1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Allocator.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
73 #define DEBUG_TYPE "block-placement"
75 STATISTIC(NumCondBranches
, "Number of conditional branches");
76 STATISTIC(NumUncondBranches
, "Number of unconditional branches");
77 STATISTIC(CondBranchTakenFreq
,
78 "Potential frequency of taking conditional branches");
79 STATISTIC(UncondBranchTakenFreq
,
80 "Potential frequency of taking unconditional branches");
82 static cl::opt
<unsigned> AlignAllBlock("align-all-blocks",
83 cl::desc("Force the alignment of all "
84 "blocks in the function."),
85 cl::init(0), cl::Hidden
);
87 static cl::opt
<unsigned> AlignAllNonFallThruBlocks(
88 "align-all-nofallthru-blocks",
89 cl::desc("Force the alignment of all "
90 "blocks that have no fall-through predecessors (i.e. don't add "
91 "nops that are executed)."),
92 cl::init(0), cl::Hidden
);
94 // FIXME: Find a good default for this flag and remove the flag.
95 static cl::opt
<unsigned> ExitBlockBias(
96 "block-placement-exit-block-bias",
97 cl::desc("Block frequency percentage a loop exit block needs "
98 "over the original exit to be considered the new exit."),
99 cl::init(0), cl::Hidden
);
102 // - Outlining: placement of a basic block outside the chain or hot path.
104 static cl::opt
<unsigned> LoopToColdBlockRatio(
105 "loop-to-cold-block-ratio",
106 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
107 "(frequency of block) is greater than this ratio"),
108 cl::init(5), cl::Hidden
);
110 static cl::opt
<bool> ForceLoopColdBlock(
111 "force-loop-cold-block",
112 cl::desc("Force outlining cold blocks from loops."),
113 cl::init(false), cl::Hidden
);
116 PreciseRotationCost("precise-rotation-cost",
117 cl::desc("Model the cost of loop rotation more "
118 "precisely by using profile data."),
119 cl::init(false), cl::Hidden
);
122 ForcePreciseRotationCost("force-precise-rotation-cost",
123 cl::desc("Force the use of precise cost "
124 "loop rotation strategy."),
125 cl::init(false), cl::Hidden
);
127 static cl::opt
<unsigned> MisfetchCost(
129 cl::desc("Cost that models the probabilistic risk of an instruction "
130 "misfetch due to a jump comparing to falling through, whose cost "
132 cl::init(1), cl::Hidden
);
134 static cl::opt
<unsigned> JumpInstCost("jump-inst-cost",
135 cl::desc("Cost of jump instructions."),
136 cl::init(1), cl::Hidden
);
138 TailDupPlacement("tail-dup-placement",
139 cl::desc("Perform tail duplication during placement. "
140 "Creates more fallthrough opportunites in "
141 "outline branches."),
142 cl::init(true), cl::Hidden
);
145 BranchFoldPlacement("branch-fold-placement",
146 cl::desc("Perform branch folding during placement. "
147 "Reduces code size."),
148 cl::init(true), cl::Hidden
);
150 // Heuristic for tail duplication.
151 static cl::opt
<unsigned> TailDupPlacementThreshold(
152 "tail-dup-placement-threshold",
153 cl::desc("Instruction cutoff for tail duplication during layout. "
154 "Tail merging during layout is forced to have a threshold "
155 "that won't conflict."), cl::init(2),
158 // Heuristic for aggressive tail duplication.
159 static cl::opt
<unsigned> TailDupPlacementAggressiveThreshold(
160 "tail-dup-placement-aggressive-threshold",
161 cl::desc("Instruction cutoff for aggressive tail duplication during "
162 "layout. Used at -O3. Tail merging during layout is forced to "
163 "have a threshold that won't conflict."), cl::init(4),
166 // Heuristic for tail duplication.
167 static cl::opt
<unsigned> TailDupPlacementPenalty(
168 "tail-dup-placement-penalty",
169 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
170 "Copying can increase fallthrough, but it also increases icache "
171 "pressure. This parameter controls the penalty to account for that. "
172 "Percent as integer."),
176 // Heuristic for triangle chains.
177 static cl::opt
<unsigned> TriangleChainCount(
178 "triangle-chain-count",
179 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
180 "triangle tail duplication heuristic to kick in. 0 to disable."),
184 extern cl::opt
<unsigned> StaticLikelyProb
;
185 extern cl::opt
<unsigned> ProfileLikelyProb
;
187 // Internal option used to control BFI display only after MBP pass.
188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
189 // -view-block-layout-with-bfi=
190 extern cl::opt
<GVDAGType
> ViewBlockLayoutWithBFI
;
192 // Command line option to specify the name of the function for CFG dump
193 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
194 extern cl::opt
<std::string
> ViewBlockFreqFuncName
;
200 /// Type for our function-wide basic block -> block chain mapping.
201 using BlockToChainMapType
= DenseMap
<const MachineBasicBlock
*, BlockChain
*>;
203 /// A chain of blocks which will be laid out contiguously.
205 /// This is the datastructure representing a chain of consecutive blocks that
206 /// are profitable to layout together in order to maximize fallthrough
207 /// probabilities and code locality. We also can use a block chain to represent
208 /// a sequence of basic blocks which have some external (correctness)
209 /// requirement for sequential layout.
211 /// Chains can be built around a single basic block and can be merged to grow
212 /// them. They participate in a block-to-chain mapping, which is updated
213 /// automatically as chains are merged together.
215 /// The sequence of blocks belonging to this chain.
217 /// This is the sequence of blocks for a particular chain. These will be laid
218 /// out in-order within the function.
219 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
221 /// A handle to the function-wide basic block to block chain mapping.
223 /// This is retained in each block chain to simplify the computation of child
224 /// block chains for SCC-formation and iteration. We store the edges to child
225 /// basic blocks, and map them back to their associated chains using this
227 BlockToChainMapType
&BlockToChain
;
230 /// Construct a new BlockChain.
232 /// This builds a new block chain representing a single basic block in the
233 /// function. It also registers itself as the chain that block participates
234 /// in with the BlockToChain mapping.
235 BlockChain(BlockToChainMapType
&BlockToChain
, MachineBasicBlock
*BB
)
236 : Blocks(1, BB
), BlockToChain(BlockToChain
) {
237 assert(BB
&& "Cannot create a chain with a null basic block");
238 BlockToChain
[BB
] = this;
241 /// Iterator over blocks within the chain.
242 using iterator
= SmallVectorImpl
<MachineBasicBlock
*>::iterator
;
243 using const_iterator
= SmallVectorImpl
<MachineBasicBlock
*>::const_iterator
;
245 /// Beginning of blocks within the chain.
246 iterator
begin() { return Blocks
.begin(); }
247 const_iterator
begin() const { return Blocks
.begin(); }
249 /// End of blocks within the chain.
250 iterator
end() { return Blocks
.end(); }
251 const_iterator
end() const { return Blocks
.end(); }
253 bool remove(MachineBasicBlock
* BB
) {
254 for(iterator i
= begin(); i
!= end(); ++i
) {
263 /// Merge a block chain into this one.
265 /// This routine merges a block chain into this one. It takes care of forming
266 /// a contiguous sequence of basic blocks, updating the edge list, and
267 /// updating the block -> chain mapping. It does not free or tear down the
268 /// old chain, but the old chain's block list is no longer valid.
269 void merge(MachineBasicBlock
*BB
, BlockChain
*Chain
) {
270 assert(BB
&& "Can't merge a null block.");
271 assert(!Blocks
.empty() && "Can't merge into an empty chain.");
273 // Fast path in case we don't have a chain already.
275 assert(!BlockToChain
[BB
] &&
276 "Passed chain is null, but BB has entry in BlockToChain.");
277 Blocks
.push_back(BB
);
278 BlockToChain
[BB
] = this;
282 assert(BB
== *Chain
->begin() && "Passed BB is not head of Chain.");
283 assert(Chain
->begin() != Chain
->end());
285 // Update the incoming blocks to point to this chain, and add them to the
287 for (MachineBasicBlock
*ChainBB
: *Chain
) {
288 Blocks
.push_back(ChainBB
);
289 assert(BlockToChain
[ChainBB
] == Chain
&& "Incoming blocks not in chain.");
290 BlockToChain
[ChainBB
] = this;
295 /// Dump the blocks in this chain.
296 LLVM_DUMP_METHOD
void dump() {
297 for (MachineBasicBlock
*MBB
: *this)
302 /// Count of predecessors of any block within the chain which have not
303 /// yet been scheduled. In general, we will delay scheduling this chain
304 /// until those predecessors are scheduled (or we find a sufficiently good
305 /// reason to override this heuristic.) Note that when forming loop chains,
306 /// blocks outside the loop are ignored and treated as if they were already
309 /// Note: This field is reinitialized multiple times - once for each loop,
310 /// and then once for the function as a whole.
311 unsigned UnscheduledPredecessors
= 0;
314 class MachineBlockPlacement
: public MachineFunctionPass
{
315 /// A type for a block filter set.
316 using BlockFilterSet
= SmallSetVector
<const MachineBasicBlock
*, 16>;
318 /// Pair struct containing basic block and taildup profitability
319 struct BlockAndTailDupResult
{
320 MachineBasicBlock
*BB
;
324 /// Triple struct containing edge weight and the edge.
325 struct WeightedEdge
{
326 BlockFrequency Weight
;
327 MachineBasicBlock
*Src
;
328 MachineBasicBlock
*Dest
;
331 /// work lists of blocks that are ready to be laid out
332 SmallVector
<MachineBasicBlock
*, 16> BlockWorkList
;
333 SmallVector
<MachineBasicBlock
*, 16> EHPadWorkList
;
335 /// Edges that have already been computed as optimal.
336 DenseMap
<const MachineBasicBlock
*, BlockAndTailDupResult
> ComputedEdges
;
341 /// A handle to the branch probability pass.
342 const MachineBranchProbabilityInfo
*MBPI
;
344 /// A handle to the function-wide block frequency pass.
345 std::unique_ptr
<BranchFolder::MBFIWrapper
> MBFI
;
347 /// A handle to the loop info.
348 MachineLoopInfo
*MLI
;
350 /// Preferred loop exit.
351 /// Member variable for convenience. It may be removed by duplication deep
352 /// in the call stack.
353 MachineBasicBlock
*PreferredLoopExit
;
355 /// A handle to the target's instruction info.
356 const TargetInstrInfo
*TII
;
358 /// A handle to the target's lowering info.
359 const TargetLoweringBase
*TLI
;
361 /// A handle to the post dominator tree.
362 MachinePostDominatorTree
*MPDT
;
364 /// Duplicator used to duplicate tails during placement.
366 /// Placement decisions can open up new tail duplication opportunities, but
367 /// since tail duplication affects placement decisions of later blocks, it
368 /// must be done inline.
369 TailDuplicator TailDup
;
371 /// Allocator and owner of BlockChain structures.
373 /// We build BlockChains lazily while processing the loop structure of
374 /// a function. To reduce malloc traffic, we allocate them using this
375 /// slab-like allocator, and destroy them after the pass completes. An
376 /// important guarantee is that this allocator produces stable pointers to
378 SpecificBumpPtrAllocator
<BlockChain
> ChainAllocator
;
380 /// Function wide BasicBlock to BlockChain mapping.
382 /// This mapping allows efficiently moving from any given basic block to the
383 /// BlockChain it participates in, if any. We use it to, among other things,
384 /// allow implicitly defining edges between chains as the existing edges
385 /// between basic blocks.
386 DenseMap
<const MachineBasicBlock
*, BlockChain
*> BlockToChain
;
389 /// The set of basic blocks that have terminators that cannot be fully
390 /// analyzed. These basic blocks cannot be re-ordered safely by
391 /// MachineBlockPlacement, and we must preserve physical layout of these
392 /// blocks and their successors through the pass.
393 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksWithUnanalyzableExits
;
396 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
397 /// if the count goes to 0, add them to the appropriate work list.
398 void markChainSuccessors(
399 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
400 const BlockFilterSet
*BlockFilter
= nullptr);
402 /// Decrease the UnscheduledPredecessors count for a single block, and
403 /// if the count goes to 0, add them to the appropriate work list.
404 void markBlockSuccessors(
405 const BlockChain
&Chain
, const MachineBasicBlock
*BB
,
406 const MachineBasicBlock
*LoopHeaderBB
,
407 const BlockFilterSet
*BlockFilter
= nullptr);
410 collectViableSuccessors(
411 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
412 const BlockFilterSet
*BlockFilter
,
413 SmallVector
<MachineBasicBlock
*, 4> &Successors
);
414 bool shouldPredBlockBeOutlined(
415 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
416 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
,
417 BranchProbability SuccProb
, BranchProbability HotProb
);
418 bool repeatedlyTailDuplicateBlock(
419 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
420 const MachineBasicBlock
*LoopHeaderBB
,
421 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
422 MachineFunction::iterator
&PrevUnplacedBlockIt
);
423 bool maybeTailDuplicateBlock(
424 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
425 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
426 MachineFunction::iterator
&PrevUnplacedBlockIt
,
427 bool &DuplicatedToLPred
);
428 bool hasBetterLayoutPredecessor(
429 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
430 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
431 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
432 const BlockFilterSet
*BlockFilter
);
433 BlockAndTailDupResult
selectBestSuccessor(
434 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
435 const BlockFilterSet
*BlockFilter
);
436 MachineBasicBlock
*selectBestCandidateBlock(
437 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
);
438 MachineBasicBlock
*getFirstUnplacedBlock(
439 const BlockChain
&PlacedChain
,
440 MachineFunction::iterator
&PrevUnplacedBlockIt
,
441 const BlockFilterSet
*BlockFilter
);
443 /// Add a basic block to the work list if it is appropriate.
445 /// If the optional parameter BlockFilter is provided, only MBB
446 /// present in the set will be added to the worklist. If nullptr
447 /// is provided, no filtering occurs.
448 void fillWorkLists(const MachineBasicBlock
*MBB
,
449 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
450 const BlockFilterSet
*BlockFilter
);
452 void buildChain(const MachineBasicBlock
*BB
, BlockChain
&Chain
,
453 BlockFilterSet
*BlockFilter
= nullptr);
454 bool canMoveBottomBlockToTop(const MachineBasicBlock
*BottomBlock
,
455 const MachineBasicBlock
*OldTop
);
456 MachineBasicBlock
*findBestLoopTop(
457 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
458 MachineBasicBlock
*findBestLoopExit(
459 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
460 BlockFilterSet
collectLoopBlockSet(const MachineLoop
&L
);
461 void buildLoopChains(const MachineLoop
&L
);
463 BlockChain
&LoopChain
, const MachineBasicBlock
*ExitingBB
,
464 const BlockFilterSet
&LoopBlockSet
);
465 void rotateLoopWithProfile(
466 BlockChain
&LoopChain
, const MachineLoop
&L
,
467 const BlockFilterSet
&LoopBlockSet
);
468 void buildCFGChains();
469 void optimizeBranches();
471 /// Returns true if a block should be tail-duplicated to increase fallthrough
473 bool shouldTailDuplicate(MachineBasicBlock
*BB
);
474 /// Check the edge frequencies to see if tail duplication will increase
476 bool isProfitableToTailDup(
477 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
478 BranchProbability QProb
,
479 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
481 /// Check for a trellis layout.
482 bool isTrellis(const MachineBasicBlock
*BB
,
483 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
484 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
486 /// Get the best successor given a trellis layout.
487 BlockAndTailDupResult
getBestTrellisSuccessor(
488 const MachineBasicBlock
*BB
,
489 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
490 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
491 const BlockFilterSet
*BlockFilter
);
493 /// Get the best pair of non-conflicting edges.
494 static std::pair
<WeightedEdge
, WeightedEdge
> getBestNonConflictingEdges(
495 const MachineBasicBlock
*BB
,
496 MutableArrayRef
<SmallVector
<WeightedEdge
, 8>> Edges
);
498 /// Returns true if a block can tail duplicate into all unplaced
499 /// predecessors. Filters based on loop.
500 bool canTailDuplicateUnplacedPreds(
501 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
502 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
504 /// Find chains of triangles to tail-duplicate where a global analysis works,
505 /// but a local analysis would not find them.
506 void precomputeTriangleChains();
509 static char ID
; // Pass identification, replacement for typeid
511 MachineBlockPlacement() : MachineFunctionPass(ID
) {
512 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
515 bool runOnMachineFunction(MachineFunction
&F
) override
;
517 bool allowTailDupPlacement() const {
519 return TailDupPlacement
&& !F
->getTarget().requiresStructuredCFG();
522 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
523 AU
.addRequired
<MachineBranchProbabilityInfo
>();
524 AU
.addRequired
<MachineBlockFrequencyInfo
>();
525 if (TailDupPlacement
)
526 AU
.addRequired
<MachinePostDominatorTree
>();
527 AU
.addRequired
<MachineLoopInfo
>();
528 AU
.addRequired
<TargetPassConfig
>();
529 MachineFunctionPass::getAnalysisUsage(AU
);
533 } // end anonymous namespace
535 char MachineBlockPlacement::ID
= 0;
537 char &llvm::MachineBlockPlacementID
= MachineBlockPlacement::ID
;
539 INITIALIZE_PASS_BEGIN(MachineBlockPlacement
, DEBUG_TYPE
,
540 "Branch Probability Basic Block Placement", false, false)
541 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
542 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
543 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree
)
544 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
545 INITIALIZE_PASS_END(MachineBlockPlacement
, DEBUG_TYPE
,
546 "Branch Probability Basic Block Placement", false, false)
549 /// Helper to print the name of a MBB.
551 /// Only used by debug logging.
552 static std::string
getBlockName(const MachineBasicBlock
*BB
) {
554 raw_string_ostream
OS(Result
);
555 OS
<< printMBBReference(*BB
);
556 OS
<< " ('" << BB
->getName() << "')";
562 /// Mark a chain's successors as having one fewer preds.
564 /// When a chain is being merged into the "placed" chain, this routine will
565 /// quickly walk the successors of each block in the chain and mark them as
566 /// having one fewer active predecessor. It also adds any successors of this
567 /// chain which reach the zero-predecessor state to the appropriate worklist.
568 void MachineBlockPlacement::markChainSuccessors(
569 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
570 const BlockFilterSet
*BlockFilter
) {
571 // Walk all the blocks in this chain, marking their successors as having
572 // a predecessor placed.
573 for (MachineBasicBlock
*MBB
: Chain
) {
574 markBlockSuccessors(Chain
, MBB
, LoopHeaderBB
, BlockFilter
);
578 /// Mark a single block's successors as having one fewer preds.
580 /// Under normal circumstances, this is only called by markChainSuccessors,
581 /// but if a block that was to be placed is completely tail-duplicated away,
582 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
583 /// for just that block.
584 void MachineBlockPlacement::markBlockSuccessors(
585 const BlockChain
&Chain
, const MachineBasicBlock
*MBB
,
586 const MachineBasicBlock
*LoopHeaderBB
, const BlockFilterSet
*BlockFilter
) {
587 // Add any successors for which this is the only un-placed in-loop
588 // predecessor to the worklist as a viable candidate for CFG-neutral
589 // placement. No subsequent placement of this block will violate the CFG
590 // shape, so we get to use heuristics to choose a favorable placement.
591 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
592 if (BlockFilter
&& !BlockFilter
->count(Succ
))
594 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
595 // Disregard edges within a fixed chain, or edges to the loop header.
596 if (&Chain
== &SuccChain
|| Succ
== LoopHeaderBB
)
599 // This is a cross-chain edge that is within the loop, so decrement the
600 // loop predecessor count of the destination chain.
601 if (SuccChain
.UnscheduledPredecessors
== 0 ||
602 --SuccChain
.UnscheduledPredecessors
> 0)
605 auto *NewBB
= *SuccChain
.begin();
606 if (NewBB
->isEHPad())
607 EHPadWorkList
.push_back(NewBB
);
609 BlockWorkList
.push_back(NewBB
);
613 /// This helper function collects the set of successors of block
614 /// \p BB that are allowed to be its layout successors, and return
615 /// the total branch probability of edges from \p BB to those
617 BranchProbability
MachineBlockPlacement::collectViableSuccessors(
618 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
619 const BlockFilterSet
*BlockFilter
,
620 SmallVector
<MachineBasicBlock
*, 4> &Successors
) {
621 // Adjust edge probabilities by excluding edges pointing to blocks that is
622 // either not in BlockFilter or is already in the current chain. Consider the
631 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
632 // A->C is chosen as a fall-through, D won't be selected as a successor of C
633 // due to CFG constraint (the probability of C->D is not greater than
634 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
635 // when calculating the probability of C->D, D will be selected and we
636 // will get A C D B as the layout of this loop.
637 auto AdjustedSumProb
= BranchProbability::getOne();
638 for (MachineBasicBlock
*Succ
: BB
->successors()) {
639 bool SkipSucc
= false;
640 if (Succ
->isEHPad() || (BlockFilter
&& !BlockFilter
->count(Succ
))) {
643 BlockChain
*SuccChain
= BlockToChain
[Succ
];
644 if (SuccChain
== &Chain
) {
646 } else if (Succ
!= *SuccChain
->begin()) {
647 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ
)
648 << " -> Mid chain!\n");
653 AdjustedSumProb
-= MBPI
->getEdgeProbability(BB
, Succ
);
655 Successors
.push_back(Succ
);
658 return AdjustedSumProb
;
661 /// The helper function returns the branch probability that is adjusted
662 /// or normalized over the new total \p AdjustedSumProb.
663 static BranchProbability
664 getAdjustedProbability(BranchProbability OrigProb
,
665 BranchProbability AdjustedSumProb
) {
666 BranchProbability SuccProb
;
667 uint32_t SuccProbN
= OrigProb
.getNumerator();
668 uint32_t SuccProbD
= AdjustedSumProb
.getNumerator();
669 if (SuccProbN
>= SuccProbD
)
670 SuccProb
= BranchProbability::getOne();
672 SuccProb
= BranchProbability(SuccProbN
, SuccProbD
);
677 /// Check if \p BB has exactly the successors in \p Successors.
679 hasSameSuccessors(MachineBasicBlock
&BB
,
680 SmallPtrSetImpl
<const MachineBasicBlock
*> &Successors
) {
681 if (BB
.succ_size() != Successors
.size())
683 // We don't want to count self-loops
684 if (Successors
.count(&BB
))
686 for (MachineBasicBlock
*Succ
: BB
.successors())
687 if (!Successors
.count(Succ
))
692 /// Check if a block should be tail duplicated to increase fallthrough
694 /// \p BB Block to check.
695 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock
*BB
) {
696 // Blocks with single successors don't create additional fallthrough
697 // opportunities. Don't duplicate them. TODO: When conditional exits are
698 // analyzable, allow them to be duplicated.
699 bool IsSimple
= TailDup
.isSimpleBB(BB
);
701 if (BB
->succ_size() == 1)
703 return TailDup
.shouldTailDuplicate(IsSimple
, *BB
);
706 /// Compare 2 BlockFrequency's with a small penalty for \p A.
707 /// In order to be conservative, we apply a X% penalty to account for
708 /// increased icache pressure and static heuristics. For small frequencies
709 /// we use only the numerators to improve accuracy. For simplicity, we assume the
710 /// penalty is less than 100%
711 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
712 static bool greaterWithBias(BlockFrequency A
, BlockFrequency B
,
713 uint64_t EntryFreq
) {
714 BranchProbability
ThresholdProb(TailDupPlacementPenalty
, 100);
715 BlockFrequency Gain
= A
- B
;
716 return (Gain
/ ThresholdProb
).getFrequency() >= EntryFreq
;
719 /// Check the edge frequencies to see if tail duplication will increase
720 /// fallthroughs. It only makes sense to call this function when
721 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
722 /// always locally profitable if we would have picked \p Succ without
723 /// considering duplication.
724 bool MachineBlockPlacement::isProfitableToTailDup(
725 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
726 BranchProbability QProb
,
727 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
728 // We need to do a probability calculation to make sure this is profitable.
729 // First: does succ have a successor that post-dominates? This affects the
730 // calculation. The 2 relevant cases are:
745 // '=' : Branch taken for that CFG edge
746 // In the second case, Placing Succ while duplicating it into C prevents the
747 // fallthrough of Succ into either D or PDom, because they now have C as an
748 // unplaced predecessor
750 // Start by figuring out which case we fall into
751 MachineBasicBlock
*PDom
= nullptr;
752 SmallVector
<MachineBasicBlock
*, 4> SuccSuccs
;
753 // Only scan the relevant successors
754 auto AdjustedSuccSumProb
=
755 collectViableSuccessors(Succ
, Chain
, BlockFilter
, SuccSuccs
);
756 BranchProbability PProb
= MBPI
->getEdgeProbability(BB
, Succ
);
757 auto BBFreq
= MBFI
->getBlockFreq(BB
);
758 auto SuccFreq
= MBFI
->getBlockFreq(Succ
);
759 BlockFrequency P
= BBFreq
* PProb
;
760 BlockFrequency Qout
= BBFreq
* QProb
;
761 uint64_t EntryFreq
= MBFI
->getEntryFreq();
762 // If there are no more successors, it is profitable to copy, as it strictly
763 // increases fallthrough.
764 if (SuccSuccs
.size() == 0)
765 return greaterWithBias(P
, Qout
, EntryFreq
);
767 auto BestSuccSucc
= BranchProbability::getZero();
768 // Find the PDom or the best Succ if no PDom exists.
769 for (MachineBasicBlock
*SuccSucc
: SuccSuccs
) {
770 auto Prob
= MBPI
->getEdgeProbability(Succ
, SuccSucc
);
771 if (Prob
> BestSuccSucc
)
774 if (MPDT
->dominates(SuccSucc
, Succ
)) {
779 // For the comparisons, we need to know Succ's best incoming edge that isn't
781 auto SuccBestPred
= BlockFrequency(0);
782 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
783 if (SuccPred
== Succ
|| SuccPred
== BB
784 || BlockToChain
[SuccPred
] == &Chain
785 || (BlockFilter
&& !BlockFilter
->count(SuccPred
)))
787 auto Freq
= MBFI
->getBlockFreq(SuccPred
)
788 * MBPI
->getEdgeProbability(SuccPred
, Succ
);
789 if (Freq
> SuccBestPred
)
792 // Qin is Succ's best unplaced incoming edge that isn't BB
793 BlockFrequency Qin
= SuccBestPred
;
794 // If it doesn't have a post-dominating successor, here is the calculation:
806 // '=' : Branch taken for that CFG edge
807 // Cost in the first case is: P + V
808 // For this calculation, we always assume P > Qout. If Qout > P
809 // The result of this function will be ignored at the caller.
810 // Let F = SuccFreq - Qin
811 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
813 if (PDom
== nullptr || !Succ
->isSuccessor(PDom
)) {
814 BranchProbability UProb
= BestSuccSucc
;
815 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
816 BlockFrequency F
= SuccFreq
- Qin
;
817 BlockFrequency V
= SuccFreq
* VProb
;
818 BlockFrequency QinU
= std::min(Qin
, F
) * UProb
;
819 BlockFrequency BaseCost
= P
+ V
;
820 BlockFrequency DupCost
= Qout
+ QinU
+ std::max(Qin
, F
) * VProb
;
821 return greaterWithBias(BaseCost
, DupCost
, EntryFreq
);
823 BranchProbability UProb
= MBPI
->getEdgeProbability(Succ
, PDom
);
824 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
825 BlockFrequency U
= SuccFreq
* UProb
;
826 BlockFrequency V
= SuccFreq
* VProb
;
827 BlockFrequency F
= SuccFreq
- Qin
;
828 // If there is a post-dominating successor, here is the calculation:
830 // | \Qout | \ | \Qout | \
832 // = C' |P C = C' |P C
833 // | /Qin | | | /Qin | |
834 // | / | C' (+Succ) | / | C' (+Succ)
835 // Succ Succ /| Succ Succ /|
836 // | \ V | \/ | | \ V | \/ |
837 // |U \ |U /\ =? |U = |U /\ |
838 // = D = = =?| | D | = =|
843 // '=' : Branch taken for that CFG edge
844 // The cost for taken branches in the first case is P + U
845 // Let F = SuccFreq - Qin
846 // The cost in the second case (assuming independence), given the layout:
847 // BB, Succ, (C+Succ), D, Dom or the layout:
848 // BB, Succ, D, Dom, (C+Succ)
849 // is Qout + max(F, Qin) * U + min(F, Qin)
850 // compare P + U vs Qout + P * U + Qin.
852 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
854 // For the 3rd case, the cost is P + 2 * V
855 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
856 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
857 if (UProb
> AdjustedSuccSumProb
/ 2 &&
858 !hasBetterLayoutPredecessor(Succ
, PDom
, *BlockToChain
[PDom
], UProb
, UProb
,
861 return greaterWithBias(
862 (P
+ V
), (Qout
+ std::max(Qin
, F
) * VProb
+ std::min(Qin
, F
) * UProb
),
865 return greaterWithBias((P
+ U
),
866 (Qout
+ std::min(Qin
, F
) * AdjustedSuccSumProb
+
867 std::max(Qin
, F
) * UProb
),
871 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
872 /// successors form the lower part of a trellis. A successor set S forms the
873 /// lower part of a trellis if all of the predecessors of S are either in S or
874 /// have all of S as successors. We ignore trellises where BB doesn't have 2
875 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
876 /// are very uncommon and complex to compute optimally. Allowing edges within S
877 /// is not strictly a trellis, but the same algorithm works, so we allow it.
878 bool MachineBlockPlacement::isTrellis(
879 const MachineBasicBlock
*BB
,
880 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
881 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
882 // Technically BB could form a trellis with branching factor higher than 2.
883 // But that's extremely uncommon.
884 if (BB
->succ_size() != 2 || ViableSuccs
.size() != 2)
887 SmallPtrSet
<const MachineBasicBlock
*, 2> Successors(BB
->succ_begin(),
889 // To avoid reviewing the same predecessors twice.
890 SmallPtrSet
<const MachineBasicBlock
*, 8> SeenPreds
;
892 for (MachineBasicBlock
*Succ
: ViableSuccs
) {
894 for (auto SuccPred
: Succ
->predecessors()) {
895 // Allow triangle successors, but don't count them.
896 if (Successors
.count(SuccPred
)) {
897 // Make sure that it is actually a triangle.
898 for (MachineBasicBlock
*CheckSucc
: SuccPred
->successors())
899 if (!Successors
.count(CheckSucc
))
903 const BlockChain
*PredChain
= BlockToChain
[SuccPred
];
904 if (SuccPred
== BB
|| (BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
905 PredChain
== &Chain
|| PredChain
== BlockToChain
[Succ
])
908 // Perform the successor check only once.
909 if (!SeenPreds
.insert(SuccPred
).second
)
911 if (!hasSameSuccessors(*SuccPred
, Successors
))
914 // If one of the successors has only BB as a predecessor, it is not a
922 /// Pick the highest total weight pair of edges that can both be laid out.
923 /// The edges in \p Edges[0] are assumed to have a different destination than
924 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
925 /// the individual highest weight edges to the 2 different destinations, or in
926 /// case of a conflict, one of them should be replaced with a 2nd best edge.
927 std::pair
<MachineBlockPlacement::WeightedEdge
,
928 MachineBlockPlacement::WeightedEdge
>
929 MachineBlockPlacement::getBestNonConflictingEdges(
930 const MachineBasicBlock
*BB
,
931 MutableArrayRef
<SmallVector
<MachineBlockPlacement::WeightedEdge
, 8>>
933 // Sort the edges, and then for each successor, find the best incoming
934 // predecessor. If the best incoming predecessors aren't the same,
935 // then that is clearly the best layout. If there is a conflict, one of the
936 // successors will have to fallthrough from the second best predecessor. We
937 // compare which combination is better overall.
939 // Sort for highest frequency.
940 auto Cmp
= [](WeightedEdge A
, WeightedEdge B
) { return A
.Weight
> B
.Weight
; };
942 std::stable_sort(Edges
[0].begin(), Edges
[0].end(), Cmp
);
943 std::stable_sort(Edges
[1].begin(), Edges
[1].end(), Cmp
);
944 auto BestA
= Edges
[0].begin();
945 auto BestB
= Edges
[1].begin();
946 // Arrange for the correct answer to be in BestA and BestB
947 // If the 2 best edges don't conflict, the answer is already there.
948 if (BestA
->Src
== BestB
->Src
) {
949 // Compare the total fallthrough of (Best + Second Best) for both pairs
950 auto SecondBestA
= std::next(BestA
);
951 auto SecondBestB
= std::next(BestB
);
952 BlockFrequency BestAScore
= BestA
->Weight
+ SecondBestB
->Weight
;
953 BlockFrequency BestBScore
= BestB
->Weight
+ SecondBestA
->Weight
;
954 if (BestAScore
< BestBScore
)
959 // Arrange for the BB edge to be in BestA if it exists.
960 if (BestB
->Src
== BB
)
961 std::swap(BestA
, BestB
);
962 return std::make_pair(*BestA
, *BestB
);
965 /// Get the best successor from \p BB based on \p BB being part of a trellis.
966 /// We only handle trellises with 2 successors, so the algorithm is
967 /// straightforward: Find the best pair of edges that don't conflict. We find
968 /// the best incoming edge for each successor in the trellis. If those conflict,
969 /// we consider which of them should be replaced with the second best.
970 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
971 /// comes from \p BB, it will be in \p BestEdges[0]
972 MachineBlockPlacement::BlockAndTailDupResult
973 MachineBlockPlacement::getBestTrellisSuccessor(
974 const MachineBasicBlock
*BB
,
975 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
976 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
977 const BlockFilterSet
*BlockFilter
) {
979 BlockAndTailDupResult Result
= {nullptr, false};
980 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
983 // We assume size 2 because it's common. For general n, we would have to do
984 // the Hungarian algorithm, but it's not worth the complexity because more
985 // than 2 successors is fairly uncommon, and a trellis even more so.
986 if (Successors
.size() != 2 || ViableSuccs
.size() != 2)
989 // Collect the edge frequencies of all edges that form the trellis.
990 SmallVector
<WeightedEdge
, 8> Edges
[2];
992 for (auto Succ
: ViableSuccs
) {
993 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
994 // Skip any placed predecessors that are not BB
996 if ((BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
997 BlockToChain
[SuccPred
] == &Chain
||
998 BlockToChain
[SuccPred
] == BlockToChain
[Succ
])
1000 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(SuccPred
) *
1001 MBPI
->getEdgeProbability(SuccPred
, Succ
);
1002 Edges
[SuccIndex
].push_back({EdgeFreq
, SuccPred
, Succ
});
1007 // Pick the best combination of 2 edges from all the edges in the trellis.
1008 WeightedEdge BestA
, BestB
;
1009 std::tie(BestA
, BestB
) = getBestNonConflictingEdges(BB
, Edges
);
1011 if (BestA
.Src
!= BB
) {
1012 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1013 // we shouldn't choose any successor. We've already looked and there's a
1014 // better fallthrough edge for all the successors.
1015 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1019 // Did we pick the triangle edge? If tail-duplication is profitable, do
1020 // that instead. Otherwise merge the triangle edge now while we know it is
1022 if (BestA
.Dest
== BestB
.Src
) {
1023 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1025 MachineBasicBlock
*Succ1
= BestA
.Dest
;
1026 MachineBasicBlock
*Succ2
= BestB
.Dest
;
1027 // Check to see if tail-duplication would be profitable.
1028 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2
) &&
1029 canTailDuplicateUnplacedPreds(BB
, Succ2
, Chain
, BlockFilter
) &&
1030 isProfitableToTailDup(BB
, Succ2
, MBPI
->getEdgeProbability(BB
, Succ1
),
1031 Chain
, BlockFilter
)) {
1032 LLVM_DEBUG(BranchProbability Succ2Prob
= getAdjustedProbability(
1033 MBPI
->getEdgeProbability(BB
, Succ2
), AdjustedSumProb
);
1034 dbgs() << " Selected: " << getBlockName(Succ2
)
1035 << ", probability: " << Succ2Prob
1036 << " (Tail Duplicate)\n");
1038 Result
.ShouldTailDup
= true;
1042 // We have already computed the optimal edge for the other side of the
1044 ComputedEdges
[BestB
.Src
] = { BestB
.Dest
, false };
1046 auto TrellisSucc
= BestA
.Dest
;
1047 LLVM_DEBUG(BranchProbability SuccProb
= getAdjustedProbability(
1048 MBPI
->getEdgeProbability(BB
, TrellisSucc
), AdjustedSumProb
);
1049 dbgs() << " Selected: " << getBlockName(TrellisSucc
)
1050 << ", probability: " << SuccProb
<< " (Trellis)\n");
1051 Result
.BB
= TrellisSucc
;
1055 /// When the option allowTailDupPlacement() is on, this method checks if the
1056 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1057 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1058 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1059 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
1060 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
1061 if (!shouldTailDuplicate(Succ
))
1064 // For CFG checking.
1065 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
1067 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1068 // Make sure all unplaced and unfiltered predecessors can be
1069 // tail-duplicated into.
1070 // Skip any blocks that are already placed or not in this loop.
1071 if (Pred
== BB
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
1072 || BlockToChain
[Pred
] == &Chain
)
1074 if (!TailDup
.canTailDuplicate(Succ
, Pred
)) {
1075 if (Successors
.size() > 1 && hasSameSuccessors(*Pred
, Successors
))
1076 // This will result in a trellis after tail duplication, so we don't
1077 // need to copy Succ into this predecessor. In the presence
1078 // of a trellis tail duplication can continue to be profitable.
1094 // After BB was duplicated into C, the layout looks like the one on the
1095 // right. BB and C now have the same successors. When considering
1096 // whether Succ can be duplicated into all its unplaced predecessors, we
1098 // We can do this because C already has a profitable fallthrough, namely
1099 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1100 // duplication and for this test.
1102 // This allows trellises to be laid out in 2 separate chains
1103 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1104 // because it allows the creation of 2 fallthrough paths with links
1105 // between them, and we correctly identify the best layout for these
1106 // CFGs. We want to extend trellises that the user created in addition
1107 // to trellises created by tail-duplication, so we just look for the
1116 /// Find chains of triangles where we believe it would be profitable to
1117 /// tail-duplicate them all, but a local analysis would not find them.
1118 /// There are 3 ways this can be profitable:
1119 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1121 /// 2) The chains are statically correlated. Branch probabilities have a very
1122 /// U-shaped distribution.
1123 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1124 /// If the branches in a chain are likely to be from the same side of the
1125 /// distribution as their predecessor, but are independent at runtime, this
1126 /// transformation is profitable. (Because the cost of being wrong is a small
1127 /// fixed cost, unlike the standard triangle layout where the cost of being
1128 /// wrong scales with the # of triangles.)
1129 /// 3) The chains are dynamically correlated. If the probability that a previous
1130 /// branch was taken positively influences whether the next branch will be
1132 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1133 void MachineBlockPlacement::precomputeTriangleChains() {
1134 struct TriangleChain
{
1135 std::vector
<MachineBasicBlock
*> Edges
;
1137 TriangleChain(MachineBasicBlock
*src
, MachineBasicBlock
*dst
)
1138 : Edges({src
, dst
}) {}
1140 void append(MachineBasicBlock
*dst
) {
1141 assert(getKey()->isSuccessor(dst
) &&
1142 "Attempting to append a block that is not a successor.");
1143 Edges
.push_back(dst
);
1146 unsigned count() const { return Edges
.size() - 1; }
1148 MachineBasicBlock
*getKey() const {
1149 return Edges
.back();
1153 if (TriangleChainCount
== 0)
1156 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1157 // Map from last block to the chain that contains it. This allows us to extend
1158 // chains as we find new triangles.
1159 DenseMap
<const MachineBasicBlock
*, TriangleChain
> TriangleChainMap
;
1160 for (MachineBasicBlock
&BB
: *F
) {
1161 // If BB doesn't have 2 successors, it doesn't start a triangle.
1162 if (BB
.succ_size() != 2)
1164 MachineBasicBlock
*PDom
= nullptr;
1165 for (MachineBasicBlock
*Succ
: BB
.successors()) {
1166 if (!MPDT
->dominates(Succ
, &BB
))
1171 // If BB doesn't have a post-dominating successor, it doesn't form a
1173 if (PDom
== nullptr)
1175 // If PDom has a hint that it is low probability, skip this triangle.
1176 if (MBPI
->getEdgeProbability(&BB
, PDom
) < BranchProbability(50, 100))
1178 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1179 // we're looking for.
1180 if (!shouldTailDuplicate(PDom
))
1182 bool CanTailDuplicate
= true;
1183 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1184 // isn't the kind of triangle we're looking for.
1185 for (MachineBasicBlock
* Pred
: PDom
->predecessors()) {
1188 if (!TailDup
.canTailDuplicate(PDom
, Pred
)) {
1189 CanTailDuplicate
= false;
1193 // If we can't tail-duplicate PDom to its predecessors, then skip this
1195 if (!CanTailDuplicate
)
1198 // Now we have an interesting triangle. Insert it if it's not part of an
1200 // Note: This cannot be replaced with a call insert() or emplace() because
1201 // the find key is BB, but the insert/emplace key is PDom.
1202 auto Found
= TriangleChainMap
.find(&BB
);
1203 // If it is, remove the chain from the map, grow it, and put it back in the
1204 // map with the end as the new key.
1205 if (Found
!= TriangleChainMap
.end()) {
1206 TriangleChain Chain
= std::move(Found
->second
);
1207 TriangleChainMap
.erase(Found
);
1209 TriangleChainMap
.insert(std::make_pair(Chain
.getKey(), std::move(Chain
)));
1211 auto InsertResult
= TriangleChainMap
.try_emplace(PDom
, &BB
, PDom
);
1212 assert(InsertResult
.second
&& "Block seen twice.");
1217 // Iterating over a DenseMap is safe here, because the only thing in the body
1218 // of the loop is inserting into another DenseMap (ComputedEdges).
1219 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1220 for (auto &ChainPair
: TriangleChainMap
) {
1221 TriangleChain
&Chain
= ChainPair
.second
;
1222 // Benchmarking has shown that due to branch correlation duplicating 2 or
1223 // more triangles is profitable, despite the calculations assuming
1225 if (Chain
.count() < TriangleChainCount
)
1227 MachineBasicBlock
*dst
= Chain
.Edges
.back();
1228 Chain
.Edges
.pop_back();
1229 for (MachineBasicBlock
*src
: reverse(Chain
.Edges
)) {
1230 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src
) << "->"
1231 << getBlockName(dst
)
1232 << " as pre-computed based on triangles.\n");
1234 auto InsertResult
= ComputedEdges
.insert({src
, {dst
, true}});
1235 assert(InsertResult
.second
&& "Block seen twice.");
1243 // When profile is not present, return the StaticLikelyProb.
1244 // When profile is available, we need to handle the triangle-shape CFG.
1245 static BranchProbability
getLayoutSuccessorProbThreshold(
1246 const MachineBasicBlock
*BB
) {
1247 if (!BB
->getParent()->getFunction().hasProfileData())
1248 return BranchProbability(StaticLikelyProb
, 100);
1249 if (BB
->succ_size() == 2) {
1250 const MachineBasicBlock
*Succ1
= *BB
->succ_begin();
1251 const MachineBasicBlock
*Succ2
= *(BB
->succ_begin() + 1);
1252 if (Succ1
->isSuccessor(Succ2
) || Succ2
->isSuccessor(Succ1
)) {
1253 /* See case 1 below for the cost analysis. For BB->Succ to
1254 * be taken with smaller cost, the following needs to hold:
1255 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1256 * So the threshold T in the calculation below
1257 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1258 * So T / (1 - T) = 2, Yielding T = 2/3
1259 * Also adding user specified branch bias, we have
1260 * T = (2/3)*(ProfileLikelyProb/50)
1261 * = (2*ProfileLikelyProb)/150)
1263 return BranchProbability(2 * ProfileLikelyProb
, 150);
1266 return BranchProbability(ProfileLikelyProb
, 100);
1269 /// Checks to see if the layout candidate block \p Succ has a better layout
1270 /// predecessor than \c BB. If yes, returns true.
1271 /// \p SuccProb: The probability adjusted for only remaining blocks.
1272 /// Only used for logging
1273 /// \p RealSuccProb: The un-adjusted probability.
1274 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1275 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1277 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1278 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
1279 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
1280 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
1281 const BlockFilterSet
*BlockFilter
) {
1283 // There isn't a better layout when there are no unscheduled predecessors.
1284 if (SuccChain
.UnscheduledPredecessors
== 0)
1287 // There are two basic scenarios here:
1288 // -------------------------------------
1289 // Case 1: triangular shape CFG (if-then):
1296 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1297 // set Succ as the layout successor of BB. Picking Succ as BB's
1298 // successor breaks the CFG constraints (FIXME: define these constraints).
1299 // With this layout, Pred BB
1300 // is forced to be outlined, so the overall cost will be cost of the
1301 // branch taken from BB to Pred, plus the cost of back taken branch
1302 // from Pred to Succ, as well as the additional cost associated
1303 // with the needed unconditional jump instruction from Pred To Succ.
1305 // The cost of the topological order layout is the taken branch cost
1306 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1308 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1309 // < freq(BB->Succ) * taken_branch_cost.
1310 // Ignoring unconditional jump cost, we get
1311 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1312 // prob(BB->Succ) > 2 * prob(BB->Pred)
1314 // When real profile data is available, we can precisely compute the
1315 // probability threshold that is needed for edge BB->Succ to be considered.
1316 // Without profile data, the heuristic requires the branch bias to be
1317 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1318 // -----------------------------------------------------------------
1319 // Case 2: diamond like CFG (if-then-else):
1328 // The current block is BB and edge BB->Succ is now being evaluated.
1329 // Note that edge S->BB was previously already selected because
1330 // prob(S->BB) > prob(S->Pred).
1331 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1332 // choose Pred, we will have a topological ordering as shown on the left
1333 // in the picture below. If we choose Succ, we have the solution as shown
1342 // | Pred-- | Succ--
1344 // ---Succ ---Pred--
1346 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1347 // = freq(S->Pred) + freq(S->BB)
1349 // If we have profile data (i.e, branch probabilities can be trusted), the
1350 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1351 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1352 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1353 // means the cost of topological order is greater.
1354 // When profile data is not available, however, we need to be more
1355 // conservative. If the branch prediction is wrong, breaking the topo-order
1356 // will actually yield a layout with large cost. For this reason, we need
1357 // strong biased branch at block S with Prob(S->BB) in order to select
1358 // BB->Succ. This is equivalent to looking the CFG backward with backward
1359 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1361 // --------------------------------------------------------------------------
1362 // Case 3: forked diamond
1374 // The current block is BB and edge BB->S1 is now being evaluated.
1375 // As above S->BB was already selected because
1376 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1384 // | Pred----| | S1----
1386 // --(S1 or S2) ---Pred--
1390 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1391 // + min(freq(Pred->S1), freq(Pred->S2))
1392 // Non-topo-order cost:
1393 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1394 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1395 // is 0. Then the non topo layout is better when
1396 // freq(S->Pred) < freq(BB->S1).
1397 // This is exactly what is checked below.
1398 // Note there are other shapes that apply (Pred may not be a single block,
1399 // but they all fit this general pattern.)
1400 BranchProbability HotProb
= getLayoutSuccessorProbThreshold(BB
);
1402 // Make sure that a hot successor doesn't have a globally more
1403 // important predecessor.
1404 BlockFrequency CandidateEdgeFreq
= MBFI
->getBlockFreq(BB
) * RealSuccProb
;
1405 bool BadCFGConflict
= false;
1407 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1408 if (Pred
== Succ
|| BlockToChain
[Pred
] == &SuccChain
||
1409 (BlockFilter
&& !BlockFilter
->count(Pred
)) ||
1410 BlockToChain
[Pred
] == &Chain
||
1411 // This check is redundant except for look ahead. This function is
1412 // called for lookahead by isProfitableToTailDup when BB hasn't been
1416 // Do backward checking.
1417 // For all cases above, we need a backward checking to filter out edges that
1418 // are not 'strongly' biased.
1422 // We select edge BB->Succ if
1423 // freq(BB->Succ) > freq(Succ) * HotProb
1424 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1426 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1427 // Case 1 is covered too, because the first equation reduces to:
1428 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1429 BlockFrequency PredEdgeFreq
=
1430 MBFI
->getBlockFreq(Pred
) * MBPI
->getEdgeProbability(Pred
, Succ
);
1431 if (PredEdgeFreq
* HotProb
>= CandidateEdgeFreq
* HotProb
.getCompl()) {
1432 BadCFGConflict
= true;
1437 if (BadCFGConflict
) {
1438 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ
) << " -> "
1439 << SuccProb
<< " (prob) (non-cold CFG conflict)\n");
1446 /// Select the best successor for a block.
1448 /// This looks across all successors of a particular block and attempts to
1449 /// select the "best" one to be the layout successor. It only considers direct
1450 /// successors which also pass the block filter. It will attempt to avoid
1451 /// breaking CFG structure, but cave and break such structures in the case of
1452 /// very hot successor edges.
1454 /// \returns The best successor block found, or null if none are viable, along
1455 /// with a boolean indicating if tail duplication is necessary.
1456 MachineBlockPlacement::BlockAndTailDupResult
1457 MachineBlockPlacement::selectBestSuccessor(
1458 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
1459 const BlockFilterSet
*BlockFilter
) {
1460 const BranchProbability
HotProb(StaticLikelyProb
, 100);
1462 BlockAndTailDupResult BestSucc
= { nullptr, false };
1463 auto BestProb
= BranchProbability::getZero();
1465 SmallVector
<MachineBasicBlock
*, 4> Successors
;
1466 auto AdjustedSumProb
=
1467 collectViableSuccessors(BB
, Chain
, BlockFilter
, Successors
);
1469 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB
)
1472 // if we already precomputed the best successor for BB, return that if still
1474 auto FoundEdge
= ComputedEdges
.find(BB
);
1475 if (FoundEdge
!= ComputedEdges
.end()) {
1476 MachineBasicBlock
*Succ
= FoundEdge
->second
.BB
;
1477 ComputedEdges
.erase(FoundEdge
);
1478 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1479 if (BB
->isSuccessor(Succ
) && (!BlockFilter
|| BlockFilter
->count(Succ
)) &&
1480 SuccChain
!= &Chain
&& Succ
== *SuccChain
->begin())
1481 return FoundEdge
->second
;
1484 // if BB is part of a trellis, Use the trellis to determine the optimal
1485 // fallthrough edges
1486 if (isTrellis(BB
, Successors
, Chain
, BlockFilter
))
1487 return getBestTrellisSuccessor(BB
, Successors
, AdjustedSumProb
, Chain
,
1490 // For blocks with CFG violations, we may be able to lay them out anyway with
1491 // tail-duplication. We keep this vector so we can perform the probability
1492 // calculations the minimum number of times.
1493 SmallVector
<std::tuple
<BranchProbability
, MachineBasicBlock
*>, 4>
1495 for (MachineBasicBlock
*Succ
: Successors
) {
1496 auto RealSuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
1497 BranchProbability SuccProb
=
1498 getAdjustedProbability(RealSuccProb
, AdjustedSumProb
);
1500 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
1501 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1502 // predecessor that yields lower global cost.
1503 if (hasBetterLayoutPredecessor(BB
, Succ
, SuccChain
, SuccProb
, RealSuccProb
,
1504 Chain
, BlockFilter
)) {
1505 // If tail duplication would make Succ profitable, place it.
1506 if (allowTailDupPlacement() && shouldTailDuplicate(Succ
))
1507 DupCandidates
.push_back(std::make_tuple(SuccProb
, Succ
));
1512 dbgs() << " Candidate: " << getBlockName(Succ
)
1513 << ", probability: " << SuccProb
1514 << (SuccChain
.UnscheduledPredecessors
!= 0 ? " (CFG break)" : "")
1517 if (BestSucc
.BB
&& BestProb
>= SuccProb
) {
1518 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1522 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1524 BestProb
= SuccProb
;
1526 // Handle the tail duplication candidates in order of decreasing probability.
1527 // Stop at the first one that is profitable. Also stop if they are less
1528 // profitable than BestSucc. Position is important because we preserve it and
1529 // prefer first best match. Here we aren't comparing in order, so we capture
1530 // the position instead.
1531 if (DupCandidates
.size() != 0) {
1533 [](const std::tuple
<BranchProbability
, MachineBasicBlock
*> &a
,
1534 const std::tuple
<BranchProbability
, MachineBasicBlock
*> &b
) {
1535 return std::get
<0>(a
) > std::get
<0>(b
);
1537 std::stable_sort(DupCandidates
.begin(), DupCandidates
.end(), cmp
);
1539 for(auto &Tup
: DupCandidates
) {
1540 BranchProbability DupProb
;
1541 MachineBasicBlock
*Succ
;
1542 std::tie(DupProb
, Succ
) = Tup
;
1543 if (DupProb
< BestProb
)
1545 if (canTailDuplicateUnplacedPreds(BB
, Succ
, Chain
, BlockFilter
)
1546 && (isProfitableToTailDup(BB
, Succ
, BestProb
, Chain
, BlockFilter
))) {
1547 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ
)
1548 << ", probability: " << DupProb
1549 << " (Tail Duplicate)\n");
1551 BestSucc
.ShouldTailDup
= true;
1557 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc
.BB
) << "\n");
1562 /// Select the best block from a worklist.
1564 /// This looks through the provided worklist as a list of candidate basic
1565 /// blocks and select the most profitable one to place. The definition of
1566 /// profitable only really makes sense in the context of a loop. This returns
1567 /// the most frequently visited block in the worklist, which in the case of
1568 /// a loop, is the one most desirable to be physically close to the rest of the
1569 /// loop body in order to improve i-cache behavior.
1571 /// \returns The best block found, or null if none are viable.
1572 MachineBasicBlock
*MachineBlockPlacement::selectBestCandidateBlock(
1573 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
) {
1574 // Once we need to walk the worklist looking for a candidate, cleanup the
1575 // worklist of already placed entries.
1576 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1577 // some code complexity) into the loop below.
1578 WorkList
.erase(llvm::remove_if(WorkList
,
1579 [&](MachineBasicBlock
*BB
) {
1580 return BlockToChain
.lookup(BB
) == &Chain
;
1584 if (WorkList
.empty())
1587 bool IsEHPad
= WorkList
[0]->isEHPad();
1589 MachineBasicBlock
*BestBlock
= nullptr;
1590 BlockFrequency BestFreq
;
1591 for (MachineBasicBlock
*MBB
: WorkList
) {
1592 assert(MBB
->isEHPad() == IsEHPad
&&
1593 "EHPad mismatch between block and work list.");
1595 BlockChain
&SuccChain
= *BlockToChain
[MBB
];
1596 if (&SuccChain
== &Chain
)
1599 assert(SuccChain
.UnscheduledPredecessors
== 0 &&
1600 "Found CFG-violating block");
1602 BlockFrequency CandidateFreq
= MBFI
->getBlockFreq(MBB
);
1603 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB
) << " -> ";
1604 MBFI
->printBlockFreq(dbgs(), CandidateFreq
) << " (freq)\n");
1606 // For ehpad, we layout the least probable first as to avoid jumping back
1607 // from least probable landingpads to more probable ones.
1609 // FIXME: Using probability is probably (!) not the best way to achieve
1610 // this. We should probably have a more principled approach to layout
1613 // The goal is to get:
1615 // +--------------------------+
1617 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1621 // +-------------------------------------+
1623 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1624 if (BestBlock
&& (IsEHPad
^ (BestFreq
>= CandidateFreq
)))
1628 BestFreq
= CandidateFreq
;
1634 /// Retrieve the first unplaced basic block.
1636 /// This routine is called when we are unable to use the CFG to walk through
1637 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1638 /// We walk through the function's blocks in order, starting from the
1639 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1640 /// re-scanning the entire sequence on repeated calls to this routine.
1641 MachineBasicBlock
*MachineBlockPlacement::getFirstUnplacedBlock(
1642 const BlockChain
&PlacedChain
,
1643 MachineFunction::iterator
&PrevUnplacedBlockIt
,
1644 const BlockFilterSet
*BlockFilter
) {
1645 for (MachineFunction::iterator I
= PrevUnplacedBlockIt
, E
= F
->end(); I
!= E
;
1647 if (BlockFilter
&& !BlockFilter
->count(&*I
))
1649 if (BlockToChain
[&*I
] != &PlacedChain
) {
1650 PrevUnplacedBlockIt
= I
;
1651 // Now select the head of the chain to which the unplaced block belongs
1652 // as the block to place. This will force the entire chain to be placed,
1653 // and satisfies the requirements of merging chains.
1654 return *BlockToChain
[&*I
]->begin();
1660 void MachineBlockPlacement::fillWorkLists(
1661 const MachineBasicBlock
*MBB
,
1662 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
1663 const BlockFilterSet
*BlockFilter
= nullptr) {
1664 BlockChain
&Chain
= *BlockToChain
[MBB
];
1665 if (!UpdatedPreds
.insert(&Chain
).second
)
1669 Chain
.UnscheduledPredecessors
== 0 &&
1670 "Attempting to place block with unscheduled predecessors in worklist.");
1671 for (MachineBasicBlock
*ChainBB
: Chain
) {
1672 assert(BlockToChain
[ChainBB
] == &Chain
&&
1673 "Block in chain doesn't match BlockToChain map.");
1674 for (MachineBasicBlock
*Pred
: ChainBB
->predecessors()) {
1675 if (BlockFilter
&& !BlockFilter
->count(Pred
))
1677 if (BlockToChain
[Pred
] == &Chain
)
1679 ++Chain
.UnscheduledPredecessors
;
1683 if (Chain
.UnscheduledPredecessors
!= 0)
1686 MachineBasicBlock
*BB
= *Chain
.begin();
1688 EHPadWorkList
.push_back(BB
);
1690 BlockWorkList
.push_back(BB
);
1693 void MachineBlockPlacement::buildChain(
1694 const MachineBasicBlock
*HeadBB
, BlockChain
&Chain
,
1695 BlockFilterSet
*BlockFilter
) {
1696 assert(HeadBB
&& "BB must not be null.\n");
1697 assert(BlockToChain
[HeadBB
] == &Chain
&& "BlockToChainMap mis-match.\n");
1698 MachineFunction::iterator PrevUnplacedBlockIt
= F
->begin();
1700 const MachineBasicBlock
*LoopHeaderBB
= HeadBB
;
1701 markChainSuccessors(Chain
, LoopHeaderBB
, BlockFilter
);
1702 MachineBasicBlock
*BB
= *std::prev(Chain
.end());
1704 assert(BB
&& "null block found at end of chain in loop.");
1705 assert(BlockToChain
[BB
] == &Chain
&& "BlockToChainMap mis-match in loop.");
1706 assert(*std::prev(Chain
.end()) == BB
&& "BB Not found at end of chain.");
1709 // Look for the best viable successor if there is one to place immediately
1710 // after this block.
1711 auto Result
= selectBestSuccessor(BB
, Chain
, BlockFilter
);
1712 MachineBasicBlock
* BestSucc
= Result
.BB
;
1713 bool ShouldTailDup
= Result
.ShouldTailDup
;
1714 if (allowTailDupPlacement())
1715 ShouldTailDup
|= (BestSucc
&& shouldTailDuplicate(BestSucc
));
1717 // If an immediate successor isn't available, look for the best viable
1718 // block among those we've identified as not violating the loop's CFG at
1719 // this point. This won't be a fallthrough, but it will increase locality.
1721 BestSucc
= selectBestCandidateBlock(Chain
, BlockWorkList
);
1723 BestSucc
= selectBestCandidateBlock(Chain
, EHPadWorkList
);
1726 BestSucc
= getFirstUnplacedBlock(Chain
, PrevUnplacedBlockIt
, BlockFilter
);
1730 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1731 "layout successor until the CFG reduces\n");
1734 // Placement may have changed tail duplication opportunities.
1735 // Check for that now.
1736 if (allowTailDupPlacement() && BestSucc
&& ShouldTailDup
) {
1737 // If the chosen successor was duplicated into all its predecessors,
1738 // don't bother laying it out, just go round the loop again with BB as
1740 if (repeatedlyTailDuplicateBlock(BestSucc
, BB
, LoopHeaderBB
, Chain
,
1741 BlockFilter
, PrevUnplacedBlockIt
))
1745 // Place this block, updating the datastructures to reflect its placement.
1746 BlockChain
&SuccChain
= *BlockToChain
[BestSucc
];
1747 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1748 // we selected a successor that didn't fit naturally into the CFG.
1749 SuccChain
.UnscheduledPredecessors
= 0;
1750 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB
) << " to "
1751 << getBlockName(BestSucc
) << "\n");
1752 markChainSuccessors(SuccChain
, LoopHeaderBB
, BlockFilter
);
1753 Chain
.merge(BestSucc
, &SuccChain
);
1754 BB
= *std::prev(Chain
.end());
1757 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1758 << getBlockName(*Chain
.begin()) << "\n");
1761 // If bottom of block BB has only one successor OldTop, in most cases it is
1762 // profitable to move it before OldTop, except the following case:
1772 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1773 // layout the other successor below it, so it can't reduce taken branch.
1774 // In this case we keep its original layout.
1776 MachineBlockPlacement::canMoveBottomBlockToTop(
1777 const MachineBasicBlock
*BottomBlock
,
1778 const MachineBasicBlock
*OldTop
) {
1779 if (BottomBlock
->pred_size() != 1)
1781 MachineBasicBlock
*Pred
= *BottomBlock
->pred_begin();
1782 if (Pred
->succ_size() != 2)
1785 MachineBasicBlock
*OtherBB
= *Pred
->succ_begin();
1786 if (OtherBB
== BottomBlock
)
1787 OtherBB
= *Pred
->succ_rbegin();
1788 if (OtherBB
== OldTop
)
1794 /// Find the best loop top block for layout.
1796 /// Look for a block which is strictly better than the loop header for laying
1797 /// out at the top of the loop. This looks for one and only one pattern:
1798 /// a latch block with no conditional exit. This block will cause a conditional
1799 /// jump around it or will be the bottom of the loop if we lay it out in place,
1800 /// but if it it doesn't end up at the bottom of the loop for any reason,
1801 /// rotation alone won't fix it. Because such a block will always result in an
1802 /// unconditional jump (for the backedge) rotating it in front of the loop
1803 /// header is always profitable.
1805 MachineBlockPlacement::findBestLoopTop(const MachineLoop
&L
,
1806 const BlockFilterSet
&LoopBlockSet
) {
1807 // Placing the latch block before the header may introduce an extra branch
1808 // that skips this block the first time the loop is executed, which we want
1809 // to avoid when optimising for size.
1810 // FIXME: in theory there is a case that does not introduce a new branch,
1811 // i.e. when the layout predecessor does not fallthrough to the loop header.
1812 // In practice this never happens though: there always seems to be a preheader
1813 // that can fallthrough and that is also placed before the header.
1814 if (F
->getFunction().optForSize())
1815 return L
.getHeader();
1817 // Check that the header hasn't been fused with a preheader block due to
1818 // crazy branches. If it has, we need to start with the header at the top to
1819 // prevent pulling the preheader into the loop body.
1820 BlockChain
&HeaderChain
= *BlockToChain
[L
.getHeader()];
1821 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
1822 return L
.getHeader();
1824 LLVM_DEBUG(dbgs() << "Finding best loop top for: "
1825 << getBlockName(L
.getHeader()) << "\n");
1827 BlockFrequency BestPredFreq
;
1828 MachineBasicBlock
*BestPred
= nullptr;
1829 for (MachineBasicBlock
*Pred
: L
.getHeader()->predecessors()) {
1830 if (!LoopBlockSet
.count(Pred
))
1832 LLVM_DEBUG(dbgs() << " header pred: " << getBlockName(Pred
) << ", has "
1833 << Pred
->succ_size() << " successors, ";
1834 MBFI
->printBlockFreq(dbgs(), Pred
) << " freq\n");
1835 if (Pred
->succ_size() > 1)
1838 if (!canMoveBottomBlockToTop(Pred
, L
.getHeader()))
1841 BlockFrequency PredFreq
= MBFI
->getBlockFreq(Pred
);
1842 if (!BestPred
|| PredFreq
> BestPredFreq
||
1843 (!(PredFreq
< BestPredFreq
) &&
1844 Pred
->isLayoutSuccessor(L
.getHeader()))) {
1846 BestPredFreq
= PredFreq
;
1850 // If no direct predecessor is fine, just use the loop header.
1852 LLVM_DEBUG(dbgs() << " final top unchanged\n");
1853 return L
.getHeader();
1856 // Walk backwards through any straight line of predecessors.
1857 while (BestPred
->pred_size() == 1 &&
1858 (*BestPred
->pred_begin())->succ_size() == 1 &&
1859 *BestPred
->pred_begin() != L
.getHeader())
1860 BestPred
= *BestPred
->pred_begin();
1862 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred
) << "\n");
1866 /// Find the best loop exiting block for layout.
1868 /// This routine implements the logic to analyze the loop looking for the best
1869 /// block to layout at the top of the loop. Typically this is done to maximize
1870 /// fallthrough opportunities.
1872 MachineBlockPlacement::findBestLoopExit(const MachineLoop
&L
,
1873 const BlockFilterSet
&LoopBlockSet
) {
1874 // We don't want to layout the loop linearly in all cases. If the loop header
1875 // is just a normal basic block in the loop, we want to look for what block
1876 // within the loop is the best one to layout at the top. However, if the loop
1877 // header has be pre-merged into a chain due to predecessors not having
1878 // analyzable branches, *and* the predecessor it is merged with is *not* part
1879 // of the loop, rotating the header into the middle of the loop will create
1880 // a non-contiguous range of blocks which is Very Bad. So start with the
1881 // header and only rotate if safe.
1882 BlockChain
&HeaderChain
= *BlockToChain
[L
.getHeader()];
1883 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
1886 BlockFrequency BestExitEdgeFreq
;
1887 unsigned BestExitLoopDepth
= 0;
1888 MachineBasicBlock
*ExitingBB
= nullptr;
1889 // If there are exits to outer loops, loop rotation can severely limit
1890 // fallthrough opportunities unless it selects such an exit. Keep a set of
1891 // blocks where rotating to exit with that block will reach an outer loop.
1892 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksExitingToOuterLoop
;
1894 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
1895 << getBlockName(L
.getHeader()) << "\n");
1896 for (MachineBasicBlock
*MBB
: L
.getBlocks()) {
1897 BlockChain
&Chain
= *BlockToChain
[MBB
];
1898 // Ensure that this block is at the end of a chain; otherwise it could be
1899 // mid-way through an inner loop or a successor of an unanalyzable branch.
1900 if (MBB
!= *std::prev(Chain
.end()))
1903 // Now walk the successors. We need to establish whether this has a viable
1904 // exiting successor and whether it has a viable non-exiting successor.
1905 // We store the old exiting state and restore it if a viable looping
1906 // successor isn't found.
1907 MachineBasicBlock
*OldExitingBB
= ExitingBB
;
1908 BlockFrequency OldBestExitEdgeFreq
= BestExitEdgeFreq
;
1909 bool HasLoopingSucc
= false;
1910 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
1911 if (Succ
->isEHPad())
1915 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
1916 // Don't split chains, either this chain or the successor's chain.
1917 if (&Chain
== &SuccChain
) {
1918 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
1919 << getBlockName(Succ
) << " (chain conflict)\n");
1923 auto SuccProb
= MBPI
->getEdgeProbability(MBB
, Succ
);
1924 if (LoopBlockSet
.count(Succ
)) {
1925 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB
) << " -> "
1926 << getBlockName(Succ
) << " (" << SuccProb
<< ")\n");
1927 HasLoopingSucc
= true;
1931 unsigned SuccLoopDepth
= 0;
1932 if (MachineLoop
*ExitLoop
= MLI
->getLoopFor(Succ
)) {
1933 SuccLoopDepth
= ExitLoop
->getLoopDepth();
1934 if (ExitLoop
->contains(&L
))
1935 BlocksExitingToOuterLoop
.insert(MBB
);
1938 BlockFrequency ExitEdgeFreq
= MBFI
->getBlockFreq(MBB
) * SuccProb
;
1939 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
1940 << getBlockName(Succ
) << " [L:" << SuccLoopDepth
1942 MBFI
->printBlockFreq(dbgs(), ExitEdgeFreq
) << ")\n");
1943 // Note that we bias this toward an existing layout successor to retain
1944 // incoming order in the absence of better information. The exit must have
1945 // a frequency higher than the current exit before we consider breaking
1947 BranchProbability
Bias(100 - ExitBlockBias
, 100);
1948 if (!ExitingBB
|| SuccLoopDepth
> BestExitLoopDepth
||
1949 ExitEdgeFreq
> BestExitEdgeFreq
||
1950 (MBB
->isLayoutSuccessor(Succ
) &&
1951 !(ExitEdgeFreq
< BestExitEdgeFreq
* Bias
))) {
1952 BestExitEdgeFreq
= ExitEdgeFreq
;
1957 if (!HasLoopingSucc
) {
1958 // Restore the old exiting state, no viable looping successor was found.
1959 ExitingBB
= OldExitingBB
;
1960 BestExitEdgeFreq
= OldBestExitEdgeFreq
;
1963 // Without a candidate exiting block or with only a single block in the
1964 // loop, just use the loop header to layout the loop.
1967 dbgs() << " No other candidate exit blocks, using loop header\n");
1970 if (L
.getNumBlocks() == 1) {
1971 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
1975 // Also, if we have exit blocks which lead to outer loops but didn't select
1976 // one of them as the exiting block we are rotating toward, disable loop
1977 // rotation altogether.
1978 if (!BlocksExitingToOuterLoop
.empty() &&
1979 !BlocksExitingToOuterLoop
.count(ExitingBB
))
1982 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB
)
1987 /// Attempt to rotate an exiting block to the bottom of the loop.
1989 /// Once we have built a chain, try to rotate it to line up the hot exit block
1990 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1991 /// branches. For example, if the loop has fallthrough into its header and out
1992 /// of its bottom already, don't rotate it.
1993 void MachineBlockPlacement::rotateLoop(BlockChain
&LoopChain
,
1994 const MachineBasicBlock
*ExitingBB
,
1995 const BlockFilterSet
&LoopBlockSet
) {
1999 MachineBasicBlock
*Top
= *LoopChain
.begin();
2000 MachineBasicBlock
*Bottom
= *std::prev(LoopChain
.end());
2002 // If ExitingBB is already the last one in a chain then nothing to do.
2003 if (Bottom
== ExitingBB
)
2006 bool ViableTopFallthrough
= false;
2007 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
2008 BlockChain
*PredChain
= BlockToChain
[Pred
];
2009 if (!LoopBlockSet
.count(Pred
) &&
2010 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2011 ViableTopFallthrough
= true;
2016 // If the header has viable fallthrough, check whether the current loop
2017 // bottom is a viable exiting block. If so, bail out as rotating will
2018 // introduce an unnecessary branch.
2019 if (ViableTopFallthrough
) {
2020 for (MachineBasicBlock
*Succ
: Bottom
->successors()) {
2021 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2022 if (!LoopBlockSet
.count(Succ
) &&
2023 (!SuccChain
|| Succ
== *SuccChain
->begin()))
2028 BlockChain::iterator ExitIt
= llvm::find(LoopChain
, ExitingBB
);
2029 if (ExitIt
== LoopChain
.end())
2032 // Rotating a loop exit to the bottom when there is a fallthrough to top
2033 // trades the entry fallthrough for an exit fallthrough.
2034 // If there is no bottom->top edge, but the chosen exit block does have
2035 // a fallthrough, we break that fallthrough for nothing in return.
2037 // Let's consider an example. We have a built chain of basic blocks
2038 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2039 // By doing a rotation we get
2040 // Bk+1, ..., Bn, B1, ..., Bk
2041 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2042 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2043 // It might be compensated by fallthrough Bn -> B1.
2044 // So we have a condition to avoid creation of extra branch by loop rotation.
2045 // All below must be true to avoid loop rotation:
2046 // If there is a fallthrough to top (B1)
2047 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2048 // There is no fallthrough from bottom (Bn) to top (B1).
2049 // Please note that there is no exit fallthrough from Bn because we checked it
2051 if (ViableTopFallthrough
) {
2052 assert(std::next(ExitIt
) != LoopChain
.end() &&
2053 "Exit should not be last BB");
2054 MachineBasicBlock
*NextBlockInChain
= *std::next(ExitIt
);
2055 if (ExitingBB
->isSuccessor(NextBlockInChain
))
2056 if (!Bottom
->isSuccessor(Top
))
2060 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB
)
2062 std::rotate(LoopChain
.begin(), std::next(ExitIt
), LoopChain
.end());
2065 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2067 /// With profile data, we can determine the cost in terms of missed fall through
2068 /// opportunities when rotating a loop chain and select the best rotation.
2069 /// Basically, there are three kinds of cost to consider for each rotation:
2070 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2071 /// the loop to the loop header.
2072 /// 2. The possibly missed fall through edges (if they exist) from the loop
2073 /// exits to BB out of the loop.
2074 /// 3. The missed fall through edge (if it exists) from the last BB to the
2075 /// first BB in the loop chain.
2076 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2077 /// We select the best rotation with the smallest cost.
2078 void MachineBlockPlacement::rotateLoopWithProfile(
2079 BlockChain
&LoopChain
, const MachineLoop
&L
,
2080 const BlockFilterSet
&LoopBlockSet
) {
2081 auto HeaderBB
= L
.getHeader();
2082 auto HeaderIter
= llvm::find(LoopChain
, HeaderBB
);
2083 auto RotationPos
= LoopChain
.end();
2085 BlockFrequency SmallestRotationCost
= BlockFrequency::getMaxFrequency();
2087 // A utility lambda that scales up a block frequency by dividing it by a
2088 // branch probability which is the reciprocal of the scale.
2089 auto ScaleBlockFrequency
= [](BlockFrequency Freq
,
2090 unsigned Scale
) -> BlockFrequency
{
2093 // Use operator / between BlockFrequency and BranchProbability to implement
2094 // saturating multiplication.
2095 return Freq
/ BranchProbability(1, Scale
);
2098 // Compute the cost of the missed fall-through edge to the loop header if the
2099 // chain head is not the loop header. As we only consider natural loops with
2100 // single header, this computation can be done only once.
2101 BlockFrequency
HeaderFallThroughCost(0);
2102 for (auto *Pred
: HeaderBB
->predecessors()) {
2103 BlockChain
*PredChain
= BlockToChain
[Pred
];
2104 if (!LoopBlockSet
.count(Pred
) &&
2105 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2107 MBFI
->getBlockFreq(Pred
) * MBPI
->getEdgeProbability(Pred
, HeaderBB
);
2108 auto FallThruCost
= ScaleBlockFrequency(EdgeFreq
, MisfetchCost
);
2109 // If the predecessor has only an unconditional jump to the header, we
2110 // need to consider the cost of this jump.
2111 if (Pred
->succ_size() == 1)
2112 FallThruCost
+= ScaleBlockFrequency(EdgeFreq
, JumpInstCost
);
2113 HeaderFallThroughCost
= std::max(HeaderFallThroughCost
, FallThruCost
);
2117 // Here we collect all exit blocks in the loop, and for each exit we find out
2118 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2119 // as the sum of frequencies of exit edges we collect here, excluding the exit
2120 // edge from the tail of the loop chain.
2121 SmallVector
<std::pair
<MachineBasicBlock
*, BlockFrequency
>, 4> ExitsWithFreq
;
2122 for (auto BB
: LoopChain
) {
2123 auto LargestExitEdgeProb
= BranchProbability::getZero();
2124 for (auto *Succ
: BB
->successors()) {
2125 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2126 if (!LoopBlockSet
.count(Succ
) &&
2127 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
2128 auto SuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
2129 LargestExitEdgeProb
= std::max(LargestExitEdgeProb
, SuccProb
);
2132 if (LargestExitEdgeProb
> BranchProbability::getZero()) {
2133 auto ExitFreq
= MBFI
->getBlockFreq(BB
) * LargestExitEdgeProb
;
2134 ExitsWithFreq
.emplace_back(BB
, ExitFreq
);
2138 // In this loop we iterate every block in the loop chain and calculate the
2139 // cost assuming the block is the head of the loop chain. When the loop ends,
2140 // we should have found the best candidate as the loop chain's head.
2141 for (auto Iter
= LoopChain
.begin(), TailIter
= std::prev(LoopChain
.end()),
2142 EndIter
= LoopChain
.end();
2143 Iter
!= EndIter
; Iter
++, TailIter
++) {
2144 // TailIter is used to track the tail of the loop chain if the block we are
2145 // checking (pointed by Iter) is the head of the chain.
2146 if (TailIter
== LoopChain
.end())
2147 TailIter
= LoopChain
.begin();
2149 auto TailBB
= *TailIter
;
2151 // Calculate the cost by putting this BB to the top.
2152 BlockFrequency Cost
= 0;
2154 // If the current BB is the loop header, we need to take into account the
2155 // cost of the missed fall through edge from outside of the loop to the
2157 if (Iter
!= HeaderIter
)
2158 Cost
+= HeaderFallThroughCost
;
2160 // Collect the loop exit cost by summing up frequencies of all exit edges
2161 // except the one from the chain tail.
2162 for (auto &ExitWithFreq
: ExitsWithFreq
)
2163 if (TailBB
!= ExitWithFreq
.first
)
2164 Cost
+= ExitWithFreq
.second
;
2166 // The cost of breaking the once fall-through edge from the tail to the top
2167 // of the loop chain. Here we need to consider three cases:
2168 // 1. If the tail node has only one successor, then we will get an
2169 // additional jmp instruction. So the cost here is (MisfetchCost +
2170 // JumpInstCost) * tail node frequency.
2171 // 2. If the tail node has two successors, then we may still get an
2172 // additional jmp instruction if the layout successor after the loop
2173 // chain is not its CFG successor. Note that the more frequently executed
2174 // jmp instruction will be put ahead of the other one. Assume the
2175 // frequency of those two branches are x and y, where x is the frequency
2176 // of the edge to the chain head, then the cost will be
2177 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2178 // 3. If the tail node has more than two successors (this rarely happens),
2179 // we won't consider any additional cost.
2180 if (TailBB
->isSuccessor(*Iter
)) {
2181 auto TailBBFreq
= MBFI
->getBlockFreq(TailBB
);
2182 if (TailBB
->succ_size() == 1)
2183 Cost
+= ScaleBlockFrequency(TailBBFreq
.getFrequency(),
2184 MisfetchCost
+ JumpInstCost
);
2185 else if (TailBB
->succ_size() == 2) {
2186 auto TailToHeadProb
= MBPI
->getEdgeProbability(TailBB
, *Iter
);
2187 auto TailToHeadFreq
= TailBBFreq
* TailToHeadProb
;
2188 auto ColderEdgeFreq
= TailToHeadProb
> BranchProbability(1, 2)
2189 ? TailBBFreq
* TailToHeadProb
.getCompl()
2191 Cost
+= ScaleBlockFrequency(TailToHeadFreq
, MisfetchCost
) +
2192 ScaleBlockFrequency(ColderEdgeFreq
, JumpInstCost
);
2196 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2197 << getBlockName(*Iter
)
2198 << " to the top: " << Cost
.getFrequency() << "\n");
2200 if (Cost
< SmallestRotationCost
) {
2201 SmallestRotationCost
= Cost
;
2206 if (RotationPos
!= LoopChain
.end()) {
2207 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos
)
2208 << " to the top\n");
2209 std::rotate(LoopChain
.begin(), RotationPos
, LoopChain
.end());
2213 /// Collect blocks in the given loop that are to be placed.
2215 /// When profile data is available, exclude cold blocks from the returned set;
2216 /// otherwise, collect all blocks in the loop.
2217 MachineBlockPlacement::BlockFilterSet
2218 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop
&L
) {
2219 BlockFilterSet LoopBlockSet
;
2221 // Filter cold blocks off from LoopBlockSet when profile data is available.
2222 // Collect the sum of frequencies of incoming edges to the loop header from
2223 // outside. If we treat the loop as a super block, this is the frequency of
2224 // the loop. Then for each block in the loop, we calculate the ratio between
2225 // its frequency and the frequency of the loop block. When it is too small,
2226 // don't add it to the loop chain. If there are outer loops, then this block
2227 // will be merged into the first outer loop chain for which this block is not
2228 // cold anymore. This needs precise profile data and we only do this when
2229 // profile data is available.
2230 if (F
->getFunction().hasProfileData() || ForceLoopColdBlock
) {
2231 BlockFrequency
LoopFreq(0);
2232 for (auto LoopPred
: L
.getHeader()->predecessors())
2233 if (!L
.contains(LoopPred
))
2234 LoopFreq
+= MBFI
->getBlockFreq(LoopPred
) *
2235 MBPI
->getEdgeProbability(LoopPred
, L
.getHeader());
2237 for (MachineBasicBlock
*LoopBB
: L
.getBlocks()) {
2238 auto Freq
= MBFI
->getBlockFreq(LoopBB
).getFrequency();
2239 if (Freq
== 0 || LoopFreq
.getFrequency() / Freq
> LoopToColdBlockRatio
)
2241 LoopBlockSet
.insert(LoopBB
);
2244 LoopBlockSet
.insert(L
.block_begin(), L
.block_end());
2246 return LoopBlockSet
;
2249 /// Forms basic block chains from the natural loop structures.
2251 /// These chains are designed to preserve the existing *structure* of the code
2252 /// as much as possible. We can then stitch the chains together in a way which
2253 /// both preserves the topological structure and minimizes taken conditional
2255 void MachineBlockPlacement::buildLoopChains(const MachineLoop
&L
) {
2256 // First recurse through any nested loops, building chains for those inner
2258 for (const MachineLoop
*InnerLoop
: L
)
2259 buildLoopChains(*InnerLoop
);
2261 assert(BlockWorkList
.empty() &&
2262 "BlockWorkList not empty when starting to build loop chains.");
2263 assert(EHPadWorkList
.empty() &&
2264 "EHPadWorkList not empty when starting to build loop chains.");
2265 BlockFilterSet LoopBlockSet
= collectLoopBlockSet(L
);
2267 // Check if we have profile data for this function. If yes, we will rotate
2268 // this loop by modeling costs more precisely which requires the profile data
2269 // for better layout.
2270 bool RotateLoopWithProfile
=
2271 ForcePreciseRotationCost
||
2272 (PreciseRotationCost
&& F
->getFunction().hasProfileData());
2274 // First check to see if there is an obviously preferable top block for the
2275 // loop. This will default to the header, but may end up as one of the
2276 // predecessors to the header if there is one which will result in strictly
2277 // fewer branches in the loop body.
2278 // When we use profile data to rotate the loop, this is unnecessary.
2279 MachineBasicBlock
*LoopTop
=
2280 RotateLoopWithProfile
? L
.getHeader() : findBestLoopTop(L
, LoopBlockSet
);
2282 // If we selected just the header for the loop top, look for a potentially
2283 // profitable exit block in the event that rotating the loop can eliminate
2284 // branches by placing an exit edge at the bottom.
2286 // Loops are processed innermost to uttermost, make sure we clear
2287 // PreferredLoopExit before processing a new loop.
2288 PreferredLoopExit
= nullptr;
2289 if (!RotateLoopWithProfile
&& LoopTop
== L
.getHeader())
2290 PreferredLoopExit
= findBestLoopExit(L
, LoopBlockSet
);
2292 BlockChain
&LoopChain
= *BlockToChain
[LoopTop
];
2294 // FIXME: This is a really lame way of walking the chains in the loop: we
2295 // walk the blocks, and use a set to prevent visiting a particular chain
2297 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2298 assert(LoopChain
.UnscheduledPredecessors
== 0 &&
2299 "LoopChain should not have unscheduled predecessors.");
2300 UpdatedPreds
.insert(&LoopChain
);
2302 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2303 fillWorkLists(LoopBB
, UpdatedPreds
, &LoopBlockSet
);
2305 buildChain(LoopTop
, LoopChain
, &LoopBlockSet
);
2307 if (RotateLoopWithProfile
)
2308 rotateLoopWithProfile(LoopChain
, L
, LoopBlockSet
);
2310 rotateLoop(LoopChain
, PreferredLoopExit
, LoopBlockSet
);
2313 // Crash at the end so we get all of the debugging output first.
2314 bool BadLoop
= false;
2315 if (LoopChain
.UnscheduledPredecessors
) {
2317 dbgs() << "Loop chain contains a block without its preds placed!\n"
2318 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2319 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n";
2321 for (MachineBasicBlock
*ChainBB
: LoopChain
) {
2322 dbgs() << " ... " << getBlockName(ChainBB
) << "\n";
2323 if (!LoopBlockSet
.remove(ChainBB
)) {
2324 // We don't mark the loop as bad here because there are real situations
2325 // where this can occur. For example, with an unanalyzable fallthrough
2326 // from a loop block to a non-loop block or vice versa.
2327 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2328 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2329 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2330 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2334 if (!LoopBlockSet
.empty()) {
2336 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2337 dbgs() << "Loop contains blocks never placed into a chain!\n"
2338 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2339 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2340 << " Bad block: " << getBlockName(LoopBB
) << "\n";
2342 assert(!BadLoop
&& "Detected problems with the placement of this loop.");
2345 BlockWorkList
.clear();
2346 EHPadWorkList
.clear();
2349 void MachineBlockPlacement::buildCFGChains() {
2350 // Ensure that every BB in the function has an associated chain to simplify
2351 // the assumptions of the remaining algorithm.
2352 SmallVector
<MachineOperand
, 4> Cond
; // For AnalyzeBranch.
2353 for (MachineFunction::iterator FI
= F
->begin(), FE
= F
->end(); FI
!= FE
;
2355 MachineBasicBlock
*BB
= &*FI
;
2357 new (ChainAllocator
.Allocate()) BlockChain(BlockToChain
, BB
);
2358 // Also, merge any blocks which we cannot reason about and must preserve
2359 // the exact fallthrough behavior for.
2362 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2363 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
) || !FI
->canFallThrough())
2366 MachineFunction::iterator NextFI
= std::next(FI
);
2367 MachineBasicBlock
*NextBB
= &*NextFI
;
2368 // Ensure that the layout successor is a viable block, as we know that
2369 // fallthrough is a possibility.
2370 assert(NextFI
!= FE
&& "Can't fallthrough past the last block.");
2371 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2372 << getBlockName(BB
) << " -> " << getBlockName(NextBB
)
2374 Chain
->merge(NextBB
, nullptr);
2376 BlocksWithUnanalyzableExits
.insert(&*BB
);
2383 // Build any loop-based chains.
2384 PreferredLoopExit
= nullptr;
2385 for (MachineLoop
*L
: *MLI
)
2386 buildLoopChains(*L
);
2388 assert(BlockWorkList
.empty() &&
2389 "BlockWorkList should be empty before building final chain.");
2390 assert(EHPadWorkList
.empty() &&
2391 "EHPadWorkList should be empty before building final chain.");
2393 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2394 for (MachineBasicBlock
&MBB
: *F
)
2395 fillWorkLists(&MBB
, UpdatedPreds
);
2397 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2398 buildChain(&F
->front(), FunctionChain
);
2401 using FunctionBlockSetType
= SmallPtrSet
<MachineBasicBlock
*, 16>;
2404 // Crash at the end so we get all of the debugging output first.
2405 bool BadFunc
= false;
2406 FunctionBlockSetType FunctionBlockSet
;
2407 for (MachineBasicBlock
&MBB
: *F
)
2408 FunctionBlockSet
.insert(&MBB
);
2410 for (MachineBasicBlock
*ChainBB
: FunctionChain
)
2411 if (!FunctionBlockSet
.erase(ChainBB
)) {
2413 dbgs() << "Function chain contains a block not in the function!\n"
2414 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2417 if (!FunctionBlockSet
.empty()) {
2419 for (MachineBasicBlock
*RemainingBB
: FunctionBlockSet
)
2420 dbgs() << "Function contains blocks never placed into a chain!\n"
2421 << " Bad block: " << getBlockName(RemainingBB
) << "\n";
2423 assert(!BadFunc
&& "Detected problems with the block placement.");
2426 // Splice the blocks into place.
2427 MachineFunction::iterator InsertPos
= F
->begin();
2428 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F
->getName() << "\n");
2429 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2430 LLVM_DEBUG(dbgs() << (ChainBB
== *FunctionChain
.begin() ? "Placing chain "
2432 << getBlockName(ChainBB
) << "\n");
2433 if (InsertPos
!= MachineFunction::iterator(ChainBB
))
2434 F
->splice(InsertPos
, ChainBB
);
2438 // Update the terminator of the previous block.
2439 if (ChainBB
== *FunctionChain
.begin())
2441 MachineBasicBlock
*PrevBB
= &*std::prev(MachineFunction::iterator(ChainBB
));
2443 // FIXME: It would be awesome of updateTerminator would just return rather
2444 // than assert when the branch cannot be analyzed in order to remove this
2447 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2450 if (!BlocksWithUnanalyzableExits
.count(PrevBB
)) {
2451 // Given the exact block placement we chose, we may actually not _need_ to
2452 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2453 // do that at this point is a bug.
2454 assert((!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
) ||
2455 !PrevBB
->canFallThrough()) &&
2456 "Unexpected block with un-analyzable fallthrough!");
2458 TBB
= FBB
= nullptr;
2462 // The "PrevBB" is not yet updated to reflect current code layout, so,
2463 // o. it may fall-through to a block without explicit "goto" instruction
2464 // before layout, and no longer fall-through it after layout; or
2465 // o. just opposite.
2467 // analyzeBranch() may return erroneous value for FBB when these two
2468 // situations take place. For the first scenario FBB is mistakenly set NULL;
2469 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2470 // mistakenly pointing to "*BI".
2471 // Thus, if the future change needs to use FBB before the layout is set, it
2472 // has to correct FBB first by using the code similar to the following:
2474 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2475 // PrevBB->updateTerminator();
2477 // TBB = FBB = nullptr;
2478 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2479 // // FIXME: This should never take place.
2480 // TBB = FBB = nullptr;
2483 if (!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
))
2484 PrevBB
->updateTerminator();
2487 // Fixup the last block.
2489 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2490 if (!TII
->analyzeBranch(F
->back(), TBB
, FBB
, Cond
))
2491 F
->back().updateTerminator();
2493 BlockWorkList
.clear();
2494 EHPadWorkList
.clear();
2497 void MachineBlockPlacement::optimizeBranches() {
2498 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2499 SmallVector
<MachineOperand
, 4> Cond
; // For AnalyzeBranch.
2501 // Now that all the basic blocks in the chain have the proper layout,
2502 // make a final call to AnalyzeBranch with AllowModify set.
2503 // Indeed, the target may be able to optimize the branches in a way we
2504 // cannot because all branches may not be analyzable.
2505 // E.g., the target may be able to remove an unconditional branch to
2506 // a fallthrough when it occurs after predicated terminators.
2507 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2509 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2510 if (!TII
->analyzeBranch(*ChainBB
, TBB
, FBB
, Cond
, /*AllowModify*/ true)) {
2511 // If PrevBB has a two-way branch, try to re-order the branches
2512 // such that we branch to the successor with higher probability first.
2513 if (TBB
&& !Cond
.empty() && FBB
&&
2514 MBPI
->getEdgeProbability(ChainBB
, FBB
) >
2515 MBPI
->getEdgeProbability(ChainBB
, TBB
) &&
2516 !TII
->reverseBranchCondition(Cond
)) {
2517 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2518 << getBlockName(ChainBB
) << "\n");
2519 LLVM_DEBUG(dbgs() << " Edge probability: "
2520 << MBPI
->getEdgeProbability(ChainBB
, FBB
) << " vs "
2521 << MBPI
->getEdgeProbability(ChainBB
, TBB
) << "\n");
2522 DebugLoc dl
; // FIXME: this is nowhere
2523 TII
->removeBranch(*ChainBB
);
2524 TII
->insertBranch(*ChainBB
, FBB
, TBB
, Cond
, dl
);
2525 ChainBB
->updateTerminator();
2531 void MachineBlockPlacement::alignBlocks() {
2532 // Walk through the backedges of the function now that we have fully laid out
2533 // the basic blocks and align the destination of each backedge. We don't rely
2534 // exclusively on the loop info here so that we can align backedges in
2535 // unnatural CFGs and backedges that were introduced purely because of the
2536 // loop rotations done during this layout pass.
2537 if (F
->getFunction().optForMinSize() ||
2538 (F
->getFunction().optForSize() && !TLI
->alignLoopsWithOptSize()))
2540 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2541 if (FunctionChain
.begin() == FunctionChain
.end())
2542 return; // Empty chain.
2544 const BranchProbability
ColdProb(1, 5); // 20%
2545 BlockFrequency EntryFreq
= MBFI
->getBlockFreq(&F
->front());
2546 BlockFrequency WeightedEntryFreq
= EntryFreq
* ColdProb
;
2547 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2548 if (ChainBB
== *FunctionChain
.begin())
2551 // Don't align non-looping basic blocks. These are unlikely to execute
2552 // enough times to matter in practice. Note that we'll still handle
2553 // unnatural CFGs inside of a natural outer loop (the common case) and
2555 MachineLoop
*L
= MLI
->getLoopFor(ChainBB
);
2559 unsigned Align
= TLI
->getPrefLoopAlignment(L
);
2561 continue; // Don't care about loop alignment.
2563 // If the block is cold relative to the function entry don't waste space
2565 BlockFrequency Freq
= MBFI
->getBlockFreq(ChainBB
);
2566 if (Freq
< WeightedEntryFreq
)
2569 // If the block is cold relative to its loop header, don't align it
2570 // regardless of what edges into the block exist.
2571 MachineBasicBlock
*LoopHeader
= L
->getHeader();
2572 BlockFrequency LoopHeaderFreq
= MBFI
->getBlockFreq(LoopHeader
);
2573 if (Freq
< (LoopHeaderFreq
* ColdProb
))
2576 // Check for the existence of a non-layout predecessor which would benefit
2577 // from aligning this block.
2578 MachineBasicBlock
*LayoutPred
=
2579 &*std::prev(MachineFunction::iterator(ChainBB
));
2581 // Force alignment if all the predecessors are jumps. We already checked
2582 // that the block isn't cold above.
2583 if (!LayoutPred
->isSuccessor(ChainBB
)) {
2584 ChainBB
->setAlignment(Align
);
2588 // Align this block if the layout predecessor's edge into this block is
2589 // cold relative to the block. When this is true, other predecessors make up
2590 // all of the hot entries into the block and thus alignment is likely to be
2592 BranchProbability LayoutProb
=
2593 MBPI
->getEdgeProbability(LayoutPred
, ChainBB
);
2594 BlockFrequency LayoutEdgeFreq
= MBFI
->getBlockFreq(LayoutPred
) * LayoutProb
;
2595 if (LayoutEdgeFreq
<= (Freq
* ColdProb
))
2596 ChainBB
->setAlignment(Align
);
2600 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2601 /// it was duplicated into its chain predecessor and removed.
2602 /// \p BB - Basic block that may be duplicated.
2604 /// \p LPred - Chosen layout predecessor of \p BB.
2605 /// Updated to be the chain end if LPred is removed.
2606 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2607 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2608 /// Used to identify which blocks to update predecessor
2610 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2611 /// chosen in the given order due to unnatural CFG
2612 /// only needed if \p BB is removed and
2613 /// \p PrevUnplacedBlockIt pointed to \p BB.
2614 /// @return true if \p BB was removed.
2615 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2616 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
2617 const MachineBasicBlock
*LoopHeaderBB
,
2618 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2619 MachineFunction::iterator
&PrevUnplacedBlockIt
) {
2620 bool Removed
, DuplicatedToLPred
;
2621 bool DuplicatedToOriginalLPred
;
2622 Removed
= maybeTailDuplicateBlock(BB
, LPred
, Chain
, BlockFilter
,
2623 PrevUnplacedBlockIt
,
2627 DuplicatedToOriginalLPred
= DuplicatedToLPred
;
2628 // Iteratively try to duplicate again. It can happen that a block that is
2629 // duplicated into is still small enough to be duplicated again.
2630 // No need to call markBlockSuccessors in this case, as the blocks being
2631 // duplicated from here on are already scheduled.
2632 // Note that DuplicatedToLPred always implies Removed.
2633 while (DuplicatedToLPred
) {
2634 assert(Removed
&& "Block must have been removed to be duplicated into its "
2635 "layout predecessor.");
2636 MachineBasicBlock
*DupBB
, *DupPred
;
2637 // The removal callback causes Chain.end() to be updated when a block is
2638 // removed. On the first pass through the loop, the chain end should be the
2639 // same as it was on function entry. On subsequent passes, because we are
2640 // duplicating the block at the end of the chain, if it is removed the
2641 // chain will have shrunk by one block.
2642 BlockChain::iterator ChainEnd
= Chain
.end();
2643 DupBB
= *(--ChainEnd
);
2644 // Now try to duplicate again.
2645 if (ChainEnd
== Chain
.begin())
2647 DupPred
= *std::prev(ChainEnd
);
2648 Removed
= maybeTailDuplicateBlock(DupBB
, DupPred
, Chain
, BlockFilter
,
2649 PrevUnplacedBlockIt
,
2652 // If BB was duplicated into LPred, it is now scheduled. But because it was
2653 // removed, markChainSuccessors won't be called for its chain. Instead we
2654 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2655 // at the end because repeating the tail duplication can increase the number
2656 // of unscheduled predecessors.
2657 LPred
= *std::prev(Chain
.end());
2658 if (DuplicatedToOriginalLPred
)
2659 markBlockSuccessors(Chain
, LPred
, LoopHeaderBB
, BlockFilter
);
2663 /// Tail duplicate \p BB into (some) predecessors if profitable.
2664 /// \p BB - Basic block that may be duplicated
2665 /// \p LPred - Chosen layout predecessor of \p BB
2666 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2667 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2668 /// Used to identify which blocks to update predecessor
2670 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2671 /// chosen in the given order due to unnatural CFG
2672 /// only needed if \p BB is removed and
2673 /// \p PrevUnplacedBlockIt pointed to \p BB.
2674 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2675 /// only be true if the block was removed.
2676 /// \return - True if the block was duplicated into all preds and removed.
2677 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2678 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
2679 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2680 MachineFunction::iterator
&PrevUnplacedBlockIt
,
2681 bool &DuplicatedToLPred
) {
2682 DuplicatedToLPred
= false;
2683 if (!shouldTailDuplicate(BB
))
2686 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB
->getNumber()
2689 // This has to be a callback because none of it can be done after
2691 bool Removed
= false;
2692 auto RemovalCallback
=
2693 [&](MachineBasicBlock
*RemBB
) {
2694 // Signal to outer function
2697 // Conservative default.
2698 bool InWorkList
= true;
2699 // Remove from the Chain and Chain Map
2700 if (BlockToChain
.count(RemBB
)) {
2701 BlockChain
*Chain
= BlockToChain
[RemBB
];
2702 InWorkList
= Chain
->UnscheduledPredecessors
== 0;
2703 Chain
->remove(RemBB
);
2704 BlockToChain
.erase(RemBB
);
2707 // Handle the unplaced block iterator
2708 if (&(*PrevUnplacedBlockIt
) == RemBB
) {
2709 PrevUnplacedBlockIt
++;
2712 // Handle the Work Lists
2714 SmallVectorImpl
<MachineBasicBlock
*> &RemoveList
= BlockWorkList
;
2715 if (RemBB
->isEHPad())
2716 RemoveList
= EHPadWorkList
;
2718 llvm::remove_if(RemoveList
,
2719 [RemBB
](MachineBasicBlock
*BB
) {
2725 // Handle the filter set
2727 BlockFilter
->remove(RemBB
);
2730 // Remove the block from loop info.
2731 MLI
->removeBlock(RemBB
);
2732 if (RemBB
== PreferredLoopExit
)
2733 PreferredLoopExit
= nullptr;
2735 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2736 << getBlockName(RemBB
) << "\n");
2738 auto RemovalCallbackRef
=
2739 function_ref
<void(MachineBasicBlock
*)>(RemovalCallback
);
2741 SmallVector
<MachineBasicBlock
*, 8> DuplicatedPreds
;
2742 bool IsSimple
= TailDup
.isSimpleBB(BB
);
2743 TailDup
.tailDuplicateAndUpdate(IsSimple
, BB
, LPred
,
2744 &DuplicatedPreds
, &RemovalCallbackRef
);
2746 // Update UnscheduledPredecessors to reflect tail-duplication.
2747 DuplicatedToLPred
= false;
2748 for (MachineBasicBlock
*Pred
: DuplicatedPreds
) {
2749 // We're only looking for unscheduled predecessors that match the filter.
2750 BlockChain
* PredChain
= BlockToChain
[Pred
];
2752 DuplicatedToLPred
= true;
2753 if (Pred
== LPred
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
2754 || PredChain
== &Chain
)
2756 for (MachineBasicBlock
*NewSucc
: Pred
->successors()) {
2757 if (BlockFilter
&& !BlockFilter
->count(NewSucc
))
2759 BlockChain
*NewChain
= BlockToChain
[NewSucc
];
2760 if (NewChain
!= &Chain
&& NewChain
!= PredChain
)
2761 NewChain
->UnscheduledPredecessors
++;
2767 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction
&MF
) {
2768 if (skipFunction(MF
.getFunction()))
2771 // Check for single-block functions and skip them.
2772 if (std::next(MF
.begin()) == MF
.end())
2776 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
2777 MBFI
= llvm::make_unique
<BranchFolder::MBFIWrapper
>(
2778 getAnalysis
<MachineBlockFrequencyInfo
>());
2779 MLI
= &getAnalysis
<MachineLoopInfo
>();
2780 TII
= MF
.getSubtarget().getInstrInfo();
2781 TLI
= MF
.getSubtarget().getTargetLowering();
2784 // Initialize PreferredLoopExit to nullptr here since it may never be set if
2785 // there are no MachineLoops.
2786 PreferredLoopExit
= nullptr;
2788 assert(BlockToChain
.empty() &&
2789 "BlockToChain map should be empty before starting placement.");
2790 assert(ComputedEdges
.empty() &&
2791 "Computed Edge map should be empty before starting placement.");
2793 unsigned TailDupSize
= TailDupPlacementThreshold
;
2794 // If only the aggressive threshold is explicitly set, use it.
2795 if (TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0 &&
2796 TailDupPlacementThreshold
.getNumOccurrences() == 0)
2797 TailDupSize
= TailDupPlacementAggressiveThreshold
;
2799 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
2800 // For aggressive optimization, we can adjust some thresholds to be less
2802 if (PassConfig
->getOptLevel() >= CodeGenOpt::Aggressive
) {
2803 // At O3 we should be more willing to copy blocks for tail duplication. This
2804 // increases size pressure, so we only do it at O3
2805 // Do this unless only the regular threshold is explicitly set.
2806 if (TailDupPlacementThreshold
.getNumOccurrences() == 0 ||
2807 TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0)
2808 TailDupSize
= TailDupPlacementAggressiveThreshold
;
2811 if (allowTailDupPlacement()) {
2812 MPDT
= &getAnalysis
<MachinePostDominatorTree
>();
2813 if (MF
.getFunction().optForSize())
2815 bool PreRegAlloc
= false;
2816 TailDup
.initMF(MF
, PreRegAlloc
, MBPI
, /* LayoutMode */ true, TailDupSize
);
2817 precomputeTriangleChains();
2822 // Changing the layout can create new tail merging opportunities.
2823 // TailMerge can create jump into if branches that make CFG irreducible for
2824 // HW that requires structured CFG.
2825 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
2826 PassConfig
->getEnableTailMerge() &&
2827 BranchFoldPlacement
;
2828 // No tail merging opportunities if the block number is less than four.
2829 if (MF
.size() > 3 && EnableTailMerge
) {
2830 unsigned TailMergeSize
= TailDupSize
+ 1;
2831 BranchFolder
BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI
,
2832 *MBPI
, TailMergeSize
);
2834 if (BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(),
2835 getAnalysisIfAvailable
<MachineModuleInfo
>(), MLI
,
2836 /*AfterBlockPlacement=*/true)) {
2837 // Redo the layout if tail merging creates/removes/moves blocks.
2838 BlockToChain
.clear();
2839 ComputedEdges
.clear();
2840 // Must redo the post-dominator tree if blocks were changed.
2842 MPDT
->runOnMachineFunction(MF
);
2843 ChainAllocator
.DestroyAll();
2851 BlockToChain
.clear();
2852 ComputedEdges
.clear();
2853 ChainAllocator
.DestroyAll();
2856 // Align all of the blocks in the function to a specific alignment.
2857 for (MachineBasicBlock
&MBB
: MF
)
2858 MBB
.setAlignment(AlignAllBlock
);
2859 else if (AlignAllNonFallThruBlocks
) {
2860 // Align all of the blocks that have no fall-through predecessors to a
2861 // specific alignment.
2862 for (auto MBI
= std::next(MF
.begin()), MBE
= MF
.end(); MBI
!= MBE
; ++MBI
) {
2863 auto LayoutPred
= std::prev(MBI
);
2864 if (!LayoutPred
->isSuccessor(&*MBI
))
2865 MBI
->setAlignment(AlignAllNonFallThruBlocks
);
2868 if (ViewBlockLayoutWithBFI
!= GVDT_None
&&
2869 (ViewBlockFreqFuncName
.empty() ||
2870 F
->getFunction().getName().equals(ViewBlockFreqFuncName
))) {
2871 MBFI
->view("MBP." + MF
.getName(), false);
2875 // We always return true as we have no way to track whether the final order
2876 // differs from the original order.
2882 /// A pass to compute block placement statistics.
2884 /// A separate pass to compute interesting statistics for evaluating block
2885 /// placement. This is separate from the actual placement pass so that they can
2886 /// be computed in the absence of any placement transformations or when using
2887 /// alternative placement strategies.
2888 class MachineBlockPlacementStats
: public MachineFunctionPass
{
2889 /// A handle to the branch probability pass.
2890 const MachineBranchProbabilityInfo
*MBPI
;
2892 /// A handle to the function-wide block frequency pass.
2893 const MachineBlockFrequencyInfo
*MBFI
;
2896 static char ID
; // Pass identification, replacement for typeid
2898 MachineBlockPlacementStats() : MachineFunctionPass(ID
) {
2899 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2902 bool runOnMachineFunction(MachineFunction
&F
) override
;
2904 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2905 AU
.addRequired
<MachineBranchProbabilityInfo
>();
2906 AU
.addRequired
<MachineBlockFrequencyInfo
>();
2907 AU
.setPreservesAll();
2908 MachineFunctionPass::getAnalysisUsage(AU
);
2912 } // end anonymous namespace
2914 char MachineBlockPlacementStats::ID
= 0;
2916 char &llvm::MachineBlockPlacementStatsID
= MachineBlockPlacementStats::ID
;
2918 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats
, "block-placement-stats",
2919 "Basic Block Placement Stats", false, false)
2920 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
2921 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
2922 INITIALIZE_PASS_END(MachineBlockPlacementStats
, "block-placement-stats",
2923 "Basic Block Placement Stats", false, false)
2925 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction
&F
) {
2926 // Check for single-block functions and skip them.
2927 if (std::next(F
.begin()) == F
.end())
2930 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
2931 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
2933 for (MachineBasicBlock
&MBB
: F
) {
2934 BlockFrequency BlockFreq
= MBFI
->getBlockFreq(&MBB
);
2935 Statistic
&NumBranches
=
2936 (MBB
.succ_size() > 1) ? NumCondBranches
: NumUncondBranches
;
2937 Statistic
&BranchTakenFreq
=
2938 (MBB
.succ_size() > 1) ? CondBranchTakenFreq
: UncondBranchTakenFreq
;
2939 for (MachineBasicBlock
*Succ
: MBB
.successors()) {
2940 // Skip if this successor is a fallthrough.
2941 if (MBB
.isLayoutSuccessor(Succ
))
2944 BlockFrequency EdgeFreq
=
2945 BlockFreq
* MBPI
->getEdgeProbability(&MBB
, Succ
);
2947 BranchTakenFreq
+= EdgeFreq
.getFrequency();