1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the RAGreedy function pass for register allocation in
12 //===----------------------------------------------------------------------===//
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/CodeGen/CalcSpillWeights.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalUnion.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveRangeEdit.h"
40 #include "llvm/CodeGen/LiveRegMatrix.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RegAllocRegistry.h"
54 #include "llvm/CodeGen/RegisterClassInfo.h"
55 #include "llvm/CodeGen/SlotIndexes.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
82 #define DEBUG_TYPE "regalloc"
84 STATISTIC(NumGlobalSplits
, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits
, "Number of split local live ranges");
86 STATISTIC(NumEvicted
, "Number of interferences evicted");
88 static cl::opt
<SplitEditor::ComplementSpillMode
> SplitSpillMode(
89 "split-spill-mode", cl::Hidden
,
90 cl::desc("Spill mode for splitting live ranges"),
91 cl::values(clEnumValN(SplitEditor::SM_Partition
, "default", "Default"),
92 clEnumValN(SplitEditor::SM_Size
, "size", "Optimize for size"),
93 clEnumValN(SplitEditor::SM_Speed
, "speed", "Optimize for speed")),
94 cl::init(SplitEditor::SM_Speed
));
96 static cl::opt
<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden
,
98 cl::desc("Last chance recoloring max depth"),
101 static cl::opt
<unsigned> LastChanceRecoloringMaxInterference(
102 "lcr-max-interf", cl::Hidden
,
103 cl::desc("Last chance recoloring maximum number of considered"
104 " interference at a time"),
107 static cl::opt
<bool> ExhaustiveSearch(
108 "exhaustive-register-search", cl::NotHidden
,
109 cl::desc("Exhaustive Search for registers bypassing the depth "
110 "and interference cutoffs of last chance recoloring"),
113 static cl::opt
<bool> EnableLocalReassignment(
114 "enable-local-reassign", cl::Hidden
,
115 cl::desc("Local reassignment can yield better allocation decisions, but "
116 "may be compile time intensive"),
119 static cl::opt
<bool> EnableDeferredSpilling(
120 "enable-deferred-spilling", cl::Hidden
,
121 cl::desc("Instead of spilling a variable right away, defer the actual "
122 "code insertion to the end of the allocation. That way the "
123 "allocator might still find a suitable coloring for this "
124 "variable because of other evicted variables."),
127 static cl::opt
<unsigned>
128 HugeSizeForSplit("huge-size-for-split", cl::Hidden
,
129 cl::desc("A threshold of live range size which may cause "
130 "high compile time cost in global splitting."),
133 // FIXME: Find a good default for this flag and remove the flag.
134 static cl::opt
<unsigned>
135 CSRFirstTimeCost("regalloc-csr-first-time-cost",
136 cl::desc("Cost for first time use of callee-saved register."),
137 cl::init(0), cl::Hidden
);
139 static cl::opt
<bool> ConsiderLocalIntervalCost(
140 "condsider-local-interval-cost", cl::Hidden
,
141 cl::desc("Consider the cost of local intervals created by a split "
142 "candidate when choosing the best split candidate."),
145 static RegisterRegAlloc
greedyRegAlloc("greedy", "greedy register allocator",
146 createGreedyRegisterAllocator
);
150 class RAGreedy
: public MachineFunctionPass
,
152 private LiveRangeEdit::Delegate
{
153 // Convenient shortcuts.
154 using PQueue
= std::priority_queue
<std::pair
<unsigned, unsigned>>;
155 using SmallLISet
= SmallPtrSet
<LiveInterval
*, 4>;
156 using SmallVirtRegSet
= SmallSet
<unsigned, 16>;
161 // Shortcuts to some useful interface.
162 const TargetInstrInfo
*TII
;
163 const TargetRegisterInfo
*TRI
;
164 RegisterClassInfo RCI
;
167 SlotIndexes
*Indexes
;
168 MachineBlockFrequencyInfo
*MBFI
;
169 MachineDominatorTree
*DomTree
;
170 MachineLoopInfo
*Loops
;
171 MachineOptimizationRemarkEmitter
*ORE
;
172 EdgeBundles
*Bundles
;
173 SpillPlacement
*SpillPlacer
;
174 LiveDebugVariables
*DebugVars
;
178 std::unique_ptr
<Spiller
> SpillerInstance
;
180 unsigned NextCascade
;
182 // Live ranges pass through a number of stages as we try to allocate them.
183 // Some of the stages may also create new live ranges:
185 // - Region splitting.
186 // - Per-block splitting.
187 // - Local splitting.
190 // Ranges produced by one of the stages skip the previous stages when they are
191 // dequeued. This improves performance because we can skip interference checks
192 // that are unlikely to give any results. It also guarantees that the live
193 // range splitting algorithm terminates, something that is otherwise hard to
195 enum LiveRangeStage
{
196 /// Newly created live range that has never been queued.
199 /// Only attempt assignment and eviction. Then requeue as RS_Split.
202 /// Attempt live range splitting if assignment is impossible.
205 /// Attempt more aggressive live range splitting that is guaranteed to make
206 /// progress. This is used for split products that may not be making
210 /// Live range will be spilled. No more splitting will be attempted.
214 /// Live range is in memory. Because of other evictions, it might get moved
215 /// in a register in the end.
218 /// There is nothing more we can do to this live range. Abort compilation
219 /// if it can't be assigned.
223 // Enum CutOffStage to keep a track whether the register allocation failed
224 // because of the cutoffs encountered in last chance recoloring.
225 // Note: This is used as bitmask. New value should be next power of 2.
227 // No cutoffs encountered
230 // lcr-max-depth cutoff encountered
233 // lcr-max-interf cutoff encountered
240 static const char *const StageName
[];
243 // RegInfo - Keep additional information about each live range.
245 LiveRangeStage Stage
= RS_New
;
247 // Cascade - Eviction loop prevention. See canEvictInterference().
248 unsigned Cascade
= 0;
253 IndexedMap
<RegInfo
, VirtReg2IndexFunctor
> ExtraRegInfo
;
255 LiveRangeStage
getStage(const LiveInterval
&VirtReg
) const {
256 return ExtraRegInfo
[VirtReg
.reg
].Stage
;
259 void setStage(const LiveInterval
&VirtReg
, LiveRangeStage Stage
) {
260 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
261 ExtraRegInfo
[VirtReg
.reg
].Stage
= Stage
;
264 template<typename Iterator
>
265 void setStage(Iterator Begin
, Iterator End
, LiveRangeStage NewStage
) {
266 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
267 for (;Begin
!= End
; ++Begin
) {
268 unsigned Reg
= *Begin
;
269 if (ExtraRegInfo
[Reg
].Stage
== RS_New
)
270 ExtraRegInfo
[Reg
].Stage
= NewStage
;
274 /// Cost of evicting interference.
275 struct EvictionCost
{
276 unsigned BrokenHints
= 0; ///< Total number of broken hints.
277 float MaxWeight
= 0; ///< Maximum spill weight evicted.
279 EvictionCost() = default;
281 bool isMax() const { return BrokenHints
== ~0u; }
283 void setMax() { BrokenHints
= ~0u; }
285 void setBrokenHints(unsigned NHints
) { BrokenHints
= NHints
; }
287 bool operator<(const EvictionCost
&O
) const {
288 return std::tie(BrokenHints
, MaxWeight
) <
289 std::tie(O
.BrokenHints
, O
.MaxWeight
);
293 /// EvictionTrack - Keeps track of past evictions in order to optimize region
295 class EvictionTrack
{
299 std::pair
<unsigned /* evictor */, unsigned /* physreg */>;
300 using EvicteeInfo
= llvm::DenseMap
<unsigned /* evictee */, EvictorInfo
>;
303 /// Each Vreg that has been evicted in the last stage of selectOrSplit will
304 /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
305 EvicteeInfo Evictees
;
308 /// Clear all eviction information.
309 void clear() { Evictees
.clear(); }
311 /// Clear eviction information for the given evictee Vreg.
312 /// E.g. when Vreg get's a new allocation, the old eviction info is no
314 /// \param Evictee The evictee Vreg for whom we want to clear collected
316 void clearEvicteeInfo(unsigned Evictee
) { Evictees
.erase(Evictee
); }
318 /// Track new eviction.
319 /// The Evictor vreg has evicted the Evictee vreg from Physreg.
320 /// \param PhysReg The physical register Evictee was evicted from.
321 /// \param Evictor The evictor Vreg that evicted Evictee.
322 /// \param Evictee The evictee Vreg.
323 void addEviction(unsigned PhysReg
, unsigned Evictor
, unsigned Evictee
) {
324 Evictees
[Evictee
].first
= Evictor
;
325 Evictees
[Evictee
].second
= PhysReg
;
328 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
329 /// \param Evictee The evictee vreg.
330 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
331 /// nobody has evicted Evictee from PhysReg.
332 EvictorInfo
getEvictor(unsigned Evictee
) {
333 if (Evictees
.count(Evictee
)) {
334 return Evictees
[Evictee
];
337 return EvictorInfo(0, 0);
341 // Keeps track of past evictions in order to optimize region split decision.
342 EvictionTrack LastEvicted
;
345 std::unique_ptr
<SplitAnalysis
> SA
;
346 std::unique_ptr
<SplitEditor
> SE
;
348 /// Cached per-block interference maps
349 InterferenceCache IntfCache
;
351 /// All basic blocks where the current register has uses.
352 SmallVector
<SpillPlacement::BlockConstraint
, 8> SplitConstraints
;
354 /// Global live range splitting candidate info.
355 struct GlobalSplitCandidate
{
356 // Register intended for assignment, or 0.
359 // SplitKit interval index for this candidate.
362 // Interference for PhysReg.
363 InterferenceCache::Cursor Intf
;
365 // Bundles where this candidate should be live.
366 BitVector LiveBundles
;
367 SmallVector
<unsigned, 8> ActiveBlocks
;
369 void reset(InterferenceCache
&Cache
, unsigned Reg
) {
372 Intf
.setPhysReg(Cache
, Reg
);
374 ActiveBlocks
.clear();
377 // Set B[i] = C for every live bundle where B[i] was NoCand.
378 unsigned getBundles(SmallVectorImpl
<unsigned> &B
, unsigned C
) {
380 for (unsigned i
: LiveBundles
.set_bits())
381 if (B
[i
] == NoCand
) {
389 /// Candidate info for each PhysReg in AllocationOrder.
390 /// This vector never shrinks, but grows to the size of the largest register
392 SmallVector
<GlobalSplitCandidate
, 32> GlobalCand
;
394 enum : unsigned { NoCand
= ~0u };
396 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
397 /// NoCand which indicates the stack interval.
398 SmallVector
<unsigned, 32> BundleCand
;
400 /// Callee-save register cost, calculated once per machine function.
401 BlockFrequency CSRCost
;
403 /// Run or not the local reassignment heuristic. This information is
404 /// obtained from the TargetSubtargetInfo.
405 bool EnableLocalReassign
;
407 /// Enable or not the consideration of the cost of local intervals created
408 /// by a split candidate when choosing the best split candidate.
409 bool EnableAdvancedRASplitCost
;
411 /// Set of broken hints that may be reconciled later because of eviction.
412 SmallSetVector
<LiveInterval
*, 8> SetOfBrokenHints
;
417 /// Return the pass name.
418 StringRef
getPassName() const override
{ return "Greedy Register Allocator"; }
420 /// RAGreedy analysis usage.
421 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
422 void releaseMemory() override
;
423 Spiller
&spiller() override
{ return *SpillerInstance
; }
424 void enqueue(LiveInterval
*LI
) override
;
425 LiveInterval
*dequeue() override
;
426 unsigned selectOrSplit(LiveInterval
&, SmallVectorImpl
<unsigned>&) override
;
427 void aboutToRemoveInterval(LiveInterval
&) override
;
429 /// Perform register allocation.
430 bool runOnMachineFunction(MachineFunction
&mf
) override
;
432 MachineFunctionProperties
getRequiredProperties() const override
{
433 return MachineFunctionProperties().set(
434 MachineFunctionProperties::Property::NoPHIs
);
440 unsigned selectOrSplitImpl(LiveInterval
&, SmallVectorImpl
<unsigned> &,
441 SmallVirtRegSet
&, unsigned = 0);
443 bool LRE_CanEraseVirtReg(unsigned) override
;
444 void LRE_WillShrinkVirtReg(unsigned) override
;
445 void LRE_DidCloneVirtReg(unsigned, unsigned) override
;
446 void enqueue(PQueue
&CurQueue
, LiveInterval
*LI
);
447 LiveInterval
*dequeue(PQueue
&CurQueue
);
449 BlockFrequency
calcSpillCost();
450 bool addSplitConstraints(InterferenceCache::Cursor
, BlockFrequency
&);
451 bool addThroughConstraints(InterferenceCache::Cursor
, ArrayRef
<unsigned>);
452 bool growRegion(GlobalSplitCandidate
&Cand
);
453 bool splitCanCauseEvictionChain(unsigned Evictee
, GlobalSplitCandidate
&Cand
,
455 const AllocationOrder
&Order
);
456 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit
,
457 GlobalSplitCandidate
&Cand
, unsigned BBNumber
,
458 const AllocationOrder
&Order
);
459 BlockFrequency
calcGlobalSplitCost(GlobalSplitCandidate
&,
460 const AllocationOrder
&Order
,
461 bool *CanCauseEvictionChain
);
462 bool calcCompactRegion(GlobalSplitCandidate
&);
463 void splitAroundRegion(LiveRangeEdit
&, ArrayRef
<unsigned>);
464 void calcGapWeights(unsigned, SmallVectorImpl
<float>&);
465 unsigned canReassign(LiveInterval
&VirtReg
, unsigned PrevReg
);
466 bool shouldEvict(LiveInterval
&A
, bool, LiveInterval
&B
, bool);
467 bool canEvictInterference(LiveInterval
&, unsigned, bool, EvictionCost
&,
468 const SmallVirtRegSet
& = SmallVirtRegSet());
469 bool canEvictInterferenceInRange(LiveInterval
&VirtReg
, unsigned PhysReg
,
470 SlotIndex Start
, SlotIndex End
,
471 EvictionCost
&MaxCost
);
472 unsigned getCheapestEvicteeWeight(const AllocationOrder
&Order
,
473 LiveInterval
&VirtReg
, SlotIndex Start
,
474 SlotIndex End
, float *BestEvictWeight
);
475 void evictInterference(LiveInterval
&, unsigned,
476 SmallVectorImpl
<unsigned>&);
477 bool mayRecolorAllInterferences(unsigned PhysReg
, LiveInterval
&VirtReg
,
478 SmallLISet
&RecoloringCandidates
,
479 const SmallVirtRegSet
&FixedRegisters
);
481 unsigned tryAssign(LiveInterval
&, AllocationOrder
&,
482 SmallVectorImpl
<unsigned>&);
483 unsigned tryEvict(LiveInterval
&, AllocationOrder
&,
484 SmallVectorImpl
<unsigned>&, unsigned = ~0u,
485 const SmallVirtRegSet
& = SmallVirtRegSet());
486 unsigned tryRegionSplit(LiveInterval
&, AllocationOrder
&,
487 SmallVectorImpl
<unsigned>&);
488 unsigned isSplitBenefitWorthCost(LiveInterval
&VirtReg
);
489 /// Calculate cost of region splitting.
490 unsigned calculateRegionSplitCost(LiveInterval
&VirtReg
,
491 AllocationOrder
&Order
,
492 BlockFrequency
&BestCost
,
493 unsigned &NumCands
, bool IgnoreCSR
,
494 bool *CanCauseEvictionChain
= nullptr);
495 /// Perform region splitting.
496 unsigned doRegionSplit(LiveInterval
&VirtReg
, unsigned BestCand
,
498 SmallVectorImpl
<unsigned> &NewVRegs
);
499 /// Check other options before using a callee-saved register for the first
501 unsigned tryAssignCSRFirstTime(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
502 unsigned PhysReg
, unsigned &CostPerUseLimit
,
503 SmallVectorImpl
<unsigned> &NewVRegs
);
504 void initializeCSRCost();
505 unsigned tryBlockSplit(LiveInterval
&, AllocationOrder
&,
506 SmallVectorImpl
<unsigned>&);
507 unsigned tryInstructionSplit(LiveInterval
&, AllocationOrder
&,
508 SmallVectorImpl
<unsigned>&);
509 unsigned tryLocalSplit(LiveInterval
&, AllocationOrder
&,
510 SmallVectorImpl
<unsigned>&);
511 unsigned trySplit(LiveInterval
&, AllocationOrder
&,
512 SmallVectorImpl
<unsigned>&);
513 unsigned tryLastChanceRecoloring(LiveInterval
&, AllocationOrder
&,
514 SmallVectorImpl
<unsigned> &,
515 SmallVirtRegSet
&, unsigned);
516 bool tryRecoloringCandidates(PQueue
&, SmallVectorImpl
<unsigned> &,
517 SmallVirtRegSet
&, unsigned);
518 void tryHintRecoloring(LiveInterval
&);
519 void tryHintsRecoloring();
521 /// Model the information carried by one end of a copy.
523 /// The frequency of the copy.
525 /// The virtual register or physical register.
527 /// Its currently assigned register.
528 /// In case of a physical register Reg == PhysReg.
531 HintInfo(BlockFrequency Freq
, unsigned Reg
, unsigned PhysReg
)
532 : Freq(Freq
), Reg(Reg
), PhysReg(PhysReg
) {}
534 using HintsInfo
= SmallVector
<HintInfo
, 4>;
536 BlockFrequency
getBrokenHintFreq(const HintsInfo
&, unsigned);
537 void collectHintInfo(unsigned, HintsInfo
&);
539 bool isUnusedCalleeSavedReg(unsigned PhysReg
) const;
541 /// Compute and report the number of spills and reloads for a loop.
542 void reportNumberOfSplillsReloads(MachineLoop
*L
, unsigned &Reloads
,
543 unsigned &FoldedReloads
, unsigned &Spills
,
544 unsigned &FoldedSpills
);
546 /// Report the number of spills and reloads for each loop.
547 void reportNumberOfSplillsReloads() {
548 for (MachineLoop
*L
: *Loops
) {
549 unsigned Reloads
, FoldedReloads
, Spills
, FoldedSpills
;
550 reportNumberOfSplillsReloads(L
, Reloads
, FoldedReloads
, Spills
,
556 } // end anonymous namespace
558 char RAGreedy::ID
= 0;
559 char &llvm::RAGreedyID
= RAGreedy::ID
;
561 INITIALIZE_PASS_BEGIN(RAGreedy
, "greedy",
562 "Greedy Register Allocator", false, false)
563 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
564 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
565 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
566 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer
)
567 INITIALIZE_PASS_DEPENDENCY(MachineScheduler
)
568 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
569 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
570 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
571 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
572 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix
)
573 INITIALIZE_PASS_DEPENDENCY(EdgeBundles
)
574 INITIALIZE_PASS_DEPENDENCY(SpillPlacement
)
575 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass
)
576 INITIALIZE_PASS_END(RAGreedy
, "greedy",
577 "Greedy Register Allocator", false, false)
580 const char *const RAGreedy::StageName
[] = {
591 // Hysteresis to use when comparing floats.
592 // This helps stabilize decisions based on float comparisons.
593 const float Hysteresis
= (2007 / 2048.0f
); // 0.97998046875
595 FunctionPass
* llvm::createGreedyRegisterAllocator() {
596 return new RAGreedy();
599 RAGreedy::RAGreedy(): MachineFunctionPass(ID
) {
602 void RAGreedy::getAnalysisUsage(AnalysisUsage
&AU
) const {
603 AU
.setPreservesCFG();
604 AU
.addRequired
<MachineBlockFrequencyInfo
>();
605 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
606 AU
.addRequired
<AAResultsWrapperPass
>();
607 AU
.addPreserved
<AAResultsWrapperPass
>();
608 AU
.addRequired
<LiveIntervals
>();
609 AU
.addPreserved
<LiveIntervals
>();
610 AU
.addRequired
<SlotIndexes
>();
611 AU
.addPreserved
<SlotIndexes
>();
612 AU
.addRequired
<LiveDebugVariables
>();
613 AU
.addPreserved
<LiveDebugVariables
>();
614 AU
.addRequired
<LiveStacks
>();
615 AU
.addPreserved
<LiveStacks
>();
616 AU
.addRequired
<MachineDominatorTree
>();
617 AU
.addPreserved
<MachineDominatorTree
>();
618 AU
.addRequired
<MachineLoopInfo
>();
619 AU
.addPreserved
<MachineLoopInfo
>();
620 AU
.addRequired
<VirtRegMap
>();
621 AU
.addPreserved
<VirtRegMap
>();
622 AU
.addRequired
<LiveRegMatrix
>();
623 AU
.addPreserved
<LiveRegMatrix
>();
624 AU
.addRequired
<EdgeBundles
>();
625 AU
.addRequired
<SpillPlacement
>();
626 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
627 MachineFunctionPass::getAnalysisUsage(AU
);
630 //===----------------------------------------------------------------------===//
631 // LiveRangeEdit delegate methods
632 //===----------------------------------------------------------------------===//
634 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg
) {
635 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
636 if (VRM
->hasPhys(VirtReg
)) {
637 Matrix
->unassign(LI
);
638 aboutToRemoveInterval(LI
);
641 // Unassigned virtreg is probably in the priority queue.
642 // RegAllocBase will erase it after dequeueing.
643 // Nonetheless, clear the live-range so that the debug
644 // dump will show the right state for that VirtReg.
649 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg
) {
650 if (!VRM
->hasPhys(VirtReg
))
653 // Register is assigned, put it back on the queue for reassignment.
654 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
655 Matrix
->unassign(LI
);
659 void RAGreedy::LRE_DidCloneVirtReg(unsigned New
, unsigned Old
) {
660 // Cloning a register we haven't even heard about yet? Just ignore it.
661 if (!ExtraRegInfo
.inBounds(Old
))
664 // LRE may clone a virtual register because dead code elimination causes it to
665 // be split into connected components. The new components are much smaller
666 // than the original, so they should get a new chance at being assigned.
667 // same stage as the parent.
668 ExtraRegInfo
[Old
].Stage
= RS_Assign
;
669 ExtraRegInfo
.grow(New
);
670 ExtraRegInfo
[New
] = ExtraRegInfo
[Old
];
673 void RAGreedy::releaseMemory() {
674 SpillerInstance
.reset();
675 ExtraRegInfo
.clear();
679 void RAGreedy::enqueue(LiveInterval
*LI
) { enqueue(Queue
, LI
); }
681 void RAGreedy::enqueue(PQueue
&CurQueue
, LiveInterval
*LI
) {
682 // Prioritize live ranges by size, assigning larger ranges first.
683 // The queue holds (size, reg) pairs.
684 const unsigned Size
= LI
->getSize();
685 const unsigned Reg
= LI
->reg
;
686 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
687 "Can only enqueue virtual registers");
690 ExtraRegInfo
.grow(Reg
);
691 if (ExtraRegInfo
[Reg
].Stage
== RS_New
)
692 ExtraRegInfo
[Reg
].Stage
= RS_Assign
;
694 if (ExtraRegInfo
[Reg
].Stage
== RS_Split
) {
695 // Unsplit ranges that couldn't be allocated immediately are deferred until
696 // everything else has been allocated.
698 } else if (ExtraRegInfo
[Reg
].Stage
== RS_Memory
) {
699 // Memory operand should be considered last.
700 // Change the priority such that Memory operand are assigned in
701 // the reverse order that they came in.
702 // TODO: Make this a member variable and probably do something about hints.
703 static unsigned MemOp
= 0;
706 // Giant live ranges fall back to the global assignment heuristic, which
707 // prevents excessive spilling in pathological cases.
708 bool ReverseLocal
= TRI
->reverseLocalAssignment();
709 const TargetRegisterClass
&RC
= *MRI
->getRegClass(Reg
);
710 bool ForceGlobal
= !ReverseLocal
&&
711 (Size
/ SlotIndex::InstrDist
) > (2 * RC
.getNumRegs());
713 if (ExtraRegInfo
[Reg
].Stage
== RS_Assign
&& !ForceGlobal
&& !LI
->empty() &&
714 LIS
->intervalIsInOneMBB(*LI
)) {
715 // Allocate original local ranges in linear instruction order. Since they
716 // are singly defined, this produces optimal coloring in the absence of
717 // global interference and other constraints.
719 Prio
= LI
->beginIndex().getInstrDistance(Indexes
->getLastIndex());
721 // Allocating bottom up may allow many short LRGs to be assigned first
722 // to one of the cheap registers. This could be much faster for very
723 // large blocks on targets with many physical registers.
724 Prio
= Indexes
->getZeroIndex().getInstrDistance(LI
->endIndex());
726 Prio
|= RC
.AllocationPriority
<< 24;
728 // Allocate global and split ranges in long->short order. Long ranges that
729 // don't fit should be spilled (or split) ASAP so they don't create
730 // interference. Mark a bit to prioritize global above local ranges.
731 Prio
= (1u << 29) + Size
;
733 // Mark a higher bit to prioritize global and local above RS_Split.
736 // Boost ranges that have a physical register hint.
737 if (VRM
->hasKnownPreference(Reg
))
740 // The virtual register number is a tie breaker for same-sized ranges.
741 // Give lower vreg numbers higher priority to assign them first.
742 CurQueue
.push(std::make_pair(Prio
, ~Reg
));
745 LiveInterval
*RAGreedy::dequeue() { return dequeue(Queue
); }
747 LiveInterval
*RAGreedy::dequeue(PQueue
&CurQueue
) {
748 if (CurQueue
.empty())
750 LiveInterval
*LI
= &LIS
->getInterval(~CurQueue
.top().second
);
755 //===----------------------------------------------------------------------===//
757 //===----------------------------------------------------------------------===//
759 /// tryAssign - Try to assign VirtReg to an available register.
760 unsigned RAGreedy::tryAssign(LiveInterval
&VirtReg
,
761 AllocationOrder
&Order
,
762 SmallVectorImpl
<unsigned> &NewVRegs
) {
765 while ((PhysReg
= Order
.next()))
766 if (!Matrix
->checkInterference(VirtReg
, PhysReg
))
768 if (!PhysReg
|| Order
.isHint())
771 // PhysReg is available, but there may be a better choice.
773 // If we missed a simple hint, try to cheaply evict interference from the
774 // preferred register.
775 if (unsigned Hint
= MRI
->getSimpleHint(VirtReg
.reg
))
776 if (Order
.isHint(Hint
)) {
777 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint
, TRI
) << '\n');
778 EvictionCost MaxCost
;
779 MaxCost
.setBrokenHints(1);
780 if (canEvictInterference(VirtReg
, Hint
, true, MaxCost
)) {
781 evictInterference(VirtReg
, Hint
, NewVRegs
);
784 // Record the missed hint, we may be able to recover
785 // at the end if the surrounding allocation changed.
786 SetOfBrokenHints
.insert(&VirtReg
);
789 // Try to evict interference from a cheaper alternative.
790 unsigned Cost
= TRI
->getCostPerUse(PhysReg
);
792 // Most registers have 0 additional cost.
796 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << " is available at cost "
798 unsigned CheapReg
= tryEvict(VirtReg
, Order
, NewVRegs
, Cost
);
799 return CheapReg
? CheapReg
: PhysReg
;
802 //===----------------------------------------------------------------------===//
803 // Interference eviction
804 //===----------------------------------------------------------------------===//
806 unsigned RAGreedy::canReassign(LiveInterval
&VirtReg
, unsigned PrevReg
) {
807 AllocationOrder
Order(VirtReg
.reg
, *VRM
, RegClassInfo
, Matrix
);
809 while ((PhysReg
= Order
.next())) {
810 if (PhysReg
== PrevReg
)
813 MCRegUnitIterator
Units(PhysReg
, TRI
);
814 for (; Units
.isValid(); ++Units
) {
815 // Instantiate a "subquery", not to be confused with the Queries array.
816 LiveIntervalUnion::Query
subQ(VirtReg
, Matrix
->getLiveUnions()[*Units
]);
817 if (subQ
.checkInterference())
820 // If no units have interference, break out with the current PhysReg.
821 if (!Units
.isValid())
825 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg
<< " from "
826 << printReg(PrevReg
, TRI
) << " to "
827 << printReg(PhysReg
, TRI
) << '\n');
831 /// shouldEvict - determine if A should evict the assigned live range B. The
832 /// eviction policy defined by this function together with the allocation order
833 /// defined by enqueue() decides which registers ultimately end up being split
836 /// Cascade numbers are used to prevent infinite loops if this function is a
839 /// @param A The live range to be assigned.
840 /// @param IsHint True when A is about to be assigned to its preferred
842 /// @param B The live range to be evicted.
843 /// @param BreaksHint True when B is already assigned to its preferred register.
844 bool RAGreedy::shouldEvict(LiveInterval
&A
, bool IsHint
,
845 LiveInterval
&B
, bool BreaksHint
) {
846 bool CanSplit
= getStage(B
) < RS_Spill
;
848 // Be fairly aggressive about following hints as long as the evictee can be
850 if (CanSplit
&& IsHint
&& !BreaksHint
)
853 if (A
.weight
> B
.weight
) {
854 LLVM_DEBUG(dbgs() << "should evict: " << B
<< " w= " << B
.weight
<< '\n');
860 /// canEvictInterference - Return true if all interferences between VirtReg and
861 /// PhysReg can be evicted.
863 /// @param VirtReg Live range that is about to be assigned.
864 /// @param PhysReg Desired register for assignment.
865 /// @param IsHint True when PhysReg is VirtReg's preferred register.
866 /// @param MaxCost Only look for cheaper candidates and update with new cost
867 /// when returning true.
868 /// @returns True when interference can be evicted cheaper than MaxCost.
869 bool RAGreedy::canEvictInterference(LiveInterval
&VirtReg
, unsigned PhysReg
,
870 bool IsHint
, EvictionCost
&MaxCost
,
871 const SmallVirtRegSet
&FixedRegisters
) {
872 // It is only possible to evict virtual register interference.
873 if (Matrix
->checkInterference(VirtReg
, PhysReg
) > LiveRegMatrix::IK_VirtReg
)
876 bool IsLocal
= LIS
->intervalIsInOneMBB(VirtReg
);
878 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
879 // involved in an eviction before. If a cascade number was assigned, deny
880 // evicting anything with the same or a newer cascade number. This prevents
881 // infinite eviction loops.
883 // This works out so a register without a cascade number is allowed to evict
884 // anything, and it can be evicted by anything.
885 unsigned Cascade
= ExtraRegInfo
[VirtReg
.reg
].Cascade
;
887 Cascade
= NextCascade
;
890 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
891 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
892 // If there is 10 or more interferences, chances are one is heavier.
893 if (Q
.collectInterferingVRegs(10) >= 10)
896 // Check if any interfering live range is heavier than MaxWeight.
897 for (unsigned i
= Q
.interferingVRegs().size(); i
; --i
) {
898 LiveInterval
*Intf
= Q
.interferingVRegs()[i
- 1];
899 assert(TargetRegisterInfo::isVirtualRegister(Intf
->reg
) &&
900 "Only expecting virtual register interference from query");
902 // Do not allow eviction of a virtual register if we are in the middle
903 // of last-chance recoloring and this virtual register is one that we
904 // have scavenged a physical register for.
905 if (FixedRegisters
.count(Intf
->reg
))
908 // Never evict spill products. They cannot split or spill.
909 if (getStage(*Intf
) == RS_Done
)
911 // Once a live range becomes small enough, it is urgent that we find a
912 // register for it. This is indicated by an infinite spill weight. These
913 // urgent live ranges get to evict almost anything.
915 // Also allow urgent evictions of unspillable ranges from a strictly
916 // larger allocation order.
917 bool Urgent
= !VirtReg
.isSpillable() &&
918 (Intf
->isSpillable() ||
919 RegClassInfo
.getNumAllocatableRegs(MRI
->getRegClass(VirtReg
.reg
)) <
920 RegClassInfo
.getNumAllocatableRegs(MRI
->getRegClass(Intf
->reg
)));
921 // Only evict older cascades or live ranges without a cascade.
922 unsigned IntfCascade
= ExtraRegInfo
[Intf
->reg
].Cascade
;
923 if (Cascade
<= IntfCascade
) {
926 // We permit breaking cascades for urgent evictions. It should be the
927 // last resort, though, so make it really expensive.
928 Cost
.BrokenHints
+= 10;
930 // Would this break a satisfied hint?
931 bool BreaksHint
= VRM
->hasPreferredPhys(Intf
->reg
);
932 // Update eviction cost.
933 Cost
.BrokenHints
+= BreaksHint
;
934 Cost
.MaxWeight
= std::max(Cost
.MaxWeight
, Intf
->weight
);
935 // Abort if this would be too expensive.
936 if (!(Cost
< MaxCost
))
940 // Apply the eviction policy for non-urgent evictions.
941 if (!shouldEvict(VirtReg
, IsHint
, *Intf
, BreaksHint
))
943 // If !MaxCost.isMax(), then we're just looking for a cheap register.
944 // Evicting another local live range in this case could lead to suboptimal
946 if (!MaxCost
.isMax() && IsLocal
&& LIS
->intervalIsInOneMBB(*Intf
) &&
947 (!EnableLocalReassign
|| !canReassign(*Intf
, PhysReg
))) {
956 /// Return true if all interferences between VirtReg and PhysReg between
957 /// Start and End can be evicted.
959 /// \param VirtReg Live range that is about to be assigned.
960 /// \param PhysReg Desired register for assignment.
961 /// \param Start Start of range to look for interferences.
962 /// \param End End of range to look for interferences.
963 /// \param MaxCost Only look for cheaper candidates and update with new cost
964 /// when returning true.
965 /// \return True when interference can be evicted cheaper than MaxCost.
966 bool RAGreedy::canEvictInterferenceInRange(LiveInterval
&VirtReg
,
967 unsigned PhysReg
, SlotIndex Start
,
969 EvictionCost
&MaxCost
) {
972 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
973 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
975 // Check if any interfering live range is heavier than MaxWeight.
976 for (unsigned i
= Q
.interferingVRegs().size(); i
; --i
) {
977 LiveInterval
*Intf
= Q
.interferingVRegs()[i
- 1];
979 // Check if interference overlast the segment in interest.
980 if (!Intf
->overlaps(Start
, End
))
983 // Cannot evict non virtual reg interference.
984 if (!TargetRegisterInfo::isVirtualRegister(Intf
->reg
))
986 // Never evict spill products. They cannot split or spill.
987 if (getStage(*Intf
) == RS_Done
)
990 // Would this break a satisfied hint?
991 bool BreaksHint
= VRM
->hasPreferredPhys(Intf
->reg
);
992 // Update eviction cost.
993 Cost
.BrokenHints
+= BreaksHint
;
994 Cost
.MaxWeight
= std::max(Cost
.MaxWeight
, Intf
->weight
);
995 // Abort if this would be too expensive.
996 if (!(Cost
< MaxCost
))
1001 if (Cost
.MaxWeight
== 0)
1008 /// Return the physical register that will be best
1009 /// candidate for eviction by a local split interval that will be created
1010 /// between Start and End.
1012 /// \param Order The allocation order
1013 /// \param VirtReg Live range that is about to be assigned.
1014 /// \param Start Start of range to look for interferences
1015 /// \param End End of range to look for interferences
1016 /// \param BestEvictweight The eviction cost of that eviction
1017 /// \return The PhysReg which is the best candidate for eviction and the
1018 /// eviction cost in BestEvictweight
1019 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder
&Order
,
1020 LiveInterval
&VirtReg
,
1021 SlotIndex Start
, SlotIndex End
,
1022 float *BestEvictweight
) {
1023 EvictionCost BestEvictCost
;
1024 BestEvictCost
.setMax();
1025 BestEvictCost
.MaxWeight
= VirtReg
.weight
;
1026 unsigned BestEvicteePhys
= 0;
1028 // Go over all physical registers and find the best candidate for eviction
1029 for (auto PhysReg
: Order
.getOrder()) {
1031 if (!canEvictInterferenceInRange(VirtReg
, PhysReg
, Start
, End
,
1036 BestEvicteePhys
= PhysReg
;
1038 *BestEvictweight
= BestEvictCost
.MaxWeight
;
1039 return BestEvicteePhys
;
1042 /// evictInterference - Evict any interferring registers that prevent VirtReg
1043 /// from being assigned to Physreg. This assumes that canEvictInterference
1045 void RAGreedy::evictInterference(LiveInterval
&VirtReg
, unsigned PhysReg
,
1046 SmallVectorImpl
<unsigned> &NewVRegs
) {
1047 // Make sure that VirtReg has a cascade number, and assign that cascade
1048 // number to every evicted register. These live ranges than then only be
1049 // evicted by a newer cascade, preventing infinite loops.
1050 unsigned Cascade
= ExtraRegInfo
[VirtReg
.reg
].Cascade
;
1052 Cascade
= ExtraRegInfo
[VirtReg
.reg
].Cascade
= NextCascade
++;
1054 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg
, TRI
)
1055 << " interference: Cascade " << Cascade
<< '\n');
1057 // Collect all interfering virtregs first.
1058 SmallVector
<LiveInterval
*, 8> Intfs
;
1059 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
1060 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
1061 // We usually have the interfering VRegs cached so collectInterferingVRegs()
1062 // should be fast, we may need to recalculate if when different physregs
1063 // overlap the same register unit so we had different SubRanges queried
1065 Q
.collectInterferingVRegs();
1066 ArrayRef
<LiveInterval
*> IVR
= Q
.interferingVRegs();
1067 Intfs
.append(IVR
.begin(), IVR
.end());
1070 // Evict them second. This will invalidate the queries.
1071 for (unsigned i
= 0, e
= Intfs
.size(); i
!= e
; ++i
) {
1072 LiveInterval
*Intf
= Intfs
[i
];
1073 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1074 if (!VRM
->hasPhys(Intf
->reg
))
1077 LastEvicted
.addEviction(PhysReg
, VirtReg
.reg
, Intf
->reg
);
1079 Matrix
->unassign(*Intf
);
1080 assert((ExtraRegInfo
[Intf
->reg
].Cascade
< Cascade
||
1081 VirtReg
.isSpillable() < Intf
->isSpillable()) &&
1082 "Cannot decrease cascade number, illegal eviction");
1083 ExtraRegInfo
[Intf
->reg
].Cascade
= Cascade
;
1085 NewVRegs
.push_back(Intf
->reg
);
1089 /// Returns true if the given \p PhysReg is a callee saved register and has not
1090 /// been used for allocation yet.
1091 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg
) const {
1092 unsigned CSR
= RegClassInfo
.getLastCalleeSavedAlias(PhysReg
);
1096 return !Matrix
->isPhysRegUsed(PhysReg
);
1099 /// tryEvict - Try to evict all interferences for a physreg.
1100 /// @param VirtReg Currently unassigned virtual register.
1101 /// @param Order Physregs to try.
1102 /// @return Physreg to assign VirtReg, or 0.
1103 unsigned RAGreedy::tryEvict(LiveInterval
&VirtReg
,
1104 AllocationOrder
&Order
,
1105 SmallVectorImpl
<unsigned> &NewVRegs
,
1106 unsigned CostPerUseLimit
,
1107 const SmallVirtRegSet
&FixedRegisters
) {
1108 NamedRegionTimer
T("evict", "Evict", TimerGroupName
, TimerGroupDescription
,
1109 TimePassesIsEnabled
);
1111 // Keep track of the cheapest interference seen so far.
1112 EvictionCost BestCost
;
1114 unsigned BestPhys
= 0;
1115 unsigned OrderLimit
= Order
.getOrder().size();
1117 // When we are just looking for a reduced cost per use, don't break any
1118 // hints, and only evict smaller spill weights.
1119 if (CostPerUseLimit
< ~0u) {
1120 BestCost
.BrokenHints
= 0;
1121 BestCost
.MaxWeight
= VirtReg
.weight
;
1123 // Check of any registers in RC are below CostPerUseLimit.
1124 const TargetRegisterClass
*RC
= MRI
->getRegClass(VirtReg
.reg
);
1125 unsigned MinCost
= RegClassInfo
.getMinCost(RC
);
1126 if (MinCost
>= CostPerUseLimit
) {
1127 LLVM_DEBUG(dbgs() << TRI
->getRegClassName(RC
) << " minimum cost = "
1128 << MinCost
<< ", no cheaper registers to be found.\n");
1132 // It is normal for register classes to have a long tail of registers with
1133 // the same cost. We don't need to look at them if they're too expensive.
1134 if (TRI
->getCostPerUse(Order
.getOrder().back()) >= CostPerUseLimit
) {
1135 OrderLimit
= RegClassInfo
.getLastCostChange(RC
);
1136 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1142 while (unsigned PhysReg
= Order
.next(OrderLimit
)) {
1143 if (TRI
->getCostPerUse(PhysReg
) >= CostPerUseLimit
)
1145 // The first use of a callee-saved register in a function has cost 1.
1146 // Don't start using a CSR when the CostPerUseLimit is low.
1147 if (CostPerUseLimit
== 1 && isUnusedCalleeSavedReg(PhysReg
)) {
1149 dbgs() << printReg(PhysReg
, TRI
) << " would clobber CSR "
1150 << printReg(RegClassInfo
.getLastCalleeSavedAlias(PhysReg
), TRI
)
1155 if (!canEvictInterference(VirtReg
, PhysReg
, false, BestCost
,
1162 // Stop if the hint can be used.
1170 evictInterference(VirtReg
, BestPhys
, NewVRegs
);
1174 //===----------------------------------------------------------------------===//
1176 //===----------------------------------------------------------------------===//
1178 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1179 /// interference pattern in Physreg and its aliases. Add the constraints to
1180 /// SpillPlacement and return the static cost of this split in Cost, assuming
1181 /// that all preferences in SplitConstraints are met.
1182 /// Return false if there are no bundles with positive bias.
1183 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf
,
1184 BlockFrequency
&Cost
) {
1185 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1187 // Reset interference dependent info.
1188 SplitConstraints
.resize(UseBlocks
.size());
1189 BlockFrequency StaticCost
= 0;
1190 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1191 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1192 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[i
];
1194 BC
.Number
= BI
.MBB
->getNumber();
1195 Intf
.moveToBlock(BC
.Number
);
1196 BC
.Entry
= BI
.LiveIn
? SpillPlacement::PrefReg
: SpillPlacement::DontCare
;
1197 BC
.Exit
= (BI
.LiveOut
&&
1198 !LIS
->getInstructionFromIndex(BI
.LastInstr
)->isImplicitDef())
1199 ? SpillPlacement::PrefReg
1200 : SpillPlacement::DontCare
;
1201 BC
.ChangesValue
= BI
.FirstDef
.isValid();
1203 if (!Intf
.hasInterference())
1206 // Number of spill code instructions to insert.
1209 // Interference for the live-in value.
1211 if (Intf
.first() <= Indexes
->getMBBStartIdx(BC
.Number
)) {
1212 BC
.Entry
= SpillPlacement::MustSpill
;
1214 } else if (Intf
.first() < BI
.FirstInstr
) {
1215 BC
.Entry
= SpillPlacement::PrefSpill
;
1217 } else if (Intf
.first() < BI
.LastInstr
) {
1221 // Abort if the spill cannot be inserted at the MBB' start
1222 if (((BC
.Entry
== SpillPlacement::MustSpill
) ||
1223 (BC
.Entry
== SpillPlacement::PrefSpill
)) &&
1224 SlotIndex::isEarlierInstr(BI
.FirstInstr
,
1225 SA
->getFirstSplitPoint(BC
.Number
)))
1229 // Interference for the live-out value.
1231 if (Intf
.last() >= SA
->getLastSplitPoint(BC
.Number
)) {
1232 BC
.Exit
= SpillPlacement::MustSpill
;
1234 } else if (Intf
.last() > BI
.LastInstr
) {
1235 BC
.Exit
= SpillPlacement::PrefSpill
;
1237 } else if (Intf
.last() > BI
.FirstInstr
) {
1242 // Accumulate the total frequency of inserted spill code.
1244 StaticCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1248 // Add constraints for use-blocks. Note that these are the only constraints
1249 // that may add a positive bias, it is downhill from here.
1250 SpillPlacer
->addConstraints(SplitConstraints
);
1251 return SpillPlacer
->scanActiveBundles();
1254 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1255 /// live-through blocks in Blocks.
1256 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf
,
1257 ArrayRef
<unsigned> Blocks
) {
1258 const unsigned GroupSize
= 8;
1259 SpillPlacement::BlockConstraint BCS
[GroupSize
];
1260 unsigned TBS
[GroupSize
];
1261 unsigned B
= 0, T
= 0;
1263 for (unsigned i
= 0; i
!= Blocks
.size(); ++i
) {
1264 unsigned Number
= Blocks
[i
];
1265 Intf
.moveToBlock(Number
);
1267 if (!Intf
.hasInterference()) {
1268 assert(T
< GroupSize
&& "Array overflow");
1270 if (++T
== GroupSize
) {
1271 SpillPlacer
->addLinks(makeArrayRef(TBS
, T
));
1277 assert(B
< GroupSize
&& "Array overflow");
1278 BCS
[B
].Number
= Number
;
1280 // Abort if the spill cannot be inserted at the MBB' start
1281 MachineBasicBlock
*MBB
= MF
->getBlockNumbered(Number
);
1282 if (!MBB
->empty() &&
1283 SlotIndex::isEarlierInstr(LIS
->getInstructionIndex(MBB
->instr_front()),
1284 SA
->getFirstSplitPoint(Number
)))
1286 // Interference for the live-in value.
1287 if (Intf
.first() <= Indexes
->getMBBStartIdx(Number
))
1288 BCS
[B
].Entry
= SpillPlacement::MustSpill
;
1290 BCS
[B
].Entry
= SpillPlacement::PrefSpill
;
1292 // Interference for the live-out value.
1293 if (Intf
.last() >= SA
->getLastSplitPoint(Number
))
1294 BCS
[B
].Exit
= SpillPlacement::MustSpill
;
1296 BCS
[B
].Exit
= SpillPlacement::PrefSpill
;
1298 if (++B
== GroupSize
) {
1299 SpillPlacer
->addConstraints(makeArrayRef(BCS
, B
));
1304 SpillPlacer
->addConstraints(makeArrayRef(BCS
, B
));
1305 SpillPlacer
->addLinks(makeArrayRef(TBS
, T
));
1309 bool RAGreedy::growRegion(GlobalSplitCandidate
&Cand
) {
1310 // Keep track of through blocks that have not been added to SpillPlacer.
1311 BitVector Todo
= SA
->getThroughBlocks();
1312 SmallVectorImpl
<unsigned> &ActiveBlocks
= Cand
.ActiveBlocks
;
1313 unsigned AddedTo
= 0;
1315 unsigned Visited
= 0;
1319 ArrayRef
<unsigned> NewBundles
= SpillPlacer
->getRecentPositive();
1320 // Find new through blocks in the periphery of PrefRegBundles.
1321 for (int i
= 0, e
= NewBundles
.size(); i
!= e
; ++i
) {
1322 unsigned Bundle
= NewBundles
[i
];
1323 // Look at all blocks connected to Bundle in the full graph.
1324 ArrayRef
<unsigned> Blocks
= Bundles
->getBlocks(Bundle
);
1325 for (ArrayRef
<unsigned>::iterator I
= Blocks
.begin(), E
= Blocks
.end();
1327 unsigned Block
= *I
;
1328 if (!Todo
.test(Block
))
1331 // This is a new through block. Add it to SpillPlacer later.
1332 ActiveBlocks
.push_back(Block
);
1338 // Any new blocks to add?
1339 if (ActiveBlocks
.size() == AddedTo
)
1342 // Compute through constraints from the interference, or assume that all
1343 // through blocks prefer spilling when forming compact regions.
1344 auto NewBlocks
= makeArrayRef(ActiveBlocks
).slice(AddedTo
);
1346 if (!addThroughConstraints(Cand
.Intf
, NewBlocks
))
1349 // Provide a strong negative bias on through blocks to prevent unwanted
1350 // liveness on loop backedges.
1351 SpillPlacer
->addPrefSpill(NewBlocks
, /* Strong= */ true);
1352 AddedTo
= ActiveBlocks
.size();
1354 // Perhaps iterating can enable more bundles?
1355 SpillPlacer
->iterate();
1357 LLVM_DEBUG(dbgs() << ", v=" << Visited
);
1361 /// calcCompactRegion - Compute the set of edge bundles that should be live
1362 /// when splitting the current live range into compact regions. Compact
1363 /// regions can be computed without looking at interference. They are the
1364 /// regions formed by removing all the live-through blocks from the live range.
1366 /// Returns false if the current live range is already compact, or if the
1367 /// compact regions would form single block regions anyway.
1368 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate
&Cand
) {
1369 // Without any through blocks, the live range is already compact.
1370 if (!SA
->getNumThroughBlocks())
1373 // Compact regions don't correspond to any physreg.
1374 Cand
.reset(IntfCache
, 0);
1376 LLVM_DEBUG(dbgs() << "Compact region bundles");
1378 // Use the spill placer to determine the live bundles. GrowRegion pretends
1379 // that all the through blocks have interference when PhysReg is unset.
1380 SpillPlacer
->prepare(Cand
.LiveBundles
);
1382 // The static split cost will be zero since Cand.Intf reports no interference.
1383 BlockFrequency Cost
;
1384 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
1385 LLVM_DEBUG(dbgs() << ", none.\n");
1389 if (!growRegion(Cand
)) {
1390 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1394 SpillPlacer
->finish();
1396 if (!Cand
.LiveBundles
.any()) {
1397 LLVM_DEBUG(dbgs() << ", none.\n");
1402 for (int i
: Cand
.LiveBundles
.set_bits())
1403 dbgs() << " EB#" << i
;
1409 /// calcSpillCost - Compute how expensive it would be to split the live range in
1410 /// SA around all use blocks instead of forming bundle regions.
1411 BlockFrequency
RAGreedy::calcSpillCost() {
1412 BlockFrequency Cost
= 0;
1413 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1414 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1415 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1416 unsigned Number
= BI
.MBB
->getNumber();
1417 // We normally only need one spill instruction - a load or a store.
1418 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
1420 // Unless the value is redefined in the block.
1421 if (BI
.LiveIn
&& BI
.LiveOut
&& BI
.FirstDef
)
1422 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
1427 /// Check if splitting Evictee will create a local split interval in
1428 /// basic block number BBNumber that may cause a bad eviction chain. This is
1429 /// intended to prevent bad eviction sequences like:
1430 /// movl %ebp, 8(%esp) # 4-byte Spill
1441 /// movl 16(%esp), %ebp # 4 - byte Reload
1443 /// Such sequences are created in 2 scenarios:
1446 /// %0 is evicted from physreg0 by %1.
1447 /// Evictee %0 is intended for region splitting with split candidate
1448 /// physreg0 (the reg %0 was evicted from).
1449 /// Region splitting creates a local interval because of interference with the
1450 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1451 /// and "by stack" intervals and local interval created when interference
1453 /// One of the split intervals ends up evicting %2 from physreg1.
1454 /// Evictee %2 is intended for region splitting with split candidate
1456 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1459 /// %0 is evicted from physreg0 by %1.
1460 /// %2 is evicted from physreg2 by %3 etc.
1461 /// Evictee %0 is intended for region splitting with split candidate
1463 /// Region splitting creates a local interval because of interference with the
1465 /// One of the split intervals ends up evicting back original evictor %1
1466 /// from physreg0 (the reg %0 was evicted from).
1467 /// Another evictee %2 is intended for region splitting with split candidate
1469 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1471 /// \param Evictee The register considered to be split.
1472 /// \param Cand The split candidate that determines the physical register
1473 /// we are splitting for and the interferences.
1474 /// \param BBNumber The number of a BB for which the region split process will
1475 /// create a local split interval.
1476 /// \param Order The physical registers that may get evicted by a split
1477 /// artifact of Evictee.
1478 /// \return True if splitting Evictee may cause a bad eviction chain, false
1480 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee
,
1481 GlobalSplitCandidate
&Cand
,
1483 const AllocationOrder
&Order
) {
1484 EvictionTrack::EvictorInfo VregEvictorInfo
= LastEvicted
.getEvictor(Evictee
);
1485 unsigned Evictor
= VregEvictorInfo
.first
;
1486 unsigned PhysReg
= VregEvictorInfo
.second
;
1488 // No actual evictor.
1489 if (!Evictor
|| !PhysReg
)
1492 float MaxWeight
= 0;
1493 unsigned FutureEvictedPhysReg
=
1494 getCheapestEvicteeWeight(Order
, LIS
->getInterval(Evictee
),
1495 Cand
.Intf
.first(), Cand
.Intf
.last(), &MaxWeight
);
1497 // The bad eviction chain occurs when either the split candidate is the
1498 // evicting reg or one of the split artifact will evict the evicting reg.
1499 if ((PhysReg
!= Cand
.PhysReg
) && (PhysReg
!= FutureEvictedPhysReg
))
1502 Cand
.Intf
.moveToBlock(BBNumber
);
1504 // Check to see if the Evictor contains interference (with Evictee) in the
1505 // given BB. If so, this interference caused the eviction of Evictee from
1506 // PhysReg. This suggest that we will create a local interval during the
1507 // region split to avoid this interference This local interval may cause a bad
1509 if (!LIS
->hasInterval(Evictor
))
1511 LiveInterval
&EvictorLI
= LIS
->getInterval(Evictor
);
1512 if (EvictorLI
.FindSegmentContaining(Cand
.Intf
.first()) == EvictorLI
.end())
1515 // Now, check to see if the local interval we will create is going to be
1516 // expensive enough to evict somebody If so, this may cause a bad eviction
1518 VirtRegAuxInfo
VRAI(*MF
, *LIS
, VRM
, getAnalysis
<MachineLoopInfo
>(), *MBFI
);
1519 float splitArtifactWeight
=
1520 VRAI
.futureWeight(LIS
->getInterval(Evictee
),
1521 Cand
.Intf
.first().getPrevIndex(), Cand
.Intf
.last());
1522 if (splitArtifactWeight
>= 0 && splitArtifactWeight
< MaxWeight
)
1528 /// Check if splitting VirtRegToSplit will create a local split interval
1529 /// in basic block number BBNumber that may cause a spill.
1531 /// \param VirtRegToSplit The register considered to be split.
1532 /// \param Cand The split candidate that determines the physical
1533 /// register we are splitting for and the interferences.
1534 /// \param BBNumber The number of a BB for which the region split process
1535 /// will create a local split interval.
1536 /// \param Order The physical registers that may get evicted by a
1537 /// split artifact of VirtRegToSplit.
1538 /// \return True if splitting VirtRegToSplit may cause a spill, false
1540 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit
,
1541 GlobalSplitCandidate
&Cand
,
1543 const AllocationOrder
&Order
) {
1544 Cand
.Intf
.moveToBlock(BBNumber
);
1546 // Check if the local interval will find a non interfereing assignment.
1547 for (auto PhysReg
: Order
.getOrder()) {
1548 if (!Matrix
->checkInterference(Cand
.Intf
.first().getPrevIndex(),
1549 Cand
.Intf
.last(), PhysReg
))
1553 // Check if the local interval will evict a cheaper interval.
1554 float CheapestEvictWeight
= 0;
1555 unsigned FutureEvictedPhysReg
= getCheapestEvicteeWeight(
1556 Order
, LIS
->getInterval(VirtRegToSplit
), Cand
.Intf
.first(),
1557 Cand
.Intf
.last(), &CheapestEvictWeight
);
1559 // Have we found an interval that can be evicted?
1560 if (FutureEvictedPhysReg
) {
1561 VirtRegAuxInfo
VRAI(*MF
, *LIS
, VRM
, getAnalysis
<MachineLoopInfo
>(), *MBFI
);
1562 float splitArtifactWeight
=
1563 VRAI
.futureWeight(LIS
->getInterval(VirtRegToSplit
),
1564 Cand
.Intf
.first().getPrevIndex(), Cand
.Intf
.last());
1565 // Will the weight of the local interval be higher than the cheapest evictee
1566 // weight? If so it will evict it and will not cause a spill.
1567 if (splitArtifactWeight
>= 0 && splitArtifactWeight
> CheapestEvictWeight
)
1571 // The local interval is not able to find non interferencing assignment and
1572 // not able to evict a less worthy interval, therfore, it can cause a spill.
1576 /// calcGlobalSplitCost - Return the global split cost of following the split
1577 /// pattern in LiveBundles. This cost should be added to the local cost of the
1578 /// interference pattern in SplitConstraints.
1580 BlockFrequency
RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate
&Cand
,
1581 const AllocationOrder
&Order
,
1582 bool *CanCauseEvictionChain
) {
1583 BlockFrequency GlobalCost
= 0;
1584 const BitVector
&LiveBundles
= Cand
.LiveBundles
;
1585 unsigned VirtRegToSplit
= SA
->getParent().reg
;
1586 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1587 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1588 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1589 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[i
];
1590 bool RegIn
= LiveBundles
[Bundles
->getBundle(BC
.Number
, false)];
1591 bool RegOut
= LiveBundles
[Bundles
->getBundle(BC
.Number
, true)];
1594 Cand
.Intf
.moveToBlock(BC
.Number
);
1595 // Check wheather a local interval is going to be created during the region
1596 // split. Calculate adavanced spilt cost (cost of local intervals) if option
1598 if (EnableAdvancedRASplitCost
&& Cand
.Intf
.hasInterference() && BI
.LiveIn
&&
1599 BI
.LiveOut
&& RegIn
&& RegOut
) {
1601 if (CanCauseEvictionChain
&&
1602 splitCanCauseEvictionChain(VirtRegToSplit
, Cand
, BC
.Number
, Order
)) {
1603 // This interference causes our eviction from this assignment, we might
1604 // evict somebody else and eventually someone will spill, add that cost.
1605 // See splitCanCauseEvictionChain for detailed description of scenarios.
1606 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1607 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1609 *CanCauseEvictionChain
= true;
1611 } else if (splitCanCauseLocalSpill(VirtRegToSplit
, Cand
, BC
.Number
,
1613 // This interference causes local interval to spill, add that cost.
1614 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1615 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1620 Ins
+= RegIn
!= (BC
.Entry
== SpillPlacement::PrefReg
);
1622 Ins
+= RegOut
!= (BC
.Exit
== SpillPlacement::PrefReg
);
1624 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1627 for (unsigned i
= 0, e
= Cand
.ActiveBlocks
.size(); i
!= e
; ++i
) {
1628 unsigned Number
= Cand
.ActiveBlocks
[i
];
1629 bool RegIn
= LiveBundles
[Bundles
->getBundle(Number
, false)];
1630 bool RegOut
= LiveBundles
[Bundles
->getBundle(Number
, true)];
1631 if (!RegIn
&& !RegOut
)
1633 if (RegIn
&& RegOut
) {
1634 // We need double spill code if this block has interference.
1635 Cand
.Intf
.moveToBlock(Number
);
1636 if (Cand
.Intf
.hasInterference()) {
1637 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1638 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1640 // Check wheather a local interval is going to be created during the
1642 if (EnableAdvancedRASplitCost
&& CanCauseEvictionChain
&&
1643 splitCanCauseEvictionChain(VirtRegToSplit
, Cand
, Number
, Order
)) {
1644 // This interference cause our eviction from this assignment, we might
1645 // evict somebody else, add that cost.
1646 // See splitCanCauseEvictionChain for detailed description of
1648 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1649 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1651 *CanCauseEvictionChain
= true;
1656 // live-in / stack-out or stack-in live-out.
1657 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1662 /// splitAroundRegion - Split the current live range around the regions
1663 /// determined by BundleCand and GlobalCand.
1665 /// Before calling this function, GlobalCand and BundleCand must be initialized
1666 /// so each bundle is assigned to a valid candidate, or NoCand for the
1667 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1668 /// objects must be initialized for the current live range, and intervals
1669 /// created for the used candidates.
1671 /// @param LREdit The LiveRangeEdit object handling the current split.
1672 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1673 /// must appear in this list.
1674 void RAGreedy::splitAroundRegion(LiveRangeEdit
&LREdit
,
1675 ArrayRef
<unsigned> UsedCands
) {
1676 // These are the intervals created for new global ranges. We may create more
1677 // intervals for local ranges.
1678 const unsigned NumGlobalIntvs
= LREdit
.size();
1679 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1681 assert(NumGlobalIntvs
&& "No global intervals configured");
1683 // Isolate even single instructions when dealing with a proper sub-class.
1684 // That guarantees register class inflation for the stack interval because it
1686 unsigned Reg
= SA
->getParent().reg
;
1687 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
1689 // First handle all the blocks with uses.
1690 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1691 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1692 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1693 unsigned Number
= BI
.MBB
->getNumber();
1694 unsigned IntvIn
= 0, IntvOut
= 0;
1695 SlotIndex IntfIn
, IntfOut
;
1697 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
1698 if (CandIn
!= NoCand
) {
1699 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
1700 IntvIn
= Cand
.IntvIdx
;
1701 Cand
.Intf
.moveToBlock(Number
);
1702 IntfIn
= Cand
.Intf
.first();
1706 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
1707 if (CandOut
!= NoCand
) {
1708 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
1709 IntvOut
= Cand
.IntvIdx
;
1710 Cand
.Intf
.moveToBlock(Number
);
1711 IntfOut
= Cand
.Intf
.last();
1715 // Create separate intervals for isolated blocks with multiple uses.
1716 if (!IntvIn
&& !IntvOut
) {
1717 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " isolated.\n");
1718 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
1719 SE
->splitSingleBlock(BI
);
1723 if (IntvIn
&& IntvOut
)
1724 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
1726 SE
->splitRegInBlock(BI
, IntvIn
, IntfIn
);
1728 SE
->splitRegOutBlock(BI
, IntvOut
, IntfOut
);
1731 // Handle live-through blocks. The relevant live-through blocks are stored in
1732 // the ActiveBlocks list with each candidate. We need to filter out
1734 BitVector Todo
= SA
->getThroughBlocks();
1735 for (unsigned c
= 0; c
!= UsedCands
.size(); ++c
) {
1736 ArrayRef
<unsigned> Blocks
= GlobalCand
[UsedCands
[c
]].ActiveBlocks
;
1737 for (unsigned i
= 0, e
= Blocks
.size(); i
!= e
; ++i
) {
1738 unsigned Number
= Blocks
[i
];
1739 if (!Todo
.test(Number
))
1743 unsigned IntvIn
= 0, IntvOut
= 0;
1744 SlotIndex IntfIn
, IntfOut
;
1746 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
1747 if (CandIn
!= NoCand
) {
1748 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
1749 IntvIn
= Cand
.IntvIdx
;
1750 Cand
.Intf
.moveToBlock(Number
);
1751 IntfIn
= Cand
.Intf
.first();
1754 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
1755 if (CandOut
!= NoCand
) {
1756 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
1757 IntvOut
= Cand
.IntvIdx
;
1758 Cand
.Intf
.moveToBlock(Number
);
1759 IntfOut
= Cand
.Intf
.last();
1761 if (!IntvIn
&& !IntvOut
)
1763 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
1769 SmallVector
<unsigned, 8> IntvMap
;
1770 SE
->finish(&IntvMap
);
1771 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
1773 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
1774 unsigned OrigBlocks
= SA
->getNumLiveBlocks();
1776 // Sort out the new intervals created by splitting. We get four kinds:
1777 // - Remainder intervals should not be split again.
1778 // - Candidate intervals can be assigned to Cand.PhysReg.
1779 // - Block-local splits are candidates for local splitting.
1780 // - DCE leftovers should go back on the queue.
1781 for (unsigned i
= 0, e
= LREdit
.size(); i
!= e
; ++i
) {
1782 LiveInterval
&Reg
= LIS
->getInterval(LREdit
.get(i
));
1784 // Ignore old intervals from DCE.
1785 if (getStage(Reg
) != RS_New
)
1788 // Remainder interval. Don't try splitting again, spill if it doesn't
1790 if (IntvMap
[i
] == 0) {
1791 setStage(Reg
, RS_Spill
);
1795 // Global intervals. Allow repeated splitting as long as the number of live
1796 // blocks is strictly decreasing.
1797 if (IntvMap
[i
] < NumGlobalIntvs
) {
1798 if (SA
->countLiveBlocks(&Reg
) >= OrigBlocks
) {
1799 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1800 << " blocks as original.\n");
1801 // Don't allow repeated splitting as a safe guard against looping.
1802 setStage(Reg
, RS_Split2
);
1807 // Other intervals are treated as new. This includes local intervals created
1808 // for blocks with multiple uses, and anything created by DCE.
1812 MF
->verify(this, "After splitting live range around region");
1815 // Global split has high compile time cost especially for large live range.
1816 // Return false for the case here where the potential benefit will never
1818 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval
&VirtReg
) {
1819 MachineInstr
*MI
= MRI
->getUniqueVRegDef(VirtReg
.reg
);
1820 if (MI
&& TII
->isTriviallyReMaterializable(*MI
, AA
) &&
1821 VirtReg
.size() > HugeSizeForSplit
)
1826 unsigned RAGreedy::tryRegionSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
1827 SmallVectorImpl
<unsigned> &NewVRegs
) {
1828 if (!isSplitBenefitWorthCost(VirtReg
))
1830 unsigned NumCands
= 0;
1831 BlockFrequency SpillCost
= calcSpillCost();
1832 BlockFrequency BestCost
;
1834 // Check if we can split this live range around a compact region.
1835 bool HasCompact
= calcCompactRegion(GlobalCand
.front());
1837 // Yes, keep GlobalCand[0] as the compact region candidate.
1839 BestCost
= BlockFrequency::getMaxFrequency();
1841 // No benefit from the compact region, our fallback will be per-block
1842 // splitting. Make sure we find a solution that is cheaper than spilling.
1843 BestCost
= SpillCost
;
1844 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1845 MBFI
->printBlockFreq(dbgs(), BestCost
) << '\n');
1848 bool CanCauseEvictionChain
= false;
1850 calculateRegionSplitCost(VirtReg
, Order
, BestCost
, NumCands
,
1851 false /*IgnoreCSR*/, &CanCauseEvictionChain
);
1853 // Split candidates with compact regions can cause a bad eviction sequence.
1854 // See splitCanCauseEvictionChain for detailed description of scenarios.
1855 // To avoid it, we need to comapre the cost with the spill cost and not the
1856 // current max frequency.
1857 if (HasCompact
&& (BestCost
> SpillCost
) && (BestCand
!= NoCand
) &&
1858 CanCauseEvictionChain
) {
1862 // No solutions found, fall back to single block splitting.
1863 if (!HasCompact
&& BestCand
== NoCand
)
1866 return doRegionSplit(VirtReg
, BestCand
, HasCompact
, NewVRegs
);
1869 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval
&VirtReg
,
1870 AllocationOrder
&Order
,
1871 BlockFrequency
&BestCost
,
1872 unsigned &NumCands
, bool IgnoreCSR
,
1873 bool *CanCauseEvictionChain
) {
1874 unsigned BestCand
= NoCand
;
1876 while (unsigned PhysReg
= Order
.next()) {
1877 if (IgnoreCSR
&& isUnusedCalleeSavedReg(PhysReg
))
1880 // Discard bad candidates before we run out of interference cache cursors.
1881 // This will only affect register classes with a lot of registers (>32).
1882 if (NumCands
== IntfCache
.getMaxCursors()) {
1883 unsigned WorstCount
= ~0u;
1885 for (unsigned i
= 0; i
!= NumCands
; ++i
) {
1886 if (i
== BestCand
|| !GlobalCand
[i
].PhysReg
)
1888 unsigned Count
= GlobalCand
[i
].LiveBundles
.count();
1889 if (Count
< WorstCount
) {
1895 GlobalCand
[Worst
] = GlobalCand
[NumCands
];
1896 if (BestCand
== NumCands
)
1900 if (GlobalCand
.size() <= NumCands
)
1901 GlobalCand
.resize(NumCands
+1);
1902 GlobalSplitCandidate
&Cand
= GlobalCand
[NumCands
];
1903 Cand
.reset(IntfCache
, PhysReg
);
1905 SpillPlacer
->prepare(Cand
.LiveBundles
);
1906 BlockFrequency Cost
;
1907 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
1908 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tno positive bundles\n");
1911 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tstatic = ";
1912 MBFI
->printBlockFreq(dbgs(), Cost
));
1913 if (Cost
>= BestCost
) {
1915 if (BestCand
== NoCand
)
1916 dbgs() << " worse than no bundles\n";
1918 dbgs() << " worse than "
1919 << printReg(GlobalCand
[BestCand
].PhysReg
, TRI
) << '\n';
1923 if (!growRegion(Cand
)) {
1924 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1928 SpillPlacer
->finish();
1930 // No live bundles, defer to splitSingleBlocks().
1931 if (!Cand
.LiveBundles
.any()) {
1932 LLVM_DEBUG(dbgs() << " no bundles.\n");
1936 bool HasEvictionChain
= false;
1937 Cost
+= calcGlobalSplitCost(Cand
, Order
, &HasEvictionChain
);
1939 dbgs() << ", total = ";
1940 MBFI
->printBlockFreq(dbgs(), Cost
) << " with bundles";
1941 for (int i
: Cand
.LiveBundles
.set_bits())
1942 dbgs() << " EB#" << i
;
1945 if (Cost
< BestCost
) {
1946 BestCand
= NumCands
;
1948 // See splitCanCauseEvictionChain for detailed description of bad
1949 // eviction chain scenarios.
1950 if (CanCauseEvictionChain
)
1951 *CanCauseEvictionChain
= HasEvictionChain
;
1956 if (CanCauseEvictionChain
&& BestCand
!= NoCand
) {
1957 // See splitCanCauseEvictionChain for detailed description of bad
1958 // eviction chain scenarios.
1959 LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1960 << printReg(VirtReg
.reg
, TRI
) << " may ");
1961 if (!(*CanCauseEvictionChain
))
1962 LLVM_DEBUG(dbgs() << "not ");
1963 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1969 unsigned RAGreedy::doRegionSplit(LiveInterval
&VirtReg
, unsigned BestCand
,
1971 SmallVectorImpl
<unsigned> &NewVRegs
) {
1972 SmallVector
<unsigned, 8> UsedCands
;
1973 // Prepare split editor.
1974 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1975 SE
->reset(LREdit
, SplitSpillMode
);
1977 // Assign all edge bundles to the preferred candidate, or NoCand.
1978 BundleCand
.assign(Bundles
->getNumBundles(), NoCand
);
1980 // Assign bundles for the best candidate region.
1981 if (BestCand
!= NoCand
) {
1982 GlobalSplitCandidate
&Cand
= GlobalCand
[BestCand
];
1983 if (unsigned B
= Cand
.getBundles(BundleCand
, BestCand
)) {
1984 UsedCands
.push_back(BestCand
);
1985 Cand
.IntvIdx
= SE
->openIntv();
1986 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand
.PhysReg
, TRI
) << " in "
1987 << B
<< " bundles, intv " << Cand
.IntvIdx
<< ".\n");
1992 // Assign bundles for the compact region.
1994 GlobalSplitCandidate
&Cand
= GlobalCand
.front();
1995 assert(!Cand
.PhysReg
&& "Compact region has no physreg");
1996 if (unsigned B
= Cand
.getBundles(BundleCand
, 0)) {
1997 UsedCands
.push_back(0);
1998 Cand
.IntvIdx
= SE
->openIntv();
1999 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2000 << " bundles, intv " << Cand
.IntvIdx
<< ".\n");
2005 splitAroundRegion(LREdit
, UsedCands
);
2009 //===----------------------------------------------------------------------===//
2010 // Per-Block Splitting
2011 //===----------------------------------------------------------------------===//
2013 /// tryBlockSplit - Split a global live range around every block with uses. This
2014 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2015 /// they don't allocate.
2016 unsigned RAGreedy::tryBlockSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2017 SmallVectorImpl
<unsigned> &NewVRegs
) {
2018 assert(&SA
->getParent() == &VirtReg
&& "Live range wasn't analyzed");
2019 unsigned Reg
= VirtReg
.reg
;
2020 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
2021 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2022 SE
->reset(LREdit
, SplitSpillMode
);
2023 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
2024 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
2025 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
2026 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
2027 SE
->splitSingleBlock(BI
);
2029 // No blocks were split.
2033 // We did split for some blocks.
2034 SmallVector
<unsigned, 8> IntvMap
;
2035 SE
->finish(&IntvMap
);
2037 // Tell LiveDebugVariables about the new ranges.
2038 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
2040 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
2042 // Sort out the new intervals created by splitting. The remainder interval
2043 // goes straight to spilling, the new local ranges get to stay RS_New.
2044 for (unsigned i
= 0, e
= LREdit
.size(); i
!= e
; ++i
) {
2045 LiveInterval
&LI
= LIS
->getInterval(LREdit
.get(i
));
2046 if (getStage(LI
) == RS_New
&& IntvMap
[i
] == 0)
2047 setStage(LI
, RS_Spill
);
2051 MF
->verify(this, "After splitting live range around basic blocks");
2055 //===----------------------------------------------------------------------===//
2056 // Per-Instruction Splitting
2057 //===----------------------------------------------------------------------===//
2059 /// Get the number of allocatable registers that match the constraints of \p Reg
2060 /// on \p MI and that are also in \p SuperRC.
2061 static unsigned getNumAllocatableRegsForConstraints(
2062 const MachineInstr
*MI
, unsigned Reg
, const TargetRegisterClass
*SuperRC
,
2063 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
,
2064 const RegisterClassInfo
&RCI
) {
2065 assert(SuperRC
&& "Invalid register class");
2067 const TargetRegisterClass
*ConstrainedRC
=
2068 MI
->getRegClassConstraintEffectForVReg(Reg
, SuperRC
, TII
, TRI
,
2069 /* ExploreBundle */ true);
2072 return RCI
.getNumAllocatableRegs(ConstrainedRC
);
2075 /// tryInstructionSplit - Split a live range around individual instructions.
2076 /// This is normally not worthwhile since the spiller is doing essentially the
2077 /// same thing. However, when the live range is in a constrained register
2078 /// class, it may help to insert copies such that parts of the live range can
2079 /// be moved to a larger register class.
2081 /// This is similar to spilling to a larger register class.
2083 RAGreedy::tryInstructionSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2084 SmallVectorImpl
<unsigned> &NewVRegs
) {
2085 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg
);
2086 // There is no point to this if there are no larger sub-classes.
2087 if (!RegClassInfo
.isProperSubClass(CurRC
))
2090 // Always enable split spill mode, since we're effectively spilling to a
2092 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2093 SE
->reset(LREdit
, SplitEditor::SM_Size
);
2095 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2096 if (Uses
.size() <= 1)
2099 LLVM_DEBUG(dbgs() << "Split around " << Uses
.size()
2100 << " individual instrs.\n");
2102 const TargetRegisterClass
*SuperRC
=
2103 TRI
->getLargestLegalSuperClass(CurRC
, *MF
);
2104 unsigned SuperRCNumAllocatableRegs
= RCI
.getNumAllocatableRegs(SuperRC
);
2105 // Split around every non-copy instruction if this split will relax
2106 // the constraints on the virtual register.
2107 // Otherwise, splitting just inserts uncoalescable copies that do not help
2109 for (unsigned i
= 0; i
!= Uses
.size(); ++i
) {
2110 if (const MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Uses
[i
]))
2111 if (MI
->isFullCopy() ||
2112 SuperRCNumAllocatableRegs
==
2113 getNumAllocatableRegsForConstraints(MI
, VirtReg
.reg
, SuperRC
, TII
,
2115 LLVM_DEBUG(dbgs() << " skip:\t" << Uses
[i
] << '\t' << *MI
);
2119 SlotIndex SegStart
= SE
->enterIntvBefore(Uses
[i
]);
2120 SlotIndex SegStop
= SE
->leaveIntvAfter(Uses
[i
]);
2121 SE
->useIntv(SegStart
, SegStop
);
2124 if (LREdit
.empty()) {
2125 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2129 SmallVector
<unsigned, 8> IntvMap
;
2130 SE
->finish(&IntvMap
);
2131 DebugVars
->splitRegister(VirtReg
.reg
, LREdit
.regs(), *LIS
);
2132 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
2134 // Assign all new registers to RS_Spill. This was the last chance.
2135 setStage(LREdit
.begin(), LREdit
.end(), RS_Spill
);
2139 //===----------------------------------------------------------------------===//
2141 //===----------------------------------------------------------------------===//
2143 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2144 /// in order to use PhysReg between two entries in SA->UseSlots.
2146 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2148 void RAGreedy::calcGapWeights(unsigned PhysReg
,
2149 SmallVectorImpl
<float> &GapWeight
) {
2150 assert(SA
->getUseBlocks().size() == 1 && "Not a local interval");
2151 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
2152 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2153 const unsigned NumGaps
= Uses
.size()-1;
2155 // Start and end points for the interference check.
2156 SlotIndex StartIdx
=
2157 BI
.LiveIn
? BI
.FirstInstr
.getBaseIndex() : BI
.FirstInstr
;
2159 BI
.LiveOut
? BI
.LastInstr
.getBoundaryIndex() : BI
.LastInstr
;
2161 GapWeight
.assign(NumGaps
, 0.0f
);
2163 // Add interference from each overlapping register.
2164 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2165 if (!Matrix
->query(const_cast<LiveInterval
&>(SA
->getParent()), *Units
)
2166 .checkInterference())
2169 // We know that VirtReg is a continuous interval from FirstInstr to
2170 // LastInstr, so we don't need InterferenceQuery.
2172 // Interference that overlaps an instruction is counted in both gaps
2173 // surrounding the instruction. The exception is interference before
2174 // StartIdx and after StopIdx.
2176 LiveIntervalUnion::SegmentIter IntI
=
2177 Matrix
->getLiveUnions()[*Units
] .find(StartIdx
);
2178 for (unsigned Gap
= 0; IntI
.valid() && IntI
.start() < StopIdx
; ++IntI
) {
2179 // Skip the gaps before IntI.
2180 while (Uses
[Gap
+1].getBoundaryIndex() < IntI
.start())
2181 if (++Gap
== NumGaps
)
2186 // Update the gaps covered by IntI.
2187 const float weight
= IntI
.value()->weight
;
2188 for (; Gap
!= NumGaps
; ++Gap
) {
2189 GapWeight
[Gap
] = std::max(GapWeight
[Gap
], weight
);
2190 if (Uses
[Gap
+1].getBaseIndex() >= IntI
.stop())
2198 // Add fixed interference.
2199 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2200 const LiveRange
&LR
= LIS
->getRegUnit(*Units
);
2201 LiveRange::const_iterator I
= LR
.find(StartIdx
);
2202 LiveRange::const_iterator E
= LR
.end();
2204 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2205 for (unsigned Gap
= 0; I
!= E
&& I
->start
< StopIdx
; ++I
) {
2206 while (Uses
[Gap
+1].getBoundaryIndex() < I
->start
)
2207 if (++Gap
== NumGaps
)
2212 for (; Gap
!= NumGaps
; ++Gap
) {
2213 GapWeight
[Gap
] = huge_valf
;
2214 if (Uses
[Gap
+1].getBaseIndex() >= I
->end
)
2223 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2226 unsigned RAGreedy::tryLocalSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2227 SmallVectorImpl
<unsigned> &NewVRegs
) {
2228 // TODO: the function currently only handles a single UseBlock; it should be
2229 // possible to generalize.
2230 if (SA
->getUseBlocks().size() != 1)
2233 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
2235 // Note that it is possible to have an interval that is live-in or live-out
2236 // while only covering a single block - A phi-def can use undef values from
2237 // predecessors, and the block could be a single-block loop.
2238 // We don't bother doing anything clever about such a case, we simply assume
2239 // that the interval is continuous from FirstInstr to LastInstr. We should
2240 // make sure that we don't do anything illegal to such an interval, though.
2242 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2243 if (Uses
.size() <= 2)
2245 const unsigned NumGaps
= Uses
.size()-1;
2248 dbgs() << "tryLocalSplit: ";
2249 for (unsigned i
= 0, e
= Uses
.size(); i
!= e
; ++i
)
2250 dbgs() << ' ' << Uses
[i
];
2254 // If VirtReg is live across any register mask operands, compute a list of
2255 // gaps with register masks.
2256 SmallVector
<unsigned, 8> RegMaskGaps
;
2257 if (Matrix
->checkRegMaskInterference(VirtReg
)) {
2258 // Get regmask slots for the whole block.
2259 ArrayRef
<SlotIndex
> RMS
= LIS
->getRegMaskSlotsInBlock(BI
.MBB
->getNumber());
2260 LLVM_DEBUG(dbgs() << RMS
.size() << " regmasks in block:");
2261 // Constrain to VirtReg's live range.
2262 unsigned ri
= std::lower_bound(RMS
.begin(), RMS
.end(),
2263 Uses
.front().getRegSlot()) - RMS
.begin();
2264 unsigned re
= RMS
.size();
2265 for (unsigned i
= 0; i
!= NumGaps
&& ri
!= re
; ++i
) {
2266 // Look for Uses[i] <= RMS <= Uses[i+1].
2267 assert(!SlotIndex::isEarlierInstr(RMS
[ri
], Uses
[i
]));
2268 if (SlotIndex::isEarlierInstr(Uses
[i
+1], RMS
[ri
]))
2270 // Skip a regmask on the same instruction as the last use. It doesn't
2271 // overlap the live range.
2272 if (SlotIndex::isSameInstr(Uses
[i
+1], RMS
[ri
]) && i
+1 == NumGaps
)
2274 LLVM_DEBUG(dbgs() << ' ' << RMS
[ri
] << ':' << Uses
[i
] << '-'
2276 RegMaskGaps
.push_back(i
);
2277 // Advance ri to the next gap. A regmask on one of the uses counts in
2279 while (ri
!= re
&& SlotIndex::isEarlierInstr(RMS
[ri
], Uses
[i
+1]))
2282 LLVM_DEBUG(dbgs() << '\n');
2285 // Since we allow local split results to be split again, there is a risk of
2286 // creating infinite loops. It is tempting to require that the new live
2287 // ranges have less instructions than the original. That would guarantee
2288 // convergence, but it is too strict. A live range with 3 instructions can be
2289 // split 2+3 (including the COPY), and we want to allow that.
2291 // Instead we use these rules:
2293 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2294 // noop split, of course).
2295 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2296 // the new ranges must have fewer instructions than before the split.
2297 // 3. New ranges with the same number of instructions are marked RS_Split2,
2298 // smaller ranges are marked RS_New.
2300 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2301 // excessive splitting and infinite loops.
2303 bool ProgressRequired
= getStage(VirtReg
) >= RS_Split2
;
2305 // Best split candidate.
2306 unsigned BestBefore
= NumGaps
;
2307 unsigned BestAfter
= 0;
2310 const float blockFreq
=
2311 SpillPlacer
->getBlockFrequency(BI
.MBB
->getNumber()).getFrequency() *
2312 (1.0f
/ MBFI
->getEntryFreq());
2313 SmallVector
<float, 8> GapWeight
;
2316 while (unsigned PhysReg
= Order
.next()) {
2317 // Keep track of the largest spill weight that would need to be evicted in
2318 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2319 calcGapWeights(PhysReg
, GapWeight
);
2321 // Remove any gaps with regmask clobbers.
2322 if (Matrix
->checkRegMaskInterference(VirtReg
, PhysReg
))
2323 for (unsigned i
= 0, e
= RegMaskGaps
.size(); i
!= e
; ++i
)
2324 GapWeight
[RegMaskGaps
[i
]] = huge_valf
;
2326 // Try to find the best sequence of gaps to close.
2327 // The new spill weight must be larger than any gap interference.
2329 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2330 unsigned SplitBefore
= 0, SplitAfter
= 1;
2332 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2333 // It is the spill weight that needs to be evicted.
2334 float MaxGap
= GapWeight
[0];
2337 // Live before/after split?
2338 const bool LiveBefore
= SplitBefore
!= 0 || BI
.LiveIn
;
2339 const bool LiveAfter
= SplitAfter
!= NumGaps
|| BI
.LiveOut
;
2341 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << ' ' << Uses
[SplitBefore
]
2342 << '-' << Uses
[SplitAfter
] << " i=" << MaxGap
);
2344 // Stop before the interval gets so big we wouldn't be making progress.
2345 if (!LiveBefore
&& !LiveAfter
) {
2346 LLVM_DEBUG(dbgs() << " all\n");
2349 // Should the interval be extended or shrunk?
2352 // How many gaps would the new range have?
2353 unsigned NewGaps
= LiveBefore
+ SplitAfter
- SplitBefore
+ LiveAfter
;
2355 // Legally, without causing looping?
2356 bool Legal
= !ProgressRequired
|| NewGaps
< NumGaps
;
2358 if (Legal
&& MaxGap
< huge_valf
) {
2359 // Estimate the new spill weight. Each instruction reads or writes the
2360 // register. Conservatively assume there are no read-modify-write
2363 // Try to guess the size of the new interval.
2364 const float EstWeight
= normalizeSpillWeight(
2365 blockFreq
* (NewGaps
+ 1),
2366 Uses
[SplitBefore
].distance(Uses
[SplitAfter
]) +
2367 (LiveBefore
+ LiveAfter
) * SlotIndex::InstrDist
,
2369 // Would this split be possible to allocate?
2370 // Never allocate all gaps, we wouldn't be making progress.
2371 LLVM_DEBUG(dbgs() << " w=" << EstWeight
);
2372 if (EstWeight
* Hysteresis
>= MaxGap
) {
2374 float Diff
= EstWeight
- MaxGap
;
2375 if (Diff
> BestDiff
) {
2376 LLVM_DEBUG(dbgs() << " (best)");
2377 BestDiff
= Hysteresis
* Diff
;
2378 BestBefore
= SplitBefore
;
2379 BestAfter
= SplitAfter
;
2386 if (++SplitBefore
< SplitAfter
) {
2387 LLVM_DEBUG(dbgs() << " shrink\n");
2388 // Recompute the max when necessary.
2389 if (GapWeight
[SplitBefore
- 1] >= MaxGap
) {
2390 MaxGap
= GapWeight
[SplitBefore
];
2391 for (unsigned i
= SplitBefore
+ 1; i
!= SplitAfter
; ++i
)
2392 MaxGap
= std::max(MaxGap
, GapWeight
[i
]);
2399 // Try to extend the interval.
2400 if (SplitAfter
>= NumGaps
) {
2401 LLVM_DEBUG(dbgs() << " end\n");
2405 LLVM_DEBUG(dbgs() << " extend\n");
2406 MaxGap
= std::max(MaxGap
, GapWeight
[SplitAfter
++]);
2410 // Didn't find any candidates?
2411 if (BestBefore
== NumGaps
)
2414 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses
[BestBefore
] << '-'
2415 << Uses
[BestAfter
] << ", " << BestDiff
<< ", "
2416 << (BestAfter
- BestBefore
+ 1) << " instrs\n");
2418 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2422 SlotIndex SegStart
= SE
->enterIntvBefore(Uses
[BestBefore
]);
2423 SlotIndex SegStop
= SE
->leaveIntvAfter(Uses
[BestAfter
]);
2424 SE
->useIntv(SegStart
, SegStop
);
2425 SmallVector
<unsigned, 8> IntvMap
;
2426 SE
->finish(&IntvMap
);
2427 DebugVars
->splitRegister(VirtReg
.reg
, LREdit
.regs(), *LIS
);
2429 // If the new range has the same number of instructions as before, mark it as
2430 // RS_Split2 so the next split will be forced to make progress. Otherwise,
2431 // leave the new intervals as RS_New so they can compete.
2432 bool LiveBefore
= BestBefore
!= 0 || BI
.LiveIn
;
2433 bool LiveAfter
= BestAfter
!= NumGaps
|| BI
.LiveOut
;
2434 unsigned NewGaps
= LiveBefore
+ BestAfter
- BestBefore
+ LiveAfter
;
2435 if (NewGaps
>= NumGaps
) {
2436 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2437 assert(!ProgressRequired
&& "Didn't make progress when it was required.");
2438 for (unsigned i
= 0, e
= IntvMap
.size(); i
!= e
; ++i
)
2439 if (IntvMap
[i
] == 1) {
2440 setStage(LIS
->getInterval(LREdit
.get(i
)), RS_Split2
);
2441 LLVM_DEBUG(dbgs() << printReg(LREdit
.get(i
)));
2443 LLVM_DEBUG(dbgs() << '\n');
2450 //===----------------------------------------------------------------------===//
2451 // Live Range Splitting
2452 //===----------------------------------------------------------------------===//
2454 /// trySplit - Try to split VirtReg or one of its interferences, making it
2456 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2457 unsigned RAGreedy::trySplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2458 SmallVectorImpl
<unsigned>&NewVRegs
) {
2459 // Ranges must be Split2 or less.
2460 if (getStage(VirtReg
) >= RS_Spill
)
2463 // Local intervals are handled separately.
2464 if (LIS
->intervalIsInOneMBB(VirtReg
)) {
2465 NamedRegionTimer
T("local_split", "Local Splitting", TimerGroupName
,
2466 TimerGroupDescription
, TimePassesIsEnabled
);
2467 SA
->analyze(&VirtReg
);
2468 unsigned PhysReg
= tryLocalSplit(VirtReg
, Order
, NewVRegs
);
2469 if (PhysReg
|| !NewVRegs
.empty())
2471 return tryInstructionSplit(VirtReg
, Order
, NewVRegs
);
2474 NamedRegionTimer
T("global_split", "Global Splitting", TimerGroupName
,
2475 TimerGroupDescription
, TimePassesIsEnabled
);
2477 SA
->analyze(&VirtReg
);
2479 // FIXME: SplitAnalysis may repair broken live ranges coming from the
2480 // coalescer. That may cause the range to become allocatable which means that
2481 // tryRegionSplit won't be making progress. This check should be replaced with
2482 // an assertion when the coalescer is fixed.
2483 if (SA
->didRepairRange()) {
2484 // VirtReg has changed, so all cached queries are invalid.
2485 Matrix
->invalidateVirtRegs();
2486 if (unsigned PhysReg
= tryAssign(VirtReg
, Order
, NewVRegs
))
2490 // First try to split around a region spanning multiple blocks. RS_Split2
2491 // ranges already made dubious progress with region splitting, so they go
2492 // straight to single block splitting.
2493 if (getStage(VirtReg
) < RS_Split2
) {
2494 unsigned PhysReg
= tryRegionSplit(VirtReg
, Order
, NewVRegs
);
2495 if (PhysReg
|| !NewVRegs
.empty())
2499 // Then isolate blocks.
2500 return tryBlockSplit(VirtReg
, Order
, NewVRegs
);
2503 //===----------------------------------------------------------------------===//
2504 // Last Chance Recoloring
2505 //===----------------------------------------------------------------------===//
2507 /// Return true if \p reg has any tied def operand.
2508 static bool hasTiedDef(MachineRegisterInfo
*MRI
, unsigned reg
) {
2509 for (const MachineOperand
&MO
: MRI
->def_operands(reg
))
2516 /// mayRecolorAllInterferences - Check if the virtual registers that
2517 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2518 /// recolored to free \p PhysReg.
2519 /// When true is returned, \p RecoloringCandidates has been augmented with all
2520 /// the live intervals that need to be recolored in order to free \p PhysReg
2522 /// \p FixedRegisters contains all the virtual registers that cannot be
2525 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg
, LiveInterval
&VirtReg
,
2526 SmallLISet
&RecoloringCandidates
,
2527 const SmallVirtRegSet
&FixedRegisters
) {
2528 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg
);
2530 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2531 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
2532 // If there is LastChanceRecoloringMaxInterference or more interferences,
2533 // chances are one would not be recolorable.
2534 if (Q
.collectInterferingVRegs(LastChanceRecoloringMaxInterference
) >=
2535 LastChanceRecoloringMaxInterference
&& !ExhaustiveSearch
) {
2536 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2537 CutOffInfo
|= CO_Interf
;
2540 for (unsigned i
= Q
.interferingVRegs().size(); i
; --i
) {
2541 LiveInterval
*Intf
= Q
.interferingVRegs()[i
- 1];
2542 // If Intf is done and sit on the same register class as VirtReg,
2543 // it would not be recolorable as it is in the same state as VirtReg.
2544 // However, if VirtReg has tied defs and Intf doesn't, then
2545 // there is still a point in examining if it can be recolorable.
2546 if (((getStage(*Intf
) == RS_Done
&&
2547 MRI
->getRegClass(Intf
->reg
) == CurRC
) &&
2548 !(hasTiedDef(MRI
, VirtReg
.reg
) && !hasTiedDef(MRI
, Intf
->reg
))) ||
2549 FixedRegisters
.count(Intf
->reg
)) {
2551 dbgs() << "Early abort: the interference is not recolorable.\n");
2554 RecoloringCandidates
.insert(Intf
);
2560 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2561 /// its interferences.
2562 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2563 /// virtual register that was using it. The recoloring process may recursively
2564 /// use the last chance recoloring. Therefore, when a virtual register has been
2565 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2566 /// be last-chance-recolored again during this recoloring "session".
2569 /// vA can use {R1, R2 }
2570 /// vB can use { R2, R3}
2571 /// vC can use {R1 }
2572 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2573 /// instance) and they all interfere.
2575 /// vA is assigned R1
2576 /// vB is assigned R2
2577 /// vC tries to evict vA but vA is already done.
2578 /// Regular register allocation fails.
2580 /// Last chance recoloring kicks in:
2581 /// vC does as if vA was evicted => vC uses R1.
2582 /// vC is marked as fixed.
2583 /// vA needs to find a color.
2584 /// None are available.
2585 /// vA cannot evict vC: vC is a fixed virtual register now.
2586 /// vA does as if vB was evicted => vA uses R2.
2587 /// vB needs to find a color.
2588 /// R3 is available.
2589 /// Recoloring => vC = R1, vA = R2, vB = R3
2591 /// \p Order defines the preferred allocation order for \p VirtReg.
2592 /// \p NewRegs will contain any new virtual register that have been created
2593 /// (split, spill) during the process and that must be assigned.
2594 /// \p FixedRegisters contains all the virtual registers that cannot be
2596 /// \p Depth gives the current depth of the last chance recoloring.
2597 /// \return a physical register that can be used for VirtReg or ~0u if none
2599 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval
&VirtReg
,
2600 AllocationOrder
&Order
,
2601 SmallVectorImpl
<unsigned> &NewVRegs
,
2602 SmallVirtRegSet
&FixedRegisters
,
2604 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg
<< '\n');
2605 // Ranges must be Done.
2606 assert((getStage(VirtReg
) >= RS_Done
|| !VirtReg
.isSpillable()) &&
2607 "Last chance recoloring should really be last chance");
2608 // Set the max depth to LastChanceRecoloringMaxDepth.
2609 // We may want to reconsider that if we end up with a too large search space
2610 // for target with hundreds of registers.
2611 // Indeed, in that case we may want to cut the search space earlier.
2612 if (Depth
>= LastChanceRecoloringMaxDepth
&& !ExhaustiveSearch
) {
2613 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2614 CutOffInfo
|= CO_Depth
;
2618 // Set of Live intervals that will need to be recolored.
2619 SmallLISet RecoloringCandidates
;
2620 // Record the original mapping virtual register to physical register in case
2621 // the recoloring fails.
2622 DenseMap
<unsigned, unsigned> VirtRegToPhysReg
;
2623 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2624 // this recoloring "session".
2625 assert(!FixedRegisters
.count(VirtReg
.reg
));
2626 FixedRegisters
.insert(VirtReg
.reg
);
2627 SmallVector
<unsigned, 4> CurrentNewVRegs
;
2630 while (unsigned PhysReg
= Order
.next()) {
2631 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg
<< " to "
2632 << printReg(PhysReg
, TRI
) << '\n');
2633 RecoloringCandidates
.clear();
2634 VirtRegToPhysReg
.clear();
2635 CurrentNewVRegs
.clear();
2637 // It is only possible to recolor virtual register interference.
2638 if (Matrix
->checkInterference(VirtReg
, PhysReg
) >
2639 LiveRegMatrix::IK_VirtReg
) {
2641 dbgs() << "Some interferences are not with virtual registers.\n");
2646 // Early give up on this PhysReg if it is obvious we cannot recolor all
2647 // the interferences.
2648 if (!mayRecolorAllInterferences(PhysReg
, VirtReg
, RecoloringCandidates
,
2650 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2654 // RecoloringCandidates contains all the virtual registers that interfer
2655 // with VirtReg on PhysReg (or one of its aliases).
2656 // Enqueue them for recoloring and perform the actual recoloring.
2657 PQueue RecoloringQueue
;
2658 for (SmallLISet::iterator It
= RecoloringCandidates
.begin(),
2659 EndIt
= RecoloringCandidates
.end();
2660 It
!= EndIt
; ++It
) {
2661 unsigned ItVirtReg
= (*It
)->reg
;
2662 enqueue(RecoloringQueue
, *It
);
2663 assert(VRM
->hasPhys(ItVirtReg
) &&
2664 "Interferences are supposed to be with allocated variables");
2666 // Record the current allocation.
2667 VirtRegToPhysReg
[ItVirtReg
] = VRM
->getPhys(ItVirtReg
);
2668 // unset the related struct.
2669 Matrix
->unassign(**It
);
2672 // Do as if VirtReg was assigned to PhysReg so that the underlying
2673 // recoloring has the right information about the interferes and
2674 // available colors.
2675 Matrix
->assign(VirtReg
, PhysReg
);
2677 // Save the current recoloring state.
2678 // If we cannot recolor all the interferences, we will have to start again
2679 // at this point for the next physical register.
2680 SmallVirtRegSet
SaveFixedRegisters(FixedRegisters
);
2681 if (tryRecoloringCandidates(RecoloringQueue
, CurrentNewVRegs
,
2682 FixedRegisters
, Depth
)) {
2683 // Push the queued vregs into the main queue.
2684 for (unsigned NewVReg
: CurrentNewVRegs
)
2685 NewVRegs
.push_back(NewVReg
);
2686 // Do not mess up with the global assignment process.
2687 // I.e., VirtReg must be unassigned.
2688 Matrix
->unassign(VirtReg
);
2692 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg
<< " to "
2693 << printReg(PhysReg
, TRI
) << '\n');
2695 // The recoloring attempt failed, undo the changes.
2696 FixedRegisters
= SaveFixedRegisters
;
2697 Matrix
->unassign(VirtReg
);
2699 // For a newly created vreg which is also in RecoloringCandidates,
2700 // don't add it to NewVRegs because its physical register will be restored
2701 // below. Other vregs in CurrentNewVRegs are created by calling
2702 // selectOrSplit and should be added into NewVRegs.
2703 for (SmallVectorImpl
<unsigned>::iterator Next
= CurrentNewVRegs
.begin(),
2704 End
= CurrentNewVRegs
.end();
2705 Next
!= End
; ++Next
) {
2706 if (RecoloringCandidates
.count(&LIS
->getInterval(*Next
)))
2708 NewVRegs
.push_back(*Next
);
2711 for (SmallLISet::iterator It
= RecoloringCandidates
.begin(),
2712 EndIt
= RecoloringCandidates
.end();
2713 It
!= EndIt
; ++It
) {
2714 unsigned ItVirtReg
= (*It
)->reg
;
2715 if (VRM
->hasPhys(ItVirtReg
))
2716 Matrix
->unassign(**It
);
2717 unsigned ItPhysReg
= VirtRegToPhysReg
[ItVirtReg
];
2718 Matrix
->assign(**It
, ItPhysReg
);
2722 // Last chance recoloring did not worked either, give up.
2726 /// tryRecoloringCandidates - Try to assign a new color to every register
2727 /// in \RecoloringQueue.
2728 /// \p NewRegs will contain any new virtual register created during the
2729 /// recoloring process.
2730 /// \p FixedRegisters[in/out] contains all the registers that have been
2732 /// \return true if all virtual registers in RecoloringQueue were successfully
2733 /// recolored, false otherwise.
2734 bool RAGreedy::tryRecoloringCandidates(PQueue
&RecoloringQueue
,
2735 SmallVectorImpl
<unsigned> &NewVRegs
,
2736 SmallVirtRegSet
&FixedRegisters
,
2738 while (!RecoloringQueue
.empty()) {
2739 LiveInterval
*LI
= dequeue(RecoloringQueue
);
2740 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI
<< '\n');
2742 PhysReg
= selectOrSplitImpl(*LI
, NewVRegs
, FixedRegisters
, Depth
+ 1);
2743 // When splitting happens, the live-range may actually be empty.
2744 // In that case, this is okay to continue the recoloring even
2745 // if we did not find an alternative color for it. Indeed,
2746 // there will not be anything to color for LI in the end.
2747 if (PhysReg
== ~0u || (!PhysReg
&& !LI
->empty()))
2751 assert(LI
->empty() && "Only empty live-range do not require a register");
2752 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2753 << " succeeded. Empty LI.\n");
2756 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2757 << " succeeded with: " << printReg(PhysReg
, TRI
) << '\n');
2759 Matrix
->assign(*LI
, PhysReg
);
2760 FixedRegisters
.insert(LI
->reg
);
2765 //===----------------------------------------------------------------------===//
2767 //===----------------------------------------------------------------------===//
2769 unsigned RAGreedy::selectOrSplit(LiveInterval
&VirtReg
,
2770 SmallVectorImpl
<unsigned> &NewVRegs
) {
2771 CutOffInfo
= CO_None
;
2772 LLVMContext
&Ctx
= MF
->getFunction().getContext();
2773 SmallVirtRegSet FixedRegisters
;
2774 unsigned Reg
= selectOrSplitImpl(VirtReg
, NewVRegs
, FixedRegisters
);
2775 if (Reg
== ~0U && (CutOffInfo
!= CO_None
)) {
2776 uint8_t CutOffEncountered
= CutOffInfo
& (CO_Depth
| CO_Interf
);
2777 if (CutOffEncountered
== CO_Depth
)
2778 Ctx
.emitError("register allocation failed: maximum depth for recoloring "
2779 "reached. Use -fexhaustive-register-search to skip "
2781 else if (CutOffEncountered
== CO_Interf
)
2782 Ctx
.emitError("register allocation failed: maximum interference for "
2783 "recoloring reached. Use -fexhaustive-register-search "
2785 else if (CutOffEncountered
== (CO_Depth
| CO_Interf
))
2786 Ctx
.emitError("register allocation failed: maximum interference and "
2787 "depth for recoloring reached. Use "
2788 "-fexhaustive-register-search to skip cutoffs");
2793 /// Using a CSR for the first time has a cost because it causes push|pop
2794 /// to be added to prologue|epilogue. Splitting a cold section of the live
2795 /// range can have lower cost than using the CSR for the first time;
2796 /// Spilling a live range in the cold path can have lower cost than using
2797 /// the CSR for the first time. Returns the physical register if we decide
2798 /// to use the CSR; otherwise return 0.
2799 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval
&VirtReg
,
2800 AllocationOrder
&Order
,
2802 unsigned &CostPerUseLimit
,
2803 SmallVectorImpl
<unsigned> &NewVRegs
) {
2804 if (getStage(VirtReg
) == RS_Spill
&& VirtReg
.isSpillable()) {
2805 // We choose spill over using the CSR for the first time if the spill cost
2806 // is lower than CSRCost.
2807 SA
->analyze(&VirtReg
);
2808 if (calcSpillCost() >= CSRCost
)
2811 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2812 // we will not use a callee-saved register in tryEvict.
2813 CostPerUseLimit
= 1;
2816 if (getStage(VirtReg
) < RS_Split
) {
2817 // We choose pre-splitting over using the CSR for the first time if
2818 // the cost of splitting is lower than CSRCost.
2819 SA
->analyze(&VirtReg
);
2820 unsigned NumCands
= 0;
2821 BlockFrequency BestCost
= CSRCost
; // Don't modify CSRCost.
2822 unsigned BestCand
= calculateRegionSplitCost(VirtReg
, Order
, BestCost
,
2823 NumCands
, true /*IgnoreCSR*/);
2824 if (BestCand
== NoCand
)
2825 // Use the CSR if we can't find a region split below CSRCost.
2828 // Perform the actual pre-splitting.
2829 doRegionSplit(VirtReg
, BestCand
, false/*HasCompact*/, NewVRegs
);
2835 void RAGreedy::aboutToRemoveInterval(LiveInterval
&LI
) {
2836 // Do not keep invalid information around.
2837 SetOfBrokenHints
.remove(&LI
);
2840 void RAGreedy::initializeCSRCost() {
2841 // We use the larger one out of the command-line option and the value report
2843 CSRCost
= BlockFrequency(
2844 std::max((unsigned)CSRFirstTimeCost
, TRI
->getCSRFirstUseCost()));
2845 if (!CSRCost
.getFrequency())
2848 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2849 uint64_t ActualEntry
= MBFI
->getEntryFreq();
2854 uint64_t FixedEntry
= 1 << 14;
2855 if (ActualEntry
< FixedEntry
)
2856 CSRCost
*= BranchProbability(ActualEntry
, FixedEntry
);
2857 else if (ActualEntry
<= UINT32_MAX
)
2858 // Invert the fraction and divide.
2859 CSRCost
/= BranchProbability(FixedEntry
, ActualEntry
);
2861 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2862 CSRCost
= CSRCost
.getFrequency() * (ActualEntry
/ FixedEntry
);
2865 /// Collect the hint info for \p Reg.
2866 /// The results are stored into \p Out.
2867 /// \p Out is not cleared before being populated.
2868 void RAGreedy::collectHintInfo(unsigned Reg
, HintsInfo
&Out
) {
2869 for (const MachineInstr
&Instr
: MRI
->reg_nodbg_instructions(Reg
)) {
2870 if (!Instr
.isFullCopy())
2872 // Look for the other end of the copy.
2873 unsigned OtherReg
= Instr
.getOperand(0).getReg();
2874 if (OtherReg
== Reg
) {
2875 OtherReg
= Instr
.getOperand(1).getReg();
2876 if (OtherReg
== Reg
)
2879 // Get the current assignment.
2880 unsigned OtherPhysReg
= TargetRegisterInfo::isPhysicalRegister(OtherReg
)
2882 : VRM
->getPhys(OtherReg
);
2883 // Push the collected information.
2884 Out
.push_back(HintInfo(MBFI
->getBlockFreq(Instr
.getParent()), OtherReg
,
2889 /// Using the given \p List, compute the cost of the broken hints if
2890 /// \p PhysReg was used.
2891 /// \return The cost of \p List for \p PhysReg.
2892 BlockFrequency
RAGreedy::getBrokenHintFreq(const HintsInfo
&List
,
2894 BlockFrequency Cost
= 0;
2895 for (const HintInfo
&Info
: List
) {
2896 if (Info
.PhysReg
!= PhysReg
)
2902 /// Using the register assigned to \p VirtReg, try to recolor
2903 /// all the live ranges that are copy-related with \p VirtReg.
2904 /// The recoloring is then propagated to all the live-ranges that have
2905 /// been recolored and so on, until no more copies can be coalesced or
2906 /// it is not profitable.
2907 /// For a given live range, profitability is determined by the sum of the
2908 /// frequencies of the non-identity copies it would introduce with the old
2909 /// and new register.
2910 void RAGreedy::tryHintRecoloring(LiveInterval
&VirtReg
) {
2911 // We have a broken hint, check if it is possible to fix it by
2912 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2913 // some register and PhysReg may be available for the other live-ranges.
2914 SmallSet
<unsigned, 4> Visited
;
2915 SmallVector
<unsigned, 2> RecoloringCandidates
;
2917 unsigned Reg
= VirtReg
.reg
;
2918 unsigned PhysReg
= VRM
->getPhys(Reg
);
2919 // Start the recoloring algorithm from the input live-interval, then
2920 // it will propagate to the ones that are copy-related with it.
2921 Visited
.insert(Reg
);
2922 RecoloringCandidates
.push_back(Reg
);
2924 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg
, TRI
)
2925 << '(' << printReg(PhysReg
, TRI
) << ")\n");
2928 Reg
= RecoloringCandidates
.pop_back_val();
2930 // We cannot recolor physical register.
2931 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
2934 assert(VRM
->hasPhys(Reg
) && "We have unallocated variable!!");
2936 // Get the live interval mapped with this virtual register to be able
2937 // to check for the interference with the new color.
2938 LiveInterval
&LI
= LIS
->getInterval(Reg
);
2939 unsigned CurrPhys
= VRM
->getPhys(Reg
);
2940 // Check that the new color matches the register class constraints and
2941 // that it is free for this live range.
2942 if (CurrPhys
!= PhysReg
&& (!MRI
->getRegClass(Reg
)->contains(PhysReg
) ||
2943 Matrix
->checkInterference(LI
, PhysReg
)))
2946 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
) << '(' << printReg(CurrPhys
, TRI
)
2947 << ") is recolorable.\n");
2949 // Gather the hint info.
2951 collectHintInfo(Reg
, Info
);
2952 // Check if recoloring the live-range will increase the cost of the
2953 // non-identity copies.
2954 if (CurrPhys
!= PhysReg
) {
2955 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2956 BlockFrequency OldCopiesCost
= getBrokenHintFreq(Info
, CurrPhys
);
2957 BlockFrequency NewCopiesCost
= getBrokenHintFreq(Info
, PhysReg
);
2958 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost
.getFrequency()
2959 << "\nNew Cost: " << NewCopiesCost
.getFrequency()
2961 if (OldCopiesCost
< NewCopiesCost
) {
2962 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2965 // At this point, the cost is either cheaper or equal. If it is
2966 // equal, we consider this is profitable because it may expose
2967 // more recoloring opportunities.
2968 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2969 // Recolor the live-range.
2970 Matrix
->unassign(LI
);
2971 Matrix
->assign(LI
, PhysReg
);
2973 // Push all copy-related live-ranges to keep reconciling the broken
2975 for (const HintInfo
&HI
: Info
) {
2976 if (Visited
.insert(HI
.Reg
).second
)
2977 RecoloringCandidates
.push_back(HI
.Reg
);
2979 } while (!RecoloringCandidates
.empty());
2982 /// Try to recolor broken hints.
2983 /// Broken hints may be repaired by recoloring when an evicted variable
2984 /// freed up a register for a larger live-range.
2985 /// Consider the following example:
2993 /// Let us assume b gets split:
3003 /// Because of how the allocation work, b, c, and d may be assigned different
3004 /// colors. Now, if a gets evicted later:
3014 /// e = ld SpillSlot
3016 /// This is likely that we can assign the same register for b, c, and d,
3017 /// getting rid of 2 copies.
3018 void RAGreedy::tryHintsRecoloring() {
3019 for (LiveInterval
*LI
: SetOfBrokenHints
) {
3020 assert(TargetRegisterInfo::isVirtualRegister(LI
->reg
) &&
3021 "Recoloring is possible only for virtual registers");
3022 // Some dead defs may be around (e.g., because of debug uses).
3024 if (!VRM
->hasPhys(LI
->reg
))
3026 tryHintRecoloring(*LI
);
3030 unsigned RAGreedy::selectOrSplitImpl(LiveInterval
&VirtReg
,
3031 SmallVectorImpl
<unsigned> &NewVRegs
,
3032 SmallVirtRegSet
&FixedRegisters
,
3034 unsigned CostPerUseLimit
= ~0u;
3035 // First try assigning a free register.
3036 AllocationOrder
Order(VirtReg
.reg
, *VRM
, RegClassInfo
, Matrix
);
3037 if (unsigned PhysReg
= tryAssign(VirtReg
, Order
, NewVRegs
)) {
3038 // If VirtReg got an assignment, the eviction info is no longre relevant.
3039 LastEvicted
.clearEvicteeInfo(VirtReg
.reg
);
3040 // When NewVRegs is not empty, we may have made decisions such as evicting
3041 // a virtual register, go with the earlier decisions and use the physical
3043 if (CSRCost
.getFrequency() && isUnusedCalleeSavedReg(PhysReg
) &&
3045 unsigned CSRReg
= tryAssignCSRFirstTime(VirtReg
, Order
, PhysReg
,
3046 CostPerUseLimit
, NewVRegs
);
3047 if (CSRReg
|| !NewVRegs
.empty())
3048 // Return now if we decide to use a CSR or create new vregs due to
3055 LiveRangeStage Stage
= getStage(VirtReg
);
3056 LLVM_DEBUG(dbgs() << StageName
[Stage
] << " Cascade "
3057 << ExtraRegInfo
[VirtReg
.reg
].Cascade
<< '\n');
3059 // Try to evict a less worthy live range, but only for ranges from the primary
3060 // queue. The RS_Split ranges already failed to do this, and they should not
3061 // get a second chance until they have been split.
3062 if (Stage
!= RS_Split
)
3063 if (unsigned PhysReg
=
3064 tryEvict(VirtReg
, Order
, NewVRegs
, CostPerUseLimit
,
3066 unsigned Hint
= MRI
->getSimpleHint(VirtReg
.reg
);
3067 // If VirtReg has a hint and that hint is broken record this
3068 // virtual register as a recoloring candidate for broken hint.
3069 // Indeed, since we evicted a variable in its neighborhood it is
3070 // likely we can at least partially recolor some of the
3071 // copy-related live-ranges.
3072 if (Hint
&& Hint
!= PhysReg
)
3073 SetOfBrokenHints
.insert(&VirtReg
);
3074 // If VirtReg eviction someone, the eviction info for it as an evictee is
3075 // no longre relevant.
3076 LastEvicted
.clearEvicteeInfo(VirtReg
.reg
);
3080 assert((NewVRegs
.empty() || Depth
) && "Cannot append to existing NewVRegs");
3082 // The first time we see a live range, don't try to split or spill.
3083 // Wait until the second time, when all smaller ranges have been allocated.
3084 // This gives a better picture of the interference to split around.
3085 if (Stage
< RS_Split
) {
3086 setStage(VirtReg
, RS_Split
);
3087 LLVM_DEBUG(dbgs() << "wait for second round\n");
3088 NewVRegs
.push_back(VirtReg
.reg
);
3092 if (Stage
< RS_Spill
) {
3093 // Try splitting VirtReg or interferences.
3094 unsigned NewVRegSizeBefore
= NewVRegs
.size();
3095 unsigned PhysReg
= trySplit(VirtReg
, Order
, NewVRegs
);
3096 if (PhysReg
|| (NewVRegs
.size() - NewVRegSizeBefore
)) {
3097 // If VirtReg got split, the eviction info is no longre relevant.
3098 LastEvicted
.clearEvicteeInfo(VirtReg
.reg
);
3103 // If we couldn't allocate a register from spilling, there is probably some
3104 // invalid inline assembly. The base class will report it.
3105 if (Stage
>= RS_Done
|| !VirtReg
.isSpillable())
3106 return tryLastChanceRecoloring(VirtReg
, Order
, NewVRegs
, FixedRegisters
,
3109 // Finally spill VirtReg itself.
3110 if (EnableDeferredSpilling
&& getStage(VirtReg
) < RS_Memory
) {
3111 // TODO: This is experimental and in particular, we do not model
3112 // the live range splitting done by spilling correctly.
3113 // We would need a deep integration with the spiller to do the
3114 // right thing here. Anyway, that is still good for early testing.
3115 setStage(VirtReg
, RS_Memory
);
3116 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3117 NewVRegs
.push_back(VirtReg
.reg
);
3119 NamedRegionTimer
T("spill", "Spiller", TimerGroupName
,
3120 TimerGroupDescription
, TimePassesIsEnabled
);
3121 LiveRangeEdit
LRE(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
3122 spiller().spill(LRE
);
3123 setStage(NewVRegs
.begin(), NewVRegs
.end(), RS_Done
);
3126 MF
->verify(this, "After spilling");
3129 // The live virtual register requesting allocation was spilled, so tell
3130 // the caller not to allocate anything during this round.
3134 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop
*L
, unsigned &Reloads
,
3135 unsigned &FoldedReloads
,
3137 unsigned &FoldedSpills
) {
3143 // Sum up the spill and reloads in subloops.
3144 for (MachineLoop
*SubLoop
: *L
) {
3145 unsigned SubReloads
;
3146 unsigned SubFoldedReloads
;
3148 unsigned SubFoldedSpills
;
3150 reportNumberOfSplillsReloads(SubLoop
, SubReloads
, SubFoldedReloads
,
3151 SubSpills
, SubFoldedSpills
);
3152 Reloads
+= SubReloads
;
3153 FoldedReloads
+= SubFoldedReloads
;
3154 Spills
+= SubSpills
;
3155 FoldedSpills
+= SubFoldedSpills
;
3158 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
3159 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
3162 for (MachineBasicBlock
*MBB
: L
->getBlocks())
3163 // Handle blocks that were not included in subloops.
3164 if (Loops
->getLoopFor(MBB
) == L
)
3165 for (MachineInstr
&MI
: *MBB
) {
3166 SmallVector
<const MachineMemOperand
*, 2> Accesses
;
3167 auto isSpillSlotAccess
= [&MFI
](const MachineMemOperand
*A
) {
3168 return MFI
.isSpillSlotObjectIndex(
3169 cast
<FixedStackPseudoSourceValue
>(A
->getPseudoValue())
3173 if (TII
->isLoadFromStackSlot(MI
, FI
) && MFI
.isSpillSlotObjectIndex(FI
))
3175 else if (TII
->hasLoadFromStackSlot(MI
, Accesses
) &&
3176 llvm::any_of(Accesses
, isSpillSlotAccess
))
3178 else if (TII
->isStoreToStackSlot(MI
, FI
) &&
3179 MFI
.isSpillSlotObjectIndex(FI
))
3181 else if (TII
->hasStoreToStackSlot(MI
, Accesses
) &&
3182 llvm::any_of(Accesses
, isSpillSlotAccess
))
3186 if (Reloads
|| FoldedReloads
|| Spills
|| FoldedSpills
) {
3187 using namespace ore
;
3190 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "LoopSpillReload",
3191 L
->getStartLoc(), L
->getHeader());
3193 R
<< NV("NumSpills", Spills
) << " spills ";
3195 R
<< NV("NumFoldedSpills", FoldedSpills
) << " folded spills ";
3197 R
<< NV("NumReloads", Reloads
) << " reloads ";
3199 R
<< NV("NumFoldedReloads", FoldedReloads
) << " folded reloads ";
3200 R
<< "generated in loop";
3206 bool RAGreedy::runOnMachineFunction(MachineFunction
&mf
) {
3207 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3208 << "********** Function: " << mf
.getName() << '\n');
3211 TRI
= MF
->getSubtarget().getRegisterInfo();
3212 TII
= MF
->getSubtarget().getInstrInfo();
3213 RCI
.runOnMachineFunction(mf
);
3215 EnableLocalReassign
= EnableLocalReassignment
||
3216 MF
->getSubtarget().enableRALocalReassignment(
3217 MF
->getTarget().getOptLevel());
3219 EnableAdvancedRASplitCost
= ConsiderLocalIntervalCost
||
3220 MF
->getSubtarget().enableAdvancedRASplitCost();
3223 MF
->verify(this, "Before greedy register allocator");
3225 RegAllocBase::init(getAnalysis
<VirtRegMap
>(),
3226 getAnalysis
<LiveIntervals
>(),
3227 getAnalysis
<LiveRegMatrix
>());
3228 Indexes
= &getAnalysis
<SlotIndexes
>();
3229 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
3230 DomTree
= &getAnalysis
<MachineDominatorTree
>();
3231 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
3232 SpillerInstance
.reset(createInlineSpiller(*this, *MF
, *VRM
));
3233 Loops
= &getAnalysis
<MachineLoopInfo
>();
3234 Bundles
= &getAnalysis
<EdgeBundles
>();
3235 SpillPlacer
= &getAnalysis
<SpillPlacement
>();
3236 DebugVars
= &getAnalysis
<LiveDebugVariables
>();
3237 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3239 initializeCSRCost();
3241 calculateSpillWeightsAndHints(*LIS
, mf
, VRM
, *Loops
, *MBFI
);
3243 LLVM_DEBUG(LIS
->dump());
3245 SA
.reset(new SplitAnalysis(*VRM
, *LIS
, *Loops
));
3246 SE
.reset(new SplitEditor(*SA
, *AA
, *LIS
, *VRM
, *DomTree
, *MBFI
));
3247 ExtraRegInfo
.clear();
3248 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
3250 IntfCache
.init(MF
, Matrix
->getLiveUnions(), Indexes
, LIS
, TRI
);
3251 GlobalCand
.resize(32); // This will grow as needed.
3252 SetOfBrokenHints
.clear();
3253 LastEvicted
.clear();
3256 tryHintsRecoloring();
3258 reportNumberOfSplillsReloads();