1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
62 #define DEBUG_TYPE "regalloc"
64 STATISTIC(numJoins
, "Number of interval joins performed");
65 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
66 STATISTIC(numCommutes
, "Number of instruction commuting performed");
67 STATISTIC(numExtends
, "Number of copies extended");
68 STATISTIC(NumReMats
, "Number of instructions re-materialized");
69 STATISTIC(NumInflated
, "Number of register classes inflated");
70 STATISTIC(NumLaneConflicts
, "Number of dead lane conflicts tested");
71 STATISTIC(NumLaneResolves
, "Number of dead lane conflicts resolved");
72 STATISTIC(NumShrinkToUses
, "Number of shrinkToUses called");
74 static cl::opt
<bool> EnableJoining("join-liveintervals",
75 cl::desc("Coalesce copies (default=true)"),
76 cl::init(true), cl::Hidden
);
78 static cl::opt
<bool> UseTerminalRule("terminal-rule",
79 cl::desc("Apply the terminal rule"),
80 cl::init(false), cl::Hidden
);
82 /// Temporary flag to test critical edge unsplitting.
84 EnableJoinSplits("join-splitedges",
85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden
);
87 /// Temporary flag to test global copy optimization.
88 static cl::opt
<cl::boolOrDefault
>
89 EnableGlobalCopies("join-globalcopies",
90 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91 cl::init(cl::BOU_UNSET
), cl::Hidden
);
94 VerifyCoalescing("verify-coalescing",
95 cl::desc("Verify machine instrs before and after register coalescing"),
98 static cl::opt
<unsigned> LateRematUpdateThreshold(
99 "late-remat-update-threshold", cl::Hidden
,
100 cl::desc("During rematerialization for a copy, if the def instruction has "
101 "many other copy uses to be rematerialized, delay the multiple "
102 "separate live interval update work and do them all at once after "
103 "all those rematerialization are done. It will save a lot of "
109 class RegisterCoalescer
: public MachineFunctionPass
,
110 private LiveRangeEdit::Delegate
{
112 MachineRegisterInfo
* MRI
;
113 const TargetRegisterInfo
* TRI
;
114 const TargetInstrInfo
* TII
;
116 const MachineLoopInfo
* Loops
;
118 RegisterClassInfo RegClassInfo
;
120 /// A LaneMask to remember on which subregister live ranges we need to call
121 /// shrinkToUses() later.
122 LaneBitmask ShrinkMask
;
124 /// True if the main range of the currently coalesced intervals should be
125 /// checked for smaller live intervals.
126 bool ShrinkMainRange
;
128 /// True if the coalescer should aggressively coalesce global copies
129 /// in favor of keeping local copies.
130 bool JoinGlobalCopies
;
132 /// True if the coalescer should aggressively coalesce fall-thru
133 /// blocks exclusively containing copies.
136 /// Copy instructions yet to be coalesced.
137 SmallVector
<MachineInstr
*, 8> WorkList
;
138 SmallVector
<MachineInstr
*, 8> LocalWorkList
;
140 /// Set of instruction pointers that have been erased, and
141 /// that may be present in WorkList.
142 SmallPtrSet
<MachineInstr
*, 8> ErasedInstrs
;
144 /// Dead instructions that are about to be deleted.
145 SmallVector
<MachineInstr
*, 8> DeadDefs
;
147 /// Virtual registers to be considered for register class inflation.
148 SmallVector
<unsigned, 8> InflateRegs
;
150 /// The collection of live intervals which should have been updated
151 /// immediately after rematerialiation but delayed until
152 /// lateLiveIntervalUpdate is called.
153 DenseSet
<unsigned> ToBeUpdated
;
155 /// Recursively eliminate dead defs in DeadDefs.
156 void eliminateDeadDefs();
158 /// LiveRangeEdit callback for eliminateDeadDefs().
159 void LRE_WillEraseInstruction(MachineInstr
*MI
) override
;
161 /// Coalesce the LocalWorkList.
162 void coalesceLocals();
164 /// Join compatible live intervals
165 void joinAllIntervals();
167 /// Coalesce copies in the specified MBB, putting
168 /// copies that cannot yet be coalesced into WorkList.
169 void copyCoalesceInMBB(MachineBasicBlock
*MBB
);
171 /// Tries to coalesce all copies in CurrList. Returns true if any progress
173 bool copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
);
175 /// If one def has many copy like uses, and those copy uses are all
176 /// rematerialized, the live interval update needed for those
177 /// rematerializations will be delayed and done all at once instead
178 /// of being done multiple times. This is to save compile cost because
179 /// live interval update is costly.
180 void lateLiveIntervalUpdate();
182 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
183 /// src/dst of the copy instruction CopyMI. This returns true if the copy
184 /// was successfully coalesced away. If it is not currently possible to
185 /// coalesce this interval, but it may be possible if other things get
186 /// coalesced, then it returns true by reference in 'Again'.
187 bool joinCopy(MachineInstr
*CopyMI
, bool &Again
);
189 /// Attempt to join these two intervals. On failure, this
190 /// returns false. The output "SrcInt" will not have been modified, so we
191 /// can use this information below to update aliases.
192 bool joinIntervals(CoalescerPair
&CP
);
194 /// Attempt joining two virtual registers. Return true on success.
195 bool joinVirtRegs(CoalescerPair
&CP
);
197 /// Attempt joining with a reserved physreg.
198 bool joinReservedPhysReg(CoalescerPair
&CP
);
200 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
201 /// Subranges in @p LI which only partially interfere with the desired
202 /// LaneMask are split as necessary. @p LaneMask are the lanes that
203 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
204 /// lanemasks already adjusted to the coalesced register.
205 void mergeSubRangeInto(LiveInterval
&LI
, const LiveRange
&ToMerge
,
206 LaneBitmask LaneMask
, CoalescerPair
&CP
);
208 /// Join the liveranges of two subregisters. Joins @p RRange into
209 /// @p LRange, @p RRange may be invalid afterwards.
210 void joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
211 LaneBitmask LaneMask
, const CoalescerPair
&CP
);
213 /// We found a non-trivially-coalescable copy. If the source value number is
214 /// defined by a copy from the destination reg see if we can merge these two
215 /// destination reg valno# into a single value number, eliminating a copy.
216 /// This returns true if an interval was modified.
217 bool adjustCopiesBackFrom(const CoalescerPair
&CP
, MachineInstr
*CopyMI
);
219 /// Return true if there are definitions of IntB
220 /// other than BValNo val# that can reach uses of AValno val# of IntA.
221 bool hasOtherReachingDefs(LiveInterval
&IntA
, LiveInterval
&IntB
,
222 VNInfo
*AValNo
, VNInfo
*BValNo
);
224 /// We found a non-trivially-coalescable copy.
225 /// If the source value number is defined by a commutable instruction and
226 /// its other operand is coalesced to the copy dest register, see if we
227 /// can transform the copy into a noop by commuting the definition.
228 /// This returns a pair of two flags:
229 /// - the first element is true if an interval was modified,
230 /// - the second element is true if the destination interval needs
231 /// to be shrunk after deleting the copy.
232 std::pair
<bool,bool> removeCopyByCommutingDef(const CoalescerPair
&CP
,
233 MachineInstr
*CopyMI
);
235 /// We found a copy which can be moved to its less frequent predecessor.
236 bool removePartialRedundancy(const CoalescerPair
&CP
, MachineInstr
&CopyMI
);
238 /// If the source of a copy is defined by a
239 /// trivial computation, replace the copy by rematerialize the definition.
240 bool reMaterializeTrivialDef(const CoalescerPair
&CP
, MachineInstr
*CopyMI
,
243 /// Return true if a copy involving a physreg should be joined.
244 bool canJoinPhys(const CoalescerPair
&CP
);
246 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
247 /// number if it is not zero. If DstReg is a physical register and the
248 /// existing subregister number of the def / use being updated is not zero,
249 /// make sure to set it to the correct physical subregister.
250 void updateRegDefsUses(unsigned SrcReg
, unsigned DstReg
, unsigned SubIdx
);
252 /// If the given machine operand reads only undefined lanes add an undef
254 /// This can happen when undef uses were previously concealed by a copy
255 /// which we coalesced. Example:
256 /// %0:sub0<def,read-undef> = ...
257 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
258 /// = use %1:sub1 <-- hidden undef use
259 void addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
260 MachineOperand
&MO
, unsigned SubRegIdx
);
262 /// Handle copies of undef values. If the undef value is an incoming
263 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
264 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
265 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
266 MachineInstr
*eliminateUndefCopy(MachineInstr
*CopyMI
);
268 /// Check whether or not we should apply the terminal rule on the
269 /// destination (Dst) of \p Copy.
270 /// When the terminal rule applies, Copy is not profitable to
272 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
273 /// at least one interference (Dst, Dst2). If Dst is terminal, the
274 /// terminal rule consists in checking that at least one of
275 /// interfering node, say Dst2, has an affinity of equal or greater
277 /// In that case, Dst2 and Dst will not be able to be both coalesced
278 /// with Src. Since Dst2 exposes more coalescing opportunities than
279 /// Dst, we can drop \p Copy.
280 bool applyTerminalRule(const MachineInstr
&Copy
) const;
282 /// Wrapper method for \see LiveIntervals::shrinkToUses.
283 /// This method does the proper fixing of the live-ranges when the afore
284 /// mentioned method returns true.
285 void shrinkToUses(LiveInterval
*LI
,
286 SmallVectorImpl
<MachineInstr
* > *Dead
= nullptr) {
288 if (LIS
->shrinkToUses(LI
, Dead
)) {
289 /// Check whether or not \p LI is composed by multiple connected
290 /// components and if that is the case, fix that.
291 SmallVector
<LiveInterval
*, 8> SplitLIs
;
292 LIS
->splitSeparateComponents(*LI
, SplitLIs
);
296 /// Wrapper Method to do all the necessary work when an Instruction is
298 /// Optimizations should use this to make sure that deleted instructions
299 /// are always accounted for.
300 void deleteInstr(MachineInstr
* MI
) {
301 ErasedInstrs
.insert(MI
);
302 LIS
->RemoveMachineInstrFromMaps(*MI
);
303 MI
->eraseFromParent();
307 static char ID
; ///< Class identification, replacement for typeinfo
309 RegisterCoalescer() : MachineFunctionPass(ID
) {
310 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
313 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
315 void releaseMemory() override
;
317 /// This is the pass entry point.
318 bool runOnMachineFunction(MachineFunction
&) override
;
320 /// Implement the dump method.
321 void print(raw_ostream
&O
, const Module
* = nullptr) const override
;
324 } // end anonymous namespace
326 char RegisterCoalescer::ID
= 0;
328 char &llvm::RegisterCoalescerID
= RegisterCoalescer::ID
;
330 INITIALIZE_PASS_BEGIN(RegisterCoalescer
, "simple-register-coalescing",
331 "Simple Register Coalescing", false, false)
332 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
333 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
334 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
335 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
336 INITIALIZE_PASS_END(RegisterCoalescer
, "simple-register-coalescing",
337 "Simple Register Coalescing", false, false)
339 static bool isMoveInstr(const TargetRegisterInfo
&tri
, const MachineInstr
*MI
,
340 unsigned &Src
, unsigned &Dst
,
341 unsigned &SrcSub
, unsigned &DstSub
) {
343 Dst
= MI
->getOperand(0).getReg();
344 DstSub
= MI
->getOperand(0).getSubReg();
345 Src
= MI
->getOperand(1).getReg();
346 SrcSub
= MI
->getOperand(1).getSubReg();
347 } else if (MI
->isSubregToReg()) {
348 Dst
= MI
->getOperand(0).getReg();
349 DstSub
= tri
.composeSubRegIndices(MI
->getOperand(0).getSubReg(),
350 MI
->getOperand(3).getImm());
351 Src
= MI
->getOperand(2).getReg();
352 SrcSub
= MI
->getOperand(2).getSubReg();
358 /// Return true if this block should be vacated by the coalescer to eliminate
359 /// branches. The important cases to handle in the coalescer are critical edges
360 /// split during phi elimination which contain only copies. Simple blocks that
361 /// contain non-branches should also be vacated, but this can be handled by an
362 /// earlier pass similar to early if-conversion.
363 static bool isSplitEdge(const MachineBasicBlock
*MBB
) {
364 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
367 for (const auto &MI
: *MBB
) {
368 if (!MI
.isCopyLike() && !MI
.isUnconditionalBranch())
374 bool CoalescerPair::setRegisters(const MachineInstr
*MI
) {
378 Flipped
= CrossClass
= false;
380 unsigned Src
, Dst
, SrcSub
, DstSub
;
381 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
383 Partial
= SrcSub
|| DstSub
;
385 // If one register is a physreg, it must be Dst.
386 if (TargetRegisterInfo::isPhysicalRegister(Src
)) {
387 if (TargetRegisterInfo::isPhysicalRegister(Dst
))
390 std::swap(SrcSub
, DstSub
);
394 const MachineRegisterInfo
&MRI
= MI
->getMF()->getRegInfo();
396 if (TargetRegisterInfo::isPhysicalRegister(Dst
)) {
397 // Eliminate DstSub on a physreg.
399 Dst
= TRI
.getSubReg(Dst
, DstSub
);
400 if (!Dst
) return false;
404 // Eliminate SrcSub by picking a corresponding Dst superregister.
406 Dst
= TRI
.getMatchingSuperReg(Dst
, SrcSub
, MRI
.getRegClass(Src
));
407 if (!Dst
) return false;
408 } else if (!MRI
.getRegClass(Src
)->contains(Dst
)) {
412 // Both registers are virtual.
413 const TargetRegisterClass
*SrcRC
= MRI
.getRegClass(Src
);
414 const TargetRegisterClass
*DstRC
= MRI
.getRegClass(Dst
);
416 // Both registers have subreg indices.
417 if (SrcSub
&& DstSub
) {
418 // Copies between different sub-registers are never coalescable.
419 if (Src
== Dst
&& SrcSub
!= DstSub
)
422 NewRC
= TRI
.getCommonSuperRegClass(SrcRC
, SrcSub
, DstRC
, DstSub
,
427 // SrcReg will be merged with a sub-register of DstReg.
429 NewRC
= TRI
.getMatchingSuperRegClass(DstRC
, SrcRC
, DstSub
);
431 // DstReg will be merged with a sub-register of SrcReg.
433 NewRC
= TRI
.getMatchingSuperRegClass(SrcRC
, DstRC
, SrcSub
);
435 // This is a straight copy without sub-registers.
436 NewRC
= TRI
.getCommonSubClass(DstRC
, SrcRC
);
439 // The combined constraint may be impossible to satisfy.
443 // Prefer SrcReg to be a sub-register of DstReg.
444 // FIXME: Coalescer should support subregs symmetrically.
445 if (DstIdx
&& !SrcIdx
) {
447 std::swap(SrcIdx
, DstIdx
);
451 CrossClass
= NewRC
!= DstRC
|| NewRC
!= SrcRC
;
453 // Check our invariants
454 assert(TargetRegisterInfo::isVirtualRegister(Src
) && "Src must be virtual");
455 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst
) && DstSub
) &&
456 "Cannot have a physical SubIdx");
462 bool CoalescerPair::flip() {
463 if (TargetRegisterInfo::isPhysicalRegister(DstReg
))
465 std::swap(SrcReg
, DstReg
);
466 std::swap(SrcIdx
, DstIdx
);
471 bool CoalescerPair::isCoalescable(const MachineInstr
*MI
) const {
474 unsigned Src
, Dst
, SrcSub
, DstSub
;
475 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
478 // Find the virtual register that is SrcReg.
481 std::swap(SrcSub
, DstSub
);
482 } else if (Src
!= SrcReg
) {
486 // Now check that Dst matches DstReg.
487 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
488 if (!TargetRegisterInfo::isPhysicalRegister(Dst
))
490 assert(!DstIdx
&& !SrcIdx
&& "Inconsistent CoalescerPair state.");
491 // DstSub could be set for a physreg from INSERT_SUBREG.
493 Dst
= TRI
.getSubReg(Dst
, DstSub
);
496 return DstReg
== Dst
;
497 // This is a partial register copy. Check that the parts match.
498 return TRI
.getSubReg(DstReg
, SrcSub
) == Dst
;
500 // DstReg is virtual.
503 // Registers match, do the subregisters line up?
504 return TRI
.composeSubRegIndices(SrcIdx
, SrcSub
) ==
505 TRI
.composeSubRegIndices(DstIdx
, DstSub
);
509 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage
&AU
) const {
510 AU
.setPreservesCFG();
511 AU
.addRequired
<AAResultsWrapperPass
>();
512 AU
.addRequired
<LiveIntervals
>();
513 AU
.addPreserved
<LiveIntervals
>();
514 AU
.addPreserved
<SlotIndexes
>();
515 AU
.addRequired
<MachineLoopInfo
>();
516 AU
.addPreserved
<MachineLoopInfo
>();
517 AU
.addPreservedID(MachineDominatorsID
);
518 MachineFunctionPass::getAnalysisUsage(AU
);
521 void RegisterCoalescer::eliminateDeadDefs() {
522 SmallVector
<unsigned, 8> NewRegs
;
523 LiveRangeEdit(nullptr, NewRegs
, *MF
, *LIS
,
524 nullptr, this).eliminateDeadDefs(DeadDefs
);
527 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr
*MI
) {
528 // MI may be in WorkList. Make sure we don't visit it.
529 ErasedInstrs
.insert(MI
);
532 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair
&CP
,
533 MachineInstr
*CopyMI
) {
534 assert(!CP
.isPartial() && "This doesn't work for partial copies.");
535 assert(!CP
.isPhys() && "This doesn't work for physreg copies.");
538 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
540 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
541 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
543 // We have a non-trivially-coalescable copy with IntA being the source and
544 // IntB being the dest, thus this defines a value number in IntB. If the
545 // source value number (in IntA) is defined by a copy from B, see if we can
546 // merge these two pieces of B into a single value number, eliminating a copy.
551 // B1 = A3 <- this copy
553 // In this case, B0 can be extended to where the B1 copy lives, allowing the
554 // B1 value number to be replaced with B0 (which simplifies the B
557 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
558 // the example above.
559 LiveInterval::iterator BS
= IntB
.FindSegmentContaining(CopyIdx
);
560 if (BS
== IntB
.end()) return false;
561 VNInfo
*BValNo
= BS
->valno
;
563 // Get the location that B is defined at. Two options: either this value has
564 // an unknown definition point or it is defined at CopyIdx. If unknown, we
566 if (BValNo
->def
!= CopyIdx
) return false;
568 // AValNo is the value number in A that defines the copy, A3 in the example.
569 SlotIndex CopyUseIdx
= CopyIdx
.getRegSlot(true);
570 LiveInterval::iterator AS
= IntA
.FindSegmentContaining(CopyUseIdx
);
571 // The live segment might not exist after fun with physreg coalescing.
572 if (AS
== IntA
.end()) return false;
573 VNInfo
*AValNo
= AS
->valno
;
575 // If AValNo is defined as a copy from IntB, we can potentially process this.
576 // Get the instruction that defines this value number.
577 MachineInstr
*ACopyMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
578 // Don't allow any partial copies, even if isCoalescable() allows them.
579 if (!CP
.isCoalescable(ACopyMI
) || !ACopyMI
->isFullCopy())
582 // Get the Segment in IntB that this value number starts with.
583 LiveInterval::iterator ValS
=
584 IntB
.FindSegmentContaining(AValNo
->def
.getPrevSlot());
585 if (ValS
== IntB
.end())
588 // Make sure that the end of the live segment is inside the same block as
590 MachineInstr
*ValSEndInst
=
591 LIS
->getInstructionFromIndex(ValS
->end
.getPrevSlot());
592 if (!ValSEndInst
|| ValSEndInst
->getParent() != CopyMI
->getParent())
595 // Okay, we now know that ValS ends in the same block that the CopyMI
596 // live-range starts. If there are no intervening live segments between them
597 // in IntB, we can merge them.
598 if (ValS
+1 != BS
) return false;
600 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB
.reg
, TRI
));
602 SlotIndex FillerStart
= ValS
->end
, FillerEnd
= BS
->start
;
603 // We are about to delete CopyMI, so need to remove it as the 'instruction
604 // that defines this value #'. Update the valnum with the new defining
606 BValNo
->def
= FillerStart
;
608 // Okay, we can merge them. We need to insert a new liverange:
609 // [ValS.end, BS.begin) of either value number, then we merge the
610 // two value numbers.
611 IntB
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, BValNo
));
613 // Okay, merge "B1" into the same value number as "B0".
614 if (BValNo
!= ValS
->valno
)
615 IntB
.MergeValueNumberInto(BValNo
, ValS
->valno
);
617 // Do the same for the subregister segments.
618 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
619 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
620 // removed to prevent creating bogus SubRange Segments.
621 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyIdx
);
622 if (SS
!= S
.end() && SlotIndex::isSameInstr(SS
->start
, SS
->end
)) {
623 S
.removeSegment(*SS
, true);
626 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
627 S
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, SubBValNo
));
628 VNInfo
*SubValSNo
= S
.getVNInfoAt(AValNo
->def
.getPrevSlot());
629 if (SubBValNo
!= SubValSNo
)
630 S
.MergeValueNumberInto(SubBValNo
, SubValSNo
);
633 LLVM_DEBUG(dbgs() << " result = " << IntB
<< '\n');
635 // If the source instruction was killing the source register before the
636 // merge, unset the isKill marker given the live range has been extended.
637 int UIdx
= ValSEndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
639 ValSEndInst
->getOperand(UIdx
).setIsKill(false);
643 CopyMI
->substituteRegister(IntA
.reg
, IntB
.reg
, 0, *TRI
);
644 // If the copy instruction was killing the destination register or any
645 // subrange before the merge trim the live range.
646 bool RecomputeLiveRange
= AS
->end
== CopyIdx
;
647 if (!RecomputeLiveRange
) {
648 for (LiveInterval::SubRange
&S
: IntA
.subranges()) {
649 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyUseIdx
);
650 if (SS
!= S
.end() && SS
->end
== CopyIdx
) {
651 RecomputeLiveRange
= true;
656 if (RecomputeLiveRange
)
663 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval
&IntA
,
667 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
669 if (LIS
->hasPHIKill(IntA
, AValNo
))
672 for (LiveRange::Segment
&ASeg
: IntA
.segments
) {
673 if (ASeg
.valno
!= AValNo
) continue;
674 LiveInterval::iterator BI
=
675 std::upper_bound(IntB
.begin(), IntB
.end(), ASeg
.start
);
676 if (BI
!= IntB
.begin())
678 for (; BI
!= IntB
.end() && ASeg
.end
>= BI
->start
; ++BI
) {
679 if (BI
->valno
== BValNo
)
681 if (BI
->start
<= ASeg
.start
&& BI
->end
> ASeg
.start
)
683 if (BI
->start
> ASeg
.start
&& BI
->start
< ASeg
.end
)
690 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
691 /// range @Dst and use value number @p DstValNo there.
692 static std::pair
<bool,bool>
693 addSegmentsWithValNo(LiveRange
&Dst
, VNInfo
*DstValNo
, const LiveRange
&Src
,
694 const VNInfo
*SrcValNo
) {
695 bool Changed
= false;
696 bool MergedWithDead
= false;
697 for (const LiveRange::Segment
&S
: Src
.segments
) {
698 if (S
.valno
!= SrcValNo
)
700 // This is adding a segment from Src that ends in a copy that is about
701 // to be removed. This segment is going to be merged with a pre-existing
702 // segment in Dst. This works, except in cases when the corresponding
703 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
704 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
705 // Recognized such cases, so that the segments can be shrunk.
706 LiveRange::Segment Added
= LiveRange::Segment(S
.start
, S
.end
, DstValNo
);
707 LiveRange::Segment
&Merged
= *Dst
.addSegment(Added
);
708 if (Merged
.end
.isDead())
709 MergedWithDead
= true;
712 return std::make_pair(Changed
, MergedWithDead
);
716 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair
&CP
,
717 MachineInstr
*CopyMI
) {
718 assert(!CP
.isPhys());
721 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
723 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
725 // We found a non-trivially-coalescable copy with IntA being the source and
726 // IntB being the dest, thus this defines a value number in IntB. If the
727 // source value number (in IntA) is defined by a commutable instruction and
728 // its other operand is coalesced to the copy dest register, see if we can
729 // transform the copy into a noop by commuting the definition. For example,
731 // A3 = op A2 killed B0
733 // B1 = A3 <- this copy
735 // = op A3 <- more uses
739 // B2 = op B0 killed A2
741 // B1 = B2 <- now an identity copy
743 // = op B2 <- more uses
745 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
746 // the example above.
747 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
748 VNInfo
*BValNo
= IntB
.getVNInfoAt(CopyIdx
);
749 assert(BValNo
!= nullptr && BValNo
->def
== CopyIdx
);
751 // AValNo is the value number in A that defines the copy, A3 in the example.
752 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
.getRegSlot(true));
753 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
754 if (AValNo
->isPHIDef())
755 return { false, false };
756 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
758 return { false, false };
759 if (!DefMI
->isCommutable())
760 return { false, false };
761 // If DefMI is a two-address instruction then commuting it will change the
762 // destination register.
763 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
764 assert(DefIdx
!= -1);
766 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
767 return { false, false };
769 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
770 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
771 // passed to the method. That _other_ operand is chosen by
772 // the findCommutedOpIndices() method.
774 // That is obviously an area for improvement in case of instructions having
775 // more than 2 operands. For example, if some instruction has 3 commutable
776 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
777 // op#2<->op#3) of commute transformation should be considered/tried here.
778 unsigned NewDstIdx
= TargetInstrInfo::CommuteAnyOperandIndex
;
779 if (!TII
->findCommutedOpIndices(*DefMI
, UseOpIdx
, NewDstIdx
))
780 return { false, false };
782 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
783 unsigned NewReg
= NewDstMO
.getReg();
784 if (NewReg
!= IntB
.reg
|| !IntB
.Query(AValNo
->def
).isKill())
785 return { false, false };
787 // Make sure there are no other definitions of IntB that would reach the
788 // uses which the new definition can reach.
789 if (hasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
790 return { false, false };
792 // If some of the uses of IntA.reg is already coalesced away, return false.
793 // It's not possible to determine whether it's safe to perform the coalescing.
794 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(IntA
.reg
)) {
795 MachineInstr
*UseMI
= MO
.getParent();
796 unsigned OpNo
= &MO
- &UseMI
->getOperand(0);
797 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
);
798 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
799 if (US
== IntA
.end() || US
->valno
!= AValNo
)
801 // If this use is tied to a def, we can't rewrite the register.
802 if (UseMI
->isRegTiedToDefOperand(OpNo
))
803 return { false, false };
806 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo
->def
<< '\t'
809 // At this point we have decided that it is legal to do this
810 // transformation. Start by commuting the instruction.
811 MachineBasicBlock
*MBB
= DefMI
->getParent();
812 MachineInstr
*NewMI
=
813 TII
->commuteInstruction(*DefMI
, false, UseOpIdx
, NewDstIdx
);
815 return { false, false };
816 if (TargetRegisterInfo::isVirtualRegister(IntA
.reg
) &&
817 TargetRegisterInfo::isVirtualRegister(IntB
.reg
) &&
818 !MRI
->constrainRegClass(IntB
.reg
, MRI
->getRegClass(IntA
.reg
)))
819 return { false, false };
820 if (NewMI
!= DefMI
) {
821 LIS
->ReplaceMachineInstrInMaps(*DefMI
, *NewMI
);
822 MachineBasicBlock::iterator Pos
= DefMI
;
823 MBB
->insert(Pos
, NewMI
);
827 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
836 // Update uses of IntA of the specific Val# with IntB.
837 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(IntA
.reg
),
839 UI
!= UE
; /* ++UI is below because of possible MI removal */) {
840 MachineOperand
&UseMO
= *UI
;
844 MachineInstr
*UseMI
= UseMO
.getParent();
845 if (UseMI
->isDebugValue()) {
846 // FIXME These don't have an instruction index. Not clear we have enough
847 // info to decide whether to do this replacement or not. For now do it.
848 UseMO
.setReg(NewReg
);
851 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
).getRegSlot(true);
852 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
853 assert(US
!= IntA
.end() && "Use must be live");
854 if (US
->valno
!= AValNo
)
856 // Kill flags are no longer accurate. They are recomputed after RA.
857 UseMO
.setIsKill(false);
858 if (TargetRegisterInfo::isPhysicalRegister(NewReg
))
859 UseMO
.substPhysReg(NewReg
, *TRI
);
861 UseMO
.setReg(NewReg
);
864 if (!UseMI
->isCopy())
866 if (UseMI
->getOperand(0).getReg() != IntB
.reg
||
867 UseMI
->getOperand(0).getSubReg())
870 // This copy will become a noop. If it's defining a new val#, merge it into
872 SlotIndex DefIdx
= UseIdx
.getRegSlot();
873 VNInfo
*DVNI
= IntB
.getVNInfoAt(DefIdx
);
876 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx
<< '\t' << *UseMI
);
877 assert(DVNI
->def
== DefIdx
);
878 BValNo
= IntB
.MergeValueNumberInto(DVNI
, BValNo
);
879 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
880 VNInfo
*SubDVNI
= S
.getVNInfoAt(DefIdx
);
883 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
884 assert(SubBValNo
->def
== CopyIdx
);
885 S
.MergeValueNumberInto(SubDVNI
, SubBValNo
);
891 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
893 bool ShrinkB
= false;
894 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
895 if (IntA
.hasSubRanges() || IntB
.hasSubRanges()) {
896 if (!IntA
.hasSubRanges()) {
897 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntA
.reg
);
898 IntA
.createSubRangeFrom(Allocator
, Mask
, IntA
);
899 } else if (!IntB
.hasSubRanges()) {
900 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntB
.reg
);
901 IntB
.createSubRangeFrom(Allocator
, Mask
, IntB
);
903 SlotIndex AIdx
= CopyIdx
.getRegSlot(true);
905 for (LiveInterval::SubRange
&SA
: IntA
.subranges()) {
906 VNInfo
*ASubValNo
= SA
.getVNInfoAt(AIdx
);
907 assert(ASubValNo
!= nullptr);
908 MaskA
|= SA
.LaneMask
;
910 IntB
.refineSubRanges(Allocator
, SA
.LaneMask
,
911 [&Allocator
,&SA
,CopyIdx
,ASubValNo
,&ShrinkB
]
912 (LiveInterval::SubRange
&SR
) {
913 VNInfo
*BSubValNo
= SR
.empty()
914 ? SR
.getNextValue(CopyIdx
, Allocator
)
915 : SR
.getVNInfoAt(CopyIdx
);
916 assert(BSubValNo
!= nullptr);
917 auto P
= addSegmentsWithValNo(SR
, BSubValNo
, SA
, ASubValNo
);
920 BSubValNo
->def
= ASubValNo
->def
;
923 // Go over all subranges of IntB that have not been covered by IntA,
924 // and delete the segments starting at CopyIdx. This can happen if
925 // IntA has undef lanes that are defined in IntB.
926 for (LiveInterval::SubRange
&SB
: IntB
.subranges()) {
927 if ((SB
.LaneMask
& MaskA
).any())
929 if (LiveRange::Segment
*S
= SB
.getSegmentContaining(CopyIdx
))
930 if (S
->start
.getBaseIndex() == CopyIdx
.getBaseIndex())
931 SB
.removeSegment(*S
, true);
935 BValNo
->def
= AValNo
->def
;
936 auto P
= addSegmentsWithValNo(IntB
, BValNo
, IntA
, AValNo
);
938 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB
<< '\n');
940 LIS
->removeVRegDefAt(IntA
, AValNo
->def
);
942 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA
<< '\n');
944 return { true, ShrinkB
};
947 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
948 /// predecessor of BB2, and if B is not redefined on the way from A = B
949 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
950 /// execution goes through the path from BB0 to BB2. We may move B = A
951 /// to the predecessor without such reversed copy.
952 /// So we will transform the program from:
970 /// A special case is when BB0 and BB2 are the same BB which is the only
980 /// We may hoist B = A from BB0/BB2 to BB1.
982 /// The major preconditions for correctness to remove such partial
983 /// redundancy include:
984 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
985 /// the PHI is defined by the reversed copy A = B in BB0.
986 /// 2. No B is referenced from the start of BB2 to B = A.
987 /// 3. No B is defined from A = B to the end of BB0.
988 /// 4. BB1 has only one successor.
990 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
991 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
992 /// colder place, which not only prevent endless loop, but also make sure
993 /// the movement of copy is beneficial.
994 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair
&CP
,
995 MachineInstr
&CopyMI
) {
996 assert(!CP
.isPhys());
997 if (!CopyMI
.isFullCopy())
1000 MachineBasicBlock
&MBB
= *CopyMI
.getParent();
1004 if (MBB
.pred_size() != 2)
1007 LiveInterval
&IntA
=
1008 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
1009 LiveInterval
&IntB
=
1010 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
1012 // A is defined by PHI at the entry of MBB.
1013 SlotIndex CopyIdx
= LIS
->getInstructionIndex(CopyMI
).getRegSlot(true);
1014 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
);
1015 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
1016 if (!AValNo
->isPHIDef())
1019 // No B is referenced before CopyMI in MBB.
1020 if (IntB
.overlaps(LIS
->getMBBStartIdx(&MBB
), CopyIdx
))
1023 // MBB has two predecessors: one contains A = B so no copy will be inserted
1024 // for it. The other one will have a copy moved from MBB.
1025 bool FoundReverseCopy
= false;
1026 MachineBasicBlock
*CopyLeftBB
= nullptr;
1027 for (MachineBasicBlock
*Pred
: MBB
.predecessors()) {
1028 VNInfo
*PVal
= IntA
.getVNInfoBefore(LIS
->getMBBEndIdx(Pred
));
1029 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(PVal
->def
);
1030 if (!DefMI
|| !DefMI
->isFullCopy()) {
1034 // Check DefMI is a reverse copy and it is in BB Pred.
1035 if (DefMI
->getOperand(0).getReg() != IntA
.reg
||
1036 DefMI
->getOperand(1).getReg() != IntB
.reg
||
1037 DefMI
->getParent() != Pred
) {
1041 // If there is any other def of B after DefMI and before the end of Pred,
1042 // we need to keep the copy of B = A at the end of Pred if we remove
1044 bool ValB_Changed
= false;
1045 for (auto VNI
: IntB
.valnos
) {
1046 if (VNI
->isUnused())
1048 if (PVal
->def
< VNI
->def
&& VNI
->def
< LIS
->getMBBEndIdx(Pred
)) {
1049 ValB_Changed
= true;
1057 FoundReverseCopy
= true;
1060 // If no reverse copy is found in predecessors, nothing to do.
1061 if (!FoundReverseCopy
)
1064 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1065 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1066 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1067 // update IntA/IntB.
1069 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1070 // MBB is hotter than CopyLeftBB.
1071 if (CopyLeftBB
&& CopyLeftBB
->succ_size() > 1)
1074 // Now (almost sure it's) ok to move copy.
1076 // Position in CopyLeftBB where we should insert new copy.
1077 auto InsPos
= CopyLeftBB
->getFirstTerminator();
1079 // Make sure that B isn't referenced in the terminators (if any) at the end
1080 // of the predecessor since we're about to insert a new definition of B
1082 if (InsPos
!= CopyLeftBB
->end()) {
1083 SlotIndex InsPosIdx
= LIS
->getInstructionIndex(*InsPos
).getRegSlot(true);
1084 if (IntB
.overlaps(InsPosIdx
, LIS
->getMBBEndIdx(CopyLeftBB
)))
1088 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1089 << printMBBReference(*CopyLeftBB
) << '\t' << CopyMI
);
1091 // Insert new copy to CopyLeftBB.
1092 MachineInstr
*NewCopyMI
= BuildMI(*CopyLeftBB
, InsPos
, CopyMI
.getDebugLoc(),
1093 TII
->get(TargetOpcode::COPY
), IntB
.reg
)
1095 SlotIndex NewCopyIdx
=
1096 LIS
->InsertMachineInstrInMaps(*NewCopyMI
).getRegSlot();
1097 IntB
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1098 for (LiveInterval::SubRange
&SR
: IntB
.subranges())
1099 SR
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1101 // If the newly created Instruction has an address of an instruction that was
1102 // deleted before (object recycled by the allocator) it needs to be removed from
1103 // the deleted list.
1104 ErasedInstrs
.erase(NewCopyMI
);
1106 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1107 << printMBBReference(MBB
) << '\t' << CopyMI
);
1111 // Note: This is fine to remove the copy before updating the live-ranges.
1112 // While updating the live-ranges, we only look at slot indices and
1113 // never go back to the instruction.
1114 // Mark instructions as deleted.
1115 deleteInstr(&CopyMI
);
1117 // Update the liveness.
1118 SmallVector
<SlotIndex
, 8> EndPoints
;
1119 VNInfo
*BValNo
= IntB
.Query(CopyIdx
).valueOutOrDead();
1120 LIS
->pruneValue(*static_cast<LiveRange
*>(&IntB
), CopyIdx
.getRegSlot(),
1122 BValNo
->markUnused();
1123 // Extend IntB to the EndPoints of its original live interval.
1124 LIS
->extendToIndices(IntB
, EndPoints
);
1126 // Now, do the same for its subranges.
1127 for (LiveInterval::SubRange
&SR
: IntB
.subranges()) {
1129 VNInfo
*BValNo
= SR
.Query(CopyIdx
).valueOutOrDead();
1130 assert(BValNo
&& "All sublanes should be live");
1131 LIS
->pruneValue(SR
, CopyIdx
.getRegSlot(), &EndPoints
);
1132 BValNo
->markUnused();
1133 // We can have a situation where the result of the original copy is live,
1134 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1135 // the copy appear as an endpoint from pruneValue(), but we don't want it
1136 // to because the copy has been removed. We can go ahead and remove that
1137 // endpoint; there is no other situation here that there could be a use at
1138 // the same place as we know that the copy is a full copy.
1139 for (unsigned I
= 0; I
!= EndPoints
.size(); ) {
1140 if (SlotIndex::isSameInstr(EndPoints
[I
], CopyIdx
)) {
1141 EndPoints
[I
] = EndPoints
.back();
1142 EndPoints
.pop_back();
1147 LIS
->extendToIndices(SR
, EndPoints
);
1149 // If any dead defs were extended, truncate them.
1150 shrinkToUses(&IntB
);
1152 // Finally, update the live-range of IntA.
1153 shrinkToUses(&IntA
);
1157 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1158 /// defining a subregister.
1159 static bool definesFullReg(const MachineInstr
&MI
, unsigned Reg
) {
1160 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) &&
1161 "This code cannot handle physreg aliasing");
1162 for (const MachineOperand
&Op
: MI
.operands()) {
1163 if (!Op
.isReg() || !Op
.isDef() || Op
.getReg() != Reg
)
1165 // Return true if we define the full register or don't care about the value
1166 // inside other subregisters.
1167 if (Op
.getSubReg() == 0 || Op
.isUndef())
1173 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair
&CP
,
1174 MachineInstr
*CopyMI
,
1177 unsigned SrcReg
= CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg();
1178 unsigned SrcIdx
= CP
.isFlipped() ? CP
.getDstIdx() : CP
.getSrcIdx();
1179 unsigned DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
1180 unsigned DstIdx
= CP
.isFlipped() ? CP
.getSrcIdx() : CP
.getDstIdx();
1181 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
1184 LiveInterval
&SrcInt
= LIS
->getInterval(SrcReg
);
1185 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1186 VNInfo
*ValNo
= SrcInt
.Query(CopyIdx
).valueIn();
1189 if (ValNo
->isPHIDef() || ValNo
->isUnused())
1191 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(ValNo
->def
);
1194 if (DefMI
->isCopyLike()) {
1198 if (!TII
->isAsCheapAsAMove(*DefMI
))
1200 if (!TII
->isTriviallyReMaterializable(*DefMI
, AA
))
1202 if (!definesFullReg(*DefMI
, SrcReg
))
1204 bool SawStore
= false;
1205 if (!DefMI
->isSafeToMove(AA
, SawStore
))
1207 const MCInstrDesc
&MCID
= DefMI
->getDesc();
1208 if (MCID
.getNumDefs() != 1)
1210 // Only support subregister destinations when the def is read-undef.
1211 MachineOperand
&DstOperand
= CopyMI
->getOperand(0);
1212 unsigned CopyDstReg
= DstOperand
.getReg();
1213 if (DstOperand
.getSubReg() && !DstOperand
.isUndef())
1216 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1217 // the register substantially (beyond both source and dest size). This is bad
1218 // for performance since it can cascade through a function, introducing many
1219 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1220 // around after a few subreg copies).
1221 if (SrcIdx
&& DstIdx
)
1224 const TargetRegisterClass
*DefRC
= TII
->getRegClass(MCID
, 0, TRI
, *MF
);
1225 if (!DefMI
->isImplicitDef()) {
1226 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1227 unsigned NewDstReg
= DstReg
;
1229 unsigned NewDstIdx
= TRI
->composeSubRegIndices(CP
.getSrcIdx(),
1230 DefMI
->getOperand(0).getSubReg());
1232 NewDstReg
= TRI
->getSubReg(DstReg
, NewDstIdx
);
1234 // Finally, make sure that the physical subregister that will be
1235 // constructed later is permitted for the instruction.
1236 if (!DefRC
->contains(NewDstReg
))
1239 // Theoretically, some stack frame reference could exist. Just make sure
1240 // it hasn't actually happened.
1241 assert(TargetRegisterInfo::isVirtualRegister(DstReg
) &&
1242 "Only expect to deal with virtual or physical registers");
1246 DebugLoc DL
= CopyMI
->getDebugLoc();
1247 MachineBasicBlock
*MBB
= CopyMI
->getParent();
1248 MachineBasicBlock::iterator MII
=
1249 std::next(MachineBasicBlock::iterator(CopyMI
));
1250 TII
->reMaterialize(*MBB
, MII
, DstReg
, SrcIdx
, *DefMI
, *TRI
);
1251 MachineInstr
&NewMI
= *std::prev(MII
);
1252 NewMI
.setDebugLoc(DL
);
1254 // In a situation like the following:
1255 // %0:subreg = instr ; DefMI, subreg = DstIdx
1256 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1257 // instead of widening %1 to the register class of %0 simply do:
1259 const TargetRegisterClass
*NewRC
= CP
.getNewRC();
1261 MachineOperand
&DefMO
= NewMI
.getOperand(0);
1262 if (DefMO
.getSubReg() == DstIdx
) {
1263 assert(SrcIdx
== 0 && CP
.isFlipped()
1264 && "Shouldn't have SrcIdx+DstIdx at this point");
1265 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstReg
);
1266 const TargetRegisterClass
*CommonRC
=
1267 TRI
->getCommonSubClass(DefRC
, DstRC
);
1268 if (CommonRC
!= nullptr) {
1272 DefMO
.setIsUndef(false); // Only subregs can have def+undef.
1277 // CopyMI may have implicit operands, save them so that we can transfer them
1278 // over to the newly materialized instruction after CopyMI is removed.
1279 SmallVector
<MachineOperand
, 4> ImplicitOps
;
1280 ImplicitOps
.reserve(CopyMI
->getNumOperands() -
1281 CopyMI
->getDesc().getNumOperands());
1282 for (unsigned I
= CopyMI
->getDesc().getNumOperands(),
1283 E
= CopyMI
->getNumOperands();
1285 MachineOperand
&MO
= CopyMI
->getOperand(I
);
1287 assert(MO
.isImplicit() && "No explicit operands after implicit operands.");
1288 // Discard VReg implicit defs.
1289 if (TargetRegisterInfo::isPhysicalRegister(MO
.getReg()))
1290 ImplicitOps
.push_back(MO
);
1294 LIS
->ReplaceMachineInstrInMaps(*CopyMI
, NewMI
);
1295 CopyMI
->eraseFromParent();
1296 ErasedInstrs
.insert(CopyMI
);
1298 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1299 // We need to remember these so we can add intervals once we insert
1300 // NewMI into SlotIndexes.
1301 SmallVector
<unsigned, 4> NewMIImplDefs
;
1302 for (unsigned i
= NewMI
.getDesc().getNumOperands(),
1303 e
= NewMI
.getNumOperands();
1305 MachineOperand
&MO
= NewMI
.getOperand(i
);
1306 if (MO
.isReg() && MO
.isDef()) {
1307 assert(MO
.isImplicit() && MO
.isDead() &&
1308 TargetRegisterInfo::isPhysicalRegister(MO
.getReg()));
1309 NewMIImplDefs
.push_back(MO
.getReg());
1313 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
1314 unsigned NewIdx
= NewMI
.getOperand(0).getSubReg();
1316 if (DefRC
!= nullptr) {
1318 NewRC
= TRI
->getMatchingSuperRegClass(NewRC
, DefRC
, NewIdx
);
1320 NewRC
= TRI
->getCommonSubClass(NewRC
, DefRC
);
1321 assert(NewRC
&& "subreg chosen for remat incompatible with instruction");
1323 // Remap subranges to new lanemask and change register class.
1324 LiveInterval
&DstInt
= LIS
->getInterval(DstReg
);
1325 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1326 SR
.LaneMask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, SR
.LaneMask
);
1328 MRI
->setRegClass(DstReg
, NewRC
);
1330 // Update machine operands and add flags.
1331 updateRegDefsUses(DstReg
, DstReg
, DstIdx
);
1332 NewMI
.getOperand(0).setSubReg(NewIdx
);
1333 // updateRegDefUses can add an "undef" flag to the definition, since
1334 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1335 // sure that "undef" is not set.
1337 NewMI
.getOperand(0).setIsUndef(false);
1338 // Add dead subregister definitions if we are defining the whole register
1339 // but only part of it is live.
1340 // This could happen if the rematerialization instruction is rematerializing
1341 // more than actually is used in the register.
1342 // An example would be:
1343 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1344 // ; Copying only part of the register here, but the rest is undef.
1345 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1347 // ; Materialize all the constants but only using one
1348 // %2 = LOAD_CONSTANTS 5, 8
1350 // at this point for the part that wasn't defined before we could have
1351 // subranges missing the definition.
1352 if (NewIdx
== 0 && DstInt
.hasSubRanges()) {
1353 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1354 SlotIndex DefIndex
=
1355 CurrIdx
.getRegSlot(NewMI
.getOperand(0).isEarlyClobber());
1356 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(DstReg
);
1357 VNInfo::Allocator
& Alloc
= LIS
->getVNInfoAllocator();
1358 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1359 if (!SR
.liveAt(DefIndex
))
1360 SR
.createDeadDef(DefIndex
, Alloc
);
1361 MaxMask
&= ~SR
.LaneMask
;
1363 if (MaxMask
.any()) {
1364 LiveInterval::SubRange
*SR
= DstInt
.createSubRange(Alloc
, MaxMask
);
1365 SR
->createDeadDef(DefIndex
, Alloc
);
1369 // Make sure that the subrange for resultant undef is removed
1371 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1374 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1375 // ; Correct but need to remove the subrange for %2:sub0
1376 // ; as it is now undef
1377 if (NewIdx
!= 0 && DstInt
.hasSubRanges()) {
1378 // The affected subregister segments can be removed.
1379 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1380 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(NewIdx
);
1381 bool UpdatedSubRanges
= false;
1382 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1383 if ((SR
.LaneMask
& DstMask
).none()) {
1385 << "Removing undefined SubRange "
1386 << PrintLaneMask(SR
.LaneMask
) << " : " << SR
<< "\n");
1387 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1388 if (VNInfo
*RmValNo
= SR
.getVNInfoAt(CurrIdx
.getRegSlot())) {
1389 SR
.removeValNo(RmValNo
);
1390 UpdatedSubRanges
= true;
1394 if (UpdatedSubRanges
)
1395 DstInt
.removeEmptySubRanges();
1397 } else if (NewMI
.getOperand(0).getReg() != CopyDstReg
) {
1398 // The New instruction may be defining a sub-register of what's actually
1399 // been asked for. If so it must implicitly define the whole thing.
1400 assert(TargetRegisterInfo::isPhysicalRegister(DstReg
) &&
1401 "Only expect virtual or physical registers in remat");
1402 NewMI
.getOperand(0).setIsDead(true);
1403 NewMI
.addOperand(MachineOperand::CreateReg(
1404 CopyDstReg
, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1405 // Record small dead def live-ranges for all the subregisters
1406 // of the destination register.
1407 // Otherwise, variables that live through may miss some
1408 // interferences, thus creating invalid allocation.
1410 // %1 = somedef ; %1 GR8
1411 // %2 = remat ; %2 GR32
1412 // CL = COPY %2.sub_8bit
1413 // = somedef %1 ; %1 GR8
1415 // %1 = somedef ; %1 GR8
1416 // dead ECX = remat ; implicit-def CL
1417 // = somedef %1 ; %1 GR8
1418 // %1 will see the interferences with CL but not with CH since
1419 // no live-ranges would have been created for ECX.
1421 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1422 for (MCRegUnitIterator
Units(NewMI
.getOperand(0).getReg(), TRI
);
1423 Units
.isValid(); ++Units
)
1424 if (LiveRange
*LR
= LIS
->getCachedRegUnit(*Units
))
1425 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1428 if (NewMI
.getOperand(0).getSubReg())
1429 NewMI
.getOperand(0).setIsUndef();
1431 // Transfer over implicit operands to the rematerialized instruction.
1432 for (MachineOperand
&MO
: ImplicitOps
)
1433 NewMI
.addOperand(MO
);
1435 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1436 for (unsigned i
= 0, e
= NewMIImplDefs
.size(); i
!= e
; ++i
) {
1437 unsigned Reg
= NewMIImplDefs
[i
];
1438 for (MCRegUnitIterator
Units(Reg
, TRI
); Units
.isValid(); ++Units
)
1439 if (LiveRange
*LR
= LIS
->getCachedRegUnit(*Units
))
1440 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1443 LLVM_DEBUG(dbgs() << "Remat: " << NewMI
);
1446 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1447 // to describe DstReg instead.
1448 if (MRI
->use_nodbg_empty(SrcReg
)) {
1449 for (MachineOperand
&UseMO
: MRI
->use_operands(SrcReg
)) {
1450 MachineInstr
*UseMI
= UseMO
.getParent();
1451 if (UseMI
->isDebugValue()) {
1452 if (TargetRegisterInfo::isPhysicalRegister(DstReg
))
1453 UseMO
.substPhysReg(DstReg
, *TRI
);
1455 UseMO
.setReg(DstReg
);
1456 // Move the debug value directly after the def of the rematerialized
1458 MBB
->splice(std::next(NewMI
.getIterator()), UseMI
->getParent(), UseMI
);
1459 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI
);
1464 if (ToBeUpdated
.count(SrcReg
))
1467 unsigned NumCopyUses
= 0;
1468 for (MachineOperand
&UseMO
: MRI
->use_nodbg_operands(SrcReg
)) {
1469 if (UseMO
.getParent()->isCopyLike())
1472 if (NumCopyUses
< LateRematUpdateThreshold
) {
1473 // The source interval can become smaller because we removed a use.
1474 shrinkToUses(&SrcInt
, &DeadDefs
);
1475 if (!DeadDefs
.empty())
1476 eliminateDeadDefs();
1478 ToBeUpdated
.insert(SrcReg
);
1483 MachineInstr
*RegisterCoalescer::eliminateUndefCopy(MachineInstr
*CopyMI
) {
1484 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1485 // removes local variables. When we have a copy like:
1487 // %1 = COPY undef %2
1489 // We delete the copy and remove the corresponding value number from %1.
1490 // Any uses of that value number are marked as <undef>.
1492 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1493 // CoalescerPair may have a new register class with adjusted subreg indices
1495 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1496 isMoveInstr(*TRI
, CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
);
1498 SlotIndex Idx
= LIS
->getInstructionIndex(*CopyMI
);
1499 const LiveInterval
&SrcLI
= LIS
->getInterval(SrcReg
);
1500 // CopyMI is undef iff SrcReg is not live before the instruction.
1501 if (SrcSubIdx
!= 0 && SrcLI
.hasSubRanges()) {
1502 LaneBitmask SrcMask
= TRI
->getSubRegIndexLaneMask(SrcSubIdx
);
1503 for (const LiveInterval::SubRange
&SR
: SrcLI
.subranges()) {
1504 if ((SR
.LaneMask
& SrcMask
).none())
1509 } else if (SrcLI
.liveAt(Idx
))
1512 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1513 // then replace it with an IMPLICIT_DEF.
1514 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
1515 SlotIndex RegIndex
= Idx
.getRegSlot();
1516 LiveRange::Segment
*Seg
= DstLI
.getSegmentContaining(RegIndex
);
1517 assert(Seg
!= nullptr && "No segment for defining instruction");
1518 if (VNInfo
*V
= DstLI
.getVNInfoAt(Seg
->end
)) {
1519 if (V
->isPHIDef()) {
1520 CopyMI
->setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1521 for (unsigned i
= CopyMI
->getNumOperands(); i
!= 0; --i
) {
1522 MachineOperand
&MO
= CopyMI
->getOperand(i
-1);
1523 if (MO
.isReg() && MO
.isUse())
1524 CopyMI
->RemoveOperand(i
-1);
1526 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1532 // Remove any DstReg segments starting at the instruction.
1533 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1535 // Remove value or merge with previous one in case of a subregister def.
1536 if (VNInfo
*PrevVNI
= DstLI
.getVNInfoAt(Idx
)) {
1537 VNInfo
*VNI
= DstLI
.getVNInfoAt(RegIndex
);
1538 DstLI
.MergeValueNumberInto(VNI
, PrevVNI
);
1540 // The affected subregister segments can be removed.
1541 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(DstSubIdx
);
1542 for (LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1543 if ((SR
.LaneMask
& DstMask
).none())
1546 VNInfo
*SVNI
= SR
.getVNInfoAt(RegIndex
);
1547 assert(SVNI
!= nullptr && SlotIndex::isSameInstr(SVNI
->def
, RegIndex
));
1548 SR
.removeValNo(SVNI
);
1550 DstLI
.removeEmptySubRanges();
1552 LIS
->removeVRegDefAt(DstLI
, RegIndex
);
1554 // Mark uses as undef.
1555 for (MachineOperand
&MO
: MRI
->reg_nodbg_operands(DstReg
)) {
1556 if (MO
.isDef() /*|| MO.isUndef()*/)
1558 const MachineInstr
&MI
= *MO
.getParent();
1559 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
);
1560 LaneBitmask UseMask
= TRI
->getSubRegIndexLaneMask(MO
.getSubReg());
1562 if (!UseMask
.all() && DstLI
.hasSubRanges()) {
1564 for (const LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1565 if ((SR
.LaneMask
& UseMask
).none())
1567 if (SR
.liveAt(UseIdx
)) {
1573 isLive
= DstLI
.liveAt(UseIdx
);
1576 MO
.setIsUndef(true);
1577 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx
<< '\t' << MI
);
1580 // A def of a subregister may be a use of the other subregisters, so
1581 // deleting a def of a subregister may also remove uses. Since CopyMI
1582 // is still part of the function (but about to be erased), mark all
1583 // defs of DstReg in it as <undef>, so that shrinkToUses would
1585 for (MachineOperand
&MO
: CopyMI
->operands())
1586 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == DstReg
)
1587 MO
.setIsUndef(true);
1588 LIS
->shrinkToUses(&DstLI
);
1593 void RegisterCoalescer::addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
1594 MachineOperand
&MO
, unsigned SubRegIdx
) {
1595 LaneBitmask Mask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
1598 bool IsUndef
= true;
1599 for (const LiveInterval::SubRange
&S
: Int
.subranges()) {
1600 if ((S
.LaneMask
& Mask
).none())
1602 if (S
.liveAt(UseIdx
)) {
1608 MO
.setIsUndef(true);
1609 // We found out some subregister use is actually reading an undefined
1610 // value. In some cases the whole vreg has become undefined at this
1611 // point so we have to potentially shrink the main range if the
1612 // use was ending a live segment there.
1613 LiveQueryResult Q
= Int
.Query(UseIdx
);
1614 if (Q
.valueOut() == nullptr)
1615 ShrinkMainRange
= true;
1619 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg
,
1622 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1623 LiveInterval
*DstInt
= DstIsPhys
? nullptr : &LIS
->getInterval(DstReg
);
1625 if (DstInt
&& DstInt
->hasSubRanges() && DstReg
!= SrcReg
) {
1626 for (MachineOperand
&MO
: MRI
->reg_operands(DstReg
)) {
1627 unsigned SubReg
= MO
.getSubReg();
1628 if (SubReg
== 0 || MO
.isUndef())
1630 MachineInstr
&MI
= *MO
.getParent();
1631 if (MI
.isDebugValue())
1633 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
).getRegSlot(true);
1634 addUndefFlag(*DstInt
, UseIdx
, MO
, SubReg
);
1638 SmallPtrSet
<MachineInstr
*, 8> Visited
;
1639 for (MachineRegisterInfo::reg_instr_iterator
1640 I
= MRI
->reg_instr_begin(SrcReg
), E
= MRI
->reg_instr_end();
1642 MachineInstr
*UseMI
= &*(I
++);
1644 // Each instruction can only be rewritten once because sub-register
1645 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1646 // the UseMI operands removes them from the SrcReg use-def chain, but when
1647 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1648 // operands mentioning the virtual register.
1649 if (SrcReg
== DstReg
&& !Visited
.insert(UseMI
).second
)
1652 SmallVector
<unsigned,8> Ops
;
1654 std::tie(Reads
, Writes
) = UseMI
->readsWritesVirtualRegister(SrcReg
, &Ops
);
1656 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1657 // because SrcReg is a sub-register.
1658 if (DstInt
&& !Reads
&& SubIdx
&& !UseMI
->isDebugValue())
1659 Reads
= DstInt
->liveAt(LIS
->getInstructionIndex(*UseMI
));
1661 // Replace SrcReg with DstReg in all UseMI operands.
1662 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1663 MachineOperand
&MO
= UseMI
->getOperand(Ops
[i
]);
1665 // Adjust <undef> flags in case of sub-register joins. We don't want to
1666 // turn a full def into a read-modify-write sub-register def and vice
1668 if (SubIdx
&& MO
.isDef())
1669 MO
.setIsUndef(!Reads
);
1671 // A subreg use of a partially undef (super) register may be a complete
1672 // undef use now and then has to be marked that way.
1673 if (SubIdx
!= 0 && MO
.isUse() && MRI
->shouldTrackSubRegLiveness(DstReg
)) {
1674 if (!DstInt
->hasSubRanges()) {
1675 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
1676 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(DstInt
->reg
);
1677 DstInt
->createSubRangeFrom(Allocator
, Mask
, *DstInt
);
1679 SlotIndex MIIdx
= UseMI
->isDebugValue()
1680 ? LIS
->getSlotIndexes()->getIndexBefore(*UseMI
)
1681 : LIS
->getInstructionIndex(*UseMI
);
1682 SlotIndex UseIdx
= MIIdx
.getRegSlot(true);
1683 addUndefFlag(*DstInt
, UseIdx
, MO
, SubIdx
);
1687 MO
.substPhysReg(DstReg
, *TRI
);
1689 MO
.substVirtReg(DstReg
, SubIdx
, *TRI
);
1693 dbgs() << "\t\tupdated: ";
1694 if (!UseMI
->isDebugValue())
1695 dbgs() << LIS
->getInstructionIndex(*UseMI
) << "\t";
1701 bool RegisterCoalescer::canJoinPhys(const CoalescerPair
&CP
) {
1702 // Always join simple intervals that are defined by a single copy from a
1703 // reserved register. This doesn't increase register pressure, so it is
1704 // always beneficial.
1705 if (!MRI
->isReserved(CP
.getDstReg())) {
1706 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1710 LiveInterval
&JoinVInt
= LIS
->getInterval(CP
.getSrcReg());
1711 if (JoinVInt
.containsOneValue())
1715 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1719 bool RegisterCoalescer::joinCopy(MachineInstr
*CopyMI
, bool &Again
) {
1721 LLVM_DEBUG(dbgs() << LIS
->getInstructionIndex(*CopyMI
) << '\t' << *CopyMI
);
1723 CoalescerPair
CP(*TRI
);
1724 if (!CP
.setRegisters(CopyMI
)) {
1725 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1729 if (CP
.getNewRC()) {
1730 auto SrcRC
= MRI
->getRegClass(CP
.getSrcReg());
1731 auto DstRC
= MRI
->getRegClass(CP
.getDstReg());
1732 unsigned SrcIdx
= CP
.getSrcIdx();
1733 unsigned DstIdx
= CP
.getDstIdx();
1734 if (CP
.isFlipped()) {
1735 std::swap(SrcIdx
, DstIdx
);
1736 std::swap(SrcRC
, DstRC
);
1738 if (!TRI
->shouldCoalesce(CopyMI
, SrcRC
, SrcIdx
, DstRC
, DstIdx
,
1739 CP
.getNewRC(), *LIS
)) {
1740 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1745 // Dead code elimination. This really should be handled by MachineDCE, but
1746 // sometimes dead copies slip through, and we can't generate invalid live
1748 if (!CP
.isPhys() && CopyMI
->allDefsAreDead()) {
1749 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1750 DeadDefs
.push_back(CopyMI
);
1751 eliminateDeadDefs();
1755 // Eliminate undefs.
1757 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1758 if (MachineInstr
*UndefMI
= eliminateUndefCopy(CopyMI
)) {
1759 if (UndefMI
->isImplicitDef())
1761 deleteInstr(CopyMI
);
1762 return false; // Not coalescable.
1766 // Coalesced copies are normally removed immediately, but transformations
1767 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1768 // When that happens, just join the values and remove the copy.
1769 if (CP
.getSrcReg() == CP
.getDstReg()) {
1770 LiveInterval
&LI
= LIS
->getInterval(CP
.getSrcReg());
1771 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI
<< '\n');
1772 const SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1773 LiveQueryResult LRQ
= LI
.Query(CopyIdx
);
1774 if (VNInfo
*DefVNI
= LRQ
.valueDefined()) {
1775 VNInfo
*ReadVNI
= LRQ
.valueIn();
1776 assert(ReadVNI
&& "No value before copy and no <undef> flag.");
1777 assert(ReadVNI
!= DefVNI
&& "Cannot read and define the same value.");
1778 LI
.MergeValueNumberInto(DefVNI
, ReadVNI
);
1780 // Process subregister liveranges.
1781 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1782 LiveQueryResult SLRQ
= S
.Query(CopyIdx
);
1783 if (VNInfo
*SDefVNI
= SLRQ
.valueDefined()) {
1784 VNInfo
*SReadVNI
= SLRQ
.valueIn();
1785 S
.MergeValueNumberInto(SDefVNI
, SReadVNI
);
1788 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI
<< '\n');
1790 deleteInstr(CopyMI
);
1794 // Enforce policies.
1796 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1797 << printReg(CP
.getSrcReg(), TRI
) << " with "
1798 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n');
1799 if (!canJoinPhys(CP
)) {
1800 // Before giving up coalescing, if definition of source is defined by
1801 // trivial computation, try rematerializing it.
1803 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
1806 Again
= true; // May be possible to coalesce later.
1810 // When possible, let DstReg be the larger interval.
1811 if (!CP
.isPartial() && LIS
->getInterval(CP
.getSrcReg()).size() >
1812 LIS
->getInterval(CP
.getDstReg()).size())
1816 dbgs() << "\tConsidering merging to "
1817 << TRI
->getRegClassName(CP
.getNewRC()) << " with ";
1818 if (CP
.getDstIdx() && CP
.getSrcIdx())
1819 dbgs() << printReg(CP
.getDstReg()) << " in "
1820 << TRI
->getSubRegIndexName(CP
.getDstIdx()) << " and "
1821 << printReg(CP
.getSrcReg()) << " in "
1822 << TRI
->getSubRegIndexName(CP
.getSrcIdx()) << '\n';
1824 dbgs() << printReg(CP
.getSrcReg(), TRI
) << " in "
1825 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n';
1829 ShrinkMask
= LaneBitmask::getNone();
1830 ShrinkMainRange
= false;
1832 // Okay, attempt to join these two intervals. On failure, this returns false.
1833 // Otherwise, if one of the intervals being joined is a physreg, this method
1834 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1835 // been modified, so we can use this information below to update aliases.
1836 if (!joinIntervals(CP
)) {
1837 // Coalescing failed.
1839 // If definition of source is defined by trivial computation, try
1840 // rematerializing it.
1842 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
1845 // If we can eliminate the copy without merging the live segments, do so
1847 if (!CP
.isPartial() && !CP
.isPhys()) {
1848 bool Changed
= adjustCopiesBackFrom(CP
, CopyMI
);
1849 bool Shrink
= false;
1851 std::tie(Changed
, Shrink
) = removeCopyByCommutingDef(CP
, CopyMI
);
1853 deleteInstr(CopyMI
);
1855 unsigned DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
1856 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
1857 shrinkToUses(&DstLI
);
1858 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI
<< '\n');
1860 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1865 // Try and see if we can partially eliminate the copy by moving the copy to
1867 if (!CP
.isPartial() && !CP
.isPhys())
1868 if (removePartialRedundancy(CP
, *CopyMI
))
1871 // Otherwise, we are unable to join the intervals.
1872 LLVM_DEBUG(dbgs() << "\tInterference!\n");
1873 Again
= true; // May be possible to coalesce later.
1877 // Coalescing to a virtual register that is of a sub-register class of the
1878 // other. Make sure the resulting register is set to the right register class.
1879 if (CP
.isCrossClass()) {
1881 MRI
->setRegClass(CP
.getDstReg(), CP
.getNewRC());
1884 // Removing sub-register copies can ease the register class constraints.
1885 // Make sure we attempt to inflate the register class of DstReg.
1886 if (!CP
.isPhys() && RegClassInfo
.isProperSubClass(CP
.getNewRC()))
1887 InflateRegs
.push_back(CP
.getDstReg());
1889 // CopyMI has been erased by joinIntervals at this point. Remove it from
1890 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1891 // to the work list. This keeps ErasedInstrs from growing needlessly.
1892 ErasedInstrs
.erase(CopyMI
);
1894 // Rewrite all SrcReg operands to DstReg.
1895 // Also update DstReg operands to include DstIdx if it is set.
1897 updateRegDefsUses(CP
.getDstReg(), CP
.getDstReg(), CP
.getDstIdx());
1898 updateRegDefsUses(CP
.getSrcReg(), CP
.getDstReg(), CP
.getSrcIdx());
1900 // Shrink subregister ranges if necessary.
1901 if (ShrinkMask
.any()) {
1902 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
1903 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1904 if ((S
.LaneMask
& ShrinkMask
).none())
1906 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S
.LaneMask
)
1908 LIS
->shrinkToUses(S
, LI
.reg
);
1910 LI
.removeEmptySubRanges();
1913 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1914 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1915 // is not up-to-date, need to update the merged live interval here.
1916 if (ToBeUpdated
.count(CP
.getSrcReg()))
1917 ShrinkMainRange
= true;
1919 if (ShrinkMainRange
) {
1920 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
1924 // SrcReg is guaranteed to be the register whose live interval that is
1926 LIS
->removeInterval(CP
.getSrcReg());
1928 // Update regalloc hint.
1929 TRI
->updateRegAllocHint(CP
.getSrcReg(), CP
.getDstReg(), *MF
);
1932 dbgs() << "\tSuccess: " << printReg(CP
.getSrcReg(), TRI
, CP
.getSrcIdx())
1933 << " -> " << printReg(CP
.getDstReg(), TRI
, CP
.getDstIdx()) << '\n';
1934 dbgs() << "\tResult = ";
1936 dbgs() << printReg(CP
.getDstReg(), TRI
);
1938 dbgs() << LIS
->getInterval(CP
.getDstReg());
1946 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair
&CP
) {
1947 unsigned DstReg
= CP
.getDstReg();
1948 unsigned SrcReg
= CP
.getSrcReg();
1949 assert(CP
.isPhys() && "Must be a physreg copy");
1950 assert(MRI
->isReserved(DstReg
) && "Not a reserved register");
1951 LiveInterval
&RHS
= LIS
->getInterval(SrcReg
);
1952 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< '\n');
1954 assert(RHS
.containsOneValue() && "Invalid join with reserved register");
1956 // Optimization for reserved registers like ESP. We can only merge with a
1957 // reserved physreg if RHS has a single value that is a copy of DstReg.
1958 // The live range of the reserved register will look like a set of dead defs
1959 // - we don't properly track the live range of reserved registers.
1961 // Deny any overlapping intervals. This depends on all the reserved
1962 // register live ranges to look like dead defs.
1963 if (!MRI
->isConstantPhysReg(DstReg
)) {
1964 for (MCRegUnitIterator
UI(DstReg
, TRI
); UI
.isValid(); ++UI
) {
1965 // Abort if not all the regunits are reserved.
1966 for (MCRegUnitRootIterator
RI(*UI
, TRI
); RI
.isValid(); ++RI
) {
1967 if (!MRI
->isReserved(*RI
))
1970 if (RHS
.overlaps(LIS
->getRegUnit(*UI
))) {
1971 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI
, TRI
)
1977 // We must also check for overlaps with regmask clobbers.
1978 BitVector RegMaskUsable
;
1979 if (LIS
->checkRegMaskInterference(RHS
, RegMaskUsable
) &&
1980 !RegMaskUsable
.test(DstReg
)) {
1981 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
1986 // Skip any value computations, we are not adding new values to the
1987 // reserved register. Also skip merging the live ranges, the reserved
1988 // register live range doesn't need to be accurate as long as all the
1991 // Delete the identity copy.
1992 MachineInstr
*CopyMI
;
1993 if (CP
.isFlipped()) {
1994 // Physreg is copied into vreg
1995 // %y = COPY %physreg_x
1996 // ... //< no other def of %x here
2001 CopyMI
= MRI
->getVRegDef(SrcReg
);
2003 // VReg is copied into physreg:
2005 // ... //< no other def or use of %y here
2006 // %y = COPY %physreg_x
2010 if (!MRI
->hasOneNonDBGUse(SrcReg
)) {
2011 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2015 if (!LIS
->intervalIsInOneMBB(RHS
)) {
2016 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2020 MachineInstr
&DestMI
= *MRI
->getVRegDef(SrcReg
);
2021 CopyMI
= &*MRI
->use_instr_nodbg_begin(SrcReg
);
2022 SlotIndex CopyRegIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
2023 SlotIndex DestRegIdx
= LIS
->getInstructionIndex(DestMI
).getRegSlot();
2025 if (!MRI
->isConstantPhysReg(DstReg
)) {
2026 // We checked above that there are no interfering defs of the physical
2027 // register. However, for this case, where we intend to move up the def of
2028 // the physical register, we also need to check for interfering uses.
2029 SlotIndexes
*Indexes
= LIS
->getSlotIndexes();
2030 for (SlotIndex SI
= Indexes
->getNextNonNullIndex(DestRegIdx
);
2031 SI
!= CopyRegIdx
; SI
= Indexes
->getNextNonNullIndex(SI
)) {
2032 MachineInstr
*MI
= LIS
->getInstructionFromIndex(SI
);
2033 if (MI
->readsRegister(DstReg
, TRI
)) {
2034 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI
);
2040 // We're going to remove the copy which defines a physical reserved
2041 // register, so remove its valno, etc.
2042 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2043 << printReg(DstReg
, TRI
) << " at " << CopyRegIdx
<< "\n");
2045 LIS
->removePhysRegDefAt(DstReg
, CopyRegIdx
);
2046 // Create a new dead def at the new def location.
2047 for (MCRegUnitIterator
UI(DstReg
, TRI
); UI
.isValid(); ++UI
) {
2048 LiveRange
&LR
= LIS
->getRegUnit(*UI
);
2049 LR
.createDeadDef(DestRegIdx
, LIS
->getVNInfoAllocator());
2053 deleteInstr(CopyMI
);
2055 // We don't track kills for reserved registers.
2056 MRI
->clearKillFlags(CP
.getSrcReg());
2061 //===----------------------------------------------------------------------===//
2062 // Interference checking and interval joining
2063 //===----------------------------------------------------------------------===//
2065 // In the easiest case, the two live ranges being joined are disjoint, and
2066 // there is no interference to consider. It is quite common, though, to have
2067 // overlapping live ranges, and we need to check if the interference can be
2070 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2071 // This means that two SSA values overlap if and only if the def of one value
2072 // is contained in the live range of the other value. As a special case, the
2073 // overlapping values can be defined at the same index.
2075 // The interference from an overlapping def can be resolved in these cases:
2077 // 1. Coalescable copies. The value is defined by a copy that would become an
2078 // identity copy after joining SrcReg and DstReg. The copy instruction will
2079 // be removed, and the value will be merged with the source value.
2081 // There can be several copies back and forth, causing many values to be
2082 // merged into one. We compute a list of ultimate values in the joined live
2083 // range as well as a mappings from the old value numbers.
2085 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2086 // predecessors have a live out value. It doesn't cause real interference,
2087 // and can be merged into the value it overlaps. Like a coalescable copy, it
2088 // can be erased after joining.
2090 // 3. Copy of external value. The overlapping def may be a copy of a value that
2091 // is already in the other register. This is like a coalescable copy, but
2092 // the live range of the source register must be trimmed after erasing the
2093 // copy instruction:
2096 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2098 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2099 // defining one lane at a time:
2101 // %dst:ssub0<def,read-undef> = FOO
2103 // %dst:ssub1 = COPY %src
2105 // The live range of %src overlaps the %dst value defined by FOO, but
2106 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2107 // which was undef anyway.
2109 // The value mapping is more complicated in this case. The final live range
2110 // will have different value numbers for both FOO and BAR, but there is no
2111 // simple mapping from old to new values. It may even be necessary to add
2114 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2115 // is live, but never read. This can happen because we don't compute
2116 // individual live ranges per lane.
2120 // %dst:ssub1 = COPY %src
2122 // This kind of interference is only resolved locally. If the clobbered
2123 // lane value escapes the block, the join is aborted.
2127 /// Track information about values in a single virtual register about to be
2128 /// joined. Objects of this class are always created in pairs - one for each
2129 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2132 /// Live range we work on.
2135 /// (Main) register we work on.
2138 /// Reg (and therefore the values in this liverange) will end up as
2139 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2141 const unsigned SubIdx
;
2143 /// The LaneMask that this liverange will occupy the coalesced register. May
2144 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2145 const LaneBitmask LaneMask
;
2147 /// This is true when joining sub register ranges, false when joining main
2149 const bool SubRangeJoin
;
2151 /// Whether the current LiveInterval tracks subregister liveness.
2152 const bool TrackSubRegLiveness
;
2154 /// Values that will be present in the final live range.
2155 SmallVectorImpl
<VNInfo
*> &NewVNInfo
;
2157 const CoalescerPair
&CP
;
2159 SlotIndexes
*Indexes
;
2160 const TargetRegisterInfo
*TRI
;
2162 /// Value number assignments. Maps value numbers in LI to entries in
2163 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2164 SmallVector
<int, 8> Assignments
;
2166 /// Conflict resolution for overlapping values.
2167 enum ConflictResolution
{
2168 /// No overlap, simply keep this value.
2171 /// Merge this value into OtherVNI and erase the defining instruction.
2172 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2176 /// Merge this value into OtherVNI but keep the defining instruction.
2177 /// This is for the special case where OtherVNI is defined by the same
2181 /// Keep this value, and have it replace OtherVNI where possible. This
2182 /// complicates value mapping since OtherVNI maps to two different values
2183 /// before and after this def.
2184 /// Used when clobbering undefined or dead lanes.
2187 /// Unresolved conflict. Visit later when all values have been mapped.
2190 /// Unresolvable conflict. Abort the join.
2194 /// Per-value info for LI. The lane bit masks are all relative to the final
2195 /// joined register, so they can be compared directly between SrcReg and
2198 ConflictResolution Resolution
= CR_Keep
;
2200 /// Lanes written by this def, 0 for unanalyzed values.
2201 LaneBitmask WriteLanes
;
2203 /// Lanes with defined values in this register. Other lanes are undef and
2204 /// safe to clobber.
2205 LaneBitmask ValidLanes
;
2207 /// Value in LI being redefined by this def.
2208 VNInfo
*RedefVNI
= nullptr;
2210 /// Value in the other live range that overlaps this def, if any.
2211 VNInfo
*OtherVNI
= nullptr;
2213 /// Is this value an IMPLICIT_DEF that can be erased?
2215 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2216 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2217 /// safely erased if they are overlapping a live value in the other live
2220 /// Weird control flow graphs and incomplete PHI handling in
2221 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2222 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2224 bool ErasableImplicitDef
= false;
2226 /// True when the live range of this value will be pruned because of an
2227 /// overlapping CR_Replace value in the other live range.
2228 bool Pruned
= false;
2230 /// True once Pruned above has been computed.
2231 bool PrunedComputed
= false;
2233 /// True if this value is determined to be identical to OtherVNI
2234 /// (in valuesIdentical). This is used with CR_Erase where the erased
2235 /// copy is redundant, i.e. the source value is already the same as
2236 /// the destination. In such cases the subranges need to be updated
2237 /// properly. See comment at pruneSubRegValues for more info.
2238 bool Identical
= false;
2242 bool isAnalyzed() const { return WriteLanes
.any(); }
2245 /// One entry per value number in LI.
2246 SmallVector
<Val
, 8> Vals
;
2248 /// Compute the bitmask of lanes actually written by DefMI.
2249 /// Set Redef if there are any partial register definitions that depend on the
2250 /// previous value of the register.
2251 LaneBitmask
computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
) const;
2253 /// Find the ultimate value that VNI was copied from.
2254 std::pair
<const VNInfo
*,unsigned> followCopyChain(const VNInfo
*VNI
) const;
2256 bool valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
, const JoinVals
&Other
) const;
2258 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2259 /// Return a conflict resolution when possible, but leave the hard cases as
2261 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2262 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2263 /// The recursion always goes upwards in the dominator tree, making loops
2265 ConflictResolution
analyzeValue(unsigned ValNo
, JoinVals
&Other
);
2267 /// Compute the value assignment for ValNo in RI.
2268 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2270 void computeAssignment(unsigned ValNo
, JoinVals
&Other
);
2272 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2273 /// the extent of the tainted lanes in the block.
2275 /// Multiple values in Other.LR can be affected since partial redefinitions
2276 /// can preserve previously tainted lanes.
2278 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2279 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2280 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2281 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2283 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2284 /// entry to TaintedVals.
2286 /// Returns false if the tainted lanes extend beyond the basic block.
2288 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
2289 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
);
2291 /// Return true if MI uses any of the given Lanes from Reg.
2292 /// This does not include partial redefinitions of Reg.
2293 bool usesLanes(const MachineInstr
&MI
, unsigned, unsigned, LaneBitmask
) const;
2295 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2298 /// %dst = COPY %src
2299 /// %src = COPY %dst <-- This value to be pruned.
2300 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2301 bool isPrunedValue(unsigned ValNo
, JoinVals
&Other
);
2304 JoinVals(LiveRange
&LR
, unsigned Reg
, unsigned SubIdx
, LaneBitmask LaneMask
,
2305 SmallVectorImpl
<VNInfo
*> &newVNInfo
, const CoalescerPair
&cp
,
2306 LiveIntervals
*lis
, const TargetRegisterInfo
*TRI
, bool SubRangeJoin
,
2307 bool TrackSubRegLiveness
)
2308 : LR(LR
), Reg(Reg
), SubIdx(SubIdx
), LaneMask(LaneMask
),
2309 SubRangeJoin(SubRangeJoin
), TrackSubRegLiveness(TrackSubRegLiveness
),
2310 NewVNInfo(newVNInfo
), CP(cp
), LIS(lis
), Indexes(LIS
->getSlotIndexes()),
2311 TRI(TRI
), Assignments(LR
.getNumValNums(), -1), Vals(LR
.getNumValNums()) {}
2313 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2314 /// Returns false if any conflicts were impossible to resolve.
2315 bool mapValues(JoinVals
&Other
);
2317 /// Try to resolve conflicts that require all values to be mapped.
2318 /// Returns false if any conflicts were impossible to resolve.
2319 bool resolveConflicts(JoinVals
&Other
);
2321 /// Prune the live range of values in Other.LR where they would conflict with
2322 /// CR_Replace values in LR. Collect end points for restoring the live range
2324 void pruneValues(JoinVals
&Other
, SmallVectorImpl
<SlotIndex
> &EndPoints
,
2327 /// Removes subranges starting at copies that get removed. This sometimes
2328 /// happens when undefined subranges are copied around. These ranges contain
2329 /// no useful information and can be removed.
2330 void pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
);
2332 /// Pruning values in subranges can lead to removing segments in these
2333 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2334 /// the main range also need to be removed. This function will mark
2335 /// the corresponding values in the main range as pruned, so that
2336 /// eraseInstrs can do the final cleanup.
2337 /// The parameter @p LI must be the interval whose main range is the
2339 void pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
);
2341 /// Erase any machine instructions that have been coalesced away.
2342 /// Add erased instructions to ErasedInstrs.
2343 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2344 /// the erased instrs.
2345 void eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
2346 SmallVectorImpl
<unsigned> &ShrinkRegs
,
2347 LiveInterval
*LI
= nullptr);
2349 /// Remove liverange defs at places where implicit defs will be removed.
2350 void removeImplicitDefs();
2352 /// Get the value assignments suitable for passing to LiveInterval::join.
2353 const int *getAssignments() const { return Assignments
.data(); }
2356 } // end anonymous namespace
2358 LaneBitmask
JoinVals::computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
)
2361 for (const MachineOperand
&MO
: DefMI
->operands()) {
2362 if (!MO
.isReg() || MO
.getReg() != Reg
|| !MO
.isDef())
2364 L
|= TRI
->getSubRegIndexLaneMask(
2365 TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg()));
2372 std::pair
<const VNInfo
*, unsigned> JoinVals::followCopyChain(
2373 const VNInfo
*VNI
) const {
2374 unsigned TrackReg
= Reg
;
2376 while (!VNI
->isPHIDef()) {
2377 SlotIndex Def
= VNI
->def
;
2378 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
2379 assert(MI
&& "No defining instruction");
2380 if (!MI
->isFullCopy())
2381 return std::make_pair(VNI
, TrackReg
);
2382 unsigned SrcReg
= MI
->getOperand(1).getReg();
2383 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
2384 return std::make_pair(VNI
, TrackReg
);
2386 const LiveInterval
&LI
= LIS
->getInterval(SrcReg
);
2387 const VNInfo
*ValueIn
;
2388 // No subrange involved.
2389 if (!SubRangeJoin
|| !LI
.hasSubRanges()) {
2390 LiveQueryResult LRQ
= LI
.Query(Def
);
2391 ValueIn
= LRQ
.valueIn();
2393 // Query subranges. Ensure that all matching ones take us to the same def
2394 // (allowing some of them to be undef).
2396 for (const LiveInterval::SubRange
&S
: LI
.subranges()) {
2397 // Transform lanemask to a mask in the joined live interval.
2398 LaneBitmask SMask
= TRI
->composeSubRegIndexLaneMask(SubIdx
, S
.LaneMask
);
2399 if ((SMask
& LaneMask
).none())
2401 LiveQueryResult LRQ
= S
.Query(Def
);
2403 ValueIn
= LRQ
.valueIn();
2406 if (LRQ
.valueIn() && ValueIn
!= LRQ
.valueIn())
2407 return std::make_pair(VNI
, TrackReg
);
2410 if (ValueIn
== nullptr) {
2411 // Reaching an undefined value is legitimate, for example:
2413 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2414 // 2 %1 = COPY %0 ;; %1 is defined here.
2415 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2416 // ;; but it's equivalent to "undef".
2417 return std::make_pair(nullptr, SrcReg
);
2422 return std::make_pair(VNI
, TrackReg
);
2425 bool JoinVals::valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
,
2426 const JoinVals
&Other
) const {
2427 const VNInfo
*Orig0
;
2429 std::tie(Orig0
, Reg0
) = followCopyChain(Value0
);
2430 if (Orig0
== Value1
&& Reg0
== Other
.Reg
)
2433 const VNInfo
*Orig1
;
2435 std::tie(Orig1
, Reg1
) = Other
.followCopyChain(Value1
);
2436 // If both values are undefined, and the source registers are the same
2437 // register, the values are identical. Filter out cases where only one
2438 // value is defined.
2439 if (Orig0
== nullptr || Orig1
== nullptr)
2440 return Orig0
== Orig1
&& Reg0
== Reg1
;
2442 // The values are equal if they are defined at the same place and use the
2443 // same register. Note that we cannot compare VNInfos directly as some of
2444 // them might be from a copy created in mergeSubRangeInto() while the other
2445 // is from the original LiveInterval.
2446 return Orig0
->def
== Orig1
->def
&& Reg0
== Reg1
;
2449 JoinVals::ConflictResolution
2450 JoinVals::analyzeValue(unsigned ValNo
, JoinVals
&Other
) {
2451 Val
&V
= Vals
[ValNo
];
2452 assert(!V
.isAnalyzed() && "Value has already been analyzed!");
2453 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
2454 if (VNI
->isUnused()) {
2455 V
.WriteLanes
= LaneBitmask::getAll();
2459 // Get the instruction defining this value, compute the lanes written.
2460 const MachineInstr
*DefMI
= nullptr;
2461 if (VNI
->isPHIDef()) {
2462 // Conservatively assume that all lanes in a PHI are valid.
2463 LaneBitmask Lanes
= SubRangeJoin
? LaneBitmask::getLane(0)
2464 : TRI
->getSubRegIndexLaneMask(SubIdx
);
2465 V
.ValidLanes
= V
.WriteLanes
= Lanes
;
2467 DefMI
= Indexes
->getInstructionFromIndex(VNI
->def
);
2468 assert(DefMI
!= nullptr);
2470 // We don't care about the lanes when joining subregister ranges.
2471 V
.WriteLanes
= V
.ValidLanes
= LaneBitmask::getLane(0);
2472 if (DefMI
->isImplicitDef()) {
2473 V
.ValidLanes
= LaneBitmask::getNone();
2474 V
.ErasableImplicitDef
= true;
2478 V
.ValidLanes
= V
.WriteLanes
= computeWriteLanes(DefMI
, Redef
);
2480 // If this is a read-modify-write instruction, there may be more valid
2481 // lanes than the ones written by this instruction.
2482 // This only covers partial redef operands. DefMI may have normal use
2483 // operands reading the register. They don't contribute valid lanes.
2485 // This adds ssub1 to the set of valid lanes in %src:
2489 // This leaves only ssub1 valid, making any other lanes undef:
2491 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2493 // The <read-undef> flag on the def operand means that old lane values are
2496 V
.RedefVNI
= LR
.Query(VNI
->def
).valueIn();
2497 assert((TrackSubRegLiveness
|| V
.RedefVNI
) &&
2498 "Instruction is reading nonexistent value");
2499 if (V
.RedefVNI
!= nullptr) {
2500 computeAssignment(V
.RedefVNI
->id
, Other
);
2501 V
.ValidLanes
|= Vals
[V
.RedefVNI
->id
].ValidLanes
;
2505 // An IMPLICIT_DEF writes undef values.
2506 if (DefMI
->isImplicitDef()) {
2507 // We normally expect IMPLICIT_DEF values to be live only until the end
2508 // of their block. If the value is really live longer and gets pruned in
2509 // another block, this flag is cleared again.
2511 // Clearing the valid lanes is deferred until it is sure this can be
2513 V
.ErasableImplicitDef
= true;
2518 // Find the value in Other that overlaps VNI->def, if any.
2519 LiveQueryResult OtherLRQ
= Other
.LR
.Query(VNI
->def
);
2521 // It is possible that both values are defined by the same instruction, or
2522 // the values are PHIs defined in the same block. When that happens, the two
2523 // values should be merged into one, but not into any preceding value.
2524 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2525 if (VNInfo
*OtherVNI
= OtherLRQ
.valueDefined()) {
2526 assert(SlotIndex::isSameInstr(VNI
->def
, OtherVNI
->def
) && "Broken LRQ");
2528 // One value stays, the other is merged. Keep the earlier one, or the first
2530 if (OtherVNI
->def
< VNI
->def
)
2531 Other
.computeAssignment(OtherVNI
->id
, *this);
2532 else if (VNI
->def
< OtherVNI
->def
&& OtherLRQ
.valueIn()) {
2533 // This is an early-clobber def overlapping a live-in value in the other
2534 // register. Not mergeable.
2535 V
.OtherVNI
= OtherLRQ
.valueIn();
2536 return CR_Impossible
;
2538 V
.OtherVNI
= OtherVNI
;
2539 Val
&OtherV
= Other
.Vals
[OtherVNI
->id
];
2540 // Keep this value, check for conflicts when analyzing OtherVNI.
2541 if (!OtherV
.isAnalyzed())
2543 // Both sides have been analyzed now.
2544 // Allow overlapping PHI values. Any real interference would show up in a
2545 // predecessor, the PHI itself can't introduce any conflicts.
2546 if (VNI
->isPHIDef())
2548 if ((V
.ValidLanes
& OtherV
.ValidLanes
).any())
2549 // Overlapping lanes can't be resolved.
2550 return CR_Impossible
;
2555 // No simultaneous def. Is Other live at the def?
2556 V
.OtherVNI
= OtherLRQ
.valueIn();
2558 // No overlap, no conflict.
2561 assert(!SlotIndex::isSameInstr(VNI
->def
, V
.OtherVNI
->def
) && "Broken LRQ");
2563 // We have overlapping values, or possibly a kill of Other.
2564 // Recursively compute assignments up the dominator tree.
2565 Other
.computeAssignment(V
.OtherVNI
->id
, *this);
2566 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2568 if (OtherV
.ErasableImplicitDef
) {
2569 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2570 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2571 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2574 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2575 // to erase the IMPLICIT_DEF instruction.
2577 DefMI
->getParent() != Indexes
->getMBBFromIndex(V
.OtherVNI
->def
)) {
2578 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V
.OtherVNI
->def
2580 << printMBBReference(*DefMI
->getParent())
2581 << ", keeping it.\n");
2582 OtherV
.ErasableImplicitDef
= false;
2584 // We deferred clearing these lanes in case we needed to save them
2585 OtherV
.ValidLanes
&= ~OtherV
.WriteLanes
;
2589 // Allow overlapping PHI values. Any real interference would show up in a
2590 // predecessor, the PHI itself can't introduce any conflicts.
2591 if (VNI
->isPHIDef())
2594 // Check for simple erasable conflicts.
2595 if (DefMI
->isImplicitDef()) {
2596 // We need the def for the subregister if there is nothing else live at the
2597 // subrange at this point.
2598 if (TrackSubRegLiveness
2599 && (V
.WriteLanes
& (OtherV
.ValidLanes
| OtherV
.WriteLanes
)).none())
2604 // Include the non-conflict where DefMI is a coalescable copy that kills
2605 // OtherVNI. We still want the copy erased and value numbers merged.
2606 if (CP
.isCoalescable(DefMI
)) {
2607 // Some of the lanes copied from OtherVNI may be undef, making them undef
2609 V
.ValidLanes
&= ~V
.WriteLanes
| OtherV
.ValidLanes
;
2613 // This may not be a real conflict if DefMI simply kills Other and defines
2615 if (OtherLRQ
.isKill() && OtherLRQ
.endPoint() <= VNI
->def
)
2618 // Handle the case where VNI and OtherVNI can be proven to be identical:
2620 // %other = COPY %ext
2621 // %this = COPY %ext <-- Erase this copy
2623 if (DefMI
->isFullCopy() && !CP
.isPartial() &&
2624 valuesIdentical(VNI
, V
.OtherVNI
, Other
)) {
2629 // The remaining checks apply to the lanes, which aren't tracked here. This
2630 // was already decided to be OK via the following CR_Replace condition.
2635 // If the lanes written by this instruction were all undef in OtherVNI, it is
2636 // still safe to join the live ranges. This can't be done with a simple value
2637 // mapping, though - OtherVNI will map to multiple values:
2639 // 1 %dst:ssub0 = FOO <-- OtherVNI
2640 // 2 %src = BAR <-- VNI
2641 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2642 // 4 BAZ killed %dst
2643 // 5 QUUX killed %src
2645 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2646 // handles this complex value mapping.
2647 if ((V
.WriteLanes
& OtherV
.ValidLanes
).none())
2650 // If the other live range is killed by DefMI and the live ranges are still
2651 // overlapping, it must be because we're looking at an early clobber def:
2653 // %dst<def,early-clobber> = ASM killed %src
2655 // In this case, it is illegal to merge the two live ranges since the early
2656 // clobber def would clobber %src before it was read.
2657 if (OtherLRQ
.isKill()) {
2658 // This case where the def doesn't overlap the kill is handled above.
2659 assert(VNI
->def
.isEarlyClobber() &&
2660 "Only early clobber defs can overlap a kill");
2661 return CR_Impossible
;
2664 // VNI is clobbering live lanes in OtherVNI, but there is still the
2665 // possibility that no instructions actually read the clobbered lanes.
2666 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2667 // Otherwise Other.RI wouldn't be live here.
2668 if ((TRI
->getSubRegIndexLaneMask(Other
.SubIdx
) & ~V
.WriteLanes
).none())
2669 return CR_Impossible
;
2671 // We need to verify that no instructions are reading the clobbered lanes. To
2672 // save compile time, we'll only check that locally. Don't allow the tainted
2673 // value to escape the basic block.
2674 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2675 if (OtherLRQ
.endPoint() >= Indexes
->getMBBEndIdx(MBB
))
2676 return CR_Impossible
;
2678 // There are still some things that could go wrong besides clobbered lanes
2679 // being read, for example OtherVNI may be only partially redefined in MBB,
2680 // and some clobbered lanes could escape the block. Save this analysis for
2681 // resolveConflicts() when all values have been mapped. We need to know
2682 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2683 // that now - the recursive analyzeValue() calls must go upwards in the
2685 return CR_Unresolved
;
2688 void JoinVals::computeAssignment(unsigned ValNo
, JoinVals
&Other
) {
2689 Val
&V
= Vals
[ValNo
];
2690 if (V
.isAnalyzed()) {
2691 // Recursion should always move up the dominator tree, so ValNo is not
2692 // supposed to reappear before it has been assigned.
2693 assert(Assignments
[ValNo
] != -1 && "Bad recursion?");
2696 switch ((V
.Resolution
= analyzeValue(ValNo
, Other
))) {
2699 // Merge this ValNo into OtherVNI.
2700 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't merge.");
2701 assert(Other
.Vals
[V
.OtherVNI
->id
].isAnalyzed() && "Missing recursion");
2702 Assignments
[ValNo
] = Other
.Assignments
[V
.OtherVNI
->id
];
2703 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg
) << ':' << ValNo
<< '@'
2704 << LR
.getValNumInfo(ValNo
)->def
<< " into "
2705 << printReg(Other
.Reg
) << ':' << V
.OtherVNI
->id
<< '@'
2706 << V
.OtherVNI
->def
<< " --> @"
2707 << NewVNInfo
[Assignments
[ValNo
]]->def
<< '\n');
2710 case CR_Unresolved
: {
2711 // The other value is going to be pruned if this join is successful.
2712 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't prune");
2713 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2714 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2716 if (OtherV
.ErasableImplicitDef
&&
2717 TrackSubRegLiveness
&&
2718 (OtherV
.WriteLanes
& ~V
.ValidLanes
).any()) {
2719 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2721 OtherV
.ErasableImplicitDef
= false;
2722 // The valid lanes written by the implicit_def were speculatively cleared
2723 // before, so make this more conservative. It may be better to track this,
2724 // I haven't found a testcase where it matters.
2725 OtherV
.ValidLanes
= LaneBitmask::getAll();
2728 OtherV
.Pruned
= true;
2732 // This value number needs to go in the final joined live range.
2733 Assignments
[ValNo
] = NewVNInfo
.size();
2734 NewVNInfo
.push_back(LR
.getValNumInfo(ValNo
));
2739 bool JoinVals::mapValues(JoinVals
&Other
) {
2740 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
2741 computeAssignment(i
, Other
);
2742 if (Vals
[i
].Resolution
== CR_Impossible
) {
2743 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg
) << ':' << i
2744 << '@' << LR
.getValNumInfo(i
)->def
<< '\n');
2752 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
2753 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
) {
2754 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
2755 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2756 SlotIndex MBBEnd
= Indexes
->getMBBEndIdx(MBB
);
2758 // Scan Other.LR from VNI.def to MBBEnd.
2759 LiveInterval::iterator OtherI
= Other
.LR
.find(VNI
->def
);
2760 assert(OtherI
!= Other
.LR
.end() && "No conflict?");
2762 // OtherI is pointing to a tainted value. Abort the join if the tainted
2763 // lanes escape the block.
2764 SlotIndex End
= OtherI
->end
;
2765 if (End
>= MBBEnd
) {
2766 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other
.Reg
) << ':'
2767 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< '\n');
2770 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other
.Reg
) << ':'
2771 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< " to "
2773 // A dead def is not a problem.
2776 TaintExtent
.push_back(std::make_pair(End
, TaintedLanes
));
2778 // Check for another def in the MBB.
2779 if (++OtherI
== Other
.LR
.end() || OtherI
->start
>= MBBEnd
)
2782 // Lanes written by the new def are no longer tainted.
2783 const Val
&OV
= Other
.Vals
[OtherI
->valno
->id
];
2784 TaintedLanes
&= ~OV
.WriteLanes
;
2787 } while (TaintedLanes
.any());
2791 bool JoinVals::usesLanes(const MachineInstr
&MI
, unsigned Reg
, unsigned SubIdx
,
2792 LaneBitmask Lanes
) const {
2793 if (MI
.isDebugInstr())
2795 for (const MachineOperand
&MO
: MI
.operands()) {
2796 if (!MO
.isReg() || MO
.isDef() || MO
.getReg() != Reg
)
2800 unsigned S
= TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg());
2801 if ((Lanes
& TRI
->getSubRegIndexLaneMask(S
)).any())
2807 bool JoinVals::resolveConflicts(JoinVals
&Other
) {
2808 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
2810 assert(V
.Resolution
!= CR_Impossible
&& "Unresolvable conflict");
2811 if (V
.Resolution
!= CR_Unresolved
)
2813 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg
) << ':' << i
<< '@'
2814 << LR
.getValNumInfo(i
)->def
<< '\n');
2819 assert(V
.OtherVNI
&& "Inconsistent conflict resolution.");
2820 VNInfo
*VNI
= LR
.getValNumInfo(i
);
2821 const Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2823 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2824 // join, those lanes will be tainted with a wrong value. Get the extent of
2825 // the tainted lanes.
2826 LaneBitmask TaintedLanes
= V
.WriteLanes
& OtherV
.ValidLanes
;
2827 SmallVector
<std::pair
<SlotIndex
, LaneBitmask
>, 8> TaintExtent
;
2828 if (!taintExtent(i
, TaintedLanes
, Other
, TaintExtent
))
2829 // Tainted lanes would extend beyond the basic block.
2832 assert(!TaintExtent
.empty() && "There should be at least one conflict.");
2834 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2835 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2836 MachineBasicBlock::iterator MI
= MBB
->begin();
2837 if (!VNI
->isPHIDef()) {
2838 MI
= Indexes
->getInstructionFromIndex(VNI
->def
);
2839 // No need to check the instruction defining VNI for reads.
2842 assert(!SlotIndex::isSameInstr(VNI
->def
, TaintExtent
.front().first
) &&
2843 "Interference ends on VNI->def. Should have been handled earlier");
2844 MachineInstr
*LastMI
=
2845 Indexes
->getInstructionFromIndex(TaintExtent
.front().first
);
2846 assert(LastMI
&& "Range must end at a proper instruction");
2847 unsigned TaintNum
= 0;
2849 assert(MI
!= MBB
->end() && "Bad LastMI");
2850 if (usesLanes(*MI
, Other
.Reg
, Other
.SubIdx
, TaintedLanes
)) {
2851 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI
);
2854 // LastMI is the last instruction to use the current value.
2855 if (&*MI
== LastMI
) {
2856 if (++TaintNum
== TaintExtent
.size())
2858 LastMI
= Indexes
->getInstructionFromIndex(TaintExtent
[TaintNum
].first
);
2859 assert(LastMI
&& "Range must end at a proper instruction");
2860 TaintedLanes
= TaintExtent
[TaintNum
].second
;
2865 // The tainted lanes are unused.
2866 V
.Resolution
= CR_Replace
;
2872 bool JoinVals::isPrunedValue(unsigned ValNo
, JoinVals
&Other
) {
2873 Val
&V
= Vals
[ValNo
];
2874 if (V
.Pruned
|| V
.PrunedComputed
)
2877 if (V
.Resolution
!= CR_Erase
&& V
.Resolution
!= CR_Merge
)
2880 // Follow copies up the dominator tree and check if any intermediate value
2882 V
.PrunedComputed
= true;
2883 V
.Pruned
= Other
.isPrunedValue(V
.OtherVNI
->id
, *this);
2887 void JoinVals::pruneValues(JoinVals
&Other
,
2888 SmallVectorImpl
<SlotIndex
> &EndPoints
,
2889 bool changeInstrs
) {
2890 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
2891 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
2892 switch (Vals
[i
].Resolution
) {
2896 // This value takes precedence over the value in Other.LR.
2897 LIS
->pruneValue(Other
.LR
, Def
, &EndPoints
);
2898 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2899 // instructions are only inserted to provide a live-out value for PHI
2900 // predecessors, so the instruction should simply go away once its value
2901 // has been replaced.
2902 Val
&OtherV
= Other
.Vals
[Vals
[i
].OtherVNI
->id
];
2903 bool EraseImpDef
= OtherV
.ErasableImplicitDef
&&
2904 OtherV
.Resolution
== CR_Keep
;
2905 if (!Def
.isBlock()) {
2907 // Remove <def,read-undef> flags. This def is now a partial redef.
2908 // Also remove dead flags since the joined live range will
2909 // continue past this instruction.
2910 for (MachineOperand
&MO
:
2911 Indexes
->getInstructionFromIndex(Def
)->operands()) {
2912 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
) {
2913 if (MO
.getSubReg() != 0 && MO
.isUndef() && !EraseImpDef
)
2914 MO
.setIsUndef(false);
2915 MO
.setIsDead(false);
2919 // This value will reach instructions below, but we need to make sure
2920 // the live range also reaches the instruction at Def.
2922 EndPoints
.push_back(Def
);
2924 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other
.Reg
) << " at " << Def
2925 << ": " << Other
.LR
<< '\n');
2930 if (isPrunedValue(i
, Other
)) {
2931 // This value is ultimately a copy of a pruned value in LR or Other.LR.
2932 // We can no longer trust the value mapping computed by
2933 // computeAssignment(), the value that was originally copied could have
2935 LIS
->pruneValue(LR
, Def
, &EndPoints
);
2936 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg
) << " at "
2937 << Def
<< ": " << LR
<< '\n');
2942 llvm_unreachable("Unresolved conflicts");
2947 /// Consider the following situation when coalescing the copy between
2948 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2950 /// Main range Subrange 0004 (sub2)
2952 /// 544 %45 = COPY %28 + +
2955 /// 624 = %45.sub2 | v2 | v2
2956 /// 800 %31 = COPY %45 + + + +
2958 /// 816 %31.sub1 = ... + |
2959 /// 880 %30 = COPY %31 | v1 +
2960 /// 928 %45 = COPY %30 | + +
2961 /// | | v0 | v0 <--+
2962 /// 992B ; backedge -> bb.1 | + + |
2963 /// 1040 = %31.sub0 + |
2964 /// This value must remain
2967 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
2968 /// redundant, since it copies the value from %45 back into it. The
2969 /// conflict resolution for the main range determines that %45.v0 is
2970 /// to be erased, which is ok since %31.v1 is identical to it.
2971 /// The problem happens with the subrange for sub2: it has to be live
2972 /// on exit from the block, but since 928 was actually a point of
2973 /// definition of %45.sub2, %45.sub2 was not live immediately prior
2974 /// to that definition. As a result, when 928 was erased, the value v0
2975 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
2976 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
2977 /// providing an incorrect value to the use at 624.
2979 /// Since the main-range values %31.v1 and %45.v0 were proved to be
2980 /// identical, the corresponding values in subranges must also be the
2981 /// same. A redundant copy is removed because it's not needed, and not
2982 /// because it copied an undefined value, so any liveness that originated
2983 /// from that copy cannot disappear. When pruning a value that started
2984 /// at the removed copy, the corresponding identical value must be
2985 /// extended to replace it.
2986 void JoinVals::pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
) {
2987 // Look for values being erased.
2988 bool DidPrune
= false;
2989 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
2991 // We should trigger in all cases in which eraseInstrs() does something.
2992 // match what eraseInstrs() is doing, print a message so
2993 if (V
.Resolution
!= CR_Erase
&&
2994 (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
))
2997 // Check subranges at the point where the copy will be removed.
2998 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3001 OtherDef
= V
.OtherVNI
->def
;
3003 // Print message so mismatches with eraseInstrs() can be diagnosed.
3004 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3006 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
3007 LiveQueryResult Q
= S
.Query(Def
);
3009 // If a subrange starts at the copy then an undefined value has been
3010 // copied and we must remove that subrange value as well.
3011 VNInfo
*ValueOut
= Q
.valueOutOrDead();
3012 if (ValueOut
!= nullptr && Q
.valueIn() == nullptr) {
3013 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S
.LaneMask
)
3014 << " at " << Def
<< "\n");
3015 SmallVector
<SlotIndex
,8> EndPoints
;
3016 LIS
->pruneValue(S
, Def
, &EndPoints
);
3018 // Mark value number as unused.
3019 ValueOut
->markUnused();
3021 if (V
.Identical
&& S
.Query(OtherDef
).valueOut()) {
3022 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3023 // then we can't simply prune V from S. V needs to be replaced
3025 LIS
->extendToIndices(S
, EndPoints
);
3029 // If a subrange ends at the copy, then a value was copied but only
3030 // partially used later. Shrink the subregister range appropriately.
3031 if (Q
.valueIn() != nullptr && Q
.valueOut() == nullptr) {
3032 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3033 << PrintLaneMask(S
.LaneMask
) << " at " << Def
3035 ShrinkMask
|= S
.LaneMask
;
3040 LI
.removeEmptySubRanges();
3043 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3044 static bool isDefInSubRange(LiveInterval
&LI
, SlotIndex Def
) {
3045 for (LiveInterval::SubRange
&SR
: LI
.subranges()) {
3046 if (VNInfo
*VNI
= SR
.Query(Def
).valueOutOrDead())
3047 if (VNI
->def
== Def
)
3053 void JoinVals::pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
) {
3054 assert(&static_cast<LiveRange
&>(LI
) == &LR
);
3056 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3057 if (Vals
[i
].Resolution
!= CR_Keep
)
3059 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3060 if (VNI
->isUnused() || VNI
->isPHIDef() || isDefInSubRange(LI
, VNI
->def
))
3062 Vals
[i
].Pruned
= true;
3063 ShrinkMainRange
= true;
3067 void JoinVals::removeImplicitDefs() {
3068 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3070 if (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
)
3073 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3075 LR
.removeValNo(VNI
);
3079 void JoinVals::eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
3080 SmallVectorImpl
<unsigned> &ShrinkRegs
,
3082 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3083 // Get the def location before markUnused() below invalidates it.
3084 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3085 switch (Vals
[i
].Resolution
) {
3087 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3088 // longer. The IMPLICIT_DEF instructions are only inserted by
3089 // PHIElimination to guarantee that all PHI predecessors have a value.
3090 if (!Vals
[i
].ErasableImplicitDef
|| !Vals
[i
].Pruned
)
3092 // Remove value number i from LR.
3093 // For intervals with subranges, removing a segment from the main range
3094 // may require extending the previous segment: for each definition of
3095 // a subregister, there will be a corresponding def in the main range.
3096 // That def may fall in the middle of a segment from another subrange.
3097 // In such cases, removing this def from the main range must be
3098 // complemented by extending the main range to account for the liveness
3099 // of the other subrange.
3100 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3101 SlotIndex Def
= VNI
->def
;
3102 // The new end point of the main range segment to be extended.
3104 if (LI
!= nullptr) {
3105 LiveRange::iterator I
= LR
.FindSegmentContaining(Def
);
3106 assert(I
!= LR
.end());
3107 // Do not extend beyond the end of the segment being removed.
3108 // The segment may have been pruned in preparation for joining
3113 LR
.removeValNo(VNI
);
3114 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3115 // make it appear like an unused value number.
3118 if (LI
!= nullptr && LI
->hasSubRanges()) {
3119 assert(static_cast<LiveRange
*>(LI
) == &LR
);
3120 // Determine the end point based on the subrange information:
3121 // minimum of (earliest def of next segment,
3122 // latest end point of containing segment)
3124 for (LiveInterval::SubRange
&SR
: LI
->subranges()) {
3125 LiveRange::iterator I
= SR
.find(Def
);
3129 ED
= ED
.isValid() ? std::min(ED
, I
->start
) : I
->start
;
3131 LE
= LE
.isValid() ? std::max(LE
, I
->end
) : I
->end
;
3134 NewEnd
= std::min(NewEnd
, LE
);
3136 NewEnd
= std::min(NewEnd
, ED
);
3138 // We only want to do the extension if there was a subrange that
3139 // was live across Def.
3141 LiveRange::iterator S
= LR
.find(Def
);
3142 if (S
!= LR
.begin())
3143 std::prev(S
)->end
= NewEnd
;
3147 dbgs() << "\t\tremoved " << i
<< '@' << Def
<< ": " << LR
<< '\n';
3149 dbgs() << "\t\t LHS = " << *LI
<< '\n';
3155 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
3156 assert(MI
&& "No instruction to erase");
3158 unsigned Reg
= MI
->getOperand(1).getReg();
3159 if (TargetRegisterInfo::isVirtualRegister(Reg
) &&
3160 Reg
!= CP
.getSrcReg() && Reg
!= CP
.getDstReg())
3161 ShrinkRegs
.push_back(Reg
);
3163 ErasedInstrs
.insert(MI
);
3164 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def
<< '\t' << *MI
);
3165 LIS
->RemoveMachineInstrFromMaps(*MI
);
3166 MI
->eraseFromParent();
3175 void RegisterCoalescer::joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
3176 LaneBitmask LaneMask
,
3177 const CoalescerPair
&CP
) {
3178 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3179 JoinVals
RHSVals(RRange
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneMask
,
3180 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3181 JoinVals
LHSVals(LRange
, CP
.getDstReg(), CP
.getDstIdx(), LaneMask
,
3182 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3184 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3185 // We should be able to resolve all conflicts here as we could successfully do
3186 // it on the mainrange already. There is however a problem when multiple
3187 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3189 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
)) {
3190 // We already determined that it is legal to merge the intervals, so this
3191 // should never fail.
3192 llvm_unreachable("*** Couldn't join subrange!\n");
3194 if (!LHSVals
.resolveConflicts(RHSVals
) ||
3195 !RHSVals
.resolveConflicts(LHSVals
)) {
3196 // We already determined that it is legal to merge the intervals, so this
3197 // should never fail.
3198 llvm_unreachable("*** Couldn't join subrange!\n");
3201 // The merging algorithm in LiveInterval::join() can't handle conflicting
3202 // value mappings, so we need to remove any live ranges that overlap a
3203 // CR_Replace resolution. Collect a set of end points that can be used to
3204 // restore the live range after joining.
3205 SmallVector
<SlotIndex
, 8> EndPoints
;
3206 LHSVals
.pruneValues(RHSVals
, EndPoints
, false);
3207 RHSVals
.pruneValues(LHSVals
, EndPoints
, false);
3209 LHSVals
.removeImplicitDefs();
3210 RHSVals
.removeImplicitDefs();
3215 // Join RRange into LHS.
3216 LRange
.join(RRange
, LHSVals
.getAssignments(), RHSVals
.getAssignments(),
3219 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask
)
3220 << ' ' << LRange
<< "\n");
3221 if (EndPoints
.empty())
3224 // Recompute the parts of the live range we had to remove because of
3225 // CR_Replace conflicts.
3227 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3228 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3229 dbgs() << EndPoints
[i
];
3233 dbgs() << ": " << LRange
<< '\n';
3235 LIS
->extendToIndices(LRange
, EndPoints
);
3238 void RegisterCoalescer::mergeSubRangeInto(LiveInterval
&LI
,
3239 const LiveRange
&ToMerge
,
3240 LaneBitmask LaneMask
,
3241 CoalescerPair
&CP
) {
3242 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3243 LI
.refineSubRanges(Allocator
, LaneMask
,
3244 [this,&Allocator
,&ToMerge
,&CP
](LiveInterval::SubRange
&SR
) {
3246 SR
.assign(ToMerge
, Allocator
);
3248 // joinSubRegRange() destroys the merged range, so we need a copy.
3249 LiveRange
RangeCopy(ToMerge
, Allocator
);
3250 joinSubRegRanges(SR
, RangeCopy
, SR
.LaneMask
, CP
);
3255 bool RegisterCoalescer::joinVirtRegs(CoalescerPair
&CP
) {
3256 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3257 LiveInterval
&RHS
= LIS
->getInterval(CP
.getSrcReg());
3258 LiveInterval
&LHS
= LIS
->getInterval(CP
.getDstReg());
3259 bool TrackSubRegLiveness
= MRI
->shouldTrackSubRegLiveness(*CP
.getNewRC());
3260 JoinVals
RHSVals(RHS
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneBitmask::getNone(),
3261 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3262 JoinVals
LHSVals(LHS
, CP
.getDstReg(), CP
.getDstIdx(), LaneBitmask::getNone(),
3263 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3265 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< "\n\t\tLHS = " << LHS
<< '\n');
3267 // First compute NewVNInfo and the simple value mappings.
3268 // Detect impossible conflicts early.
3269 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
))
3272 // Some conflicts can only be resolved after all values have been mapped.
3273 if (!LHSVals
.resolveConflicts(RHSVals
) || !RHSVals
.resolveConflicts(LHSVals
))
3276 // All clear, the live ranges can be merged.
3277 if (RHS
.hasSubRanges() || LHS
.hasSubRanges()) {
3278 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3280 // Transform lanemasks from the LHS to masks in the coalesced register and
3281 // create initial subranges if necessary.
3282 unsigned DstIdx
= CP
.getDstIdx();
3283 if (!LHS
.hasSubRanges()) {
3284 LaneBitmask Mask
= DstIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3285 : TRI
->getSubRegIndexLaneMask(DstIdx
);
3286 // LHS must support subregs or we wouldn't be in this codepath.
3288 LHS
.createSubRangeFrom(Allocator
, Mask
, LHS
);
3289 } else if (DstIdx
!= 0) {
3290 // Transform LHS lanemasks to new register class if necessary.
3291 for (LiveInterval::SubRange
&R
: LHS
.subranges()) {
3292 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, R
.LaneMask
);
3296 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP
.getDstReg()) << ' ' << LHS
3299 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3300 unsigned SrcIdx
= CP
.getSrcIdx();
3301 if (!RHS
.hasSubRanges()) {
3302 LaneBitmask Mask
= SrcIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3303 : TRI
->getSubRegIndexLaneMask(SrcIdx
);
3304 mergeSubRangeInto(LHS
, RHS
, Mask
, CP
);
3306 // Pair up subranges and merge.
3307 for (LiveInterval::SubRange
&R
: RHS
.subranges()) {
3308 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(SrcIdx
, R
.LaneMask
);
3309 mergeSubRangeInto(LHS
, R
, Mask
, CP
);
3312 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS
<< "\n");
3314 // Pruning implicit defs from subranges may result in the main range
3315 // having stale segments.
3316 LHSVals
.pruneMainSegments(LHS
, ShrinkMainRange
);
3318 LHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3319 RHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3322 // The merging algorithm in LiveInterval::join() can't handle conflicting
3323 // value mappings, so we need to remove any live ranges that overlap a
3324 // CR_Replace resolution. Collect a set of end points that can be used to
3325 // restore the live range after joining.
3326 SmallVector
<SlotIndex
, 8> EndPoints
;
3327 LHSVals
.pruneValues(RHSVals
, EndPoints
, true);
3328 RHSVals
.pruneValues(LHSVals
, EndPoints
, true);
3330 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3331 // registers to require trimming.
3332 SmallVector
<unsigned, 8> ShrinkRegs
;
3333 LHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
, &LHS
);
3334 RHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
);
3335 while (!ShrinkRegs
.empty())
3336 shrinkToUses(&LIS
->getInterval(ShrinkRegs
.pop_back_val()));
3338 // Join RHS into LHS.
3339 LHS
.join(RHS
, LHSVals
.getAssignments(), RHSVals
.getAssignments(), NewVNInfo
);
3341 // Kill flags are going to be wrong if the live ranges were overlapping.
3342 // Eventually, we should simply clear all kill flags when computing live
3343 // ranges. They are reinserted after register allocation.
3344 MRI
->clearKillFlags(LHS
.reg
);
3345 MRI
->clearKillFlags(RHS
.reg
);
3347 if (!EndPoints
.empty()) {
3348 // Recompute the parts of the live range we had to remove because of
3349 // CR_Replace conflicts.
3351 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3352 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3353 dbgs() << EndPoints
[i
];
3357 dbgs() << ": " << LHS
<< '\n';
3359 LIS
->extendToIndices((LiveRange
&)LHS
, EndPoints
);
3365 bool RegisterCoalescer::joinIntervals(CoalescerPair
&CP
) {
3366 return CP
.isPhys() ? joinReservedPhysReg(CP
) : joinVirtRegs(CP
);
3371 /// Information concerning MBB coalescing priority.
3372 struct MBBPriorityInfo
{
3373 MachineBasicBlock
*MBB
;
3377 MBBPriorityInfo(MachineBasicBlock
*mbb
, unsigned depth
, bool issplit
)
3378 : MBB(mbb
), Depth(depth
), IsSplit(issplit
) {}
3381 } // end anonymous namespace
3383 /// C-style comparator that sorts first based on the loop depth of the basic
3384 /// block (the unsigned), and then on the MBB number.
3386 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3387 static int compareMBBPriority(const MBBPriorityInfo
*LHS
,
3388 const MBBPriorityInfo
*RHS
) {
3389 // Deeper loops first
3390 if (LHS
->Depth
!= RHS
->Depth
)
3391 return LHS
->Depth
> RHS
->Depth
? -1 : 1;
3393 // Try to unsplit critical edges next.
3394 if (LHS
->IsSplit
!= RHS
->IsSplit
)
3395 return LHS
->IsSplit
? -1 : 1;
3397 // Prefer blocks that are more connected in the CFG. This takes care of
3398 // the most difficult copies first while intervals are short.
3399 unsigned cl
= LHS
->MBB
->pred_size() + LHS
->MBB
->succ_size();
3400 unsigned cr
= RHS
->MBB
->pred_size() + RHS
->MBB
->succ_size();
3402 return cl
> cr
? -1 : 1;
3404 // As a last resort, sort by block number.
3405 return LHS
->MBB
->getNumber() < RHS
->MBB
->getNumber() ? -1 : 1;
3408 /// \returns true if the given copy uses or defines a local live range.
3409 static bool isLocalCopy(MachineInstr
*Copy
, const LiveIntervals
*LIS
) {
3410 if (!Copy
->isCopy())
3413 if (Copy
->getOperand(1).isUndef())
3416 unsigned SrcReg
= Copy
->getOperand(1).getReg();
3417 unsigned DstReg
= Copy
->getOperand(0).getReg();
3418 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
)
3419 || TargetRegisterInfo::isPhysicalRegister(DstReg
))
3422 return LIS
->intervalIsInOneMBB(LIS
->getInterval(SrcReg
))
3423 || LIS
->intervalIsInOneMBB(LIS
->getInterval(DstReg
));
3426 void RegisterCoalescer::lateLiveIntervalUpdate() {
3427 for (unsigned reg
: ToBeUpdated
) {
3428 if (!LIS
->hasInterval(reg
))
3430 LiveInterval
&LI
= LIS
->getInterval(reg
);
3431 shrinkToUses(&LI
, &DeadDefs
);
3432 if (!DeadDefs
.empty())
3433 eliminateDeadDefs();
3435 ToBeUpdated
.clear();
3438 bool RegisterCoalescer::
3439 copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
) {
3440 bool Progress
= false;
3441 for (unsigned i
= 0, e
= CurrList
.size(); i
!= e
; ++i
) {
3444 // Skip instruction pointers that have already been erased, for example by
3445 // dead code elimination.
3446 if (ErasedInstrs
.count(CurrList
[i
])) {
3447 CurrList
[i
] = nullptr;
3451 bool Success
= joinCopy(CurrList
[i
], Again
);
3452 Progress
|= Success
;
3453 if (Success
|| !Again
)
3454 CurrList
[i
] = nullptr;
3459 /// Check if DstReg is a terminal node.
3460 /// I.e., it does not have any affinity other than \p Copy.
3461 static bool isTerminalReg(unsigned DstReg
, const MachineInstr
&Copy
,
3462 const MachineRegisterInfo
*MRI
) {
3463 assert(Copy
.isCopyLike());
3464 // Check if the destination of this copy as any other affinity.
3465 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(DstReg
))
3466 if (&MI
!= &Copy
&& MI
.isCopyLike())
3471 bool RegisterCoalescer::applyTerminalRule(const MachineInstr
&Copy
) const {
3472 assert(Copy
.isCopyLike());
3473 if (!UseTerminalRule
)
3475 unsigned DstReg
, DstSubReg
, SrcReg
, SrcSubReg
;
3476 isMoveInstr(*TRI
, &Copy
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
);
3477 // Check if the destination of this copy has any other affinity.
3478 if (TargetRegisterInfo::isPhysicalRegister(DstReg
) ||
3479 // If SrcReg is a physical register, the copy won't be coalesced.
3480 // Ignoring it may have other side effect (like missing
3481 // rematerialization). So keep it.
3482 TargetRegisterInfo::isPhysicalRegister(SrcReg
) ||
3483 !isTerminalReg(DstReg
, Copy
, MRI
))
3486 // DstReg is a terminal node. Check if it interferes with any other
3487 // copy involving SrcReg.
3488 const MachineBasicBlock
*OrigBB
= Copy
.getParent();
3489 const LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
3490 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(SrcReg
)) {
3491 // Technically we should check if the weight of the new copy is
3492 // interesting compared to the other one and update the weight
3493 // of the copies accordingly. However, this would only work if
3494 // we would gather all the copies first then coalesce, whereas
3495 // right now we interleave both actions.
3496 // For now, just consider the copies that are in the same block.
3497 if (&MI
== &Copy
|| !MI
.isCopyLike() || MI
.getParent() != OrigBB
)
3499 unsigned OtherReg
, OtherSubReg
, OtherSrcReg
, OtherSrcSubReg
;
3500 isMoveInstr(*TRI
, &Copy
, OtherSrcReg
, OtherReg
, OtherSrcSubReg
,
3502 if (OtherReg
== SrcReg
)
3503 OtherReg
= OtherSrcReg
;
3504 // Check if OtherReg is a non-terminal.
3505 if (TargetRegisterInfo::isPhysicalRegister(OtherReg
) ||
3506 isTerminalReg(OtherReg
, MI
, MRI
))
3508 // Check that OtherReg interfere with DstReg.
3509 if (LIS
->getInterval(OtherReg
).overlaps(DstLI
)) {
3510 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg
)
3519 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock
*MBB
) {
3520 LLVM_DEBUG(dbgs() << MBB
->getName() << ":\n");
3522 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3523 // yet, it might invalidate the iterator.
3524 const unsigned PrevSize
= WorkList
.size();
3525 if (JoinGlobalCopies
) {
3526 SmallVector
<MachineInstr
*, 2> LocalTerminals
;
3527 SmallVector
<MachineInstr
*, 2> GlobalTerminals
;
3528 // Coalesce copies bottom-up to coalesce local defs before local uses. They
3529 // are not inherently easier to resolve, but slightly preferable until we
3530 // have local live range splitting. In particular this is required by
3531 // cmp+jmp macro fusion.
3532 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
3534 if (!MII
->isCopyLike())
3536 bool ApplyTerminalRule
= applyTerminalRule(*MII
);
3537 if (isLocalCopy(&(*MII
), LIS
)) {
3538 if (ApplyTerminalRule
)
3539 LocalTerminals
.push_back(&(*MII
));
3541 LocalWorkList
.push_back(&(*MII
));
3543 if (ApplyTerminalRule
)
3544 GlobalTerminals
.push_back(&(*MII
));
3546 WorkList
.push_back(&(*MII
));
3549 // Append the copies evicted by the terminal rule at the end of the list.
3550 LocalWorkList
.append(LocalTerminals
.begin(), LocalTerminals
.end());
3551 WorkList
.append(GlobalTerminals
.begin(), GlobalTerminals
.end());
3554 SmallVector
<MachineInstr
*, 2> Terminals
;
3555 for (MachineInstr
&MII
: *MBB
)
3556 if (MII
.isCopyLike()) {
3557 if (applyTerminalRule(MII
))
3558 Terminals
.push_back(&MII
);
3560 WorkList
.push_back(&MII
);
3562 // Append the copies evicted by the terminal rule at the end of the list.
3563 WorkList
.append(Terminals
.begin(), Terminals
.end());
3565 // Try coalescing the collected copies immediately, and remove the nulls.
3566 // This prevents the WorkList from getting too large since most copies are
3567 // joinable on the first attempt.
3568 MutableArrayRef
<MachineInstr
*>
3569 CurrList(WorkList
.begin() + PrevSize
, WorkList
.end());
3570 if (copyCoalesceWorkList(CurrList
))
3571 WorkList
.erase(std::remove(WorkList
.begin() + PrevSize
, WorkList
.end(),
3572 nullptr), WorkList
.end());
3575 void RegisterCoalescer::coalesceLocals() {
3576 copyCoalesceWorkList(LocalWorkList
);
3577 for (unsigned j
= 0, je
= LocalWorkList
.size(); j
!= je
; ++j
) {
3578 if (LocalWorkList
[j
])
3579 WorkList
.push_back(LocalWorkList
[j
]);
3581 LocalWorkList
.clear();
3584 void RegisterCoalescer::joinAllIntervals() {
3585 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3586 assert(WorkList
.empty() && LocalWorkList
.empty() && "Old data still around.");
3588 std::vector
<MBBPriorityInfo
> MBBs
;
3589 MBBs
.reserve(MF
->size());
3590 for (MachineFunction::iterator I
= MF
->begin(), E
= MF
->end(); I
!= E
; ++I
) {
3591 MachineBasicBlock
*MBB
= &*I
;
3592 MBBs
.push_back(MBBPriorityInfo(MBB
, Loops
->getLoopDepth(MBB
),
3593 JoinSplitEdges
&& isSplitEdge(MBB
)));
3595 array_pod_sort(MBBs
.begin(), MBBs
.end(), compareMBBPriority
);
3597 // Coalesce intervals in MBB priority order.
3598 unsigned CurrDepth
= std::numeric_limits
<unsigned>::max();
3599 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
) {
3600 // Try coalescing the collected local copies for deeper loops.
3601 if (JoinGlobalCopies
&& MBBs
[i
].Depth
< CurrDepth
) {
3603 CurrDepth
= MBBs
[i
].Depth
;
3605 copyCoalesceInMBB(MBBs
[i
].MBB
);
3607 lateLiveIntervalUpdate();
3610 // Joining intervals can allow other intervals to be joined. Iteratively join
3611 // until we make no progress.
3612 while (copyCoalesceWorkList(WorkList
))
3614 lateLiveIntervalUpdate();
3617 void RegisterCoalescer::releaseMemory() {
3618 ErasedInstrs
.clear();
3621 InflateRegs
.clear();
3624 bool RegisterCoalescer::runOnMachineFunction(MachineFunction
&fn
) {
3626 MRI
= &fn
.getRegInfo();
3627 const TargetSubtargetInfo
&STI
= fn
.getSubtarget();
3628 TRI
= STI
.getRegisterInfo();
3629 TII
= STI
.getInstrInfo();
3630 LIS
= &getAnalysis
<LiveIntervals
>();
3631 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3632 Loops
= &getAnalysis
<MachineLoopInfo
>();
3633 if (EnableGlobalCopies
== cl::BOU_UNSET
)
3634 JoinGlobalCopies
= STI
.enableJoinGlobalCopies();
3636 JoinGlobalCopies
= (EnableGlobalCopies
== cl::BOU_TRUE
);
3638 // The MachineScheduler does not currently require JoinSplitEdges. This will
3639 // either be enabled unconditionally or replaced by a more general live range
3640 // splitting optimization.
3641 JoinSplitEdges
= EnableJoinSplits
;
3643 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3644 << "********** Function: " << MF
->getName() << '\n');
3646 if (VerifyCoalescing
)
3647 MF
->verify(this, "Before register coalescing");
3649 RegClassInfo
.runOnMachineFunction(fn
);
3651 // Join (coalesce) intervals if requested.
3655 // After deleting a lot of copies, register classes may be less constrained.
3656 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3658 array_pod_sort(InflateRegs
.begin(), InflateRegs
.end());
3659 InflateRegs
.erase(std::unique(InflateRegs
.begin(), InflateRegs
.end()),
3661 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs
.size()
3663 for (unsigned i
= 0, e
= InflateRegs
.size(); i
!= e
; ++i
) {
3664 unsigned Reg
= InflateRegs
[i
];
3665 if (MRI
->reg_nodbg_empty(Reg
))
3667 if (MRI
->recomputeRegClass(Reg
)) {
3668 LLVM_DEBUG(dbgs() << printReg(Reg
) << " inflated to "
3669 << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << '\n');
3672 LiveInterval
&LI
= LIS
->getInterval(Reg
);
3673 if (LI
.hasSubRanges()) {
3674 // If the inflated register class does not support subregisters anymore
3675 // remove the subranges.
3676 if (!MRI
->shouldTrackSubRegLiveness(Reg
)) {
3677 LI
.clearSubRanges();
3680 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(Reg
);
3681 // If subranges are still supported, then the same subregs
3682 // should still be supported.
3683 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
3684 assert((S
.LaneMask
& ~MaxMask
).none());
3693 if (VerifyCoalescing
)
3694 MF
->verify(this, "After register coalescing");
3698 void RegisterCoalescer::print(raw_ostream
&O
, const Module
* m
) const {