Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / MachineSink.cpp
blob4e88fc0f7993791a57a3109166e4f7e8a32728ae
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseBitVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BranchProbability.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <map>
50 #include <utility>
51 #include <vector>
53 using namespace llvm;
55 #define DEBUG_TYPE "machine-sink"
57 static cl::opt<bool>
58 SplitEdges("machine-sink-split",
59 cl::desc("Split critical edges during machine sinking"),
60 cl::init(true), cl::Hidden);
62 static cl::opt<bool>
63 UseBlockFreqInfo("machine-sink-bfi",
64 cl::desc("Use block frequency info to find successors to sink"),
65 cl::init(true), cl::Hidden);
67 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
68 "machine-sink-split-probability-threshold",
69 cl::desc(
70 "Percentage threshold for splitting single-instruction critical edge. "
71 "If the branch threshold is higher than this threshold, we allow "
72 "speculative execution of up to 1 instruction to avoid branching to "
73 "splitted critical edge"),
74 cl::init(40), cl::Hidden);
76 STATISTIC(NumSunk, "Number of machine instructions sunk");
77 STATISTIC(NumSplit, "Number of critical edges split");
78 STATISTIC(NumCoalesces, "Number of copies coalesced");
79 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
81 namespace {
83 class MachineSinking : public MachineFunctionPass {
84 const TargetInstrInfo *TII;
85 const TargetRegisterInfo *TRI;
86 MachineRegisterInfo *MRI; // Machine register information
87 MachineDominatorTree *DT; // Machine dominator tree
88 MachinePostDominatorTree *PDT; // Machine post dominator tree
89 MachineLoopInfo *LI;
90 const MachineBlockFrequencyInfo *MBFI;
91 const MachineBranchProbabilityInfo *MBPI;
92 AliasAnalysis *AA;
94 // Remember which edges have been considered for breaking.
95 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
96 CEBCandidates;
97 // Remember which edges we are about to split.
98 // This is different from CEBCandidates since those edges
99 // will be split.
100 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
102 SparseBitVector<> RegsToClearKillFlags;
104 using AllSuccsCache =
105 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
107 public:
108 static char ID; // Pass identification
110 MachineSinking() : MachineFunctionPass(ID) {
111 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
114 bool runOnMachineFunction(MachineFunction &MF) override;
116 void getAnalysisUsage(AnalysisUsage &AU) const override {
117 AU.setPreservesCFG();
118 MachineFunctionPass::getAnalysisUsage(AU);
119 AU.addRequired<AAResultsWrapperPass>();
120 AU.addRequired<MachineDominatorTree>();
121 AU.addRequired<MachinePostDominatorTree>();
122 AU.addRequired<MachineLoopInfo>();
123 AU.addRequired<MachineBranchProbabilityInfo>();
124 AU.addPreserved<MachineDominatorTree>();
125 AU.addPreserved<MachinePostDominatorTree>();
126 AU.addPreserved<MachineLoopInfo>();
127 if (UseBlockFreqInfo)
128 AU.addRequired<MachineBlockFrequencyInfo>();
131 void releaseMemory() override {
132 CEBCandidates.clear();
135 private:
136 bool ProcessBlock(MachineBasicBlock &MBB);
137 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
138 MachineBasicBlock *From,
139 MachineBasicBlock *To);
141 /// Postpone the splitting of the given critical
142 /// edge (\p From, \p To).
144 /// We do not split the edges on the fly. Indeed, this invalidates
145 /// the dominance information and thus triggers a lot of updates
146 /// of that information underneath.
147 /// Instead, we postpone all the splits after each iteration of
148 /// the main loop. That way, the information is at least valid
149 /// for the lifetime of an iteration.
151 /// \return True if the edge is marked as toSplit, false otherwise.
152 /// False can be returned if, for instance, this is not profitable.
153 bool PostponeSplitCriticalEdge(MachineInstr &MI,
154 MachineBasicBlock *From,
155 MachineBasicBlock *To,
156 bool BreakPHIEdge);
157 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
159 AllSuccsCache &AllSuccessors);
160 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
161 MachineBasicBlock *DefMBB,
162 bool &BreakPHIEdge, bool &LocalUse) const;
163 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
164 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
165 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
166 MachineBasicBlock *MBB,
167 MachineBasicBlock *SuccToSinkTo,
168 AllSuccsCache &AllSuccessors);
170 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
171 MachineBasicBlock *MBB);
173 SmallVector<MachineBasicBlock *, 4> &
174 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
175 AllSuccsCache &AllSuccessors) const;
178 } // end anonymous namespace
180 char MachineSinking::ID = 0;
182 char &llvm::MachineSinkingID = MachineSinking::ID;
184 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
185 "Machine code sinking", false, false)
186 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
190 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
191 "Machine code sinking", false, false)
193 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
194 MachineBasicBlock *MBB) {
195 if (!MI.isCopy())
196 return false;
198 unsigned SrcReg = MI.getOperand(1).getReg();
199 unsigned DstReg = MI.getOperand(0).getReg();
200 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
201 !TargetRegisterInfo::isVirtualRegister(DstReg) ||
202 !MRI->hasOneNonDBGUse(SrcReg))
203 return false;
205 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
206 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
207 if (SRC != DRC)
208 return false;
210 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
211 if (DefMI->isCopyLike())
212 return false;
213 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
214 LLVM_DEBUG(dbgs() << "*** to: " << MI);
215 MRI->replaceRegWith(DstReg, SrcReg);
216 MI.eraseFromParent();
218 // Conservatively, clear any kill flags, since it's possible that they are no
219 // longer correct.
220 MRI->clearKillFlags(SrcReg);
222 ++NumCoalesces;
223 return true;
226 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
227 /// occur in blocks dominated by the specified block. If any use is in the
228 /// definition block, then return false since it is never legal to move def
229 /// after uses.
230 bool
231 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
232 MachineBasicBlock *MBB,
233 MachineBasicBlock *DefMBB,
234 bool &BreakPHIEdge,
235 bool &LocalUse) const {
236 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
237 "Only makes sense for vregs");
239 // Ignore debug uses because debug info doesn't affect the code.
240 if (MRI->use_nodbg_empty(Reg))
241 return true;
243 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
244 // into and they are all PHI nodes. In this case, machine-sink must break
245 // the critical edge first. e.g.
247 // %bb.1: derived from LLVM BB %bb4.preheader
248 // Predecessors according to CFG: %bb.0
249 // ...
250 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
251 // ...
252 // JE_4 <%bb.37>, implicit %eflags
253 // Successors according to CFG: %bb.37 %bb.2
255 // %bb.2: derived from LLVM BB %bb.nph
256 // Predecessors according to CFG: %bb.0 %bb.1
257 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
258 BreakPHIEdge = true;
259 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
260 MachineInstr *UseInst = MO.getParent();
261 unsigned OpNo = &MO - &UseInst->getOperand(0);
262 MachineBasicBlock *UseBlock = UseInst->getParent();
263 if (!(UseBlock == MBB && UseInst->isPHI() &&
264 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
265 BreakPHIEdge = false;
266 break;
269 if (BreakPHIEdge)
270 return true;
272 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
273 // Determine the block of the use.
274 MachineInstr *UseInst = MO.getParent();
275 unsigned OpNo = &MO - &UseInst->getOperand(0);
276 MachineBasicBlock *UseBlock = UseInst->getParent();
277 if (UseInst->isPHI()) {
278 // PHI nodes use the operand in the predecessor block, not the block with
279 // the PHI.
280 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
281 } else if (UseBlock == DefMBB) {
282 LocalUse = true;
283 return false;
286 // Check that it dominates.
287 if (!DT->dominates(MBB, UseBlock))
288 return false;
291 return true;
294 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
295 if (skipFunction(MF.getFunction()))
296 return false;
298 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
300 TII = MF.getSubtarget().getInstrInfo();
301 TRI = MF.getSubtarget().getRegisterInfo();
302 MRI = &MF.getRegInfo();
303 DT = &getAnalysis<MachineDominatorTree>();
304 PDT = &getAnalysis<MachinePostDominatorTree>();
305 LI = &getAnalysis<MachineLoopInfo>();
306 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
307 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
308 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
310 bool EverMadeChange = false;
312 while (true) {
313 bool MadeChange = false;
315 // Process all basic blocks.
316 CEBCandidates.clear();
317 ToSplit.clear();
318 for (auto &MBB: MF)
319 MadeChange |= ProcessBlock(MBB);
321 // If we have anything we marked as toSplit, split it now.
322 for (auto &Pair : ToSplit) {
323 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
324 if (NewSucc != nullptr) {
325 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
326 << printMBBReference(*Pair.first) << " -- "
327 << printMBBReference(*NewSucc) << " -- "
328 << printMBBReference(*Pair.second) << '\n');
329 MadeChange = true;
330 ++NumSplit;
331 } else
332 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
334 // If this iteration over the code changed anything, keep iterating.
335 if (!MadeChange) break;
336 EverMadeChange = true;
339 // Now clear any kill flags for recorded registers.
340 for (auto I : RegsToClearKillFlags)
341 MRI->clearKillFlags(I);
342 RegsToClearKillFlags.clear();
344 return EverMadeChange;
347 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
348 // Can't sink anything out of a block that has less than two successors.
349 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
351 // Don't bother sinking code out of unreachable blocks. In addition to being
352 // unprofitable, it can also lead to infinite looping, because in an
353 // unreachable loop there may be nowhere to stop.
354 if (!DT->isReachableFromEntry(&MBB)) return false;
356 bool MadeChange = false;
358 // Cache all successors, sorted by frequency info and loop depth.
359 AllSuccsCache AllSuccessors;
361 // Walk the basic block bottom-up. Remember if we saw a store.
362 MachineBasicBlock::iterator I = MBB.end();
363 --I;
364 bool ProcessedBegin, SawStore = false;
365 do {
366 MachineInstr &MI = *I; // The instruction to sink.
368 // Predecrement I (if it's not begin) so that it isn't invalidated by
369 // sinking.
370 ProcessedBegin = I == MBB.begin();
371 if (!ProcessedBegin)
372 --I;
374 if (MI.isDebugInstr())
375 continue;
377 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
378 if (Joined) {
379 MadeChange = true;
380 continue;
383 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
384 ++NumSunk;
385 MadeChange = true;
388 // If we just processed the first instruction in the block, we're done.
389 } while (!ProcessedBegin);
391 return MadeChange;
394 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
395 MachineBasicBlock *From,
396 MachineBasicBlock *To) {
397 // FIXME: Need much better heuristics.
399 // If the pass has already considered breaking this edge (during this pass
400 // through the function), then let's go ahead and break it. This means
401 // sinking multiple "cheap" instructions into the same block.
402 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
403 return true;
405 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
406 return true;
408 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
409 BranchProbability(SplitEdgeProbabilityThreshold, 100))
410 return true;
412 // MI is cheap, we probably don't want to break the critical edge for it.
413 // However, if this would allow some definitions of its source operands
414 // to be sunk then it's probably worth it.
415 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
416 const MachineOperand &MO = MI.getOperand(i);
417 if (!MO.isReg() || !MO.isUse())
418 continue;
419 unsigned Reg = MO.getReg();
420 if (Reg == 0)
421 continue;
423 // We don't move live definitions of physical registers,
424 // so sinking their uses won't enable any opportunities.
425 if (TargetRegisterInfo::isPhysicalRegister(Reg))
426 continue;
428 // If this instruction is the only user of a virtual register,
429 // check if breaking the edge will enable sinking
430 // both this instruction and the defining instruction.
431 if (MRI->hasOneNonDBGUse(Reg)) {
432 // If the definition resides in same MBB,
433 // claim it's likely we can sink these together.
434 // If definition resides elsewhere, we aren't
435 // blocking it from being sunk so don't break the edge.
436 MachineInstr *DefMI = MRI->getVRegDef(Reg);
437 if (DefMI->getParent() == MI.getParent())
438 return true;
442 return false;
445 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
446 MachineBasicBlock *FromBB,
447 MachineBasicBlock *ToBB,
448 bool BreakPHIEdge) {
449 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
450 return false;
452 // Avoid breaking back edge. From == To means backedge for single BB loop.
453 if (!SplitEdges || FromBB == ToBB)
454 return false;
456 // Check for backedges of more "complex" loops.
457 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
458 LI->isLoopHeader(ToBB))
459 return false;
461 // It's not always legal to break critical edges and sink the computation
462 // to the edge.
464 // %bb.1:
465 // v1024
466 // Beq %bb.3
467 // <fallthrough>
468 // %bb.2:
469 // ... no uses of v1024
470 // <fallthrough>
471 // %bb.3:
472 // ...
473 // = v1024
475 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
477 // %bb.1:
478 // ...
479 // Bne %bb.2
480 // %bb.4:
481 // v1024 =
482 // B %bb.3
483 // %bb.2:
484 // ... no uses of v1024
485 // <fallthrough>
486 // %bb.3:
487 // ...
488 // = v1024
490 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
491 // flow. We need to ensure the new basic block where the computation is
492 // sunk to dominates all the uses.
493 // It's only legal to break critical edge and sink the computation to the
494 // new block if all the predecessors of "To", except for "From", are
495 // not dominated by "From". Given SSA property, this means these
496 // predecessors are dominated by "To".
498 // There is no need to do this check if all the uses are PHI nodes. PHI
499 // sources are only defined on the specific predecessor edges.
500 if (!BreakPHIEdge) {
501 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
502 E = ToBB->pred_end(); PI != E; ++PI) {
503 if (*PI == FromBB)
504 continue;
505 if (!DT->dominates(ToBB, *PI))
506 return false;
510 ToSplit.insert(std::make_pair(FromBB, ToBB));
512 return true;
515 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
516 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
517 MachineBasicBlock *MBB,
518 MachineBasicBlock *SuccToSinkTo,
519 AllSuccsCache &AllSuccessors) {
520 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
522 if (MBB == SuccToSinkTo)
523 return false;
525 // It is profitable if SuccToSinkTo does not post dominate current block.
526 if (!PDT->dominates(SuccToSinkTo, MBB))
527 return true;
529 // It is profitable to sink an instruction from a deeper loop to a shallower
530 // loop, even if the latter post-dominates the former (PR21115).
531 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
532 return true;
534 // Check if only use in post dominated block is PHI instruction.
535 bool NonPHIUse = false;
536 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
537 MachineBasicBlock *UseBlock = UseInst.getParent();
538 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
539 NonPHIUse = true;
541 if (!NonPHIUse)
542 return true;
544 // If SuccToSinkTo post dominates then also it may be profitable if MI
545 // can further profitably sinked into another block in next round.
546 bool BreakPHIEdge = false;
547 // FIXME - If finding successor is compile time expensive then cache results.
548 if (MachineBasicBlock *MBB2 =
549 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
550 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
552 // If SuccToSinkTo is final destination and it is a post dominator of current
553 // block then it is not profitable to sink MI into SuccToSinkTo block.
554 return false;
557 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
558 /// computing it if it was not already cached.
559 SmallVector<MachineBasicBlock *, 4> &
560 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
561 AllSuccsCache &AllSuccessors) const {
562 // Do we have the sorted successors in cache ?
563 auto Succs = AllSuccessors.find(MBB);
564 if (Succs != AllSuccessors.end())
565 return Succs->second;
567 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
568 MBB->succ_end());
570 // Handle cases where sinking can happen but where the sink point isn't a
571 // successor. For example:
573 // x = computation
574 // if () {} else {}
575 // use x
577 const std::vector<MachineDomTreeNode *> &Children =
578 DT->getNode(MBB)->getChildren();
579 for (const auto &DTChild : Children)
580 // DomTree children of MBB that have MBB as immediate dominator are added.
581 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
582 // Skip MBBs already added to the AllSuccs vector above.
583 !MBB->isSuccessor(DTChild->getBlock()))
584 AllSuccs.push_back(DTChild->getBlock());
586 // Sort Successors according to their loop depth or block frequency info.
587 std::stable_sort(
588 AllSuccs.begin(), AllSuccs.end(),
589 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
590 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
591 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
592 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
593 return HasBlockFreq ? LHSFreq < RHSFreq
594 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
597 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
599 return it.first->second;
602 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
603 MachineBasicBlock *
604 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
605 bool &BreakPHIEdge,
606 AllSuccsCache &AllSuccessors) {
607 assert (MBB && "Invalid MachineBasicBlock!");
609 // Loop over all the operands of the specified instruction. If there is
610 // anything we can't handle, bail out.
612 // SuccToSinkTo - This is the successor to sink this instruction to, once we
613 // decide.
614 MachineBasicBlock *SuccToSinkTo = nullptr;
615 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
616 const MachineOperand &MO = MI.getOperand(i);
617 if (!MO.isReg()) continue; // Ignore non-register operands.
619 unsigned Reg = MO.getReg();
620 if (Reg == 0) continue;
622 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
623 if (MO.isUse()) {
624 // If the physreg has no defs anywhere, it's just an ambient register
625 // and we can freely move its uses. Alternatively, if it's allocatable,
626 // it could get allocated to something with a def during allocation.
627 if (!MRI->isConstantPhysReg(Reg))
628 return nullptr;
629 } else if (!MO.isDead()) {
630 // A def that isn't dead. We can't move it.
631 return nullptr;
633 } else {
634 // Virtual register uses are always safe to sink.
635 if (MO.isUse()) continue;
637 // If it's not safe to move defs of the register class, then abort.
638 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
639 return nullptr;
641 // Virtual register defs can only be sunk if all their uses are in blocks
642 // dominated by one of the successors.
643 if (SuccToSinkTo) {
644 // If a previous operand picked a block to sink to, then this operand
645 // must be sinkable to the same block.
646 bool LocalUse = false;
647 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
648 BreakPHIEdge, LocalUse))
649 return nullptr;
651 continue;
654 // Otherwise, we should look at all the successors and decide which one
655 // we should sink to. If we have reliable block frequency information
656 // (frequency != 0) available, give successors with smaller frequencies
657 // higher priority, otherwise prioritize smaller loop depths.
658 for (MachineBasicBlock *SuccBlock :
659 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
660 bool LocalUse = false;
661 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
662 BreakPHIEdge, LocalUse)) {
663 SuccToSinkTo = SuccBlock;
664 break;
666 if (LocalUse)
667 // Def is used locally, it's never safe to move this def.
668 return nullptr;
671 // If we couldn't find a block to sink to, ignore this instruction.
672 if (!SuccToSinkTo)
673 return nullptr;
674 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
675 return nullptr;
679 // It is not possible to sink an instruction into its own block. This can
680 // happen with loops.
681 if (MBB == SuccToSinkTo)
682 return nullptr;
684 // It's not safe to sink instructions to EH landing pad. Control flow into
685 // landing pad is implicitly defined.
686 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
687 return nullptr;
689 return SuccToSinkTo;
692 /// Return true if MI is likely to be usable as a memory operation by the
693 /// implicit null check optimization.
695 /// This is a "best effort" heuristic, and should not be relied upon for
696 /// correctness. This returning true does not guarantee that the implicit null
697 /// check optimization is legal over MI, and this returning false does not
698 /// guarantee MI cannot possibly be used to do a null check.
699 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
700 const TargetInstrInfo *TII,
701 const TargetRegisterInfo *TRI) {
702 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
704 auto *MBB = MI.getParent();
705 if (MBB->pred_size() != 1)
706 return false;
708 auto *PredMBB = *MBB->pred_begin();
709 auto *PredBB = PredMBB->getBasicBlock();
711 // Frontends that don't use implicit null checks have no reason to emit
712 // branches with make.implicit metadata, and this function should always
713 // return false for them.
714 if (!PredBB ||
715 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
716 return false;
718 MachineOperand *BaseOp;
719 int64_t Offset;
720 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
721 return false;
723 if (!BaseOp->isReg())
724 return false;
726 if (!(MI.mayLoad() && !MI.isPredicable()))
727 return false;
729 MachineBranchPredicate MBP;
730 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
731 return false;
733 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
734 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
735 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
736 MBP.LHS.getReg() == BaseOp->getReg();
739 /// Sink an instruction and its associated debug instructions. If the debug
740 /// instructions to be sunk are already known, they can be provided in DbgVals.
741 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
742 MachineBasicBlock::iterator InsertPos,
743 SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
744 // If debug values are provided use those, otherwise call collectDebugValues.
745 SmallVector<MachineInstr *, 2> DbgValuesToSink;
746 if (DbgVals)
747 DbgValuesToSink.insert(DbgValuesToSink.begin(),
748 DbgVals->begin(), DbgVals->end());
749 else
750 MI.collectDebugValues(DbgValuesToSink);
752 // If we cannot find a location to use (merge with), then we erase the debug
753 // location to prevent debug-info driven tools from potentially reporting
754 // wrong location information.
755 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
756 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
757 InsertPos->getDebugLoc()));
758 else
759 MI.setDebugLoc(DebugLoc());
761 // Move the instruction.
762 MachineBasicBlock *ParentBlock = MI.getParent();
763 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
764 ++MachineBasicBlock::iterator(MI));
766 // Move previously adjacent debug value instructions to the insert position.
767 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
768 DBE = DbgValuesToSink.end();
769 DBI != DBE; ++DBI) {
770 MachineInstr *DbgMI = *DBI;
771 SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
772 ++MachineBasicBlock::iterator(DbgMI));
776 /// SinkInstruction - Determine whether it is safe to sink the specified machine
777 /// instruction out of its current block into a successor.
778 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
779 AllSuccsCache &AllSuccessors) {
780 // Don't sink instructions that the target prefers not to sink.
781 if (!TII->shouldSink(MI))
782 return false;
784 // Check if it's safe to move the instruction.
785 if (!MI.isSafeToMove(AA, SawStore))
786 return false;
788 // Convergent operations may not be made control-dependent on additional
789 // values.
790 if (MI.isConvergent())
791 return false;
793 // Don't break implicit null checks. This is a performance heuristic, and not
794 // required for correctness.
795 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
796 return false;
798 // FIXME: This should include support for sinking instructions within the
799 // block they are currently in to shorten the live ranges. We often get
800 // instructions sunk into the top of a large block, but it would be better to
801 // also sink them down before their first use in the block. This xform has to
802 // be careful not to *increase* register pressure though, e.g. sinking
803 // "x = y + z" down if it kills y and z would increase the live ranges of y
804 // and z and only shrink the live range of x.
806 bool BreakPHIEdge = false;
807 MachineBasicBlock *ParentBlock = MI.getParent();
808 MachineBasicBlock *SuccToSinkTo =
809 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
811 // If there are no outputs, it must have side-effects.
812 if (!SuccToSinkTo)
813 return false;
815 // If the instruction to move defines a dead physical register which is live
816 // when leaving the basic block, don't move it because it could turn into a
817 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
818 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
819 const MachineOperand &MO = MI.getOperand(I);
820 if (!MO.isReg()) continue;
821 unsigned Reg = MO.getReg();
822 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
823 if (SuccToSinkTo->isLiveIn(Reg))
824 return false;
827 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
829 // If the block has multiple predecessors, this is a critical edge.
830 // Decide if we can sink along it or need to break the edge.
831 if (SuccToSinkTo->pred_size() > 1) {
832 // We cannot sink a load across a critical edge - there may be stores in
833 // other code paths.
834 bool TryBreak = false;
835 bool store = true;
836 if (!MI.isSafeToMove(AA, store)) {
837 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
838 TryBreak = true;
841 // We don't want to sink across a critical edge if we don't dominate the
842 // successor. We could be introducing calculations to new code paths.
843 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
844 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
845 TryBreak = true;
848 // Don't sink instructions into a loop.
849 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
850 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
851 TryBreak = true;
854 // Otherwise we are OK with sinking along a critical edge.
855 if (!TryBreak)
856 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
857 else {
858 // Mark this edge as to be split.
859 // If the edge can actually be split, the next iteration of the main loop
860 // will sink MI in the newly created block.
861 bool Status =
862 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
863 if (!Status)
864 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
865 "break critical edge\n");
866 // The instruction will not be sunk this time.
867 return false;
871 if (BreakPHIEdge) {
872 // BreakPHIEdge is true if all the uses are in the successor MBB being
873 // sunken into and they are all PHI nodes. In this case, machine-sink must
874 // break the critical edge first.
875 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
876 SuccToSinkTo, BreakPHIEdge);
877 if (!Status)
878 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
879 "break critical edge\n");
880 // The instruction will not be sunk this time.
881 return false;
884 // Determine where to insert into. Skip phi nodes.
885 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
886 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
887 ++InsertPos;
889 performSink(MI, *SuccToSinkTo, InsertPos);
891 // Conservatively, clear any kill flags, since it's possible that they are no
892 // longer correct.
893 // Note that we have to clear the kill flags for any register this instruction
894 // uses as we may sink over another instruction which currently kills the
895 // used registers.
896 for (MachineOperand &MO : MI.operands()) {
897 if (MO.isReg() && MO.isUse())
898 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
901 return true;
904 //===----------------------------------------------------------------------===//
905 // This pass is not intended to be a replacement or a complete alternative
906 // for the pre-ra machine sink pass. It is only designed to sink COPY
907 // instructions which should be handled after RA.
909 // This pass sinks COPY instructions into a successor block, if the COPY is not
910 // used in the current block and the COPY is live-in to a single successor
911 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
912 // copy on paths where their results aren't needed. This also exposes
913 // additional opportunites for dead copy elimination and shrink wrapping.
915 // These copies were either not handled by or are inserted after the MachineSink
916 // pass. As an example of the former case, the MachineSink pass cannot sink
917 // COPY instructions with allocatable source registers; for AArch64 these type
918 // of copy instructions are frequently used to move function parameters (PhyReg)
919 // into virtual registers in the entry block.
921 // For the machine IR below, this pass will sink %w19 in the entry into its
922 // successor (%bb.1) because %w19 is only live-in in %bb.1.
923 // %bb.0:
924 // %wzr = SUBSWri %w1, 1
925 // %w19 = COPY %w0
926 // Bcc 11, %bb.2
927 // %bb.1:
928 // Live Ins: %w19
929 // BL @fun
930 // %w0 = ADDWrr %w0, %w19
931 // RET %w0
932 // %bb.2:
933 // %w0 = COPY %wzr
934 // RET %w0
935 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
936 // able to see %bb.0 as a candidate.
937 //===----------------------------------------------------------------------===//
938 namespace {
940 class PostRAMachineSinking : public MachineFunctionPass {
941 public:
942 bool runOnMachineFunction(MachineFunction &MF) override;
944 static char ID;
945 PostRAMachineSinking() : MachineFunctionPass(ID) {}
946 StringRef getPassName() const override { return "PostRA Machine Sink"; }
948 void getAnalysisUsage(AnalysisUsage &AU) const override {
949 AU.setPreservesCFG();
950 MachineFunctionPass::getAnalysisUsage(AU);
953 MachineFunctionProperties getRequiredProperties() const override {
954 return MachineFunctionProperties().set(
955 MachineFunctionProperties::Property::NoVRegs);
958 private:
959 /// Track which register units have been modified and used.
960 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
962 /// Track DBG_VALUEs of (unmodified) register units.
963 DenseMap<unsigned, TinyPtrVector<MachineInstr*>> SeenDbgInstrs;
965 /// Sink Copy instructions unused in the same block close to their uses in
966 /// successors.
967 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
968 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
970 } // namespace
972 char PostRAMachineSinking::ID = 0;
973 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
975 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
976 "PostRA Machine Sink", false, false)
978 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
979 const TargetRegisterInfo *TRI) {
980 LiveRegUnits LiveInRegUnits(*TRI);
981 LiveInRegUnits.addLiveIns(MBB);
982 return !LiveInRegUnits.available(Reg);
985 static MachineBasicBlock *
986 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
987 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
988 unsigned Reg, const TargetRegisterInfo *TRI) {
989 // Try to find a single sinkable successor in which Reg is live-in.
990 MachineBasicBlock *BB = nullptr;
991 for (auto *SI : SinkableBBs) {
992 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
993 // If BB is set here, Reg is live-in to at least two sinkable successors,
994 // so quit.
995 if (BB)
996 return nullptr;
997 BB = SI;
1000 // Reg is not live-in to any sinkable successors.
1001 if (!BB)
1002 return nullptr;
1004 // Check if any register aliased with Reg is live-in in other successors.
1005 for (auto *SI : CurBB.successors()) {
1006 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1007 return nullptr;
1009 return BB;
1012 static MachineBasicBlock *
1013 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1014 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1015 ArrayRef<unsigned> DefedRegsInCopy,
1016 const TargetRegisterInfo *TRI) {
1017 MachineBasicBlock *SingleBB = nullptr;
1018 for (auto DefReg : DefedRegsInCopy) {
1019 MachineBasicBlock *BB =
1020 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1021 if (!BB || (SingleBB && SingleBB != BB))
1022 return nullptr;
1023 SingleBB = BB;
1025 return SingleBB;
1028 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1029 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1030 LiveRegUnits &UsedRegUnits,
1031 const TargetRegisterInfo *TRI) {
1032 for (auto U : UsedOpsInCopy) {
1033 MachineOperand &MO = MI->getOperand(U);
1034 unsigned SrcReg = MO.getReg();
1035 if (!UsedRegUnits.available(SrcReg)) {
1036 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1037 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1038 if (UI.killsRegister(SrcReg, TRI)) {
1039 UI.clearRegisterKills(SrcReg, TRI);
1040 MO.setIsKill(true);
1041 break;
1048 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1049 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1050 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1051 MachineFunction &MF = *SuccBB->getParent();
1052 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1053 for (unsigned DefReg : DefedRegsInCopy)
1054 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1055 SuccBB->removeLiveIn(*S);
1056 for (auto U : UsedOpsInCopy) {
1057 unsigned Reg = MI->getOperand(U).getReg();
1058 if (!SuccBB->isLiveIn(Reg))
1059 SuccBB->addLiveIn(Reg);
1063 static bool hasRegisterDependency(MachineInstr *MI,
1064 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1065 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1066 LiveRegUnits &ModifiedRegUnits,
1067 LiveRegUnits &UsedRegUnits) {
1068 bool HasRegDependency = false;
1069 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1070 MachineOperand &MO = MI->getOperand(i);
1071 if (!MO.isReg())
1072 continue;
1073 unsigned Reg = MO.getReg();
1074 if (!Reg)
1075 continue;
1076 if (MO.isDef()) {
1077 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1078 HasRegDependency = true;
1079 break;
1081 DefedRegsInCopy.push_back(Reg);
1083 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1084 // For example, we can ignore modifications in reg with undef. However,
1085 // it's not perfectly clear if skipping the internal read is safe in all
1086 // other targets.
1087 } else if (MO.isUse()) {
1088 if (!ModifiedRegUnits.available(Reg)) {
1089 HasRegDependency = true;
1090 break;
1092 UsedOpsInCopy.push_back(i);
1095 return HasRegDependency;
1098 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1099 MachineFunction &MF,
1100 const TargetRegisterInfo *TRI,
1101 const TargetInstrInfo *TII) {
1102 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1103 // FIXME: For now, we sink only to a successor which has a single predecessor
1104 // so that we can directly sink COPY instructions to the successor without
1105 // adding any new block or branch instruction.
1106 for (MachineBasicBlock *SI : CurBB.successors())
1107 if (!SI->livein_empty() && SI->pred_size() == 1)
1108 SinkableBBs.insert(SI);
1110 if (SinkableBBs.empty())
1111 return false;
1113 bool Changed = false;
1115 // Track which registers have been modified and used between the end of the
1116 // block and the current instruction.
1117 ModifiedRegUnits.clear();
1118 UsedRegUnits.clear();
1119 SeenDbgInstrs.clear();
1121 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1122 MachineInstr *MI = &*I;
1123 ++I;
1125 // Track the operand index for use in Copy.
1126 SmallVector<unsigned, 2> UsedOpsInCopy;
1127 // Track the register number defed in Copy.
1128 SmallVector<unsigned, 2> DefedRegsInCopy;
1130 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1131 // for DBG_VALUEs later, record them when they're encountered.
1132 if (MI->isDebugValue()) {
1133 auto &MO = MI->getOperand(0);
1134 if (MO.isReg() && TRI->isPhysicalRegister(MO.getReg())) {
1135 // Bail if we can already tell the sink would be rejected, rather
1136 // than needlessly accumulating lots of DBG_VALUEs.
1137 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1138 ModifiedRegUnits, UsedRegUnits))
1139 continue;
1141 // Record debug use of this register.
1142 SeenDbgInstrs[MO.getReg()].push_back(MI);
1144 continue;
1147 if (MI->isDebugInstr())
1148 continue;
1150 // Do not move any instruction across function call.
1151 if (MI->isCall())
1152 return false;
1154 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1155 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1156 TRI);
1157 continue;
1160 // Don't sink the COPY if it would violate a register dependency.
1161 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1162 ModifiedRegUnits, UsedRegUnits)) {
1163 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1164 TRI);
1165 continue;
1167 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1168 "Unexpect SrcReg or DefReg");
1169 MachineBasicBlock *SuccBB =
1170 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1171 // Don't sink if we cannot find a single sinkable successor in which Reg
1172 // is live-in.
1173 if (!SuccBB) {
1174 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1175 TRI);
1176 continue;
1178 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1179 "Unexpected predecessor");
1181 // Collect DBG_VALUEs that must sink with this copy.
1182 SmallVector<MachineInstr *, 4> DbgValsToSink;
1183 for (auto &MO : MI->operands()) {
1184 if (!MO.isReg() || !MO.isDef())
1185 continue;
1186 unsigned reg = MO.getReg();
1187 for (auto *MI : SeenDbgInstrs.lookup(reg))
1188 DbgValsToSink.push_back(MI);
1191 // Clear the kill flag if SrcReg is killed between MI and the end of the
1192 // block.
1193 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1194 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1195 performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1196 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1198 Changed = true;
1199 ++NumPostRACopySink;
1201 return Changed;
1204 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1205 bool Changed = false;
1206 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1207 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1209 ModifiedRegUnits.init(*TRI);
1210 UsedRegUnits.init(*TRI);
1211 for (auto &BB : MF)
1212 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1214 return Changed;