1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetOpcodes.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/MC/MCInstrDesc.h"
35 #include "llvm/MC/MCRegisterInfo.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Allocator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/RecyclingAllocator.h"
40 #include "llvm/Support/raw_ostream.h"
48 #define DEBUG_TYPE "machine-cse"
50 STATISTIC(NumCoalesces
, "Number of copies coalesced");
51 STATISTIC(NumCSEs
, "Number of common subexpression eliminated");
52 STATISTIC(NumPhysCSEs
,
53 "Number of physreg referencing common subexpr eliminated");
54 STATISTIC(NumCrossBBCSEs
,
55 "Number of cross-MBB physreg referencing CS eliminated");
56 STATISTIC(NumCommutes
, "Number of copies coalesced after commuting");
60 class MachineCSE
: public MachineFunctionPass
{
61 const TargetInstrInfo
*TII
;
62 const TargetRegisterInfo
*TRI
;
64 MachineDominatorTree
*DT
;
65 MachineRegisterInfo
*MRI
;
68 static char ID
; // Pass identification
70 MachineCSE() : MachineFunctionPass(ID
) {
71 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
74 bool runOnMachineFunction(MachineFunction
&MF
) override
;
76 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
78 MachineFunctionPass::getAnalysisUsage(AU
);
79 AU
.addRequired
<AAResultsWrapperPass
>();
80 AU
.addPreservedID(MachineLoopInfoID
);
81 AU
.addRequired
<MachineDominatorTree
>();
82 AU
.addPreserved
<MachineDominatorTree
>();
85 void releaseMemory() override
{
91 using AllocatorTy
= RecyclingAllocator
<BumpPtrAllocator
,
92 ScopedHashTableVal
<MachineInstr
*, unsigned>>;
94 ScopedHashTable
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
,
96 using ScopeType
= ScopedHTType::ScopeTy
;
98 unsigned LookAheadLimit
= 0;
99 DenseMap
<MachineBasicBlock
*, ScopeType
*> ScopeMap
;
101 SmallVector
<MachineInstr
*, 64> Exps
;
104 bool PerformTrivialCopyPropagation(MachineInstr
*MI
,
105 MachineBasicBlock
*MBB
);
106 bool isPhysDefTriviallyDead(unsigned Reg
,
107 MachineBasicBlock::const_iterator I
,
108 MachineBasicBlock::const_iterator E
) const;
109 bool hasLivePhysRegDefUses(const MachineInstr
*MI
,
110 const MachineBasicBlock
*MBB
,
111 SmallSet
<unsigned,8> &PhysRefs
,
112 SmallVectorImpl
<unsigned> &PhysDefs
,
113 bool &PhysUseDef
) const;
114 bool PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
115 SmallSet
<unsigned,8> &PhysRefs
,
116 SmallVectorImpl
<unsigned> &PhysDefs
,
117 bool &NonLocal
) const;
118 bool isCSECandidate(MachineInstr
*MI
);
119 bool isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
120 MachineInstr
*CSMI
, MachineInstr
*MI
);
121 void EnterScope(MachineBasicBlock
*MBB
);
122 void ExitScope(MachineBasicBlock
*MBB
);
123 bool ProcessBlock(MachineBasicBlock
*MBB
);
124 void ExitScopeIfDone(MachineDomTreeNode
*Node
,
125 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
);
126 bool PerformCSE(MachineDomTreeNode
*Node
);
129 } // end anonymous namespace
131 char MachineCSE::ID
= 0;
133 char &llvm::MachineCSEID
= MachineCSE::ID
;
135 INITIALIZE_PASS_BEGIN(MachineCSE
, DEBUG_TYPE
,
136 "Machine Common Subexpression Elimination", false, false)
137 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
138 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
139 INITIALIZE_PASS_END(MachineCSE
, DEBUG_TYPE
,
140 "Machine Common Subexpression Elimination", false, false)
142 /// The source register of a COPY machine instruction can be propagated to all
143 /// its users, and this propagation could increase the probability of finding
144 /// common subexpressions. If the COPY has only one user, the COPY itself can
146 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr
*MI
,
147 MachineBasicBlock
*MBB
) {
148 bool Changed
= false;
149 for (MachineOperand
&MO
: MI
->operands()) {
150 if (!MO
.isReg() || !MO
.isUse())
152 unsigned Reg
= MO
.getReg();
153 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
155 bool OnlyOneUse
= MRI
->hasOneNonDBGUse(Reg
);
156 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
157 if (!DefMI
->isCopy())
159 unsigned SrcReg
= DefMI
->getOperand(1).getReg();
160 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
162 if (DefMI
->getOperand(0).getSubReg())
164 // FIXME: We should trivially coalesce subregister copies to expose CSE
165 // opportunities on instructions with truncated operands (see
166 // cse-add-with-overflow.ll). This can be done here as follows:
168 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
170 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
172 // The 2-addr pass has been updated to handle coalesced subregs. However,
173 // some machine-specific code still can't handle it.
174 // To handle it properly we also need a way find a constrained subregister
175 // class given a super-reg class and subreg index.
176 if (DefMI
->getOperand(1).getSubReg())
178 if (!MRI
->constrainRegAttrs(SrcReg
, Reg
))
180 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
181 LLVM_DEBUG(dbgs() << "*** to: " << *MI
);
183 // Update matching debug values.
184 DefMI
->changeDebugValuesDefReg(SrcReg
);
186 // Propagate SrcReg of copies to MI.
188 MRI
->clearKillFlags(SrcReg
);
189 // Coalesce single use copies.
191 DefMI
->eraseFromParent();
201 MachineCSE::isPhysDefTriviallyDead(unsigned Reg
,
202 MachineBasicBlock::const_iterator I
,
203 MachineBasicBlock::const_iterator E
) const {
204 unsigned LookAheadLeft
= LookAheadLimit
;
205 while (LookAheadLeft
) {
206 // Skip over dbg_value's.
207 I
= skipDebugInstructionsForward(I
, E
);
210 // Reached end of block, we don't know if register is dead or not.
213 bool SeenDef
= false;
214 for (const MachineOperand
&MO
: I
->operands()) {
215 if (MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
217 if (!MO
.isReg() || !MO
.getReg())
219 if (!TRI
->regsOverlap(MO
.getReg(), Reg
))
227 // See a def of Reg (or an alias) before encountering any use, it's
237 static bool isCallerPreservedOrConstPhysReg(unsigned Reg
,
238 const MachineFunction
&MF
,
239 const TargetRegisterInfo
&TRI
) {
240 // MachineRegisterInfo::isConstantPhysReg directly called by
241 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
242 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
243 // most (if not all) targets freeze reserved registers right after ISel.
245 // It does cause issues mid-GlobalISel, however, hence the additional
246 // reservedRegsFrozen check.
247 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
248 return TRI
.isCallerPreservedPhysReg(Reg
, MF
) ||
249 (MRI
.reservedRegsFrozen() && MRI
.isConstantPhysReg(Reg
));
252 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
253 /// physical registers (except for dead defs of physical registers). It also
254 /// returns the physical register def by reference if it's the only one and the
255 /// instruction does not uses a physical register.
256 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr
*MI
,
257 const MachineBasicBlock
*MBB
,
258 SmallSet
<unsigned,8> &PhysRefs
,
259 SmallVectorImpl
<unsigned> &PhysDefs
,
260 bool &PhysUseDef
) const{
261 // First, add all uses to PhysRefs.
262 for (const MachineOperand
&MO
: MI
->operands()) {
263 if (!MO
.isReg() || MO
.isDef())
265 unsigned Reg
= MO
.getReg();
268 if (TargetRegisterInfo::isVirtualRegister(Reg
))
270 // Reading either caller preserved or constant physregs is ok.
271 if (!isCallerPreservedOrConstPhysReg(Reg
, *MI
->getMF(), *TRI
))
272 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
273 PhysRefs
.insert(*AI
);
276 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
277 // (which currently contains only uses), set the PhysUseDef flag.
279 MachineBasicBlock::const_iterator I
= MI
; I
= std::next(I
);
280 for (const MachineOperand
&MO
: MI
->operands()) {
281 if (!MO
.isReg() || !MO
.isDef())
283 unsigned Reg
= MO
.getReg();
286 if (TargetRegisterInfo::isVirtualRegister(Reg
))
288 // Check against PhysRefs even if the def is "dead".
289 if (PhysRefs
.count(Reg
))
291 // If the def is dead, it's ok. But the def may not marked "dead". That's
292 // common since this pass is run before livevariables. We can scan
293 // forward a few instructions and check if it is obviously dead.
294 if (!MO
.isDead() && !isPhysDefTriviallyDead(Reg
, I
, MBB
->end()))
295 PhysDefs
.push_back(Reg
);
298 // Finally, add all defs to PhysRefs as well.
299 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
)
300 for (MCRegAliasIterator
AI(PhysDefs
[i
], TRI
, true); AI
.isValid(); ++AI
)
301 PhysRefs
.insert(*AI
);
303 return !PhysRefs
.empty();
306 bool MachineCSE::PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
307 SmallSet
<unsigned,8> &PhysRefs
,
308 SmallVectorImpl
<unsigned> &PhysDefs
,
309 bool &NonLocal
) const {
310 // For now conservatively returns false if the common subexpression is
311 // not in the same basic block as the given instruction. The only exception
312 // is if the common subexpression is in the sole predecessor block.
313 const MachineBasicBlock
*MBB
= MI
->getParent();
314 const MachineBasicBlock
*CSMBB
= CSMI
->getParent();
316 bool CrossMBB
= false;
318 if (MBB
->pred_size() != 1 || *MBB
->pred_begin() != CSMBB
)
321 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
) {
322 if (MRI
->isAllocatable(PhysDefs
[i
]) || MRI
->isReserved(PhysDefs
[i
]))
323 // Avoid extending live range of physical registers if they are
324 //allocatable or reserved.
329 MachineBasicBlock::const_iterator I
= CSMI
; I
= std::next(I
);
330 MachineBasicBlock::const_iterator E
= MI
;
331 MachineBasicBlock::const_iterator EE
= CSMBB
->end();
332 unsigned LookAheadLeft
= LookAheadLimit
;
333 while (LookAheadLeft
) {
334 // Skip over dbg_value's.
335 while (I
!= E
&& I
!= EE
&& I
->isDebugInstr())
339 assert(CrossMBB
&& "Reaching end-of-MBB without finding MI?");
351 for (const MachineOperand
&MO
: I
->operands()) {
352 // RegMasks go on instructions like calls that clobber lots of physregs.
353 // Don't attempt to CSE across such an instruction.
356 if (!MO
.isReg() || !MO
.isDef())
358 unsigned MOReg
= MO
.getReg();
359 if (TargetRegisterInfo::isVirtualRegister(MOReg
))
361 if (PhysRefs
.count(MOReg
))
372 bool MachineCSE::isCSECandidate(MachineInstr
*MI
) {
373 if (MI
->isPosition() || MI
->isPHI() || MI
->isImplicitDef() || MI
->isKill() ||
374 MI
->isInlineAsm() || MI
->isDebugInstr())
378 if (MI
->isCopyLike())
381 // Ignore stuff that we obviously can't move.
382 if (MI
->mayStore() || MI
->isCall() || MI
->isTerminator() ||
383 MI
->hasUnmodeledSideEffects())
387 // Okay, this instruction does a load. As a refinement, we allow the target
388 // to decide whether the loaded value is actually a constant. If so, we can
389 // actually use it as a load.
390 if (!MI
->isDereferenceableInvariantLoad(AA
))
391 // FIXME: we should be able to hoist loads with no other side effects if
392 // there are no other instructions which can change memory in this loop.
393 // This is a trivial form of alias analysis.
397 // Ignore stack guard loads, otherwise the register that holds CSEed value may
398 // be spilled and get loaded back with corrupted data.
399 if (MI
->getOpcode() == TargetOpcode::LOAD_STACK_GUARD
)
405 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
406 /// common expression that defines Reg.
407 bool MachineCSE::isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
408 MachineInstr
*CSMI
, MachineInstr
*MI
) {
409 // FIXME: Heuristics that works around the lack the live range splitting.
411 // If CSReg is used at all uses of Reg, CSE should not increase register
412 // pressure of CSReg.
413 bool MayIncreasePressure
= true;
414 if (TargetRegisterInfo::isVirtualRegister(CSReg
) &&
415 TargetRegisterInfo::isVirtualRegister(Reg
)) {
416 MayIncreasePressure
= false;
417 SmallPtrSet
<MachineInstr
*, 8> CSUses
;
418 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(CSReg
)) {
421 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
422 if (!CSUses
.count(&MI
)) {
423 MayIncreasePressure
= true;
428 if (!MayIncreasePressure
) return true;
430 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
431 // an immediate predecessor. We don't want to increase register pressure and
432 // end up causing other computation to be spilled.
433 if (TII
->isAsCheapAsAMove(*MI
)) {
434 MachineBasicBlock
*CSBB
= CSMI
->getParent();
435 MachineBasicBlock
*BB
= MI
->getParent();
436 if (CSBB
!= BB
&& !CSBB
->isSuccessor(BB
))
440 // Heuristics #2: If the expression doesn't not use a vr and the only use
441 // of the redundant computation are copies, do not cse.
442 bool HasVRegUse
= false;
443 for (const MachineOperand
&MO
: MI
->operands()) {
444 if (MO
.isReg() && MO
.isUse() &&
445 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
451 bool HasNonCopyUse
= false;
452 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
454 if (!MI
.isCopyLike()) {
455 HasNonCopyUse
= true;
463 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
464 // it unless the defined value is already used in the BB of the new use.
466 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(CSReg
)) {
467 HasPHI
|= UseMI
.isPHI();
468 if (UseMI
.getParent() == MI
->getParent())
475 void MachineCSE::EnterScope(MachineBasicBlock
*MBB
) {
476 LLVM_DEBUG(dbgs() << "Entering: " << MBB
->getName() << '\n');
477 ScopeType
*Scope
= new ScopeType(VNT
);
478 ScopeMap
[MBB
] = Scope
;
481 void MachineCSE::ExitScope(MachineBasicBlock
*MBB
) {
482 LLVM_DEBUG(dbgs() << "Exiting: " << MBB
->getName() << '\n');
483 DenseMap
<MachineBasicBlock
*, ScopeType
*>::iterator SI
= ScopeMap
.find(MBB
);
484 assert(SI
!= ScopeMap
.end());
489 bool MachineCSE::ProcessBlock(MachineBasicBlock
*MBB
) {
490 bool Changed
= false;
492 SmallVector
<std::pair
<unsigned, unsigned>, 8> CSEPairs
;
493 SmallVector
<unsigned, 2> ImplicitDefsToUpdate
;
494 SmallVector
<unsigned, 2> ImplicitDefs
;
495 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
; ) {
496 MachineInstr
*MI
= &*I
;
499 if (!isCSECandidate(MI
))
502 bool FoundCSE
= VNT
.count(MI
);
504 // Using trivial copy propagation to find more CSE opportunities.
505 if (PerformTrivialCopyPropagation(MI
, MBB
)) {
508 // After coalescing MI itself may become a copy.
509 if (MI
->isCopyLike())
512 // Try again to see if CSE is possible.
513 FoundCSE
= VNT
.count(MI
);
517 // Commute commutable instructions.
518 bool Commuted
= false;
519 if (!FoundCSE
&& MI
->isCommutable()) {
520 if (MachineInstr
*NewMI
= TII
->commuteInstruction(*MI
)) {
522 FoundCSE
= VNT
.count(NewMI
);
524 // New instruction. It doesn't need to be kept.
525 NewMI
->eraseFromParent();
527 } else if (!FoundCSE
)
528 // MI was changed but it didn't help, commute it back!
529 (void)TII
->commuteInstruction(*MI
);
533 // If the instruction defines physical registers and the values *may* be
534 // used, then it's not safe to replace it with a common subexpression.
535 // It's also not safe if the instruction uses physical registers.
536 bool CrossMBBPhysDef
= false;
537 SmallSet
<unsigned, 8> PhysRefs
;
538 SmallVector
<unsigned, 2> PhysDefs
;
539 bool PhysUseDef
= false;
540 if (FoundCSE
&& hasLivePhysRegDefUses(MI
, MBB
, PhysRefs
,
541 PhysDefs
, PhysUseDef
)) {
544 // ... Unless the CS is local or is in the sole predecessor block
545 // and it also defines the physical register which is not clobbered
546 // in between and the physical register uses were not clobbered.
547 // This can never be the case if the instruction both uses and
548 // defines the same physical register, which was detected above.
550 unsigned CSVN
= VNT
.lookup(MI
);
551 MachineInstr
*CSMI
= Exps
[CSVN
];
552 if (PhysRegDefsReach(CSMI
, MI
, PhysRefs
, PhysDefs
, CrossMBBPhysDef
))
558 VNT
.insert(MI
, CurrVN
++);
563 // Found a common subexpression, eliminate it.
564 unsigned CSVN
= VNT
.lookup(MI
);
565 MachineInstr
*CSMI
= Exps
[CSVN
];
566 LLVM_DEBUG(dbgs() << "Examining: " << *MI
);
567 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI
);
569 // Check if it's profitable to perform this CSE.
571 unsigned NumDefs
= MI
->getNumDefs();
573 for (unsigned i
= 0, e
= MI
->getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
574 MachineOperand
&MO
= MI
->getOperand(i
);
575 if (!MO
.isReg() || !MO
.isDef())
577 unsigned OldReg
= MO
.getReg();
578 unsigned NewReg
= CSMI
->getOperand(i
).getReg();
580 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
581 // we should make sure it is not dead at CSMI.
582 if (MO
.isImplicit() && !MO
.isDead() && CSMI
->getOperand(i
).isDead())
583 ImplicitDefsToUpdate
.push_back(i
);
585 // Keep track of implicit defs of CSMI and MI, to clear possibly
586 // made-redundant kill flags.
587 if (MO
.isImplicit() && !MO
.isDead() && OldReg
== NewReg
)
588 ImplicitDefs
.push_back(OldReg
);
590 if (OldReg
== NewReg
) {
595 assert(TargetRegisterInfo::isVirtualRegister(OldReg
) &&
596 TargetRegisterInfo::isVirtualRegister(NewReg
) &&
597 "Do not CSE physical register defs!");
599 if (!isProfitableToCSE(NewReg
, OldReg
, CSMI
, MI
)) {
600 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
605 // Don't perform CSE if the result of the new instruction cannot exist
606 // within the constraints (register class, bank, or low-level type) of
607 // the old instruction.
608 if (!MRI
->constrainRegAttrs(NewReg
, OldReg
)) {
610 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
615 CSEPairs
.push_back(std::make_pair(OldReg
, NewReg
));
619 // Actually perform the elimination.
621 for (std::pair
<unsigned, unsigned> &CSEPair
: CSEPairs
) {
622 unsigned OldReg
= CSEPair
.first
;
623 unsigned NewReg
= CSEPair
.second
;
624 // OldReg may have been unused but is used now, clear the Dead flag
625 MachineInstr
*Def
= MRI
->getUniqueVRegDef(NewReg
);
626 assert(Def
!= nullptr && "CSEd register has no unique definition?");
627 Def
->clearRegisterDeads(NewReg
);
628 // Replace with NewReg and clear kill flags which may be wrong now.
629 MRI
->replaceRegWith(OldReg
, NewReg
);
630 MRI
->clearKillFlags(NewReg
);
633 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
634 // we should make sure it is not dead at CSMI.
635 for (unsigned ImplicitDefToUpdate
: ImplicitDefsToUpdate
)
636 CSMI
->getOperand(ImplicitDefToUpdate
).setIsDead(false);
638 // Go through implicit defs of CSMI and MI, and clear the kill flags on
639 // their uses in all the instructions between CSMI and MI.
640 // We might have made some of the kill flags redundant, consider:
641 // subs ... implicit-def %nzcv <- CSMI
642 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
643 // subs ... implicit-def %nzcv <- MI, to be eliminated
644 // csinc ... implicit killed %nzcv
645 // Since we eliminated MI, and reused a register imp-def'd by CSMI
646 // (here %nzcv), that register, if it was killed before MI, should have
647 // that kill flag removed, because it's lifetime was extended.
648 if (CSMI
->getParent() == MI
->getParent()) {
649 for (MachineBasicBlock::iterator II
= CSMI
, IE
= MI
; II
!= IE
; ++II
)
650 for (auto ImplicitDef
: ImplicitDefs
)
651 if (MachineOperand
*MO
= II
->findRegisterUseOperand(
652 ImplicitDef
, /*isKill=*/true, TRI
))
653 MO
->setIsKill(false);
655 // If the instructions aren't in the same BB, bail out and clear the
656 // kill flag on all uses of the imp-def'd register.
657 for (auto ImplicitDef
: ImplicitDefs
)
658 MRI
->clearKillFlags(ImplicitDef
);
661 if (CrossMBBPhysDef
) {
662 // Add physical register defs now coming in from a predecessor to MBB
664 while (!PhysDefs
.empty()) {
665 unsigned LiveIn
= PhysDefs
.pop_back_val();
666 if (!MBB
->isLiveIn(LiveIn
))
667 MBB
->addLiveIn(LiveIn
);
672 MI
->eraseFromParent();
674 if (!PhysRefs
.empty())
680 VNT
.insert(MI
, CurrVN
++);
684 ImplicitDefsToUpdate
.clear();
685 ImplicitDefs
.clear();
691 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
692 /// dominator tree node if its a leaf or all of its children are done. Walk
693 /// up the dominator tree to destroy ancestors which are now done.
695 MachineCSE::ExitScopeIfDone(MachineDomTreeNode
*Node
,
696 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
) {
697 if (OpenChildren
[Node
])
701 ExitScope(Node
->getBlock());
703 // Now traverse upwards to pop ancestors whose offsprings are all done.
704 while (MachineDomTreeNode
*Parent
= Node
->getIDom()) {
705 unsigned Left
= --OpenChildren
[Parent
];
708 ExitScope(Parent
->getBlock());
713 bool MachineCSE::PerformCSE(MachineDomTreeNode
*Node
) {
714 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
715 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
716 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
720 // Perform a DFS walk to determine the order of visit.
721 WorkList
.push_back(Node
);
723 Node
= WorkList
.pop_back_val();
724 Scopes
.push_back(Node
);
725 const std::vector
<MachineDomTreeNode
*> &Children
= Node
->getChildren();
726 OpenChildren
[Node
] = Children
.size();
727 for (MachineDomTreeNode
*Child
: Children
)
728 WorkList
.push_back(Child
);
729 } while (!WorkList
.empty());
732 bool Changed
= false;
733 for (MachineDomTreeNode
*Node
: Scopes
) {
734 MachineBasicBlock
*MBB
= Node
->getBlock();
736 Changed
|= ProcessBlock(MBB
);
737 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
738 ExitScopeIfDone(Node
, OpenChildren
);
744 bool MachineCSE::runOnMachineFunction(MachineFunction
&MF
) {
745 if (skipFunction(MF
.getFunction()))
748 TII
= MF
.getSubtarget().getInstrInfo();
749 TRI
= MF
.getSubtarget().getRegisterInfo();
750 MRI
= &MF
.getRegInfo();
751 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
752 DT
= &getAnalysis
<MachineDominatorTree
>();
753 LookAheadLimit
= TII
->getMachineCSELookAheadLimit();
754 return PerformCSE(DT
->getRootNode());