1913 if (Succ == MBB)
1914 continue;
1915 BlockChain &SuccChain = *BlockToChain[Succ];
1916 // Don't split chains, either this chain or the successor's chain.
1917 if (&Chain == &SuccChain) {
1918 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
1919 << getBlockName(Succ) << " (chain conflict)\n");
1920 continue;
1923 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1924 if (LoopBlockSet.count(Succ)) {
1925 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
1926 << getBlockName(Succ) << " (" << SuccProb << ")\n");
1927 HasLoopingSucc = true;
1928 continue;
1931 unsigned SuccLoopDepth = 0;
1932 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1933 SuccLoopDepth = ExitLoop->getLoopDepth();
1934 if (ExitLoop->contains(&L))
1935 BlocksExitingToOuterLoop.insert(MBB);
1938 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1939 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
1940 << getBlockName(Succ) << " [L:" << SuccLoopDepth
1941 << "] (";
1942 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1943 // Note that we bias this toward an existing layout successor to retain
1944 // incoming order in the absence of better information. The exit must have
1945 // a frequency higher than the current exit before we consider breaking
1946 // the layout.
1947 BranchProbability Bias(100 - ExitBlockBias, 100);
1948 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1949 ExitEdgeFreq > BestExitEdgeFreq ||
1950 (MBB->isLayoutSuccessor(Succ) &&
1951 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1952 BestExitEdgeFreq = ExitEdgeFreq;
1953 ExitingBB = MBB;
1957 if (!HasLoopingSucc) {
1958 // Restore the old exiting state, no viable looping successor was found.
1959 ExitingBB = OldExitingBB;
1960 BestExitEdgeFreq = OldBestExitEdgeFreq;
1963 // Without a candidate exiting block or with only a single block in the
1964 // loop, just use the loop header to layout the loop.
1965 if (!ExitingBB) {
1966 LLVM_DEBUG(
1967 dbgs() << " No other candidate exit blocks, using loop header\n");
1968 return nullptr;
1970 if (L.getNumBlocks() == 1) {
1971 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
1972 return nullptr;
1975 // Also, if we have exit blocks which lead to outer loops but didn't select
1976 // one of them as the exiting block we are rotating toward, disable loop
1977 // rotation altogether.
1978 if (!BlocksExitingToOuterLoop.empty() &&
1979 !BlocksExitingToOuterLoop.count(ExitingBB))
1980 return nullptr;
1982 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
1983 << "\n");
1984 return ExitingBB;
1987 /// Attempt to rotate an exiting block to the bottom of the loop.
1989 /// Once we have built a chain, try to rotate it to line up the hot exit block
1990 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1991 /// branches. For example, if the loop has fallthrough into its header and out
1992 /// of its bottom already, don't rotate it.
1993 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1994 const MachineBasicBlock *ExitingBB,
1995 const BlockFilterSet &LoopBlockSet) {
1996 if (!ExitingBB)
1997 return;
1999 MachineBasicBlock *Top = *LoopChain.begin();
2000 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2002 // If ExitingBB is already the last one in a chain then nothing to do.
2003 if (Bottom == ExitingBB)
2004 return;
2006 bool ViableTopFallthrough = false;
2007 for (MachineBasicBlock *Pred : Top->predecessors()) {
2008 BlockChain *PredChain = BlockToChain[Pred];
2009 if (!LoopBlockSet.count(Pred) &&
2010 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2011 ViableTopFallthrough = true;
2012 break;
2016 // If the header has viable fallthrough, check whether the current loop
2017 // bottom is a viable exiting block. If so, bail out as rotating will
2018 // introduce an unnecessary branch.
2019 if (ViableTopFallthrough) {
2020 for (MachineBasicBlock *Succ : Bottom->successors()) {
2021 BlockChain *SuccChain = BlockToChain[Succ];
2022 if (!LoopBlockSet.count(Succ) &&
2023 (!SuccChain || Succ == *SuccChain->begin()))
2024 return;
2028 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2029 if (ExitIt == LoopChain.end())
2030 return;
2032 // Rotating a loop exit to the bottom when there is a fallthrough to top
2033 // trades the entry fallthrough for an exit fallthrough.
2034 // If there is no bottom->top edge, but the chosen exit block does have
2035 // a fallthrough, we break that fallthrough for nothing in return.
2037 // Let's consider an example. We have a built chain of basic blocks
2038 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2039 // By doing a rotation we get
2040 // Bk+1, ..., Bn, B1, ..., Bk
2041 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2042 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2043 // It might be compensated by fallthrough Bn -> B1.
2044 // So we have a condition to avoid creation of extra branch by loop rotation.
2045 // All below must be true to avoid loop rotation:
2046 // If there is a fallthrough to top (B1)
2047 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2048 // There is no fallthrough from bottom (Bn) to top (B1).
2049 // Please note that there is no exit fallthrough from Bn because we checked it
2050 // above.
2051 if (ViableTopFallthrough) {
2052 assert(std::next(ExitIt) != LoopChain.end() &&
2053 "Exit should not be last BB");
2054 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2055 if (ExitingBB->isSuccessor(NextBlockInChain))
2056 if (!Bottom->isSuccessor(Top))
2057 return;
2060 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2061 << " at bottom\n");
2062 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2065 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2067 /// With profile data, we can determine the cost in terms of missed fall through
2068 /// opportunities when rotating a loop chain and select the best rotation.
2069 /// Basically, there are three kinds of cost to consider for each rotation:
2070 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2071 /// the loop to the loop header.
2072 /// 2. The possibly missed fall through edges (if they exist) from the loop
2073 /// exits to BB out of the loop.
2074 /// 3. The missed fall through edge (if it exists) from the last BB to the
2075 /// first BB in the loop chain.
2076 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2077 /// We select the best rotation with the smallest cost.
2078 void MachineBlockPlacement::rotateLoopWithProfile(
2079 BlockChain &LoopChain, const MachineLoop &L,
2080 const BlockFilterSet &LoopBlockSet) {
2081 auto HeaderBB = L.getHeader();
2082 auto HeaderIter = llvm::find(LoopChain, HeaderBB);
2083 auto RotationPos = LoopChain.end();
2085 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2087 // A utility lambda that scales up a block frequency by dividing it by a
2088 // branch probability which is the reciprocal of the scale.
2089 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2090 unsigned Scale) -> BlockFrequency {
2091 if (Scale == 0)
2092 return 0;
2093 // Use operator / between BlockFrequency and BranchProbability to implement
2094 // saturating multiplication.
2095 return Freq / BranchProbability(1, Scale);
2098 // Compute the cost of the missed fall-through edge to the loop header if the
2099 // chain head is not the loop header. As we only consider natural loops with
2100 // single header, this computation can be done only once.
2101 BlockFrequency HeaderFallThroughCost(0);
2102 for (auto *Pred : HeaderBB->predecessors()) {
2103 BlockChain *PredChain = BlockToChain[Pred];
2104 if (!LoopBlockSet.count(Pred) &&
2105 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2106 auto EdgeFreq =
2107 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
2108 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2109 // If the predecessor has only an unconditional jump to the header, we
2110 // need to consider the cost of this jump.
2111 if (Pred->succ_size() == 1)
2112 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2113 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2117 // Here we collect all exit blocks in the loop, and for each exit we find out
2118 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2119 // as the sum of frequencies of exit edges we collect here, excluding the exit
2120 // edge from the tail of the loop chain.
2121 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2122 for (auto BB : LoopChain) {
2123 auto LargestExitEdgeProb = BranchProbability::getZero();
2124 for (auto *Succ : BB->successors()) {
2125 BlockChain *SuccChain = BlockToChain[Succ];
2126 if (!LoopBlockSet.count(Succ) &&
2127 (!SuccChain || Succ == *SuccChain->begin())) {
2128 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2129 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2132 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2133 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2134 ExitsWithFreq.emplace_back(BB, ExitFreq);
2138 // In this loop we iterate every block in the loop chain and calculate the
2139 // cost assuming the block is the head of the loop chain. When the loop ends,
2140 // we should have found the best candidate as the loop chain's head.
2141 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2142 EndIter = LoopChain.end();
2143 Iter != EndIter; Iter++, TailIter++) {
2144 // TailIter is used to track the tail of the loop chain if the block we are
2145 // checking (pointed by Iter) is the head of the chain.
2146 if (TailIter == LoopChain.end())
2147 TailIter = LoopChain.begin();
2149 auto TailBB = *TailIter;
2151 // Calculate the cost by putting this BB to the top.
2152 BlockFrequency Cost = 0;
2154 // If the current BB is the loop header, we need to take into account the
2155 // cost of the missed fall through edge from outside of the loop to the
2156 // header.
2157 if (Iter != HeaderIter)
2158 Cost += HeaderFallThroughCost;
2160 // Collect the loop exit cost by summing up frequencies of all exit edges
2161 // except the one from the chain tail.
2162 for (auto &ExitWithFreq : ExitsWithFreq)
2163 if (TailBB != ExitWithFreq.first)
2164 Cost += ExitWithFreq.second;
2166 // The cost of breaking the once fall-through edge from the tail to the top
2167 // of the loop chain. Here we need to consider three cases:
2168 // 1. If the tail node has only one successor, then we will get an
2169 // additional jmp instruction. So the cost here is (MisfetchCost +
2170 // JumpInstCost) * tail node frequency.
2171 // 2. If the tail node has two successors, then we may still get an
2172 // additional jmp instruction if the layout successor after the loop
2173 // chain is not its CFG successor. Note that the more frequently executed
2174 // jmp instruction will be put ahead of the other one. Assume the
2175 // frequency of those two branches are x and y, where x is the frequency
2176 // of the edge to the chain head, then the cost will be
2177 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2178 // 3. If the tail node has more than two successors (this rarely happens),
2179 // we won't consider any additional cost.
2180 if (TailBB->isSuccessor(*Iter)) {
2181 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2182 if (TailBB->succ_size() == 1)
2183 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2184 MisfetchCost + JumpInstCost);
2185 else if (TailBB->succ_size() == 2) {
2186 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2187 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2188 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2189 ? TailBBFreq * TailToHeadProb.getCompl()
2190 : TailToHeadFreq;
2191 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2192 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2196 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2197 << getBlockName(*Iter)
2198 << " to the top: " << Cost.getFrequency() << "\n");
2200 if (Cost < SmallestRotationCost) {
2201 SmallestRotationCost = Cost;
2202 RotationPos = Iter;
2206 if (RotationPos != LoopChain.end()) {
2207 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2208 << " to the top\n");
2209 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2213 /// Collect blocks in the given loop that are to be placed.
2215 /// When profile data is available, exclude cold blocks from the returned set;
2216 /// otherwise, collect all blocks in the loop.
2217 MachineBlockPlacement::BlockFilterSet
2218 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2219 BlockFilterSet LoopBlockSet;
2221 // Filter cold blocks off from LoopBlockSet when profile data is available.
2222 // Collect the sum of frequencies of incoming edges to the loop header from
2223 // outside. If we treat the loop as a super block, this is the frequency of
2224 // the loop. Then for each block in the loop, we calculate the ratio between
2225 // its frequency and the frequency of the loop block. When it is too small,
2226 // don't add it to the loop chain. If there are outer loops, then this block
2227 // will be merged into the first outer loop chain for which this block is not
2228 // cold anymore. This needs precise profile data and we only do this when
2229 // profile data is available.
2230 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2231 BlockFrequency LoopFreq(0);
2232 for (auto LoopPred : L.getHeader()->predecessors())
2233 if (!L.contains(LoopPred))
2234 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2235 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2237 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2238 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2239 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2240 continue;
2241 LoopBlockSet.insert(LoopBB);
2243 } else
2244 LoopBlockSet.insert(L.block_begin(), L.block_end());
2246 return LoopBlockSet;
2249 /// Forms basic block chains from the natural loop structures.
2251 /// These chains are designed to preserve the existing *structure* of the code
2252 /// as much as possible. We can then stitch the chains together in a way which
2253 /// both preserves the topological structure and minimizes taken conditional
2254 /// branches.
2255 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2256 // First recurse through any nested loops, building chains for those inner
2257 // loops.
2258 for (const MachineLoop *InnerLoop : L)
2259 buildLoopChains(*InnerLoop);
2261 assert(BlockWorkList.empty() &&
2262 "BlockWorkList not empty when starting to build loop chains.");
2263 assert(EHPadWorkList.empty() &&
2264 "EHPadWorkList not empty when starting to build loop chains.");
2265 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2267 // Check if we have profile data for this function. If yes, we will rotate
2268 // this loop by modeling costs more precisely which requires the profile data
2269 // for better layout.
2270 bool RotateLoopWithProfile =
2271 ForcePreciseRotationCost ||
2272 (PreciseRotationCost && F->getFunction().hasProfileData());
2274 // First check to see if there is an obviously preferable top block for the
2275 // loop. This will default to the header, but may end up as one of the
2276 // predecessors to the header if there is one which will result in strictly
2277 // fewer branches in the loop body.
2278 // When we use profile data to rotate the loop, this is unnecessary.
2279 MachineBasicBlock *LoopTop =
2280 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
2282 // If we selected just the header for the loop top, look for a potentially
2283 // profitable exit block in the event that rotating the loop can eliminate
2284 // branches by placing an exit edge at the bottom.
2286 // Loops are processed innermost to uttermost, make sure we clear
2287 // PreferredLoopExit before processing a new loop.
2288 PreferredLoopExit = nullptr;
2289 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2290 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
2292 BlockChain &LoopChain = *BlockToChain[LoopTop];
2294 // FIXME: This is a really lame way of walking the chains in the loop: we
2295 // walk the blocks, and use a set to prevent visiting a particular chain
2296 // twice.
2297 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2298 assert(LoopChain.UnscheduledPredecessors == 0 &&
2299 "LoopChain should not have unscheduled predecessors.");
2300 UpdatedPreds.insert(&LoopChain);
2302 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2303 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2305 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2307 if (RotateLoopWithProfile)
2308 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2309 else
2310 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
2312 LLVM_DEBUG({
2313 // Crash at the end so we get all of the debugging output first.
2314 bool BadLoop = false;
2315 if (LoopChain.UnscheduledPredecessors) {
2316 BadLoop = true;
2317 dbgs() << "Loop chain contains a block without its preds placed!\n"
2318 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2319 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2321 for (MachineBasicBlock *ChainBB : LoopChain) {
2322 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2323 if (!LoopBlockSet.remove(ChainBB)) {
2324 // We don't mark the loop as bad here because there are real situations
2325 // where this can occur. For example, with an unanalyzable fallthrough
2326 // from a loop block to a non-loop block or vice versa.
2327 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2328 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2329 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2330 << " Bad block: " << getBlockName(ChainBB) << "\n";
2334 if (!LoopBlockSet.empty()) {
2335 BadLoop = true;
2336 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2337 dbgs() << "Loop contains blocks never placed into a chain!\n"
2338 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2339 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2340 << " Bad block: " << getBlockName(LoopBB) << "\n";
2342 assert(!BadLoop && "Detected problems with the placement of this loop.");
2345 BlockWorkList.clear();
2346 EHPadWorkList.clear();
2349 void MachineBlockPlacement::buildCFGChains() {
2350 // Ensure that every BB in the function has an associated chain to simplify
2351 // the assumptions of the remaining algorithm.
2352 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2353 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2354 ++FI) {
2355 MachineBasicBlock *BB = &*FI;
2356 BlockChain *Chain =
2357 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2358 // Also, merge any blocks which we cannot reason about and must preserve
2359 // the exact fallthrough behavior for.
2360 while (true) {
2361 Cond.clear();
2362 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2363 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2364 break;
2366 MachineFunction::iterator NextFI = std::next(FI);
2367 MachineBasicBlock *NextBB = &*NextFI;
2368 // Ensure that the layout successor is a viable block, as we know that
2369 // fallthrough is a possibility.
2370 assert(NextFI != FE && "Can't fallthrough past the last block.");
2371 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2372 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2373 << "\n");
2374 Chain->merge(NextBB, nullptr);
2375 #ifndef NDEBUG
2376 BlocksWithUnanalyzableExits.insert(&*BB);
2377 #endif
2378 FI = NextFI;
2379 BB = NextBB;
2383 // Build any loop-based chains.
2384 PreferredLoopExit = nullptr;
2385 for (MachineLoop *L : *MLI)
2386 buildLoopChains(*L);
2388 assert(BlockWorkList.empty() &&
2389 "BlockWorkList should be empty before building final chain.");
2390 assert(EHPadWorkList.empty() &&
2391 "EHPadWorkList should be empty before building final chain.");
2393 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2394 for (MachineBasicBlock &MBB : *F)
2395 fillWorkLists(&MBB, UpdatedPreds);
2397 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2398 buildChain(&F->front(), FunctionChain);
2400 #ifndef NDEBUG
2401 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2402 #endif
2403 LLVM_DEBUG({
2404 // Crash at the end so we get all of the debugging output first.
2405 bool BadFunc = false;
2406 FunctionBlockSetType FunctionBlockSet;
2407 for (MachineBasicBlock &MBB : *F)
2408 FunctionBlockSet.insert(&MBB);
2410 for (MachineBasicBlock *ChainBB : FunctionChain)
2411 if (!FunctionBlockSet.erase(ChainBB)) {
2412 BadFunc = true;
2413 dbgs() << "Function chain contains a block not in the function!\n"
2414 << " Bad block: " << getBlockName(ChainBB) << "\n";
2417 if (!FunctionBlockSet.empty()) {
2418 BadFunc = true;
2419 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2420 dbgs() << "Function contains blocks never placed into a chain!\n"
2421 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2423 assert(!BadFunc && "Detected problems with the block placement.");
2426 // Splice the blocks into place.
2427 MachineFunction::iterator InsertPos = F->begin();
2428 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2429 for (MachineBasicBlock *ChainBB : FunctionChain) {
2430 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2431 : " ... ")
2432 << getBlockName(ChainBB) << "\n");
2433 if (InsertPos != MachineFunction::iterator(ChainBB))
2434 F->splice(InsertPos, ChainBB);
2435 else
2436 ++InsertPos;
2438 // Update the terminator of the previous block.
2439 if (ChainBB == *FunctionChain.begin())
2440 continue;
2441 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2443 // FIXME: It would be awesome of updateTerminator would just return rather
2444 // than assert when the branch cannot be analyzed in order to remove this
2445 // boiler plate.
2446 Cond.clear();
2447 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2449 #ifndef NDEBUG
2450 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2451 // Given the exact block placement we chose, we may actually not _need_ to
2452 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2453 // do that at this point is a bug.
2454 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2455 !PrevBB->canFallThrough()) &&
2456 "Unexpected block with un-analyzable fallthrough!");
2457 Cond.clear();
2458 TBB = FBB = nullptr;
2460 #endif
2462 // The "PrevBB" is not yet updated to reflect current code layout, so,
2463 // o. it may fall-through to a block without explicit "goto" instruction
2464 // before layout, and no longer fall-through it after layout; or
2465 // o. just opposite.
2467 // analyzeBranch() may return erroneous value for FBB when these two
2468 // situations take place. For the first scenario FBB is mistakenly set NULL;
2469 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2470 // mistakenly pointing to "*BI".
2471 // Thus, if the future change needs to use FBB before the layout is set, it
2472 // has to correct FBB first by using the code similar to the following:
2474 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2475 // PrevBB->updateTerminator();
2476 // Cond.clear();
2477 // TBB = FBB = nullptr;
2478 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2479 // // FIXME: This should never take place.
2480 // TBB = FBB = nullptr;
2481 // }
2482 // }
2483 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2484 PrevBB->updateTerminator();
2487 // Fixup the last block.
2488 Cond.clear();
2489 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2490 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2491 F->back().updateTerminator();
2493 BlockWorkList.clear();
2494 EHPadWorkList.clear();
2497 void MachineBlockPlacement::optimizeBranches() {
2498 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2499 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2501 // Now that all the basic blocks in the chain have the proper layout,
2502 // make a final call to AnalyzeBranch with AllowModify set.
2503 // Indeed, the target may be able to optimize the branches in a way we
2504 // cannot because all branches may not be analyzable.
2505 // E.g., the target may be able to remove an unconditional branch to
2506 // a fallthrough when it occurs after predicated terminators.
2507 for (MachineBasicBlock *ChainBB : FunctionChain) {
2508 Cond.clear();
2509 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2510 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2511 // If PrevBB has a two-way branch, try to re-order the branches
2512 // such that we branch to the successor with higher probability first.
2513 if (TBB && !Cond.empty() && FBB &&
2514 MBPI->getEdgeProbability(ChainBB, FBB) >
2515 MBPI->getEdgeProbability(ChainBB, TBB) &&
2516 !TII->reverseBranchCondition(Cond)) {
2517 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2518 << getBlockName(ChainBB) << "\n");
2519 LLVM_DEBUG(dbgs() << " Edge probability: "
2520 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2521 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2522 DebugLoc dl; // FIXME: this is nowhere
2523 TII->removeBranch(*ChainBB);
2524 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2525 ChainBB->updateTerminator();
2531 void MachineBlockPlacement::alignBlocks() {
2532 // Walk through the backedges of the function now that we have fully laid out
2533 // the basic blocks and align the destination of each backedge. We don't rely
2534 // exclusively on the loop info here so that we can align backedges in
2535 // unnatural CFGs and backedges that were introduced purely because of the
2536 // loop rotations done during this layout pass.
2537 if (F->getFunction().optForMinSize() ||
2538 (F->getFunction().optForSize() && !TLI->alignLoopsWithOptSize()))
2539 return;
2540 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2541 if (FunctionChain.begin() == FunctionChain.end())
2542 return; // Empty chain.
2544 const BranchProbability ColdProb(1, 5); // 20%
2545 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2546 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2547 for (MachineBasicBlock *ChainBB : FunctionChain) {
2548 if (ChainBB == *FunctionChain.begin())
2549 continue;
2551 // Don't align non-looping basic blocks. These are unlikely to execute
2552 // enough times to matter in practice. Note that we'll still handle
2553 // unnatural CFGs inside of a natural outer loop (the common case) and
2554 // rotated loops.
2555 MachineLoop *L = MLI->getLoopFor(ChainBB);
2556 if (!L)
2557 continue;
2559 unsigned Align = TLI->getPrefLoopAlignment(L);
2560 if (!Align)
2561 continue; // Don't care about loop alignment.
2563 // If the block is cold relative to the function entry don't waste space
2564 // aligning it.
2565 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2566 if (Freq < WeightedEntryFreq)
2567 continue;
2569 // If the block is cold relative to its loop header, don't align it
2570 // regardless of what edges into the block exist.
2571 MachineBasicBlock *LoopHeader = L->getHeader();
2572 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2573 if (Freq < (LoopHeaderFreq * ColdProb))
2574 continue;
2576 // Check for the existence of a non-layout predecessor which would benefit
2577 // from aligning this block.
2578 MachineBasicBlock *LayoutPred =
2579 &*std::prev(MachineFunction::iterator(ChainBB));
2581 // Force alignment if all the predecessors are jumps. We already checked
2582 // that the block isn't cold above.
2583 if (!LayoutPred->isSuccessor(ChainBB)) {
2584 ChainBB->setAlignment(Align);
2585 continue;
2588 // Align this block if the layout predecessor's edge into this block is
2589 // cold relative to the block. When this is true, other predecessors make up
2590 // all of the hot entries into the block and thus alignment is likely to be
2591 // important.
2592 BranchProbability LayoutProb =
2593 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2594 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2595 if (LayoutEdgeFreq <= (Freq * ColdProb))
2596 ChainBB->setAlignment(Align);
2600 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2601 /// it was duplicated into its chain predecessor and removed.
2602 /// \p BB - Basic block that may be duplicated.
2604 /// \p LPred - Chosen layout predecessor of \p BB.
2605 /// Updated to be the chain end if LPred is removed.
2606 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2607 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2608 /// Used to identify which blocks to update predecessor
2609 /// counts.
2610 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2611 /// chosen in the given order due to unnatural CFG
2612 /// only needed if \p BB is removed and
2613 /// \p PrevUnplacedBlockIt pointed to \p BB.
2614 /// @return true if \p BB was removed.
2615 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2616 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2617 const MachineBasicBlock *LoopHeaderBB,
2618 BlockChain &Chain, BlockFilterSet *BlockFilter,
2619 MachineFunction::iterator &PrevUnplacedBlockIt) {
2620 bool Removed, DuplicatedToLPred;
2621 bool DuplicatedToOriginalLPred;
2622 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2623 PrevUnplacedBlockIt,
2624 DuplicatedToLPred);
2625 if (!Removed)
2626 return false;
2627 DuplicatedToOriginalLPred = DuplicatedToLPred;
2628 // Iteratively try to duplicate again. It can happen that a block that is
2629 // duplicated into is still small enough to be duplicated again.
2630 // No need to call markBlockSuccessors in this case, as the blocks being
2631 // duplicated from here on are already scheduled.
2632 // Note that DuplicatedToLPred always implies Removed.
2633 while (DuplicatedToLPred) {
2634 assert(Removed && "Block must have been removed to be duplicated into its "
2635 "layout predecessor.");
2636 MachineBasicBlock *DupBB, *DupPred;
2637 // The removal callback causes Chain.end() to be updated when a block is
2638 // removed. On the first pass through the loop, the chain end should be the
2639 // same as it was on function entry. On subsequent passes, because we are
2640 // duplicating the block at the end of the chain, if it is removed the
2641 // chain will have shrunk by one block.
2642 BlockChain::iterator ChainEnd = Chain.end();
2643 DupBB = *(--ChainEnd);
2644 // Now try to duplicate again.
2645 if (ChainEnd == Chain.begin())
2646 break;
2647 DupPred = *std::prev(ChainEnd);
2648 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2649 PrevUnplacedBlockIt,
2650 DuplicatedToLPred);
2652 // If BB was duplicated into LPred, it is now scheduled. But because it was
2653 // removed, markChainSuccessors won't be called for its chain. Instead we
2654 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2655 // at the end because repeating the tail duplication can increase the number
2656 // of unscheduled predecessors.
2657 LPred = *std::prev(Chain.end());
2658 if (DuplicatedToOriginalLPred)
2659 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2660 return true;
2663 /// Tail duplicate \p BB into (some) predecessors if profitable.
2664 /// \p BB - Basic block that may be duplicated
2665 /// \p LPred - Chosen layout predecessor of \p BB
2666 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2667 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2668 /// Used to identify which blocks to update predecessor
2669 /// counts.
2670 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2671 /// chosen in the given order due to unnatural CFG
2672 /// only needed if \p BB is removed and
2673 /// \p PrevUnplacedBlockIt pointed to \p BB.
2674 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2675 /// only be true if the block was removed.
2676 /// \return - True if the block was duplicated into all preds and removed.
2677 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2678 MachineBasicBlock *BB, MachineBasicBlock *LPred,
2679 BlockChain &Chain, BlockFilterSet *BlockFilter,
2680 MachineFunction::iterator &PrevUnplacedBlockIt,
2681 bool &DuplicatedToLPred) {
2682 DuplicatedToLPred = false;
2683 if (!shouldTailDuplicate(BB))
2684 return false;
2686 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2687 << "\n");
2689 // This has to be a callback because none of it can be done after
2690 // BB is deleted.
2691 bool Removed = false;
2692 auto RemovalCallback =
2693 [&](MachineBasicBlock *RemBB) {
2694 // Signal to outer function
2695 Removed = true;
2697 // Conservative default.
2698 bool InWorkList = true;
2699 // Remove from the Chain and Chain Map
2700 if (BlockToChain.count(RemBB)) {
2701 BlockChain *Chain = BlockToChain[RemBB];
2702 InWorkList = Chain->UnscheduledPredecessors == 0;
2703 Chain->remove(RemBB);
2704 BlockToChain.erase(RemBB);
2707 // Handle the unplaced block iterator
2708 if (&(*PrevUnplacedBlockIt) == RemBB) {
2709 PrevUnplacedBlockIt++;
2712 // Handle the Work Lists
2713 if (InWorkList) {
2714 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2715 if (RemBB->isEHPad())
2716 RemoveList = EHPadWorkList;
2717 RemoveList.erase(
2718 llvm::remove_if(RemoveList,
2719 [RemBB](MachineBasicBlock *BB) {
2720 return BB == RemBB;
2722 RemoveList.end());
2725 // Handle the filter set
2726 if (BlockFilter) {
2727 BlockFilter->remove(RemBB);
2730 // Remove the block from loop info.
2731 MLI->removeBlock(RemBB);
2732 if (RemBB == PreferredLoopExit)
2733 PreferredLoopExit = nullptr;
2735 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2736 << getBlockName(RemBB) << "\n");
2738 auto RemovalCallbackRef =
2739 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2741 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2742 bool IsSimple = TailDup.isSimpleBB(BB);
2743 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2744 &DuplicatedPreds, &RemovalCallbackRef);
2746 // Update UnscheduledPredecessors to reflect tail-duplication.
2747 DuplicatedToLPred = false;
2748 for (MachineBasicBlock *Pred : DuplicatedPreds) {
2749 // We're only looking for unscheduled predecessors that match the filter.
2750 BlockChain* PredChain = BlockToChain[Pred];
2751 if (Pred == LPred)
2752 DuplicatedToLPred = true;
2753 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2754 || PredChain == &Chain)
2755 continue;
2756 for (MachineBasicBlock *NewSucc : Pred->successors()) {
2757 if (BlockFilter && !BlockFilter->count(NewSucc))
2758 continue;
2759 BlockChain *NewChain = BlockToChain[NewSucc];
2760 if (NewChain != &Chain && NewChain != PredChain)
2761 NewChain->UnscheduledPredecessors++;
2764 return Removed;
2767 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2768 if (skipFunction(MF.getFunction()))
2769 return false;
2771 // Check for single-block functions and skip them.
2772 if (std::next(MF.begin()) == MF.end())
2773 return false;
2775 F = &MF;
2776 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2777 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2778 getAnalysis<MachineBlockFrequencyInfo>());
2779 MLI = &getAnalysis<MachineLoopInfo>();
2780 TII = MF.getSubtarget().getInstrInfo();
2781 TLI = MF.getSubtarget().getTargetLowering();
2782 MPDT = nullptr;
2784 // Initialize PreferredLoopExit to nullptr here since it may never be set if
2785 // there are no MachineLoops.
2786 PreferredLoopExit = nullptr;
2788 assert(BlockToChain.empty() &&
2789 "BlockToChain map should be empty before starting placement.");
2790 assert(ComputedEdges.empty() &&
2791 "Computed Edge map should be empty before starting placement.");
2793 unsigned TailDupSize = TailDupPlacementThreshold;
2794 // If only the aggressive threshold is explicitly set, use it.
2795 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
2796 TailDupPlacementThreshold.getNumOccurrences() == 0)
2797 TailDupSize = TailDupPlacementAggressiveThreshold;
2799 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2800 // For aggressive optimization, we can adjust some thresholds to be less
2801 // conservative.
2802 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
2803 // At O3 we should be more willing to copy blocks for tail duplication. This
2804 // increases size pressure, so we only do it at O3
2805 // Do this unless only the regular threshold is explicitly set.
2806 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
2807 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
2808 TailDupSize = TailDupPlacementAggressiveThreshold;
2811 if (allowTailDupPlacement()) {
2812 MPDT = &getAnalysis<MachinePostDominatorTree>();
2813 if (MF.getFunction().optForSize())
2814 TailDupSize = 1;
2815 bool PreRegAlloc = false;
2816 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
2817 precomputeTriangleChains();
2820 buildCFGChains();
2822 // Changing the layout can create new tail merging opportunities.
2823 // TailMerge can create jump into if branches that make CFG irreducible for
2824 // HW that requires structured CFG.
2825 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2826 PassConfig->getEnableTailMerge() &&
2827 BranchFoldPlacement;
2828 // No tail merging opportunities if the block number is less than four.
2829 if (MF.size() > 3 && EnableTailMerge) {
2830 unsigned TailMergeSize = TailDupSize + 1;
2831 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2832 *MBPI, TailMergeSize);
2834 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2835 getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2836 /*AfterBlockPlacement=*/true)) {
2837 // Redo the layout if tail merging creates/removes/moves blocks.
2838 BlockToChain.clear();
2839 ComputedEdges.clear();
2840 // Must redo the post-dominator tree if blocks were changed.
2841 if (MPDT)
2842 MPDT->runOnMachineFunction(MF);
2843 ChainAllocator.DestroyAll();
2844 buildCFGChains();
2848 optimizeBranches();
2849 alignBlocks();
2851 BlockToChain.clear();
2852 ComputedEdges.clear();
2853 ChainAllocator.DestroyAll();
2855 if (AlignAllBlock)
2856 // Align all of the blocks in the function to a specific alignment.
2857 for (MachineBasicBlock &MBB : MF)
2858 MBB.setAlignment(AlignAllBlock);
2859 else if (AlignAllNonFallThruBlocks) {
2860 // Align all of the blocks that have no fall-through predecessors to a
2861 // specific alignment.
2862 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2863 auto LayoutPred = std::prev(MBI);
2864 if (!LayoutPred->isSuccessor(&*MBI))
2865 MBI->setAlignment(AlignAllNonFallThruBlocks);
2868 if (ViewBlockLayoutWithBFI != GVDT_None &&
2869 (ViewBlockFreqFuncName.empty() ||
2870 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
2871 MBFI->view("MBP." + MF.getName(), false);
2875 // We always return true as we have no way to track whether the final order
2876 // differs from the original order.
2877 return true;
2880 namespace {
2882 /// A pass to compute block placement statistics.
2884 /// A separate pass to compute interesting statistics for evaluating block
2885 /// placement. This is separate from the actual placement pass so that they can
2886 /// be computed in the absence of any placement transformations or when using
2887 /// alternative placement strategies.
2888 class MachineBlockPlacementStats : public MachineFunctionPass {
2889 /// A handle to the branch probability pass.
2890 const MachineBranchProbabilityInfo *MBPI;
2892 /// A handle to the function-wide block frequency pass.
2893 const MachineBlockFrequencyInfo *MBFI;
2895 public:
2896 static char ID; // Pass identification, replacement for typeid
2898 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2899 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2902 bool runOnMachineFunction(MachineFunction &F) override;
2904 void getAnalysisUsage(AnalysisUsage &AU) const override {
2905 AU.addRequired<MachineBranchProbabilityInfo>();
2906 AU.addRequired<MachineBlockFrequencyInfo>();
2907 AU.setPreservesAll();
2908 MachineFunctionPass::getAnalysisUsage(AU);
2912 } // end anonymous namespace
2914 char MachineBlockPlacementStats::ID = 0;
2916 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2918 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2919 "Basic Block Placement Stats", false, false)
2920 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2921 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2922 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2923 "Basic Block Placement Stats", false, false)
2925 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2926 // Check for single-block functions and skip them.
2927 if (std::next(F.begin()) == F.end())
2928 return false;
2930 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2931 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2933 for (MachineBasicBlock &MBB : F) {
2934 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2935 Statistic &NumBranches =
2936 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2937 Statistic &BranchTakenFreq =
2938 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2939 for (MachineBasicBlock *Succ : MBB.successors()) {
2940 // Skip if this successor is a fallthrough.
2941 if (MBB.isLayoutSuccessor(Succ))
2942 continue;
2944 BlockFrequency EdgeFreq =
2945 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2946 ++NumBranches;
2947 BranchTakenFreq += EdgeFreq.getFrequency();
2951 return false;