Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / RegAllocFast.cpp
blobad080e9c2900923e2e518449da2dcac824994eb3
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/MC/MCInstrDesc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <cassert>
47 #include <tuple>
48 #include <vector>
50 using namespace llvm;
52 #define DEBUG_TYPE "regalloc"
54 STATISTIC(NumStores, "Number of stores added");
55 STATISTIC(NumLoads , "Number of loads added");
56 STATISTIC(NumCoalesced, "Number of copies coalesced");
58 static RegisterRegAlloc
59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
61 namespace {
63 class RegAllocFast : public MachineFunctionPass {
64 public:
65 static char ID;
67 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
69 private:
70 MachineFrameInfo *MFI;
71 MachineRegisterInfo *MRI;
72 const TargetRegisterInfo *TRI;
73 const TargetInstrInfo *TII;
74 RegisterClassInfo RegClassInfo;
76 /// Basic block currently being allocated.
77 MachineBasicBlock *MBB;
79 /// Maps virtual regs to the frame index where these values are spilled.
80 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
82 /// Everything we know about a live virtual register.
83 struct LiveReg {
84 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
85 unsigned VirtReg; ///< Virtual register number.
86 MCPhysReg PhysReg = 0; ///< Currently held here.
87 unsigned short LastOpNum = 0; ///< OpNum on LastUse.
88 bool Dirty = false; ///< Register needs spill.
90 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}
92 unsigned getSparseSetIndex() const {
93 return TargetRegisterInfo::virtReg2Index(VirtReg);
97 using LiveRegMap = SparseSet<LiveReg>;
98 /// This map contains entries for each virtual register that is currently
99 /// available in a physical register.
100 LiveRegMap LiveVirtRegs;
102 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
104 /// State of a physical register.
105 enum RegState {
106 /// A disabled register is not available for allocation, but an alias may
107 /// be in use. A register can only be moved out of the disabled state if
108 /// all aliases are disabled.
109 regDisabled,
111 /// A free register is not currently in use and can be allocated
112 /// immediately without checking aliases.
113 regFree,
115 /// A reserved register has been assigned explicitly (e.g., setting up a
116 /// call parameter), and it remains reserved until it is used.
117 regReserved
119 /// A register state may also be a virtual register number, indication
120 /// that the physical register is currently allocated to a virtual
121 /// register. In that case, LiveVirtRegs contains the inverse mapping.
124 /// Maps each physical register to a RegState enum or a virtual register.
125 std::vector<unsigned> PhysRegState;
127 SmallVector<unsigned, 16> VirtDead;
128 SmallVector<MachineInstr *, 32> Coalesced;
130 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
131 /// Set of register units that are used in the current instruction, and so
132 /// cannot be allocated.
133 RegUnitSet UsedInInstr;
135 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
137 /// Mark a physreg as used in this instruction.
138 void markRegUsedInInstr(MCPhysReg PhysReg) {
139 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
140 UsedInInstr.insert(*Units);
143 /// Check if a physreg or any of its aliases are used in this instruction.
144 bool isRegUsedInInstr(MCPhysReg PhysReg) const {
145 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
146 if (UsedInInstr.count(*Units))
147 return true;
148 return false;
151 enum : unsigned {
152 spillClean = 50,
153 spillDirty = 100,
154 spillImpossible = ~0u
157 public:
158 StringRef getPassName() const override { return "Fast Register Allocator"; }
160 void getAnalysisUsage(AnalysisUsage &AU) const override {
161 AU.setPreservesCFG();
162 MachineFunctionPass::getAnalysisUsage(AU);
165 MachineFunctionProperties getRequiredProperties() const override {
166 return MachineFunctionProperties().set(
167 MachineFunctionProperties::Property::NoPHIs);
170 MachineFunctionProperties getSetProperties() const override {
171 return MachineFunctionProperties().set(
172 MachineFunctionProperties::Property::NoVRegs);
175 private:
176 bool runOnMachineFunction(MachineFunction &MF) override;
178 void allocateBasicBlock(MachineBasicBlock &MBB);
179 void allocateInstruction(MachineInstr &MI);
180 void handleDebugValue(MachineInstr &MI);
181 void handleThroughOperands(MachineInstr &MI,
182 SmallVectorImpl<unsigned> &VirtDead);
183 bool isLastUseOfLocalReg(const MachineOperand &MO) const;
185 void addKillFlag(const LiveReg &LRI);
186 void killVirtReg(LiveReg &LR);
187 void killVirtReg(unsigned VirtReg);
188 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
189 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
191 void usePhysReg(MachineOperand &MO);
192 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
193 RegState NewState);
194 unsigned calcSpillCost(MCPhysReg PhysReg) const;
195 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);
197 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
198 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
201 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
202 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
205 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
206 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
207 unsigned Hint);
208 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
209 unsigned Hint);
210 void spillAll(MachineBasicBlock::iterator MI);
211 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
213 int getStackSpaceFor(unsigned VirtReg);
214 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
215 MCPhysReg AssignedReg, bool Kill);
216 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
217 MCPhysReg PhysReg);
219 void dumpState();
222 } // end anonymous namespace
224 char RegAllocFast::ID = 0;
226 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
227 false)
229 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
230 PhysRegState[PhysReg] = NewState;
233 /// This allocates space for the specified virtual register to be held on the
234 /// stack.
235 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
236 // Find the location Reg would belong...
237 int SS = StackSlotForVirtReg[VirtReg];
238 // Already has space allocated?
239 if (SS != -1)
240 return SS;
242 // Allocate a new stack object for this spill location...
243 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
244 unsigned Size = TRI->getSpillSize(RC);
245 unsigned Align = TRI->getSpillAlignment(RC);
246 int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
248 // Assign the slot.
249 StackSlotForVirtReg[VirtReg] = FrameIdx;
250 return FrameIdx;
253 /// Insert spill instruction for \p AssignedReg before \p Before. Update
254 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
255 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
256 MCPhysReg AssignedReg, bool Kill) {
257 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
258 << " in " << printReg(AssignedReg, TRI));
259 int FI = getStackSpaceFor(VirtReg);
260 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
262 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
263 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
264 ++NumStores;
266 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
267 // identify spilled location as the place to find corresponding variable's
268 // value.
269 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
270 for (MachineInstr *DBG : LRIDbgValues) {
271 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
272 assert(NewDV->getParent() == MBB && "dangling parent pointer");
273 (void)NewDV;
274 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
276 // Now this register is spilled there is should not be any DBG_VALUE
277 // pointing to this register because they are all pointing to spilled value
278 // now.
279 LRIDbgValues.clear();
282 /// Insert reload instruction for \p PhysReg before \p Before.
283 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
284 MCPhysReg PhysReg) {
285 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
286 << printReg(PhysReg, TRI) << '\n');
287 int FI = getStackSpaceFor(VirtReg);
288 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
289 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
290 ++NumLoads;
293 /// Return true if MO is the only remaining reference to its virtual register,
294 /// and it is guaranteed to be a block-local register.
295 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
296 // If the register has ever been spilled or reloaded, we conservatively assume
297 // it is a global register used in multiple blocks.
298 if (StackSlotForVirtReg[MO.getReg()] != -1)
299 return false;
301 // Check that the use/def chain has exactly one operand - MO.
302 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
303 if (&*I != &MO)
304 return false;
305 return ++I == MRI->reg_nodbg_end();
308 /// Set kill flags on last use of a virtual register.
309 void RegAllocFast::addKillFlag(const LiveReg &LR) {
310 if (!LR.LastUse) return;
311 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
312 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
313 if (MO.getReg() == LR.PhysReg)
314 MO.setIsKill();
315 // else, don't do anything we are problably redefining a
316 // subreg of this register and given we don't track which
317 // lanes are actually dead, we cannot insert a kill flag here.
318 // Otherwise we may end up in a situation like this:
319 // ... = (MO) physreg:sub1, implicit killed physreg
320 // ... <== Here we would allow later pass to reuse physreg:sub1
321 // which is potentially wrong.
322 // LR:sub0 = ...
323 // ... = LR.sub1 <== This is going to use physreg:sub1
327 /// Mark virtreg as no longer available.
328 void RegAllocFast::killVirtReg(LiveReg &LR) {
329 addKillFlag(LR);
330 assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
331 "Broken RegState mapping");
332 setPhysRegState(LR.PhysReg, regFree);
333 LR.PhysReg = 0;
336 /// Mark virtreg as no longer available.
337 void RegAllocFast::killVirtReg(unsigned VirtReg) {
338 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
339 "killVirtReg needs a virtual register");
340 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
341 if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
342 killVirtReg(*LRI);
345 /// This method spills the value specified by VirtReg into the corresponding
346 /// stack slot if needed.
347 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
348 unsigned VirtReg) {
349 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
350 "Spilling a physical register is illegal!");
351 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
352 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
353 "Spilling unmapped virtual register");
354 spillVirtReg(MI, *LRI);
357 /// Do the actual work of spilling.
358 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
359 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");
361 if (LR.Dirty) {
362 // If this physreg is used by the instruction, we want to kill it on the
363 // instruction, not on the spill.
364 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
365 LR.Dirty = false;
367 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);
369 if (SpillKill)
370 LR.LastUse = nullptr; // Don't kill register again
372 killVirtReg(LR);
375 /// Spill all dirty virtregs without killing them.
376 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) {
377 if (LiveVirtRegs.empty())
378 return;
379 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
380 // of spilling here is deterministic, if arbitrary.
381 for (LiveReg &LR : LiveVirtRegs) {
382 if (!LR.PhysReg)
383 continue;
384 spillVirtReg(MI, LR);
386 LiveVirtRegs.clear();
389 /// Handle the direct use of a physical register. Check that the register is
390 /// not used by a virtreg. Kill the physreg, marking it free. This may add
391 /// implicit kills to MO->getParent() and invalidate MO.
392 void RegAllocFast::usePhysReg(MachineOperand &MO) {
393 // Ignore undef uses.
394 if (MO.isUndef())
395 return;
397 unsigned PhysReg = MO.getReg();
398 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
399 "Bad usePhysReg operand");
401 markRegUsedInInstr(PhysReg);
402 switch (PhysRegState[PhysReg]) {
403 case regDisabled:
404 break;
405 case regReserved:
406 PhysRegState[PhysReg] = regFree;
407 LLVM_FALLTHROUGH;
408 case regFree:
409 MO.setIsKill();
410 return;
411 default:
412 // The physreg was allocated to a virtual register. That means the value we
413 // wanted has been clobbered.
414 llvm_unreachable("Instruction uses an allocated register");
417 // Maybe a superregister is reserved?
418 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
419 MCPhysReg Alias = *AI;
420 switch (PhysRegState[Alias]) {
421 case regDisabled:
422 break;
423 case regReserved:
424 // Either PhysReg is a subregister of Alias and we mark the
425 // whole register as free, or PhysReg is the superregister of
426 // Alias and we mark all the aliases as disabled before freeing
427 // PhysReg.
428 // In the latter case, since PhysReg was disabled, this means that
429 // its value is defined only by physical sub-registers. This check
430 // is performed by the assert of the default case in this loop.
431 // Note: The value of the superregister may only be partial
432 // defined, that is why regDisabled is a valid state for aliases.
433 assert((TRI->isSuperRegister(PhysReg, Alias) ||
434 TRI->isSuperRegister(Alias, PhysReg)) &&
435 "Instruction is not using a subregister of a reserved register");
436 LLVM_FALLTHROUGH;
437 case regFree:
438 if (TRI->isSuperRegister(PhysReg, Alias)) {
439 // Leave the superregister in the working set.
440 setPhysRegState(Alias, regFree);
441 MO.getParent()->addRegisterKilled(Alias, TRI, true);
442 return;
444 // Some other alias was in the working set - clear it.
445 setPhysRegState(Alias, regDisabled);
446 break;
447 default:
448 llvm_unreachable("Instruction uses an alias of an allocated register");
452 // All aliases are disabled, bring register into working set.
453 setPhysRegState(PhysReg, regFree);
454 MO.setIsKill();
457 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
458 /// similar to defineVirtReg except the physreg is reserved instead of
459 /// allocated.
460 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
461 MCPhysReg PhysReg, RegState NewState) {
462 markRegUsedInInstr(PhysReg);
463 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
464 case regDisabled:
465 break;
466 default:
467 spillVirtReg(MI, VirtReg);
468 LLVM_FALLTHROUGH;
469 case regFree:
470 case regReserved:
471 setPhysRegState(PhysReg, NewState);
472 return;
475 // This is a disabled register, disable all aliases.
476 setPhysRegState(PhysReg, NewState);
477 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
478 MCPhysReg Alias = *AI;
479 switch (unsigned VirtReg = PhysRegState[Alias]) {
480 case regDisabled:
481 break;
482 default:
483 spillVirtReg(MI, VirtReg);
484 LLVM_FALLTHROUGH;
485 case regFree:
486 case regReserved:
487 setPhysRegState(Alias, regDisabled);
488 if (TRI->isSuperRegister(PhysReg, Alias))
489 return;
490 break;
495 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
496 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
497 /// disabled - it can be allocated directly.
498 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
499 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
500 if (isRegUsedInInstr(PhysReg)) {
501 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
502 << " is already used in instr.\n");
503 return spillImpossible;
505 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
506 case regDisabled:
507 break;
508 case regFree:
509 return 0;
510 case regReserved:
511 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
512 << printReg(PhysReg, TRI) << " is reserved already.\n");
513 return spillImpossible;
514 default: {
515 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
516 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
517 "Missing VirtReg entry");
518 return LRI->Dirty ? spillDirty : spillClean;
522 // This is a disabled register, add up cost of aliases.
523 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
524 unsigned Cost = 0;
525 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
526 MCPhysReg Alias = *AI;
527 switch (unsigned VirtReg = PhysRegState[Alias]) {
528 case regDisabled:
529 break;
530 case regFree:
531 ++Cost;
532 break;
533 case regReserved:
534 return spillImpossible;
535 default: {
536 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
537 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
538 "Missing VirtReg entry");
539 Cost += LRI->Dirty ? spillDirty : spillClean;
540 break;
544 return Cost;
547 /// This method updates local state so that we know that PhysReg is the
548 /// proper container for VirtReg now. The physical register must not be used
549 /// for anything else when this is called.
550 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
551 unsigned VirtReg = LR.VirtReg;
552 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
553 << printReg(PhysReg, TRI) << '\n');
554 assert(LR.PhysReg == 0 && "Already assigned a physreg");
555 assert(PhysReg != 0 && "Trying to assign no register");
556 LR.PhysReg = PhysReg;
557 setPhysRegState(PhysReg, VirtReg);
560 /// Allocates a physical register for VirtReg.
561 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint) {
562 const unsigned VirtReg = LR.VirtReg;
564 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
565 "Can only allocate virtual registers");
567 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
568 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
569 << " in class " << TRI->getRegClassName(&RC) << '\n');
571 // Take hint when possible.
572 if (TargetRegisterInfo::isPhysicalRegister(Hint) &&
573 MRI->isAllocatable(Hint) && RC.contains(Hint)) {
574 // Ignore the hint if we would have to spill a dirty register.
575 unsigned Cost = calcSpillCost(Hint);
576 if (Cost < spillDirty) {
577 if (Cost)
578 definePhysReg(MI, Hint, regFree);
579 assignVirtToPhysReg(LR, Hint);
580 return;
584 // First try to find a completely free register.
585 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
586 for (MCPhysReg PhysReg : AllocationOrder) {
587 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
588 assignVirtToPhysReg(LR, PhysReg);
589 return;
593 MCPhysReg BestReg = 0;
594 unsigned BestCost = spillImpossible;
595 for (MCPhysReg PhysReg : AllocationOrder) {
596 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
597 unsigned Cost = calcSpillCost(PhysReg);
598 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
599 // Immediate take a register with cost 0.
600 if (Cost == 0) {
601 assignVirtToPhysReg(LR, PhysReg);
602 return;
604 if (Cost < BestCost) {
605 BestReg = PhysReg;
606 BestCost = Cost;
610 if (!BestReg) {
611 // Nothing we can do: Report an error and keep going with an invalid
612 // allocation.
613 if (MI.isInlineAsm())
614 MI.emitError("inline assembly requires more registers than available");
615 else
616 MI.emitError("ran out of registers during register allocation");
617 definePhysReg(MI, *AllocationOrder.begin(), regFree);
618 assignVirtToPhysReg(LR, *AllocationOrder.begin());
619 return;
622 definePhysReg(MI, BestReg, regFree);
623 assignVirtToPhysReg(LR, BestReg);
626 /// Allocates a register for VirtReg and mark it as dirty.
627 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
628 unsigned VirtReg, unsigned Hint) {
629 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
630 "Not a virtual register");
631 LiveRegMap::iterator LRI;
632 bool New;
633 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
634 if (!LRI->PhysReg) {
635 // If there is no hint, peek at the only use of this register.
636 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
637 MRI->hasOneNonDBGUse(VirtReg)) {
638 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
639 // It's a copy, use the destination register as a hint.
640 if (UseMI.isCopyLike())
641 Hint = UseMI.getOperand(0).getReg();
643 allocVirtReg(MI, *LRI, Hint);
644 } else if (LRI->LastUse) {
645 // Redefining a live register - kill at the last use, unless it is this
646 // instruction defining VirtReg multiple times.
647 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
648 addKillFlag(*LRI);
650 assert(LRI->PhysReg && "Register not assigned");
651 LRI->LastUse = &MI;
652 LRI->LastOpNum = OpNum;
653 LRI->Dirty = true;
654 markRegUsedInInstr(LRI->PhysReg);
655 return LRI->PhysReg;
658 /// Make sure VirtReg is available in a physreg and return it.
659 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
660 unsigned OpNum,
661 unsigned VirtReg,
662 unsigned Hint) {
663 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
664 "Not a virtual register");
665 LiveRegMap::iterator LRI;
666 bool New;
667 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
668 MachineOperand &MO = MI.getOperand(OpNum);
669 if (!LRI->PhysReg) {
670 allocVirtReg(MI, *LRI, Hint);
671 reload(MI, VirtReg, LRI->PhysReg);
672 } else if (LRI->Dirty) {
673 if (isLastUseOfLocalReg(MO)) {
674 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
675 if (MO.isUse())
676 MO.setIsKill();
677 else
678 MO.setIsDead();
679 } else if (MO.isKill()) {
680 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
681 MO.setIsKill(false);
682 } else if (MO.isDead()) {
683 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
684 MO.setIsDead(false);
686 } else if (MO.isKill()) {
687 // We must remove kill flags from uses of reloaded registers because the
688 // register would be killed immediately, and there might be a second use:
689 // %foo = OR killed %x, %x
690 // This would cause a second reload of %x into a different register.
691 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
692 MO.setIsKill(false);
693 } else if (MO.isDead()) {
694 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
695 MO.setIsDead(false);
697 assert(LRI->PhysReg && "Register not assigned");
698 LRI->LastUse = &MI;
699 LRI->LastOpNum = OpNum;
700 markRegUsedInInstr(LRI->PhysReg);
701 return *LRI;
704 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
705 /// may invalidate any operand pointers. Return true if the operand kills its
706 /// register.
707 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
708 MCPhysReg PhysReg) {
709 bool Dead = MO.isDead();
710 if (!MO.getSubReg()) {
711 MO.setReg(PhysReg);
712 MO.setIsRenamable(true);
713 return MO.isKill() || Dead;
716 // Handle subregister index.
717 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
718 MO.setIsRenamable(true);
719 MO.setSubReg(0);
721 // A kill flag implies killing the full register. Add corresponding super
722 // register kill.
723 if (MO.isKill()) {
724 MI.addRegisterKilled(PhysReg, TRI, true);
725 return true;
728 // A <def,read-undef> of a sub-register requires an implicit def of the full
729 // register.
730 if (MO.isDef() && MO.isUndef())
731 MI.addRegisterDefined(PhysReg, TRI);
733 return Dead;
736 // Handles special instruction operand like early clobbers and tied ops when
737 // there are additional physreg defines.
738 void RegAllocFast::handleThroughOperands(MachineInstr &MI,
739 SmallVectorImpl<unsigned> &VirtDead) {
740 LLVM_DEBUG(dbgs() << "Scanning for through registers:");
741 SmallSet<unsigned, 8> ThroughRegs;
742 for (const MachineOperand &MO : MI.operands()) {
743 if (!MO.isReg()) continue;
744 unsigned Reg = MO.getReg();
745 if (!TargetRegisterInfo::isVirtualRegister(Reg))
746 continue;
747 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
748 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
749 if (ThroughRegs.insert(Reg).second)
750 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
754 // If any physreg defines collide with preallocated through registers,
755 // we must spill and reallocate.
756 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
757 for (const MachineOperand &MO : MI.operands()) {
758 if (!MO.isReg() || !MO.isDef()) continue;
759 unsigned Reg = MO.getReg();
760 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
761 markRegUsedInInstr(Reg);
762 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
763 if (ThroughRegs.count(PhysRegState[*AI]))
764 definePhysReg(MI, *AI, regFree);
768 SmallVector<unsigned, 8> PartialDefs;
769 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
770 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
771 MachineOperand &MO = MI.getOperand(I);
772 if (!MO.isReg()) continue;
773 unsigned Reg = MO.getReg();
774 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
775 if (MO.isUse()) {
776 if (!MO.isTied()) continue;
777 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
778 << ") is tied to operand " << MI.findTiedOperandIdx(I)
779 << ".\n");
780 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
781 MCPhysReg PhysReg = LR.PhysReg;
782 setPhysReg(MI, MO, PhysReg);
783 // Note: we don't update the def operand yet. That would cause the normal
784 // def-scan to attempt spilling.
785 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
786 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
787 // Reload the register, but don't assign to the operand just yet.
788 // That would confuse the later phys-def processing pass.
789 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
790 PartialDefs.push_back(LR.PhysReg);
794 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
795 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
796 const MachineOperand &MO = MI.getOperand(I);
797 if (!MO.isReg()) continue;
798 unsigned Reg = MO.getReg();
799 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
800 if (!MO.isEarlyClobber())
801 continue;
802 // Note: defineVirtReg may invalidate MO.
803 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
804 if (setPhysReg(MI, MI.getOperand(I), PhysReg))
805 VirtDead.push_back(Reg);
808 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
809 UsedInInstr.clear();
810 for (const MachineOperand &MO : MI.operands()) {
811 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
812 unsigned Reg = MO.getReg();
813 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
814 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
815 << " as used in instr\n");
816 markRegUsedInInstr(Reg);
819 // Also mark PartialDefs as used to avoid reallocation.
820 for (unsigned PartialDef : PartialDefs)
821 markRegUsedInInstr(PartialDef);
824 #ifndef NDEBUG
825 void RegAllocFast::dumpState() {
826 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
827 if (PhysRegState[Reg] == regDisabled) continue;
828 dbgs() << " " << printReg(Reg, TRI);
829 switch(PhysRegState[Reg]) {
830 case regFree:
831 break;
832 case regReserved:
833 dbgs() << "*";
834 break;
835 default: {
836 dbgs() << '=' << printReg(PhysRegState[Reg]);
837 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
838 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
839 "Missing VirtReg entry");
840 if (LRI->Dirty)
841 dbgs() << "*";
842 assert(LRI->PhysReg == Reg && "Bad inverse map");
843 break;
847 dbgs() << '\n';
848 // Check that LiveVirtRegs is the inverse.
849 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
850 e = LiveVirtRegs.end(); i != e; ++i) {
851 if (!i->PhysReg)
852 continue;
853 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
854 "Bad map key");
855 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
856 "Bad map value");
857 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
860 #endif
862 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
863 const MCInstrDesc &MCID = MI.getDesc();
865 // If this is a copy, we may be able to coalesce.
866 unsigned CopySrcReg = 0;
867 unsigned CopyDstReg = 0;
868 unsigned CopySrcSub = 0;
869 unsigned CopyDstSub = 0;
870 if (MI.isCopy()) {
871 CopyDstReg = MI.getOperand(0).getReg();
872 CopySrcReg = MI.getOperand(1).getReg();
873 CopyDstSub = MI.getOperand(0).getSubReg();
874 CopySrcSub = MI.getOperand(1).getSubReg();
877 // Track registers used by instruction.
878 UsedInInstr.clear();
880 // First scan.
881 // Mark physreg uses and early clobbers as used.
882 // Find the end of the virtreg operands
883 unsigned VirtOpEnd = 0;
884 bool hasTiedOps = false;
885 bool hasEarlyClobbers = false;
886 bool hasPartialRedefs = false;
887 bool hasPhysDefs = false;
888 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
889 MachineOperand &MO = MI.getOperand(i);
890 // Make sure MRI knows about registers clobbered by regmasks.
891 if (MO.isRegMask()) {
892 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
893 continue;
895 if (!MO.isReg()) continue;
896 unsigned Reg = MO.getReg();
897 if (!Reg) continue;
898 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
899 VirtOpEnd = i+1;
900 if (MO.isUse()) {
901 hasTiedOps = hasTiedOps ||
902 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
903 } else {
904 if (MO.isEarlyClobber())
905 hasEarlyClobbers = true;
906 if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
907 hasPartialRedefs = true;
909 continue;
911 if (!MRI->isAllocatable(Reg)) continue;
912 if (MO.isUse()) {
913 usePhysReg(MO);
914 } else if (MO.isEarlyClobber()) {
915 definePhysReg(MI, Reg,
916 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
917 hasEarlyClobbers = true;
918 } else
919 hasPhysDefs = true;
922 // The instruction may have virtual register operands that must be allocated
923 // the same register at use-time and def-time: early clobbers and tied
924 // operands. If there are also physical defs, these registers must avoid
925 // both physical defs and uses, making them more constrained than normal
926 // operands.
927 // Similarly, if there are multiple defs and tied operands, we must make
928 // sure the same register is allocated to uses and defs.
929 // We didn't detect inline asm tied operands above, so just make this extra
930 // pass for all inline asm.
931 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
932 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
933 handleThroughOperands(MI, VirtDead);
934 // Don't attempt coalescing when we have funny stuff going on.
935 CopyDstReg = 0;
936 // Pretend we have early clobbers so the use operands get marked below.
937 // This is not necessary for the common case of a single tied use.
938 hasEarlyClobbers = true;
941 // Second scan.
942 // Allocate virtreg uses.
943 for (unsigned I = 0; I != VirtOpEnd; ++I) {
944 MachineOperand &MO = MI.getOperand(I);
945 if (!MO.isReg()) continue;
946 unsigned Reg = MO.getReg();
947 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
948 if (MO.isUse()) {
949 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
950 MCPhysReg PhysReg = LR.PhysReg;
951 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
952 if (setPhysReg(MI, MO, PhysReg))
953 killVirtReg(LR);
957 // Track registers defined by instruction - early clobbers and tied uses at
958 // this point.
959 UsedInInstr.clear();
960 if (hasEarlyClobbers) {
961 for (const MachineOperand &MO : MI.operands()) {
962 if (!MO.isReg()) continue;
963 unsigned Reg = MO.getReg();
964 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
965 // Look for physreg defs and tied uses.
966 if (!MO.isDef() && !MO.isTied()) continue;
967 markRegUsedInInstr(Reg);
971 unsigned DefOpEnd = MI.getNumOperands();
972 if (MI.isCall()) {
973 // Spill all virtregs before a call. This serves one purpose: If an
974 // exception is thrown, the landing pad is going to expect to find
975 // registers in their spill slots.
976 // Note: although this is appealing to just consider all definitions
977 // as call-clobbered, this is not correct because some of those
978 // definitions may be used later on and we do not want to reuse
979 // those for virtual registers in between.
980 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n");
981 spillAll(MI);
984 // Third scan.
985 // Allocate defs and collect dead defs.
986 for (unsigned I = 0; I != DefOpEnd; ++I) {
987 const MachineOperand &MO = MI.getOperand(I);
988 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
989 continue;
990 unsigned Reg = MO.getReg();
992 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
993 if (!MRI->isAllocatable(Reg)) continue;
994 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
995 continue;
997 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
998 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
999 VirtDead.push_back(Reg);
1000 CopyDstReg = 0; // cancel coalescing;
1001 } else
1002 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
1005 // Kill dead defs after the scan to ensure that multiple defs of the same
1006 // register are allocated identically. We didn't need to do this for uses
1007 // because we are crerating our own kill flags, and they are always at the
1008 // last use.
1009 for (unsigned VirtReg : VirtDead)
1010 killVirtReg(VirtReg);
1011 VirtDead.clear();
1013 LLVM_DEBUG(dbgs() << "<< " << MI);
1014 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
1015 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1016 Coalesced.push_back(&MI);
1020 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1021 MachineOperand &MO = MI.getOperand(0);
1023 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1024 // mostly constants and frame indices.
1025 if (!MO.isReg())
1026 return;
1027 unsigned Reg = MO.getReg();
1028 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1029 return;
1031 // See if this virtual register has already been allocated to a physical
1032 // register or spilled to a stack slot.
1033 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1034 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1035 setPhysReg(MI, MO, LRI->PhysReg);
1036 } else {
1037 int SS = StackSlotForVirtReg[Reg];
1038 if (SS != -1) {
1039 // Modify DBG_VALUE now that the value is in a spill slot.
1040 updateDbgValueForSpill(MI, SS);
1041 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
1042 return;
1045 // We can't allocate a physreg for a DebugValue, sorry!
1046 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
1047 MO.setReg(0);
1050 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1051 // that future spills of Reg will have DBG_VALUEs.
1052 LiveDbgValueMap[Reg].push_back(&MI);
1055 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1056 this->MBB = &MBB;
1057 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1059 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
1060 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1062 MachineBasicBlock::iterator MII = MBB.begin();
1064 // Add live-in registers as live.
1065 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
1066 if (MRI->isAllocatable(LI.PhysReg))
1067 definePhysReg(MII, LI.PhysReg, regReserved);
1069 VirtDead.clear();
1070 Coalesced.clear();
1072 // Otherwise, sequentially allocate each instruction in the MBB.
1073 for (MachineInstr &MI : MBB) {
1074 LLVM_DEBUG(
1075 dbgs() << "\n>> " << MI << "Regs:";
1076 dumpState()
1079 // Special handling for debug values. Note that they are not allowed to
1080 // affect codegen of the other instructions in any way.
1081 if (MI.isDebugValue()) {
1082 handleDebugValue(MI);
1083 continue;
1086 allocateInstruction(MI);
1089 // Spill all physical registers holding virtual registers now.
1090 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1091 spillAll(MBB.getFirstTerminator());
1093 // Erase all the coalesced copies. We are delaying it until now because
1094 // LiveVirtRegs might refer to the instrs.
1095 for (MachineInstr *MI : Coalesced)
1096 MBB.erase(MI);
1097 NumCoalesced += Coalesced.size();
1099 LLVM_DEBUG(MBB.dump());
1102 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1103 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1104 << "********** Function: " << MF.getName() << '\n');
1105 MRI = &MF.getRegInfo();
1106 const TargetSubtargetInfo &STI = MF.getSubtarget();
1107 TRI = STI.getRegisterInfo();
1108 TII = STI.getInstrInfo();
1109 MFI = &MF.getFrameInfo();
1110 MRI->freezeReservedRegs(MF);
1111 RegClassInfo.runOnMachineFunction(MF);
1112 UsedInInstr.clear();
1113 UsedInInstr.setUniverse(TRI->getNumRegUnits());
1115 // initialize the virtual->physical register map to have a 'null'
1116 // mapping for all virtual registers
1117 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1118 StackSlotForVirtReg.resize(NumVirtRegs);
1119 LiveVirtRegs.setUniverse(NumVirtRegs);
1121 // Loop over all of the basic blocks, eliminating virtual register references
1122 for (MachineBasicBlock &MBB : MF)
1123 allocateBasicBlock(MBB);
1125 // All machine operands and other references to virtual registers have been
1126 // replaced. Remove the virtual registers.
1127 MRI->clearVirtRegs();
1129 StackSlotForVirtReg.clear();
1130 LiveDbgValueMap.clear();
1131 return true;
1134 FunctionPass *llvm::createFastRegisterAllocator() {
1135 return new RegAllocFast();