Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / MachineCSE.cpp
blobf09288ec15c5c90ad867672236a550157183a7eb
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetOpcodes.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/MC/MCInstrDesc.h"
35 #include "llvm/MC/MCRegisterInfo.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Allocator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/RecyclingAllocator.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <iterator>
43 #include <utility>
44 #include <vector>
46 using namespace llvm;
48 #define DEBUG_TYPE "machine-cse"
50 STATISTIC(NumCoalesces, "Number of copies coalesced");
51 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
52 STATISTIC(NumPhysCSEs,
53 "Number of physreg referencing common subexpr eliminated");
54 STATISTIC(NumCrossBBCSEs,
55 "Number of cross-MBB physreg referencing CS eliminated");
56 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
58 namespace {
60 class MachineCSE : public MachineFunctionPass {
61 const TargetInstrInfo *TII;
62 const TargetRegisterInfo *TRI;
63 AliasAnalysis *AA;
64 MachineDominatorTree *DT;
65 MachineRegisterInfo *MRI;
67 public:
68 static char ID; // Pass identification
70 MachineCSE() : MachineFunctionPass(ID) {
71 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
74 bool runOnMachineFunction(MachineFunction &MF) override;
76 void getAnalysisUsage(AnalysisUsage &AU) const override {
77 AU.setPreservesCFG();
78 MachineFunctionPass::getAnalysisUsage(AU);
79 AU.addRequired<AAResultsWrapperPass>();
80 AU.addPreservedID(MachineLoopInfoID);
81 AU.addRequired<MachineDominatorTree>();
82 AU.addPreserved<MachineDominatorTree>();
85 void releaseMemory() override {
86 ScopeMap.clear();
87 Exps.clear();
90 private:
91 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
92 ScopedHashTableVal<MachineInstr *, unsigned>>;
93 using ScopedHTType =
94 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
95 AllocatorTy>;
96 using ScopeType = ScopedHTType::ScopeTy;
98 unsigned LookAheadLimit = 0;
99 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
100 ScopedHTType VNT;
101 SmallVector<MachineInstr *, 64> Exps;
102 unsigned CurrVN = 0;
104 bool PerformTrivialCopyPropagation(MachineInstr *MI,
105 MachineBasicBlock *MBB);
106 bool isPhysDefTriviallyDead(unsigned Reg,
107 MachineBasicBlock::const_iterator I,
108 MachineBasicBlock::const_iterator E) const;
109 bool hasLivePhysRegDefUses(const MachineInstr *MI,
110 const MachineBasicBlock *MBB,
111 SmallSet<unsigned,8> &PhysRefs,
112 SmallVectorImpl<unsigned> &PhysDefs,
113 bool &PhysUseDef) const;
114 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
115 SmallSet<unsigned,8> &PhysRefs,
116 SmallVectorImpl<unsigned> &PhysDefs,
117 bool &NonLocal) const;
118 bool isCSECandidate(MachineInstr *MI);
119 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
120 MachineInstr *CSMI, MachineInstr *MI);
121 void EnterScope(MachineBasicBlock *MBB);
122 void ExitScope(MachineBasicBlock *MBB);
123 bool ProcessBlock(MachineBasicBlock *MBB);
124 void ExitScopeIfDone(MachineDomTreeNode *Node,
125 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
126 bool PerformCSE(MachineDomTreeNode *Node);
129 } // end anonymous namespace
131 char MachineCSE::ID = 0;
133 char &llvm::MachineCSEID = MachineCSE::ID;
135 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
136 "Machine Common Subexpression Elimination", false, false)
137 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
138 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
139 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
140 "Machine Common Subexpression Elimination", false, false)
142 /// The source register of a COPY machine instruction can be propagated to all
143 /// its users, and this propagation could increase the probability of finding
144 /// common subexpressions. If the COPY has only one user, the COPY itself can
145 /// be removed.
146 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
147 MachineBasicBlock *MBB) {
148 bool Changed = false;
149 for (MachineOperand &MO : MI->operands()) {
150 if (!MO.isReg() || !MO.isUse())
151 continue;
152 unsigned Reg = MO.getReg();
153 if (!TargetRegisterInfo::isVirtualRegister(Reg))
154 continue;
155 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
156 MachineInstr *DefMI = MRI->getVRegDef(Reg);
157 if (!DefMI->isCopy())
158 continue;
159 unsigned SrcReg = DefMI->getOperand(1).getReg();
160 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
161 continue;
162 if (DefMI->getOperand(0).getSubReg())
163 continue;
164 // FIXME: We should trivially coalesce subregister copies to expose CSE
165 // opportunities on instructions with truncated operands (see
166 // cse-add-with-overflow.ll). This can be done here as follows:
167 // if (SrcSubReg)
168 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
169 // SrcSubReg);
170 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
172 // The 2-addr pass has been updated to handle coalesced subregs. However,
173 // some machine-specific code still can't handle it.
174 // To handle it properly we also need a way find a constrained subregister
175 // class given a super-reg class and subreg index.
176 if (DefMI->getOperand(1).getSubReg())
177 continue;
178 if (!MRI->constrainRegAttrs(SrcReg, Reg))
179 continue;
180 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
181 LLVM_DEBUG(dbgs() << "*** to: " << *MI);
183 // Update matching debug values.
184 DefMI->changeDebugValuesDefReg(SrcReg);
186 // Propagate SrcReg of copies to MI.
187 MO.setReg(SrcReg);
188 MRI->clearKillFlags(SrcReg);
189 // Coalesce single use copies.
190 if (OnlyOneUse) {
191 DefMI->eraseFromParent();
192 ++NumCoalesces;
194 Changed = true;
197 return Changed;
200 bool
201 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
202 MachineBasicBlock::const_iterator I,
203 MachineBasicBlock::const_iterator E) const {
204 unsigned LookAheadLeft = LookAheadLimit;
205 while (LookAheadLeft) {
206 // Skip over dbg_value's.
207 I = skipDebugInstructionsForward(I, E);
209 if (I == E)
210 // Reached end of block, we don't know if register is dead or not.
211 return false;
213 bool SeenDef = false;
214 for (const MachineOperand &MO : I->operands()) {
215 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
216 SeenDef = true;
217 if (!MO.isReg() || !MO.getReg())
218 continue;
219 if (!TRI->regsOverlap(MO.getReg(), Reg))
220 continue;
221 if (MO.isUse())
222 // Found a use!
223 return false;
224 SeenDef = true;
226 if (SeenDef)
227 // See a def of Reg (or an alias) before encountering any use, it's
228 // trivially dead.
229 return true;
231 --LookAheadLeft;
232 ++I;
234 return false;
237 static bool isCallerPreservedOrConstPhysReg(unsigned Reg,
238 const MachineFunction &MF,
239 const TargetRegisterInfo &TRI) {
240 // MachineRegisterInfo::isConstantPhysReg directly called by
241 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
242 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
243 // most (if not all) targets freeze reserved registers right after ISel.
245 // It does cause issues mid-GlobalISel, however, hence the additional
246 // reservedRegsFrozen check.
247 const MachineRegisterInfo &MRI = MF.getRegInfo();
248 return TRI.isCallerPreservedPhysReg(Reg, MF) ||
249 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
252 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
253 /// physical registers (except for dead defs of physical registers). It also
254 /// returns the physical register def by reference if it's the only one and the
255 /// instruction does not uses a physical register.
256 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
257 const MachineBasicBlock *MBB,
258 SmallSet<unsigned,8> &PhysRefs,
259 SmallVectorImpl<unsigned> &PhysDefs,
260 bool &PhysUseDef) const{
261 // First, add all uses to PhysRefs.
262 for (const MachineOperand &MO : MI->operands()) {
263 if (!MO.isReg() || MO.isDef())
264 continue;
265 unsigned Reg = MO.getReg();
266 if (!Reg)
267 continue;
268 if (TargetRegisterInfo::isVirtualRegister(Reg))
269 continue;
270 // Reading either caller preserved or constant physregs is ok.
271 if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI))
272 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
273 PhysRefs.insert(*AI);
276 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
277 // (which currently contains only uses), set the PhysUseDef flag.
278 PhysUseDef = false;
279 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
280 for (const MachineOperand &MO : MI->operands()) {
281 if (!MO.isReg() || !MO.isDef())
282 continue;
283 unsigned Reg = MO.getReg();
284 if (!Reg)
285 continue;
286 if (TargetRegisterInfo::isVirtualRegister(Reg))
287 continue;
288 // Check against PhysRefs even if the def is "dead".
289 if (PhysRefs.count(Reg))
290 PhysUseDef = true;
291 // If the def is dead, it's ok. But the def may not marked "dead". That's
292 // common since this pass is run before livevariables. We can scan
293 // forward a few instructions and check if it is obviously dead.
294 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
295 PhysDefs.push_back(Reg);
298 // Finally, add all defs to PhysRefs as well.
299 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
300 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
301 PhysRefs.insert(*AI);
303 return !PhysRefs.empty();
306 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
307 SmallSet<unsigned,8> &PhysRefs,
308 SmallVectorImpl<unsigned> &PhysDefs,
309 bool &NonLocal) const {
310 // For now conservatively returns false if the common subexpression is
311 // not in the same basic block as the given instruction. The only exception
312 // is if the common subexpression is in the sole predecessor block.
313 const MachineBasicBlock *MBB = MI->getParent();
314 const MachineBasicBlock *CSMBB = CSMI->getParent();
316 bool CrossMBB = false;
317 if (CSMBB != MBB) {
318 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
319 return false;
321 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
322 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
323 // Avoid extending live range of physical registers if they are
324 //allocatable or reserved.
325 return false;
327 CrossMBB = true;
329 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
330 MachineBasicBlock::const_iterator E = MI;
331 MachineBasicBlock::const_iterator EE = CSMBB->end();
332 unsigned LookAheadLeft = LookAheadLimit;
333 while (LookAheadLeft) {
334 // Skip over dbg_value's.
335 while (I != E && I != EE && I->isDebugInstr())
336 ++I;
338 if (I == EE) {
339 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
340 (void)CrossMBB;
341 CrossMBB = false;
342 NonLocal = true;
343 I = MBB->begin();
344 EE = MBB->end();
345 continue;
348 if (I == E)
349 return true;
351 for (const MachineOperand &MO : I->operands()) {
352 // RegMasks go on instructions like calls that clobber lots of physregs.
353 // Don't attempt to CSE across such an instruction.
354 if (MO.isRegMask())
355 return false;
356 if (!MO.isReg() || !MO.isDef())
357 continue;
358 unsigned MOReg = MO.getReg();
359 if (TargetRegisterInfo::isVirtualRegister(MOReg))
360 continue;
361 if (PhysRefs.count(MOReg))
362 return false;
365 --LookAheadLeft;
366 ++I;
369 return false;
372 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
373 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
374 MI->isInlineAsm() || MI->isDebugInstr())
375 return false;
377 // Ignore copies.
378 if (MI->isCopyLike())
379 return false;
381 // Ignore stuff that we obviously can't move.
382 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
383 MI->hasUnmodeledSideEffects())
384 return false;
386 if (MI->mayLoad()) {
387 // Okay, this instruction does a load. As a refinement, we allow the target
388 // to decide whether the loaded value is actually a constant. If so, we can
389 // actually use it as a load.
390 if (!MI->isDereferenceableInvariantLoad(AA))
391 // FIXME: we should be able to hoist loads with no other side effects if
392 // there are no other instructions which can change memory in this loop.
393 // This is a trivial form of alias analysis.
394 return false;
397 // Ignore stack guard loads, otherwise the register that holds CSEed value may
398 // be spilled and get loaded back with corrupted data.
399 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
400 return false;
402 return true;
405 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
406 /// common expression that defines Reg.
407 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
408 MachineInstr *CSMI, MachineInstr *MI) {
409 // FIXME: Heuristics that works around the lack the live range splitting.
411 // If CSReg is used at all uses of Reg, CSE should not increase register
412 // pressure of CSReg.
413 bool MayIncreasePressure = true;
414 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
415 TargetRegisterInfo::isVirtualRegister(Reg)) {
416 MayIncreasePressure = false;
417 SmallPtrSet<MachineInstr*, 8> CSUses;
418 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
419 CSUses.insert(&MI);
421 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
422 if (!CSUses.count(&MI)) {
423 MayIncreasePressure = true;
424 break;
428 if (!MayIncreasePressure) return true;
430 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
431 // an immediate predecessor. We don't want to increase register pressure and
432 // end up causing other computation to be spilled.
433 if (TII->isAsCheapAsAMove(*MI)) {
434 MachineBasicBlock *CSBB = CSMI->getParent();
435 MachineBasicBlock *BB = MI->getParent();
436 if (CSBB != BB && !CSBB->isSuccessor(BB))
437 return false;
440 // Heuristics #2: If the expression doesn't not use a vr and the only use
441 // of the redundant computation are copies, do not cse.
442 bool HasVRegUse = false;
443 for (const MachineOperand &MO : MI->operands()) {
444 if (MO.isReg() && MO.isUse() &&
445 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
446 HasVRegUse = true;
447 break;
450 if (!HasVRegUse) {
451 bool HasNonCopyUse = false;
452 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
453 // Ignore copies.
454 if (!MI.isCopyLike()) {
455 HasNonCopyUse = true;
456 break;
459 if (!HasNonCopyUse)
460 return false;
463 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
464 // it unless the defined value is already used in the BB of the new use.
465 bool HasPHI = false;
466 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
467 HasPHI |= UseMI.isPHI();
468 if (UseMI.getParent() == MI->getParent())
469 return true;
472 return !HasPHI;
475 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
476 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
477 ScopeType *Scope = new ScopeType(VNT);
478 ScopeMap[MBB] = Scope;
481 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
482 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
483 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
484 assert(SI != ScopeMap.end());
485 delete SI->second;
486 ScopeMap.erase(SI);
489 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
490 bool Changed = false;
492 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
493 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
494 SmallVector<unsigned, 2> ImplicitDefs;
495 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
496 MachineInstr *MI = &*I;
497 ++I;
499 if (!isCSECandidate(MI))
500 continue;
502 bool FoundCSE = VNT.count(MI);
503 if (!FoundCSE) {
504 // Using trivial copy propagation to find more CSE opportunities.
505 if (PerformTrivialCopyPropagation(MI, MBB)) {
506 Changed = true;
508 // After coalescing MI itself may become a copy.
509 if (MI->isCopyLike())
510 continue;
512 // Try again to see if CSE is possible.
513 FoundCSE = VNT.count(MI);
517 // Commute commutable instructions.
518 bool Commuted = false;
519 if (!FoundCSE && MI->isCommutable()) {
520 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
521 Commuted = true;
522 FoundCSE = VNT.count(NewMI);
523 if (NewMI != MI) {
524 // New instruction. It doesn't need to be kept.
525 NewMI->eraseFromParent();
526 Changed = true;
527 } else if (!FoundCSE)
528 // MI was changed but it didn't help, commute it back!
529 (void)TII->commuteInstruction(*MI);
533 // If the instruction defines physical registers and the values *may* be
534 // used, then it's not safe to replace it with a common subexpression.
535 // It's also not safe if the instruction uses physical registers.
536 bool CrossMBBPhysDef = false;
537 SmallSet<unsigned, 8> PhysRefs;
538 SmallVector<unsigned, 2> PhysDefs;
539 bool PhysUseDef = false;
540 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
541 PhysDefs, PhysUseDef)) {
542 FoundCSE = false;
544 // ... Unless the CS is local or is in the sole predecessor block
545 // and it also defines the physical register which is not clobbered
546 // in between and the physical register uses were not clobbered.
547 // This can never be the case if the instruction both uses and
548 // defines the same physical register, which was detected above.
549 if (!PhysUseDef) {
550 unsigned CSVN = VNT.lookup(MI);
551 MachineInstr *CSMI = Exps[CSVN];
552 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
553 FoundCSE = true;
557 if (!FoundCSE) {
558 VNT.insert(MI, CurrVN++);
559 Exps.push_back(MI);
560 continue;
563 // Found a common subexpression, eliminate it.
564 unsigned CSVN = VNT.lookup(MI);
565 MachineInstr *CSMI = Exps[CSVN];
566 LLVM_DEBUG(dbgs() << "Examining: " << *MI);
567 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
569 // Check if it's profitable to perform this CSE.
570 bool DoCSE = true;
571 unsigned NumDefs = MI->getNumDefs();
573 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
574 MachineOperand &MO = MI->getOperand(i);
575 if (!MO.isReg() || !MO.isDef())
576 continue;
577 unsigned OldReg = MO.getReg();
578 unsigned NewReg = CSMI->getOperand(i).getReg();
580 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
581 // we should make sure it is not dead at CSMI.
582 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
583 ImplicitDefsToUpdate.push_back(i);
585 // Keep track of implicit defs of CSMI and MI, to clear possibly
586 // made-redundant kill flags.
587 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
588 ImplicitDefs.push_back(OldReg);
590 if (OldReg == NewReg) {
591 --NumDefs;
592 continue;
595 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
596 TargetRegisterInfo::isVirtualRegister(NewReg) &&
597 "Do not CSE physical register defs!");
599 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
600 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
601 DoCSE = false;
602 break;
605 // Don't perform CSE if the result of the new instruction cannot exist
606 // within the constraints (register class, bank, or low-level type) of
607 // the old instruction.
608 if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
609 LLVM_DEBUG(
610 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
611 DoCSE = false;
612 break;
615 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
616 --NumDefs;
619 // Actually perform the elimination.
620 if (DoCSE) {
621 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
622 unsigned OldReg = CSEPair.first;
623 unsigned NewReg = CSEPair.second;
624 // OldReg may have been unused but is used now, clear the Dead flag
625 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
626 assert(Def != nullptr && "CSEd register has no unique definition?");
627 Def->clearRegisterDeads(NewReg);
628 // Replace with NewReg and clear kill flags which may be wrong now.
629 MRI->replaceRegWith(OldReg, NewReg);
630 MRI->clearKillFlags(NewReg);
633 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
634 // we should make sure it is not dead at CSMI.
635 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
636 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
638 // Go through implicit defs of CSMI and MI, and clear the kill flags on
639 // their uses in all the instructions between CSMI and MI.
640 // We might have made some of the kill flags redundant, consider:
641 // subs ... implicit-def %nzcv <- CSMI
642 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
643 // subs ... implicit-def %nzcv <- MI, to be eliminated
644 // csinc ... implicit killed %nzcv
645 // Since we eliminated MI, and reused a register imp-def'd by CSMI
646 // (here %nzcv), that register, if it was killed before MI, should have
647 // that kill flag removed, because it's lifetime was extended.
648 if (CSMI->getParent() == MI->getParent()) {
649 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
650 for (auto ImplicitDef : ImplicitDefs)
651 if (MachineOperand *MO = II->findRegisterUseOperand(
652 ImplicitDef, /*isKill=*/true, TRI))
653 MO->setIsKill(false);
654 } else {
655 // If the instructions aren't in the same BB, bail out and clear the
656 // kill flag on all uses of the imp-def'd register.
657 for (auto ImplicitDef : ImplicitDefs)
658 MRI->clearKillFlags(ImplicitDef);
661 if (CrossMBBPhysDef) {
662 // Add physical register defs now coming in from a predecessor to MBB
663 // livein list.
664 while (!PhysDefs.empty()) {
665 unsigned LiveIn = PhysDefs.pop_back_val();
666 if (!MBB->isLiveIn(LiveIn))
667 MBB->addLiveIn(LiveIn);
669 ++NumCrossBBCSEs;
672 MI->eraseFromParent();
673 ++NumCSEs;
674 if (!PhysRefs.empty())
675 ++NumPhysCSEs;
676 if (Commuted)
677 ++NumCommutes;
678 Changed = true;
679 } else {
680 VNT.insert(MI, CurrVN++);
681 Exps.push_back(MI);
683 CSEPairs.clear();
684 ImplicitDefsToUpdate.clear();
685 ImplicitDefs.clear();
688 return Changed;
691 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
692 /// dominator tree node if its a leaf or all of its children are done. Walk
693 /// up the dominator tree to destroy ancestors which are now done.
694 void
695 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
696 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
697 if (OpenChildren[Node])
698 return;
700 // Pop scope.
701 ExitScope(Node->getBlock());
703 // Now traverse upwards to pop ancestors whose offsprings are all done.
704 while (MachineDomTreeNode *Parent = Node->getIDom()) {
705 unsigned Left = --OpenChildren[Parent];
706 if (Left != 0)
707 break;
708 ExitScope(Parent->getBlock());
709 Node = Parent;
713 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
714 SmallVector<MachineDomTreeNode*, 32> Scopes;
715 SmallVector<MachineDomTreeNode*, 8> WorkList;
716 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
718 CurrVN = 0;
720 // Perform a DFS walk to determine the order of visit.
721 WorkList.push_back(Node);
722 do {
723 Node = WorkList.pop_back_val();
724 Scopes.push_back(Node);
725 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
726 OpenChildren[Node] = Children.size();
727 for (MachineDomTreeNode *Child : Children)
728 WorkList.push_back(Child);
729 } while (!WorkList.empty());
731 // Now perform CSE.
732 bool Changed = false;
733 for (MachineDomTreeNode *Node : Scopes) {
734 MachineBasicBlock *MBB = Node->getBlock();
735 EnterScope(MBB);
736 Changed |= ProcessBlock(MBB);
737 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
738 ExitScopeIfDone(Node, OpenChildren);
741 return Changed;
744 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
745 if (skipFunction(MF.getFunction()))
746 return false;
748 TII = MF.getSubtarget().getInstrInfo();
749 TRI = MF.getSubtarget().getRegisterInfo();
750 MRI = &MF.getRegInfo();
751 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
752 DT = &getAnalysis<MachineDominatorTree>();
753 LookAheadLimit = TII->getMachineCSELookAheadLimit();
754 return PerformCSE(DT->getRootNode());