Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / RegAllocGreedy.cpp
blob5374ab030e018a88692ea0800a391c1ee4df77ff
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
12 //===----------------------------------------------------------------------===//
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "Spiller.h"
20 #include "SplitKit.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/CodeGen/CalcSpillWeights.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalUnion.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveRangeEdit.h"
40 #include "llvm/CodeGen/LiveRegMatrix.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RegAllocRegistry.h"
54 #include "llvm/CodeGen/RegisterClassInfo.h"
55 #include "llvm/CodeGen/SlotIndexes.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
80 using namespace llvm;
82 #define DEBUG_TYPE "regalloc"
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits, "Number of split local live ranges");
86 STATISTIC(NumEvicted, "Number of interferences evicted");
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89 "split-spill-mode", cl::Hidden,
90 cl::desc("Spill mode for splitting live ranges"),
91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94 cl::init(SplitEditor::SM_Speed));
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98 cl::desc("Last chance recoloring max depth"),
99 cl::init(5));
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102 "lcr-max-interf", cl::Hidden,
103 cl::desc("Last chance recoloring maximum number of considered"
104 " interference at a time"),
105 cl::init(8));
107 static cl::opt<bool> ExhaustiveSearch(
108 "exhaustive-register-search", cl::NotHidden,
109 cl::desc("Exhaustive Search for registers bypassing the depth "
110 "and interference cutoffs of last chance recoloring"),
111 cl::Hidden);
113 static cl::opt<bool> EnableLocalReassignment(
114 "enable-local-reassign", cl::Hidden,
115 cl::desc("Local reassignment can yield better allocation decisions, but "
116 "may be compile time intensive"),
117 cl::init(false));
119 static cl::opt<bool> EnableDeferredSpilling(
120 "enable-deferred-spilling", cl::Hidden,
121 cl::desc("Instead of spilling a variable right away, defer the actual "
122 "code insertion to the end of the allocation. That way the "
123 "allocator might still find a suitable coloring for this "
124 "variable because of other evicted variables."),
125 cl::init(false));
127 static cl::opt<unsigned>
128 HugeSizeForSplit("huge-size-for-split", cl::Hidden,
129 cl::desc("A threshold of live range size which may cause "
130 "high compile time cost in global splitting."),
131 cl::init(5000));
133 // FIXME: Find a good default for this flag and remove the flag.
134 static cl::opt<unsigned>
135 CSRFirstTimeCost("regalloc-csr-first-time-cost",
136 cl::desc("Cost for first time use of callee-saved register."),
137 cl::init(0), cl::Hidden);
139 static cl::opt<bool> ConsiderLocalIntervalCost(
140 "condsider-local-interval-cost", cl::Hidden,
141 cl::desc("Consider the cost of local intervals created by a split "
142 "candidate when choosing the best split candidate."),
143 cl::init(false));
145 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
146 createGreedyRegisterAllocator);
148 namespace {
150 class RAGreedy : public MachineFunctionPass,
151 public RegAllocBase,
152 private LiveRangeEdit::Delegate {
153 // Convenient shortcuts.
154 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
155 using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
156 using SmallVirtRegSet = SmallSet<unsigned, 16>;
158 // context
159 MachineFunction *MF;
161 // Shortcuts to some useful interface.
162 const TargetInstrInfo *TII;
163 const TargetRegisterInfo *TRI;
164 RegisterClassInfo RCI;
166 // analyses
167 SlotIndexes *Indexes;
168 MachineBlockFrequencyInfo *MBFI;
169 MachineDominatorTree *DomTree;
170 MachineLoopInfo *Loops;
171 MachineOptimizationRemarkEmitter *ORE;
172 EdgeBundles *Bundles;
173 SpillPlacement *SpillPlacer;
174 LiveDebugVariables *DebugVars;
175 AliasAnalysis *AA;
177 // state
178 std::unique_ptr<Spiller> SpillerInstance;
179 PQueue Queue;
180 unsigned NextCascade;
182 // Live ranges pass through a number of stages as we try to allocate them.
183 // Some of the stages may also create new live ranges:
185 // - Region splitting.
186 // - Per-block splitting.
187 // - Local splitting.
188 // - Spilling.
190 // Ranges produced by one of the stages skip the previous stages when they are
191 // dequeued. This improves performance because we can skip interference checks
192 // that are unlikely to give any results. It also guarantees that the live
193 // range splitting algorithm terminates, something that is otherwise hard to
194 // ensure.
195 enum LiveRangeStage {
196 /// Newly created live range that has never been queued.
197 RS_New,
199 /// Only attempt assignment and eviction. Then requeue as RS_Split.
200 RS_Assign,
202 /// Attempt live range splitting if assignment is impossible.
203 RS_Split,
205 /// Attempt more aggressive live range splitting that is guaranteed to make
206 /// progress. This is used for split products that may not be making
207 /// progress.
208 RS_Split2,
210 /// Live range will be spilled. No more splitting will be attempted.
211 RS_Spill,
214 /// Live range is in memory. Because of other evictions, it might get moved
215 /// in a register in the end.
216 RS_Memory,
218 /// There is nothing more we can do to this live range. Abort compilation
219 /// if it can't be assigned.
220 RS_Done
223 // Enum CutOffStage to keep a track whether the register allocation failed
224 // because of the cutoffs encountered in last chance recoloring.
225 // Note: This is used as bitmask. New value should be next power of 2.
226 enum CutOffStage {
227 // No cutoffs encountered
228 CO_None = 0,
230 // lcr-max-depth cutoff encountered
231 CO_Depth = 1,
233 // lcr-max-interf cutoff encountered
234 CO_Interf = 2
237 uint8_t CutOffInfo;
239 #ifndef NDEBUG
240 static const char *const StageName[];
241 #endif
243 // RegInfo - Keep additional information about each live range.
244 struct RegInfo {
245 LiveRangeStage Stage = RS_New;
247 // Cascade - Eviction loop prevention. See canEvictInterference().
248 unsigned Cascade = 0;
250 RegInfo() = default;
253 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
255 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
256 return ExtraRegInfo[VirtReg.reg].Stage;
259 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
260 ExtraRegInfo.resize(MRI->getNumVirtRegs());
261 ExtraRegInfo[VirtReg.reg].Stage = Stage;
264 template<typename Iterator>
265 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
266 ExtraRegInfo.resize(MRI->getNumVirtRegs());
267 for (;Begin != End; ++Begin) {
268 unsigned Reg = *Begin;
269 if (ExtraRegInfo[Reg].Stage == RS_New)
270 ExtraRegInfo[Reg].Stage = NewStage;
274 /// Cost of evicting interference.
275 struct EvictionCost {
276 unsigned BrokenHints = 0; ///< Total number of broken hints.
277 float MaxWeight = 0; ///< Maximum spill weight evicted.
279 EvictionCost() = default;
281 bool isMax() const { return BrokenHints == ~0u; }
283 void setMax() { BrokenHints = ~0u; }
285 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
287 bool operator<(const EvictionCost &O) const {
288 return std::tie(BrokenHints, MaxWeight) <
289 std::tie(O.BrokenHints, O.MaxWeight);
293 /// EvictionTrack - Keeps track of past evictions in order to optimize region
294 /// split decision.
295 class EvictionTrack {
297 public:
298 using EvictorInfo =
299 std::pair<unsigned /* evictor */, unsigned /* physreg */>;
300 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
302 private:
303 /// Each Vreg that has been evicted in the last stage of selectOrSplit will
304 /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
305 EvicteeInfo Evictees;
307 public:
308 /// Clear all eviction information.
309 void clear() { Evictees.clear(); }
311 /// Clear eviction information for the given evictee Vreg.
312 /// E.g. when Vreg get's a new allocation, the old eviction info is no
313 /// longer relevant.
314 /// \param Evictee The evictee Vreg for whom we want to clear collected
315 /// eviction info.
316 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
318 /// Track new eviction.
319 /// The Evictor vreg has evicted the Evictee vreg from Physreg.
320 /// \param PhysReg The physical register Evictee was evicted from.
321 /// \param Evictor The evictor Vreg that evicted Evictee.
322 /// \param Evictee The evictee Vreg.
323 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
324 Evictees[Evictee].first = Evictor;
325 Evictees[Evictee].second = PhysReg;
328 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
329 /// \param Evictee The evictee vreg.
330 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
331 /// nobody has evicted Evictee from PhysReg.
332 EvictorInfo getEvictor(unsigned Evictee) {
333 if (Evictees.count(Evictee)) {
334 return Evictees[Evictee];
337 return EvictorInfo(0, 0);
341 // Keeps track of past evictions in order to optimize region split decision.
342 EvictionTrack LastEvicted;
344 // splitting state.
345 std::unique_ptr<SplitAnalysis> SA;
346 std::unique_ptr<SplitEditor> SE;
348 /// Cached per-block interference maps
349 InterferenceCache IntfCache;
351 /// All basic blocks where the current register has uses.
352 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
354 /// Global live range splitting candidate info.
355 struct GlobalSplitCandidate {
356 // Register intended for assignment, or 0.
357 unsigned PhysReg;
359 // SplitKit interval index for this candidate.
360 unsigned IntvIdx;
362 // Interference for PhysReg.
363 InterferenceCache::Cursor Intf;
365 // Bundles where this candidate should be live.
366 BitVector LiveBundles;
367 SmallVector<unsigned, 8> ActiveBlocks;
369 void reset(InterferenceCache &Cache, unsigned Reg) {
370 PhysReg = Reg;
371 IntvIdx = 0;
372 Intf.setPhysReg(Cache, Reg);
373 LiveBundles.clear();
374 ActiveBlocks.clear();
377 // Set B[i] = C for every live bundle where B[i] was NoCand.
378 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
379 unsigned Count = 0;
380 for (unsigned i : LiveBundles.set_bits())
381 if (B[i] == NoCand) {
382 B[i] = C;
383 Count++;
385 return Count;
389 /// Candidate info for each PhysReg in AllocationOrder.
390 /// This vector never shrinks, but grows to the size of the largest register
391 /// class.
392 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
394 enum : unsigned { NoCand = ~0u };
396 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
397 /// NoCand which indicates the stack interval.
398 SmallVector<unsigned, 32> BundleCand;
400 /// Callee-save register cost, calculated once per machine function.
401 BlockFrequency CSRCost;
403 /// Run or not the local reassignment heuristic. This information is
404 /// obtained from the TargetSubtargetInfo.
405 bool EnableLocalReassign;
407 /// Enable or not the consideration of the cost of local intervals created
408 /// by a split candidate when choosing the best split candidate.
409 bool EnableAdvancedRASplitCost;
411 /// Set of broken hints that may be reconciled later because of eviction.
412 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
414 public:
415 RAGreedy();
417 /// Return the pass name.
418 StringRef getPassName() const override { return "Greedy Register Allocator"; }
420 /// RAGreedy analysis usage.
421 void getAnalysisUsage(AnalysisUsage &AU) const override;
422 void releaseMemory() override;
423 Spiller &spiller() override { return *SpillerInstance; }
424 void enqueue(LiveInterval *LI) override;
425 LiveInterval *dequeue() override;
426 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
427 void aboutToRemoveInterval(LiveInterval &) override;
429 /// Perform register allocation.
430 bool runOnMachineFunction(MachineFunction &mf) override;
432 MachineFunctionProperties getRequiredProperties() const override {
433 return MachineFunctionProperties().set(
434 MachineFunctionProperties::Property::NoPHIs);
437 static char ID;
439 private:
440 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
441 SmallVirtRegSet &, unsigned = 0);
443 bool LRE_CanEraseVirtReg(unsigned) override;
444 void LRE_WillShrinkVirtReg(unsigned) override;
445 void LRE_DidCloneVirtReg(unsigned, unsigned) override;
446 void enqueue(PQueue &CurQueue, LiveInterval *LI);
447 LiveInterval *dequeue(PQueue &CurQueue);
449 BlockFrequency calcSpillCost();
450 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
451 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
452 bool growRegion(GlobalSplitCandidate &Cand);
453 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
454 unsigned BBNumber,
455 const AllocationOrder &Order);
456 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
457 GlobalSplitCandidate &Cand, unsigned BBNumber,
458 const AllocationOrder &Order);
459 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
460 const AllocationOrder &Order,
461 bool *CanCauseEvictionChain);
462 bool calcCompactRegion(GlobalSplitCandidate&);
463 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
464 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
465 unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
466 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
467 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&,
468 const SmallVirtRegSet& = SmallVirtRegSet());
469 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
470 SlotIndex Start, SlotIndex End,
471 EvictionCost &MaxCost);
472 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
473 LiveInterval &VirtReg, SlotIndex Start,
474 SlotIndex End, float *BestEvictWeight);
475 void evictInterference(LiveInterval&, unsigned,
476 SmallVectorImpl<unsigned>&);
477 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
478 SmallLISet &RecoloringCandidates,
479 const SmallVirtRegSet &FixedRegisters);
481 unsigned tryAssign(LiveInterval&, AllocationOrder&,
482 SmallVectorImpl<unsigned>&);
483 unsigned tryEvict(LiveInterval&, AllocationOrder&,
484 SmallVectorImpl<unsigned>&, unsigned = ~0u,
485 const SmallVirtRegSet& = SmallVirtRegSet());
486 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
487 SmallVectorImpl<unsigned>&);
488 unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
489 /// Calculate cost of region splitting.
490 unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
491 AllocationOrder &Order,
492 BlockFrequency &BestCost,
493 unsigned &NumCands, bool IgnoreCSR,
494 bool *CanCauseEvictionChain = nullptr);
495 /// Perform region splitting.
496 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
497 bool HasCompact,
498 SmallVectorImpl<unsigned> &NewVRegs);
499 /// Check other options before using a callee-saved register for the first
500 /// time.
501 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
502 unsigned PhysReg, unsigned &CostPerUseLimit,
503 SmallVectorImpl<unsigned> &NewVRegs);
504 void initializeCSRCost();
505 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
506 SmallVectorImpl<unsigned>&);
507 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
508 SmallVectorImpl<unsigned>&);
509 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
510 SmallVectorImpl<unsigned>&);
511 unsigned trySplit(LiveInterval&, AllocationOrder&,
512 SmallVectorImpl<unsigned>&);
513 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
514 SmallVectorImpl<unsigned> &,
515 SmallVirtRegSet &, unsigned);
516 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
517 SmallVirtRegSet &, unsigned);
518 void tryHintRecoloring(LiveInterval &);
519 void tryHintsRecoloring();
521 /// Model the information carried by one end of a copy.
522 struct HintInfo {
523 /// The frequency of the copy.
524 BlockFrequency Freq;
525 /// The virtual register or physical register.
526 unsigned Reg;
527 /// Its currently assigned register.
528 /// In case of a physical register Reg == PhysReg.
529 unsigned PhysReg;
531 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
532 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
534 using HintsInfo = SmallVector<HintInfo, 4>;
536 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
537 void collectHintInfo(unsigned, HintsInfo &);
539 bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
541 /// Compute and report the number of spills and reloads for a loop.
542 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
543 unsigned &FoldedReloads, unsigned &Spills,
544 unsigned &FoldedSpills);
546 /// Report the number of spills and reloads for each loop.
547 void reportNumberOfSplillsReloads() {
548 for (MachineLoop *L : *Loops) {
549 unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
550 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
551 FoldedSpills);
556 } // end anonymous namespace
558 char RAGreedy::ID = 0;
559 char &llvm::RAGreedyID = RAGreedy::ID;
561 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
562 "Greedy Register Allocator", false, false)
563 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
564 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
565 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
566 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
567 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
568 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
569 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
570 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
571 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
572 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
573 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
574 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
575 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
576 INITIALIZE_PASS_END(RAGreedy, "greedy",
577 "Greedy Register Allocator", false, false)
579 #ifndef NDEBUG
580 const char *const RAGreedy::StageName[] = {
581 "RS_New",
582 "RS_Assign",
583 "RS_Split",
584 "RS_Split2",
585 "RS_Spill",
586 "RS_Memory",
587 "RS_Done"
589 #endif
591 // Hysteresis to use when comparing floats.
592 // This helps stabilize decisions based on float comparisons.
593 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
595 FunctionPass* llvm::createGreedyRegisterAllocator() {
596 return new RAGreedy();
599 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
602 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
603 AU.setPreservesCFG();
604 AU.addRequired<MachineBlockFrequencyInfo>();
605 AU.addPreserved<MachineBlockFrequencyInfo>();
606 AU.addRequired<AAResultsWrapperPass>();
607 AU.addPreserved<AAResultsWrapperPass>();
608 AU.addRequired<LiveIntervals>();
609 AU.addPreserved<LiveIntervals>();
610 AU.addRequired<SlotIndexes>();
611 AU.addPreserved<SlotIndexes>();
612 AU.addRequired<LiveDebugVariables>();
613 AU.addPreserved<LiveDebugVariables>();
614 AU.addRequired<LiveStacks>();
615 AU.addPreserved<LiveStacks>();
616 AU.addRequired<MachineDominatorTree>();
617 AU.addPreserved<MachineDominatorTree>();
618 AU.addRequired<MachineLoopInfo>();
619 AU.addPreserved<MachineLoopInfo>();
620 AU.addRequired<VirtRegMap>();
621 AU.addPreserved<VirtRegMap>();
622 AU.addRequired<LiveRegMatrix>();
623 AU.addPreserved<LiveRegMatrix>();
624 AU.addRequired<EdgeBundles>();
625 AU.addRequired<SpillPlacement>();
626 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
627 MachineFunctionPass::getAnalysisUsage(AU);
630 //===----------------------------------------------------------------------===//
631 // LiveRangeEdit delegate methods
632 //===----------------------------------------------------------------------===//
634 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
635 LiveInterval &LI = LIS->getInterval(VirtReg);
636 if (VRM->hasPhys(VirtReg)) {
637 Matrix->unassign(LI);
638 aboutToRemoveInterval(LI);
639 return true;
641 // Unassigned virtreg is probably in the priority queue.
642 // RegAllocBase will erase it after dequeueing.
643 // Nonetheless, clear the live-range so that the debug
644 // dump will show the right state for that VirtReg.
645 LI.clear();
646 return false;
649 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
650 if (!VRM->hasPhys(VirtReg))
651 return;
653 // Register is assigned, put it back on the queue for reassignment.
654 LiveInterval &LI = LIS->getInterval(VirtReg);
655 Matrix->unassign(LI);
656 enqueue(&LI);
659 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
660 // Cloning a register we haven't even heard about yet? Just ignore it.
661 if (!ExtraRegInfo.inBounds(Old))
662 return;
664 // LRE may clone a virtual register because dead code elimination causes it to
665 // be split into connected components. The new components are much smaller
666 // than the original, so they should get a new chance at being assigned.
667 // same stage as the parent.
668 ExtraRegInfo[Old].Stage = RS_Assign;
669 ExtraRegInfo.grow(New);
670 ExtraRegInfo[New] = ExtraRegInfo[Old];
673 void RAGreedy::releaseMemory() {
674 SpillerInstance.reset();
675 ExtraRegInfo.clear();
676 GlobalCand.clear();
679 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
681 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
682 // Prioritize live ranges by size, assigning larger ranges first.
683 // The queue holds (size, reg) pairs.
684 const unsigned Size = LI->getSize();
685 const unsigned Reg = LI->reg;
686 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
687 "Can only enqueue virtual registers");
688 unsigned Prio;
690 ExtraRegInfo.grow(Reg);
691 if (ExtraRegInfo[Reg].Stage == RS_New)
692 ExtraRegInfo[Reg].Stage = RS_Assign;
694 if (ExtraRegInfo[Reg].Stage == RS_Split) {
695 // Unsplit ranges that couldn't be allocated immediately are deferred until
696 // everything else has been allocated.
697 Prio = Size;
698 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
699 // Memory operand should be considered last.
700 // Change the priority such that Memory operand are assigned in
701 // the reverse order that they came in.
702 // TODO: Make this a member variable and probably do something about hints.
703 static unsigned MemOp = 0;
704 Prio = MemOp++;
705 } else {
706 // Giant live ranges fall back to the global assignment heuristic, which
707 // prevents excessive spilling in pathological cases.
708 bool ReverseLocal = TRI->reverseLocalAssignment();
709 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
710 bool ForceGlobal = !ReverseLocal &&
711 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
713 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
714 LIS->intervalIsInOneMBB(*LI)) {
715 // Allocate original local ranges in linear instruction order. Since they
716 // are singly defined, this produces optimal coloring in the absence of
717 // global interference and other constraints.
718 if (!ReverseLocal)
719 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
720 else {
721 // Allocating bottom up may allow many short LRGs to be assigned first
722 // to one of the cheap registers. This could be much faster for very
723 // large blocks on targets with many physical registers.
724 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
726 Prio |= RC.AllocationPriority << 24;
727 } else {
728 // Allocate global and split ranges in long->short order. Long ranges that
729 // don't fit should be spilled (or split) ASAP so they don't create
730 // interference. Mark a bit to prioritize global above local ranges.
731 Prio = (1u << 29) + Size;
733 // Mark a higher bit to prioritize global and local above RS_Split.
734 Prio |= (1u << 31);
736 // Boost ranges that have a physical register hint.
737 if (VRM->hasKnownPreference(Reg))
738 Prio |= (1u << 30);
740 // The virtual register number is a tie breaker for same-sized ranges.
741 // Give lower vreg numbers higher priority to assign them first.
742 CurQueue.push(std::make_pair(Prio, ~Reg));
745 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
747 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
748 if (CurQueue.empty())
749 return nullptr;
750 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
751 CurQueue.pop();
752 return LI;
755 //===----------------------------------------------------------------------===//
756 // Direct Assignment
757 //===----------------------------------------------------------------------===//
759 /// tryAssign - Try to assign VirtReg to an available register.
760 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
761 AllocationOrder &Order,
762 SmallVectorImpl<unsigned> &NewVRegs) {
763 Order.rewind();
764 unsigned PhysReg;
765 while ((PhysReg = Order.next()))
766 if (!Matrix->checkInterference(VirtReg, PhysReg))
767 break;
768 if (!PhysReg || Order.isHint())
769 return PhysReg;
771 // PhysReg is available, but there may be a better choice.
773 // If we missed a simple hint, try to cheaply evict interference from the
774 // preferred register.
775 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
776 if (Order.isHint(Hint)) {
777 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
778 EvictionCost MaxCost;
779 MaxCost.setBrokenHints(1);
780 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
781 evictInterference(VirtReg, Hint, NewVRegs);
782 return Hint;
784 // Record the missed hint, we may be able to recover
785 // at the end if the surrounding allocation changed.
786 SetOfBrokenHints.insert(&VirtReg);
789 // Try to evict interference from a cheaper alternative.
790 unsigned Cost = TRI->getCostPerUse(PhysReg);
792 // Most registers have 0 additional cost.
793 if (!Cost)
794 return PhysReg;
796 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
797 << Cost << '\n');
798 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
799 return CheapReg ? CheapReg : PhysReg;
802 //===----------------------------------------------------------------------===//
803 // Interference eviction
804 //===----------------------------------------------------------------------===//
806 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
807 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
808 unsigned PhysReg;
809 while ((PhysReg = Order.next())) {
810 if (PhysReg == PrevReg)
811 continue;
813 MCRegUnitIterator Units(PhysReg, TRI);
814 for (; Units.isValid(); ++Units) {
815 // Instantiate a "subquery", not to be confused with the Queries array.
816 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
817 if (subQ.checkInterference())
818 break;
820 // If no units have interference, break out with the current PhysReg.
821 if (!Units.isValid())
822 break;
824 if (PhysReg)
825 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
826 << printReg(PrevReg, TRI) << " to "
827 << printReg(PhysReg, TRI) << '\n');
828 return PhysReg;
831 /// shouldEvict - determine if A should evict the assigned live range B. The
832 /// eviction policy defined by this function together with the allocation order
833 /// defined by enqueue() decides which registers ultimately end up being split
834 /// and spilled.
836 /// Cascade numbers are used to prevent infinite loops if this function is a
837 /// cyclic relation.
839 /// @param A The live range to be assigned.
840 /// @param IsHint True when A is about to be assigned to its preferred
841 /// register.
842 /// @param B The live range to be evicted.
843 /// @param BreaksHint True when B is already assigned to its preferred register.
844 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
845 LiveInterval &B, bool BreaksHint) {
846 bool CanSplit = getStage(B) < RS_Spill;
848 // Be fairly aggressive about following hints as long as the evictee can be
849 // split.
850 if (CanSplit && IsHint && !BreaksHint)
851 return true;
853 if (A.weight > B.weight) {
854 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
855 return true;
857 return false;
860 /// canEvictInterference - Return true if all interferences between VirtReg and
861 /// PhysReg can be evicted.
863 /// @param VirtReg Live range that is about to be assigned.
864 /// @param PhysReg Desired register for assignment.
865 /// @param IsHint True when PhysReg is VirtReg's preferred register.
866 /// @param MaxCost Only look for cheaper candidates and update with new cost
867 /// when returning true.
868 /// @returns True when interference can be evicted cheaper than MaxCost.
869 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
870 bool IsHint, EvictionCost &MaxCost,
871 const SmallVirtRegSet &FixedRegisters) {
872 // It is only possible to evict virtual register interference.
873 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
874 return false;
876 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
878 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
879 // involved in an eviction before. If a cascade number was assigned, deny
880 // evicting anything with the same or a newer cascade number. This prevents
881 // infinite eviction loops.
883 // This works out so a register without a cascade number is allowed to evict
884 // anything, and it can be evicted by anything.
885 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
886 if (!Cascade)
887 Cascade = NextCascade;
889 EvictionCost Cost;
890 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
891 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
892 // If there is 10 or more interferences, chances are one is heavier.
893 if (Q.collectInterferingVRegs(10) >= 10)
894 return false;
896 // Check if any interfering live range is heavier than MaxWeight.
897 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
898 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
899 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
900 "Only expecting virtual register interference from query");
902 // Do not allow eviction of a virtual register if we are in the middle
903 // of last-chance recoloring and this virtual register is one that we
904 // have scavenged a physical register for.
905 if (FixedRegisters.count(Intf->reg))
906 return false;
908 // Never evict spill products. They cannot split or spill.
909 if (getStage(*Intf) == RS_Done)
910 return false;
911 // Once a live range becomes small enough, it is urgent that we find a
912 // register for it. This is indicated by an infinite spill weight. These
913 // urgent live ranges get to evict almost anything.
915 // Also allow urgent evictions of unspillable ranges from a strictly
916 // larger allocation order.
917 bool Urgent = !VirtReg.isSpillable() &&
918 (Intf->isSpillable() ||
919 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
920 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
921 // Only evict older cascades or live ranges without a cascade.
922 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
923 if (Cascade <= IntfCascade) {
924 if (!Urgent)
925 return false;
926 // We permit breaking cascades for urgent evictions. It should be the
927 // last resort, though, so make it really expensive.
928 Cost.BrokenHints += 10;
930 // Would this break a satisfied hint?
931 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
932 // Update eviction cost.
933 Cost.BrokenHints += BreaksHint;
934 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
935 // Abort if this would be too expensive.
936 if (!(Cost < MaxCost))
937 return false;
938 if (Urgent)
939 continue;
940 // Apply the eviction policy for non-urgent evictions.
941 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
942 return false;
943 // If !MaxCost.isMax(), then we're just looking for a cheap register.
944 // Evicting another local live range in this case could lead to suboptimal
945 // coloring.
946 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
947 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
948 return false;
952 MaxCost = Cost;
953 return true;
956 /// Return true if all interferences between VirtReg and PhysReg between
957 /// Start and End can be evicted.
959 /// \param VirtReg Live range that is about to be assigned.
960 /// \param PhysReg Desired register for assignment.
961 /// \param Start Start of range to look for interferences.
962 /// \param End End of range to look for interferences.
963 /// \param MaxCost Only look for cheaper candidates and update with new cost
964 /// when returning true.
965 /// \return True when interference can be evicted cheaper than MaxCost.
966 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
967 unsigned PhysReg, SlotIndex Start,
968 SlotIndex End,
969 EvictionCost &MaxCost) {
970 EvictionCost Cost;
972 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
973 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
975 // Check if any interfering live range is heavier than MaxWeight.
976 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
977 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
979 // Check if interference overlast the segment in interest.
980 if (!Intf->overlaps(Start, End))
981 continue;
983 // Cannot evict non virtual reg interference.
984 if (!TargetRegisterInfo::isVirtualRegister(Intf->reg))
985 return false;
986 // Never evict spill products. They cannot split or spill.
987 if (getStage(*Intf) == RS_Done)
988 return false;
990 // Would this break a satisfied hint?
991 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
992 // Update eviction cost.
993 Cost.BrokenHints += BreaksHint;
994 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
995 // Abort if this would be too expensive.
996 if (!(Cost < MaxCost))
997 return false;
1001 if (Cost.MaxWeight == 0)
1002 return false;
1004 MaxCost = Cost;
1005 return true;
1008 /// Return the physical register that will be best
1009 /// candidate for eviction by a local split interval that will be created
1010 /// between Start and End.
1012 /// \param Order The allocation order
1013 /// \param VirtReg Live range that is about to be assigned.
1014 /// \param Start Start of range to look for interferences
1015 /// \param End End of range to look for interferences
1016 /// \param BestEvictweight The eviction cost of that eviction
1017 /// \return The PhysReg which is the best candidate for eviction and the
1018 /// eviction cost in BestEvictweight
1019 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1020 LiveInterval &VirtReg,
1021 SlotIndex Start, SlotIndex End,
1022 float *BestEvictweight) {
1023 EvictionCost BestEvictCost;
1024 BestEvictCost.setMax();
1025 BestEvictCost.MaxWeight = VirtReg.weight;
1026 unsigned BestEvicteePhys = 0;
1028 // Go over all physical registers and find the best candidate for eviction
1029 for (auto PhysReg : Order.getOrder()) {
1031 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1032 BestEvictCost))
1033 continue;
1035 // Best so far.
1036 BestEvicteePhys = PhysReg;
1038 *BestEvictweight = BestEvictCost.MaxWeight;
1039 return BestEvicteePhys;
1042 /// evictInterference - Evict any interferring registers that prevent VirtReg
1043 /// from being assigned to Physreg. This assumes that canEvictInterference
1044 /// returned true.
1045 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1046 SmallVectorImpl<unsigned> &NewVRegs) {
1047 // Make sure that VirtReg has a cascade number, and assign that cascade
1048 // number to every evicted register. These live ranges than then only be
1049 // evicted by a newer cascade, preventing infinite loops.
1050 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1051 if (!Cascade)
1052 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1054 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1055 << " interference: Cascade " << Cascade << '\n');
1057 // Collect all interfering virtregs first.
1058 SmallVector<LiveInterval*, 8> Intfs;
1059 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1060 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1061 // We usually have the interfering VRegs cached so collectInterferingVRegs()
1062 // should be fast, we may need to recalculate if when different physregs
1063 // overlap the same register unit so we had different SubRanges queried
1064 // against it.
1065 Q.collectInterferingVRegs();
1066 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1067 Intfs.append(IVR.begin(), IVR.end());
1070 // Evict them second. This will invalidate the queries.
1071 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1072 LiveInterval *Intf = Intfs[i];
1073 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1074 if (!VRM->hasPhys(Intf->reg))
1075 continue;
1077 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1079 Matrix->unassign(*Intf);
1080 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1081 VirtReg.isSpillable() < Intf->isSpillable()) &&
1082 "Cannot decrease cascade number, illegal eviction");
1083 ExtraRegInfo[Intf->reg].Cascade = Cascade;
1084 ++NumEvicted;
1085 NewVRegs.push_back(Intf->reg);
1089 /// Returns true if the given \p PhysReg is a callee saved register and has not
1090 /// been used for allocation yet.
1091 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
1092 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1093 if (CSR == 0)
1094 return false;
1096 return !Matrix->isPhysRegUsed(PhysReg);
1099 /// tryEvict - Try to evict all interferences for a physreg.
1100 /// @param VirtReg Currently unassigned virtual register.
1101 /// @param Order Physregs to try.
1102 /// @return Physreg to assign VirtReg, or 0.
1103 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1104 AllocationOrder &Order,
1105 SmallVectorImpl<unsigned> &NewVRegs,
1106 unsigned CostPerUseLimit,
1107 const SmallVirtRegSet &FixedRegisters) {
1108 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1109 TimePassesIsEnabled);
1111 // Keep track of the cheapest interference seen so far.
1112 EvictionCost BestCost;
1113 BestCost.setMax();
1114 unsigned BestPhys = 0;
1115 unsigned OrderLimit = Order.getOrder().size();
1117 // When we are just looking for a reduced cost per use, don't break any
1118 // hints, and only evict smaller spill weights.
1119 if (CostPerUseLimit < ~0u) {
1120 BestCost.BrokenHints = 0;
1121 BestCost.MaxWeight = VirtReg.weight;
1123 // Check of any registers in RC are below CostPerUseLimit.
1124 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1125 unsigned MinCost = RegClassInfo.getMinCost(RC);
1126 if (MinCost >= CostPerUseLimit) {
1127 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1128 << MinCost << ", no cheaper registers to be found.\n");
1129 return 0;
1132 // It is normal for register classes to have a long tail of registers with
1133 // the same cost. We don't need to look at them if they're too expensive.
1134 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1135 OrderLimit = RegClassInfo.getLastCostChange(RC);
1136 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1137 << " regs.\n");
1141 Order.rewind();
1142 while (unsigned PhysReg = Order.next(OrderLimit)) {
1143 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1144 continue;
1145 // The first use of a callee-saved register in a function has cost 1.
1146 // Don't start using a CSR when the CostPerUseLimit is low.
1147 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1148 LLVM_DEBUG(
1149 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1150 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1151 << '\n');
1152 continue;
1155 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1156 FixedRegisters))
1157 continue;
1159 // Best so far.
1160 BestPhys = PhysReg;
1162 // Stop if the hint can be used.
1163 if (Order.isHint())
1164 break;
1167 if (!BestPhys)
1168 return 0;
1170 evictInterference(VirtReg, BestPhys, NewVRegs);
1171 return BestPhys;
1174 //===----------------------------------------------------------------------===//
1175 // Region Splitting
1176 //===----------------------------------------------------------------------===//
1178 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1179 /// interference pattern in Physreg and its aliases. Add the constraints to
1180 /// SpillPlacement and return the static cost of this split in Cost, assuming
1181 /// that all preferences in SplitConstraints are met.
1182 /// Return false if there are no bundles with positive bias.
1183 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1184 BlockFrequency &Cost) {
1185 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1187 // Reset interference dependent info.
1188 SplitConstraints.resize(UseBlocks.size());
1189 BlockFrequency StaticCost = 0;
1190 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1191 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1192 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1194 BC.Number = BI.MBB->getNumber();
1195 Intf.moveToBlock(BC.Number);
1196 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1197 BC.Exit = (BI.LiveOut &&
1198 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1199 ? SpillPlacement::PrefReg
1200 : SpillPlacement::DontCare;
1201 BC.ChangesValue = BI.FirstDef.isValid();
1203 if (!Intf.hasInterference())
1204 continue;
1206 // Number of spill code instructions to insert.
1207 unsigned Ins = 0;
1209 // Interference for the live-in value.
1210 if (BI.LiveIn) {
1211 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1212 BC.Entry = SpillPlacement::MustSpill;
1213 ++Ins;
1214 } else if (Intf.first() < BI.FirstInstr) {
1215 BC.Entry = SpillPlacement::PrefSpill;
1216 ++Ins;
1217 } else if (Intf.first() < BI.LastInstr) {
1218 ++Ins;
1221 // Abort if the spill cannot be inserted at the MBB' start
1222 if (((BC.Entry == SpillPlacement::MustSpill) ||
1223 (BC.Entry == SpillPlacement::PrefSpill)) &&
1224 SlotIndex::isEarlierInstr(BI.FirstInstr,
1225 SA->getFirstSplitPoint(BC.Number)))
1226 return false;
1229 // Interference for the live-out value.
1230 if (BI.LiveOut) {
1231 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1232 BC.Exit = SpillPlacement::MustSpill;
1233 ++Ins;
1234 } else if (Intf.last() > BI.LastInstr) {
1235 BC.Exit = SpillPlacement::PrefSpill;
1236 ++Ins;
1237 } else if (Intf.last() > BI.FirstInstr) {
1238 ++Ins;
1242 // Accumulate the total frequency of inserted spill code.
1243 while (Ins--)
1244 StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1246 Cost = StaticCost;
1248 // Add constraints for use-blocks. Note that these are the only constraints
1249 // that may add a positive bias, it is downhill from here.
1250 SpillPlacer->addConstraints(SplitConstraints);
1251 return SpillPlacer->scanActiveBundles();
1254 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1255 /// live-through blocks in Blocks.
1256 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1257 ArrayRef<unsigned> Blocks) {
1258 const unsigned GroupSize = 8;
1259 SpillPlacement::BlockConstraint BCS[GroupSize];
1260 unsigned TBS[GroupSize];
1261 unsigned B = 0, T = 0;
1263 for (unsigned i = 0; i != Blocks.size(); ++i) {
1264 unsigned Number = Blocks[i];
1265 Intf.moveToBlock(Number);
1267 if (!Intf.hasInterference()) {
1268 assert(T < GroupSize && "Array overflow");
1269 TBS[T] = Number;
1270 if (++T == GroupSize) {
1271 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1272 T = 0;
1274 continue;
1277 assert(B < GroupSize && "Array overflow");
1278 BCS[B].Number = Number;
1280 // Abort if the spill cannot be inserted at the MBB' start
1281 MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1282 if (!MBB->empty() &&
1283 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1284 SA->getFirstSplitPoint(Number)))
1285 return false;
1286 // Interference for the live-in value.
1287 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1288 BCS[B].Entry = SpillPlacement::MustSpill;
1289 else
1290 BCS[B].Entry = SpillPlacement::PrefSpill;
1292 // Interference for the live-out value.
1293 if (Intf.last() >= SA->getLastSplitPoint(Number))
1294 BCS[B].Exit = SpillPlacement::MustSpill;
1295 else
1296 BCS[B].Exit = SpillPlacement::PrefSpill;
1298 if (++B == GroupSize) {
1299 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1300 B = 0;
1304 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1305 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1306 return true;
1309 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1310 // Keep track of through blocks that have not been added to SpillPlacer.
1311 BitVector Todo = SA->getThroughBlocks();
1312 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1313 unsigned AddedTo = 0;
1314 #ifndef NDEBUG
1315 unsigned Visited = 0;
1316 #endif
1318 while (true) {
1319 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1320 // Find new through blocks in the periphery of PrefRegBundles.
1321 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1322 unsigned Bundle = NewBundles[i];
1323 // Look at all blocks connected to Bundle in the full graph.
1324 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1325 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1326 I != E; ++I) {
1327 unsigned Block = *I;
1328 if (!Todo.test(Block))
1329 continue;
1330 Todo.reset(Block);
1331 // This is a new through block. Add it to SpillPlacer later.
1332 ActiveBlocks.push_back(Block);
1333 #ifndef NDEBUG
1334 ++Visited;
1335 #endif
1338 // Any new blocks to add?
1339 if (ActiveBlocks.size() == AddedTo)
1340 break;
1342 // Compute through constraints from the interference, or assume that all
1343 // through blocks prefer spilling when forming compact regions.
1344 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1345 if (Cand.PhysReg) {
1346 if (!addThroughConstraints(Cand.Intf, NewBlocks))
1347 return false;
1348 } else
1349 // Provide a strong negative bias on through blocks to prevent unwanted
1350 // liveness on loop backedges.
1351 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1352 AddedTo = ActiveBlocks.size();
1354 // Perhaps iterating can enable more bundles?
1355 SpillPlacer->iterate();
1357 LLVM_DEBUG(dbgs() << ", v=" << Visited);
1358 return true;
1361 /// calcCompactRegion - Compute the set of edge bundles that should be live
1362 /// when splitting the current live range into compact regions. Compact
1363 /// regions can be computed without looking at interference. They are the
1364 /// regions formed by removing all the live-through blocks from the live range.
1366 /// Returns false if the current live range is already compact, or if the
1367 /// compact regions would form single block regions anyway.
1368 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1369 // Without any through blocks, the live range is already compact.
1370 if (!SA->getNumThroughBlocks())
1371 return false;
1373 // Compact regions don't correspond to any physreg.
1374 Cand.reset(IntfCache, 0);
1376 LLVM_DEBUG(dbgs() << "Compact region bundles");
1378 // Use the spill placer to determine the live bundles. GrowRegion pretends
1379 // that all the through blocks have interference when PhysReg is unset.
1380 SpillPlacer->prepare(Cand.LiveBundles);
1382 // The static split cost will be zero since Cand.Intf reports no interference.
1383 BlockFrequency Cost;
1384 if (!addSplitConstraints(Cand.Intf, Cost)) {
1385 LLVM_DEBUG(dbgs() << ", none.\n");
1386 return false;
1389 if (!growRegion(Cand)) {
1390 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1391 return false;
1394 SpillPlacer->finish();
1396 if (!Cand.LiveBundles.any()) {
1397 LLVM_DEBUG(dbgs() << ", none.\n");
1398 return false;
1401 LLVM_DEBUG({
1402 for (int i : Cand.LiveBundles.set_bits())
1403 dbgs() << " EB#" << i;
1404 dbgs() << ".\n";
1406 return true;
1409 /// calcSpillCost - Compute how expensive it would be to split the live range in
1410 /// SA around all use blocks instead of forming bundle regions.
1411 BlockFrequency RAGreedy::calcSpillCost() {
1412 BlockFrequency Cost = 0;
1413 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1414 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1415 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1416 unsigned Number = BI.MBB->getNumber();
1417 // We normally only need one spill instruction - a load or a store.
1418 Cost += SpillPlacer->getBlockFrequency(Number);
1420 // Unless the value is redefined in the block.
1421 if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1422 Cost += SpillPlacer->getBlockFrequency(Number);
1424 return Cost;
1427 /// Check if splitting Evictee will create a local split interval in
1428 /// basic block number BBNumber that may cause a bad eviction chain. This is
1429 /// intended to prevent bad eviction sequences like:
1430 /// movl %ebp, 8(%esp) # 4-byte Spill
1431 /// movl %ecx, %ebp
1432 /// movl %ebx, %ecx
1433 /// movl %edi, %ebx
1434 /// movl %edx, %edi
1435 /// cltd
1436 /// idivl %esi
1437 /// movl %edi, %edx
1438 /// movl %ebx, %edi
1439 /// movl %ecx, %ebx
1440 /// movl %ebp, %ecx
1441 /// movl 16(%esp), %ebp # 4 - byte Reload
1443 /// Such sequences are created in 2 scenarios:
1445 /// Scenario #1:
1446 /// %0 is evicted from physreg0 by %1.
1447 /// Evictee %0 is intended for region splitting with split candidate
1448 /// physreg0 (the reg %0 was evicted from).
1449 /// Region splitting creates a local interval because of interference with the
1450 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1451 /// and "by stack" intervals and local interval created when interference
1452 /// occurs).
1453 /// One of the split intervals ends up evicting %2 from physreg1.
1454 /// Evictee %2 is intended for region splitting with split candidate
1455 /// physreg1.
1456 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1458 /// Scenario #2
1459 /// %0 is evicted from physreg0 by %1.
1460 /// %2 is evicted from physreg2 by %3 etc.
1461 /// Evictee %0 is intended for region splitting with split candidate
1462 /// physreg1.
1463 /// Region splitting creates a local interval because of interference with the
1464 /// evictor %1.
1465 /// One of the split intervals ends up evicting back original evictor %1
1466 /// from physreg0 (the reg %0 was evicted from).
1467 /// Another evictee %2 is intended for region splitting with split candidate
1468 /// physreg1.
1469 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1471 /// \param Evictee The register considered to be split.
1472 /// \param Cand The split candidate that determines the physical register
1473 /// we are splitting for and the interferences.
1474 /// \param BBNumber The number of a BB for which the region split process will
1475 /// create a local split interval.
1476 /// \param Order The physical registers that may get evicted by a split
1477 /// artifact of Evictee.
1478 /// \return True if splitting Evictee may cause a bad eviction chain, false
1479 /// otherwise.
1480 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1481 GlobalSplitCandidate &Cand,
1482 unsigned BBNumber,
1483 const AllocationOrder &Order) {
1484 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1485 unsigned Evictor = VregEvictorInfo.first;
1486 unsigned PhysReg = VregEvictorInfo.second;
1488 // No actual evictor.
1489 if (!Evictor || !PhysReg)
1490 return false;
1492 float MaxWeight = 0;
1493 unsigned FutureEvictedPhysReg =
1494 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1495 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1497 // The bad eviction chain occurs when either the split candidate is the
1498 // evicting reg or one of the split artifact will evict the evicting reg.
1499 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1500 return false;
1502 Cand.Intf.moveToBlock(BBNumber);
1504 // Check to see if the Evictor contains interference (with Evictee) in the
1505 // given BB. If so, this interference caused the eviction of Evictee from
1506 // PhysReg. This suggest that we will create a local interval during the
1507 // region split to avoid this interference This local interval may cause a bad
1508 // eviction chain.
1509 if (!LIS->hasInterval(Evictor))
1510 return false;
1511 LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1512 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1513 return false;
1515 // Now, check to see if the local interval we will create is going to be
1516 // expensive enough to evict somebody If so, this may cause a bad eviction
1517 // chain.
1518 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1519 float splitArtifactWeight =
1520 VRAI.futureWeight(LIS->getInterval(Evictee),
1521 Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1522 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1523 return false;
1525 return true;
1528 /// Check if splitting VirtRegToSplit will create a local split interval
1529 /// in basic block number BBNumber that may cause a spill.
1531 /// \param VirtRegToSplit The register considered to be split.
1532 /// \param Cand The split candidate that determines the physical
1533 /// register we are splitting for and the interferences.
1534 /// \param BBNumber The number of a BB for which the region split process
1535 /// will create a local split interval.
1536 /// \param Order The physical registers that may get evicted by a
1537 /// split artifact of VirtRegToSplit.
1538 /// \return True if splitting VirtRegToSplit may cause a spill, false
1539 /// otherwise.
1540 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1541 GlobalSplitCandidate &Cand,
1542 unsigned BBNumber,
1543 const AllocationOrder &Order) {
1544 Cand.Intf.moveToBlock(BBNumber);
1546 // Check if the local interval will find a non interfereing assignment.
1547 for (auto PhysReg : Order.getOrder()) {
1548 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1549 Cand.Intf.last(), PhysReg))
1550 return false;
1553 // Check if the local interval will evict a cheaper interval.
1554 float CheapestEvictWeight = 0;
1555 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1556 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1557 Cand.Intf.last(), &CheapestEvictWeight);
1559 // Have we found an interval that can be evicted?
1560 if (FutureEvictedPhysReg) {
1561 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1562 float splitArtifactWeight =
1563 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1564 Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1565 // Will the weight of the local interval be higher than the cheapest evictee
1566 // weight? If so it will evict it and will not cause a spill.
1567 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1568 return false;
1571 // The local interval is not able to find non interferencing assignment and
1572 // not able to evict a less worthy interval, therfore, it can cause a spill.
1573 return true;
1576 /// calcGlobalSplitCost - Return the global split cost of following the split
1577 /// pattern in LiveBundles. This cost should be added to the local cost of the
1578 /// interference pattern in SplitConstraints.
1580 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1581 const AllocationOrder &Order,
1582 bool *CanCauseEvictionChain) {
1583 BlockFrequency GlobalCost = 0;
1584 const BitVector &LiveBundles = Cand.LiveBundles;
1585 unsigned VirtRegToSplit = SA->getParent().reg;
1586 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1587 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1588 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1589 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1590 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
1591 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1592 unsigned Ins = 0;
1594 Cand.Intf.moveToBlock(BC.Number);
1595 // Check wheather a local interval is going to be created during the region
1596 // split. Calculate adavanced spilt cost (cost of local intervals) if option
1597 // is enabled.
1598 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1599 BI.LiveOut && RegIn && RegOut) {
1601 if (CanCauseEvictionChain &&
1602 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1603 // This interference causes our eviction from this assignment, we might
1604 // evict somebody else and eventually someone will spill, add that cost.
1605 // See splitCanCauseEvictionChain for detailed description of scenarios.
1606 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1607 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1609 *CanCauseEvictionChain = true;
1611 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1612 Order)) {
1613 // This interference causes local interval to spill, add that cost.
1614 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1615 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1619 if (BI.LiveIn)
1620 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1621 if (BI.LiveOut)
1622 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1623 while (Ins--)
1624 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1627 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1628 unsigned Number = Cand.ActiveBlocks[i];
1629 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
1630 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1631 if (!RegIn && !RegOut)
1632 continue;
1633 if (RegIn && RegOut) {
1634 // We need double spill code if this block has interference.
1635 Cand.Intf.moveToBlock(Number);
1636 if (Cand.Intf.hasInterference()) {
1637 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1638 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1640 // Check wheather a local interval is going to be created during the
1641 // region split.
1642 if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1643 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1644 // This interference cause our eviction from this assignment, we might
1645 // evict somebody else, add that cost.
1646 // See splitCanCauseEvictionChain for detailed description of
1647 // scenarios.
1648 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1649 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1651 *CanCauseEvictionChain = true;
1654 continue;
1656 // live-in / stack-out or stack-in live-out.
1657 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1659 return GlobalCost;
1662 /// splitAroundRegion - Split the current live range around the regions
1663 /// determined by BundleCand and GlobalCand.
1665 /// Before calling this function, GlobalCand and BundleCand must be initialized
1666 /// so each bundle is assigned to a valid candidate, or NoCand for the
1667 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1668 /// objects must be initialized for the current live range, and intervals
1669 /// created for the used candidates.
1671 /// @param LREdit The LiveRangeEdit object handling the current split.
1672 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1673 /// must appear in this list.
1674 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1675 ArrayRef<unsigned> UsedCands) {
1676 // These are the intervals created for new global ranges. We may create more
1677 // intervals for local ranges.
1678 const unsigned NumGlobalIntvs = LREdit.size();
1679 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1680 << " globals.\n");
1681 assert(NumGlobalIntvs && "No global intervals configured");
1683 // Isolate even single instructions when dealing with a proper sub-class.
1684 // That guarantees register class inflation for the stack interval because it
1685 // is all copies.
1686 unsigned Reg = SA->getParent().reg;
1687 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1689 // First handle all the blocks with uses.
1690 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1691 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1692 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1693 unsigned Number = BI.MBB->getNumber();
1694 unsigned IntvIn = 0, IntvOut = 0;
1695 SlotIndex IntfIn, IntfOut;
1696 if (BI.LiveIn) {
1697 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1698 if (CandIn != NoCand) {
1699 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1700 IntvIn = Cand.IntvIdx;
1701 Cand.Intf.moveToBlock(Number);
1702 IntfIn = Cand.Intf.first();
1705 if (BI.LiveOut) {
1706 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1707 if (CandOut != NoCand) {
1708 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1709 IntvOut = Cand.IntvIdx;
1710 Cand.Intf.moveToBlock(Number);
1711 IntfOut = Cand.Intf.last();
1715 // Create separate intervals for isolated blocks with multiple uses.
1716 if (!IntvIn && !IntvOut) {
1717 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1718 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1719 SE->splitSingleBlock(BI);
1720 continue;
1723 if (IntvIn && IntvOut)
1724 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1725 else if (IntvIn)
1726 SE->splitRegInBlock(BI, IntvIn, IntfIn);
1727 else
1728 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1731 // Handle live-through blocks. The relevant live-through blocks are stored in
1732 // the ActiveBlocks list with each candidate. We need to filter out
1733 // duplicates.
1734 BitVector Todo = SA->getThroughBlocks();
1735 for (unsigned c = 0; c != UsedCands.size(); ++c) {
1736 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1737 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1738 unsigned Number = Blocks[i];
1739 if (!Todo.test(Number))
1740 continue;
1741 Todo.reset(Number);
1743 unsigned IntvIn = 0, IntvOut = 0;
1744 SlotIndex IntfIn, IntfOut;
1746 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1747 if (CandIn != NoCand) {
1748 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1749 IntvIn = Cand.IntvIdx;
1750 Cand.Intf.moveToBlock(Number);
1751 IntfIn = Cand.Intf.first();
1754 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1755 if (CandOut != NoCand) {
1756 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1757 IntvOut = Cand.IntvIdx;
1758 Cand.Intf.moveToBlock(Number);
1759 IntfOut = Cand.Intf.last();
1761 if (!IntvIn && !IntvOut)
1762 continue;
1763 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1767 ++NumGlobalSplits;
1769 SmallVector<unsigned, 8> IntvMap;
1770 SE->finish(&IntvMap);
1771 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1773 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1774 unsigned OrigBlocks = SA->getNumLiveBlocks();
1776 // Sort out the new intervals created by splitting. We get four kinds:
1777 // - Remainder intervals should not be split again.
1778 // - Candidate intervals can be assigned to Cand.PhysReg.
1779 // - Block-local splits are candidates for local splitting.
1780 // - DCE leftovers should go back on the queue.
1781 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1782 LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1784 // Ignore old intervals from DCE.
1785 if (getStage(Reg) != RS_New)
1786 continue;
1788 // Remainder interval. Don't try splitting again, spill if it doesn't
1789 // allocate.
1790 if (IntvMap[i] == 0) {
1791 setStage(Reg, RS_Spill);
1792 continue;
1795 // Global intervals. Allow repeated splitting as long as the number of live
1796 // blocks is strictly decreasing.
1797 if (IntvMap[i] < NumGlobalIntvs) {
1798 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1799 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1800 << " blocks as original.\n");
1801 // Don't allow repeated splitting as a safe guard against looping.
1802 setStage(Reg, RS_Split2);
1804 continue;
1807 // Other intervals are treated as new. This includes local intervals created
1808 // for blocks with multiple uses, and anything created by DCE.
1811 if (VerifyEnabled)
1812 MF->verify(this, "After splitting live range around region");
1815 // Global split has high compile time cost especially for large live range.
1816 // Return false for the case here where the potential benefit will never
1817 // worth the cost.
1818 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
1819 MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
1820 if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
1821 VirtReg.size() > HugeSizeForSplit)
1822 return false;
1823 return true;
1826 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1827 SmallVectorImpl<unsigned> &NewVRegs) {
1828 if (!isSplitBenefitWorthCost(VirtReg))
1829 return 0;
1830 unsigned NumCands = 0;
1831 BlockFrequency SpillCost = calcSpillCost();
1832 BlockFrequency BestCost;
1834 // Check if we can split this live range around a compact region.
1835 bool HasCompact = calcCompactRegion(GlobalCand.front());
1836 if (HasCompact) {
1837 // Yes, keep GlobalCand[0] as the compact region candidate.
1838 NumCands = 1;
1839 BestCost = BlockFrequency::getMaxFrequency();
1840 } else {
1841 // No benefit from the compact region, our fallback will be per-block
1842 // splitting. Make sure we find a solution that is cheaper than spilling.
1843 BestCost = SpillCost;
1844 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1845 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1848 bool CanCauseEvictionChain = false;
1849 unsigned BestCand =
1850 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1851 false /*IgnoreCSR*/, &CanCauseEvictionChain);
1853 // Split candidates with compact regions can cause a bad eviction sequence.
1854 // See splitCanCauseEvictionChain for detailed description of scenarios.
1855 // To avoid it, we need to comapre the cost with the spill cost and not the
1856 // current max frequency.
1857 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1858 CanCauseEvictionChain) {
1859 return 0;
1862 // No solutions found, fall back to single block splitting.
1863 if (!HasCompact && BestCand == NoCand)
1864 return 0;
1866 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1869 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1870 AllocationOrder &Order,
1871 BlockFrequency &BestCost,
1872 unsigned &NumCands, bool IgnoreCSR,
1873 bool *CanCauseEvictionChain) {
1874 unsigned BestCand = NoCand;
1875 Order.rewind();
1876 while (unsigned PhysReg = Order.next()) {
1877 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1878 continue;
1880 // Discard bad candidates before we run out of interference cache cursors.
1881 // This will only affect register classes with a lot of registers (>32).
1882 if (NumCands == IntfCache.getMaxCursors()) {
1883 unsigned WorstCount = ~0u;
1884 unsigned Worst = 0;
1885 for (unsigned i = 0; i != NumCands; ++i) {
1886 if (i == BestCand || !GlobalCand[i].PhysReg)
1887 continue;
1888 unsigned Count = GlobalCand[i].LiveBundles.count();
1889 if (Count < WorstCount) {
1890 Worst = i;
1891 WorstCount = Count;
1894 --NumCands;
1895 GlobalCand[Worst] = GlobalCand[NumCands];
1896 if (BestCand == NumCands)
1897 BestCand = Worst;
1900 if (GlobalCand.size() <= NumCands)
1901 GlobalCand.resize(NumCands+1);
1902 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1903 Cand.reset(IntfCache, PhysReg);
1905 SpillPlacer->prepare(Cand.LiveBundles);
1906 BlockFrequency Cost;
1907 if (!addSplitConstraints(Cand.Intf, Cost)) {
1908 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1909 continue;
1911 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1912 MBFI->printBlockFreq(dbgs(), Cost));
1913 if (Cost >= BestCost) {
1914 LLVM_DEBUG({
1915 if (BestCand == NoCand)
1916 dbgs() << " worse than no bundles\n";
1917 else
1918 dbgs() << " worse than "
1919 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1921 continue;
1923 if (!growRegion(Cand)) {
1924 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1925 continue;
1928 SpillPlacer->finish();
1930 // No live bundles, defer to splitSingleBlocks().
1931 if (!Cand.LiveBundles.any()) {
1932 LLVM_DEBUG(dbgs() << " no bundles.\n");
1933 continue;
1936 bool HasEvictionChain = false;
1937 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1938 LLVM_DEBUG({
1939 dbgs() << ", total = ";
1940 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1941 for (int i : Cand.LiveBundles.set_bits())
1942 dbgs() << " EB#" << i;
1943 dbgs() << ".\n";
1945 if (Cost < BestCost) {
1946 BestCand = NumCands;
1947 BestCost = Cost;
1948 // See splitCanCauseEvictionChain for detailed description of bad
1949 // eviction chain scenarios.
1950 if (CanCauseEvictionChain)
1951 *CanCauseEvictionChain = HasEvictionChain;
1953 ++NumCands;
1956 if (CanCauseEvictionChain && BestCand != NoCand) {
1957 // See splitCanCauseEvictionChain for detailed description of bad
1958 // eviction chain scenarios.
1959 LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1960 << printReg(VirtReg.reg, TRI) << " may ");
1961 if (!(*CanCauseEvictionChain))
1962 LLVM_DEBUG(dbgs() << "not ");
1963 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1966 return BestCand;
1969 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1970 bool HasCompact,
1971 SmallVectorImpl<unsigned> &NewVRegs) {
1972 SmallVector<unsigned, 8> UsedCands;
1973 // Prepare split editor.
1974 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1975 SE->reset(LREdit, SplitSpillMode);
1977 // Assign all edge bundles to the preferred candidate, or NoCand.
1978 BundleCand.assign(Bundles->getNumBundles(), NoCand);
1980 // Assign bundles for the best candidate region.
1981 if (BestCand != NoCand) {
1982 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1983 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1984 UsedCands.push_back(BestCand);
1985 Cand.IntvIdx = SE->openIntv();
1986 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1987 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1988 (void)B;
1992 // Assign bundles for the compact region.
1993 if (HasCompact) {
1994 GlobalSplitCandidate &Cand = GlobalCand.front();
1995 assert(!Cand.PhysReg && "Compact region has no physreg");
1996 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1997 UsedCands.push_back(0);
1998 Cand.IntvIdx = SE->openIntv();
1999 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2000 << " bundles, intv " << Cand.IntvIdx << ".\n");
2001 (void)B;
2005 splitAroundRegion(LREdit, UsedCands);
2006 return 0;
2009 //===----------------------------------------------------------------------===//
2010 // Per-Block Splitting
2011 //===----------------------------------------------------------------------===//
2013 /// tryBlockSplit - Split a global live range around every block with uses. This
2014 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2015 /// they don't allocate.
2016 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2017 SmallVectorImpl<unsigned> &NewVRegs) {
2018 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2019 unsigned Reg = VirtReg.reg;
2020 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2021 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2022 SE->reset(LREdit, SplitSpillMode);
2023 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2024 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
2025 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
2026 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2027 SE->splitSingleBlock(BI);
2029 // No blocks were split.
2030 if (LREdit.empty())
2031 return 0;
2033 // We did split for some blocks.
2034 SmallVector<unsigned, 8> IntvMap;
2035 SE->finish(&IntvMap);
2037 // Tell LiveDebugVariables about the new ranges.
2038 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2040 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2042 // Sort out the new intervals created by splitting. The remainder interval
2043 // goes straight to spilling, the new local ranges get to stay RS_New.
2044 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2045 LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2046 if (getStage(LI) == RS_New && IntvMap[i] == 0)
2047 setStage(LI, RS_Spill);
2050 if (VerifyEnabled)
2051 MF->verify(this, "After splitting live range around basic blocks");
2052 return 0;
2055 //===----------------------------------------------------------------------===//
2056 // Per-Instruction Splitting
2057 //===----------------------------------------------------------------------===//
2059 /// Get the number of allocatable registers that match the constraints of \p Reg
2060 /// on \p MI and that are also in \p SuperRC.
2061 static unsigned getNumAllocatableRegsForConstraints(
2062 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2063 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2064 const RegisterClassInfo &RCI) {
2065 assert(SuperRC && "Invalid register class");
2067 const TargetRegisterClass *ConstrainedRC =
2068 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2069 /* ExploreBundle */ true);
2070 if (!ConstrainedRC)
2071 return 0;
2072 return RCI.getNumAllocatableRegs(ConstrainedRC);
2075 /// tryInstructionSplit - Split a live range around individual instructions.
2076 /// This is normally not worthwhile since the spiller is doing essentially the
2077 /// same thing. However, when the live range is in a constrained register
2078 /// class, it may help to insert copies such that parts of the live range can
2079 /// be moved to a larger register class.
2081 /// This is similar to spilling to a larger register class.
2082 unsigned
2083 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2084 SmallVectorImpl<unsigned> &NewVRegs) {
2085 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2086 // There is no point to this if there are no larger sub-classes.
2087 if (!RegClassInfo.isProperSubClass(CurRC))
2088 return 0;
2090 // Always enable split spill mode, since we're effectively spilling to a
2091 // register.
2092 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2093 SE->reset(LREdit, SplitEditor::SM_Size);
2095 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2096 if (Uses.size() <= 1)
2097 return 0;
2099 LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2100 << " individual instrs.\n");
2102 const TargetRegisterClass *SuperRC =
2103 TRI->getLargestLegalSuperClass(CurRC, *MF);
2104 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2105 // Split around every non-copy instruction if this split will relax
2106 // the constraints on the virtual register.
2107 // Otherwise, splitting just inserts uncoalescable copies that do not help
2108 // the allocation.
2109 for (unsigned i = 0; i != Uses.size(); ++i) {
2110 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2111 if (MI->isFullCopy() ||
2112 SuperRCNumAllocatableRegs ==
2113 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2114 TRI, RCI)) {
2115 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
2116 continue;
2118 SE->openIntv();
2119 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2120 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
2121 SE->useIntv(SegStart, SegStop);
2124 if (LREdit.empty()) {
2125 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2126 return 0;
2129 SmallVector<unsigned, 8> IntvMap;
2130 SE->finish(&IntvMap);
2131 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2132 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2134 // Assign all new registers to RS_Spill. This was the last chance.
2135 setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2136 return 0;
2139 //===----------------------------------------------------------------------===//
2140 // Local Splitting
2141 //===----------------------------------------------------------------------===//
2143 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2144 /// in order to use PhysReg between two entries in SA->UseSlots.
2146 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2148 void RAGreedy::calcGapWeights(unsigned PhysReg,
2149 SmallVectorImpl<float> &GapWeight) {
2150 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2151 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2152 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2153 const unsigned NumGaps = Uses.size()-1;
2155 // Start and end points for the interference check.
2156 SlotIndex StartIdx =
2157 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2158 SlotIndex StopIdx =
2159 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2161 GapWeight.assign(NumGaps, 0.0f);
2163 // Add interference from each overlapping register.
2164 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2165 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2166 .checkInterference())
2167 continue;
2169 // We know that VirtReg is a continuous interval from FirstInstr to
2170 // LastInstr, so we don't need InterferenceQuery.
2172 // Interference that overlaps an instruction is counted in both gaps
2173 // surrounding the instruction. The exception is interference before
2174 // StartIdx and after StopIdx.
2176 LiveIntervalUnion::SegmentIter IntI =
2177 Matrix->getLiveUnions()[*Units] .find(StartIdx);
2178 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2179 // Skip the gaps before IntI.
2180 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2181 if (++Gap == NumGaps)
2182 break;
2183 if (Gap == NumGaps)
2184 break;
2186 // Update the gaps covered by IntI.
2187 const float weight = IntI.value()->weight;
2188 for (; Gap != NumGaps; ++Gap) {
2189 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2190 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2191 break;
2193 if (Gap == NumGaps)
2194 break;
2198 // Add fixed interference.
2199 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2200 const LiveRange &LR = LIS->getRegUnit(*Units);
2201 LiveRange::const_iterator I = LR.find(StartIdx);
2202 LiveRange::const_iterator E = LR.end();
2204 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2205 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2206 while (Uses[Gap+1].getBoundaryIndex() < I->start)
2207 if (++Gap == NumGaps)
2208 break;
2209 if (Gap == NumGaps)
2210 break;
2212 for (; Gap != NumGaps; ++Gap) {
2213 GapWeight[Gap] = huge_valf;
2214 if (Uses[Gap+1].getBaseIndex() >= I->end)
2215 break;
2217 if (Gap == NumGaps)
2218 break;
2223 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2224 /// basic block.
2226 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2227 SmallVectorImpl<unsigned> &NewVRegs) {
2228 // TODO: the function currently only handles a single UseBlock; it should be
2229 // possible to generalize.
2230 if (SA->getUseBlocks().size() != 1)
2231 return 0;
2233 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2235 // Note that it is possible to have an interval that is live-in or live-out
2236 // while only covering a single block - A phi-def can use undef values from
2237 // predecessors, and the block could be a single-block loop.
2238 // We don't bother doing anything clever about such a case, we simply assume
2239 // that the interval is continuous from FirstInstr to LastInstr. We should
2240 // make sure that we don't do anything illegal to such an interval, though.
2242 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2243 if (Uses.size() <= 2)
2244 return 0;
2245 const unsigned NumGaps = Uses.size()-1;
2247 LLVM_DEBUG({
2248 dbgs() << "tryLocalSplit: ";
2249 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2250 dbgs() << ' ' << Uses[i];
2251 dbgs() << '\n';
2254 // If VirtReg is live across any register mask operands, compute a list of
2255 // gaps with register masks.
2256 SmallVector<unsigned, 8> RegMaskGaps;
2257 if (Matrix->checkRegMaskInterference(VirtReg)) {
2258 // Get regmask slots for the whole block.
2259 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2260 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2261 // Constrain to VirtReg's live range.
2262 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
2263 Uses.front().getRegSlot()) - RMS.begin();
2264 unsigned re = RMS.size();
2265 for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2266 // Look for Uses[i] <= RMS <= Uses[i+1].
2267 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2268 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2269 continue;
2270 // Skip a regmask on the same instruction as the last use. It doesn't
2271 // overlap the live range.
2272 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2273 break;
2274 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2275 << Uses[i + 1]);
2276 RegMaskGaps.push_back(i);
2277 // Advance ri to the next gap. A regmask on one of the uses counts in
2278 // both gaps.
2279 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2280 ++ri;
2282 LLVM_DEBUG(dbgs() << '\n');
2285 // Since we allow local split results to be split again, there is a risk of
2286 // creating infinite loops. It is tempting to require that the new live
2287 // ranges have less instructions than the original. That would guarantee
2288 // convergence, but it is too strict. A live range with 3 instructions can be
2289 // split 2+3 (including the COPY), and we want to allow that.
2291 // Instead we use these rules:
2293 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2294 // noop split, of course).
2295 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2296 // the new ranges must have fewer instructions than before the split.
2297 // 3. New ranges with the same number of instructions are marked RS_Split2,
2298 // smaller ranges are marked RS_New.
2300 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2301 // excessive splitting and infinite loops.
2303 bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2305 // Best split candidate.
2306 unsigned BestBefore = NumGaps;
2307 unsigned BestAfter = 0;
2308 float BestDiff = 0;
2310 const float blockFreq =
2311 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2312 (1.0f / MBFI->getEntryFreq());
2313 SmallVector<float, 8> GapWeight;
2315 Order.rewind();
2316 while (unsigned PhysReg = Order.next()) {
2317 // Keep track of the largest spill weight that would need to be evicted in
2318 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2319 calcGapWeights(PhysReg, GapWeight);
2321 // Remove any gaps with regmask clobbers.
2322 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2323 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2324 GapWeight[RegMaskGaps[i]] = huge_valf;
2326 // Try to find the best sequence of gaps to close.
2327 // The new spill weight must be larger than any gap interference.
2329 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2330 unsigned SplitBefore = 0, SplitAfter = 1;
2332 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2333 // It is the spill weight that needs to be evicted.
2334 float MaxGap = GapWeight[0];
2336 while (true) {
2337 // Live before/after split?
2338 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2339 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2341 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2342 << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2344 // Stop before the interval gets so big we wouldn't be making progress.
2345 if (!LiveBefore && !LiveAfter) {
2346 LLVM_DEBUG(dbgs() << " all\n");
2347 break;
2349 // Should the interval be extended or shrunk?
2350 bool Shrink = true;
2352 // How many gaps would the new range have?
2353 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2355 // Legally, without causing looping?
2356 bool Legal = !ProgressRequired || NewGaps < NumGaps;
2358 if (Legal && MaxGap < huge_valf) {
2359 // Estimate the new spill weight. Each instruction reads or writes the
2360 // register. Conservatively assume there are no read-modify-write
2361 // instructions.
2363 // Try to guess the size of the new interval.
2364 const float EstWeight = normalizeSpillWeight(
2365 blockFreq * (NewGaps + 1),
2366 Uses[SplitBefore].distance(Uses[SplitAfter]) +
2367 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2369 // Would this split be possible to allocate?
2370 // Never allocate all gaps, we wouldn't be making progress.
2371 LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2372 if (EstWeight * Hysteresis >= MaxGap) {
2373 Shrink = false;
2374 float Diff = EstWeight - MaxGap;
2375 if (Diff > BestDiff) {
2376 LLVM_DEBUG(dbgs() << " (best)");
2377 BestDiff = Hysteresis * Diff;
2378 BestBefore = SplitBefore;
2379 BestAfter = SplitAfter;
2384 // Try to shrink.
2385 if (Shrink) {
2386 if (++SplitBefore < SplitAfter) {
2387 LLVM_DEBUG(dbgs() << " shrink\n");
2388 // Recompute the max when necessary.
2389 if (GapWeight[SplitBefore - 1] >= MaxGap) {
2390 MaxGap = GapWeight[SplitBefore];
2391 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2392 MaxGap = std::max(MaxGap, GapWeight[i]);
2394 continue;
2396 MaxGap = 0;
2399 // Try to extend the interval.
2400 if (SplitAfter >= NumGaps) {
2401 LLVM_DEBUG(dbgs() << " end\n");
2402 break;
2405 LLVM_DEBUG(dbgs() << " extend\n");
2406 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2410 // Didn't find any candidates?
2411 if (BestBefore == NumGaps)
2412 return 0;
2414 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2415 << Uses[BestAfter] << ", " << BestDiff << ", "
2416 << (BestAfter - BestBefore + 1) << " instrs\n");
2418 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2419 SE->reset(LREdit);
2421 SE->openIntv();
2422 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2423 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
2424 SE->useIntv(SegStart, SegStop);
2425 SmallVector<unsigned, 8> IntvMap;
2426 SE->finish(&IntvMap);
2427 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2429 // If the new range has the same number of instructions as before, mark it as
2430 // RS_Split2 so the next split will be forced to make progress. Otherwise,
2431 // leave the new intervals as RS_New so they can compete.
2432 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2433 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2434 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2435 if (NewGaps >= NumGaps) {
2436 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2437 assert(!ProgressRequired && "Didn't make progress when it was required.");
2438 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2439 if (IntvMap[i] == 1) {
2440 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2441 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2443 LLVM_DEBUG(dbgs() << '\n');
2445 ++NumLocalSplits;
2447 return 0;
2450 //===----------------------------------------------------------------------===//
2451 // Live Range Splitting
2452 //===----------------------------------------------------------------------===//
2454 /// trySplit - Try to split VirtReg or one of its interferences, making it
2455 /// assignable.
2456 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2457 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2458 SmallVectorImpl<unsigned>&NewVRegs) {
2459 // Ranges must be Split2 or less.
2460 if (getStage(VirtReg) >= RS_Spill)
2461 return 0;
2463 // Local intervals are handled separately.
2464 if (LIS->intervalIsInOneMBB(VirtReg)) {
2465 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2466 TimerGroupDescription, TimePassesIsEnabled);
2467 SA->analyze(&VirtReg);
2468 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2469 if (PhysReg || !NewVRegs.empty())
2470 return PhysReg;
2471 return tryInstructionSplit(VirtReg, Order, NewVRegs);
2474 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2475 TimerGroupDescription, TimePassesIsEnabled);
2477 SA->analyze(&VirtReg);
2479 // FIXME: SplitAnalysis may repair broken live ranges coming from the
2480 // coalescer. That may cause the range to become allocatable which means that
2481 // tryRegionSplit won't be making progress. This check should be replaced with
2482 // an assertion when the coalescer is fixed.
2483 if (SA->didRepairRange()) {
2484 // VirtReg has changed, so all cached queries are invalid.
2485 Matrix->invalidateVirtRegs();
2486 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
2487 return PhysReg;
2490 // First try to split around a region spanning multiple blocks. RS_Split2
2491 // ranges already made dubious progress with region splitting, so they go
2492 // straight to single block splitting.
2493 if (getStage(VirtReg) < RS_Split2) {
2494 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2495 if (PhysReg || !NewVRegs.empty())
2496 return PhysReg;
2499 // Then isolate blocks.
2500 return tryBlockSplit(VirtReg, Order, NewVRegs);
2503 //===----------------------------------------------------------------------===//
2504 // Last Chance Recoloring
2505 //===----------------------------------------------------------------------===//
2507 /// Return true if \p reg has any tied def operand.
2508 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2509 for (const MachineOperand &MO : MRI->def_operands(reg))
2510 if (MO.isTied())
2511 return true;
2513 return false;
2516 /// mayRecolorAllInterferences - Check if the virtual registers that
2517 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2518 /// recolored to free \p PhysReg.
2519 /// When true is returned, \p RecoloringCandidates has been augmented with all
2520 /// the live intervals that need to be recolored in order to free \p PhysReg
2521 /// for \p VirtReg.
2522 /// \p FixedRegisters contains all the virtual registers that cannot be
2523 /// recolored.
2524 bool
2525 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2526 SmallLISet &RecoloringCandidates,
2527 const SmallVirtRegSet &FixedRegisters) {
2528 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2530 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2531 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2532 // If there is LastChanceRecoloringMaxInterference or more interferences,
2533 // chances are one would not be recolorable.
2534 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2535 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2536 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2537 CutOffInfo |= CO_Interf;
2538 return false;
2540 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2541 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2542 // If Intf is done and sit on the same register class as VirtReg,
2543 // it would not be recolorable as it is in the same state as VirtReg.
2544 // However, if VirtReg has tied defs and Intf doesn't, then
2545 // there is still a point in examining if it can be recolorable.
2546 if (((getStage(*Intf) == RS_Done &&
2547 MRI->getRegClass(Intf->reg) == CurRC) &&
2548 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2549 FixedRegisters.count(Intf->reg)) {
2550 LLVM_DEBUG(
2551 dbgs() << "Early abort: the interference is not recolorable.\n");
2552 return false;
2554 RecoloringCandidates.insert(Intf);
2557 return true;
2560 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2561 /// its interferences.
2562 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2563 /// virtual register that was using it. The recoloring process may recursively
2564 /// use the last chance recoloring. Therefore, when a virtual register has been
2565 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2566 /// be last-chance-recolored again during this recoloring "session".
2567 /// E.g.,
2568 /// Let
2569 /// vA can use {R1, R2 }
2570 /// vB can use { R2, R3}
2571 /// vC can use {R1 }
2572 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2573 /// instance) and they all interfere.
2575 /// vA is assigned R1
2576 /// vB is assigned R2
2577 /// vC tries to evict vA but vA is already done.
2578 /// Regular register allocation fails.
2580 /// Last chance recoloring kicks in:
2581 /// vC does as if vA was evicted => vC uses R1.
2582 /// vC is marked as fixed.
2583 /// vA needs to find a color.
2584 /// None are available.
2585 /// vA cannot evict vC: vC is a fixed virtual register now.
2586 /// vA does as if vB was evicted => vA uses R2.
2587 /// vB needs to find a color.
2588 /// R3 is available.
2589 /// Recoloring => vC = R1, vA = R2, vB = R3
2591 /// \p Order defines the preferred allocation order for \p VirtReg.
2592 /// \p NewRegs will contain any new virtual register that have been created
2593 /// (split, spill) during the process and that must be assigned.
2594 /// \p FixedRegisters contains all the virtual registers that cannot be
2595 /// recolored.
2596 /// \p Depth gives the current depth of the last chance recoloring.
2597 /// \return a physical register that can be used for VirtReg or ~0u if none
2598 /// exists.
2599 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2600 AllocationOrder &Order,
2601 SmallVectorImpl<unsigned> &NewVRegs,
2602 SmallVirtRegSet &FixedRegisters,
2603 unsigned Depth) {
2604 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2605 // Ranges must be Done.
2606 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2607 "Last chance recoloring should really be last chance");
2608 // Set the max depth to LastChanceRecoloringMaxDepth.
2609 // We may want to reconsider that if we end up with a too large search space
2610 // for target with hundreds of registers.
2611 // Indeed, in that case we may want to cut the search space earlier.
2612 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2613 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2614 CutOffInfo |= CO_Depth;
2615 return ~0u;
2618 // Set of Live intervals that will need to be recolored.
2619 SmallLISet RecoloringCandidates;
2620 // Record the original mapping virtual register to physical register in case
2621 // the recoloring fails.
2622 DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2623 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2624 // this recoloring "session".
2625 assert(!FixedRegisters.count(VirtReg.reg));
2626 FixedRegisters.insert(VirtReg.reg);
2627 SmallVector<unsigned, 4> CurrentNewVRegs;
2629 Order.rewind();
2630 while (unsigned PhysReg = Order.next()) {
2631 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2632 << printReg(PhysReg, TRI) << '\n');
2633 RecoloringCandidates.clear();
2634 VirtRegToPhysReg.clear();
2635 CurrentNewVRegs.clear();
2637 // It is only possible to recolor virtual register interference.
2638 if (Matrix->checkInterference(VirtReg, PhysReg) >
2639 LiveRegMatrix::IK_VirtReg) {
2640 LLVM_DEBUG(
2641 dbgs() << "Some interferences are not with virtual registers.\n");
2643 continue;
2646 // Early give up on this PhysReg if it is obvious we cannot recolor all
2647 // the interferences.
2648 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2649 FixedRegisters)) {
2650 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2651 continue;
2654 // RecoloringCandidates contains all the virtual registers that interfer
2655 // with VirtReg on PhysReg (or one of its aliases).
2656 // Enqueue them for recoloring and perform the actual recoloring.
2657 PQueue RecoloringQueue;
2658 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2659 EndIt = RecoloringCandidates.end();
2660 It != EndIt; ++It) {
2661 unsigned ItVirtReg = (*It)->reg;
2662 enqueue(RecoloringQueue, *It);
2663 assert(VRM->hasPhys(ItVirtReg) &&
2664 "Interferences are supposed to be with allocated variables");
2666 // Record the current allocation.
2667 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2668 // unset the related struct.
2669 Matrix->unassign(**It);
2672 // Do as if VirtReg was assigned to PhysReg so that the underlying
2673 // recoloring has the right information about the interferes and
2674 // available colors.
2675 Matrix->assign(VirtReg, PhysReg);
2677 // Save the current recoloring state.
2678 // If we cannot recolor all the interferences, we will have to start again
2679 // at this point for the next physical register.
2680 SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2681 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2682 FixedRegisters, Depth)) {
2683 // Push the queued vregs into the main queue.
2684 for (unsigned NewVReg : CurrentNewVRegs)
2685 NewVRegs.push_back(NewVReg);
2686 // Do not mess up with the global assignment process.
2687 // I.e., VirtReg must be unassigned.
2688 Matrix->unassign(VirtReg);
2689 return PhysReg;
2692 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2693 << printReg(PhysReg, TRI) << '\n');
2695 // The recoloring attempt failed, undo the changes.
2696 FixedRegisters = SaveFixedRegisters;
2697 Matrix->unassign(VirtReg);
2699 // For a newly created vreg which is also in RecoloringCandidates,
2700 // don't add it to NewVRegs because its physical register will be restored
2701 // below. Other vregs in CurrentNewVRegs are created by calling
2702 // selectOrSplit and should be added into NewVRegs.
2703 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2704 End = CurrentNewVRegs.end();
2705 Next != End; ++Next) {
2706 if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2707 continue;
2708 NewVRegs.push_back(*Next);
2711 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2712 EndIt = RecoloringCandidates.end();
2713 It != EndIt; ++It) {
2714 unsigned ItVirtReg = (*It)->reg;
2715 if (VRM->hasPhys(ItVirtReg))
2716 Matrix->unassign(**It);
2717 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2718 Matrix->assign(**It, ItPhysReg);
2722 // Last chance recoloring did not worked either, give up.
2723 return ~0u;
2726 /// tryRecoloringCandidates - Try to assign a new color to every register
2727 /// in \RecoloringQueue.
2728 /// \p NewRegs will contain any new virtual register created during the
2729 /// recoloring process.
2730 /// \p FixedRegisters[in/out] contains all the registers that have been
2731 /// recolored.
2732 /// \return true if all virtual registers in RecoloringQueue were successfully
2733 /// recolored, false otherwise.
2734 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2735 SmallVectorImpl<unsigned> &NewVRegs,
2736 SmallVirtRegSet &FixedRegisters,
2737 unsigned Depth) {
2738 while (!RecoloringQueue.empty()) {
2739 LiveInterval *LI = dequeue(RecoloringQueue);
2740 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2741 unsigned PhysReg;
2742 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2743 // When splitting happens, the live-range may actually be empty.
2744 // In that case, this is okay to continue the recoloring even
2745 // if we did not find an alternative color for it. Indeed,
2746 // there will not be anything to color for LI in the end.
2747 if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2748 return false;
2750 if (!PhysReg) {
2751 assert(LI->empty() && "Only empty live-range do not require a register");
2752 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2753 << " succeeded. Empty LI.\n");
2754 continue;
2756 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2757 << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2759 Matrix->assign(*LI, PhysReg);
2760 FixedRegisters.insert(LI->reg);
2762 return true;
2765 //===----------------------------------------------------------------------===//
2766 // Main Entry Point
2767 //===----------------------------------------------------------------------===//
2769 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2770 SmallVectorImpl<unsigned> &NewVRegs) {
2771 CutOffInfo = CO_None;
2772 LLVMContext &Ctx = MF->getFunction().getContext();
2773 SmallVirtRegSet FixedRegisters;
2774 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2775 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2776 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2777 if (CutOffEncountered == CO_Depth)
2778 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2779 "reached. Use -fexhaustive-register-search to skip "
2780 "cutoffs");
2781 else if (CutOffEncountered == CO_Interf)
2782 Ctx.emitError("register allocation failed: maximum interference for "
2783 "recoloring reached. Use -fexhaustive-register-search "
2784 "to skip cutoffs");
2785 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2786 Ctx.emitError("register allocation failed: maximum interference and "
2787 "depth for recoloring reached. Use "
2788 "-fexhaustive-register-search to skip cutoffs");
2790 return Reg;
2793 /// Using a CSR for the first time has a cost because it causes push|pop
2794 /// to be added to prologue|epilogue. Splitting a cold section of the live
2795 /// range can have lower cost than using the CSR for the first time;
2796 /// Spilling a live range in the cold path can have lower cost than using
2797 /// the CSR for the first time. Returns the physical register if we decide
2798 /// to use the CSR; otherwise return 0.
2799 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2800 AllocationOrder &Order,
2801 unsigned PhysReg,
2802 unsigned &CostPerUseLimit,
2803 SmallVectorImpl<unsigned> &NewVRegs) {
2804 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2805 // We choose spill over using the CSR for the first time if the spill cost
2806 // is lower than CSRCost.
2807 SA->analyze(&VirtReg);
2808 if (calcSpillCost() >= CSRCost)
2809 return PhysReg;
2811 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2812 // we will not use a callee-saved register in tryEvict.
2813 CostPerUseLimit = 1;
2814 return 0;
2816 if (getStage(VirtReg) < RS_Split) {
2817 // We choose pre-splitting over using the CSR for the first time if
2818 // the cost of splitting is lower than CSRCost.
2819 SA->analyze(&VirtReg);
2820 unsigned NumCands = 0;
2821 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2822 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2823 NumCands, true /*IgnoreCSR*/);
2824 if (BestCand == NoCand)
2825 // Use the CSR if we can't find a region split below CSRCost.
2826 return PhysReg;
2828 // Perform the actual pre-splitting.
2829 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2830 return 0;
2832 return PhysReg;
2835 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2836 // Do not keep invalid information around.
2837 SetOfBrokenHints.remove(&LI);
2840 void RAGreedy::initializeCSRCost() {
2841 // We use the larger one out of the command-line option and the value report
2842 // by TRI.
2843 CSRCost = BlockFrequency(
2844 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2845 if (!CSRCost.getFrequency())
2846 return;
2848 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2849 uint64_t ActualEntry = MBFI->getEntryFreq();
2850 if (!ActualEntry) {
2851 CSRCost = 0;
2852 return;
2854 uint64_t FixedEntry = 1 << 14;
2855 if (ActualEntry < FixedEntry)
2856 CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2857 else if (ActualEntry <= UINT32_MAX)
2858 // Invert the fraction and divide.
2859 CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2860 else
2861 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2862 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2865 /// Collect the hint info for \p Reg.
2866 /// The results are stored into \p Out.
2867 /// \p Out is not cleared before being populated.
2868 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2869 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2870 if (!Instr.isFullCopy())
2871 continue;
2872 // Look for the other end of the copy.
2873 unsigned OtherReg = Instr.getOperand(0).getReg();
2874 if (OtherReg == Reg) {
2875 OtherReg = Instr.getOperand(1).getReg();
2876 if (OtherReg == Reg)
2877 continue;
2879 // Get the current assignment.
2880 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2881 ? OtherReg
2882 : VRM->getPhys(OtherReg);
2883 // Push the collected information.
2884 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2885 OtherPhysReg));
2889 /// Using the given \p List, compute the cost of the broken hints if
2890 /// \p PhysReg was used.
2891 /// \return The cost of \p List for \p PhysReg.
2892 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2893 unsigned PhysReg) {
2894 BlockFrequency Cost = 0;
2895 for (const HintInfo &Info : List) {
2896 if (Info.PhysReg != PhysReg)
2897 Cost += Info.Freq;
2899 return Cost;
2902 /// Using the register assigned to \p VirtReg, try to recolor
2903 /// all the live ranges that are copy-related with \p VirtReg.
2904 /// The recoloring is then propagated to all the live-ranges that have
2905 /// been recolored and so on, until no more copies can be coalesced or
2906 /// it is not profitable.
2907 /// For a given live range, profitability is determined by the sum of the
2908 /// frequencies of the non-identity copies it would introduce with the old
2909 /// and new register.
2910 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2911 // We have a broken hint, check if it is possible to fix it by
2912 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2913 // some register and PhysReg may be available for the other live-ranges.
2914 SmallSet<unsigned, 4> Visited;
2915 SmallVector<unsigned, 2> RecoloringCandidates;
2916 HintsInfo Info;
2917 unsigned Reg = VirtReg.reg;
2918 unsigned PhysReg = VRM->getPhys(Reg);
2919 // Start the recoloring algorithm from the input live-interval, then
2920 // it will propagate to the ones that are copy-related with it.
2921 Visited.insert(Reg);
2922 RecoloringCandidates.push_back(Reg);
2924 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2925 << '(' << printReg(PhysReg, TRI) << ")\n");
2927 do {
2928 Reg = RecoloringCandidates.pop_back_val();
2930 // We cannot recolor physical register.
2931 if (TargetRegisterInfo::isPhysicalRegister(Reg))
2932 continue;
2934 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2936 // Get the live interval mapped with this virtual register to be able
2937 // to check for the interference with the new color.
2938 LiveInterval &LI = LIS->getInterval(Reg);
2939 unsigned CurrPhys = VRM->getPhys(Reg);
2940 // Check that the new color matches the register class constraints and
2941 // that it is free for this live range.
2942 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2943 Matrix->checkInterference(LI, PhysReg)))
2944 continue;
2946 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2947 << ") is recolorable.\n");
2949 // Gather the hint info.
2950 Info.clear();
2951 collectHintInfo(Reg, Info);
2952 // Check if recoloring the live-range will increase the cost of the
2953 // non-identity copies.
2954 if (CurrPhys != PhysReg) {
2955 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2956 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2957 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2958 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2959 << "\nNew Cost: " << NewCopiesCost.getFrequency()
2960 << '\n');
2961 if (OldCopiesCost < NewCopiesCost) {
2962 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2963 continue;
2965 // At this point, the cost is either cheaper or equal. If it is
2966 // equal, we consider this is profitable because it may expose
2967 // more recoloring opportunities.
2968 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2969 // Recolor the live-range.
2970 Matrix->unassign(LI);
2971 Matrix->assign(LI, PhysReg);
2973 // Push all copy-related live-ranges to keep reconciling the broken
2974 // hints.
2975 for (const HintInfo &HI : Info) {
2976 if (Visited.insert(HI.Reg).second)
2977 RecoloringCandidates.push_back(HI.Reg);
2979 } while (!RecoloringCandidates.empty());
2982 /// Try to recolor broken hints.
2983 /// Broken hints may be repaired by recoloring when an evicted variable
2984 /// freed up a register for a larger live-range.
2985 /// Consider the following example:
2986 /// BB1:
2987 /// a =
2988 /// b =
2989 /// BB2:
2990 /// ...
2991 /// = b
2992 /// = a
2993 /// Let us assume b gets split:
2994 /// BB1:
2995 /// a =
2996 /// b =
2997 /// BB2:
2998 /// c = b
2999 /// ...
3000 /// d = c
3001 /// = d
3002 /// = a
3003 /// Because of how the allocation work, b, c, and d may be assigned different
3004 /// colors. Now, if a gets evicted later:
3005 /// BB1:
3006 /// a =
3007 /// st a, SpillSlot
3008 /// b =
3009 /// BB2:
3010 /// c = b
3011 /// ...
3012 /// d = c
3013 /// = d
3014 /// e = ld SpillSlot
3015 /// = e
3016 /// This is likely that we can assign the same register for b, c, and d,
3017 /// getting rid of 2 copies.
3018 void RAGreedy::tryHintsRecoloring() {
3019 for (LiveInterval *LI : SetOfBrokenHints) {
3020 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
3021 "Recoloring is possible only for virtual registers");
3022 // Some dead defs may be around (e.g., because of debug uses).
3023 // Ignore those.
3024 if (!VRM->hasPhys(LI->reg))
3025 continue;
3026 tryHintRecoloring(*LI);
3030 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3031 SmallVectorImpl<unsigned> &NewVRegs,
3032 SmallVirtRegSet &FixedRegisters,
3033 unsigned Depth) {
3034 unsigned CostPerUseLimit = ~0u;
3035 // First try assigning a free register.
3036 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
3037 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
3038 // If VirtReg got an assignment, the eviction info is no longre relevant.
3039 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3040 // When NewVRegs is not empty, we may have made decisions such as evicting
3041 // a virtual register, go with the earlier decisions and use the physical
3042 // register.
3043 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3044 NewVRegs.empty()) {
3045 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3046 CostPerUseLimit, NewVRegs);
3047 if (CSRReg || !NewVRegs.empty())
3048 // Return now if we decide to use a CSR or create new vregs due to
3049 // pre-splitting.
3050 return CSRReg;
3051 } else
3052 return PhysReg;
3055 LiveRangeStage Stage = getStage(VirtReg);
3056 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3057 << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
3059 // Try to evict a less worthy live range, but only for ranges from the primary
3060 // queue. The RS_Split ranges already failed to do this, and they should not
3061 // get a second chance until they have been split.
3062 if (Stage != RS_Split)
3063 if (unsigned PhysReg =
3064 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3065 FixedRegisters)) {
3066 unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
3067 // If VirtReg has a hint and that hint is broken record this
3068 // virtual register as a recoloring candidate for broken hint.
3069 // Indeed, since we evicted a variable in its neighborhood it is
3070 // likely we can at least partially recolor some of the
3071 // copy-related live-ranges.
3072 if (Hint && Hint != PhysReg)
3073 SetOfBrokenHints.insert(&VirtReg);
3074 // If VirtReg eviction someone, the eviction info for it as an evictee is
3075 // no longre relevant.
3076 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3077 return PhysReg;
3080 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3082 // The first time we see a live range, don't try to split or spill.
3083 // Wait until the second time, when all smaller ranges have been allocated.
3084 // This gives a better picture of the interference to split around.
3085 if (Stage < RS_Split) {
3086 setStage(VirtReg, RS_Split);
3087 LLVM_DEBUG(dbgs() << "wait for second round\n");
3088 NewVRegs.push_back(VirtReg.reg);
3089 return 0;
3092 if (Stage < RS_Spill) {
3093 // Try splitting VirtReg or interferences.
3094 unsigned NewVRegSizeBefore = NewVRegs.size();
3095 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
3096 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3097 // If VirtReg got split, the eviction info is no longre relevant.
3098 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3099 return PhysReg;
3103 // If we couldn't allocate a register from spilling, there is probably some
3104 // invalid inline assembly. The base class will report it.
3105 if (Stage >= RS_Done || !VirtReg.isSpillable())
3106 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3107 Depth);
3109 // Finally spill VirtReg itself.
3110 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3111 // TODO: This is experimental and in particular, we do not model
3112 // the live range splitting done by spilling correctly.
3113 // We would need a deep integration with the spiller to do the
3114 // right thing here. Anyway, that is still good for early testing.
3115 setStage(VirtReg, RS_Memory);
3116 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3117 NewVRegs.push_back(VirtReg.reg);
3118 } else {
3119 NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3120 TimerGroupDescription, TimePassesIsEnabled);
3121 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3122 spiller().spill(LRE);
3123 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3125 if (VerifyEnabled)
3126 MF->verify(this, "After spilling");
3129 // The live virtual register requesting allocation was spilled, so tell
3130 // the caller not to allocate anything during this round.
3131 return 0;
3134 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3135 unsigned &FoldedReloads,
3136 unsigned &Spills,
3137 unsigned &FoldedSpills) {
3138 Reloads = 0;
3139 FoldedReloads = 0;
3140 Spills = 0;
3141 FoldedSpills = 0;
3143 // Sum up the spill and reloads in subloops.
3144 for (MachineLoop *SubLoop : *L) {
3145 unsigned SubReloads;
3146 unsigned SubFoldedReloads;
3147 unsigned SubSpills;
3148 unsigned SubFoldedSpills;
3150 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3151 SubSpills, SubFoldedSpills);
3152 Reloads += SubReloads;
3153 FoldedReloads += SubFoldedReloads;
3154 Spills += SubSpills;
3155 FoldedSpills += SubFoldedSpills;
3158 const MachineFrameInfo &MFI = MF->getFrameInfo();
3159 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
3160 int FI;
3162 for (MachineBasicBlock *MBB : L->getBlocks())
3163 // Handle blocks that were not included in subloops.
3164 if (Loops->getLoopFor(MBB) == L)
3165 for (MachineInstr &MI : *MBB) {
3166 SmallVector<const MachineMemOperand *, 2> Accesses;
3167 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3168 return MFI.isSpillSlotObjectIndex(
3169 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3170 ->getFrameIndex());
3173 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3174 ++Reloads;
3175 else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3176 llvm::any_of(Accesses, isSpillSlotAccess))
3177 ++FoldedReloads;
3178 else if (TII->isStoreToStackSlot(MI, FI) &&
3179 MFI.isSpillSlotObjectIndex(FI))
3180 ++Spills;
3181 else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3182 llvm::any_of(Accesses, isSpillSlotAccess))
3183 ++FoldedSpills;
3186 if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3187 using namespace ore;
3189 ORE->emit([&]() {
3190 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3191 L->getStartLoc(), L->getHeader());
3192 if (Spills)
3193 R << NV("NumSpills", Spills) << " spills ";
3194 if (FoldedSpills)
3195 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3196 if (Reloads)
3197 R << NV("NumReloads", Reloads) << " reloads ";
3198 if (FoldedReloads)
3199 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3200 R << "generated in loop";
3201 return R;
3206 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3207 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3208 << "********** Function: " << mf.getName() << '\n');
3210 MF = &mf;
3211 TRI = MF->getSubtarget().getRegisterInfo();
3212 TII = MF->getSubtarget().getInstrInfo();
3213 RCI.runOnMachineFunction(mf);
3215 EnableLocalReassign = EnableLocalReassignment ||
3216 MF->getSubtarget().enableRALocalReassignment(
3217 MF->getTarget().getOptLevel());
3219 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
3220 MF->getSubtarget().enableAdvancedRASplitCost();
3222 if (VerifyEnabled)
3223 MF->verify(this, "Before greedy register allocator");
3225 RegAllocBase::init(getAnalysis<VirtRegMap>(),
3226 getAnalysis<LiveIntervals>(),
3227 getAnalysis<LiveRegMatrix>());
3228 Indexes = &getAnalysis<SlotIndexes>();
3229 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3230 DomTree = &getAnalysis<MachineDominatorTree>();
3231 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3232 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3233 Loops = &getAnalysis<MachineLoopInfo>();
3234 Bundles = &getAnalysis<EdgeBundles>();
3235 SpillPlacer = &getAnalysis<SpillPlacement>();
3236 DebugVars = &getAnalysis<LiveDebugVariables>();
3237 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3239 initializeCSRCost();
3241 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3243 LLVM_DEBUG(LIS->dump());
3245 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3246 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3247 ExtraRegInfo.clear();
3248 ExtraRegInfo.resize(MRI->getNumVirtRegs());
3249 NextCascade = 1;
3250 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3251 GlobalCand.resize(32); // This will grow as needed.
3252 SetOfBrokenHints.clear();
3253 LastEvicted.clear();
3255 allocatePhysRegs();
3256 tryHintsRecoloring();
3257 postOptimization();
3258 reportNumberOfSplillsReloads();
3260 releaseMemory();
3261 return true;