Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / MachineInstr.cpp
blob0b8e9caa09b7db00094ffa473d6552db097e3a59
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <iterator>
75 #include <utility>
77 using namespace llvm;
79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80 if (const MachineBasicBlock *MBB = MI.getParent())
81 if (const MachineFunction *MF = MBB->getParent())
82 return MF;
83 return nullptr;
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87 // it.
88 static void tryToGetTargetInfo(const MachineInstr &MI,
89 const TargetRegisterInfo *&TRI,
90 const MachineRegisterInfo *&MRI,
91 const TargetIntrinsicInfo *&IntrinsicInfo,
92 const TargetInstrInfo *&TII) {
94 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
95 TRI = MF->getSubtarget().getRegisterInfo();
96 MRI = &MF->getRegInfo();
97 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
98 TII = MF->getSubtarget().getInstrInfo();
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
103 if (MCID->ImplicitDefs)
104 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
105 ++ImpDefs)
106 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
107 if (MCID->ImplicitUses)
108 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
109 ++ImpUses)
110 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
115 /// the MCInstrDesc.
116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
117 DebugLoc dl, bool NoImp)
118 : MCID(&tid), debugLoc(std::move(dl)) {
119 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 // Reserve space for the expected number of operands.
122 if (unsigned NumOps = MCID->getNumOperands() +
123 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
124 CapOperands = OperandCapacity::get(NumOps);
125 Operands = MF.allocateOperandArray(CapOperands);
128 if (!NoImp)
129 addImplicitDefUseOperands(MF);
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
135 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
136 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
138 CapOperands = OperandCapacity::get(MI.getNumOperands());
139 Operands = MF.allocateOperandArray(CapOperands);
141 // Copy operands.
142 for (const MachineOperand &MO : MI.operands())
143 addOperand(MF, MO);
145 // Copy all the sensible flags.
146 setFlags(MI.Flags);
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153 if (MachineBasicBlock *MBB = getParent())
154 return &MBB->getParent()->getRegInfo();
155 return nullptr;
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists. This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162 for (MachineOperand &MO : operands())
163 if (MO.isReg())
164 MRI.removeRegOperandFromUseList(&MO);
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists. This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171 for (MachineOperand &MO : operands())
172 if (MO.isReg())
173 MRI.addRegOperandToUseList(&MO);
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177 MachineBasicBlock *MBB = getParent();
178 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179 MachineFunction *MF = MBB->getParent();
180 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181 addOperand(*MF, Op);
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187 unsigned NumOps, MachineRegisterInfo *MRI) {
188 if (MRI)
189 return MRI->moveOperands(Dst, Src, NumOps);
191 // MachineOperand is a trivially copyable type so we can just use memmove.
192 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
195 /// addOperand - Add the specified operand to the instruction. If it is an
196 /// implicit operand, it is added to the end of the operand list. If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200 assert(MCID && "Cannot add operands before providing an instr descriptor");
202 // Check if we're adding one of our existing operands.
203 if (&Op >= Operands && &Op < Operands + NumOperands) {
204 // This is unusual: MI->addOperand(MI->getOperand(i)).
205 // If adding Op requires reallocating or moving existing operands around,
206 // the Op reference could go stale. Support it by copying Op.
207 MachineOperand CopyOp(Op);
208 return addOperand(MF, CopyOp);
211 // Find the insert location for the new operand. Implicit registers go at
212 // the end, everything else goes before the implicit regs.
214 // FIXME: Allow mixed explicit and implicit operands on inline asm.
215 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216 // implicit-defs, but they must not be moved around. See the FIXME in
217 // InstrEmitter.cpp.
218 unsigned OpNo = getNumOperands();
219 bool isImpReg = Op.isReg() && Op.isImplicit();
220 if (!isImpReg && !isInlineAsm()) {
221 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222 --OpNo;
223 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
227 #ifndef NDEBUG
228 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
229 Op.getType() == MachineOperand::MO_MCSymbol;
230 // OpNo now points as the desired insertion point. Unless this is a variadic
231 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232 // RegMask operands go between the explicit and implicit operands.
233 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
234 OpNo < MCID->getNumOperands() || isDebugOp) &&
235 "Trying to add an operand to a machine instr that is already done!");
236 #endif
238 MachineRegisterInfo *MRI = getRegInfo();
240 // Determine if the Operands array needs to be reallocated.
241 // Save the old capacity and operand array.
242 OperandCapacity OldCap = CapOperands;
243 MachineOperand *OldOperands = Operands;
244 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246 Operands = MF.allocateOperandArray(CapOperands);
247 // Move the operands before the insertion point.
248 if (OpNo)
249 moveOperands(Operands, OldOperands, OpNo, MRI);
252 // Move the operands following the insertion point.
253 if (OpNo != NumOperands)
254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255 MRI);
256 ++NumOperands;
258 // Deallocate the old operand array.
259 if (OldOperands != Operands && OldOperands)
260 MF.deallocateOperandArray(OldCap, OldOperands);
262 // Copy Op into place. It still needs to be inserted into the MRI use lists.
263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264 NewMO->ParentMI = this;
266 // When adding a register operand, tell MRI about it.
267 if (NewMO->isReg()) {
268 // Ensure isOnRegUseList() returns false, regardless of Op's status.
269 NewMO->Contents.Reg.Prev = nullptr;
270 // Ignore existing ties. This is not a property that can be copied.
271 NewMO->TiedTo = 0;
272 // Add the new operand to MRI, but only for instructions in an MBB.
273 if (MRI)
274 MRI->addRegOperandToUseList(NewMO);
275 // The MCID operand information isn't accurate until we start adding
276 // explicit operands. The implicit operands are added first, then the
277 // explicits are inserted before them.
278 if (!isImpReg) {
279 // Tie uses to defs as indicated in MCInstrDesc.
280 if (NewMO->isUse()) {
281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282 if (DefIdx != -1)
283 tieOperands(DefIdx, OpNo);
285 // If the register operand is flagged as early, mark the operand as such.
286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287 NewMO->setIsEarlyClobber(true);
292 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
293 /// fewer operand than it started with.
295 void MachineInstr::RemoveOperand(unsigned OpNo) {
296 assert(OpNo < getNumOperands() && "Invalid operand number");
297 untieRegOperand(OpNo);
299 #ifndef NDEBUG
300 // Moving tied operands would break the ties.
301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302 if (Operands[i].isReg())
303 assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
306 MachineRegisterInfo *MRI = getRegInfo();
307 if (MRI && Operands[OpNo].isReg())
308 MRI->removeRegOperandFromUseList(Operands + OpNo);
310 // Don't call the MachineOperand destructor. A lot of this code depends on
311 // MachineOperand having a trivial destructor anyway, and adding a call here
312 // wouldn't make it 'destructor-correct'.
314 if (unsigned N = NumOperands - 1 - OpNo)
315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316 --NumOperands;
319 void MachineInstr::dropMemRefs(MachineFunction &MF) {
320 if (memoperands_empty())
321 return;
323 // See if we can just drop all of our extra info.
324 if (!getPreInstrSymbol() && !getPostInstrSymbol()) {
325 Info.clear();
326 return;
328 if (!getPostInstrSymbol()) {
329 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
330 return;
332 if (!getPreInstrSymbol()) {
333 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
334 return;
337 // Otherwise allocate a fresh extra info with just these symbols.
338 Info.set<EIIK_OutOfLine>(
339 MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol()));
342 void MachineInstr::setMemRefs(MachineFunction &MF,
343 ArrayRef<MachineMemOperand *> MMOs) {
344 if (MMOs.empty()) {
345 dropMemRefs(MF);
346 return;
349 // Try to store a single MMO inline.
350 if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) {
351 Info.set<EIIK_MMO>(MMOs[0]);
352 return;
355 // Otherwise create an extra info struct with all of our info.
356 Info.set<EIIK_OutOfLine>(
357 MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol()));
360 void MachineInstr::addMemOperand(MachineFunction &MF,
361 MachineMemOperand *MO) {
362 SmallVector<MachineMemOperand *, 2> MMOs;
363 MMOs.append(memoperands_begin(), memoperands_end());
364 MMOs.push_back(MO);
365 setMemRefs(MF, MMOs);
368 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
369 if (this == &MI)
370 // Nothing to do for a self-clone!
371 return;
373 assert(&MF == MI.getMF() &&
374 "Invalid machine functions when cloning memory refrences!");
375 // See if we can just steal the extra info already allocated for the
376 // instruction. We can do this whenever the pre- and post-instruction symbols
377 // are the same (including null).
378 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
379 getPostInstrSymbol() == MI.getPostInstrSymbol()) {
380 Info = MI.Info;
381 return;
384 // Otherwise, fall back on a copy-based clone.
385 setMemRefs(MF, MI.memoperands());
388 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
389 /// identical.
390 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
391 ArrayRef<MachineMemOperand *> RHS) {
392 if (LHS.size() != RHS.size())
393 return false;
395 auto LHSPointees = make_pointee_range(LHS);
396 auto RHSPointees = make_pointee_range(RHS);
397 return std::equal(LHSPointees.begin(), LHSPointees.end(),
398 RHSPointees.begin());
401 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
402 ArrayRef<const MachineInstr *> MIs) {
403 // Try handling easy numbers of MIs with simpler mechanisms.
404 if (MIs.empty()) {
405 dropMemRefs(MF);
406 return;
408 if (MIs.size() == 1) {
409 cloneMemRefs(MF, *MIs[0]);
410 return;
412 // Because an empty memoperands list provides *no* information and must be
413 // handled conservatively (assuming the instruction can do anything), the only
414 // way to merge with it is to drop all other memoperands.
415 if (MIs[0]->memoperands_empty()) {
416 dropMemRefs(MF);
417 return;
420 // Handle the general case.
421 SmallVector<MachineMemOperand *, 2> MergedMMOs;
422 // Start with the first instruction.
423 assert(&MF == MIs[0]->getMF() &&
424 "Invalid machine functions when cloning memory references!");
425 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
426 // Now walk all the other instructions and accumulate any different MMOs.
427 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
428 assert(&MF == MI.getMF() &&
429 "Invalid machine functions when cloning memory references!");
431 // Skip MIs with identical operands to the first. This is a somewhat
432 // arbitrary hack but will catch common cases without being quadratic.
433 // TODO: We could fully implement merge semantics here if needed.
434 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
435 continue;
437 // Because an empty memoperands list provides *no* information and must be
438 // handled conservatively (assuming the instruction can do anything), the
439 // only way to merge with it is to drop all other memoperands.
440 if (MI.memoperands_empty()) {
441 dropMemRefs(MF);
442 return;
445 // Otherwise accumulate these into our temporary buffer of the merged state.
446 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
449 setMemRefs(MF, MergedMMOs);
452 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
453 MCSymbol *OldSymbol = getPreInstrSymbol();
454 if (OldSymbol == Symbol)
455 return;
456 if (OldSymbol && !Symbol) {
457 // We're removing a symbol rather than adding one. Try to clean up any
458 // extra info carried around.
459 if (Info.is<EIIK_PreInstrSymbol>()) {
460 Info.clear();
461 return;
464 if (memoperands_empty()) {
465 assert(getPostInstrSymbol() &&
466 "Should never have only a single symbol allocated out-of-line!");
467 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
468 return;
471 // Otherwise fallback on the generic update.
472 } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) {
473 // If we don't have any other extra info, we can store this inline.
474 Info.set<EIIK_PreInstrSymbol>(Symbol);
475 return;
478 // Otherwise, allocate a full new set of extra info.
479 // FIXME: Maybe we should make the symbols in the extra info mutable?
480 Info.set<EIIK_OutOfLine>(
481 MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol()));
484 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
485 MCSymbol *OldSymbol = getPostInstrSymbol();
486 if (OldSymbol == Symbol)
487 return;
488 if (OldSymbol && !Symbol) {
489 // We're removing a symbol rather than adding one. Try to clean up any
490 // extra info carried around.
491 if (Info.is<EIIK_PostInstrSymbol>()) {
492 Info.clear();
493 return;
496 if (memoperands_empty()) {
497 assert(getPreInstrSymbol() &&
498 "Should never have only a single symbol allocated out-of-line!");
499 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
500 return;
503 // Otherwise fallback on the generic update.
504 } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) {
505 // If we don't have any other extra info, we can store this inline.
506 Info.set<EIIK_PostInstrSymbol>(Symbol);
507 return;
510 // Otherwise, allocate a full new set of extra info.
511 // FIXME: Maybe we should make the symbols in the extra info mutable?
512 Info.set<EIIK_OutOfLine>(
513 MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol));
516 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
517 // For now, the just return the union of the flags. If the flags get more
518 // complicated over time, we might need more logic here.
519 return getFlags() | Other.getFlags();
522 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
523 uint16_t MIFlags = 0;
524 // Copy the wrapping flags.
525 if (const OverflowingBinaryOperator *OB =
526 dyn_cast<OverflowingBinaryOperator>(&I)) {
527 if (OB->hasNoSignedWrap())
528 MIFlags |= MachineInstr::MIFlag::NoSWrap;
529 if (OB->hasNoUnsignedWrap())
530 MIFlags |= MachineInstr::MIFlag::NoUWrap;
533 // Copy the exact flag.
534 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
535 if (PE->isExact())
536 MIFlags |= MachineInstr::MIFlag::IsExact;
538 // Copy the fast-math flags.
539 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
540 const FastMathFlags Flags = FP->getFastMathFlags();
541 if (Flags.noNaNs())
542 MIFlags |= MachineInstr::MIFlag::FmNoNans;
543 if (Flags.noInfs())
544 MIFlags |= MachineInstr::MIFlag::FmNoInfs;
545 if (Flags.noSignedZeros())
546 MIFlags |= MachineInstr::MIFlag::FmNsz;
547 if (Flags.allowReciprocal())
548 MIFlags |= MachineInstr::MIFlag::FmArcp;
549 if (Flags.allowContract())
550 MIFlags |= MachineInstr::MIFlag::FmContract;
551 if (Flags.approxFunc())
552 MIFlags |= MachineInstr::MIFlag::FmAfn;
553 if (Flags.allowReassoc())
554 MIFlags |= MachineInstr::MIFlag::FmReassoc;
557 return MIFlags;
560 void MachineInstr::copyIRFlags(const Instruction &I) {
561 Flags = copyFlagsFromInstruction(I);
564 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
565 assert(!isBundledWithPred() && "Must be called on bundle header");
566 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
567 if (MII->getDesc().getFlags() & Mask) {
568 if (Type == AnyInBundle)
569 return true;
570 } else {
571 if (Type == AllInBundle && !MII->isBundle())
572 return false;
574 // This was the last instruction in the bundle.
575 if (!MII->isBundledWithSucc())
576 return Type == AllInBundle;
580 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
581 MICheckType Check) const {
582 // If opcodes or number of operands are not the same then the two
583 // instructions are obviously not identical.
584 if (Other.getOpcode() != getOpcode() ||
585 Other.getNumOperands() != getNumOperands())
586 return false;
588 if (isBundle()) {
589 // We have passed the test above that both instructions have the same
590 // opcode, so we know that both instructions are bundles here. Let's compare
591 // MIs inside the bundle.
592 assert(Other.isBundle() && "Expected that both instructions are bundles.");
593 MachineBasicBlock::const_instr_iterator I1 = getIterator();
594 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
595 // Loop until we analysed the last intruction inside at least one of the
596 // bundles.
597 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
598 ++I1;
599 ++I2;
600 if (!I1->isIdenticalTo(*I2, Check))
601 return false;
603 // If we've reached the end of just one of the two bundles, but not both,
604 // the instructions are not identical.
605 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
606 return false;
609 // Check operands to make sure they match.
610 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
611 const MachineOperand &MO = getOperand(i);
612 const MachineOperand &OMO = Other.getOperand(i);
613 if (!MO.isReg()) {
614 if (!MO.isIdenticalTo(OMO))
615 return false;
616 continue;
619 // Clients may or may not want to ignore defs when testing for equality.
620 // For example, machine CSE pass only cares about finding common
621 // subexpressions, so it's safe to ignore virtual register defs.
622 if (MO.isDef()) {
623 if (Check == IgnoreDefs)
624 continue;
625 else if (Check == IgnoreVRegDefs) {
626 if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
627 !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
628 if (!MO.isIdenticalTo(OMO))
629 return false;
630 } else {
631 if (!MO.isIdenticalTo(OMO))
632 return false;
633 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
634 return false;
636 } else {
637 if (!MO.isIdenticalTo(OMO))
638 return false;
639 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
640 return false;
643 // If DebugLoc does not match then two debug instructions are not identical.
644 if (isDebugInstr())
645 if (getDebugLoc() && Other.getDebugLoc() &&
646 getDebugLoc() != Other.getDebugLoc())
647 return false;
648 return true;
651 const MachineFunction *MachineInstr::getMF() const {
652 return getParent()->getParent();
655 MachineInstr *MachineInstr::removeFromParent() {
656 assert(getParent() && "Not embedded in a basic block!");
657 return getParent()->remove(this);
660 MachineInstr *MachineInstr::removeFromBundle() {
661 assert(getParent() && "Not embedded in a basic block!");
662 return getParent()->remove_instr(this);
665 void MachineInstr::eraseFromParent() {
666 assert(getParent() && "Not embedded in a basic block!");
667 getParent()->erase(this);
670 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
671 assert(getParent() && "Not embedded in a basic block!");
672 MachineBasicBlock *MBB = getParent();
673 MachineFunction *MF = MBB->getParent();
674 assert(MF && "Not embedded in a function!");
676 MachineInstr *MI = (MachineInstr *)this;
677 MachineRegisterInfo &MRI = MF->getRegInfo();
679 for (const MachineOperand &MO : MI->operands()) {
680 if (!MO.isReg() || !MO.isDef())
681 continue;
682 unsigned Reg = MO.getReg();
683 if (!TargetRegisterInfo::isVirtualRegister(Reg))
684 continue;
685 MRI.markUsesInDebugValueAsUndef(Reg);
687 MI->eraseFromParent();
690 void MachineInstr::eraseFromBundle() {
691 assert(getParent() && "Not embedded in a basic block!");
692 getParent()->erase_instr(this);
695 unsigned MachineInstr::getNumExplicitOperands() const {
696 unsigned NumOperands = MCID->getNumOperands();
697 if (!MCID->isVariadic())
698 return NumOperands;
700 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
701 const MachineOperand &MO = getOperand(I);
702 // The operands must always be in the following order:
703 // - explicit reg defs,
704 // - other explicit operands (reg uses, immediates, etc.),
705 // - implicit reg defs
706 // - implicit reg uses
707 if (MO.isReg() && MO.isImplicit())
708 break;
709 ++NumOperands;
711 return NumOperands;
714 unsigned MachineInstr::getNumExplicitDefs() const {
715 unsigned NumDefs = MCID->getNumDefs();
716 if (!MCID->isVariadic())
717 return NumDefs;
719 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
720 const MachineOperand &MO = getOperand(I);
721 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
722 break;
723 ++NumDefs;
725 return NumDefs;
728 void MachineInstr::bundleWithPred() {
729 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
730 setFlag(BundledPred);
731 MachineBasicBlock::instr_iterator Pred = getIterator();
732 --Pred;
733 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
734 Pred->setFlag(BundledSucc);
737 void MachineInstr::bundleWithSucc() {
738 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
739 setFlag(BundledSucc);
740 MachineBasicBlock::instr_iterator Succ = getIterator();
741 ++Succ;
742 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
743 Succ->setFlag(BundledPred);
746 void MachineInstr::unbundleFromPred() {
747 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
748 clearFlag(BundledPred);
749 MachineBasicBlock::instr_iterator Pred = getIterator();
750 --Pred;
751 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
752 Pred->clearFlag(BundledSucc);
755 void MachineInstr::unbundleFromSucc() {
756 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
757 clearFlag(BundledSucc);
758 MachineBasicBlock::instr_iterator Succ = getIterator();
759 ++Succ;
760 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
761 Succ->clearFlag(BundledPred);
764 bool MachineInstr::isStackAligningInlineAsm() const {
765 if (isInlineAsm()) {
766 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
767 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
768 return true;
770 return false;
773 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
774 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
775 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
776 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
779 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
780 unsigned *GroupNo) const {
781 assert(isInlineAsm() && "Expected an inline asm instruction");
782 assert(OpIdx < getNumOperands() && "OpIdx out of range");
784 // Ignore queries about the initial operands.
785 if (OpIdx < InlineAsm::MIOp_FirstOperand)
786 return -1;
788 unsigned Group = 0;
789 unsigned NumOps;
790 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
791 i += NumOps) {
792 const MachineOperand &FlagMO = getOperand(i);
793 // If we reach the implicit register operands, stop looking.
794 if (!FlagMO.isImm())
795 return -1;
796 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
797 if (i + NumOps > OpIdx) {
798 if (GroupNo)
799 *GroupNo = Group;
800 return i;
802 ++Group;
804 return -1;
807 const DILabel *MachineInstr::getDebugLabel() const {
808 assert(isDebugLabel() && "not a DBG_LABEL");
809 return cast<DILabel>(getOperand(0).getMetadata());
812 const DILocalVariable *MachineInstr::getDebugVariable() const {
813 assert(isDebugValue() && "not a DBG_VALUE");
814 return cast<DILocalVariable>(getOperand(2).getMetadata());
817 const DIExpression *MachineInstr::getDebugExpression() const {
818 assert(isDebugValue() && "not a DBG_VALUE");
819 return cast<DIExpression>(getOperand(3).getMetadata());
822 const TargetRegisterClass*
823 MachineInstr::getRegClassConstraint(unsigned OpIdx,
824 const TargetInstrInfo *TII,
825 const TargetRegisterInfo *TRI) const {
826 assert(getParent() && "Can't have an MBB reference here!");
827 assert(getMF() && "Can't have an MF reference here!");
828 const MachineFunction &MF = *getMF();
830 // Most opcodes have fixed constraints in their MCInstrDesc.
831 if (!isInlineAsm())
832 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
834 if (!getOperand(OpIdx).isReg())
835 return nullptr;
837 // For tied uses on inline asm, get the constraint from the def.
838 unsigned DefIdx;
839 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
840 OpIdx = DefIdx;
842 // Inline asm stores register class constraints in the flag word.
843 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
844 if (FlagIdx < 0)
845 return nullptr;
847 unsigned Flag = getOperand(FlagIdx).getImm();
848 unsigned RCID;
849 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
850 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
851 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
852 InlineAsm::hasRegClassConstraint(Flag, RCID))
853 return TRI->getRegClass(RCID);
855 // Assume that all registers in a memory operand are pointers.
856 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
857 return TRI->getPointerRegClass(MF);
859 return nullptr;
862 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
863 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
864 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
865 // Check every operands inside the bundle if we have
866 // been asked to.
867 if (ExploreBundle)
868 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
869 ++OpndIt)
870 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
871 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
872 else
873 // Otherwise, just check the current operands.
874 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
875 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
876 return CurRC;
879 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
880 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
881 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
882 assert(CurRC && "Invalid initial register class");
883 // Check if Reg is constrained by some of its use/def from MI.
884 const MachineOperand &MO = getOperand(OpIdx);
885 if (!MO.isReg() || MO.getReg() != Reg)
886 return CurRC;
887 // If yes, accumulate the constraints through the operand.
888 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
891 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
892 unsigned OpIdx, const TargetRegisterClass *CurRC,
893 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
894 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
895 const MachineOperand &MO = getOperand(OpIdx);
896 assert(MO.isReg() &&
897 "Cannot get register constraints for non-register operand");
898 assert(CurRC && "Invalid initial register class");
899 if (unsigned SubIdx = MO.getSubReg()) {
900 if (OpRC)
901 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
902 else
903 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
904 } else if (OpRC)
905 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
906 return CurRC;
909 /// Return the number of instructions inside the MI bundle, not counting the
910 /// header instruction.
911 unsigned MachineInstr::getBundleSize() const {
912 MachineBasicBlock::const_instr_iterator I = getIterator();
913 unsigned Size = 0;
914 while (I->isBundledWithSucc()) {
915 ++Size;
916 ++I;
918 return Size;
921 /// Returns true if the MachineInstr has an implicit-use operand of exactly
922 /// the given register (not considering sub/super-registers).
923 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
924 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
925 const MachineOperand &MO = getOperand(i);
926 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
927 return true;
929 return false;
932 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
933 /// the specific register or -1 if it is not found. It further tightens
934 /// the search criteria to a use that kills the register if isKill is true.
935 int MachineInstr::findRegisterUseOperandIdx(
936 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
937 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
938 const MachineOperand &MO = getOperand(i);
939 if (!MO.isReg() || !MO.isUse())
940 continue;
941 unsigned MOReg = MO.getReg();
942 if (!MOReg)
943 continue;
944 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
945 if (!isKill || MO.isKill())
946 return i;
948 return -1;
951 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
952 /// indicating if this instruction reads or writes Reg. This also considers
953 /// partial defines.
954 std::pair<bool,bool>
955 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
956 SmallVectorImpl<unsigned> *Ops) const {
957 bool PartDef = false; // Partial redefine.
958 bool FullDef = false; // Full define.
959 bool Use = false;
961 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
962 const MachineOperand &MO = getOperand(i);
963 if (!MO.isReg() || MO.getReg() != Reg)
964 continue;
965 if (Ops)
966 Ops->push_back(i);
967 if (MO.isUse())
968 Use |= !MO.isUndef();
969 else if (MO.getSubReg() && !MO.isUndef())
970 // A partial def undef doesn't count as reading the register.
971 PartDef = true;
972 else
973 FullDef = true;
975 // A partial redefine uses Reg unless there is also a full define.
976 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
979 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
980 /// the specified register or -1 if it is not found. If isDead is true, defs
981 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
982 /// also checks if there is a def of a super-register.
984 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
985 const TargetRegisterInfo *TRI) const {
986 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
987 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
988 const MachineOperand &MO = getOperand(i);
989 // Accept regmask operands when Overlap is set.
990 // Ignore them when looking for a specific def operand (Overlap == false).
991 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
992 return i;
993 if (!MO.isReg() || !MO.isDef())
994 continue;
995 unsigned MOReg = MO.getReg();
996 bool Found = (MOReg == Reg);
997 if (!Found && TRI && isPhys &&
998 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
999 if (Overlap)
1000 Found = TRI->regsOverlap(MOReg, Reg);
1001 else
1002 Found = TRI->isSubRegister(MOReg, Reg);
1004 if (Found && (!isDead || MO.isDead()))
1005 return i;
1007 return -1;
1010 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1011 /// operand list that is used to represent the predicate. It returns -1 if
1012 /// none is found.
1013 int MachineInstr::findFirstPredOperandIdx() const {
1014 // Don't call MCID.findFirstPredOperandIdx() because this variant
1015 // is sometimes called on an instruction that's not yet complete, and
1016 // so the number of operands is less than the MCID indicates. In
1017 // particular, the PTX target does this.
1018 const MCInstrDesc &MCID = getDesc();
1019 if (MCID.isPredicable()) {
1020 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1021 if (MCID.OpInfo[i].isPredicate())
1022 return i;
1025 return -1;
1028 // MachineOperand::TiedTo is 4 bits wide.
1029 const unsigned TiedMax = 15;
1031 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1033 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1034 /// field. TiedTo can have these values:
1036 /// 0: Operand is not tied to anything.
1037 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1038 /// TiedMax: Tied to an operand >= TiedMax-1.
1040 /// The tied def must be one of the first TiedMax operands on a normal
1041 /// instruction. INLINEASM instructions allow more tied defs.
1043 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1044 MachineOperand &DefMO = getOperand(DefIdx);
1045 MachineOperand &UseMO = getOperand(UseIdx);
1046 assert(DefMO.isDef() && "DefIdx must be a def operand");
1047 assert(UseMO.isUse() && "UseIdx must be a use operand");
1048 assert(!DefMO.isTied() && "Def is already tied to another use");
1049 assert(!UseMO.isTied() && "Use is already tied to another def");
1051 if (DefIdx < TiedMax)
1052 UseMO.TiedTo = DefIdx + 1;
1053 else {
1054 // Inline asm can use the group descriptors to find tied operands, but on
1055 // normal instruction, the tied def must be within the first TiedMax
1056 // operands.
1057 assert(isInlineAsm() && "DefIdx out of range");
1058 UseMO.TiedTo = TiedMax;
1061 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1062 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1065 /// Given the index of a tied register operand, find the operand it is tied to.
1066 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1067 /// which must exist.
1068 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1069 const MachineOperand &MO = getOperand(OpIdx);
1070 assert(MO.isTied() && "Operand isn't tied");
1072 // Normally TiedTo is in range.
1073 if (MO.TiedTo < TiedMax)
1074 return MO.TiedTo - 1;
1076 // Uses on normal instructions can be out of range.
1077 if (!isInlineAsm()) {
1078 // Normal tied defs must be in the 0..TiedMax-1 range.
1079 if (MO.isUse())
1080 return TiedMax - 1;
1081 // MO is a def. Search for the tied use.
1082 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1083 const MachineOperand &UseMO = getOperand(i);
1084 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1085 return i;
1087 llvm_unreachable("Can't find tied use");
1090 // Now deal with inline asm by parsing the operand group descriptor flags.
1091 // Find the beginning of each operand group.
1092 SmallVector<unsigned, 8> GroupIdx;
1093 unsigned OpIdxGroup = ~0u;
1094 unsigned NumOps;
1095 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1096 i += NumOps) {
1097 const MachineOperand &FlagMO = getOperand(i);
1098 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1099 unsigned CurGroup = GroupIdx.size();
1100 GroupIdx.push_back(i);
1101 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1102 // OpIdx belongs to this operand group.
1103 if (OpIdx > i && OpIdx < i + NumOps)
1104 OpIdxGroup = CurGroup;
1105 unsigned TiedGroup;
1106 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1107 continue;
1108 // Operands in this group are tied to operands in TiedGroup which must be
1109 // earlier. Find the number of operands between the two groups.
1110 unsigned Delta = i - GroupIdx[TiedGroup];
1112 // OpIdx is a use tied to TiedGroup.
1113 if (OpIdxGroup == CurGroup)
1114 return OpIdx - Delta;
1116 // OpIdx is a def tied to this use group.
1117 if (OpIdxGroup == TiedGroup)
1118 return OpIdx + Delta;
1120 llvm_unreachable("Invalid tied operand on inline asm");
1123 /// clearKillInfo - Clears kill flags on all operands.
1125 void MachineInstr::clearKillInfo() {
1126 for (MachineOperand &MO : operands()) {
1127 if (MO.isReg() && MO.isUse())
1128 MO.setIsKill(false);
1132 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
1133 unsigned SubIdx,
1134 const TargetRegisterInfo &RegInfo) {
1135 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1136 if (SubIdx)
1137 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1138 for (MachineOperand &MO : operands()) {
1139 if (!MO.isReg() || MO.getReg() != FromReg)
1140 continue;
1141 MO.substPhysReg(ToReg, RegInfo);
1143 } else {
1144 for (MachineOperand &MO : operands()) {
1145 if (!MO.isReg() || MO.getReg() != FromReg)
1146 continue;
1147 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1152 /// isSafeToMove - Return true if it is safe to move this instruction. If
1153 /// SawStore is set to true, it means that there is a store (or call) between
1154 /// the instruction's location and its intended destination.
1155 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1156 // Ignore stuff that we obviously can't move.
1158 // Treat volatile loads as stores. This is not strictly necessary for
1159 // volatiles, but it is required for atomic loads. It is not allowed to move
1160 // a load across an atomic load with Ordering > Monotonic.
1161 if (mayStore() || isCall() || isPHI() ||
1162 (mayLoad() && hasOrderedMemoryRef())) {
1163 SawStore = true;
1164 return false;
1167 if (isPosition() || isDebugInstr() || isTerminator() ||
1168 hasUnmodeledSideEffects())
1169 return false;
1171 // See if this instruction does a load. If so, we have to guarantee that the
1172 // loaded value doesn't change between the load and the its intended
1173 // destination. The check for isInvariantLoad gives the targe the chance to
1174 // classify the load as always returning a constant, e.g. a constant pool
1175 // load.
1176 if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1177 // Otherwise, this is a real load. If there is a store between the load and
1178 // end of block, we can't move it.
1179 return !SawStore;
1181 return true;
1184 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1185 bool UseTBAA) {
1186 const MachineFunction *MF = getMF();
1187 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1188 const MachineFrameInfo &MFI = MF->getFrameInfo();
1190 // If neither instruction stores to memory, they can't alias in any
1191 // meaningful way, even if they read from the same address.
1192 if (!mayStore() && !Other.mayStore())
1193 return false;
1195 // Let the target decide if memory accesses cannot possibly overlap.
1196 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1197 return false;
1199 // FIXME: Need to handle multiple memory operands to support all targets.
1200 if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1201 return true;
1203 MachineMemOperand *MMOa = *memoperands_begin();
1204 MachineMemOperand *MMOb = *Other.memoperands_begin();
1206 // The following interface to AA is fashioned after DAGCombiner::isAlias
1207 // and operates with MachineMemOperand offset with some important
1208 // assumptions:
1209 // - LLVM fundamentally assumes flat address spaces.
1210 // - MachineOperand offset can *only* result from legalization and
1211 // cannot affect queries other than the trivial case of overlap
1212 // checking.
1213 // - These offsets never wrap and never step outside
1214 // of allocated objects.
1215 // - There should never be any negative offsets here.
1217 // FIXME: Modify API to hide this math from "user"
1218 // Even before we go to AA we can reason locally about some
1219 // memory objects. It can save compile time, and possibly catch some
1220 // corner cases not currently covered.
1222 int64_t OffsetA = MMOa->getOffset();
1223 int64_t OffsetB = MMOb->getOffset();
1224 int64_t MinOffset = std::min(OffsetA, OffsetB);
1226 uint64_t WidthA = MMOa->getSize();
1227 uint64_t WidthB = MMOb->getSize();
1228 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1229 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1231 const Value *ValA = MMOa->getValue();
1232 const Value *ValB = MMOb->getValue();
1233 bool SameVal = (ValA && ValB && (ValA == ValB));
1234 if (!SameVal) {
1235 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1236 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1237 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1238 return false;
1239 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1240 return false;
1241 if (PSVa && PSVb && (PSVa == PSVb))
1242 SameVal = true;
1245 if (SameVal) {
1246 if (!KnownWidthA || !KnownWidthB)
1247 return true;
1248 int64_t MaxOffset = std::max(OffsetA, OffsetB);
1249 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1250 return (MinOffset + LowWidth > MaxOffset);
1253 if (!AA)
1254 return true;
1256 if (!ValA || !ValB)
1257 return true;
1259 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1260 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1262 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1263 : MemoryLocation::UnknownSize;
1264 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1265 : MemoryLocation::UnknownSize;
1267 AliasResult AAResult = AA->alias(
1268 MemoryLocation(ValA, OverlapA,
1269 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1270 MemoryLocation(ValB, OverlapB,
1271 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1273 return (AAResult != NoAlias);
1276 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1277 /// or volatile memory reference, or if the information describing the memory
1278 /// reference is not available. Return false if it is known to have no ordered
1279 /// memory references.
1280 bool MachineInstr::hasOrderedMemoryRef() const {
1281 // An instruction known never to access memory won't have a volatile access.
1282 if (!mayStore() &&
1283 !mayLoad() &&
1284 !isCall() &&
1285 !hasUnmodeledSideEffects())
1286 return false;
1288 // Otherwise, if the instruction has no memory reference information,
1289 // conservatively assume it wasn't preserved.
1290 if (memoperands_empty())
1291 return true;
1293 // Check if any of our memory operands are ordered.
1294 // TODO: This should probably be be isUnordered (see D57601), but the callers
1295 // need audited and test cases written to be sure.
1296 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1297 return MMO->isVolatile() || MMO->isAtomic();
1301 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1302 /// trap and is loading from a location whose value is invariant across a run of
1303 /// this function.
1304 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1305 // If the instruction doesn't load at all, it isn't an invariant load.
1306 if (!mayLoad())
1307 return false;
1309 // If the instruction has lost its memoperands, conservatively assume that
1310 // it may not be an invariant load.
1311 if (memoperands_empty())
1312 return false;
1314 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1316 for (MachineMemOperand *MMO : memoperands()) {
1317 if (MMO->isVolatile()) return false;
1318 // TODO: Figure out whether isAtomic is really necessary (see D57601).
1319 if (MMO->isAtomic()) return false;
1320 if (MMO->isStore()) return false;
1321 if (MMO->isInvariant() && MMO->isDereferenceable())
1322 continue;
1324 // A load from a constant PseudoSourceValue is invariant.
1325 if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1326 if (PSV->isConstant(&MFI))
1327 continue;
1329 if (const Value *V = MMO->getValue()) {
1330 // If we have an AliasAnalysis, ask it whether the memory is constant.
1331 if (AA &&
1332 AA->pointsToConstantMemory(
1333 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1334 continue;
1337 // Otherwise assume conservatively.
1338 return false;
1341 // Everything checks out.
1342 return true;
1345 /// isConstantValuePHI - If the specified instruction is a PHI that always
1346 /// merges together the same virtual register, return the register, otherwise
1347 /// return 0.
1348 unsigned MachineInstr::isConstantValuePHI() const {
1349 if (!isPHI())
1350 return 0;
1351 assert(getNumOperands() >= 3 &&
1352 "It's illegal to have a PHI without source operands");
1354 unsigned Reg = getOperand(1).getReg();
1355 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1356 if (getOperand(i).getReg() != Reg)
1357 return 0;
1358 return Reg;
1361 bool MachineInstr::hasUnmodeledSideEffects() const {
1362 if (hasProperty(MCID::UnmodeledSideEffects))
1363 return true;
1364 if (isInlineAsm()) {
1365 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1366 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1367 return true;
1370 return false;
1373 bool MachineInstr::isLoadFoldBarrier() const {
1374 return mayStore() || isCall() || hasUnmodeledSideEffects();
1377 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1379 bool MachineInstr::allDefsAreDead() const {
1380 for (const MachineOperand &MO : operands()) {
1381 if (!MO.isReg() || MO.isUse())
1382 continue;
1383 if (!MO.isDead())
1384 return false;
1386 return true;
1389 /// copyImplicitOps - Copy implicit register operands from specified
1390 /// instruction to this instruction.
1391 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1392 const MachineInstr &MI) {
1393 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1394 i != e; ++i) {
1395 const MachineOperand &MO = MI.getOperand(i);
1396 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1397 addOperand(MF, MO);
1401 bool MachineInstr::hasComplexRegisterTies() const {
1402 const MCInstrDesc &MCID = getDesc();
1403 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1404 const auto &Operand = getOperand(I);
1405 if (!Operand.isReg() || Operand.isDef())
1406 // Ignore the defined registers as MCID marks only the uses as tied.
1407 continue;
1408 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1409 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1410 if (ExpectedTiedIdx != TiedIdx)
1411 return true;
1413 return false;
1416 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1417 const MachineRegisterInfo &MRI) const {
1418 const MachineOperand &Op = getOperand(OpIdx);
1419 if (!Op.isReg())
1420 return LLT{};
1422 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1423 return MRI.getType(Op.getReg());
1425 auto &OpInfo = getDesc().OpInfo[OpIdx];
1426 if (!OpInfo.isGenericType())
1427 return MRI.getType(Op.getReg());
1429 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1430 return LLT{};
1432 LLT TypeToPrint = MRI.getType(Op.getReg());
1433 // Don't mark the type index printed if it wasn't actually printed: maybe
1434 // another operand with the same type index has an actual type attached:
1435 if (TypeToPrint.isValid())
1436 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1437 return TypeToPrint;
1440 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1441 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1442 dbgs() << " ";
1443 print(dbgs());
1445 #endif
1447 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1448 bool SkipDebugLoc, bool AddNewLine,
1449 const TargetInstrInfo *TII) const {
1450 const Module *M = nullptr;
1451 const Function *F = nullptr;
1452 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1453 F = &MF->getFunction();
1454 M = F->getParent();
1455 if (!TII)
1456 TII = MF->getSubtarget().getInstrInfo();
1459 ModuleSlotTracker MST(M);
1460 if (F)
1461 MST.incorporateFunction(*F);
1462 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1465 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1466 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1467 bool AddNewLine, const TargetInstrInfo *TII) const {
1468 // We can be a bit tidier if we know the MachineFunction.
1469 const MachineFunction *MF = nullptr;
1470 const TargetRegisterInfo *TRI = nullptr;
1471 const MachineRegisterInfo *MRI = nullptr;
1472 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1473 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1475 if (isCFIInstruction())
1476 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1478 SmallBitVector PrintedTypes(8);
1479 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1480 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1481 if (!ShouldPrintRegisterTies)
1482 return 0U;
1483 const MachineOperand &MO = getOperand(OpIdx);
1484 if (MO.isReg() && MO.isTied() && !MO.isDef())
1485 return findTiedOperandIdx(OpIdx);
1486 return 0U;
1488 unsigned StartOp = 0;
1489 unsigned e = getNumOperands();
1491 // Print explicitly defined operands on the left of an assignment syntax.
1492 while (StartOp < e) {
1493 const MachineOperand &MO = getOperand(StartOp);
1494 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1495 break;
1497 if (StartOp != 0)
1498 OS << ", ";
1500 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1501 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1502 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1503 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1504 ++StartOp;
1507 if (StartOp != 0)
1508 OS << " = ";
1510 if (getFlag(MachineInstr::FrameSetup))
1511 OS << "frame-setup ";
1512 if (getFlag(MachineInstr::FrameDestroy))
1513 OS << "frame-destroy ";
1514 if (getFlag(MachineInstr::FmNoNans))
1515 OS << "nnan ";
1516 if (getFlag(MachineInstr::FmNoInfs))
1517 OS << "ninf ";
1518 if (getFlag(MachineInstr::FmNsz))
1519 OS << "nsz ";
1520 if (getFlag(MachineInstr::FmArcp))
1521 OS << "arcp ";
1522 if (getFlag(MachineInstr::FmContract))
1523 OS << "contract ";
1524 if (getFlag(MachineInstr::FmAfn))
1525 OS << "afn ";
1526 if (getFlag(MachineInstr::FmReassoc))
1527 OS << "reassoc ";
1528 if (getFlag(MachineInstr::NoUWrap))
1529 OS << "nuw ";
1530 if (getFlag(MachineInstr::NoSWrap))
1531 OS << "nsw ";
1532 if (getFlag(MachineInstr::IsExact))
1533 OS << "exact ";
1535 // Print the opcode name.
1536 if (TII)
1537 OS << TII->getName(getOpcode());
1538 else
1539 OS << "UNKNOWN";
1541 if (SkipOpers)
1542 return;
1544 // Print the rest of the operands.
1545 bool FirstOp = true;
1546 unsigned AsmDescOp = ~0u;
1547 unsigned AsmOpCount = 0;
1549 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1550 // Print asm string.
1551 OS << " ";
1552 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1553 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1554 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1555 getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1556 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1557 IntrinsicInfo);
1559 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1560 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1561 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1562 OS << " [sideeffect]";
1563 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1564 OS << " [mayload]";
1565 if (ExtraInfo & InlineAsm::Extra_MayStore)
1566 OS << " [maystore]";
1567 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1568 OS << " [isconvergent]";
1569 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1570 OS << " [alignstack]";
1571 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1572 OS << " [attdialect]";
1573 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1574 OS << " [inteldialect]";
1576 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1577 FirstOp = false;
1580 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1581 const MachineOperand &MO = getOperand(i);
1583 if (FirstOp) FirstOp = false; else OS << ",";
1584 OS << " ";
1586 if (isDebugValue() && MO.isMetadata()) {
1587 // Pretty print DBG_VALUE instructions.
1588 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1589 if (DIV && !DIV->getName().empty())
1590 OS << "!\"" << DIV->getName() << '\"';
1591 else {
1592 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1593 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1594 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1595 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1597 } else if (isDebugLabel() && MO.isMetadata()) {
1598 // Pretty print DBG_LABEL instructions.
1599 auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1600 if (DIL && !DIL->getName().empty())
1601 OS << "\"" << DIL->getName() << '\"';
1602 else {
1603 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1604 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1605 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1606 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1608 } else if (i == AsmDescOp && MO.isImm()) {
1609 // Pretty print the inline asm operand descriptor.
1610 OS << '$' << AsmOpCount++;
1611 unsigned Flag = MO.getImm();
1612 switch (InlineAsm::getKind(Flag)) {
1613 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1614 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1615 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1616 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1617 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1618 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1619 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1622 unsigned RCID = 0;
1623 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1624 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1625 if (TRI) {
1626 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1627 } else
1628 OS << ":RC" << RCID;
1631 if (InlineAsm::isMemKind(Flag)) {
1632 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1633 switch (MCID) {
1634 case InlineAsm::Constraint_es: OS << ":es"; break;
1635 case InlineAsm::Constraint_i: OS << ":i"; break;
1636 case InlineAsm::Constraint_m: OS << ":m"; break;
1637 case InlineAsm::Constraint_o: OS << ":o"; break;
1638 case InlineAsm::Constraint_v: OS << ":v"; break;
1639 case InlineAsm::Constraint_Q: OS << ":Q"; break;
1640 case InlineAsm::Constraint_R: OS << ":R"; break;
1641 case InlineAsm::Constraint_S: OS << ":S"; break;
1642 case InlineAsm::Constraint_T: OS << ":T"; break;
1643 case InlineAsm::Constraint_Um: OS << ":Um"; break;
1644 case InlineAsm::Constraint_Un: OS << ":Un"; break;
1645 case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1646 case InlineAsm::Constraint_Us: OS << ":Us"; break;
1647 case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1648 case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1649 case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1650 case InlineAsm::Constraint_X: OS << ":X"; break;
1651 case InlineAsm::Constraint_Z: OS << ":Z"; break;
1652 case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1653 case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1654 default: OS << ":?"; break;
1658 unsigned TiedTo = 0;
1659 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1660 OS << " tiedto:$" << TiedTo;
1662 OS << ']';
1664 // Compute the index of the next operand descriptor.
1665 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1666 } else {
1667 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1668 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1669 if (MO.isImm() && isOperandSubregIdx(i))
1670 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1671 else
1672 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1673 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1677 // Print any optional symbols attached to this instruction as-if they were
1678 // operands.
1679 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1680 if (!FirstOp) {
1681 FirstOp = false;
1682 OS << ',';
1684 OS << " pre-instr-symbol ";
1685 MachineOperand::printSymbol(OS, *PreInstrSymbol);
1687 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1688 if (!FirstOp) {
1689 FirstOp = false;
1690 OS << ',';
1692 OS << " post-instr-symbol ";
1693 MachineOperand::printSymbol(OS, *PostInstrSymbol);
1696 if (!SkipDebugLoc) {
1697 if (const DebugLoc &DL = getDebugLoc()) {
1698 if (!FirstOp)
1699 OS << ',';
1700 OS << " debug-location ";
1701 DL->printAsOperand(OS, MST);
1705 if (!memoperands_empty()) {
1706 SmallVector<StringRef, 0> SSNs;
1707 const LLVMContext *Context = nullptr;
1708 std::unique_ptr<LLVMContext> CtxPtr;
1709 const MachineFrameInfo *MFI = nullptr;
1710 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1711 MFI = &MF->getFrameInfo();
1712 Context = &MF->getFunction().getContext();
1713 } else {
1714 CtxPtr = llvm::make_unique<LLVMContext>();
1715 Context = CtxPtr.get();
1718 OS << " :: ";
1719 bool NeedComma = false;
1720 for (const MachineMemOperand *Op : memoperands()) {
1721 if (NeedComma)
1722 OS << ", ";
1723 Op->print(OS, MST, SSNs, *Context, MFI, TII);
1724 NeedComma = true;
1728 if (SkipDebugLoc)
1729 return;
1731 bool HaveSemi = false;
1733 // Print debug location information.
1734 if (const DebugLoc &DL = getDebugLoc()) {
1735 if (!HaveSemi) {
1736 OS << ';';
1737 HaveSemi = true;
1739 OS << ' ';
1740 DL.print(OS);
1743 // Print extra comments for DEBUG_VALUE.
1744 if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1745 if (!HaveSemi) {
1746 OS << ";";
1747 HaveSemi = true;
1749 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1750 OS << " line no:" << DV->getLine();
1751 if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1752 DebugLoc InlinedAtDL(InlinedAt);
1753 if (InlinedAtDL && MF) {
1754 OS << " inlined @[ ";
1755 InlinedAtDL.print(OS);
1756 OS << " ]";
1759 if (isIndirectDebugValue())
1760 OS << " indirect";
1762 // TODO: DBG_LABEL
1764 if (AddNewLine)
1765 OS << '\n';
1768 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1769 const TargetRegisterInfo *RegInfo,
1770 bool AddIfNotFound) {
1771 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1772 bool hasAliases = isPhysReg &&
1773 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1774 bool Found = false;
1775 SmallVector<unsigned,4> DeadOps;
1776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1777 MachineOperand &MO = getOperand(i);
1778 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1779 continue;
1781 // DEBUG_VALUE nodes do not contribute to code generation and should
1782 // always be ignored. Failure to do so may result in trying to modify
1783 // KILL flags on DEBUG_VALUE nodes.
1784 if (MO.isDebug())
1785 continue;
1787 unsigned Reg = MO.getReg();
1788 if (!Reg)
1789 continue;
1791 if (Reg == IncomingReg) {
1792 if (!Found) {
1793 if (MO.isKill())
1794 // The register is already marked kill.
1795 return true;
1796 if (isPhysReg && isRegTiedToDefOperand(i))
1797 // Two-address uses of physregs must not be marked kill.
1798 return true;
1799 MO.setIsKill();
1800 Found = true;
1802 } else if (hasAliases && MO.isKill() &&
1803 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1804 // A super-register kill already exists.
1805 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1806 return true;
1807 if (RegInfo->isSubRegister(IncomingReg, Reg))
1808 DeadOps.push_back(i);
1812 // Trim unneeded kill operands.
1813 while (!DeadOps.empty()) {
1814 unsigned OpIdx = DeadOps.back();
1815 if (getOperand(OpIdx).isImplicit() &&
1816 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1817 RemoveOperand(OpIdx);
1818 else
1819 getOperand(OpIdx).setIsKill(false);
1820 DeadOps.pop_back();
1823 // If not found, this means an alias of one of the operands is killed. Add a
1824 // new implicit operand if required.
1825 if (!Found && AddIfNotFound) {
1826 addOperand(MachineOperand::CreateReg(IncomingReg,
1827 false /*IsDef*/,
1828 true /*IsImp*/,
1829 true /*IsKill*/));
1830 return true;
1832 return Found;
1835 void MachineInstr::clearRegisterKills(unsigned Reg,
1836 const TargetRegisterInfo *RegInfo) {
1837 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1838 RegInfo = nullptr;
1839 for (MachineOperand &MO : operands()) {
1840 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1841 continue;
1842 unsigned OpReg = MO.getReg();
1843 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1844 MO.setIsKill(false);
1848 bool MachineInstr::addRegisterDead(unsigned Reg,
1849 const TargetRegisterInfo *RegInfo,
1850 bool AddIfNotFound) {
1851 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1852 bool hasAliases = isPhysReg &&
1853 MCRegAliasIterator(Reg, RegInfo, false).isValid();
1854 bool Found = false;
1855 SmallVector<unsigned,4> DeadOps;
1856 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1857 MachineOperand &MO = getOperand(i);
1858 if (!MO.isReg() || !MO.isDef())
1859 continue;
1860 unsigned MOReg = MO.getReg();
1861 if (!MOReg)
1862 continue;
1864 if (MOReg == Reg) {
1865 MO.setIsDead();
1866 Found = true;
1867 } else if (hasAliases && MO.isDead() &&
1868 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1869 // There exists a super-register that's marked dead.
1870 if (RegInfo->isSuperRegister(Reg, MOReg))
1871 return true;
1872 if (RegInfo->isSubRegister(Reg, MOReg))
1873 DeadOps.push_back(i);
1877 // Trim unneeded dead operands.
1878 while (!DeadOps.empty()) {
1879 unsigned OpIdx = DeadOps.back();
1880 if (getOperand(OpIdx).isImplicit() &&
1881 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1882 RemoveOperand(OpIdx);
1883 else
1884 getOperand(OpIdx).setIsDead(false);
1885 DeadOps.pop_back();
1888 // If not found, this means an alias of one of the operands is dead. Add a
1889 // new implicit operand if required.
1890 if (Found || !AddIfNotFound)
1891 return Found;
1893 addOperand(MachineOperand::CreateReg(Reg,
1894 true /*IsDef*/,
1895 true /*IsImp*/,
1896 false /*IsKill*/,
1897 true /*IsDead*/));
1898 return true;
1901 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1902 for (MachineOperand &MO : operands()) {
1903 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1904 continue;
1905 MO.setIsDead(false);
1909 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1910 for (MachineOperand &MO : operands()) {
1911 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1912 continue;
1913 MO.setIsUndef(IsUndef);
1917 void MachineInstr::addRegisterDefined(unsigned Reg,
1918 const TargetRegisterInfo *RegInfo) {
1919 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1920 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1921 if (MO)
1922 return;
1923 } else {
1924 for (const MachineOperand &MO : operands()) {
1925 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1926 MO.getSubReg() == 0)
1927 return;
1930 addOperand(MachineOperand::CreateReg(Reg,
1931 true /*IsDef*/,
1932 true /*IsImp*/));
1935 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1936 const TargetRegisterInfo &TRI) {
1937 bool HasRegMask = false;
1938 for (MachineOperand &MO : operands()) {
1939 if (MO.isRegMask()) {
1940 HasRegMask = true;
1941 continue;
1943 if (!MO.isReg() || !MO.isDef()) continue;
1944 unsigned Reg = MO.getReg();
1945 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1946 // If there are no uses, including partial uses, the def is dead.
1947 if (llvm::none_of(UsedRegs,
1948 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1949 MO.setIsDead();
1952 // This is a call with a register mask operand.
1953 // Mask clobbers are always dead, so add defs for the non-dead defines.
1954 if (HasRegMask)
1955 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1956 I != E; ++I)
1957 addRegisterDefined(*I, &TRI);
1960 unsigned
1961 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1962 // Build up a buffer of hash code components.
1963 SmallVector<size_t, 8> HashComponents;
1964 HashComponents.reserve(MI->getNumOperands() + 1);
1965 HashComponents.push_back(MI->getOpcode());
1966 for (const MachineOperand &MO : MI->operands()) {
1967 if (MO.isReg() && MO.isDef() &&
1968 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1969 continue; // Skip virtual register defs.
1971 HashComponents.push_back(hash_value(MO));
1973 return hash_combine_range(HashComponents.begin(), HashComponents.end());
1976 void MachineInstr::emitError(StringRef Msg) const {
1977 // Find the source location cookie.
1978 unsigned LocCookie = 0;
1979 const MDNode *LocMD = nullptr;
1980 for (unsigned i = getNumOperands(); i != 0; --i) {
1981 if (getOperand(i-1).isMetadata() &&
1982 (LocMD = getOperand(i-1).getMetadata()) &&
1983 LocMD->getNumOperands() != 0) {
1984 if (const ConstantInt *CI =
1985 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1986 LocCookie = CI->getZExtValue();
1987 break;
1992 if (const MachineBasicBlock *MBB = getParent())
1993 if (const MachineFunction *MF = MBB->getParent())
1994 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1995 report_fatal_error(Msg);
1998 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1999 const MCInstrDesc &MCID, bool IsIndirect,
2000 unsigned Reg, const MDNode *Variable,
2001 const MDNode *Expr) {
2002 assert(isa<DILocalVariable>(Variable) && "not a variable");
2003 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2004 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2005 "Expected inlined-at fields to agree");
2006 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2007 if (IsIndirect)
2008 MIB.addImm(0U);
2009 else
2010 MIB.addReg(0U, RegState::Debug);
2011 return MIB.addMetadata(Variable).addMetadata(Expr);
2014 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2015 const MCInstrDesc &MCID, bool IsIndirect,
2016 MachineOperand &MO, const MDNode *Variable,
2017 const MDNode *Expr) {
2018 assert(isa<DILocalVariable>(Variable) && "not a variable");
2019 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2020 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2021 "Expected inlined-at fields to agree");
2022 if (MO.isReg())
2023 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2025 auto MIB = BuildMI(MF, DL, MCID).add(MO);
2026 if (IsIndirect)
2027 MIB.addImm(0U);
2028 else
2029 MIB.addReg(0U, RegState::Debug);
2030 return MIB.addMetadata(Variable).addMetadata(Expr);
2033 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2034 MachineBasicBlock::iterator I,
2035 const DebugLoc &DL, const MCInstrDesc &MCID,
2036 bool IsIndirect, unsigned Reg,
2037 const MDNode *Variable, const MDNode *Expr) {
2038 MachineFunction &MF = *BB.getParent();
2039 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2040 BB.insert(I, MI);
2041 return MachineInstrBuilder(MF, MI);
2044 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2045 MachineBasicBlock::iterator I,
2046 const DebugLoc &DL, const MCInstrDesc &MCID,
2047 bool IsIndirect, MachineOperand &MO,
2048 const MDNode *Variable, const MDNode *Expr) {
2049 MachineFunction &MF = *BB.getParent();
2050 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2051 BB.insert(I, MI);
2052 return MachineInstrBuilder(MF, *MI);
2055 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2056 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2057 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2058 assert(MI.getOperand(0).isReg() && "can't spill non-register");
2059 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2060 "Expected inlined-at fields to agree");
2062 const DIExpression *Expr = MI.getDebugExpression();
2063 if (MI.isIndirectDebugValue()) {
2064 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2065 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
2067 return Expr;
2070 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2071 MachineBasicBlock::iterator I,
2072 const MachineInstr &Orig,
2073 int FrameIndex) {
2074 const DIExpression *Expr = computeExprForSpill(Orig);
2075 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2076 .addFrameIndex(FrameIndex)
2077 .addImm(0U)
2078 .addMetadata(Orig.getDebugVariable())
2079 .addMetadata(Expr);
2082 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2083 const DIExpression *Expr = computeExprForSpill(Orig);
2084 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2085 Orig.getOperand(1).ChangeToImmediate(0U);
2086 Orig.getOperand(3).setMetadata(Expr);
2089 void MachineInstr::collectDebugValues(
2090 SmallVectorImpl<MachineInstr *> &DbgValues) {
2091 MachineInstr &MI = *this;
2092 if (!MI.getOperand(0).isReg())
2093 return;
2095 MachineBasicBlock::iterator DI = MI; ++DI;
2096 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2097 DI != DE; ++DI) {
2098 if (!DI->isDebugValue())
2099 return;
2100 if (DI->getOperand(0).isReg() &&
2101 DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2102 DbgValues.push_back(&*DI);
2106 void MachineInstr::changeDebugValuesDefReg(unsigned Reg) {
2107 // Collect matching debug values.
2108 SmallVector<MachineInstr *, 2> DbgValues;
2109 collectDebugValues(DbgValues);
2111 // Propagate Reg to debug value instructions.
2112 for (auto *DBI : DbgValues)
2113 DBI->getOperand(0).setReg(Reg);
2116 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2118 static unsigned getSpillSlotSize(MMOList &Accesses,
2119 const MachineFrameInfo &MFI) {
2120 unsigned Size = 0;
2121 for (auto A : Accesses)
2122 if (MFI.isSpillSlotObjectIndex(
2123 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2124 ->getFrameIndex()))
2125 Size += A->getSize();
2126 return Size;
2129 Optional<unsigned>
2130 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2131 int FI;
2132 if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2133 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2134 if (MFI.isSpillSlotObjectIndex(FI))
2135 return (*memoperands_begin())->getSize();
2137 return None;
2140 Optional<unsigned>
2141 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2142 MMOList Accesses;
2143 if (TII->hasStoreToStackSlot(*this, Accesses))
2144 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2145 return None;
2148 Optional<unsigned>
2149 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2150 int FI;
2151 if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2152 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2153 if (MFI.isSpillSlotObjectIndex(FI))
2154 return (*memoperands_begin())->getSize();
2156 return None;
2159 Optional<unsigned>
2160 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2161 MMOList Accesses;
2162 if (TII->hasLoadFromStackSlot(*this, Accesses))
2163 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2164 return None;