Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / MachineOutliner.cpp
blob8c0626092bbed19f99356edbefeba8c47ca14a26
1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Replaces repeated sequences of instructions with function calls.
11 ///
12 /// This works by placing every instruction from every basic block in a
13 /// suffix tree, and repeatedly querying that tree for repeated sequences of
14 /// instructions. If a sequence of instructions appears often, then it ought
15 /// to be beneficial to pull out into a function.
16 ///
17 /// The MachineOutliner communicates with a given target using hooks defined in
18 /// TargetInstrInfo.h. The target supplies the outliner with information on how
19 /// a specific sequence of instructions should be outlined. This information
20 /// is used to deduce the number of instructions necessary to
21 ///
22 /// * Create an outlined function
23 /// * Call that outlined function
24 ///
25 /// Targets must implement
26 /// * getOutliningCandidateInfo
27 /// * buildOutlinedFrame
28 /// * insertOutlinedCall
29 /// * isFunctionSafeToOutlineFrom
30 ///
31 /// in order to make use of the MachineOutliner.
32 ///
33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
35 /// how this pass works, the talk is available on YouTube at
36 ///
37 /// https://www.youtube.com/watch?v=yorld-WSOeU
38 ///
39 /// The slides for the talk are available at
40 ///
41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
42 ///
43 /// The talk provides an overview of how the outliner finds candidates and
44 /// ultimately outlines them. It describes how the main data structure for this
45 /// pass, the suffix tree, is queried and purged for candidates. It also gives
46 /// a simplified suffix tree construction algorithm for suffix trees based off
47 /// of the algorithm actually used here, Ukkonen's algorithm.
48 ///
49 /// For the original RFC for this pass, please see
50 ///
51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
52 ///
53 /// For more information on the suffix tree data structure, please see
54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
55 ///
56 //===----------------------------------------------------------------------===//
57 #include "llvm/CodeGen/MachineOutliner.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/CodeGen/MachineFunction.h"
62 #include "llvm/CodeGen/MachineModuleInfo.h"
63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
64 #include "llvm/CodeGen/MachineRegisterInfo.h"
65 #include "llvm/CodeGen/Passes.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/IRBuilder.h"
70 #include "llvm/IR/Mangler.h"
71 #include "llvm/Support/Allocator.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <functional>
76 #include <map>
77 #include <sstream>
78 #include <tuple>
79 #include <vector>
81 #define DEBUG_TYPE "machine-outliner"
83 using namespace llvm;
84 using namespace ore;
85 using namespace outliner;
87 STATISTIC(NumOutlined, "Number of candidates outlined");
88 STATISTIC(FunctionsCreated, "Number of functions created");
90 // Set to true if the user wants the outliner to run on linkonceodr linkage
91 // functions. This is false by default because the linker can dedupe linkonceodr
92 // functions. Since the outliner is confined to a single module (modulo LTO),
93 // this is off by default. It should, however, be the default behaviour in
94 // LTO.
95 static cl::opt<bool> EnableLinkOnceODROutlining(
96 "enable-linkonceodr-outlining",
97 cl::Hidden,
98 cl::desc("Enable the machine outliner on linkonceodr functions"),
99 cl::init(false));
101 namespace {
103 /// Represents an undefined index in the suffix tree.
104 const unsigned EmptyIdx = -1;
106 /// A node in a suffix tree which represents a substring or suffix.
108 /// Each node has either no children or at least two children, with the root
109 /// being a exception in the empty tree.
111 /// Children are represented as a map between unsigned integers and nodes. If
112 /// a node N has a child M on unsigned integer k, then the mapping represented
113 /// by N is a proper prefix of the mapping represented by M. Note that this,
114 /// although similar to a trie is somewhat different: each node stores a full
115 /// substring of the full mapping rather than a single character state.
117 /// Each internal node contains a pointer to the internal node representing
118 /// the same string, but with the first character chopped off. This is stored
119 /// in \p Link. Each leaf node stores the start index of its respective
120 /// suffix in \p SuffixIdx.
121 struct SuffixTreeNode {
123 /// The children of this node.
125 /// A child existing on an unsigned integer implies that from the mapping
126 /// represented by the current node, there is a way to reach another
127 /// mapping by tacking that character on the end of the current string.
128 DenseMap<unsigned, SuffixTreeNode *> Children;
130 /// The start index of this node's substring in the main string.
131 unsigned StartIdx = EmptyIdx;
133 /// The end index of this node's substring in the main string.
135 /// Every leaf node must have its \p EndIdx incremented at the end of every
136 /// step in the construction algorithm. To avoid having to update O(N)
137 /// nodes individually at the end of every step, the end index is stored
138 /// as a pointer.
139 unsigned *EndIdx = nullptr;
141 /// For leaves, the start index of the suffix represented by this node.
143 /// For all other nodes, this is ignored.
144 unsigned SuffixIdx = EmptyIdx;
146 /// For internal nodes, a pointer to the internal node representing
147 /// the same sequence with the first character chopped off.
149 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
150 /// Ukkonen's algorithm does to achieve linear-time construction is
151 /// keep track of which node the next insert should be at. This makes each
152 /// insert O(1), and there are a total of O(N) inserts. The suffix link
153 /// helps with inserting children of internal nodes.
155 /// Say we add a child to an internal node with associated mapping S. The
156 /// next insertion must be at the node representing S - its first character.
157 /// This is given by the way that we iteratively build the tree in Ukkonen's
158 /// algorithm. The main idea is to look at the suffixes of each prefix in the
159 /// string, starting with the longest suffix of the prefix, and ending with
160 /// the shortest. Therefore, if we keep pointers between such nodes, we can
161 /// move to the next insertion point in O(1) time. If we don't, then we'd
162 /// have to query from the root, which takes O(N) time. This would make the
163 /// construction algorithm O(N^2) rather than O(N).
164 SuffixTreeNode *Link = nullptr;
166 /// The length of the string formed by concatenating the edge labels from the
167 /// root to this node.
168 unsigned ConcatLen = 0;
170 /// Returns true if this node is a leaf.
171 bool isLeaf() const { return SuffixIdx != EmptyIdx; }
173 /// Returns true if this node is the root of its owning \p SuffixTree.
174 bool isRoot() const { return StartIdx == EmptyIdx; }
176 /// Return the number of elements in the substring associated with this node.
177 size_t size() const {
179 // Is it the root? If so, it's the empty string so return 0.
180 if (isRoot())
181 return 0;
183 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
185 // Size = the number of elements in the string.
186 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
187 return *EndIdx - StartIdx + 1;
190 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
191 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
193 SuffixTreeNode() {}
196 /// A data structure for fast substring queries.
198 /// Suffix trees represent the suffixes of their input strings in their leaves.
199 /// A suffix tree is a type of compressed trie structure where each node
200 /// represents an entire substring rather than a single character. Each leaf
201 /// of the tree is a suffix.
203 /// A suffix tree can be seen as a type of state machine where each state is a
204 /// substring of the full string. The tree is structured so that, for a string
205 /// of length N, there are exactly N leaves in the tree. This structure allows
206 /// us to quickly find repeated substrings of the input string.
208 /// In this implementation, a "string" is a vector of unsigned integers.
209 /// These integers may result from hashing some data type. A suffix tree can
210 /// contain 1 or many strings, which can then be queried as one large string.
212 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
213 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
214 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
215 /// paper is available at
217 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
218 class SuffixTree {
219 public:
220 /// Each element is an integer representing an instruction in the module.
221 ArrayRef<unsigned> Str;
223 /// A repeated substring in the tree.
224 struct RepeatedSubstring {
225 /// The length of the string.
226 unsigned Length;
228 /// The start indices of each occurrence.
229 std::vector<unsigned> StartIndices;
232 private:
233 /// Maintains each node in the tree.
234 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
236 /// The root of the suffix tree.
238 /// The root represents the empty string. It is maintained by the
239 /// \p NodeAllocator like every other node in the tree.
240 SuffixTreeNode *Root = nullptr;
242 /// Maintains the end indices of the internal nodes in the tree.
244 /// Each internal node is guaranteed to never have its end index change
245 /// during the construction algorithm; however, leaves must be updated at
246 /// every step. Therefore, we need to store leaf end indices by reference
247 /// to avoid updating O(N) leaves at every step of construction. Thus,
248 /// every internal node must be allocated its own end index.
249 BumpPtrAllocator InternalEndIdxAllocator;
251 /// The end index of each leaf in the tree.
252 unsigned LeafEndIdx = -1;
254 /// Helper struct which keeps track of the next insertion point in
255 /// Ukkonen's algorithm.
256 struct ActiveState {
257 /// The next node to insert at.
258 SuffixTreeNode *Node;
260 /// The index of the first character in the substring currently being added.
261 unsigned Idx = EmptyIdx;
263 /// The length of the substring we have to add at the current step.
264 unsigned Len = 0;
267 /// The point the next insertion will take place at in the
268 /// construction algorithm.
269 ActiveState Active;
271 /// Allocate a leaf node and add it to the tree.
273 /// \param Parent The parent of this node.
274 /// \param StartIdx The start index of this node's associated string.
275 /// \param Edge The label on the edge leaving \p Parent to this node.
277 /// \returns A pointer to the allocated leaf node.
278 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
279 unsigned Edge) {
281 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
283 SuffixTreeNode *N = new (NodeAllocator.Allocate())
284 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
285 Parent.Children[Edge] = N;
287 return N;
290 /// Allocate an internal node and add it to the tree.
292 /// \param Parent The parent of this node. Only null when allocating the root.
293 /// \param StartIdx The start index of this node's associated string.
294 /// \param EndIdx The end index of this node's associated string.
295 /// \param Edge The label on the edge leaving \p Parent to this node.
297 /// \returns A pointer to the allocated internal node.
298 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
299 unsigned EndIdx, unsigned Edge) {
301 assert(StartIdx <= EndIdx && "String can't start after it ends!");
302 assert(!(!Parent && StartIdx != EmptyIdx) &&
303 "Non-root internal nodes must have parents!");
305 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
306 SuffixTreeNode *N = new (NodeAllocator.Allocate())
307 SuffixTreeNode(StartIdx, E, Root);
308 if (Parent)
309 Parent->Children[Edge] = N;
311 return N;
314 /// Set the suffix indices of the leaves to the start indices of their
315 /// respective suffixes.
317 /// \param[in] CurrNode The node currently being visited.
318 /// \param CurrNodeLen The concatenation of all node sizes from the root to
319 /// this node. Used to produce suffix indices.
320 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) {
322 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
324 // Store the concatenation of lengths down from the root.
325 CurrNode.ConcatLen = CurrNodeLen;
326 // Traverse the tree depth-first.
327 for (auto &ChildPair : CurrNode.Children) {
328 assert(ChildPair.second && "Node had a null child!");
329 setSuffixIndices(*ChildPair.second,
330 CurrNodeLen + ChildPair.second->size());
333 // Is this node a leaf? If it is, give it a suffix index.
334 if (IsLeaf)
335 CurrNode.SuffixIdx = Str.size() - CurrNodeLen;
338 /// Construct the suffix tree for the prefix of the input ending at
339 /// \p EndIdx.
341 /// Used to construct the full suffix tree iteratively. At the end of each
342 /// step, the constructed suffix tree is either a valid suffix tree, or a
343 /// suffix tree with implicit suffixes. At the end of the final step, the
344 /// suffix tree is a valid tree.
346 /// \param EndIdx The end index of the current prefix in the main string.
347 /// \param SuffixesToAdd The number of suffixes that must be added
348 /// to complete the suffix tree at the current phase.
350 /// \returns The number of suffixes that have not been added at the end of
351 /// this step.
352 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
353 SuffixTreeNode *NeedsLink = nullptr;
355 while (SuffixesToAdd > 0) {
357 // Are we waiting to add anything other than just the last character?
358 if (Active.Len == 0) {
359 // If not, then say the active index is the end index.
360 Active.Idx = EndIdx;
363 assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
365 // The first character in the current substring we're looking at.
366 unsigned FirstChar = Str[Active.Idx];
368 // Have we inserted anything starting with FirstChar at the current node?
369 if (Active.Node->Children.count(FirstChar) == 0) {
370 // If not, then we can just insert a leaf and move too the next step.
371 insertLeaf(*Active.Node, EndIdx, FirstChar);
373 // The active node is an internal node, and we visited it, so it must
374 // need a link if it doesn't have one.
375 if (NeedsLink) {
376 NeedsLink->Link = Active.Node;
377 NeedsLink = nullptr;
379 } else {
380 // There's a match with FirstChar, so look for the point in the tree to
381 // insert a new node.
382 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
384 unsigned SubstringLen = NextNode->size();
386 // Is the current suffix we're trying to insert longer than the size of
387 // the child we want to move to?
388 if (Active.Len >= SubstringLen) {
389 // If yes, then consume the characters we've seen and move to the next
390 // node.
391 Active.Idx += SubstringLen;
392 Active.Len -= SubstringLen;
393 Active.Node = NextNode;
394 continue;
397 // Otherwise, the suffix we're trying to insert must be contained in the
398 // next node we want to move to.
399 unsigned LastChar = Str[EndIdx];
401 // Is the string we're trying to insert a substring of the next node?
402 if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
403 // If yes, then we're done for this step. Remember our insertion point
404 // and move to the next end index. At this point, we have an implicit
405 // suffix tree.
406 if (NeedsLink && !Active.Node->isRoot()) {
407 NeedsLink->Link = Active.Node;
408 NeedsLink = nullptr;
411 Active.Len++;
412 break;
415 // The string we're trying to insert isn't a substring of the next node,
416 // but matches up to a point. Split the node.
418 // For example, say we ended our search at a node n and we're trying to
419 // insert ABD. Then we'll create a new node s for AB, reduce n to just
420 // representing C, and insert a new leaf node l to represent d. This
421 // allows us to ensure that if n was a leaf, it remains a leaf.
423 // | ABC ---split---> | AB
424 // n s
425 // C / \ D
426 // n l
428 // The node s from the diagram
429 SuffixTreeNode *SplitNode =
430 insertInternalNode(Active.Node, NextNode->StartIdx,
431 NextNode->StartIdx + Active.Len - 1, FirstChar);
433 // Insert the new node representing the new substring into the tree as
434 // a child of the split node. This is the node l from the diagram.
435 insertLeaf(*SplitNode, EndIdx, LastChar);
437 // Make the old node a child of the split node and update its start
438 // index. This is the node n from the diagram.
439 NextNode->StartIdx += Active.Len;
440 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
442 // SplitNode is an internal node, update the suffix link.
443 if (NeedsLink)
444 NeedsLink->Link = SplitNode;
446 NeedsLink = SplitNode;
449 // We've added something new to the tree, so there's one less suffix to
450 // add.
451 SuffixesToAdd--;
453 if (Active.Node->isRoot()) {
454 if (Active.Len > 0) {
455 Active.Len--;
456 Active.Idx = EndIdx - SuffixesToAdd + 1;
458 } else {
459 // Start the next phase at the next smallest suffix.
460 Active.Node = Active.Node->Link;
464 return SuffixesToAdd;
467 public:
468 /// Construct a suffix tree from a sequence of unsigned integers.
470 /// \param Str The string to construct the suffix tree for.
471 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
472 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
473 Active.Node = Root;
475 // Keep track of the number of suffixes we have to add of the current
476 // prefix.
477 unsigned SuffixesToAdd = 0;
478 Active.Node = Root;
480 // Construct the suffix tree iteratively on each prefix of the string.
481 // PfxEndIdx is the end index of the current prefix.
482 // End is one past the last element in the string.
483 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
484 PfxEndIdx++) {
485 SuffixesToAdd++;
486 LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
487 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
490 // Set the suffix indices of each leaf.
491 assert(Root && "Root node can't be nullptr!");
492 setSuffixIndices(*Root, 0);
496 /// Iterator for finding all repeated substrings in the suffix tree.
497 struct RepeatedSubstringIterator {
498 private:
499 /// The current node we're visiting.
500 SuffixTreeNode *N = nullptr;
502 /// The repeated substring associated with this node.
503 RepeatedSubstring RS;
505 /// The nodes left to visit.
506 std::vector<SuffixTreeNode *> ToVisit;
508 /// The minimum length of a repeated substring to find.
509 /// Since we're outlining, we want at least two instructions in the range.
510 /// FIXME: This may not be true for targets like X86 which support many
511 /// instruction lengths.
512 const unsigned MinLength = 2;
514 /// Move the iterator to the next repeated substring.
515 void advance() {
516 // Clear the current state. If we're at the end of the range, then this
517 // is the state we want to be in.
518 RS = RepeatedSubstring();
519 N = nullptr;
521 // Each leaf node represents a repeat of a string.
522 std::vector<SuffixTreeNode *> LeafChildren;
524 // Continue visiting nodes until we find one which repeats more than once.
525 while (!ToVisit.empty()) {
526 SuffixTreeNode *Curr = ToVisit.back();
527 ToVisit.pop_back();
528 LeafChildren.clear();
530 // Keep track of the length of the string associated with the node. If
531 // it's too short, we'll quit.
532 unsigned Length = Curr->ConcatLen;
534 // Iterate over each child, saving internal nodes for visiting, and
535 // leaf nodes in LeafChildren. Internal nodes represent individual
536 // strings, which may repeat.
537 for (auto &ChildPair : Curr->Children) {
538 // Save all of this node's children for processing.
539 if (!ChildPair.second->isLeaf())
540 ToVisit.push_back(ChildPair.second);
542 // It's not an internal node, so it must be a leaf. If we have a
543 // long enough string, then save the leaf children.
544 else if (Length >= MinLength)
545 LeafChildren.push_back(ChildPair.second);
548 // The root never represents a repeated substring. If we're looking at
549 // that, then skip it.
550 if (Curr->isRoot())
551 continue;
553 // Do we have any repeated substrings?
554 if (LeafChildren.size() >= 2) {
555 // Yes. Update the state to reflect this, and then bail out.
556 N = Curr;
557 RS.Length = Length;
558 for (SuffixTreeNode *Leaf : LeafChildren)
559 RS.StartIndices.push_back(Leaf->SuffixIdx);
560 break;
564 // At this point, either NewRS is an empty RepeatedSubstring, or it was
565 // set in the above loop. Similarly, N is either nullptr, or the node
566 // associated with NewRS.
569 public:
570 /// Return the current repeated substring.
571 RepeatedSubstring &operator*() { return RS; }
573 RepeatedSubstringIterator &operator++() {
574 advance();
575 return *this;
578 RepeatedSubstringIterator operator++(int I) {
579 RepeatedSubstringIterator It(*this);
580 advance();
581 return It;
584 bool operator==(const RepeatedSubstringIterator &Other) {
585 return N == Other.N;
587 bool operator!=(const RepeatedSubstringIterator &Other) {
588 return !(*this == Other);
591 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
592 // Do we have a non-null node?
593 if (N) {
594 // Yes. At the first step, we need to visit all of N's children.
595 // Note: This means that we visit N last.
596 ToVisit.push_back(N);
597 advance();
602 typedef RepeatedSubstringIterator iterator;
603 iterator begin() { return iterator(Root); }
604 iterator end() { return iterator(nullptr); }
607 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
608 struct InstructionMapper {
610 /// The next available integer to assign to a \p MachineInstr that
611 /// cannot be outlined.
613 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
614 unsigned IllegalInstrNumber = -3;
616 /// The next available integer to assign to a \p MachineInstr that can
617 /// be outlined.
618 unsigned LegalInstrNumber = 0;
620 /// Correspondence from \p MachineInstrs to unsigned integers.
621 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
622 InstructionIntegerMap;
624 /// Correspondence between \p MachineBasicBlocks and target-defined flags.
625 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
627 /// The vector of unsigned integers that the module is mapped to.
628 std::vector<unsigned> UnsignedVec;
630 /// Stores the location of the instruction associated with the integer
631 /// at index i in \p UnsignedVec for each index i.
632 std::vector<MachineBasicBlock::iterator> InstrList;
634 // Set if we added an illegal number in the previous step.
635 // Since each illegal number is unique, we only need one of them between
636 // each range of legal numbers. This lets us make sure we don't add more
637 // than one illegal number per range.
638 bool AddedIllegalLastTime = false;
640 /// Maps \p *It to a legal integer.
642 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
643 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
645 /// \returns The integer that \p *It was mapped to.
646 unsigned mapToLegalUnsigned(
647 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
648 bool &HaveLegalRange, unsigned &NumLegalInBlock,
649 std::vector<unsigned> &UnsignedVecForMBB,
650 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
651 // We added something legal, so we should unset the AddedLegalLastTime
652 // flag.
653 AddedIllegalLastTime = false;
655 // If we have at least two adjacent legal instructions (which may have
656 // invisible instructions in between), remember that.
657 if (CanOutlineWithPrevInstr)
658 HaveLegalRange = true;
659 CanOutlineWithPrevInstr = true;
661 // Keep track of the number of legal instructions we insert.
662 NumLegalInBlock++;
664 // Get the integer for this instruction or give it the current
665 // LegalInstrNumber.
666 InstrListForMBB.push_back(It);
667 MachineInstr &MI = *It;
668 bool WasInserted;
669 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
670 ResultIt;
671 std::tie(ResultIt, WasInserted) =
672 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
673 unsigned MINumber = ResultIt->second;
675 // There was an insertion.
676 if (WasInserted)
677 LegalInstrNumber++;
679 UnsignedVecForMBB.push_back(MINumber);
681 // Make sure we don't overflow or use any integers reserved by the DenseMap.
682 if (LegalInstrNumber >= IllegalInstrNumber)
683 report_fatal_error("Instruction mapping overflow!");
685 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
686 "Tried to assign DenseMap tombstone or empty key to instruction.");
687 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
688 "Tried to assign DenseMap tombstone or empty key to instruction.");
690 return MINumber;
693 /// Maps \p *It to an illegal integer.
695 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
696 /// IllegalInstrNumber.
698 /// \returns The integer that \p *It was mapped to.
699 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It,
700 bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB,
701 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
702 // Can't outline an illegal instruction. Set the flag.
703 CanOutlineWithPrevInstr = false;
705 // Only add one illegal number per range of legal numbers.
706 if (AddedIllegalLastTime)
707 return IllegalInstrNumber;
709 // Remember that we added an illegal number last time.
710 AddedIllegalLastTime = true;
711 unsigned MINumber = IllegalInstrNumber;
713 InstrListForMBB.push_back(It);
714 UnsignedVecForMBB.push_back(IllegalInstrNumber);
715 IllegalInstrNumber--;
717 assert(LegalInstrNumber < IllegalInstrNumber &&
718 "Instruction mapping overflow!");
720 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
721 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
723 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
724 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
726 return MINumber;
729 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
730 /// and appends it to \p UnsignedVec and \p InstrList.
732 /// Two instructions are assigned the same integer if they are identical.
733 /// If an instruction is deemed unsafe to outline, then it will be assigned an
734 /// unique integer. The resulting mapping is placed into a suffix tree and
735 /// queried for candidates.
737 /// \param MBB The \p MachineBasicBlock to be translated into integers.
738 /// \param TII \p TargetInstrInfo for the function.
739 void convertToUnsignedVec(MachineBasicBlock &MBB,
740 const TargetInstrInfo &TII) {
741 unsigned Flags = 0;
743 // Don't even map in this case.
744 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
745 return;
747 // Store info for the MBB for later outlining.
748 MBBFlagsMap[&MBB] = Flags;
750 MachineBasicBlock::iterator It = MBB.begin();
752 // The number of instructions in this block that will be considered for
753 // outlining.
754 unsigned NumLegalInBlock = 0;
756 // True if we have at least two legal instructions which aren't separated
757 // by an illegal instruction.
758 bool HaveLegalRange = false;
760 // True if we can perform outlining given the last mapped (non-invisible)
761 // instruction. This lets us know if we have a legal range.
762 bool CanOutlineWithPrevInstr = false;
764 // FIXME: Should this all just be handled in the target, rather than using
765 // repeated calls to getOutliningType?
766 std::vector<unsigned> UnsignedVecForMBB;
767 std::vector<MachineBasicBlock::iterator> InstrListForMBB;
769 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
770 // Keep track of where this instruction is in the module.
771 switch (TII.getOutliningType(It, Flags)) {
772 case InstrType::Illegal:
773 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr,
774 UnsignedVecForMBB, InstrListForMBB);
775 break;
777 case InstrType::Legal:
778 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
779 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
780 break;
782 case InstrType::LegalTerminator:
783 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
784 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
785 // The instruction also acts as a terminator, so we have to record that
786 // in the string.
787 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
788 InstrListForMBB);
789 break;
791 case InstrType::Invisible:
792 // Normally this is set by mapTo(Blah)Unsigned, but we just want to
793 // skip this instruction. So, unset the flag here.
794 AddedIllegalLastTime = false;
795 break;
799 // Are there enough legal instructions in the block for outlining to be
800 // possible?
801 if (HaveLegalRange) {
802 // After we're done every insertion, uniquely terminate this part of the
803 // "string". This makes sure we won't match across basic block or function
804 // boundaries since the "end" is encoded uniquely and thus appears in no
805 // repeated substring.
806 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
807 InstrListForMBB);
808 InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
809 InstrListForMBB.end());
810 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
811 UnsignedVecForMBB.end());
815 InstructionMapper() {
816 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
817 // changed.
818 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
819 "DenseMapInfo<unsigned>'s empty key isn't -1!");
820 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
821 "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
825 /// An interprocedural pass which finds repeated sequences of
826 /// instructions and replaces them with calls to functions.
828 /// Each instruction is mapped to an unsigned integer and placed in a string.
829 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
830 /// is then repeatedly queried for repeated sequences of instructions. Each
831 /// non-overlapping repeated sequence is then placed in its own
832 /// \p MachineFunction and each instance is then replaced with a call to that
833 /// function.
834 struct MachineOutliner : public ModulePass {
836 static char ID;
838 /// Set to true if the outliner should consider functions with
839 /// linkonceodr linkage.
840 bool OutlineFromLinkOnceODRs = false;
842 /// Set to true if the outliner should run on all functions in the module
843 /// considered safe for outlining.
844 /// Set to true by default for compatibility with llc's -run-pass option.
845 /// Set when the pass is constructed in TargetPassConfig.
846 bool RunOnAllFunctions = true;
848 StringRef getPassName() const override { return "Machine Outliner"; }
850 void getAnalysisUsage(AnalysisUsage &AU) const override {
851 AU.addRequired<MachineModuleInfo>();
852 AU.addPreserved<MachineModuleInfo>();
853 AU.setPreservesAll();
854 ModulePass::getAnalysisUsage(AU);
857 MachineOutliner() : ModulePass(ID) {
858 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
861 /// Remark output explaining that not outlining a set of candidates would be
862 /// better than outlining that set.
863 void emitNotOutliningCheaperRemark(
864 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
865 OutlinedFunction &OF);
867 /// Remark output explaining that a function was outlined.
868 void emitOutlinedFunctionRemark(OutlinedFunction &OF);
870 /// Find all repeated substrings that satisfy the outlining cost model by
871 /// constructing a suffix tree.
873 /// If a substring appears at least twice, then it must be represented by
874 /// an internal node which appears in at least two suffixes. Each suffix
875 /// is represented by a leaf node. To do this, we visit each internal node
876 /// in the tree, using the leaf children of each internal node. If an
877 /// internal node represents a beneficial substring, then we use each of
878 /// its leaf children to find the locations of its substring.
880 /// \param Mapper Contains outlining mapping information.
881 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
882 /// each type of candidate.
883 void findCandidates(InstructionMapper &Mapper,
884 std::vector<OutlinedFunction> &FunctionList);
886 /// Replace the sequences of instructions represented by \p OutlinedFunctions
887 /// with calls to functions.
889 /// \param M The module we are outlining from.
890 /// \param FunctionList A list of functions to be inserted into the module.
891 /// \param Mapper Contains the instruction mappings for the module.
892 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList,
893 InstructionMapper &Mapper);
895 /// Creates a function for \p OF and inserts it into the module.
896 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
897 InstructionMapper &Mapper,
898 unsigned Name);
900 /// Construct a suffix tree on the instructions in \p M and outline repeated
901 /// strings from that tree.
902 bool runOnModule(Module &M) override;
904 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
905 /// function for remark emission.
906 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
907 DISubprogram *SP;
908 for (const Candidate &C : OF.Candidates)
909 if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram()))
910 return SP;
911 return nullptr;
914 /// Populate and \p InstructionMapper with instruction-to-integer mappings.
915 /// These are used to construct a suffix tree.
916 void populateMapper(InstructionMapper &Mapper, Module &M,
917 MachineModuleInfo &MMI);
919 /// Initialize information necessary to output a size remark.
920 /// FIXME: This should be handled by the pass manager, not the outliner.
921 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
922 /// pass manager.
923 void initSizeRemarkInfo(
924 const Module &M, const MachineModuleInfo &MMI,
925 StringMap<unsigned> &FunctionToInstrCount);
927 /// Emit the remark.
928 // FIXME: This should be handled by the pass manager, not the outliner.
929 void emitInstrCountChangedRemark(
930 const Module &M, const MachineModuleInfo &MMI,
931 const StringMap<unsigned> &FunctionToInstrCount);
933 } // Anonymous namespace.
935 char MachineOutliner::ID = 0;
937 namespace llvm {
938 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
939 MachineOutliner *OL = new MachineOutliner();
940 OL->RunOnAllFunctions = RunOnAllFunctions;
941 return OL;
944 } // namespace llvm
946 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
947 false)
949 void MachineOutliner::emitNotOutliningCheaperRemark(
950 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
951 OutlinedFunction &OF) {
952 // FIXME: Right now, we arbitrarily choose some Candidate from the
953 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
954 // We should probably sort these by function name or something to make sure
955 // the remarks are stable.
956 Candidate &C = CandidatesForRepeatedSeq.front();
957 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
958 MORE.emit([&]() {
959 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
960 C.front()->getDebugLoc(), C.getMBB());
961 R << "Did not outline " << NV("Length", StringLen) << " instructions"
962 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
963 << " locations."
964 << " Bytes from outlining all occurrences ("
965 << NV("OutliningCost", OF.getOutliningCost()) << ")"
966 << " >= Unoutlined instruction bytes ("
967 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
968 << " (Also found at: ";
970 // Tell the user the other places the candidate was found.
971 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
972 R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
973 CandidatesForRepeatedSeq[i].front()->getDebugLoc());
974 if (i != e - 1)
975 R << ", ";
978 R << ")";
979 return R;
983 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
984 MachineBasicBlock *MBB = &*OF.MF->begin();
985 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
986 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
987 MBB->findDebugLoc(MBB->begin()), MBB);
988 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
989 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
990 << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
991 << " locations. "
992 << "(Found at: ";
994 // Tell the user the other places the candidate was found.
995 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
997 R << NV((Twine("StartLoc") + Twine(i)).str(),
998 OF.Candidates[i].front()->getDebugLoc());
999 if (i != e - 1)
1000 R << ", ";
1003 R << ")";
1005 MORE.emit(R);
1008 void
1009 MachineOutliner::findCandidates(InstructionMapper &Mapper,
1010 std::vector<OutlinedFunction> &FunctionList) {
1011 FunctionList.clear();
1012 SuffixTree ST(Mapper.UnsignedVec);
1014 // First, find dall of the repeated substrings in the tree of minimum length
1015 // 2.
1016 std::vector<Candidate> CandidatesForRepeatedSeq;
1017 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
1018 CandidatesForRepeatedSeq.clear();
1019 SuffixTree::RepeatedSubstring RS = *It;
1020 unsigned StringLen = RS.Length;
1021 for (const unsigned &StartIdx : RS.StartIndices) {
1022 unsigned EndIdx = StartIdx + StringLen - 1;
1023 // Trick: Discard some candidates that would be incompatible with the
1024 // ones we've already found for this sequence. This will save us some
1025 // work in candidate selection.
1027 // If two candidates overlap, then we can't outline them both. This
1028 // happens when we have candidates that look like, say
1030 // AA (where each "A" is an instruction).
1032 // We might have some portion of the module that looks like this:
1033 // AAAAAA (6 A's)
1035 // In this case, there are 5 different copies of "AA" in this range, but
1036 // at most 3 can be outlined. If only outlining 3 of these is going to
1037 // be unbeneficial, then we ought to not bother.
1039 // Note that two things DON'T overlap when they look like this:
1040 // start1...end1 .... start2...end2
1041 // That is, one must either
1042 // * End before the other starts
1043 // * Start after the other ends
1044 if (std::all_of(
1045 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
1046 [&StartIdx, &EndIdx](const Candidate &C) {
1047 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
1048 })) {
1049 // It doesn't overlap with anything, so we can outline it.
1050 // Each sequence is over [StartIt, EndIt].
1051 // Save the candidate and its location.
1053 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1054 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1055 MachineBasicBlock *MBB = StartIt->getParent();
1057 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
1058 EndIt, MBB, FunctionList.size(),
1059 Mapper.MBBFlagsMap[MBB]);
1063 // We've found something we might want to outline.
1064 // Create an OutlinedFunction to store it and check if it'd be beneficial
1065 // to outline.
1066 if (CandidatesForRepeatedSeq.size() < 2)
1067 continue;
1069 // Arbitrarily choose a TII from the first candidate.
1070 // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1071 const TargetInstrInfo *TII =
1072 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
1074 OutlinedFunction OF =
1075 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
1077 // If we deleted too many candidates, then there's nothing worth outlining.
1078 // FIXME: This should take target-specified instruction sizes into account.
1079 if (OF.Candidates.size() < 2)
1080 continue;
1082 // Is it better to outline this candidate than not?
1083 if (OF.getBenefit() < 1) {
1084 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
1085 continue;
1088 FunctionList.push_back(OF);
1092 MachineFunction *
1093 MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF,
1094 InstructionMapper &Mapper,
1095 unsigned Name) {
1097 // Create the function name. This should be unique. For now, just hash the
1098 // module name and include it in the function name plus the number of this
1099 // function.
1100 std::ostringstream NameStream;
1101 // FIXME: We should have a better naming scheme. This should be stable,
1102 // regardless of changes to the outliner's cost model/traversal order.
1103 NameStream << "OUTLINED_FUNCTION_" << Name;
1105 // Create the function using an IR-level function.
1106 LLVMContext &C = M.getContext();
1107 Function *F =
1108 Function::Create(FunctionType::get(Type::getVoidTy(C), false),
1109 Function::ExternalLinkage, NameStream.str(), M);
1111 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1112 // which gives us better results when we outline from linkonceodr functions.
1113 F->setLinkage(GlobalValue::InternalLinkage);
1114 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1116 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1117 // necessary.
1119 // Set optsize/minsize, so we don't insert padding between outlined
1120 // functions.
1121 F->addFnAttr(Attribute::OptimizeForSize);
1122 F->addFnAttr(Attribute::MinSize);
1124 // Include target features from an arbitrary candidate for the outlined
1125 // function. This makes sure the outlined function knows what kinds of
1126 // instructions are going into it. This is fine, since all parent functions
1127 // must necessarily support the instructions that are in the outlined region.
1128 Candidate &FirstCand = OF.Candidates.front();
1129 const Function &ParentFn = FirstCand.getMF()->getFunction();
1130 if (ParentFn.hasFnAttribute("target-features"))
1131 F->addFnAttr(ParentFn.getFnAttribute("target-features"));
1133 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1134 IRBuilder<> Builder(EntryBB);
1135 Builder.CreateRetVoid();
1137 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1138 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1139 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1140 const TargetSubtargetInfo &STI = MF.getSubtarget();
1141 const TargetInstrInfo &TII = *STI.getInstrInfo();
1143 // Insert the new function into the module.
1144 MF.insert(MF.begin(), &MBB);
1146 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E;
1147 ++I) {
1148 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
1149 NewMI->dropMemRefs(MF);
1151 // Don't keep debug information for outlined instructions.
1152 NewMI->setDebugLoc(DebugLoc());
1153 MBB.insert(MBB.end(), NewMI);
1156 TII.buildOutlinedFrame(MBB, MF, OF);
1158 // Outlined functions shouldn't preserve liveness.
1159 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1160 MF.getRegInfo().freezeReservedRegs(MF);
1162 // If there's a DISubprogram associated with this outlined function, then
1163 // emit debug info for the outlined function.
1164 if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1165 // We have a DISubprogram. Get its DICompileUnit.
1166 DICompileUnit *CU = SP->getUnit();
1167 DIBuilder DB(M, true, CU);
1168 DIFile *Unit = SP->getFile();
1169 Mangler Mg;
1170 // Get the mangled name of the function for the linkage name.
1171 std::string Dummy;
1172 llvm::raw_string_ostream MangledNameStream(Dummy);
1173 Mg.getNameWithPrefix(MangledNameStream, F, false);
1175 DISubprogram *OutlinedSP = DB.createFunction(
1176 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1177 Unit /* File */,
1178 0 /* Line 0 is reserved for compiler-generated code. */,
1179 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
1180 0, /* Line 0 is reserved for compiler-generated code. */
1181 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1182 /* Outlined code is optimized code by definition. */
1183 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
1185 // Don't add any new variables to the subprogram.
1186 DB.finalizeSubprogram(OutlinedSP);
1188 // Attach subprogram to the function.
1189 F->setSubprogram(OutlinedSP);
1190 // We're done with the DIBuilder.
1191 DB.finalize();
1194 return &MF;
1197 bool MachineOutliner::outline(Module &M,
1198 std::vector<OutlinedFunction> &FunctionList,
1199 InstructionMapper &Mapper) {
1201 bool OutlinedSomething = false;
1203 // Number to append to the current outlined function.
1204 unsigned OutlinedFunctionNum = 0;
1206 // Sort by benefit. The most beneficial functions should be outlined first.
1207 std::stable_sort(
1208 FunctionList.begin(), FunctionList.end(),
1209 [](const OutlinedFunction &LHS, const OutlinedFunction &RHS) {
1210 return LHS.getBenefit() > RHS.getBenefit();
1213 // Walk over each function, outlining them as we go along. Functions are
1214 // outlined greedily, based off the sort above.
1215 for (OutlinedFunction &OF : FunctionList) {
1216 // If we outlined something that overlapped with a candidate in a previous
1217 // step, then we can't outline from it.
1218 erase_if(OF.Candidates, [&Mapper](Candidate &C) {
1219 return std::any_of(
1220 Mapper.UnsignedVec.begin() + C.getStartIdx(),
1221 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1222 [](unsigned I) { return (I == static_cast<unsigned>(-1)); });
1225 // If we made it unbeneficial to outline this function, skip it.
1226 if (OF.getBenefit() < 1)
1227 continue;
1229 // It's beneficial. Create the function and outline its sequence's
1230 // occurrences.
1231 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
1232 emitOutlinedFunctionRemark(OF);
1233 FunctionsCreated++;
1234 OutlinedFunctionNum++; // Created a function, move to the next name.
1235 MachineFunction *MF = OF.MF;
1236 const TargetSubtargetInfo &STI = MF->getSubtarget();
1237 const TargetInstrInfo &TII = *STI.getInstrInfo();
1239 // Replace occurrences of the sequence with calls to the new function.
1240 for (Candidate &C : OF.Candidates) {
1241 MachineBasicBlock &MBB = *C.getMBB();
1242 MachineBasicBlock::iterator StartIt = C.front();
1243 MachineBasicBlock::iterator EndIt = C.back();
1245 // Insert the call.
1246 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);
1248 // If the caller tracks liveness, then we need to make sure that
1249 // anything we outline doesn't break liveness assumptions. The outlined
1250 // functions themselves currently don't track liveness, but we should
1251 // make sure that the ranges we yank things out of aren't wrong.
1252 if (MBB.getParent()->getProperties().hasProperty(
1253 MachineFunctionProperties::Property::TracksLiveness)) {
1254 // Helper lambda for adding implicit def operands to the call
1255 // instruction.
1256 auto CopyDefs = [&CallInst](MachineInstr &MI) {
1257 for (MachineOperand &MOP : MI.operands()) {
1258 // Skip over anything that isn't a register.
1259 if (!MOP.isReg())
1260 continue;
1262 // If it's a def, add it to the call instruction.
1263 if (MOP.isDef())
1264 CallInst->addOperand(MachineOperand::CreateReg(
1265 MOP.getReg(), true, /* isDef = true */
1266 true /* isImp = true */));
1269 // Copy over the defs in the outlined range.
1270 // First inst in outlined range <-- Anything that's defined in this
1271 // ... .. range has to be added as an
1272 // implicit Last inst in outlined range <-- def to the call
1273 // instruction.
1274 std::for_each(CallInst, std::next(EndIt), CopyDefs);
1277 // Erase from the point after where the call was inserted up to, and
1278 // including, the final instruction in the sequence.
1279 // Erase needs one past the end, so we need std::next there too.
1280 MBB.erase(std::next(StartIt), std::next(EndIt));
1282 // Keep track of what we removed by marking them all as -1.
1283 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(),
1284 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1285 [](unsigned &I) { I = static_cast<unsigned>(-1); });
1286 OutlinedSomething = true;
1288 // Statistics.
1289 NumOutlined++;
1293 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1295 return OutlinedSomething;
1298 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
1299 MachineModuleInfo &MMI) {
1300 // Build instruction mappings for each function in the module. Start by
1301 // iterating over each Function in M.
1302 for (Function &F : M) {
1304 // If there's nothing in F, then there's no reason to try and outline from
1305 // it.
1306 if (F.empty())
1307 continue;
1309 // There's something in F. Check if it has a MachineFunction associated with
1310 // it.
1311 MachineFunction *MF = MMI.getMachineFunction(F);
1313 // If it doesn't, then there's nothing to outline from. Move to the next
1314 // Function.
1315 if (!MF)
1316 continue;
1318 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1320 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1321 continue;
1323 // We have a MachineFunction. Ask the target if it's suitable for outlining.
1324 // If it isn't, then move on to the next Function in the module.
1325 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1326 continue;
1328 // We have a function suitable for outlining. Iterate over every
1329 // MachineBasicBlock in MF and try to map its instructions to a list of
1330 // unsigned integers.
1331 for (MachineBasicBlock &MBB : *MF) {
1332 // If there isn't anything in MBB, then there's no point in outlining from
1333 // it.
1334 // If there are fewer than 2 instructions in the MBB, then it can't ever
1335 // contain something worth outlining.
1336 // FIXME: This should be based off of the maximum size in B of an outlined
1337 // call versus the size in B of the MBB.
1338 if (MBB.empty() || MBB.size() < 2)
1339 continue;
1341 // Check if MBB could be the target of an indirect branch. If it is, then
1342 // we don't want to outline from it.
1343 if (MBB.hasAddressTaken())
1344 continue;
1346 // MBB is suitable for outlining. Map it to a list of unsigneds.
1347 Mapper.convertToUnsignedVec(MBB, *TII);
1352 void MachineOutliner::initSizeRemarkInfo(
1353 const Module &M, const MachineModuleInfo &MMI,
1354 StringMap<unsigned> &FunctionToInstrCount) {
1355 // Collect instruction counts for every function. We'll use this to emit
1356 // per-function size remarks later.
1357 for (const Function &F : M) {
1358 MachineFunction *MF = MMI.getMachineFunction(F);
1360 // We only care about MI counts here. If there's no MachineFunction at this
1361 // point, then there won't be after the outliner runs, so let's move on.
1362 if (!MF)
1363 continue;
1364 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
1368 void MachineOutliner::emitInstrCountChangedRemark(
1369 const Module &M, const MachineModuleInfo &MMI,
1370 const StringMap<unsigned> &FunctionToInstrCount) {
1371 // Iterate over each function in the module and emit remarks.
1372 // Note that we won't miss anything by doing this, because the outliner never
1373 // deletes functions.
1374 for (const Function &F : M) {
1375 MachineFunction *MF = MMI.getMachineFunction(F);
1377 // The outliner never deletes functions. If we don't have a MF here, then we
1378 // didn't have one prior to outlining either.
1379 if (!MF)
1380 continue;
1382 std::string Fname = F.getName();
1383 unsigned FnCountAfter = MF->getInstructionCount();
1384 unsigned FnCountBefore = 0;
1386 // Check if the function was recorded before.
1387 auto It = FunctionToInstrCount.find(Fname);
1389 // Did we have a previously-recorded size? If yes, then set FnCountBefore
1390 // to that.
1391 if (It != FunctionToInstrCount.end())
1392 FnCountBefore = It->second;
1394 // Compute the delta and emit a remark if there was a change.
1395 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
1396 static_cast<int64_t>(FnCountBefore);
1397 if (FnDelta == 0)
1398 continue;
1400 MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
1401 MORE.emit([&]() {
1402 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
1403 DiagnosticLocation(),
1404 &MF->front());
1405 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1406 << ": Function: "
1407 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
1408 << ": MI instruction count changed from "
1409 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1410 FnCountBefore)
1411 << " to "
1412 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1413 FnCountAfter)
1414 << "; Delta: "
1415 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
1416 return R;
1421 bool MachineOutliner::runOnModule(Module &M) {
1422 // Check if there's anything in the module. If it's empty, then there's
1423 // nothing to outline.
1424 if (M.empty())
1425 return false;
1427 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1429 // If the user passed -enable-machine-outliner=always or
1430 // -enable-machine-outliner, the pass will run on all functions in the module.
1431 // Otherwise, if the target supports default outlining, it will run on all
1432 // functions deemed by the target to be worth outlining from by default. Tell
1433 // the user how the outliner is running.
1434 LLVM_DEBUG(
1435 dbgs() << "Machine Outliner: Running on ";
1436 if (RunOnAllFunctions)
1437 dbgs() << "all functions";
1438 else
1439 dbgs() << "target-default functions";
1440 dbgs() << "\n"
1443 // If the user specifies that they want to outline from linkonceodrs, set
1444 // it here.
1445 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1446 InstructionMapper Mapper;
1448 // Prepare instruction mappings for the suffix tree.
1449 populateMapper(Mapper, M, MMI);
1450 std::vector<OutlinedFunction> FunctionList;
1452 // Find all of the outlining candidates.
1453 findCandidates(Mapper, FunctionList);
1455 // If we've requested size remarks, then collect the MI counts of every
1456 // function before outlining, and the MI counts after outlining.
1457 // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1458 // the pass manager's responsibility.
1459 // This could pretty easily be placed in outline instead, but because we
1460 // really ultimately *don't* want this here, it's done like this for now
1461 // instead.
1463 // Check if we want size remarks.
1464 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
1465 StringMap<unsigned> FunctionToInstrCount;
1466 if (ShouldEmitSizeRemarks)
1467 initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
1469 // Outline each of the candidates and return true if something was outlined.
1470 bool OutlinedSomething = outline(M, FunctionList, Mapper);
1472 // If we outlined something, we definitely changed the MI count of the
1473 // module. If we've asked for size remarks, then output them.
1474 // FIXME: This should be in the pass manager.
1475 if (ShouldEmitSizeRemarks && OutlinedSomething)
1476 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
1478 return OutlinedSomething;