Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / RegisterCoalescer.cpp
blob976234db1033eed7405efc04e9a7ea49f89da03e
1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <limits>
56 #include <tuple>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "regalloc"
64 STATISTIC(numJoins , "Number of interval joins performed");
65 STATISTIC(numCrossRCs , "Number of cross class joins performed");
66 STATISTIC(numCommutes , "Number of instruction commuting performed");
67 STATISTIC(numExtends , "Number of copies extended");
68 STATISTIC(NumReMats , "Number of instructions re-materialized");
69 STATISTIC(NumInflated , "Number of register classes inflated");
70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
72 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
74 static cl::opt<bool> EnableJoining("join-liveintervals",
75 cl::desc("Coalesce copies (default=true)"),
76 cl::init(true), cl::Hidden);
78 static cl::opt<bool> UseTerminalRule("terminal-rule",
79 cl::desc("Apply the terminal rule"),
80 cl::init(false), cl::Hidden);
82 /// Temporary flag to test critical edge unsplitting.
83 static cl::opt<bool>
84 EnableJoinSplits("join-splitedges",
85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 /// Temporary flag to test global copy optimization.
88 static cl::opt<cl::boolOrDefault>
89 EnableGlobalCopies("join-globalcopies",
90 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91 cl::init(cl::BOU_UNSET), cl::Hidden);
93 static cl::opt<bool>
94 VerifyCoalescing("verify-coalescing",
95 cl::desc("Verify machine instrs before and after register coalescing"),
96 cl::Hidden);
98 static cl::opt<unsigned> LateRematUpdateThreshold(
99 "late-remat-update-threshold", cl::Hidden,
100 cl::desc("During rematerialization for a copy, if the def instruction has "
101 "many other copy uses to be rematerialized, delay the multiple "
102 "separate live interval update work and do them all at once after "
103 "all those rematerialization are done. It will save a lot of "
104 "repeated work. "),
105 cl::init(100));
107 namespace {
109 class RegisterCoalescer : public MachineFunctionPass,
110 private LiveRangeEdit::Delegate {
111 MachineFunction* MF;
112 MachineRegisterInfo* MRI;
113 const TargetRegisterInfo* TRI;
114 const TargetInstrInfo* TII;
115 LiveIntervals *LIS;
116 const MachineLoopInfo* Loops;
117 AliasAnalysis *AA;
118 RegisterClassInfo RegClassInfo;
120 /// A LaneMask to remember on which subregister live ranges we need to call
121 /// shrinkToUses() later.
122 LaneBitmask ShrinkMask;
124 /// True if the main range of the currently coalesced intervals should be
125 /// checked for smaller live intervals.
126 bool ShrinkMainRange;
128 /// True if the coalescer should aggressively coalesce global copies
129 /// in favor of keeping local copies.
130 bool JoinGlobalCopies;
132 /// True if the coalescer should aggressively coalesce fall-thru
133 /// blocks exclusively containing copies.
134 bool JoinSplitEdges;
136 /// Copy instructions yet to be coalesced.
137 SmallVector<MachineInstr*, 8> WorkList;
138 SmallVector<MachineInstr*, 8> LocalWorkList;
140 /// Set of instruction pointers that have been erased, and
141 /// that may be present in WorkList.
142 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
144 /// Dead instructions that are about to be deleted.
145 SmallVector<MachineInstr*, 8> DeadDefs;
147 /// Virtual registers to be considered for register class inflation.
148 SmallVector<unsigned, 8> InflateRegs;
150 /// The collection of live intervals which should have been updated
151 /// immediately after rematerialiation but delayed until
152 /// lateLiveIntervalUpdate is called.
153 DenseSet<unsigned> ToBeUpdated;
155 /// Recursively eliminate dead defs in DeadDefs.
156 void eliminateDeadDefs();
158 /// LiveRangeEdit callback for eliminateDeadDefs().
159 void LRE_WillEraseInstruction(MachineInstr *MI) override;
161 /// Coalesce the LocalWorkList.
162 void coalesceLocals();
164 /// Join compatible live intervals
165 void joinAllIntervals();
167 /// Coalesce copies in the specified MBB, putting
168 /// copies that cannot yet be coalesced into WorkList.
169 void copyCoalesceInMBB(MachineBasicBlock *MBB);
171 /// Tries to coalesce all copies in CurrList. Returns true if any progress
172 /// was made.
173 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
175 /// If one def has many copy like uses, and those copy uses are all
176 /// rematerialized, the live interval update needed for those
177 /// rematerializations will be delayed and done all at once instead
178 /// of being done multiple times. This is to save compile cost because
179 /// live interval update is costly.
180 void lateLiveIntervalUpdate();
182 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
183 /// src/dst of the copy instruction CopyMI. This returns true if the copy
184 /// was successfully coalesced away. If it is not currently possible to
185 /// coalesce this interval, but it may be possible if other things get
186 /// coalesced, then it returns true by reference in 'Again'.
187 bool joinCopy(MachineInstr *CopyMI, bool &Again);
189 /// Attempt to join these two intervals. On failure, this
190 /// returns false. The output "SrcInt" will not have been modified, so we
191 /// can use this information below to update aliases.
192 bool joinIntervals(CoalescerPair &CP);
194 /// Attempt joining two virtual registers. Return true on success.
195 bool joinVirtRegs(CoalescerPair &CP);
197 /// Attempt joining with a reserved physreg.
198 bool joinReservedPhysReg(CoalescerPair &CP);
200 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
201 /// Subranges in @p LI which only partially interfere with the desired
202 /// LaneMask are split as necessary. @p LaneMask are the lanes that
203 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
204 /// lanemasks already adjusted to the coalesced register.
205 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
206 LaneBitmask LaneMask, CoalescerPair &CP);
208 /// Join the liveranges of two subregisters. Joins @p RRange into
209 /// @p LRange, @p RRange may be invalid afterwards.
210 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
211 LaneBitmask LaneMask, const CoalescerPair &CP);
213 /// We found a non-trivially-coalescable copy. If the source value number is
214 /// defined by a copy from the destination reg see if we can merge these two
215 /// destination reg valno# into a single value number, eliminating a copy.
216 /// This returns true if an interval was modified.
217 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
219 /// Return true if there are definitions of IntB
220 /// other than BValNo val# that can reach uses of AValno val# of IntA.
221 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
222 VNInfo *AValNo, VNInfo *BValNo);
224 /// We found a non-trivially-coalescable copy.
225 /// If the source value number is defined by a commutable instruction and
226 /// its other operand is coalesced to the copy dest register, see if we
227 /// can transform the copy into a noop by commuting the definition.
228 /// This returns a pair of two flags:
229 /// - the first element is true if an interval was modified,
230 /// - the second element is true if the destination interval needs
231 /// to be shrunk after deleting the copy.
232 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
233 MachineInstr *CopyMI);
235 /// We found a copy which can be moved to its less frequent predecessor.
236 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
238 /// If the source of a copy is defined by a
239 /// trivial computation, replace the copy by rematerialize the definition.
240 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
241 bool &IsDefCopy);
243 /// Return true if a copy involving a physreg should be joined.
244 bool canJoinPhys(const CoalescerPair &CP);
246 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
247 /// number if it is not zero. If DstReg is a physical register and the
248 /// existing subregister number of the def / use being updated is not zero,
249 /// make sure to set it to the correct physical subregister.
250 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
252 /// If the given machine operand reads only undefined lanes add an undef
253 /// flag.
254 /// This can happen when undef uses were previously concealed by a copy
255 /// which we coalesced. Example:
256 /// %0:sub0<def,read-undef> = ...
257 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
258 /// = use %1:sub1 <-- hidden undef use
259 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
260 MachineOperand &MO, unsigned SubRegIdx);
262 /// Handle copies of undef values. If the undef value is an incoming
263 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
264 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
265 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
266 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
268 /// Check whether or not we should apply the terminal rule on the
269 /// destination (Dst) of \p Copy.
270 /// When the terminal rule applies, Copy is not profitable to
271 /// coalesce.
272 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
273 /// at least one interference (Dst, Dst2). If Dst is terminal, the
274 /// terminal rule consists in checking that at least one of
275 /// interfering node, say Dst2, has an affinity of equal or greater
276 /// weight with Src.
277 /// In that case, Dst2 and Dst will not be able to be both coalesced
278 /// with Src. Since Dst2 exposes more coalescing opportunities than
279 /// Dst, we can drop \p Copy.
280 bool applyTerminalRule(const MachineInstr &Copy) const;
282 /// Wrapper method for \see LiveIntervals::shrinkToUses.
283 /// This method does the proper fixing of the live-ranges when the afore
284 /// mentioned method returns true.
285 void shrinkToUses(LiveInterval *LI,
286 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
287 NumShrinkToUses++;
288 if (LIS->shrinkToUses(LI, Dead)) {
289 /// Check whether or not \p LI is composed by multiple connected
290 /// components and if that is the case, fix that.
291 SmallVector<LiveInterval*, 8> SplitLIs;
292 LIS->splitSeparateComponents(*LI, SplitLIs);
296 /// Wrapper Method to do all the necessary work when an Instruction is
297 /// deleted.
298 /// Optimizations should use this to make sure that deleted instructions
299 /// are always accounted for.
300 void deleteInstr(MachineInstr* MI) {
301 ErasedInstrs.insert(MI);
302 LIS->RemoveMachineInstrFromMaps(*MI);
303 MI->eraseFromParent();
306 public:
307 static char ID; ///< Class identification, replacement for typeinfo
309 RegisterCoalescer() : MachineFunctionPass(ID) {
310 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
313 void getAnalysisUsage(AnalysisUsage &AU) const override;
315 void releaseMemory() override;
317 /// This is the pass entry point.
318 bool runOnMachineFunction(MachineFunction&) override;
320 /// Implement the dump method.
321 void print(raw_ostream &O, const Module* = nullptr) const override;
324 } // end anonymous namespace
326 char RegisterCoalescer::ID = 0;
328 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
330 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
331 "Simple Register Coalescing", false, false)
332 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
333 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
334 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
335 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
336 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
337 "Simple Register Coalescing", false, false)
339 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
340 unsigned &Src, unsigned &Dst,
341 unsigned &SrcSub, unsigned &DstSub) {
342 if (MI->isCopy()) {
343 Dst = MI->getOperand(0).getReg();
344 DstSub = MI->getOperand(0).getSubReg();
345 Src = MI->getOperand(1).getReg();
346 SrcSub = MI->getOperand(1).getSubReg();
347 } else if (MI->isSubregToReg()) {
348 Dst = MI->getOperand(0).getReg();
349 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
350 MI->getOperand(3).getImm());
351 Src = MI->getOperand(2).getReg();
352 SrcSub = MI->getOperand(2).getSubReg();
353 } else
354 return false;
355 return true;
358 /// Return true if this block should be vacated by the coalescer to eliminate
359 /// branches. The important cases to handle in the coalescer are critical edges
360 /// split during phi elimination which contain only copies. Simple blocks that
361 /// contain non-branches should also be vacated, but this can be handled by an
362 /// earlier pass similar to early if-conversion.
363 static bool isSplitEdge(const MachineBasicBlock *MBB) {
364 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
365 return false;
367 for (const auto &MI : *MBB) {
368 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
369 return false;
371 return true;
374 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
375 SrcReg = DstReg = 0;
376 SrcIdx = DstIdx = 0;
377 NewRC = nullptr;
378 Flipped = CrossClass = false;
380 unsigned Src, Dst, SrcSub, DstSub;
381 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
382 return false;
383 Partial = SrcSub || DstSub;
385 // If one register is a physreg, it must be Dst.
386 if (TargetRegisterInfo::isPhysicalRegister(Src)) {
387 if (TargetRegisterInfo::isPhysicalRegister(Dst))
388 return false;
389 std::swap(Src, Dst);
390 std::swap(SrcSub, DstSub);
391 Flipped = true;
394 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
396 if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
397 // Eliminate DstSub on a physreg.
398 if (DstSub) {
399 Dst = TRI.getSubReg(Dst, DstSub);
400 if (!Dst) return false;
401 DstSub = 0;
404 // Eliminate SrcSub by picking a corresponding Dst superregister.
405 if (SrcSub) {
406 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
407 if (!Dst) return false;
408 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
409 return false;
411 } else {
412 // Both registers are virtual.
413 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
414 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
416 // Both registers have subreg indices.
417 if (SrcSub && DstSub) {
418 // Copies between different sub-registers are never coalescable.
419 if (Src == Dst && SrcSub != DstSub)
420 return false;
422 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
423 SrcIdx, DstIdx);
424 if (!NewRC)
425 return false;
426 } else if (DstSub) {
427 // SrcReg will be merged with a sub-register of DstReg.
428 SrcIdx = DstSub;
429 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
430 } else if (SrcSub) {
431 // DstReg will be merged with a sub-register of SrcReg.
432 DstIdx = SrcSub;
433 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
434 } else {
435 // This is a straight copy without sub-registers.
436 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
439 // The combined constraint may be impossible to satisfy.
440 if (!NewRC)
441 return false;
443 // Prefer SrcReg to be a sub-register of DstReg.
444 // FIXME: Coalescer should support subregs symmetrically.
445 if (DstIdx && !SrcIdx) {
446 std::swap(Src, Dst);
447 std::swap(SrcIdx, DstIdx);
448 Flipped = !Flipped;
451 CrossClass = NewRC != DstRC || NewRC != SrcRC;
453 // Check our invariants
454 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
455 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
456 "Cannot have a physical SubIdx");
457 SrcReg = Src;
458 DstReg = Dst;
459 return true;
462 bool CoalescerPair::flip() {
463 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
464 return false;
465 std::swap(SrcReg, DstReg);
466 std::swap(SrcIdx, DstIdx);
467 Flipped = !Flipped;
468 return true;
471 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
472 if (!MI)
473 return false;
474 unsigned Src, Dst, SrcSub, DstSub;
475 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
476 return false;
478 // Find the virtual register that is SrcReg.
479 if (Dst == SrcReg) {
480 std::swap(Src, Dst);
481 std::swap(SrcSub, DstSub);
482 } else if (Src != SrcReg) {
483 return false;
486 // Now check that Dst matches DstReg.
487 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
488 if (!TargetRegisterInfo::isPhysicalRegister(Dst))
489 return false;
490 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
491 // DstSub could be set for a physreg from INSERT_SUBREG.
492 if (DstSub)
493 Dst = TRI.getSubReg(Dst, DstSub);
494 // Full copy of Src.
495 if (!SrcSub)
496 return DstReg == Dst;
497 // This is a partial register copy. Check that the parts match.
498 return TRI.getSubReg(DstReg, SrcSub) == Dst;
499 } else {
500 // DstReg is virtual.
501 if (DstReg != Dst)
502 return false;
503 // Registers match, do the subregisters line up?
504 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
505 TRI.composeSubRegIndices(DstIdx, DstSub);
509 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
510 AU.setPreservesCFG();
511 AU.addRequired<AAResultsWrapperPass>();
512 AU.addRequired<LiveIntervals>();
513 AU.addPreserved<LiveIntervals>();
514 AU.addPreserved<SlotIndexes>();
515 AU.addRequired<MachineLoopInfo>();
516 AU.addPreserved<MachineLoopInfo>();
517 AU.addPreservedID(MachineDominatorsID);
518 MachineFunctionPass::getAnalysisUsage(AU);
521 void RegisterCoalescer::eliminateDeadDefs() {
522 SmallVector<unsigned, 8> NewRegs;
523 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
524 nullptr, this).eliminateDeadDefs(DeadDefs);
527 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
528 // MI may be in WorkList. Make sure we don't visit it.
529 ErasedInstrs.insert(MI);
532 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
533 MachineInstr *CopyMI) {
534 assert(!CP.isPartial() && "This doesn't work for partial copies.");
535 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
537 LiveInterval &IntA =
538 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
539 LiveInterval &IntB =
540 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
541 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
543 // We have a non-trivially-coalescable copy with IntA being the source and
544 // IntB being the dest, thus this defines a value number in IntB. If the
545 // source value number (in IntA) is defined by a copy from B, see if we can
546 // merge these two pieces of B into a single value number, eliminating a copy.
547 // For example:
549 // A3 = B0
550 // ...
551 // B1 = A3 <- this copy
553 // In this case, B0 can be extended to where the B1 copy lives, allowing the
554 // B1 value number to be replaced with B0 (which simplifies the B
555 // liveinterval).
557 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
558 // the example above.
559 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
560 if (BS == IntB.end()) return false;
561 VNInfo *BValNo = BS->valno;
563 // Get the location that B is defined at. Two options: either this value has
564 // an unknown definition point or it is defined at CopyIdx. If unknown, we
565 // can't process it.
566 if (BValNo->def != CopyIdx) return false;
568 // AValNo is the value number in A that defines the copy, A3 in the example.
569 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
570 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
571 // The live segment might not exist after fun with physreg coalescing.
572 if (AS == IntA.end()) return false;
573 VNInfo *AValNo = AS->valno;
575 // If AValNo is defined as a copy from IntB, we can potentially process this.
576 // Get the instruction that defines this value number.
577 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
578 // Don't allow any partial copies, even if isCoalescable() allows them.
579 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
580 return false;
582 // Get the Segment in IntB that this value number starts with.
583 LiveInterval::iterator ValS =
584 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
585 if (ValS == IntB.end())
586 return false;
588 // Make sure that the end of the live segment is inside the same block as
589 // CopyMI.
590 MachineInstr *ValSEndInst =
591 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
592 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
593 return false;
595 // Okay, we now know that ValS ends in the same block that the CopyMI
596 // live-range starts. If there are no intervening live segments between them
597 // in IntB, we can merge them.
598 if (ValS+1 != BS) return false;
600 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
602 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
603 // We are about to delete CopyMI, so need to remove it as the 'instruction
604 // that defines this value #'. Update the valnum with the new defining
605 // instruction #.
606 BValNo->def = FillerStart;
608 // Okay, we can merge them. We need to insert a new liverange:
609 // [ValS.end, BS.begin) of either value number, then we merge the
610 // two value numbers.
611 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
613 // Okay, merge "B1" into the same value number as "B0".
614 if (BValNo != ValS->valno)
615 IntB.MergeValueNumberInto(BValNo, ValS->valno);
617 // Do the same for the subregister segments.
618 for (LiveInterval::SubRange &S : IntB.subranges()) {
619 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
620 // removed to prevent creating bogus SubRange Segments.
621 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
622 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
623 S.removeSegment(*SS, true);
624 continue;
626 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
627 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
628 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
629 if (SubBValNo != SubValSNo)
630 S.MergeValueNumberInto(SubBValNo, SubValSNo);
633 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
635 // If the source instruction was killing the source register before the
636 // merge, unset the isKill marker given the live range has been extended.
637 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
638 if (UIdx != -1) {
639 ValSEndInst->getOperand(UIdx).setIsKill(false);
642 // Rewrite the copy.
643 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
644 // If the copy instruction was killing the destination register or any
645 // subrange before the merge trim the live range.
646 bool RecomputeLiveRange = AS->end == CopyIdx;
647 if (!RecomputeLiveRange) {
648 for (LiveInterval::SubRange &S : IntA.subranges()) {
649 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
650 if (SS != S.end() && SS->end == CopyIdx) {
651 RecomputeLiveRange = true;
652 break;
656 if (RecomputeLiveRange)
657 shrinkToUses(&IntA);
659 ++numExtends;
660 return true;
663 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
664 LiveInterval &IntB,
665 VNInfo *AValNo,
666 VNInfo *BValNo) {
667 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
668 // the PHI values.
669 if (LIS->hasPHIKill(IntA, AValNo))
670 return true;
672 for (LiveRange::Segment &ASeg : IntA.segments) {
673 if (ASeg.valno != AValNo) continue;
674 LiveInterval::iterator BI =
675 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
676 if (BI != IntB.begin())
677 --BI;
678 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
679 if (BI->valno == BValNo)
680 continue;
681 if (BI->start <= ASeg.start && BI->end > ASeg.start)
682 return true;
683 if (BI->start > ASeg.start && BI->start < ASeg.end)
684 return true;
687 return false;
690 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
691 /// range @Dst and use value number @p DstValNo there.
692 static std::pair<bool,bool>
693 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
694 const VNInfo *SrcValNo) {
695 bool Changed = false;
696 bool MergedWithDead = false;
697 for (const LiveRange::Segment &S : Src.segments) {
698 if (S.valno != SrcValNo)
699 continue;
700 // This is adding a segment from Src that ends in a copy that is about
701 // to be removed. This segment is going to be merged with a pre-existing
702 // segment in Dst. This works, except in cases when the corresponding
703 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
704 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
705 // Recognized such cases, so that the segments can be shrunk.
706 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
707 LiveRange::Segment &Merged = *Dst.addSegment(Added);
708 if (Merged.end.isDead())
709 MergedWithDead = true;
710 Changed = true;
712 return std::make_pair(Changed, MergedWithDead);
715 std::pair<bool,bool>
716 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
717 MachineInstr *CopyMI) {
718 assert(!CP.isPhys());
720 LiveInterval &IntA =
721 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
722 LiveInterval &IntB =
723 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
725 // We found a non-trivially-coalescable copy with IntA being the source and
726 // IntB being the dest, thus this defines a value number in IntB. If the
727 // source value number (in IntA) is defined by a commutable instruction and
728 // its other operand is coalesced to the copy dest register, see if we can
729 // transform the copy into a noop by commuting the definition. For example,
731 // A3 = op A2 killed B0
732 // ...
733 // B1 = A3 <- this copy
734 // ...
735 // = op A3 <- more uses
737 // ==>
739 // B2 = op B0 killed A2
740 // ...
741 // B1 = B2 <- now an identity copy
742 // ...
743 // = op B2 <- more uses
745 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
746 // the example above.
747 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
748 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
749 assert(BValNo != nullptr && BValNo->def == CopyIdx);
751 // AValNo is the value number in A that defines the copy, A3 in the example.
752 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
753 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
754 if (AValNo->isPHIDef())
755 return { false, false };
756 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
757 if (!DefMI)
758 return { false, false };
759 if (!DefMI->isCommutable())
760 return { false, false };
761 // If DefMI is a two-address instruction then commuting it will change the
762 // destination register.
763 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
764 assert(DefIdx != -1);
765 unsigned UseOpIdx;
766 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
767 return { false, false };
769 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
770 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
771 // passed to the method. That _other_ operand is chosen by
772 // the findCommutedOpIndices() method.
774 // That is obviously an area for improvement in case of instructions having
775 // more than 2 operands. For example, if some instruction has 3 commutable
776 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
777 // op#2<->op#3) of commute transformation should be considered/tried here.
778 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
779 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
780 return { false, false };
782 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
783 unsigned NewReg = NewDstMO.getReg();
784 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
785 return { false, false };
787 // Make sure there are no other definitions of IntB that would reach the
788 // uses which the new definition can reach.
789 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
790 return { false, false };
792 // If some of the uses of IntA.reg is already coalesced away, return false.
793 // It's not possible to determine whether it's safe to perform the coalescing.
794 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
795 MachineInstr *UseMI = MO.getParent();
796 unsigned OpNo = &MO - &UseMI->getOperand(0);
797 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
798 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
799 if (US == IntA.end() || US->valno != AValNo)
800 continue;
801 // If this use is tied to a def, we can't rewrite the register.
802 if (UseMI->isRegTiedToDefOperand(OpNo))
803 return { false, false };
806 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
807 << *DefMI);
809 // At this point we have decided that it is legal to do this
810 // transformation. Start by commuting the instruction.
811 MachineBasicBlock *MBB = DefMI->getParent();
812 MachineInstr *NewMI =
813 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
814 if (!NewMI)
815 return { false, false };
816 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
817 TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
818 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
819 return { false, false };
820 if (NewMI != DefMI) {
821 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
822 MachineBasicBlock::iterator Pos = DefMI;
823 MBB->insert(Pos, NewMI);
824 MBB->erase(DefMI);
827 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
828 // A = or A, B
829 // ...
830 // B = A
831 // ...
832 // C = killed A
833 // ...
834 // = B
836 // Update uses of IntA of the specific Val# with IntB.
837 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
838 UE = MRI->use_end();
839 UI != UE; /* ++UI is below because of possible MI removal */) {
840 MachineOperand &UseMO = *UI;
841 ++UI;
842 if (UseMO.isUndef())
843 continue;
844 MachineInstr *UseMI = UseMO.getParent();
845 if (UseMI->isDebugValue()) {
846 // FIXME These don't have an instruction index. Not clear we have enough
847 // info to decide whether to do this replacement or not. For now do it.
848 UseMO.setReg(NewReg);
849 continue;
851 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
852 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
853 assert(US != IntA.end() && "Use must be live");
854 if (US->valno != AValNo)
855 continue;
856 // Kill flags are no longer accurate. They are recomputed after RA.
857 UseMO.setIsKill(false);
858 if (TargetRegisterInfo::isPhysicalRegister(NewReg))
859 UseMO.substPhysReg(NewReg, *TRI);
860 else
861 UseMO.setReg(NewReg);
862 if (UseMI == CopyMI)
863 continue;
864 if (!UseMI->isCopy())
865 continue;
866 if (UseMI->getOperand(0).getReg() != IntB.reg ||
867 UseMI->getOperand(0).getSubReg())
868 continue;
870 // This copy will become a noop. If it's defining a new val#, merge it into
871 // BValNo.
872 SlotIndex DefIdx = UseIdx.getRegSlot();
873 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
874 if (!DVNI)
875 continue;
876 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
877 assert(DVNI->def == DefIdx);
878 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
879 for (LiveInterval::SubRange &S : IntB.subranges()) {
880 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
881 if (!SubDVNI)
882 continue;
883 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
884 assert(SubBValNo->def == CopyIdx);
885 S.MergeValueNumberInto(SubDVNI, SubBValNo);
888 deleteInstr(UseMI);
891 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
892 // is updated.
893 bool ShrinkB = false;
894 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
895 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
896 if (!IntA.hasSubRanges()) {
897 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
898 IntA.createSubRangeFrom(Allocator, Mask, IntA);
899 } else if (!IntB.hasSubRanges()) {
900 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
901 IntB.createSubRangeFrom(Allocator, Mask, IntB);
903 SlotIndex AIdx = CopyIdx.getRegSlot(true);
904 LaneBitmask MaskA;
905 for (LiveInterval::SubRange &SA : IntA.subranges()) {
906 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
907 assert(ASubValNo != nullptr);
908 MaskA |= SA.LaneMask;
910 IntB.refineSubRanges(Allocator, SA.LaneMask,
911 [&Allocator,&SA,CopyIdx,ASubValNo,&ShrinkB]
912 (LiveInterval::SubRange &SR) {
913 VNInfo *BSubValNo = SR.empty()
914 ? SR.getNextValue(CopyIdx, Allocator)
915 : SR.getVNInfoAt(CopyIdx);
916 assert(BSubValNo != nullptr);
917 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
918 ShrinkB |= P.second;
919 if (P.first)
920 BSubValNo->def = ASubValNo->def;
923 // Go over all subranges of IntB that have not been covered by IntA,
924 // and delete the segments starting at CopyIdx. This can happen if
925 // IntA has undef lanes that are defined in IntB.
926 for (LiveInterval::SubRange &SB : IntB.subranges()) {
927 if ((SB.LaneMask & MaskA).any())
928 continue;
929 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
930 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
931 SB.removeSegment(*S, true);
935 BValNo->def = AValNo->def;
936 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
937 ShrinkB |= P.second;
938 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
940 LIS->removeVRegDefAt(IntA, AValNo->def);
942 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
943 ++numCommutes;
944 return { true, ShrinkB };
947 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
948 /// predecessor of BB2, and if B is not redefined on the way from A = B
949 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
950 /// execution goes through the path from BB0 to BB2. We may move B = A
951 /// to the predecessor without such reversed copy.
952 /// So we will transform the program from:
953 /// BB0:
954 /// A = B; BB1:
955 /// ... ...
956 /// / \ /
957 /// BB2:
958 /// ...
959 /// B = A;
961 /// to:
963 /// BB0: BB1:
964 /// A = B; ...
965 /// ... B = A;
966 /// / \ /
967 /// BB2:
968 /// ...
970 /// A special case is when BB0 and BB2 are the same BB which is the only
971 /// BB in a loop:
972 /// BB1:
973 /// ...
974 /// BB0/BB2: ----
975 /// B = A; |
976 /// ... |
977 /// A = B; |
978 /// |-------
979 /// |
980 /// We may hoist B = A from BB0/BB2 to BB1.
982 /// The major preconditions for correctness to remove such partial
983 /// redundancy include:
984 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
985 /// the PHI is defined by the reversed copy A = B in BB0.
986 /// 2. No B is referenced from the start of BB2 to B = A.
987 /// 3. No B is defined from A = B to the end of BB0.
988 /// 4. BB1 has only one successor.
990 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
991 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
992 /// colder place, which not only prevent endless loop, but also make sure
993 /// the movement of copy is beneficial.
994 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
995 MachineInstr &CopyMI) {
996 assert(!CP.isPhys());
997 if (!CopyMI.isFullCopy())
998 return false;
1000 MachineBasicBlock &MBB = *CopyMI.getParent();
1001 if (MBB.isEHPad())
1002 return false;
1004 if (MBB.pred_size() != 2)
1005 return false;
1007 LiveInterval &IntA =
1008 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1009 LiveInterval &IntB =
1010 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1012 // A is defined by PHI at the entry of MBB.
1013 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1014 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1015 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1016 if (!AValNo->isPHIDef())
1017 return false;
1019 // No B is referenced before CopyMI in MBB.
1020 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1021 return false;
1023 // MBB has two predecessors: one contains A = B so no copy will be inserted
1024 // for it. The other one will have a copy moved from MBB.
1025 bool FoundReverseCopy = false;
1026 MachineBasicBlock *CopyLeftBB = nullptr;
1027 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1028 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1029 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1030 if (!DefMI || !DefMI->isFullCopy()) {
1031 CopyLeftBB = Pred;
1032 continue;
1034 // Check DefMI is a reverse copy and it is in BB Pred.
1035 if (DefMI->getOperand(0).getReg() != IntA.reg ||
1036 DefMI->getOperand(1).getReg() != IntB.reg ||
1037 DefMI->getParent() != Pred) {
1038 CopyLeftBB = Pred;
1039 continue;
1041 // If there is any other def of B after DefMI and before the end of Pred,
1042 // we need to keep the copy of B = A at the end of Pred if we remove
1043 // B = A from MBB.
1044 bool ValB_Changed = false;
1045 for (auto VNI : IntB.valnos) {
1046 if (VNI->isUnused())
1047 continue;
1048 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1049 ValB_Changed = true;
1050 break;
1053 if (ValB_Changed) {
1054 CopyLeftBB = Pred;
1055 continue;
1057 FoundReverseCopy = true;
1060 // If no reverse copy is found in predecessors, nothing to do.
1061 if (!FoundReverseCopy)
1062 return false;
1064 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1065 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1066 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1067 // update IntA/IntB.
1069 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1070 // MBB is hotter than CopyLeftBB.
1071 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1072 return false;
1074 // Now (almost sure it's) ok to move copy.
1075 if (CopyLeftBB) {
1076 // Position in CopyLeftBB where we should insert new copy.
1077 auto InsPos = CopyLeftBB->getFirstTerminator();
1079 // Make sure that B isn't referenced in the terminators (if any) at the end
1080 // of the predecessor since we're about to insert a new definition of B
1081 // before them.
1082 if (InsPos != CopyLeftBB->end()) {
1083 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1084 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1085 return false;
1088 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1089 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1091 // Insert new copy to CopyLeftBB.
1092 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1093 TII->get(TargetOpcode::COPY), IntB.reg)
1094 .addReg(IntA.reg);
1095 SlotIndex NewCopyIdx =
1096 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1097 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1098 for (LiveInterval::SubRange &SR : IntB.subranges())
1099 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1101 // If the newly created Instruction has an address of an instruction that was
1102 // deleted before (object recycled by the allocator) it needs to be removed from
1103 // the deleted list.
1104 ErasedInstrs.erase(NewCopyMI);
1105 } else {
1106 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1107 << printMBBReference(MBB) << '\t' << CopyMI);
1110 // Remove CopyMI.
1111 // Note: This is fine to remove the copy before updating the live-ranges.
1112 // While updating the live-ranges, we only look at slot indices and
1113 // never go back to the instruction.
1114 // Mark instructions as deleted.
1115 deleteInstr(&CopyMI);
1117 // Update the liveness.
1118 SmallVector<SlotIndex, 8> EndPoints;
1119 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1120 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1121 &EndPoints);
1122 BValNo->markUnused();
1123 // Extend IntB to the EndPoints of its original live interval.
1124 LIS->extendToIndices(IntB, EndPoints);
1126 // Now, do the same for its subranges.
1127 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1128 EndPoints.clear();
1129 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1130 assert(BValNo && "All sublanes should be live");
1131 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1132 BValNo->markUnused();
1133 // We can have a situation where the result of the original copy is live,
1134 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1135 // the copy appear as an endpoint from pruneValue(), but we don't want it
1136 // to because the copy has been removed. We can go ahead and remove that
1137 // endpoint; there is no other situation here that there could be a use at
1138 // the same place as we know that the copy is a full copy.
1139 for (unsigned I = 0; I != EndPoints.size(); ) {
1140 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1141 EndPoints[I] = EndPoints.back();
1142 EndPoints.pop_back();
1143 continue;
1145 ++I;
1147 LIS->extendToIndices(SR, EndPoints);
1149 // If any dead defs were extended, truncate them.
1150 shrinkToUses(&IntB);
1152 // Finally, update the live-range of IntA.
1153 shrinkToUses(&IntA);
1154 return true;
1157 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1158 /// defining a subregister.
1159 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1160 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
1161 "This code cannot handle physreg aliasing");
1162 for (const MachineOperand &Op : MI.operands()) {
1163 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1164 continue;
1165 // Return true if we define the full register or don't care about the value
1166 // inside other subregisters.
1167 if (Op.getSubReg() == 0 || Op.isUndef())
1168 return true;
1170 return false;
1173 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1174 MachineInstr *CopyMI,
1175 bool &IsDefCopy) {
1176 IsDefCopy = false;
1177 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1178 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1179 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1180 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1181 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1182 return false;
1184 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1185 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1186 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1187 if (!ValNo)
1188 return false;
1189 if (ValNo->isPHIDef() || ValNo->isUnused())
1190 return false;
1191 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1192 if (!DefMI)
1193 return false;
1194 if (DefMI->isCopyLike()) {
1195 IsDefCopy = true;
1196 return false;
1198 if (!TII->isAsCheapAsAMove(*DefMI))
1199 return false;
1200 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1201 return false;
1202 if (!definesFullReg(*DefMI, SrcReg))
1203 return false;
1204 bool SawStore = false;
1205 if (!DefMI->isSafeToMove(AA, SawStore))
1206 return false;
1207 const MCInstrDesc &MCID = DefMI->getDesc();
1208 if (MCID.getNumDefs() != 1)
1209 return false;
1210 // Only support subregister destinations when the def is read-undef.
1211 MachineOperand &DstOperand = CopyMI->getOperand(0);
1212 unsigned CopyDstReg = DstOperand.getReg();
1213 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1214 return false;
1216 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1217 // the register substantially (beyond both source and dest size). This is bad
1218 // for performance since it can cascade through a function, introducing many
1219 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1220 // around after a few subreg copies).
1221 if (SrcIdx && DstIdx)
1222 return false;
1224 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1225 if (!DefMI->isImplicitDef()) {
1226 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1227 unsigned NewDstReg = DstReg;
1229 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1230 DefMI->getOperand(0).getSubReg());
1231 if (NewDstIdx)
1232 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1234 // Finally, make sure that the physical subregister that will be
1235 // constructed later is permitted for the instruction.
1236 if (!DefRC->contains(NewDstReg))
1237 return false;
1238 } else {
1239 // Theoretically, some stack frame reference could exist. Just make sure
1240 // it hasn't actually happened.
1241 assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
1242 "Only expect to deal with virtual or physical registers");
1246 DebugLoc DL = CopyMI->getDebugLoc();
1247 MachineBasicBlock *MBB = CopyMI->getParent();
1248 MachineBasicBlock::iterator MII =
1249 std::next(MachineBasicBlock::iterator(CopyMI));
1250 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1251 MachineInstr &NewMI = *std::prev(MII);
1252 NewMI.setDebugLoc(DL);
1254 // In a situation like the following:
1255 // %0:subreg = instr ; DefMI, subreg = DstIdx
1256 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1257 // instead of widening %1 to the register class of %0 simply do:
1258 // %1 = instr
1259 const TargetRegisterClass *NewRC = CP.getNewRC();
1260 if (DstIdx != 0) {
1261 MachineOperand &DefMO = NewMI.getOperand(0);
1262 if (DefMO.getSubReg() == DstIdx) {
1263 assert(SrcIdx == 0 && CP.isFlipped()
1264 && "Shouldn't have SrcIdx+DstIdx at this point");
1265 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1266 const TargetRegisterClass *CommonRC =
1267 TRI->getCommonSubClass(DefRC, DstRC);
1268 if (CommonRC != nullptr) {
1269 NewRC = CommonRC;
1270 DstIdx = 0;
1271 DefMO.setSubReg(0);
1272 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1277 // CopyMI may have implicit operands, save them so that we can transfer them
1278 // over to the newly materialized instruction after CopyMI is removed.
1279 SmallVector<MachineOperand, 4> ImplicitOps;
1280 ImplicitOps.reserve(CopyMI->getNumOperands() -
1281 CopyMI->getDesc().getNumOperands());
1282 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1283 E = CopyMI->getNumOperands();
1284 I != E; ++I) {
1285 MachineOperand &MO = CopyMI->getOperand(I);
1286 if (MO.isReg()) {
1287 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1288 // Discard VReg implicit defs.
1289 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1290 ImplicitOps.push_back(MO);
1294 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1295 CopyMI->eraseFromParent();
1296 ErasedInstrs.insert(CopyMI);
1298 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1299 // We need to remember these so we can add intervals once we insert
1300 // NewMI into SlotIndexes.
1301 SmallVector<unsigned, 4> NewMIImplDefs;
1302 for (unsigned i = NewMI.getDesc().getNumOperands(),
1303 e = NewMI.getNumOperands();
1304 i != e; ++i) {
1305 MachineOperand &MO = NewMI.getOperand(i);
1306 if (MO.isReg() && MO.isDef()) {
1307 assert(MO.isImplicit() && MO.isDead() &&
1308 TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1309 NewMIImplDefs.push_back(MO.getReg());
1313 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1314 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1316 if (DefRC != nullptr) {
1317 if (NewIdx)
1318 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1319 else
1320 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1321 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1323 // Remap subranges to new lanemask and change register class.
1324 LiveInterval &DstInt = LIS->getInterval(DstReg);
1325 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1326 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1328 MRI->setRegClass(DstReg, NewRC);
1330 // Update machine operands and add flags.
1331 updateRegDefsUses(DstReg, DstReg, DstIdx);
1332 NewMI.getOperand(0).setSubReg(NewIdx);
1333 // updateRegDefUses can add an "undef" flag to the definition, since
1334 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1335 // sure that "undef" is not set.
1336 if (NewIdx == 0)
1337 NewMI.getOperand(0).setIsUndef(false);
1338 // Add dead subregister definitions if we are defining the whole register
1339 // but only part of it is live.
1340 // This could happen if the rematerialization instruction is rematerializing
1341 // more than actually is used in the register.
1342 // An example would be:
1343 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1344 // ; Copying only part of the register here, but the rest is undef.
1345 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1346 // ==>
1347 // ; Materialize all the constants but only using one
1348 // %2 = LOAD_CONSTANTS 5, 8
1350 // at this point for the part that wasn't defined before we could have
1351 // subranges missing the definition.
1352 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1353 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1354 SlotIndex DefIndex =
1355 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1356 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1357 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1358 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1359 if (!SR.liveAt(DefIndex))
1360 SR.createDeadDef(DefIndex, Alloc);
1361 MaxMask &= ~SR.LaneMask;
1363 if (MaxMask.any()) {
1364 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1365 SR->createDeadDef(DefIndex, Alloc);
1369 // Make sure that the subrange for resultant undef is removed
1370 // For example:
1371 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1372 // %2 = COPY %1
1373 // ==>
1374 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1375 // ; Correct but need to remove the subrange for %2:sub0
1376 // ; as it is now undef
1377 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1378 // The affected subregister segments can be removed.
1379 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1380 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1381 bool UpdatedSubRanges = false;
1382 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1383 if ((SR.LaneMask & DstMask).none()) {
1384 LLVM_DEBUG(dbgs()
1385 << "Removing undefined SubRange "
1386 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1387 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1388 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1389 SR.removeValNo(RmValNo);
1390 UpdatedSubRanges = true;
1394 if (UpdatedSubRanges)
1395 DstInt.removeEmptySubRanges();
1397 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1398 // The New instruction may be defining a sub-register of what's actually
1399 // been asked for. If so it must implicitly define the whole thing.
1400 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1401 "Only expect virtual or physical registers in remat");
1402 NewMI.getOperand(0).setIsDead(true);
1403 NewMI.addOperand(MachineOperand::CreateReg(
1404 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1405 // Record small dead def live-ranges for all the subregisters
1406 // of the destination register.
1407 // Otherwise, variables that live through may miss some
1408 // interferences, thus creating invalid allocation.
1409 // E.g., i386 code:
1410 // %1 = somedef ; %1 GR8
1411 // %2 = remat ; %2 GR32
1412 // CL = COPY %2.sub_8bit
1413 // = somedef %1 ; %1 GR8
1414 // =>
1415 // %1 = somedef ; %1 GR8
1416 // dead ECX = remat ; implicit-def CL
1417 // = somedef %1 ; %1 GR8
1418 // %1 will see the interferences with CL but not with CH since
1419 // no live-ranges would have been created for ECX.
1420 // Fix that!
1421 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1422 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1423 Units.isValid(); ++Units)
1424 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1425 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1428 if (NewMI.getOperand(0).getSubReg())
1429 NewMI.getOperand(0).setIsUndef();
1431 // Transfer over implicit operands to the rematerialized instruction.
1432 for (MachineOperand &MO : ImplicitOps)
1433 NewMI.addOperand(MO);
1435 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1436 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1437 unsigned Reg = NewMIImplDefs[i];
1438 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1439 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1440 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1443 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1444 ++NumReMats;
1446 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1447 // to describe DstReg instead.
1448 if (MRI->use_nodbg_empty(SrcReg)) {
1449 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1450 MachineInstr *UseMI = UseMO.getParent();
1451 if (UseMI->isDebugValue()) {
1452 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
1453 UseMO.substPhysReg(DstReg, *TRI);
1454 else
1455 UseMO.setReg(DstReg);
1456 // Move the debug value directly after the def of the rematerialized
1457 // value in DstReg.
1458 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1459 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1464 if (ToBeUpdated.count(SrcReg))
1465 return true;
1467 unsigned NumCopyUses = 0;
1468 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1469 if (UseMO.getParent()->isCopyLike())
1470 NumCopyUses++;
1472 if (NumCopyUses < LateRematUpdateThreshold) {
1473 // The source interval can become smaller because we removed a use.
1474 shrinkToUses(&SrcInt, &DeadDefs);
1475 if (!DeadDefs.empty())
1476 eliminateDeadDefs();
1477 } else {
1478 ToBeUpdated.insert(SrcReg);
1480 return true;
1483 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1484 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1485 // removes local variables. When we have a copy like:
1487 // %1 = COPY undef %2
1489 // We delete the copy and remove the corresponding value number from %1.
1490 // Any uses of that value number are marked as <undef>.
1492 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1493 // CoalescerPair may have a new register class with adjusted subreg indices
1494 // at this point.
1495 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1496 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1498 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1499 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1500 // CopyMI is undef iff SrcReg is not live before the instruction.
1501 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1502 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1503 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1504 if ((SR.LaneMask & SrcMask).none())
1505 continue;
1506 if (SR.liveAt(Idx))
1507 return nullptr;
1509 } else if (SrcLI.liveAt(Idx))
1510 return nullptr;
1512 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1513 // then replace it with an IMPLICIT_DEF.
1514 LiveInterval &DstLI = LIS->getInterval(DstReg);
1515 SlotIndex RegIndex = Idx.getRegSlot();
1516 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1517 assert(Seg != nullptr && "No segment for defining instruction");
1518 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1519 if (V->isPHIDef()) {
1520 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1521 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1522 MachineOperand &MO = CopyMI->getOperand(i-1);
1523 if (MO.isReg() && MO.isUse())
1524 CopyMI->RemoveOperand(i-1);
1526 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1527 "implicit def\n");
1528 return CopyMI;
1532 // Remove any DstReg segments starting at the instruction.
1533 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1535 // Remove value or merge with previous one in case of a subregister def.
1536 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1537 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1538 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1540 // The affected subregister segments can be removed.
1541 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1542 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1543 if ((SR.LaneMask & DstMask).none())
1544 continue;
1546 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1547 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1548 SR.removeValNo(SVNI);
1550 DstLI.removeEmptySubRanges();
1551 } else
1552 LIS->removeVRegDefAt(DstLI, RegIndex);
1554 // Mark uses as undef.
1555 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1556 if (MO.isDef() /*|| MO.isUndef()*/)
1557 continue;
1558 const MachineInstr &MI = *MO.getParent();
1559 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1560 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1561 bool isLive;
1562 if (!UseMask.all() && DstLI.hasSubRanges()) {
1563 isLive = false;
1564 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1565 if ((SR.LaneMask & UseMask).none())
1566 continue;
1567 if (SR.liveAt(UseIdx)) {
1568 isLive = true;
1569 break;
1572 } else
1573 isLive = DstLI.liveAt(UseIdx);
1574 if (isLive)
1575 continue;
1576 MO.setIsUndef(true);
1577 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1580 // A def of a subregister may be a use of the other subregisters, so
1581 // deleting a def of a subregister may also remove uses. Since CopyMI
1582 // is still part of the function (but about to be erased), mark all
1583 // defs of DstReg in it as <undef>, so that shrinkToUses would
1584 // ignore them.
1585 for (MachineOperand &MO : CopyMI->operands())
1586 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1587 MO.setIsUndef(true);
1588 LIS->shrinkToUses(&DstLI);
1590 return CopyMI;
1593 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1594 MachineOperand &MO, unsigned SubRegIdx) {
1595 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1596 if (MO.isDef())
1597 Mask = ~Mask;
1598 bool IsUndef = true;
1599 for (const LiveInterval::SubRange &S : Int.subranges()) {
1600 if ((S.LaneMask & Mask).none())
1601 continue;
1602 if (S.liveAt(UseIdx)) {
1603 IsUndef = false;
1604 break;
1607 if (IsUndef) {
1608 MO.setIsUndef(true);
1609 // We found out some subregister use is actually reading an undefined
1610 // value. In some cases the whole vreg has become undefined at this
1611 // point so we have to potentially shrink the main range if the
1612 // use was ending a live segment there.
1613 LiveQueryResult Q = Int.Query(UseIdx);
1614 if (Q.valueOut() == nullptr)
1615 ShrinkMainRange = true;
1619 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1620 unsigned DstReg,
1621 unsigned SubIdx) {
1622 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1623 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1625 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1626 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1627 unsigned SubReg = MO.getSubReg();
1628 if (SubReg == 0 || MO.isUndef())
1629 continue;
1630 MachineInstr &MI = *MO.getParent();
1631 if (MI.isDebugValue())
1632 continue;
1633 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1634 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1638 SmallPtrSet<MachineInstr*, 8> Visited;
1639 for (MachineRegisterInfo::reg_instr_iterator
1640 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1641 I != E; ) {
1642 MachineInstr *UseMI = &*(I++);
1644 // Each instruction can only be rewritten once because sub-register
1645 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1646 // the UseMI operands removes them from the SrcReg use-def chain, but when
1647 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1648 // operands mentioning the virtual register.
1649 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1650 continue;
1652 SmallVector<unsigned,8> Ops;
1653 bool Reads, Writes;
1654 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1656 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1657 // because SrcReg is a sub-register.
1658 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1659 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1661 // Replace SrcReg with DstReg in all UseMI operands.
1662 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1663 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1665 // Adjust <undef> flags in case of sub-register joins. We don't want to
1666 // turn a full def into a read-modify-write sub-register def and vice
1667 // versa.
1668 if (SubIdx && MO.isDef())
1669 MO.setIsUndef(!Reads);
1671 // A subreg use of a partially undef (super) register may be a complete
1672 // undef use now and then has to be marked that way.
1673 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1674 if (!DstInt->hasSubRanges()) {
1675 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1676 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1677 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1679 SlotIndex MIIdx = UseMI->isDebugValue()
1680 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1681 : LIS->getInstructionIndex(*UseMI);
1682 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1683 addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1686 if (DstIsPhys)
1687 MO.substPhysReg(DstReg, *TRI);
1688 else
1689 MO.substVirtReg(DstReg, SubIdx, *TRI);
1692 LLVM_DEBUG({
1693 dbgs() << "\t\tupdated: ";
1694 if (!UseMI->isDebugValue())
1695 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1696 dbgs() << *UseMI;
1701 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1702 // Always join simple intervals that are defined by a single copy from a
1703 // reserved register. This doesn't increase register pressure, so it is
1704 // always beneficial.
1705 if (!MRI->isReserved(CP.getDstReg())) {
1706 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1707 return false;
1710 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1711 if (JoinVInt.containsOneValue())
1712 return true;
1714 LLVM_DEBUG(
1715 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1716 return false;
1719 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1720 Again = false;
1721 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1723 CoalescerPair CP(*TRI);
1724 if (!CP.setRegisters(CopyMI)) {
1725 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1726 return false;
1729 if (CP.getNewRC()) {
1730 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1731 auto DstRC = MRI->getRegClass(CP.getDstReg());
1732 unsigned SrcIdx = CP.getSrcIdx();
1733 unsigned DstIdx = CP.getDstIdx();
1734 if (CP.isFlipped()) {
1735 std::swap(SrcIdx, DstIdx);
1736 std::swap(SrcRC, DstRC);
1738 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1739 CP.getNewRC(), *LIS)) {
1740 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1741 return false;
1745 // Dead code elimination. This really should be handled by MachineDCE, but
1746 // sometimes dead copies slip through, and we can't generate invalid live
1747 // ranges.
1748 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1749 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1750 DeadDefs.push_back(CopyMI);
1751 eliminateDeadDefs();
1752 return true;
1755 // Eliminate undefs.
1756 if (!CP.isPhys()) {
1757 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1758 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1759 if (UndefMI->isImplicitDef())
1760 return false;
1761 deleteInstr(CopyMI);
1762 return false; // Not coalescable.
1766 // Coalesced copies are normally removed immediately, but transformations
1767 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1768 // When that happens, just join the values and remove the copy.
1769 if (CP.getSrcReg() == CP.getDstReg()) {
1770 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1771 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1772 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1773 LiveQueryResult LRQ = LI.Query(CopyIdx);
1774 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1775 VNInfo *ReadVNI = LRQ.valueIn();
1776 assert(ReadVNI && "No value before copy and no <undef> flag.");
1777 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1778 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1780 // Process subregister liveranges.
1781 for (LiveInterval::SubRange &S : LI.subranges()) {
1782 LiveQueryResult SLRQ = S.Query(CopyIdx);
1783 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1784 VNInfo *SReadVNI = SLRQ.valueIn();
1785 S.MergeValueNumberInto(SDefVNI, SReadVNI);
1788 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1790 deleteInstr(CopyMI);
1791 return true;
1794 // Enforce policies.
1795 if (CP.isPhys()) {
1796 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1797 << printReg(CP.getSrcReg(), TRI) << " with "
1798 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1799 if (!canJoinPhys(CP)) {
1800 // Before giving up coalescing, if definition of source is defined by
1801 // trivial computation, try rematerializing it.
1802 bool IsDefCopy;
1803 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1804 return true;
1805 if (IsDefCopy)
1806 Again = true; // May be possible to coalesce later.
1807 return false;
1809 } else {
1810 // When possible, let DstReg be the larger interval.
1811 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1812 LIS->getInterval(CP.getDstReg()).size())
1813 CP.flip();
1815 LLVM_DEBUG({
1816 dbgs() << "\tConsidering merging to "
1817 << TRI->getRegClassName(CP.getNewRC()) << " with ";
1818 if (CP.getDstIdx() && CP.getSrcIdx())
1819 dbgs() << printReg(CP.getDstReg()) << " in "
1820 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1821 << printReg(CP.getSrcReg()) << " in "
1822 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1823 else
1824 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1825 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1829 ShrinkMask = LaneBitmask::getNone();
1830 ShrinkMainRange = false;
1832 // Okay, attempt to join these two intervals. On failure, this returns false.
1833 // Otherwise, if one of the intervals being joined is a physreg, this method
1834 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1835 // been modified, so we can use this information below to update aliases.
1836 if (!joinIntervals(CP)) {
1837 // Coalescing failed.
1839 // If definition of source is defined by trivial computation, try
1840 // rematerializing it.
1841 bool IsDefCopy;
1842 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1843 return true;
1845 // If we can eliminate the copy without merging the live segments, do so
1846 // now.
1847 if (!CP.isPartial() && !CP.isPhys()) {
1848 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1849 bool Shrink = false;
1850 if (!Changed)
1851 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1852 if (Changed) {
1853 deleteInstr(CopyMI);
1854 if (Shrink) {
1855 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1856 LiveInterval &DstLI = LIS->getInterval(DstReg);
1857 shrinkToUses(&DstLI);
1858 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
1860 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1861 return true;
1865 // Try and see if we can partially eliminate the copy by moving the copy to
1866 // its predecessor.
1867 if (!CP.isPartial() && !CP.isPhys())
1868 if (removePartialRedundancy(CP, *CopyMI))
1869 return true;
1871 // Otherwise, we are unable to join the intervals.
1872 LLVM_DEBUG(dbgs() << "\tInterference!\n");
1873 Again = true; // May be possible to coalesce later.
1874 return false;
1877 // Coalescing to a virtual register that is of a sub-register class of the
1878 // other. Make sure the resulting register is set to the right register class.
1879 if (CP.isCrossClass()) {
1880 ++numCrossRCs;
1881 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1884 // Removing sub-register copies can ease the register class constraints.
1885 // Make sure we attempt to inflate the register class of DstReg.
1886 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1887 InflateRegs.push_back(CP.getDstReg());
1889 // CopyMI has been erased by joinIntervals at this point. Remove it from
1890 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1891 // to the work list. This keeps ErasedInstrs from growing needlessly.
1892 ErasedInstrs.erase(CopyMI);
1894 // Rewrite all SrcReg operands to DstReg.
1895 // Also update DstReg operands to include DstIdx if it is set.
1896 if (CP.getDstIdx())
1897 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1898 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1900 // Shrink subregister ranges if necessary.
1901 if (ShrinkMask.any()) {
1902 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1903 for (LiveInterval::SubRange &S : LI.subranges()) {
1904 if ((S.LaneMask & ShrinkMask).none())
1905 continue;
1906 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1907 << ")\n");
1908 LIS->shrinkToUses(S, LI.reg);
1910 LI.removeEmptySubRanges();
1913 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1914 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1915 // is not up-to-date, need to update the merged live interval here.
1916 if (ToBeUpdated.count(CP.getSrcReg()))
1917 ShrinkMainRange = true;
1919 if (ShrinkMainRange) {
1920 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1921 shrinkToUses(&LI);
1924 // SrcReg is guaranteed to be the register whose live interval that is
1925 // being merged.
1926 LIS->removeInterval(CP.getSrcReg());
1928 // Update regalloc hint.
1929 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1931 LLVM_DEBUG({
1932 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1933 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1934 dbgs() << "\tResult = ";
1935 if (CP.isPhys())
1936 dbgs() << printReg(CP.getDstReg(), TRI);
1937 else
1938 dbgs() << LIS->getInterval(CP.getDstReg());
1939 dbgs() << '\n';
1942 ++numJoins;
1943 return true;
1946 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1947 unsigned DstReg = CP.getDstReg();
1948 unsigned SrcReg = CP.getSrcReg();
1949 assert(CP.isPhys() && "Must be a physreg copy");
1950 assert(MRI->isReserved(DstReg) && "Not a reserved register");
1951 LiveInterval &RHS = LIS->getInterval(SrcReg);
1952 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1954 assert(RHS.containsOneValue() && "Invalid join with reserved register");
1956 // Optimization for reserved registers like ESP. We can only merge with a
1957 // reserved physreg if RHS has a single value that is a copy of DstReg.
1958 // The live range of the reserved register will look like a set of dead defs
1959 // - we don't properly track the live range of reserved registers.
1961 // Deny any overlapping intervals. This depends on all the reserved
1962 // register live ranges to look like dead defs.
1963 if (!MRI->isConstantPhysReg(DstReg)) {
1964 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1965 // Abort if not all the regunits are reserved.
1966 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1967 if (!MRI->isReserved(*RI))
1968 return false;
1970 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1971 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
1972 << '\n');
1973 return false;
1977 // We must also check for overlaps with regmask clobbers.
1978 BitVector RegMaskUsable;
1979 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
1980 !RegMaskUsable.test(DstReg)) {
1981 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
1982 return false;
1986 // Skip any value computations, we are not adding new values to the
1987 // reserved register. Also skip merging the live ranges, the reserved
1988 // register live range doesn't need to be accurate as long as all the
1989 // defs are there.
1991 // Delete the identity copy.
1992 MachineInstr *CopyMI;
1993 if (CP.isFlipped()) {
1994 // Physreg is copied into vreg
1995 // %y = COPY %physreg_x
1996 // ... //< no other def of %x here
1997 // use %y
1998 // =>
1999 // ...
2000 // use %x
2001 CopyMI = MRI->getVRegDef(SrcReg);
2002 } else {
2003 // VReg is copied into physreg:
2004 // %y = def
2005 // ... //< no other def or use of %y here
2006 // %y = COPY %physreg_x
2007 // =>
2008 // %y = def
2009 // ...
2010 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2011 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2012 return false;
2015 if (!LIS->intervalIsInOneMBB(RHS)) {
2016 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2017 return false;
2020 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2021 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2022 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2023 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2025 if (!MRI->isConstantPhysReg(DstReg)) {
2026 // We checked above that there are no interfering defs of the physical
2027 // register. However, for this case, where we intend to move up the def of
2028 // the physical register, we also need to check for interfering uses.
2029 SlotIndexes *Indexes = LIS->getSlotIndexes();
2030 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2031 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2032 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2033 if (MI->readsRegister(DstReg, TRI)) {
2034 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2035 return false;
2040 // We're going to remove the copy which defines a physical reserved
2041 // register, so remove its valno, etc.
2042 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2043 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2045 LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2046 // Create a new dead def at the new def location.
2047 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2048 LiveRange &LR = LIS->getRegUnit(*UI);
2049 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2053 deleteInstr(CopyMI);
2055 // We don't track kills for reserved registers.
2056 MRI->clearKillFlags(CP.getSrcReg());
2058 return true;
2061 //===----------------------------------------------------------------------===//
2062 // Interference checking and interval joining
2063 //===----------------------------------------------------------------------===//
2065 // In the easiest case, the two live ranges being joined are disjoint, and
2066 // there is no interference to consider. It is quite common, though, to have
2067 // overlapping live ranges, and we need to check if the interference can be
2068 // resolved.
2070 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2071 // This means that two SSA values overlap if and only if the def of one value
2072 // is contained in the live range of the other value. As a special case, the
2073 // overlapping values can be defined at the same index.
2075 // The interference from an overlapping def can be resolved in these cases:
2077 // 1. Coalescable copies. The value is defined by a copy that would become an
2078 // identity copy after joining SrcReg and DstReg. The copy instruction will
2079 // be removed, and the value will be merged with the source value.
2081 // There can be several copies back and forth, causing many values to be
2082 // merged into one. We compute a list of ultimate values in the joined live
2083 // range as well as a mappings from the old value numbers.
2085 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2086 // predecessors have a live out value. It doesn't cause real interference,
2087 // and can be merged into the value it overlaps. Like a coalescable copy, it
2088 // can be erased after joining.
2090 // 3. Copy of external value. The overlapping def may be a copy of a value that
2091 // is already in the other register. This is like a coalescable copy, but
2092 // the live range of the source register must be trimmed after erasing the
2093 // copy instruction:
2095 // %src = COPY %ext
2096 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2098 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2099 // defining one lane at a time:
2101 // %dst:ssub0<def,read-undef> = FOO
2102 // %src = BAR
2103 // %dst:ssub1 = COPY %src
2105 // The live range of %src overlaps the %dst value defined by FOO, but
2106 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2107 // which was undef anyway.
2109 // The value mapping is more complicated in this case. The final live range
2110 // will have different value numbers for both FOO and BAR, but there is no
2111 // simple mapping from old to new values. It may even be necessary to add
2112 // new PHI values.
2114 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2115 // is live, but never read. This can happen because we don't compute
2116 // individual live ranges per lane.
2118 // %dst = FOO
2119 // %src = BAR
2120 // %dst:ssub1 = COPY %src
2122 // This kind of interference is only resolved locally. If the clobbered
2123 // lane value escapes the block, the join is aborted.
2125 namespace {
2127 /// Track information about values in a single virtual register about to be
2128 /// joined. Objects of this class are always created in pairs - one for each
2129 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2130 /// pair)
2131 class JoinVals {
2132 /// Live range we work on.
2133 LiveRange &LR;
2135 /// (Main) register we work on.
2136 const unsigned Reg;
2138 /// Reg (and therefore the values in this liverange) will end up as
2139 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2140 /// CP.SrcIdx.
2141 const unsigned SubIdx;
2143 /// The LaneMask that this liverange will occupy the coalesced register. May
2144 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2145 const LaneBitmask LaneMask;
2147 /// This is true when joining sub register ranges, false when joining main
2148 /// ranges.
2149 const bool SubRangeJoin;
2151 /// Whether the current LiveInterval tracks subregister liveness.
2152 const bool TrackSubRegLiveness;
2154 /// Values that will be present in the final live range.
2155 SmallVectorImpl<VNInfo*> &NewVNInfo;
2157 const CoalescerPair &CP;
2158 LiveIntervals *LIS;
2159 SlotIndexes *Indexes;
2160 const TargetRegisterInfo *TRI;
2162 /// Value number assignments. Maps value numbers in LI to entries in
2163 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2164 SmallVector<int, 8> Assignments;
2166 /// Conflict resolution for overlapping values.
2167 enum ConflictResolution {
2168 /// No overlap, simply keep this value.
2169 CR_Keep,
2171 /// Merge this value into OtherVNI and erase the defining instruction.
2172 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2173 /// values.
2174 CR_Erase,
2176 /// Merge this value into OtherVNI but keep the defining instruction.
2177 /// This is for the special case where OtherVNI is defined by the same
2178 /// instruction.
2179 CR_Merge,
2181 /// Keep this value, and have it replace OtherVNI where possible. This
2182 /// complicates value mapping since OtherVNI maps to two different values
2183 /// before and after this def.
2184 /// Used when clobbering undefined or dead lanes.
2185 CR_Replace,
2187 /// Unresolved conflict. Visit later when all values have been mapped.
2188 CR_Unresolved,
2190 /// Unresolvable conflict. Abort the join.
2191 CR_Impossible
2194 /// Per-value info for LI. The lane bit masks are all relative to the final
2195 /// joined register, so they can be compared directly between SrcReg and
2196 /// DstReg.
2197 struct Val {
2198 ConflictResolution Resolution = CR_Keep;
2200 /// Lanes written by this def, 0 for unanalyzed values.
2201 LaneBitmask WriteLanes;
2203 /// Lanes with defined values in this register. Other lanes are undef and
2204 /// safe to clobber.
2205 LaneBitmask ValidLanes;
2207 /// Value in LI being redefined by this def.
2208 VNInfo *RedefVNI = nullptr;
2210 /// Value in the other live range that overlaps this def, if any.
2211 VNInfo *OtherVNI = nullptr;
2213 /// Is this value an IMPLICIT_DEF that can be erased?
2215 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2216 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2217 /// safely erased if they are overlapping a live value in the other live
2218 /// interval.
2220 /// Weird control flow graphs and incomplete PHI handling in
2221 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2222 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2223 /// normal values.
2224 bool ErasableImplicitDef = false;
2226 /// True when the live range of this value will be pruned because of an
2227 /// overlapping CR_Replace value in the other live range.
2228 bool Pruned = false;
2230 /// True once Pruned above has been computed.
2231 bool PrunedComputed = false;
2233 /// True if this value is determined to be identical to OtherVNI
2234 /// (in valuesIdentical). This is used with CR_Erase where the erased
2235 /// copy is redundant, i.e. the source value is already the same as
2236 /// the destination. In such cases the subranges need to be updated
2237 /// properly. See comment at pruneSubRegValues for more info.
2238 bool Identical = false;
2240 Val() = default;
2242 bool isAnalyzed() const { return WriteLanes.any(); }
2245 /// One entry per value number in LI.
2246 SmallVector<Val, 8> Vals;
2248 /// Compute the bitmask of lanes actually written by DefMI.
2249 /// Set Redef if there are any partial register definitions that depend on the
2250 /// previous value of the register.
2251 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2253 /// Find the ultimate value that VNI was copied from.
2254 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2256 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2258 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2259 /// Return a conflict resolution when possible, but leave the hard cases as
2260 /// CR_Unresolved.
2261 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2262 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2263 /// The recursion always goes upwards in the dominator tree, making loops
2264 /// impossible.
2265 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2267 /// Compute the value assignment for ValNo in RI.
2268 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2269 /// the stack.
2270 void computeAssignment(unsigned ValNo, JoinVals &Other);
2272 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2273 /// the extent of the tainted lanes in the block.
2275 /// Multiple values in Other.LR can be affected since partial redefinitions
2276 /// can preserve previously tainted lanes.
2278 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2279 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2280 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2281 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2283 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2284 /// entry to TaintedVals.
2286 /// Returns false if the tainted lanes extend beyond the basic block.
2287 bool
2288 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2289 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2291 /// Return true if MI uses any of the given Lanes from Reg.
2292 /// This does not include partial redefinitions of Reg.
2293 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2295 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2296 /// be pruned:
2298 /// %dst = COPY %src
2299 /// %src = COPY %dst <-- This value to be pruned.
2300 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2301 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2303 public:
2304 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2305 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2306 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2307 bool TrackSubRegLiveness)
2308 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2309 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2310 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2311 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2313 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2314 /// Returns false if any conflicts were impossible to resolve.
2315 bool mapValues(JoinVals &Other);
2317 /// Try to resolve conflicts that require all values to be mapped.
2318 /// Returns false if any conflicts were impossible to resolve.
2319 bool resolveConflicts(JoinVals &Other);
2321 /// Prune the live range of values in Other.LR where they would conflict with
2322 /// CR_Replace values in LR. Collect end points for restoring the live range
2323 /// after joining.
2324 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2325 bool changeInstrs);
2327 /// Removes subranges starting at copies that get removed. This sometimes
2328 /// happens when undefined subranges are copied around. These ranges contain
2329 /// no useful information and can be removed.
2330 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2332 /// Pruning values in subranges can lead to removing segments in these
2333 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2334 /// the main range also need to be removed. This function will mark
2335 /// the corresponding values in the main range as pruned, so that
2336 /// eraseInstrs can do the final cleanup.
2337 /// The parameter @p LI must be the interval whose main range is the
2338 /// live range LR.
2339 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2341 /// Erase any machine instructions that have been coalesced away.
2342 /// Add erased instructions to ErasedInstrs.
2343 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2344 /// the erased instrs.
2345 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2346 SmallVectorImpl<unsigned> &ShrinkRegs,
2347 LiveInterval *LI = nullptr);
2349 /// Remove liverange defs at places where implicit defs will be removed.
2350 void removeImplicitDefs();
2352 /// Get the value assignments suitable for passing to LiveInterval::join.
2353 const int *getAssignments() const { return Assignments.data(); }
2356 } // end anonymous namespace
2358 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2359 const {
2360 LaneBitmask L;
2361 for (const MachineOperand &MO : DefMI->operands()) {
2362 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2363 continue;
2364 L |= TRI->getSubRegIndexLaneMask(
2365 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2366 if (MO.readsReg())
2367 Redef = true;
2369 return L;
2372 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2373 const VNInfo *VNI) const {
2374 unsigned TrackReg = Reg;
2376 while (!VNI->isPHIDef()) {
2377 SlotIndex Def = VNI->def;
2378 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2379 assert(MI && "No defining instruction");
2380 if (!MI->isFullCopy())
2381 return std::make_pair(VNI, TrackReg);
2382 unsigned SrcReg = MI->getOperand(1).getReg();
2383 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2384 return std::make_pair(VNI, TrackReg);
2386 const LiveInterval &LI = LIS->getInterval(SrcReg);
2387 const VNInfo *ValueIn;
2388 // No subrange involved.
2389 if (!SubRangeJoin || !LI.hasSubRanges()) {
2390 LiveQueryResult LRQ = LI.Query(Def);
2391 ValueIn = LRQ.valueIn();
2392 } else {
2393 // Query subranges. Ensure that all matching ones take us to the same def
2394 // (allowing some of them to be undef).
2395 ValueIn = nullptr;
2396 for (const LiveInterval::SubRange &S : LI.subranges()) {
2397 // Transform lanemask to a mask in the joined live interval.
2398 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2399 if ((SMask & LaneMask).none())
2400 continue;
2401 LiveQueryResult LRQ = S.Query(Def);
2402 if (!ValueIn) {
2403 ValueIn = LRQ.valueIn();
2404 continue;
2406 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2407 return std::make_pair(VNI, TrackReg);
2410 if (ValueIn == nullptr) {
2411 // Reaching an undefined value is legitimate, for example:
2413 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2414 // 2 %1 = COPY %0 ;; %1 is defined here.
2415 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2416 // ;; but it's equivalent to "undef".
2417 return std::make_pair(nullptr, SrcReg);
2419 VNI = ValueIn;
2420 TrackReg = SrcReg;
2422 return std::make_pair(VNI, TrackReg);
2425 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2426 const JoinVals &Other) const {
2427 const VNInfo *Orig0;
2428 unsigned Reg0;
2429 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2430 if (Orig0 == Value1 && Reg0 == Other.Reg)
2431 return true;
2433 const VNInfo *Orig1;
2434 unsigned Reg1;
2435 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2436 // If both values are undefined, and the source registers are the same
2437 // register, the values are identical. Filter out cases where only one
2438 // value is defined.
2439 if (Orig0 == nullptr || Orig1 == nullptr)
2440 return Orig0 == Orig1 && Reg0 == Reg1;
2442 // The values are equal if they are defined at the same place and use the
2443 // same register. Note that we cannot compare VNInfos directly as some of
2444 // them might be from a copy created in mergeSubRangeInto() while the other
2445 // is from the original LiveInterval.
2446 return Orig0->def == Orig1->def && Reg0 == Reg1;
2449 JoinVals::ConflictResolution
2450 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2451 Val &V = Vals[ValNo];
2452 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2453 VNInfo *VNI = LR.getValNumInfo(ValNo);
2454 if (VNI->isUnused()) {
2455 V.WriteLanes = LaneBitmask::getAll();
2456 return CR_Keep;
2459 // Get the instruction defining this value, compute the lanes written.
2460 const MachineInstr *DefMI = nullptr;
2461 if (VNI->isPHIDef()) {
2462 // Conservatively assume that all lanes in a PHI are valid.
2463 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2464 : TRI->getSubRegIndexLaneMask(SubIdx);
2465 V.ValidLanes = V.WriteLanes = Lanes;
2466 } else {
2467 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2468 assert(DefMI != nullptr);
2469 if (SubRangeJoin) {
2470 // We don't care about the lanes when joining subregister ranges.
2471 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2472 if (DefMI->isImplicitDef()) {
2473 V.ValidLanes = LaneBitmask::getNone();
2474 V.ErasableImplicitDef = true;
2476 } else {
2477 bool Redef = false;
2478 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2480 // If this is a read-modify-write instruction, there may be more valid
2481 // lanes than the ones written by this instruction.
2482 // This only covers partial redef operands. DefMI may have normal use
2483 // operands reading the register. They don't contribute valid lanes.
2485 // This adds ssub1 to the set of valid lanes in %src:
2487 // %src:ssub1 = FOO
2489 // This leaves only ssub1 valid, making any other lanes undef:
2491 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2493 // The <read-undef> flag on the def operand means that old lane values are
2494 // not important.
2495 if (Redef) {
2496 V.RedefVNI = LR.Query(VNI->def).valueIn();
2497 assert((TrackSubRegLiveness || V.RedefVNI) &&
2498 "Instruction is reading nonexistent value");
2499 if (V.RedefVNI != nullptr) {
2500 computeAssignment(V.RedefVNI->id, Other);
2501 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2505 // An IMPLICIT_DEF writes undef values.
2506 if (DefMI->isImplicitDef()) {
2507 // We normally expect IMPLICIT_DEF values to be live only until the end
2508 // of their block. If the value is really live longer and gets pruned in
2509 // another block, this flag is cleared again.
2511 // Clearing the valid lanes is deferred until it is sure this can be
2512 // erased.
2513 V.ErasableImplicitDef = true;
2518 // Find the value in Other that overlaps VNI->def, if any.
2519 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2521 // It is possible that both values are defined by the same instruction, or
2522 // the values are PHIs defined in the same block. When that happens, the two
2523 // values should be merged into one, but not into any preceding value.
2524 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2525 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2526 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2528 // One value stays, the other is merged. Keep the earlier one, or the first
2529 // one we see.
2530 if (OtherVNI->def < VNI->def)
2531 Other.computeAssignment(OtherVNI->id, *this);
2532 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2533 // This is an early-clobber def overlapping a live-in value in the other
2534 // register. Not mergeable.
2535 V.OtherVNI = OtherLRQ.valueIn();
2536 return CR_Impossible;
2538 V.OtherVNI = OtherVNI;
2539 Val &OtherV = Other.Vals[OtherVNI->id];
2540 // Keep this value, check for conflicts when analyzing OtherVNI.
2541 if (!OtherV.isAnalyzed())
2542 return CR_Keep;
2543 // Both sides have been analyzed now.
2544 // Allow overlapping PHI values. Any real interference would show up in a
2545 // predecessor, the PHI itself can't introduce any conflicts.
2546 if (VNI->isPHIDef())
2547 return CR_Merge;
2548 if ((V.ValidLanes & OtherV.ValidLanes).any())
2549 // Overlapping lanes can't be resolved.
2550 return CR_Impossible;
2551 else
2552 return CR_Merge;
2555 // No simultaneous def. Is Other live at the def?
2556 V.OtherVNI = OtherLRQ.valueIn();
2557 if (!V.OtherVNI)
2558 // No overlap, no conflict.
2559 return CR_Keep;
2561 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2563 // We have overlapping values, or possibly a kill of Other.
2564 // Recursively compute assignments up the dominator tree.
2565 Other.computeAssignment(V.OtherVNI->id, *this);
2566 Val &OtherV = Other.Vals[V.OtherVNI->id];
2568 if (OtherV.ErasableImplicitDef) {
2569 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2570 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2571 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2572 // technically.
2574 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2575 // to erase the IMPLICIT_DEF instruction.
2576 if (DefMI &&
2577 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2578 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2579 << " extends into "
2580 << printMBBReference(*DefMI->getParent())
2581 << ", keeping it.\n");
2582 OtherV.ErasableImplicitDef = false;
2583 } else {
2584 // We deferred clearing these lanes in case we needed to save them
2585 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2589 // Allow overlapping PHI values. Any real interference would show up in a
2590 // predecessor, the PHI itself can't introduce any conflicts.
2591 if (VNI->isPHIDef())
2592 return CR_Replace;
2594 // Check for simple erasable conflicts.
2595 if (DefMI->isImplicitDef()) {
2596 // We need the def for the subregister if there is nothing else live at the
2597 // subrange at this point.
2598 if (TrackSubRegLiveness
2599 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2600 return CR_Replace;
2601 return CR_Erase;
2604 // Include the non-conflict where DefMI is a coalescable copy that kills
2605 // OtherVNI. We still want the copy erased and value numbers merged.
2606 if (CP.isCoalescable(DefMI)) {
2607 // Some of the lanes copied from OtherVNI may be undef, making them undef
2608 // here too.
2609 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2610 return CR_Erase;
2613 // This may not be a real conflict if DefMI simply kills Other and defines
2614 // VNI.
2615 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2616 return CR_Keep;
2618 // Handle the case where VNI and OtherVNI can be proven to be identical:
2620 // %other = COPY %ext
2621 // %this = COPY %ext <-- Erase this copy
2623 if (DefMI->isFullCopy() && !CP.isPartial() &&
2624 valuesIdentical(VNI, V.OtherVNI, Other)) {
2625 V.Identical = true;
2626 return CR_Erase;
2629 // The remaining checks apply to the lanes, which aren't tracked here. This
2630 // was already decided to be OK via the following CR_Replace condition.
2631 // CR_Replace.
2632 if (SubRangeJoin)
2633 return CR_Replace;
2635 // If the lanes written by this instruction were all undef in OtherVNI, it is
2636 // still safe to join the live ranges. This can't be done with a simple value
2637 // mapping, though - OtherVNI will map to multiple values:
2639 // 1 %dst:ssub0 = FOO <-- OtherVNI
2640 // 2 %src = BAR <-- VNI
2641 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2642 // 4 BAZ killed %dst
2643 // 5 QUUX killed %src
2645 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2646 // handles this complex value mapping.
2647 if ((V.WriteLanes & OtherV.ValidLanes).none())
2648 return CR_Replace;
2650 // If the other live range is killed by DefMI and the live ranges are still
2651 // overlapping, it must be because we're looking at an early clobber def:
2653 // %dst<def,early-clobber> = ASM killed %src
2655 // In this case, it is illegal to merge the two live ranges since the early
2656 // clobber def would clobber %src before it was read.
2657 if (OtherLRQ.isKill()) {
2658 // This case where the def doesn't overlap the kill is handled above.
2659 assert(VNI->def.isEarlyClobber() &&
2660 "Only early clobber defs can overlap a kill");
2661 return CR_Impossible;
2664 // VNI is clobbering live lanes in OtherVNI, but there is still the
2665 // possibility that no instructions actually read the clobbered lanes.
2666 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2667 // Otherwise Other.RI wouldn't be live here.
2668 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2669 return CR_Impossible;
2671 // We need to verify that no instructions are reading the clobbered lanes. To
2672 // save compile time, we'll only check that locally. Don't allow the tainted
2673 // value to escape the basic block.
2674 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2675 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2676 return CR_Impossible;
2678 // There are still some things that could go wrong besides clobbered lanes
2679 // being read, for example OtherVNI may be only partially redefined in MBB,
2680 // and some clobbered lanes could escape the block. Save this analysis for
2681 // resolveConflicts() when all values have been mapped. We need to know
2682 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2683 // that now - the recursive analyzeValue() calls must go upwards in the
2684 // dominator tree.
2685 return CR_Unresolved;
2688 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2689 Val &V = Vals[ValNo];
2690 if (V.isAnalyzed()) {
2691 // Recursion should always move up the dominator tree, so ValNo is not
2692 // supposed to reappear before it has been assigned.
2693 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2694 return;
2696 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2697 case CR_Erase:
2698 case CR_Merge:
2699 // Merge this ValNo into OtherVNI.
2700 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2701 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2702 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2703 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2704 << LR.getValNumInfo(ValNo)->def << " into "
2705 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2706 << V.OtherVNI->def << " --> @"
2707 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2708 break;
2709 case CR_Replace:
2710 case CR_Unresolved: {
2711 // The other value is going to be pruned if this join is successful.
2712 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2713 Val &OtherV = Other.Vals[V.OtherVNI->id];
2714 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2715 // its lanes.
2716 if (OtherV.ErasableImplicitDef &&
2717 TrackSubRegLiveness &&
2718 (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2719 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2721 OtherV.ErasableImplicitDef = false;
2722 // The valid lanes written by the implicit_def were speculatively cleared
2723 // before, so make this more conservative. It may be better to track this,
2724 // I haven't found a testcase where it matters.
2725 OtherV.ValidLanes = LaneBitmask::getAll();
2728 OtherV.Pruned = true;
2729 LLVM_FALLTHROUGH;
2731 default:
2732 // This value number needs to go in the final joined live range.
2733 Assignments[ValNo] = NewVNInfo.size();
2734 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2735 break;
2739 bool JoinVals::mapValues(JoinVals &Other) {
2740 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2741 computeAssignment(i, Other);
2742 if (Vals[i].Resolution == CR_Impossible) {
2743 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2744 << '@' << LR.getValNumInfo(i)->def << '\n');
2745 return false;
2748 return true;
2751 bool JoinVals::
2752 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2753 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2754 VNInfo *VNI = LR.getValNumInfo(ValNo);
2755 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2756 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2758 // Scan Other.LR from VNI.def to MBBEnd.
2759 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2760 assert(OtherI != Other.LR.end() && "No conflict?");
2761 do {
2762 // OtherI is pointing to a tainted value. Abort the join if the tainted
2763 // lanes escape the block.
2764 SlotIndex End = OtherI->end;
2765 if (End >= MBBEnd) {
2766 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2767 << OtherI->valno->id << '@' << OtherI->start << '\n');
2768 return false;
2770 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2771 << OtherI->valno->id << '@' << OtherI->start << " to "
2772 << End << '\n');
2773 // A dead def is not a problem.
2774 if (End.isDead())
2775 break;
2776 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2778 // Check for another def in the MBB.
2779 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2780 break;
2782 // Lanes written by the new def are no longer tainted.
2783 const Val &OV = Other.Vals[OtherI->valno->id];
2784 TaintedLanes &= ~OV.WriteLanes;
2785 if (!OV.RedefVNI)
2786 break;
2787 } while (TaintedLanes.any());
2788 return true;
2791 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2792 LaneBitmask Lanes) const {
2793 if (MI.isDebugInstr())
2794 return false;
2795 for (const MachineOperand &MO : MI.operands()) {
2796 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2797 continue;
2798 if (!MO.readsReg())
2799 continue;
2800 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2801 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2802 return true;
2804 return false;
2807 bool JoinVals::resolveConflicts(JoinVals &Other) {
2808 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2809 Val &V = Vals[i];
2810 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2811 if (V.Resolution != CR_Unresolved)
2812 continue;
2813 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2814 << LR.getValNumInfo(i)->def << '\n');
2815 if (SubRangeJoin)
2816 return false;
2818 ++NumLaneConflicts;
2819 assert(V.OtherVNI && "Inconsistent conflict resolution.");
2820 VNInfo *VNI = LR.getValNumInfo(i);
2821 const Val &OtherV = Other.Vals[V.OtherVNI->id];
2823 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2824 // join, those lanes will be tainted with a wrong value. Get the extent of
2825 // the tainted lanes.
2826 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2827 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2828 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2829 // Tainted lanes would extend beyond the basic block.
2830 return false;
2832 assert(!TaintExtent.empty() && "There should be at least one conflict.");
2834 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2835 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2836 MachineBasicBlock::iterator MI = MBB->begin();
2837 if (!VNI->isPHIDef()) {
2838 MI = Indexes->getInstructionFromIndex(VNI->def);
2839 // No need to check the instruction defining VNI for reads.
2840 ++MI;
2842 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2843 "Interference ends on VNI->def. Should have been handled earlier");
2844 MachineInstr *LastMI =
2845 Indexes->getInstructionFromIndex(TaintExtent.front().first);
2846 assert(LastMI && "Range must end at a proper instruction");
2847 unsigned TaintNum = 0;
2848 while (true) {
2849 assert(MI != MBB->end() && "Bad LastMI");
2850 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2851 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2852 return false;
2854 // LastMI is the last instruction to use the current value.
2855 if (&*MI == LastMI) {
2856 if (++TaintNum == TaintExtent.size())
2857 break;
2858 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2859 assert(LastMI && "Range must end at a proper instruction");
2860 TaintedLanes = TaintExtent[TaintNum].second;
2862 ++MI;
2865 // The tainted lanes are unused.
2866 V.Resolution = CR_Replace;
2867 ++NumLaneResolves;
2869 return true;
2872 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2873 Val &V = Vals[ValNo];
2874 if (V.Pruned || V.PrunedComputed)
2875 return V.Pruned;
2877 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2878 return V.Pruned;
2880 // Follow copies up the dominator tree and check if any intermediate value
2881 // has been pruned.
2882 V.PrunedComputed = true;
2883 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2884 return V.Pruned;
2887 void JoinVals::pruneValues(JoinVals &Other,
2888 SmallVectorImpl<SlotIndex> &EndPoints,
2889 bool changeInstrs) {
2890 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2891 SlotIndex Def = LR.getValNumInfo(i)->def;
2892 switch (Vals[i].Resolution) {
2893 case CR_Keep:
2894 break;
2895 case CR_Replace: {
2896 // This value takes precedence over the value in Other.LR.
2897 LIS->pruneValue(Other.LR, Def, &EndPoints);
2898 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2899 // instructions are only inserted to provide a live-out value for PHI
2900 // predecessors, so the instruction should simply go away once its value
2901 // has been replaced.
2902 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2903 bool EraseImpDef = OtherV.ErasableImplicitDef &&
2904 OtherV.Resolution == CR_Keep;
2905 if (!Def.isBlock()) {
2906 if (changeInstrs) {
2907 // Remove <def,read-undef> flags. This def is now a partial redef.
2908 // Also remove dead flags since the joined live range will
2909 // continue past this instruction.
2910 for (MachineOperand &MO :
2911 Indexes->getInstructionFromIndex(Def)->operands()) {
2912 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2913 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2914 MO.setIsUndef(false);
2915 MO.setIsDead(false);
2919 // This value will reach instructions below, but we need to make sure
2920 // the live range also reaches the instruction at Def.
2921 if (!EraseImpDef)
2922 EndPoints.push_back(Def);
2924 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2925 << ": " << Other.LR << '\n');
2926 break;
2928 case CR_Erase:
2929 case CR_Merge:
2930 if (isPrunedValue(i, Other)) {
2931 // This value is ultimately a copy of a pruned value in LR or Other.LR.
2932 // We can no longer trust the value mapping computed by
2933 // computeAssignment(), the value that was originally copied could have
2934 // been replaced.
2935 LIS->pruneValue(LR, Def, &EndPoints);
2936 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
2937 << Def << ": " << LR << '\n');
2939 break;
2940 case CR_Unresolved:
2941 case CR_Impossible:
2942 llvm_unreachable("Unresolved conflicts");
2947 /// Consider the following situation when coalescing the copy between
2948 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2950 /// Main range Subrange 0004 (sub2)
2951 /// %31 %45 %31 %45
2952 /// 544 %45 = COPY %28 + +
2953 /// | v1 | v1
2954 /// 560B bb.1: + +
2955 /// 624 = %45.sub2 | v2 | v2
2956 /// 800 %31 = COPY %45 + + + +
2957 /// | v0 | v0
2958 /// 816 %31.sub1 = ... + |
2959 /// 880 %30 = COPY %31 | v1 +
2960 /// 928 %45 = COPY %30 | + +
2961 /// | | v0 | v0 <--+
2962 /// 992B ; backedge -> bb.1 | + + |
2963 /// 1040 = %31.sub0 + |
2964 /// This value must remain
2965 /// live-out!
2967 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
2968 /// redundant, since it copies the value from %45 back into it. The
2969 /// conflict resolution for the main range determines that %45.v0 is
2970 /// to be erased, which is ok since %31.v1 is identical to it.
2971 /// The problem happens with the subrange for sub2: it has to be live
2972 /// on exit from the block, but since 928 was actually a point of
2973 /// definition of %45.sub2, %45.sub2 was not live immediately prior
2974 /// to that definition. As a result, when 928 was erased, the value v0
2975 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
2976 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
2977 /// providing an incorrect value to the use at 624.
2979 /// Since the main-range values %31.v1 and %45.v0 were proved to be
2980 /// identical, the corresponding values in subranges must also be the
2981 /// same. A redundant copy is removed because it's not needed, and not
2982 /// because it copied an undefined value, so any liveness that originated
2983 /// from that copy cannot disappear. When pruning a value that started
2984 /// at the removed copy, the corresponding identical value must be
2985 /// extended to replace it.
2986 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
2987 // Look for values being erased.
2988 bool DidPrune = false;
2989 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2990 Val &V = Vals[i];
2991 // We should trigger in all cases in which eraseInstrs() does something.
2992 // match what eraseInstrs() is doing, print a message so
2993 if (V.Resolution != CR_Erase &&
2994 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
2995 continue;
2997 // Check subranges at the point where the copy will be removed.
2998 SlotIndex Def = LR.getValNumInfo(i)->def;
2999 SlotIndex OtherDef;
3000 if (V.Identical)
3001 OtherDef = V.OtherVNI->def;
3003 // Print message so mismatches with eraseInstrs() can be diagnosed.
3004 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3005 << '\n');
3006 for (LiveInterval::SubRange &S : LI.subranges()) {
3007 LiveQueryResult Q = S.Query(Def);
3009 // If a subrange starts at the copy then an undefined value has been
3010 // copied and we must remove that subrange value as well.
3011 VNInfo *ValueOut = Q.valueOutOrDead();
3012 if (ValueOut != nullptr && Q.valueIn() == nullptr) {
3013 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3014 << " at " << Def << "\n");
3015 SmallVector<SlotIndex,8> EndPoints;
3016 LIS->pruneValue(S, Def, &EndPoints);
3017 DidPrune = true;
3018 // Mark value number as unused.
3019 ValueOut->markUnused();
3021 if (V.Identical && S.Query(OtherDef).valueOut()) {
3022 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3023 // then we can't simply prune V from S. V needs to be replaced
3024 // with V.OtherVNI.
3025 LIS->extendToIndices(S, EndPoints);
3027 continue;
3029 // If a subrange ends at the copy, then a value was copied but only
3030 // partially used later. Shrink the subregister range appropriately.
3031 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3032 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3033 << PrintLaneMask(S.LaneMask) << " at " << Def
3034 << "\n");
3035 ShrinkMask |= S.LaneMask;
3039 if (DidPrune)
3040 LI.removeEmptySubRanges();
3043 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3044 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3045 for (LiveInterval::SubRange &SR : LI.subranges()) {
3046 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3047 if (VNI->def == Def)
3048 return true;
3050 return false;
3053 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3054 assert(&static_cast<LiveRange&>(LI) == &LR);
3056 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3057 if (Vals[i].Resolution != CR_Keep)
3058 continue;
3059 VNInfo *VNI = LR.getValNumInfo(i);
3060 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3061 continue;
3062 Vals[i].Pruned = true;
3063 ShrinkMainRange = true;
3067 void JoinVals::removeImplicitDefs() {
3068 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3069 Val &V = Vals[i];
3070 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3071 continue;
3073 VNInfo *VNI = LR.getValNumInfo(i);
3074 VNI->markUnused();
3075 LR.removeValNo(VNI);
3079 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3080 SmallVectorImpl<unsigned> &ShrinkRegs,
3081 LiveInterval *LI) {
3082 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3083 // Get the def location before markUnused() below invalidates it.
3084 SlotIndex Def = LR.getValNumInfo(i)->def;
3085 switch (Vals[i].Resolution) {
3086 case CR_Keep: {
3087 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3088 // longer. The IMPLICIT_DEF instructions are only inserted by
3089 // PHIElimination to guarantee that all PHI predecessors have a value.
3090 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3091 break;
3092 // Remove value number i from LR.
3093 // For intervals with subranges, removing a segment from the main range
3094 // may require extending the previous segment: for each definition of
3095 // a subregister, there will be a corresponding def in the main range.
3096 // That def may fall in the middle of a segment from another subrange.
3097 // In such cases, removing this def from the main range must be
3098 // complemented by extending the main range to account for the liveness
3099 // of the other subrange.
3100 VNInfo *VNI = LR.getValNumInfo(i);
3101 SlotIndex Def = VNI->def;
3102 // The new end point of the main range segment to be extended.
3103 SlotIndex NewEnd;
3104 if (LI != nullptr) {
3105 LiveRange::iterator I = LR.FindSegmentContaining(Def);
3106 assert(I != LR.end());
3107 // Do not extend beyond the end of the segment being removed.
3108 // The segment may have been pruned in preparation for joining
3109 // live ranges.
3110 NewEnd = I->end;
3113 LR.removeValNo(VNI);
3114 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3115 // make it appear like an unused value number.
3116 VNI->markUnused();
3118 if (LI != nullptr && LI->hasSubRanges()) {
3119 assert(static_cast<LiveRange*>(LI) == &LR);
3120 // Determine the end point based on the subrange information:
3121 // minimum of (earliest def of next segment,
3122 // latest end point of containing segment)
3123 SlotIndex ED, LE;
3124 for (LiveInterval::SubRange &SR : LI->subranges()) {
3125 LiveRange::iterator I = SR.find(Def);
3126 if (I == SR.end())
3127 continue;
3128 if (I->start > Def)
3129 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3130 else
3131 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3133 if (LE.isValid())
3134 NewEnd = std::min(NewEnd, LE);
3135 if (ED.isValid())
3136 NewEnd = std::min(NewEnd, ED);
3138 // We only want to do the extension if there was a subrange that
3139 // was live across Def.
3140 if (LE.isValid()) {
3141 LiveRange::iterator S = LR.find(Def);
3142 if (S != LR.begin())
3143 std::prev(S)->end = NewEnd;
3146 LLVM_DEBUG({
3147 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3148 if (LI != nullptr)
3149 dbgs() << "\t\t LHS = " << *LI << '\n';
3151 LLVM_FALLTHROUGH;
3154 case CR_Erase: {
3155 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3156 assert(MI && "No instruction to erase");
3157 if (MI->isCopy()) {
3158 unsigned Reg = MI->getOperand(1).getReg();
3159 if (TargetRegisterInfo::isVirtualRegister(Reg) &&
3160 Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3161 ShrinkRegs.push_back(Reg);
3163 ErasedInstrs.insert(MI);
3164 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3165 LIS->RemoveMachineInstrFromMaps(*MI);
3166 MI->eraseFromParent();
3167 break;
3169 default:
3170 break;
3175 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3176 LaneBitmask LaneMask,
3177 const CoalescerPair &CP) {
3178 SmallVector<VNInfo*, 16> NewVNInfo;
3179 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3180 NewVNInfo, CP, LIS, TRI, true, true);
3181 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3182 NewVNInfo, CP, LIS, TRI, true, true);
3184 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3185 // We should be able to resolve all conflicts here as we could successfully do
3186 // it on the mainrange already. There is however a problem when multiple
3187 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3188 // interferences.
3189 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3190 // We already determined that it is legal to merge the intervals, so this
3191 // should never fail.
3192 llvm_unreachable("*** Couldn't join subrange!\n");
3194 if (!LHSVals.resolveConflicts(RHSVals) ||
3195 !RHSVals.resolveConflicts(LHSVals)) {
3196 // We already determined that it is legal to merge the intervals, so this
3197 // should never fail.
3198 llvm_unreachable("*** Couldn't join subrange!\n");
3201 // The merging algorithm in LiveInterval::join() can't handle conflicting
3202 // value mappings, so we need to remove any live ranges that overlap a
3203 // CR_Replace resolution. Collect a set of end points that can be used to
3204 // restore the live range after joining.
3205 SmallVector<SlotIndex, 8> EndPoints;
3206 LHSVals.pruneValues(RHSVals, EndPoints, false);
3207 RHSVals.pruneValues(LHSVals, EndPoints, false);
3209 LHSVals.removeImplicitDefs();
3210 RHSVals.removeImplicitDefs();
3212 LRange.verify();
3213 RRange.verify();
3215 // Join RRange into LHS.
3216 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3217 NewVNInfo);
3219 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3220 << ' ' << LRange << "\n");
3221 if (EndPoints.empty())
3222 return;
3224 // Recompute the parts of the live range we had to remove because of
3225 // CR_Replace conflicts.
3226 LLVM_DEBUG({
3227 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3228 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3229 dbgs() << EndPoints[i];
3230 if (i != n-1)
3231 dbgs() << ',';
3233 dbgs() << ": " << LRange << '\n';
3235 LIS->extendToIndices(LRange, EndPoints);
3238 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3239 const LiveRange &ToMerge,
3240 LaneBitmask LaneMask,
3241 CoalescerPair &CP) {
3242 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3243 LI.refineSubRanges(Allocator, LaneMask,
3244 [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) {
3245 if (SR.empty()) {
3246 SR.assign(ToMerge, Allocator);
3247 } else {
3248 // joinSubRegRange() destroys the merged range, so we need a copy.
3249 LiveRange RangeCopy(ToMerge, Allocator);
3250 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3255 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3256 SmallVector<VNInfo*, 16> NewVNInfo;
3257 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3258 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3259 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3260 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3261 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3262 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3263 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3265 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3267 // First compute NewVNInfo and the simple value mappings.
3268 // Detect impossible conflicts early.
3269 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3270 return false;
3272 // Some conflicts can only be resolved after all values have been mapped.
3273 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3274 return false;
3276 // All clear, the live ranges can be merged.
3277 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3278 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3280 // Transform lanemasks from the LHS to masks in the coalesced register and
3281 // create initial subranges if necessary.
3282 unsigned DstIdx = CP.getDstIdx();
3283 if (!LHS.hasSubRanges()) {
3284 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3285 : TRI->getSubRegIndexLaneMask(DstIdx);
3286 // LHS must support subregs or we wouldn't be in this codepath.
3287 assert(Mask.any());
3288 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3289 } else if (DstIdx != 0) {
3290 // Transform LHS lanemasks to new register class if necessary.
3291 for (LiveInterval::SubRange &R : LHS.subranges()) {
3292 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3293 R.LaneMask = Mask;
3296 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3297 << '\n');
3299 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3300 unsigned SrcIdx = CP.getSrcIdx();
3301 if (!RHS.hasSubRanges()) {
3302 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3303 : TRI->getSubRegIndexLaneMask(SrcIdx);
3304 mergeSubRangeInto(LHS, RHS, Mask, CP);
3305 } else {
3306 // Pair up subranges and merge.
3307 for (LiveInterval::SubRange &R : RHS.subranges()) {
3308 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3309 mergeSubRangeInto(LHS, R, Mask, CP);
3312 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3314 // Pruning implicit defs from subranges may result in the main range
3315 // having stale segments.
3316 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3318 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3319 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3322 // The merging algorithm in LiveInterval::join() can't handle conflicting
3323 // value mappings, so we need to remove any live ranges that overlap a
3324 // CR_Replace resolution. Collect a set of end points that can be used to
3325 // restore the live range after joining.
3326 SmallVector<SlotIndex, 8> EndPoints;
3327 LHSVals.pruneValues(RHSVals, EndPoints, true);
3328 RHSVals.pruneValues(LHSVals, EndPoints, true);
3330 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3331 // registers to require trimming.
3332 SmallVector<unsigned, 8> ShrinkRegs;
3333 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3334 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3335 while (!ShrinkRegs.empty())
3336 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3338 // Join RHS into LHS.
3339 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3341 // Kill flags are going to be wrong if the live ranges were overlapping.
3342 // Eventually, we should simply clear all kill flags when computing live
3343 // ranges. They are reinserted after register allocation.
3344 MRI->clearKillFlags(LHS.reg);
3345 MRI->clearKillFlags(RHS.reg);
3347 if (!EndPoints.empty()) {
3348 // Recompute the parts of the live range we had to remove because of
3349 // CR_Replace conflicts.
3350 LLVM_DEBUG({
3351 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3352 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3353 dbgs() << EndPoints[i];
3354 if (i != n-1)
3355 dbgs() << ',';
3357 dbgs() << ": " << LHS << '\n';
3359 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3362 return true;
3365 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3366 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3369 namespace {
3371 /// Information concerning MBB coalescing priority.
3372 struct MBBPriorityInfo {
3373 MachineBasicBlock *MBB;
3374 unsigned Depth;
3375 bool IsSplit;
3377 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3378 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3381 } // end anonymous namespace
3383 /// C-style comparator that sorts first based on the loop depth of the basic
3384 /// block (the unsigned), and then on the MBB number.
3386 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3387 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3388 const MBBPriorityInfo *RHS) {
3389 // Deeper loops first
3390 if (LHS->Depth != RHS->Depth)
3391 return LHS->Depth > RHS->Depth ? -1 : 1;
3393 // Try to unsplit critical edges next.
3394 if (LHS->IsSplit != RHS->IsSplit)
3395 return LHS->IsSplit ? -1 : 1;
3397 // Prefer blocks that are more connected in the CFG. This takes care of
3398 // the most difficult copies first while intervals are short.
3399 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3400 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3401 if (cl != cr)
3402 return cl > cr ? -1 : 1;
3404 // As a last resort, sort by block number.
3405 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3408 /// \returns true if the given copy uses or defines a local live range.
3409 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3410 if (!Copy->isCopy())
3411 return false;
3413 if (Copy->getOperand(1).isUndef())
3414 return false;
3416 unsigned SrcReg = Copy->getOperand(1).getReg();
3417 unsigned DstReg = Copy->getOperand(0).getReg();
3418 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
3419 || TargetRegisterInfo::isPhysicalRegister(DstReg))
3420 return false;
3422 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3423 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3426 void RegisterCoalescer::lateLiveIntervalUpdate() {
3427 for (unsigned reg : ToBeUpdated) {
3428 if (!LIS->hasInterval(reg))
3429 continue;
3430 LiveInterval &LI = LIS->getInterval(reg);
3431 shrinkToUses(&LI, &DeadDefs);
3432 if (!DeadDefs.empty())
3433 eliminateDeadDefs();
3435 ToBeUpdated.clear();
3438 bool RegisterCoalescer::
3439 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3440 bool Progress = false;
3441 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3442 if (!CurrList[i])
3443 continue;
3444 // Skip instruction pointers that have already been erased, for example by
3445 // dead code elimination.
3446 if (ErasedInstrs.count(CurrList[i])) {
3447 CurrList[i] = nullptr;
3448 continue;
3450 bool Again = false;
3451 bool Success = joinCopy(CurrList[i], Again);
3452 Progress |= Success;
3453 if (Success || !Again)
3454 CurrList[i] = nullptr;
3456 return Progress;
3459 /// Check if DstReg is a terminal node.
3460 /// I.e., it does not have any affinity other than \p Copy.
3461 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3462 const MachineRegisterInfo *MRI) {
3463 assert(Copy.isCopyLike());
3464 // Check if the destination of this copy as any other affinity.
3465 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3466 if (&MI != &Copy && MI.isCopyLike())
3467 return false;
3468 return true;
3471 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3472 assert(Copy.isCopyLike());
3473 if (!UseTerminalRule)
3474 return false;
3475 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3476 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
3477 // Check if the destination of this copy has any other affinity.
3478 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
3479 // If SrcReg is a physical register, the copy won't be coalesced.
3480 // Ignoring it may have other side effect (like missing
3481 // rematerialization). So keep it.
3482 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
3483 !isTerminalReg(DstReg, Copy, MRI))
3484 return false;
3486 // DstReg is a terminal node. Check if it interferes with any other
3487 // copy involving SrcReg.
3488 const MachineBasicBlock *OrigBB = Copy.getParent();
3489 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3490 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3491 // Technically we should check if the weight of the new copy is
3492 // interesting compared to the other one and update the weight
3493 // of the copies accordingly. However, this would only work if
3494 // we would gather all the copies first then coalesce, whereas
3495 // right now we interleave both actions.
3496 // For now, just consider the copies that are in the same block.
3497 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3498 continue;
3499 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3500 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3501 OtherSubReg);
3502 if (OtherReg == SrcReg)
3503 OtherReg = OtherSrcReg;
3504 // Check if OtherReg is a non-terminal.
3505 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
3506 isTerminalReg(OtherReg, MI, MRI))
3507 continue;
3508 // Check that OtherReg interfere with DstReg.
3509 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3510 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3511 << '\n');
3512 return true;
3515 return false;
3518 void
3519 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3520 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3522 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3523 // yet, it might invalidate the iterator.
3524 const unsigned PrevSize = WorkList.size();
3525 if (JoinGlobalCopies) {
3526 SmallVector<MachineInstr*, 2> LocalTerminals;
3527 SmallVector<MachineInstr*, 2> GlobalTerminals;
3528 // Coalesce copies bottom-up to coalesce local defs before local uses. They
3529 // are not inherently easier to resolve, but slightly preferable until we
3530 // have local live range splitting. In particular this is required by
3531 // cmp+jmp macro fusion.
3532 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3533 MII != E; ++MII) {
3534 if (!MII->isCopyLike())
3535 continue;
3536 bool ApplyTerminalRule = applyTerminalRule(*MII);
3537 if (isLocalCopy(&(*MII), LIS)) {
3538 if (ApplyTerminalRule)
3539 LocalTerminals.push_back(&(*MII));
3540 else
3541 LocalWorkList.push_back(&(*MII));
3542 } else {
3543 if (ApplyTerminalRule)
3544 GlobalTerminals.push_back(&(*MII));
3545 else
3546 WorkList.push_back(&(*MII));
3549 // Append the copies evicted by the terminal rule at the end of the list.
3550 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3551 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3553 else {
3554 SmallVector<MachineInstr*, 2> Terminals;
3555 for (MachineInstr &MII : *MBB)
3556 if (MII.isCopyLike()) {
3557 if (applyTerminalRule(MII))
3558 Terminals.push_back(&MII);
3559 else
3560 WorkList.push_back(&MII);
3562 // Append the copies evicted by the terminal rule at the end of the list.
3563 WorkList.append(Terminals.begin(), Terminals.end());
3565 // Try coalescing the collected copies immediately, and remove the nulls.
3566 // This prevents the WorkList from getting too large since most copies are
3567 // joinable on the first attempt.
3568 MutableArrayRef<MachineInstr*>
3569 CurrList(WorkList.begin() + PrevSize, WorkList.end());
3570 if (copyCoalesceWorkList(CurrList))
3571 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3572 nullptr), WorkList.end());
3575 void RegisterCoalescer::coalesceLocals() {
3576 copyCoalesceWorkList(LocalWorkList);
3577 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3578 if (LocalWorkList[j])
3579 WorkList.push_back(LocalWorkList[j]);
3581 LocalWorkList.clear();
3584 void RegisterCoalescer::joinAllIntervals() {
3585 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3586 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3588 std::vector<MBBPriorityInfo> MBBs;
3589 MBBs.reserve(MF->size());
3590 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3591 MachineBasicBlock *MBB = &*I;
3592 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3593 JoinSplitEdges && isSplitEdge(MBB)));
3595 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3597 // Coalesce intervals in MBB priority order.
3598 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3599 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3600 // Try coalescing the collected local copies for deeper loops.
3601 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3602 coalesceLocals();
3603 CurrDepth = MBBs[i].Depth;
3605 copyCoalesceInMBB(MBBs[i].MBB);
3607 lateLiveIntervalUpdate();
3608 coalesceLocals();
3610 // Joining intervals can allow other intervals to be joined. Iteratively join
3611 // until we make no progress.
3612 while (copyCoalesceWorkList(WorkList))
3613 /* empty */ ;
3614 lateLiveIntervalUpdate();
3617 void RegisterCoalescer::releaseMemory() {
3618 ErasedInstrs.clear();
3619 WorkList.clear();
3620 DeadDefs.clear();
3621 InflateRegs.clear();
3624 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3625 MF = &fn;
3626 MRI = &fn.getRegInfo();
3627 const TargetSubtargetInfo &STI = fn.getSubtarget();
3628 TRI = STI.getRegisterInfo();
3629 TII = STI.getInstrInfo();
3630 LIS = &getAnalysis<LiveIntervals>();
3631 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3632 Loops = &getAnalysis<MachineLoopInfo>();
3633 if (EnableGlobalCopies == cl::BOU_UNSET)
3634 JoinGlobalCopies = STI.enableJoinGlobalCopies();
3635 else
3636 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3638 // The MachineScheduler does not currently require JoinSplitEdges. This will
3639 // either be enabled unconditionally or replaced by a more general live range
3640 // splitting optimization.
3641 JoinSplitEdges = EnableJoinSplits;
3643 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3644 << "********** Function: " << MF->getName() << '\n');
3646 if (VerifyCoalescing)
3647 MF->verify(this, "Before register coalescing");
3649 RegClassInfo.runOnMachineFunction(fn);
3651 // Join (coalesce) intervals if requested.
3652 if (EnableJoining)
3653 joinAllIntervals();
3655 // After deleting a lot of copies, register classes may be less constrained.
3656 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3657 // DPR inflation.
3658 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3659 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3660 InflateRegs.end());
3661 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3662 << " regs.\n");
3663 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3664 unsigned Reg = InflateRegs[i];
3665 if (MRI->reg_nodbg_empty(Reg))
3666 continue;
3667 if (MRI->recomputeRegClass(Reg)) {
3668 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3669 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3670 ++NumInflated;
3672 LiveInterval &LI = LIS->getInterval(Reg);
3673 if (LI.hasSubRanges()) {
3674 // If the inflated register class does not support subregisters anymore
3675 // remove the subranges.
3676 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3677 LI.clearSubRanges();
3678 } else {
3679 #ifndef NDEBUG
3680 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3681 // If subranges are still supported, then the same subregs
3682 // should still be supported.
3683 for (LiveInterval::SubRange &S : LI.subranges()) {
3684 assert((S.LaneMask & ~MaxMask).none());
3686 #endif
3692 LLVM_DEBUG(dump());
3693 if (VerifyCoalescing)
3694 MF->verify(this, "After register coalescing");
3695 return true;
3698 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3699 LIS->print(O, m);