1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::Legalize method.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/RuntimeLibcalls.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
55 #define DEBUG_TYPE "legalizedag"
59 /// Keeps track of state when getting the sign of a floating-point value as an
61 struct FloatSignAsInt
{
66 MachinePointerInfo IntPointerInfo
;
67 MachinePointerInfo FloatPointerInfo
;
73 //===----------------------------------------------------------------------===//
74 /// This takes an arbitrary SelectionDAG as input and
75 /// hacks on it until the target machine can handle it. This involves
76 /// eliminating value sizes the machine cannot handle (promoting small sizes to
77 /// large sizes or splitting up large values into small values) as well as
78 /// eliminating operations the machine cannot handle.
80 /// This code also does a small amount of optimization and recognition of idioms
81 /// as part of its processing. For example, if a target does not support a
82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
83 /// will attempt merge setcc and brc instructions into brcc's.
84 class SelectionDAGLegalize
{
85 const TargetMachine
&TM
;
86 const TargetLowering
&TLI
;
89 /// The set of nodes which have already been legalized. We hold a
90 /// reference to it in order to update as necessary on node deletion.
91 SmallPtrSetImpl
<SDNode
*> &LegalizedNodes
;
93 /// A set of all the nodes updated during legalization.
94 SmallSetVector
<SDNode
*, 16> *UpdatedNodes
;
96 EVT
getSetCCResultType(EVT VT
) const {
97 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
100 // Libcall insertion helpers.
103 SelectionDAGLegalize(SelectionDAG
&DAG
,
104 SmallPtrSetImpl
<SDNode
*> &LegalizedNodes
,
105 SmallSetVector
<SDNode
*, 16> *UpdatedNodes
= nullptr)
106 : TM(DAG
.getTarget()), TLI(DAG
.getTargetLoweringInfo()), DAG(DAG
),
107 LegalizedNodes(LegalizedNodes
), UpdatedNodes(UpdatedNodes
) {}
109 /// Legalizes the given operation.
110 void LegalizeOp(SDNode
*Node
);
113 SDValue
OptimizeFloatStore(StoreSDNode
*ST
);
115 void LegalizeLoadOps(SDNode
*Node
);
116 void LegalizeStoreOps(SDNode
*Node
);
118 /// Some targets cannot handle a variable
119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
120 /// is necessary to spill the vector being inserted into to memory, perform
121 /// the insert there, and then read the result back.
122 SDValue
PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
, SDValue Idx
,
124 SDValue
ExpandINSERT_VECTOR_ELT(SDValue Vec
, SDValue Val
, SDValue Idx
,
127 /// Return a vector shuffle operation which
128 /// performs the same shuffe in terms of order or result bytes, but on a type
129 /// whose vector element type is narrower than the original shuffle type.
130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
131 SDValue
ShuffleWithNarrowerEltType(EVT NVT
, EVT VT
, const SDLoc
&dl
,
132 SDValue N1
, SDValue N2
,
133 ArrayRef
<int> Mask
) const;
135 bool LegalizeSetCCCondCode(EVT VT
, SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
136 bool &NeedInvert
, const SDLoc
&dl
);
138 SDValue
ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
, bool isSigned
);
140 std::pair
<SDValue
, SDValue
> ExpandChainLibCall(RTLIB::Libcall LC
,
141 SDNode
*Node
, bool isSigned
);
142 SDValue
ExpandFPLibCall(SDNode
*Node
, RTLIB::Libcall Call_F32
,
143 RTLIB::Libcall Call_F64
, RTLIB::Libcall Call_F80
,
144 RTLIB::Libcall Call_F128
,
145 RTLIB::Libcall Call_PPCF128
);
146 SDValue
ExpandIntLibCall(SDNode
*Node
, bool isSigned
,
147 RTLIB::Libcall Call_I8
,
148 RTLIB::Libcall Call_I16
,
149 RTLIB::Libcall Call_I32
,
150 RTLIB::Libcall Call_I64
,
151 RTLIB::Libcall Call_I128
);
152 void ExpandDivRemLibCall(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
153 void ExpandSinCosLibCall(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
155 SDValue
EmitStackConvert(SDValue SrcOp
, EVT SlotVT
, EVT DestVT
,
157 SDValue
ExpandBUILD_VECTOR(SDNode
*Node
);
158 SDValue
ExpandSCALAR_TO_VECTOR(SDNode
*Node
);
159 void ExpandDYNAMIC_STACKALLOC(SDNode
*Node
,
160 SmallVectorImpl
<SDValue
> &Results
);
161 void getSignAsIntValue(FloatSignAsInt
&State
, const SDLoc
&DL
,
162 SDValue Value
) const;
163 SDValue
modifySignAsInt(const FloatSignAsInt
&State
, const SDLoc
&DL
,
164 SDValue NewIntValue
) const;
165 SDValue
ExpandFCOPYSIGN(SDNode
*Node
) const;
166 SDValue
ExpandFABS(SDNode
*Node
) const;
167 SDValue
ExpandLegalINT_TO_FP(bool isSigned
, SDValue Op0
, EVT DestVT
,
169 SDValue
PromoteLegalINT_TO_FP(SDValue LegalOp
, EVT DestVT
, bool isSigned
,
171 SDValue
PromoteLegalFP_TO_INT(SDValue LegalOp
, EVT DestVT
, bool isSigned
,
174 SDValue
ExpandBITREVERSE(SDValue Op
, const SDLoc
&dl
);
175 SDValue
ExpandBSWAP(SDValue Op
, const SDLoc
&dl
);
177 SDValue
ExpandExtractFromVectorThroughStack(SDValue Op
);
178 SDValue
ExpandInsertToVectorThroughStack(SDValue Op
);
179 SDValue
ExpandVectorBuildThroughStack(SDNode
* Node
);
181 SDValue
ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
);
182 SDValue
ExpandConstant(ConstantSDNode
*CP
);
184 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
185 bool ExpandNode(SDNode
*Node
);
186 void ConvertNodeToLibcall(SDNode
*Node
);
187 void PromoteNode(SDNode
*Node
);
190 // Node replacement helpers
192 void ReplacedNode(SDNode
*N
) {
193 LegalizedNodes
.erase(N
);
195 UpdatedNodes
->insert(N
);
198 void ReplaceNode(SDNode
*Old
, SDNode
*New
) {
199 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
);
200 dbgs() << " with: "; New
->dump(&DAG
));
202 assert(Old
->getNumValues() == New
->getNumValues() &&
203 "Replacing one node with another that produces a different number "
205 DAG
.ReplaceAllUsesWith(Old
, New
);
207 UpdatedNodes
->insert(New
);
211 void ReplaceNode(SDValue Old
, SDValue New
) {
212 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
);
213 dbgs() << " with: "; New
->dump(&DAG
));
215 DAG
.ReplaceAllUsesWith(Old
, New
);
217 UpdatedNodes
->insert(New
.getNode());
218 ReplacedNode(Old
.getNode());
221 void ReplaceNode(SDNode
*Old
, const SDValue
*New
) {
222 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
));
224 DAG
.ReplaceAllUsesWith(Old
, New
);
225 for (unsigned i
= 0, e
= Old
->getNumValues(); i
!= e
; ++i
) {
226 LLVM_DEBUG(dbgs() << (i
== 0 ? " with: " : " and: ");
229 UpdatedNodes
->insert(New
[i
].getNode());
235 } // end anonymous namespace
237 /// Return a vector shuffle operation which
238 /// performs the same shuffle in terms of order or result bytes, but on a type
239 /// whose vector element type is narrower than the original shuffle type.
240 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
241 SDValue
SelectionDAGLegalize::ShuffleWithNarrowerEltType(
242 EVT NVT
, EVT VT
, const SDLoc
&dl
, SDValue N1
, SDValue N2
,
243 ArrayRef
<int> Mask
) const {
244 unsigned NumMaskElts
= VT
.getVectorNumElements();
245 unsigned NumDestElts
= NVT
.getVectorNumElements();
246 unsigned NumEltsGrowth
= NumDestElts
/ NumMaskElts
;
248 assert(NumEltsGrowth
&& "Cannot promote to vector type with fewer elts!");
250 if (NumEltsGrowth
== 1)
251 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, Mask
);
253 SmallVector
<int, 8> NewMask
;
254 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
256 for (unsigned j
= 0; j
!= NumEltsGrowth
; ++j
) {
258 NewMask
.push_back(-1);
260 NewMask
.push_back(Idx
* NumEltsGrowth
+ j
);
263 assert(NewMask
.size() == NumDestElts
&& "Non-integer NumEltsGrowth?");
264 assert(TLI
.isShuffleMaskLegal(NewMask
, NVT
) && "Shuffle not legal?");
265 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, NewMask
);
268 /// Expands the ConstantFP node to an integer constant or
269 /// a load from the constant pool.
271 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
) {
275 // If a FP immediate is precise when represented as a float and if the
276 // target can do an extending load from float to double, we put it into
277 // the constant pool as a float, even if it's is statically typed as a
278 // double. This shrinks FP constants and canonicalizes them for targets where
279 // an FP extending load is the same cost as a normal load (such as on the x87
280 // fp stack or PPC FP unit).
281 EVT VT
= CFP
->getValueType(0);
282 ConstantFP
*LLVMC
= const_cast<ConstantFP
*>(CFP
->getConstantFPValue());
284 assert((VT
== MVT::f64
|| VT
== MVT::f32
) && "Invalid type expansion");
285 return DAG
.getConstant(LLVMC
->getValueAPF().bitcastToAPInt(), dl
,
286 (VT
== MVT::f64
) ? MVT::i64
: MVT::i32
);
289 APFloat APF
= CFP
->getValueAPF();
293 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
294 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
295 if (!APF
.isSignaling()) {
296 while (SVT
!= MVT::f32
&& SVT
!= MVT::f16
) {
297 SVT
= (MVT::SimpleValueType
)(SVT
.getSimpleVT().SimpleTy
- 1);
298 if (ConstantFPSDNode::isValueValidForType(SVT
, APF
) &&
299 // Only do this if the target has a native EXTLOAD instruction from
301 TLI
.isLoadExtLegal(ISD::EXTLOAD
, OrigVT
, SVT
) &&
302 TLI
.ShouldShrinkFPConstant(OrigVT
)) {
303 Type
*SType
= SVT
.getTypeForEVT(*DAG
.getContext());
304 LLVMC
= cast
<ConstantFP
>(ConstantExpr::getFPTrunc(LLVMC
, SType
));
312 DAG
.getConstantPool(LLVMC
, TLI
.getPointerTy(DAG
.getDataLayout()));
313 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
315 SDValue Result
= DAG
.getExtLoad(
316 ISD::EXTLOAD
, dl
, OrigVT
, DAG
.getEntryNode(), CPIdx
,
317 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), VT
,
321 SDValue Result
= DAG
.getLoad(
322 OrigVT
, dl
, DAG
.getEntryNode(), CPIdx
,
323 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), Alignment
);
327 /// Expands the Constant node to a load from the constant pool.
328 SDValue
SelectionDAGLegalize::ExpandConstant(ConstantSDNode
*CP
) {
330 EVT VT
= CP
->getValueType(0);
331 SDValue CPIdx
= DAG
.getConstantPool(CP
->getConstantIntValue(),
332 TLI
.getPointerTy(DAG
.getDataLayout()));
333 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
334 SDValue Result
= DAG
.getLoad(
335 VT
, dl
, DAG
.getEntryNode(), CPIdx
,
336 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), Alignment
);
340 /// Some target cannot handle a variable insertion index for the
341 /// INSERT_VECTOR_ELT instruction. In this case, it
342 /// is necessary to spill the vector being inserted into to memory, perform
343 /// the insert there, and then read the result back.
344 SDValue
SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec
,
352 // If the target doesn't support this, we have to spill the input vector
353 // to a temporary stack slot, update the element, then reload it. This is
354 // badness. We could also load the value into a vector register (either
355 // with a "move to register" or "extload into register" instruction, then
356 // permute it into place, if the idx is a constant and if the idx is
357 // supported by the target.
358 EVT VT
= Tmp1
.getValueType();
359 EVT EltVT
= VT
.getVectorElementType();
360 SDValue StackPtr
= DAG
.CreateStackTemporary(VT
);
362 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
365 SDValue Ch
= DAG
.getStore(
366 DAG
.getEntryNode(), dl
, Tmp1
, StackPtr
,
367 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
));
369 SDValue StackPtr2
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VT
, Tmp3
);
371 // Store the scalar value.
372 Ch
= DAG
.getTruncStore(Ch
, dl
, Tmp2
, StackPtr2
, MachinePointerInfo(), EltVT
);
373 // Load the updated vector.
374 return DAG
.getLoad(VT
, dl
, Ch
, StackPtr
, MachinePointerInfo::getFixedStack(
375 DAG
.getMachineFunction(), SPFI
));
378 SDValue
SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec
, SDValue Val
,
381 if (ConstantSDNode
*InsertPos
= dyn_cast
<ConstantSDNode
>(Idx
)) {
382 // SCALAR_TO_VECTOR requires that the type of the value being inserted
383 // match the element type of the vector being created, except for
384 // integers in which case the inserted value can be over width.
385 EVT EltVT
= Vec
.getValueType().getVectorElementType();
386 if (Val
.getValueType() == EltVT
||
387 (EltVT
.isInteger() && Val
.getValueType().bitsGE(EltVT
))) {
388 SDValue ScVec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
389 Vec
.getValueType(), Val
);
391 unsigned NumElts
= Vec
.getValueType().getVectorNumElements();
392 // We generate a shuffle of InVec and ScVec, so the shuffle mask
393 // should be 0,1,2,3,4,5... with the appropriate element replaced with
395 SmallVector
<int, 8> ShufOps
;
396 for (unsigned i
= 0; i
!= NumElts
; ++i
)
397 ShufOps
.push_back(i
!= InsertPos
->getZExtValue() ? i
: NumElts
);
399 return DAG
.getVectorShuffle(Vec
.getValueType(), dl
, Vec
, ScVec
, ShufOps
);
402 return PerformInsertVectorEltInMemory(Vec
, Val
, Idx
, dl
);
405 SDValue
SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode
* ST
) {
406 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
407 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
408 // FIXME: We shouldn't do this for TargetConstantFP's.
409 // FIXME: move this to the DAG Combiner! Note that we can't regress due
410 // to phase ordering between legalized code and the dag combiner. This
411 // probably means that we need to integrate dag combiner and legalizer
413 // We generally can't do this one for long doubles.
414 SDValue Chain
= ST
->getChain();
415 SDValue Ptr
= ST
->getBasePtr();
416 unsigned Alignment
= ST
->getAlignment();
417 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
418 AAMDNodes AAInfo
= ST
->getAAInfo();
420 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(ST
->getValue())) {
421 if (CFP
->getValueType(0) == MVT::f32
&&
422 TLI
.isTypeLegal(MVT::i32
)) {
423 SDValue Con
= DAG
.getConstant(CFP
->getValueAPF().
424 bitcastToAPInt().zextOrTrunc(32),
425 SDLoc(CFP
), MVT::i32
);
426 return DAG
.getStore(Chain
, dl
, Con
, Ptr
, ST
->getPointerInfo(), Alignment
,
430 if (CFP
->getValueType(0) == MVT::f64
) {
431 // If this target supports 64-bit registers, do a single 64-bit store.
432 if (TLI
.isTypeLegal(MVT::i64
)) {
433 SDValue Con
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
434 zextOrTrunc(64), SDLoc(CFP
), MVT::i64
);
435 return DAG
.getStore(Chain
, dl
, Con
, Ptr
, ST
->getPointerInfo(),
436 Alignment
, MMOFlags
, AAInfo
);
439 if (TLI
.isTypeLegal(MVT::i32
) && !ST
->isVolatile()) {
440 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
441 // stores. If the target supports neither 32- nor 64-bits, this
442 // xform is certainly not worth it.
443 const APInt
&IntVal
= CFP
->getValueAPF().bitcastToAPInt();
444 SDValue Lo
= DAG
.getConstant(IntVal
.trunc(32), dl
, MVT::i32
);
445 SDValue Hi
= DAG
.getConstant(IntVal
.lshr(32).trunc(32), dl
, MVT::i32
);
446 if (DAG
.getDataLayout().isBigEndian())
449 Lo
= DAG
.getStore(Chain
, dl
, Lo
, Ptr
, ST
->getPointerInfo(), Alignment
,
451 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
452 DAG
.getConstant(4, dl
, Ptr
.getValueType()));
453 Hi
= DAG
.getStore(Chain
, dl
, Hi
, Ptr
,
454 ST
->getPointerInfo().getWithOffset(4),
455 MinAlign(Alignment
, 4U), MMOFlags
, AAInfo
);
457 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
461 return SDValue(nullptr, 0);
464 void SelectionDAGLegalize::LegalizeStoreOps(SDNode
*Node
) {
465 StoreSDNode
*ST
= cast
<StoreSDNode
>(Node
);
466 SDValue Chain
= ST
->getChain();
467 SDValue Ptr
= ST
->getBasePtr();
470 unsigned Alignment
= ST
->getAlignment();
471 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
472 AAMDNodes AAInfo
= ST
->getAAInfo();
474 if (!ST
->isTruncatingStore()) {
475 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
476 if (SDNode
*OptStore
= OptimizeFloatStore(ST
).getNode()) {
477 ReplaceNode(ST
, OptStore
);
481 SDValue Value
= ST
->getValue();
482 MVT VT
= Value
.getSimpleValueType();
483 switch (TLI
.getOperationAction(ISD::STORE
, VT
)) {
484 default: llvm_unreachable("This action is not supported yet!");
485 case TargetLowering::Legal
: {
486 // If this is an unaligned store and the target doesn't support it,
488 EVT MemVT
= ST
->getMemoryVT();
489 unsigned AS
= ST
->getAddressSpace();
490 unsigned Align
= ST
->getAlignment();
491 const DataLayout
&DL
= DAG
.getDataLayout();
492 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
, AS
, Align
)) {
493 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
494 SDValue Result
= TLI
.expandUnalignedStore(ST
, DAG
);
495 ReplaceNode(SDValue(ST
, 0), Result
);
497 LLVM_DEBUG(dbgs() << "Legal store\n");
500 case TargetLowering::Custom
: {
501 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
502 SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
);
503 if (Res
&& Res
!= SDValue(Node
, 0))
504 ReplaceNode(SDValue(Node
, 0), Res
);
507 case TargetLowering::Promote
: {
508 MVT NVT
= TLI
.getTypeToPromoteTo(ISD::STORE
, VT
);
509 assert(NVT
.getSizeInBits() == VT
.getSizeInBits() &&
510 "Can only promote stores to same size type");
511 Value
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Value
);
513 DAG
.getStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
514 Alignment
, MMOFlags
, AAInfo
);
515 ReplaceNode(SDValue(Node
, 0), Result
);
522 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
523 SDValue Value
= ST
->getValue();
524 EVT StVT
= ST
->getMemoryVT();
525 unsigned StWidth
= StVT
.getSizeInBits();
526 auto &DL
= DAG
.getDataLayout();
528 if (StWidth
!= StVT
.getStoreSizeInBits()) {
529 // Promote to a byte-sized store with upper bits zero if not
530 // storing an integral number of bytes. For example, promote
531 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
532 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(),
533 StVT
.getStoreSizeInBits());
534 Value
= DAG
.getZeroExtendInReg(Value
, dl
, StVT
);
536 DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(), NVT
,
537 Alignment
, MMOFlags
, AAInfo
);
538 ReplaceNode(SDValue(Node
, 0), Result
);
539 } else if (StWidth
& (StWidth
- 1)) {
540 // If not storing a power-of-2 number of bits, expand as two stores.
541 assert(!StVT
.isVector() && "Unsupported truncstore!");
542 unsigned RoundWidth
= 1 << Log2_32(StWidth
);
543 assert(RoundWidth
< StWidth
);
544 unsigned ExtraWidth
= StWidth
- RoundWidth
;
545 assert(ExtraWidth
< RoundWidth
);
546 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
547 "Store size not an integral number of bytes!");
548 EVT RoundVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundWidth
);
549 EVT ExtraVT
= EVT::getIntegerVT(*DAG
.getContext(), ExtraWidth
);
551 unsigned IncrementSize
;
553 if (DL
.isLittleEndian()) {
554 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
555 // Store the bottom RoundWidth bits.
556 Lo
= DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
557 RoundVT
, Alignment
, MMOFlags
, AAInfo
);
559 // Store the remaining ExtraWidth bits.
560 IncrementSize
= RoundWidth
/ 8;
561 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
562 DAG
.getConstant(IncrementSize
, dl
,
563 Ptr
.getValueType()));
565 ISD::SRL
, dl
, Value
.getValueType(), Value
,
566 DAG
.getConstant(RoundWidth
, dl
,
567 TLI
.getShiftAmountTy(Value
.getValueType(), DL
)));
568 Hi
= DAG
.getTruncStore(
570 ST
->getPointerInfo().getWithOffset(IncrementSize
), ExtraVT
,
571 MinAlign(Alignment
, IncrementSize
), MMOFlags
, AAInfo
);
573 // Big endian - avoid unaligned stores.
574 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
575 // Store the top RoundWidth bits.
577 ISD::SRL
, dl
, Value
.getValueType(), Value
,
578 DAG
.getConstant(ExtraWidth
, dl
,
579 TLI
.getShiftAmountTy(Value
.getValueType(), DL
)));
580 Hi
= DAG
.getTruncStore(Chain
, dl
, Hi
, Ptr
, ST
->getPointerInfo(),
581 RoundVT
, Alignment
, MMOFlags
, AAInfo
);
583 // Store the remaining ExtraWidth bits.
584 IncrementSize
= RoundWidth
/ 8;
585 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
586 DAG
.getConstant(IncrementSize
, dl
,
587 Ptr
.getValueType()));
588 Lo
= DAG
.getTruncStore(
589 Chain
, dl
, Value
, Ptr
,
590 ST
->getPointerInfo().getWithOffset(IncrementSize
), ExtraVT
,
591 MinAlign(Alignment
, IncrementSize
), MMOFlags
, AAInfo
);
594 // The order of the stores doesn't matter.
595 SDValue Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
596 ReplaceNode(SDValue(Node
, 0), Result
);
598 switch (TLI
.getTruncStoreAction(ST
->getValue().getValueType(), StVT
)) {
599 default: llvm_unreachable("This action is not supported yet!");
600 case TargetLowering::Legal
: {
601 EVT MemVT
= ST
->getMemoryVT();
602 unsigned AS
= ST
->getAddressSpace();
603 unsigned Align
= ST
->getAlignment();
604 // If this is an unaligned store and the target doesn't support it,
606 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
, AS
, Align
)) {
607 SDValue Result
= TLI
.expandUnalignedStore(ST
, DAG
);
608 ReplaceNode(SDValue(ST
, 0), Result
);
612 case TargetLowering::Custom
: {
613 SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
);
614 if (Res
&& Res
!= SDValue(Node
, 0))
615 ReplaceNode(SDValue(Node
, 0), Res
);
618 case TargetLowering::Expand
:
619 assert(!StVT
.isVector() &&
620 "Vector Stores are handled in LegalizeVectorOps");
624 // TRUNCSTORE:i16 i32 -> STORE i16
625 if (TLI
.isTypeLegal(StVT
)) {
626 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
, StVT
, Value
);
627 Result
= DAG
.getStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
628 Alignment
, MMOFlags
, AAInfo
);
630 // The in-memory type isn't legal. Truncate to the type it would promote
631 // to, and then do a truncstore.
632 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
,
633 TLI
.getTypeToTransformTo(*DAG
.getContext(), StVT
),
635 Result
= DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
636 StVT
, Alignment
, MMOFlags
, AAInfo
);
639 ReplaceNode(SDValue(Node
, 0), Result
);
645 void SelectionDAGLegalize::LegalizeLoadOps(SDNode
*Node
) {
646 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
647 SDValue Chain
= LD
->getChain(); // The chain.
648 SDValue Ptr
= LD
->getBasePtr(); // The base pointer.
649 SDValue Value
; // The value returned by the load op.
652 ISD::LoadExtType ExtType
= LD
->getExtensionType();
653 if (ExtType
== ISD::NON_EXTLOAD
) {
654 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
655 MVT VT
= Node
->getSimpleValueType(0);
656 SDValue RVal
= SDValue(Node
, 0);
657 SDValue RChain
= SDValue(Node
, 1);
659 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
660 default: llvm_unreachable("This action is not supported yet!");
661 case TargetLowering::Legal
: {
662 EVT MemVT
= LD
->getMemoryVT();
663 unsigned AS
= LD
->getAddressSpace();
664 unsigned Align
= LD
->getAlignment();
665 const DataLayout
&DL
= DAG
.getDataLayout();
666 // If this is an unaligned load and the target doesn't support it,
668 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
, AS
, Align
)) {
669 std::tie(RVal
, RChain
) = TLI
.expandUnalignedLoad(LD
, DAG
);
673 case TargetLowering::Custom
:
674 if (SDValue Res
= TLI
.LowerOperation(RVal
, DAG
)) {
676 RChain
= Res
.getValue(1);
680 case TargetLowering::Promote
: {
681 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
682 assert(NVT
.getSizeInBits() == VT
.getSizeInBits() &&
683 "Can only promote loads to same size type");
685 SDValue Res
= DAG
.getLoad(NVT
, dl
, Chain
, Ptr
, LD
->getMemOperand());
686 RVal
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Res
);
687 RChain
= Res
.getValue(1);
691 if (RChain
.getNode() != Node
) {
692 assert(RVal
.getNode() != Node
&& "Load must be completely replaced");
693 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), RVal
);
694 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), RChain
);
696 UpdatedNodes
->insert(RVal
.getNode());
697 UpdatedNodes
->insert(RChain
.getNode());
704 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
705 EVT SrcVT
= LD
->getMemoryVT();
706 unsigned SrcWidth
= SrcVT
.getSizeInBits();
707 unsigned Alignment
= LD
->getAlignment();
708 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
709 AAMDNodes AAInfo
= LD
->getAAInfo();
711 if (SrcWidth
!= SrcVT
.getStoreSizeInBits() &&
712 // Some targets pretend to have an i1 loading operation, and actually
713 // load an i8. This trick is correct for ZEXTLOAD because the top 7
714 // bits are guaranteed to be zero; it helps the optimizers understand
715 // that these bits are zero. It is also useful for EXTLOAD, since it
716 // tells the optimizers that those bits are undefined. It would be
717 // nice to have an effective generic way of getting these benefits...
718 // Until such a way is found, don't insist on promoting i1 here.
720 TLI
.getLoadExtAction(ExtType
, Node
->getValueType(0), MVT::i1
) ==
721 TargetLowering::Promote
)) {
722 // Promote to a byte-sized load if not loading an integral number of
723 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
724 unsigned NewWidth
= SrcVT
.getStoreSizeInBits();
725 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(), NewWidth
);
728 // The extra bits are guaranteed to be zero, since we stored them that
729 // way. A zext load from NVT thus automatically gives zext from SrcVT.
731 ISD::LoadExtType NewExtType
=
732 ExtType
== ISD::ZEXTLOAD
? ISD::ZEXTLOAD
: ISD::EXTLOAD
;
735 DAG
.getExtLoad(NewExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
736 LD
->getPointerInfo(), NVT
, Alignment
, MMOFlags
, AAInfo
);
738 Ch
= Result
.getValue(1); // The chain.
740 if (ExtType
== ISD::SEXTLOAD
)
741 // Having the top bits zero doesn't help when sign extending.
742 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
743 Result
.getValueType(),
744 Result
, DAG
.getValueType(SrcVT
));
745 else if (ExtType
== ISD::ZEXTLOAD
|| NVT
== Result
.getValueType())
746 // All the top bits are guaranteed to be zero - inform the optimizers.
747 Result
= DAG
.getNode(ISD::AssertZext
, dl
,
748 Result
.getValueType(), Result
,
749 DAG
.getValueType(SrcVT
));
753 } else if (SrcWidth
& (SrcWidth
- 1)) {
754 // If not loading a power-of-2 number of bits, expand as two loads.
755 assert(!SrcVT
.isVector() && "Unsupported extload!");
756 unsigned RoundWidth
= 1 << Log2_32(SrcWidth
);
757 assert(RoundWidth
< SrcWidth
);
758 unsigned ExtraWidth
= SrcWidth
- RoundWidth
;
759 assert(ExtraWidth
< RoundWidth
);
760 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
761 "Load size not an integral number of bytes!");
762 EVT RoundVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundWidth
);
763 EVT ExtraVT
= EVT::getIntegerVT(*DAG
.getContext(), ExtraWidth
);
765 unsigned IncrementSize
;
766 auto &DL
= DAG
.getDataLayout();
768 if (DL
.isLittleEndian()) {
769 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
770 // Load the bottom RoundWidth bits.
771 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, Node
->getValueType(0), Chain
, Ptr
,
772 LD
->getPointerInfo(), RoundVT
, Alignment
, MMOFlags
,
775 // Load the remaining ExtraWidth bits.
776 IncrementSize
= RoundWidth
/ 8;
777 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
778 DAG
.getConstant(IncrementSize
, dl
,
779 Ptr
.getValueType()));
780 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
781 LD
->getPointerInfo().getWithOffset(IncrementSize
),
782 ExtraVT
, MinAlign(Alignment
, IncrementSize
), MMOFlags
,
785 // Build a factor node to remember that this load is independent of
787 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
790 // Move the top bits to the right place.
792 ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
793 DAG
.getConstant(RoundWidth
, dl
,
794 TLI
.getShiftAmountTy(Hi
.getValueType(), DL
)));
796 // Join the hi and lo parts.
797 Value
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
799 // Big endian - avoid unaligned loads.
800 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
801 // Load the top RoundWidth bits.
802 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
803 LD
->getPointerInfo(), RoundVT
, Alignment
, MMOFlags
,
806 // Load the remaining ExtraWidth bits.
807 IncrementSize
= RoundWidth
/ 8;
808 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
809 DAG
.getConstant(IncrementSize
, dl
,
810 Ptr
.getValueType()));
811 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, Node
->getValueType(0), Chain
, Ptr
,
812 LD
->getPointerInfo().getWithOffset(IncrementSize
),
813 ExtraVT
, MinAlign(Alignment
, IncrementSize
), MMOFlags
,
816 // Build a factor node to remember that this load is independent of
818 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
821 // Move the top bits to the right place.
823 ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
824 DAG
.getConstant(ExtraWidth
, dl
,
825 TLI
.getShiftAmountTy(Hi
.getValueType(), DL
)));
827 // Join the hi and lo parts.
828 Value
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
833 bool isCustom
= false;
834 switch (TLI
.getLoadExtAction(ExtType
, Node
->getValueType(0),
835 SrcVT
.getSimpleVT())) {
836 default: llvm_unreachable("This action is not supported yet!");
837 case TargetLowering::Custom
:
840 case TargetLowering::Legal
:
841 Value
= SDValue(Node
, 0);
842 Chain
= SDValue(Node
, 1);
845 if (SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
)) {
847 Chain
= Res
.getValue(1);
850 // If this is an unaligned load and the target doesn't support it,
852 EVT MemVT
= LD
->getMemoryVT();
853 unsigned AS
= LD
->getAddressSpace();
854 unsigned Align
= LD
->getAlignment();
855 const DataLayout
&DL
= DAG
.getDataLayout();
856 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
, AS
, Align
)) {
857 std::tie(Value
, Chain
) = TLI
.expandUnalignedLoad(LD
, DAG
);
862 case TargetLowering::Expand
: {
863 EVT DestVT
= Node
->getValueType(0);
864 if (!TLI
.isLoadExtLegal(ISD::EXTLOAD
, DestVT
, SrcVT
)) {
865 // If the source type is not legal, see if there is a legal extload to
866 // an intermediate type that we can then extend further.
867 EVT LoadVT
= TLI
.getRegisterType(SrcVT
.getSimpleVT());
868 if (TLI
.isTypeLegal(SrcVT
) || // Same as SrcVT == LoadVT?
869 TLI
.isLoadExtLegal(ExtType
, LoadVT
, SrcVT
)) {
870 // If we are loading a legal type, this is a non-extload followed by a
872 ISD::LoadExtType MidExtType
=
873 (LoadVT
== SrcVT
) ? ISD::NON_EXTLOAD
: ExtType
;
875 SDValue Load
= DAG
.getExtLoad(MidExtType
, dl
, LoadVT
, Chain
, Ptr
,
876 SrcVT
, LD
->getMemOperand());
878 ISD::getExtForLoadExtType(SrcVT
.isFloatingPoint(), ExtType
);
879 Value
= DAG
.getNode(ExtendOp
, dl
, Node
->getValueType(0), Load
);
880 Chain
= Load
.getValue(1);
884 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
885 // normal undefined upper bits behavior to allow using an in-reg extend
886 // with the illegal FP type, so load as an integer and do the
887 // from-integer conversion.
888 if (SrcVT
.getScalarType() == MVT::f16
) {
889 EVT ISrcVT
= SrcVT
.changeTypeToInteger();
890 EVT IDestVT
= DestVT
.changeTypeToInteger();
891 EVT LoadVT
= TLI
.getRegisterType(IDestVT
.getSimpleVT());
893 SDValue Result
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, LoadVT
,
895 LD
->getMemOperand());
896 Value
= DAG
.getNode(ISD::FP16_TO_FP
, dl
, DestVT
, Result
);
897 Chain
= Result
.getValue(1);
902 assert(!SrcVT
.isVector() &&
903 "Vector Loads are handled in LegalizeVectorOps");
905 // FIXME: This does not work for vectors on most targets. Sign-
906 // and zero-extend operations are currently folded into extending
907 // loads, whether they are legal or not, and then we end up here
908 // without any support for legalizing them.
909 assert(ExtType
!= ISD::EXTLOAD
&&
910 "EXTLOAD should always be supported!");
911 // Turn the unsupported load into an EXTLOAD followed by an
912 // explicit zero/sign extend inreg.
913 SDValue Result
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
,
914 Node
->getValueType(0),
916 LD
->getMemOperand());
918 if (ExtType
== ISD::SEXTLOAD
)
919 ValRes
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
920 Result
.getValueType(),
921 Result
, DAG
.getValueType(SrcVT
));
923 ValRes
= DAG
.getZeroExtendInReg(Result
, dl
, SrcVT
.getScalarType());
925 Chain
= Result
.getValue(1);
931 // Since loads produce two values, make sure to remember that we legalized
933 if (Chain
.getNode() != Node
) {
934 assert(Value
.getNode() != Node
&& "Load must be completely replaced");
935 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), Value
);
936 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), Chain
);
938 UpdatedNodes
->insert(Value
.getNode());
939 UpdatedNodes
->insert(Chain
.getNode());
945 /// Return a legal replacement for the given operation, with all legal operands.
946 void SelectionDAGLegalize::LegalizeOp(SDNode
*Node
) {
947 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node
->dump(&DAG
));
949 // Allow illegal target nodes and illegal registers.
950 if (Node
->getOpcode() == ISD::TargetConstant
||
951 Node
->getOpcode() == ISD::Register
)
955 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
956 assert((TLI
.getTypeAction(*DAG
.getContext(), Node
->getValueType(i
)) ==
957 TargetLowering::TypeLegal
||
958 TLI
.isTypeLegal(Node
->getValueType(i
))) &&
959 "Unexpected illegal type!");
961 for (const SDValue
&Op
: Node
->op_values())
962 assert((TLI
.getTypeAction(*DAG
.getContext(), Op
.getValueType()) ==
963 TargetLowering::TypeLegal
||
964 TLI
.isTypeLegal(Op
.getValueType()) ||
965 Op
.getOpcode() == ISD::TargetConstant
||
966 Op
.getOpcode() == ISD::Register
) &&
967 "Unexpected illegal type!");
970 // Figure out the correct action; the way to query this varies by opcode
971 TargetLowering::LegalizeAction Action
= TargetLowering::Legal
;
972 bool SimpleFinishLegalizing
= true;
973 switch (Node
->getOpcode()) {
974 case ISD::INTRINSIC_W_CHAIN
:
975 case ISD::INTRINSIC_WO_CHAIN
:
976 case ISD::INTRINSIC_VOID
:
978 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
);
980 case ISD::GET_DYNAMIC_AREA_OFFSET
:
981 Action
= TLI
.getOperationAction(Node
->getOpcode(),
982 Node
->getValueType(0));
985 Action
= TLI
.getOperationAction(Node
->getOpcode(),
986 Node
->getValueType(0));
987 if (Action
!= TargetLowering::Promote
)
988 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
);
990 case ISD::FP_TO_FP16
:
991 case ISD::SINT_TO_FP
:
992 case ISD::UINT_TO_FP
:
993 case ISD::EXTRACT_VECTOR_ELT
:
994 Action
= TLI
.getOperationAction(Node
->getOpcode(),
995 Node
->getOperand(0).getValueType());
997 case ISD::FP_ROUND_INREG
:
998 case ISD::SIGN_EXTEND_INREG
: {
999 EVT InnerType
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
1000 Action
= TLI
.getOperationAction(Node
->getOpcode(), InnerType
);
1003 case ISD::ATOMIC_STORE
:
1004 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1005 Node
->getOperand(2).getValueType());
1007 case ISD::SELECT_CC
:
1010 unsigned CCOperand
= Node
->getOpcode() == ISD::SELECT_CC
? 4 :
1011 Node
->getOpcode() == ISD::SETCC
? 2 : 1;
1012 unsigned CompareOperand
= Node
->getOpcode() == ISD::BR_CC
? 2 : 0;
1013 MVT OpVT
= Node
->getOperand(CompareOperand
).getSimpleValueType();
1014 ISD::CondCode CCCode
=
1015 cast
<CondCodeSDNode
>(Node
->getOperand(CCOperand
))->get();
1016 Action
= TLI
.getCondCodeAction(CCCode
, OpVT
);
1017 if (Action
== TargetLowering::Legal
) {
1018 if (Node
->getOpcode() == ISD::SELECT_CC
)
1019 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1020 Node
->getValueType(0));
1022 Action
= TLI
.getOperationAction(Node
->getOpcode(), OpVT
);
1028 // FIXME: Model these properly. LOAD and STORE are complicated, and
1029 // STORE expects the unlegalized operand in some cases.
1030 SimpleFinishLegalizing
= false;
1032 case ISD::CALLSEQ_START
:
1033 case ISD::CALLSEQ_END
:
1034 // FIXME: This shouldn't be necessary. These nodes have special properties
1035 // dealing with the recursive nature of legalization. Removing this
1036 // special case should be done as part of making LegalizeDAG non-recursive.
1037 SimpleFinishLegalizing
= false;
1039 case ISD::EXTRACT_ELEMENT
:
1040 case ISD::FLT_ROUNDS_
:
1041 case ISD::MERGE_VALUES
:
1042 case ISD::EH_RETURN
:
1043 case ISD::FRAME_TO_ARGS_OFFSET
:
1044 case ISD::EH_DWARF_CFA
:
1045 case ISD::EH_SJLJ_SETJMP
:
1046 case ISD::EH_SJLJ_LONGJMP
:
1047 case ISD::EH_SJLJ_SETUP_DISPATCH
:
1048 // These operations lie about being legal: when they claim to be legal,
1049 // they should actually be expanded.
1050 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1051 if (Action
== TargetLowering::Legal
)
1052 Action
= TargetLowering::Expand
;
1054 case ISD::INIT_TRAMPOLINE
:
1055 case ISD::ADJUST_TRAMPOLINE
:
1056 case ISD::FRAMEADDR
:
1057 case ISD::RETURNADDR
:
1058 case ISD::ADDROFRETURNADDR
:
1059 case ISD::SPONENTRY
:
1060 // These operations lie about being legal: when they claim to be legal,
1061 // they should actually be custom-lowered.
1062 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1063 if (Action
== TargetLowering::Legal
)
1064 Action
= TargetLowering::Custom
;
1066 case ISD::READCYCLECOUNTER
:
1067 // READCYCLECOUNTER returns an i64, even if type legalization might have
1068 // expanded that to several smaller types.
1069 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::i64
);
1071 case ISD::READ_REGISTER
:
1072 case ISD::WRITE_REGISTER
:
1073 // Named register is legal in the DAG, but blocked by register name
1074 // selection if not implemented by target (to chose the correct register)
1075 // They'll be converted to Copy(To/From)Reg.
1076 Action
= TargetLowering::Legal
;
1078 case ISD::DEBUGTRAP
:
1079 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1080 if (Action
== TargetLowering::Expand
) {
1081 // replace ISD::DEBUGTRAP with ISD::TRAP
1083 NewVal
= DAG
.getNode(ISD::TRAP
, SDLoc(Node
), Node
->getVTList(),
1084 Node
->getOperand(0));
1085 ReplaceNode(Node
, NewVal
.getNode());
1086 LegalizeOp(NewVal
.getNode());
1090 case ISD::STRICT_FADD
:
1091 case ISD::STRICT_FSUB
:
1092 case ISD::STRICT_FMUL
:
1093 case ISD::STRICT_FDIV
:
1094 case ISD::STRICT_FREM
:
1095 case ISD::STRICT_FSQRT
:
1096 case ISD::STRICT_FMA
:
1097 case ISD::STRICT_FPOW
:
1098 case ISD::STRICT_FPOWI
:
1099 case ISD::STRICT_FSIN
:
1100 case ISD::STRICT_FCOS
:
1101 case ISD::STRICT_FEXP
:
1102 case ISD::STRICT_FEXP2
:
1103 case ISD::STRICT_FLOG
:
1104 case ISD::STRICT_FLOG10
:
1105 case ISD::STRICT_FLOG2
:
1106 case ISD::STRICT_FRINT
:
1107 case ISD::STRICT_FNEARBYINT
:
1108 case ISD::STRICT_FMAXNUM
:
1109 case ISD::STRICT_FMINNUM
:
1110 case ISD::STRICT_FCEIL
:
1111 case ISD::STRICT_FFLOOR
:
1112 case ISD::STRICT_FROUND
:
1113 case ISD::STRICT_FTRUNC
:
1114 // These pseudo-ops get legalized as if they were their non-strict
1115 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
1116 // is also legal, but if ISD::FSQRT requires expansion then so does
1117 // ISD::STRICT_FSQRT.
1118 Action
= TLI
.getStrictFPOperationAction(Node
->getOpcode(),
1119 Node
->getValueType(0));
1124 case ISD::USUBSAT
: {
1125 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1129 case ISD::UMULFIX
: {
1130 unsigned Scale
= Node
->getConstantOperandVal(2);
1131 Action
= TLI
.getFixedPointOperationAction(Node
->getOpcode(),
1132 Node
->getValueType(0), Scale
);
1136 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1137 cast
<MaskedScatterSDNode
>(Node
)->getValue().getValueType());
1140 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1141 cast
<MaskedStoreSDNode
>(Node
)->getValue().getValueType());
1144 if (Node
->getOpcode() >= ISD::BUILTIN_OP_END
) {
1145 Action
= TargetLowering::Legal
;
1147 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1152 if (SimpleFinishLegalizing
) {
1153 SDNode
*NewNode
= Node
;
1154 switch (Node
->getOpcode()) {
1161 // Legalizing shifts/rotates requires adjusting the shift amount
1162 // to the appropriate width.
1163 SDValue Op0
= Node
->getOperand(0);
1164 SDValue Op1
= Node
->getOperand(1);
1165 if (!Op1
.getValueType().isVector()) {
1166 SDValue SAO
= DAG
.getShiftAmountOperand(Op0
.getValueType(), Op1
);
1167 // The getShiftAmountOperand() may create a new operand node or
1168 // return the existing one. If new operand is created we need
1169 // to update the parent node.
1170 // Do not try to legalize SAO here! It will be automatically legalized
1171 // in the next round.
1173 NewNode
= DAG
.UpdateNodeOperands(Node
, Op0
, SAO
);
1179 case ISD::SRL_PARTS
:
1180 case ISD::SRA_PARTS
:
1181 case ISD::SHL_PARTS
: {
1182 // Legalizing shifts/rotates requires adjusting the shift amount
1183 // to the appropriate width.
1184 SDValue Op0
= Node
->getOperand(0);
1185 SDValue Op1
= Node
->getOperand(1);
1186 SDValue Op2
= Node
->getOperand(2);
1187 if (!Op2
.getValueType().isVector()) {
1188 SDValue SAO
= DAG
.getShiftAmountOperand(Op0
.getValueType(), Op2
);
1189 // The getShiftAmountOperand() may create a new operand node or
1190 // return the existing one. If new operand is created we need
1191 // to update the parent node.
1193 NewNode
= DAG
.UpdateNodeOperands(Node
, Op0
, Op1
, SAO
);
1199 if (NewNode
!= Node
) {
1200 ReplaceNode(Node
, NewNode
);
1204 case TargetLowering::Legal
:
1205 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1207 case TargetLowering::Custom
:
1208 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1209 // FIXME: The handling for custom lowering with multiple results is
1211 if (SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
)) {
1212 if (!(Res
.getNode() != Node
|| Res
.getResNo() != 0))
1215 if (Node
->getNumValues() == 1) {
1216 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1217 // We can just directly replace this node with the lowered value.
1218 ReplaceNode(SDValue(Node
, 0), Res
);
1222 SmallVector
<SDValue
, 8> ResultVals
;
1223 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
1224 ResultVals
.push_back(Res
.getValue(i
));
1225 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1226 ReplaceNode(Node
, ResultVals
.data());
1229 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1231 case TargetLowering::Expand
:
1232 if (ExpandNode(Node
))
1235 case TargetLowering::LibCall
:
1236 ConvertNodeToLibcall(Node
);
1238 case TargetLowering::Promote
:
1244 switch (Node
->getOpcode()) {
1251 llvm_unreachable("Do not know how to legalize this operator!");
1253 case ISD::CALLSEQ_START
:
1254 case ISD::CALLSEQ_END
:
1257 return LegalizeLoadOps(Node
);
1259 return LegalizeStoreOps(Node
);
1263 SDValue
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op
) {
1264 SDValue Vec
= Op
.getOperand(0);
1265 SDValue Idx
= Op
.getOperand(1);
1268 // Before we generate a new store to a temporary stack slot, see if there is
1269 // already one that we can use. There often is because when we scalarize
1270 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1271 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1272 // the vector. If all are expanded here, we don't want one store per vector
1275 // Caches for hasPredecessorHelper
1276 SmallPtrSet
<const SDNode
*, 32> Visited
;
1277 SmallVector
<const SDNode
*, 16> Worklist
;
1278 Visited
.insert(Op
.getNode());
1279 Worklist
.push_back(Idx
.getNode());
1280 SDValue StackPtr
, Ch
;
1281 for (SDNode::use_iterator UI
= Vec
.getNode()->use_begin(),
1282 UE
= Vec
.getNode()->use_end(); UI
!= UE
; ++UI
) {
1284 if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(User
)) {
1285 if (ST
->isIndexed() || ST
->isTruncatingStore() ||
1286 ST
->getValue() != Vec
)
1289 // Make sure that nothing else could have stored into the destination of
1291 if (!ST
->getChain().reachesChainWithoutSideEffects(DAG
.getEntryNode()))
1294 // If the index is dependent on the store we will introduce a cycle when
1295 // creating the load (the load uses the index, and by replacing the chain
1296 // we will make the index dependent on the load). Also, the store might be
1297 // dependent on the extractelement and introduce a cycle when creating
1299 if (SDNode::hasPredecessorHelper(ST
, Visited
, Worklist
) ||
1300 ST
->hasPredecessor(Op
.getNode()))
1303 StackPtr
= ST
->getBasePtr();
1304 Ch
= SDValue(ST
, 0);
1309 EVT VecVT
= Vec
.getValueType();
1311 if (!Ch
.getNode()) {
1312 // Store the value to a temporary stack slot, then LOAD the returned part.
1313 StackPtr
= DAG
.CreateStackTemporary(VecVT
);
1314 Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
,
1315 MachinePointerInfo());
1318 StackPtr
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VecVT
, Idx
);
1322 if (Op
.getValueType().isVector())
1324 DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, MachinePointerInfo());
1326 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, Op
.getValueType(), Ch
, StackPtr
,
1327 MachinePointerInfo(),
1328 VecVT
.getVectorElementType());
1330 // Replace the chain going out of the store, by the one out of the load.
1331 DAG
.ReplaceAllUsesOfValueWith(Ch
, SDValue(NewLoad
.getNode(), 1));
1333 // We introduced a cycle though, so update the loads operands, making sure
1334 // to use the original store's chain as an incoming chain.
1335 SmallVector
<SDValue
, 6> NewLoadOperands(NewLoad
->op_begin(),
1337 NewLoadOperands
[0] = Ch
;
1339 SDValue(DAG
.UpdateNodeOperands(NewLoad
.getNode(), NewLoadOperands
), 0);
1343 SDValue
SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op
) {
1344 assert(Op
.getValueType().isVector() && "Non-vector insert subvector!");
1346 SDValue Vec
= Op
.getOperand(0);
1347 SDValue Part
= Op
.getOperand(1);
1348 SDValue Idx
= Op
.getOperand(2);
1351 // Store the value to a temporary stack slot, then LOAD the returned part.
1352 EVT VecVT
= Vec
.getValueType();
1353 SDValue StackPtr
= DAG
.CreateStackTemporary(VecVT
);
1354 int FI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
1355 MachinePointerInfo PtrInfo
=
1356 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
1358 // First store the whole vector.
1359 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
, PtrInfo
);
1361 // Then store the inserted part.
1362 SDValue SubStackPtr
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VecVT
, Idx
);
1364 // Store the subvector.
1365 Ch
= DAG
.getStore(Ch
, dl
, Part
, SubStackPtr
, MachinePointerInfo());
1367 // Finally, load the updated vector.
1368 return DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, PtrInfo
);
1371 SDValue
SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode
* Node
) {
1372 // We can't handle this case efficiently. Allocate a sufficiently
1373 // aligned object on the stack, store each element into it, then load
1374 // the result as a vector.
1375 // Create the stack frame object.
1376 EVT VT
= Node
->getValueType(0);
1377 EVT EltVT
= VT
.getVectorElementType();
1379 SDValue FIPtr
= DAG
.CreateStackTemporary(VT
);
1380 int FI
= cast
<FrameIndexSDNode
>(FIPtr
.getNode())->getIndex();
1381 MachinePointerInfo PtrInfo
=
1382 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
1384 // Emit a store of each element to the stack slot.
1385 SmallVector
<SDValue
, 8> Stores
;
1386 unsigned TypeByteSize
= EltVT
.getSizeInBits() / 8;
1387 // Store (in the right endianness) the elements to memory.
1388 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
1389 // Ignore undef elements.
1390 if (Node
->getOperand(i
).isUndef()) continue;
1392 unsigned Offset
= TypeByteSize
*i
;
1394 SDValue Idx
= DAG
.getConstant(Offset
, dl
, FIPtr
.getValueType());
1395 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
, Idx
);
1397 // If the destination vector element type is narrower than the source
1398 // element type, only store the bits necessary.
1399 if (EltVT
.bitsLT(Node
->getOperand(i
).getValueType().getScalarType())) {
1400 Stores
.push_back(DAG
.getTruncStore(DAG
.getEntryNode(), dl
,
1401 Node
->getOperand(i
), Idx
,
1402 PtrInfo
.getWithOffset(Offset
), EltVT
));
1404 Stores
.push_back(DAG
.getStore(DAG
.getEntryNode(), dl
, Node
->getOperand(i
),
1405 Idx
, PtrInfo
.getWithOffset(Offset
)));
1409 if (!Stores
.empty()) // Not all undef elements?
1410 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
1412 StoreChain
= DAG
.getEntryNode();
1414 // Result is a load from the stack slot.
1415 return DAG
.getLoad(VT
, dl
, StoreChain
, FIPtr
, PtrInfo
);
1418 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1419 /// containing the sign bit if the target has no integer value capable of
1420 /// holding all bits of the floating-point value.
1421 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt
&State
,
1423 SDValue Value
) const {
1424 EVT FloatVT
= Value
.getValueType();
1425 unsigned NumBits
= FloatVT
.getSizeInBits();
1426 State
.FloatVT
= FloatVT
;
1427 EVT IVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
);
1428 // Convert to an integer of the same size.
1429 if (TLI
.isTypeLegal(IVT
)) {
1430 State
.IntValue
= DAG
.getNode(ISD::BITCAST
, DL
, IVT
, Value
);
1431 State
.SignMask
= APInt::getSignMask(NumBits
);
1432 State
.SignBit
= NumBits
- 1;
1436 auto &DataLayout
= DAG
.getDataLayout();
1437 // Store the float to memory, then load the sign part out as an integer.
1438 MVT LoadTy
= TLI
.getRegisterType(*DAG
.getContext(), MVT::i8
);
1439 // First create a temporary that is aligned for both the load and store.
1440 SDValue StackPtr
= DAG
.CreateStackTemporary(FloatVT
, LoadTy
);
1441 int FI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
1442 // Then store the float to it.
1443 State
.FloatPtr
= StackPtr
;
1444 MachineFunction
&MF
= DAG
.getMachineFunction();
1445 State
.FloatPointerInfo
= MachinePointerInfo::getFixedStack(MF
, FI
);
1446 State
.Chain
= DAG
.getStore(DAG
.getEntryNode(), DL
, Value
, State
.FloatPtr
,
1447 State
.FloatPointerInfo
);
1450 if (DataLayout
.isBigEndian()) {
1451 assert(FloatVT
.isByteSized() && "Unsupported floating point type!");
1452 // Load out a legal integer with the same sign bit as the float.
1454 State
.IntPointerInfo
= State
.FloatPointerInfo
;
1456 // Advance the pointer so that the loaded byte will contain the sign bit.
1457 unsigned ByteOffset
= (FloatVT
.getSizeInBits() / 8) - 1;
1458 IntPtr
= DAG
.getNode(ISD::ADD
, DL
, StackPtr
.getValueType(), StackPtr
,
1459 DAG
.getConstant(ByteOffset
, DL
, StackPtr
.getValueType()));
1460 State
.IntPointerInfo
= MachinePointerInfo::getFixedStack(MF
, FI
,
1464 State
.IntPtr
= IntPtr
;
1465 State
.IntValue
= DAG
.getExtLoad(ISD::EXTLOAD
, DL
, LoadTy
, State
.Chain
, IntPtr
,
1466 State
.IntPointerInfo
, MVT::i8
);
1467 State
.SignMask
= APInt::getOneBitSet(LoadTy
.getSizeInBits(), 7);
1471 /// Replace the integer value produced by getSignAsIntValue() with a new value
1472 /// and cast the result back to a floating-point type.
1473 SDValue
SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt
&State
,
1475 SDValue NewIntValue
) const {
1477 return DAG
.getNode(ISD::BITCAST
, DL
, State
.FloatVT
, NewIntValue
);
1479 // Override the part containing the sign bit in the value stored on the stack.
1480 SDValue Chain
= DAG
.getTruncStore(State
.Chain
, DL
, NewIntValue
, State
.IntPtr
,
1481 State
.IntPointerInfo
, MVT::i8
);
1482 return DAG
.getLoad(State
.FloatVT
, DL
, Chain
, State
.FloatPtr
,
1483 State
.FloatPointerInfo
);
1486 SDValue
SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode
*Node
) const {
1488 SDValue Mag
= Node
->getOperand(0);
1489 SDValue Sign
= Node
->getOperand(1);
1491 // Get sign bit into an integer value.
1492 FloatSignAsInt SignAsInt
;
1493 getSignAsIntValue(SignAsInt
, DL
, Sign
);
1495 EVT IntVT
= SignAsInt
.IntValue
.getValueType();
1496 SDValue SignMask
= DAG
.getConstant(SignAsInt
.SignMask
, DL
, IntVT
);
1497 SDValue SignBit
= DAG
.getNode(ISD::AND
, DL
, IntVT
, SignAsInt
.IntValue
,
1500 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1501 EVT FloatVT
= Mag
.getValueType();
1502 if (TLI
.isOperationLegalOrCustom(ISD::FABS
, FloatVT
) &&
1503 TLI
.isOperationLegalOrCustom(ISD::FNEG
, FloatVT
)) {
1504 SDValue AbsValue
= DAG
.getNode(ISD::FABS
, DL
, FloatVT
, Mag
);
1505 SDValue NegValue
= DAG
.getNode(ISD::FNEG
, DL
, FloatVT
, AbsValue
);
1506 SDValue Cond
= DAG
.getSetCC(DL
, getSetCCResultType(IntVT
), SignBit
,
1507 DAG
.getConstant(0, DL
, IntVT
), ISD::SETNE
);
1508 return DAG
.getSelect(DL
, FloatVT
, Cond
, NegValue
, AbsValue
);
1511 // Transform Mag value to integer, and clear the sign bit.
1512 FloatSignAsInt MagAsInt
;
1513 getSignAsIntValue(MagAsInt
, DL
, Mag
);
1514 EVT MagVT
= MagAsInt
.IntValue
.getValueType();
1515 SDValue ClearSignMask
= DAG
.getConstant(~MagAsInt
.SignMask
, DL
, MagVT
);
1516 SDValue ClearedSign
= DAG
.getNode(ISD::AND
, DL
, MagVT
, MagAsInt
.IntValue
,
1519 // Get the signbit at the right position for MagAsInt.
1520 int ShiftAmount
= SignAsInt
.SignBit
- MagAsInt
.SignBit
;
1521 EVT ShiftVT
= IntVT
;
1522 if (SignBit
.getValueSizeInBits() < ClearedSign
.getValueSizeInBits()) {
1523 SignBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MagVT
, SignBit
);
1526 if (ShiftAmount
> 0) {
1527 SDValue ShiftCnst
= DAG
.getConstant(ShiftAmount
, DL
, ShiftVT
);
1528 SignBit
= DAG
.getNode(ISD::SRL
, DL
, ShiftVT
, SignBit
, ShiftCnst
);
1529 } else if (ShiftAmount
< 0) {
1530 SDValue ShiftCnst
= DAG
.getConstant(-ShiftAmount
, DL
, ShiftVT
);
1531 SignBit
= DAG
.getNode(ISD::SHL
, DL
, ShiftVT
, SignBit
, ShiftCnst
);
1533 if (SignBit
.getValueSizeInBits() > ClearedSign
.getValueSizeInBits()) {
1534 SignBit
= DAG
.getNode(ISD::TRUNCATE
, DL
, MagVT
, SignBit
);
1537 // Store the part with the modified sign and convert back to float.
1538 SDValue CopiedSign
= DAG
.getNode(ISD::OR
, DL
, MagVT
, ClearedSign
, SignBit
);
1539 return modifySignAsInt(MagAsInt
, DL
, CopiedSign
);
1542 SDValue
SelectionDAGLegalize::ExpandFABS(SDNode
*Node
) const {
1544 SDValue Value
= Node
->getOperand(0);
1546 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1547 EVT FloatVT
= Value
.getValueType();
1548 if (TLI
.isOperationLegalOrCustom(ISD::FCOPYSIGN
, FloatVT
)) {
1549 SDValue Zero
= DAG
.getConstantFP(0.0, DL
, FloatVT
);
1550 return DAG
.getNode(ISD::FCOPYSIGN
, DL
, FloatVT
, Value
, Zero
);
1553 // Transform value to integer, clear the sign bit and transform back.
1554 FloatSignAsInt ValueAsInt
;
1555 getSignAsIntValue(ValueAsInt
, DL
, Value
);
1556 EVT IntVT
= ValueAsInt
.IntValue
.getValueType();
1557 SDValue ClearSignMask
= DAG
.getConstant(~ValueAsInt
.SignMask
, DL
, IntVT
);
1558 SDValue ClearedSign
= DAG
.getNode(ISD::AND
, DL
, IntVT
, ValueAsInt
.IntValue
,
1560 return modifySignAsInt(ValueAsInt
, DL
, ClearedSign
);
1563 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode
* Node
,
1564 SmallVectorImpl
<SDValue
> &Results
) {
1565 unsigned SPReg
= TLI
.getStackPointerRegisterToSaveRestore();
1566 assert(SPReg
&& "Target cannot require DYNAMIC_STACKALLOC expansion and"
1567 " not tell us which reg is the stack pointer!");
1569 EVT VT
= Node
->getValueType(0);
1570 SDValue Tmp1
= SDValue(Node
, 0);
1571 SDValue Tmp2
= SDValue(Node
, 1);
1572 SDValue Tmp3
= Node
->getOperand(2);
1573 SDValue Chain
= Tmp1
.getOperand(0);
1575 // Chain the dynamic stack allocation so that it doesn't modify the stack
1576 // pointer when other instructions are using the stack.
1577 Chain
= DAG
.getCALLSEQ_START(Chain
, 0, 0, dl
);
1579 SDValue Size
= Tmp2
.getOperand(1);
1580 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, SPReg
, VT
);
1581 Chain
= SP
.getValue(1);
1582 unsigned Align
= cast
<ConstantSDNode
>(Tmp3
)->getZExtValue();
1583 unsigned StackAlign
=
1584 DAG
.getSubtarget().getFrameLowering()->getStackAlignment();
1585 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, SP
, Size
); // Value
1586 if (Align
> StackAlign
)
1587 Tmp1
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp1
,
1588 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
1589 Chain
= DAG
.getCopyToReg(Chain
, dl
, SPReg
, Tmp1
); // Output chain
1591 Tmp2
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, dl
, true),
1592 DAG
.getIntPtrConstant(0, dl
, true), SDValue(), dl
);
1594 Results
.push_back(Tmp1
);
1595 Results
.push_back(Tmp2
);
1598 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1601 /// If the SETCC has been legalized using AND / OR, then the legalized node
1602 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1603 /// will be set to false.
1605 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1606 /// then the values of LHS and RHS will be swapped, CC will be set to the
1607 /// new condition, and NeedInvert will be set to false.
1609 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1610 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1611 /// will be set to true. The caller must invert the result of the SETCC with
1612 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1613 /// of a true/false result.
1615 /// \returns true if the SetCC has been legalized, false if it hasn't.
1616 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT
, SDValue
&LHS
,
1617 SDValue
&RHS
, SDValue
&CC
,
1620 MVT OpVT
= LHS
.getSimpleValueType();
1621 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
1623 bool NeedSwap
= false;
1624 switch (TLI
.getCondCodeAction(CCCode
, OpVT
)) {
1625 default: llvm_unreachable("Unknown condition code action!");
1626 case TargetLowering::Legal
:
1629 case TargetLowering::Expand
: {
1630 ISD::CondCode InvCC
= ISD::getSetCCSwappedOperands(CCCode
);
1631 if (TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1632 std::swap(LHS
, RHS
);
1633 CC
= DAG
.getCondCode(InvCC
);
1636 // Swapping operands didn't work. Try inverting the condition.
1637 InvCC
= getSetCCInverse(CCCode
, OpVT
.isInteger());
1638 if (!TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1639 // If inverting the condition is not enough, try swapping operands
1641 InvCC
= ISD::getSetCCSwappedOperands(InvCC
);
1644 if (TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1645 CC
= DAG
.getCondCode(InvCC
);
1648 std::swap(LHS
, RHS
);
1652 ISD::CondCode CC1
= ISD::SETCC_INVALID
, CC2
= ISD::SETCC_INVALID
;
1655 default: llvm_unreachable("Don't know how to expand this condition!");
1657 assert(TLI
.isCondCodeLegal(ISD::SETOEQ
, OpVT
)
1658 && "If SETO is expanded, SETOEQ must be legal!");
1659 CC1
= ISD::SETOEQ
; CC2
= ISD::SETOEQ
; Opc
= ISD::AND
; break;
1661 assert(TLI
.isCondCodeLegal(ISD::SETUNE
, OpVT
)
1662 && "If SETUO is expanded, SETUNE must be legal!");
1663 CC1
= ISD::SETUNE
; CC2
= ISD::SETUNE
; Opc
= ISD::OR
; break;
1676 // If we are floating point, assign and break, otherwise fall through.
1677 if (!OpVT
.isInteger()) {
1678 // We can use the 4th bit to tell if we are the unordered
1679 // or ordered version of the opcode.
1680 CC2
= ((unsigned)CCCode
& 0x8U
) ? ISD::SETUO
: ISD::SETO
;
1681 Opc
= ((unsigned)CCCode
& 0x8U
) ? ISD::OR
: ISD::AND
;
1682 CC1
= (ISD::CondCode
)(((int)CCCode
& 0x7) | 0x10);
1685 // Fallthrough if we are unsigned integer.
1693 // If all combinations of inverting the condition and swapping operands
1694 // didn't work then we have no means to expand the condition.
1695 llvm_unreachable("Don't know how to expand this condition!");
1698 SDValue SetCC1
, SetCC2
;
1699 if (CCCode
!= ISD::SETO
&& CCCode
!= ISD::SETUO
) {
1700 // If we aren't the ordered or unorder operation,
1701 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1702 SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC1
);
1703 SetCC2
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC2
);
1705 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1706 SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, LHS
, CC1
);
1707 SetCC2
= DAG
.getSetCC(dl
, VT
, RHS
, RHS
, CC2
);
1709 LHS
= DAG
.getNode(Opc
, dl
, VT
, SetCC1
, SetCC2
);
1718 /// Emit a store/load combination to the stack. This stores
1719 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1720 /// a load from the stack slot to DestVT, extending it if needed.
1721 /// The resultant code need not be legal.
1722 SDValue
SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp
, EVT SlotVT
,
1723 EVT DestVT
, const SDLoc
&dl
) {
1724 // Create the stack frame object.
1725 unsigned SrcAlign
= DAG
.getDataLayout().getPrefTypeAlignment(
1726 SrcOp
.getValueType().getTypeForEVT(*DAG
.getContext()));
1727 SDValue FIPtr
= DAG
.CreateStackTemporary(SlotVT
, SrcAlign
);
1729 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(FIPtr
);
1730 int SPFI
= StackPtrFI
->getIndex();
1731 MachinePointerInfo PtrInfo
=
1732 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
);
1734 unsigned SrcSize
= SrcOp
.getValueSizeInBits();
1735 unsigned SlotSize
= SlotVT
.getSizeInBits();
1736 unsigned DestSize
= DestVT
.getSizeInBits();
1737 Type
*DestType
= DestVT
.getTypeForEVT(*DAG
.getContext());
1738 unsigned DestAlign
= DAG
.getDataLayout().getPrefTypeAlignment(DestType
);
1740 // Emit a store to the stack slot. Use a truncstore if the input value is
1741 // later than DestVT.
1744 if (SrcSize
> SlotSize
)
1745 Store
= DAG
.getTruncStore(DAG
.getEntryNode(), dl
, SrcOp
, FIPtr
, PtrInfo
,
1748 assert(SrcSize
== SlotSize
&& "Invalid store");
1750 DAG
.getStore(DAG
.getEntryNode(), dl
, SrcOp
, FIPtr
, PtrInfo
, SrcAlign
);
1753 // Result is a load from the stack slot.
1754 if (SlotSize
== DestSize
)
1755 return DAG
.getLoad(DestVT
, dl
, Store
, FIPtr
, PtrInfo
, DestAlign
);
1757 assert(SlotSize
< DestSize
&& "Unknown extension!");
1758 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
, Store
, FIPtr
, PtrInfo
, SlotVT
,
1762 SDValue
SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode
*Node
) {
1764 // Create a vector sized/aligned stack slot, store the value to element #0,
1765 // then load the whole vector back out.
1766 SDValue StackPtr
= DAG
.CreateStackTemporary(Node
->getValueType(0));
1768 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(StackPtr
);
1769 int SPFI
= StackPtrFI
->getIndex();
1771 SDValue Ch
= DAG
.getTruncStore(
1772 DAG
.getEntryNode(), dl
, Node
->getOperand(0), StackPtr
,
1773 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
),
1774 Node
->getValueType(0).getVectorElementType());
1776 Node
->getValueType(0), dl
, Ch
, StackPtr
,
1777 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
));
1781 ExpandBVWithShuffles(SDNode
*Node
, SelectionDAG
&DAG
,
1782 const TargetLowering
&TLI
, SDValue
&Res
) {
1783 unsigned NumElems
= Node
->getNumOperands();
1785 EVT VT
= Node
->getValueType(0);
1787 // Try to group the scalars into pairs, shuffle the pairs together, then
1788 // shuffle the pairs of pairs together, etc. until the vector has
1789 // been built. This will work only if all of the necessary shuffle masks
1792 // We do this in two phases; first to check the legality of the shuffles,
1793 // and next, assuming that all shuffles are legal, to create the new nodes.
1794 for (int Phase
= 0; Phase
< 2; ++Phase
) {
1795 SmallVector
<std::pair
<SDValue
, SmallVector
<int, 16>>, 16> IntermedVals
,
1797 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1798 SDValue V
= Node
->getOperand(i
);
1804 Vec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, V
);
1805 IntermedVals
.push_back(std::make_pair(Vec
, SmallVector
<int, 16>(1, i
)));
1808 while (IntermedVals
.size() > 2) {
1809 NewIntermedVals
.clear();
1810 for (unsigned i
= 0, e
= (IntermedVals
.size() & ~1u); i
< e
; i
+= 2) {
1811 // This vector and the next vector are shuffled together (simply to
1812 // append the one to the other).
1813 SmallVector
<int, 16> ShuffleVec(NumElems
, -1);
1815 SmallVector
<int, 16> FinalIndices
;
1816 FinalIndices
.reserve(IntermedVals
[i
].second
.size() +
1817 IntermedVals
[i
+1].second
.size());
1820 for (unsigned j
= 0, f
= IntermedVals
[i
].second
.size(); j
!= f
;
1823 FinalIndices
.push_back(IntermedVals
[i
].second
[j
]);
1825 for (unsigned j
= 0, f
= IntermedVals
[i
+1].second
.size(); j
!= f
;
1827 ShuffleVec
[k
] = NumElems
+ j
;
1828 FinalIndices
.push_back(IntermedVals
[i
+1].second
[j
]);
1833 Shuffle
= DAG
.getVectorShuffle(VT
, dl
, IntermedVals
[i
].first
,
1834 IntermedVals
[i
+1].first
,
1836 else if (!TLI
.isShuffleMaskLegal(ShuffleVec
, VT
))
1838 NewIntermedVals
.push_back(
1839 std::make_pair(Shuffle
, std::move(FinalIndices
)));
1842 // If we had an odd number of defined values, then append the last
1843 // element to the array of new vectors.
1844 if ((IntermedVals
.size() & 1) != 0)
1845 NewIntermedVals
.push_back(IntermedVals
.back());
1847 IntermedVals
.swap(NewIntermedVals
);
1850 assert(IntermedVals
.size() <= 2 && IntermedVals
.size() > 0 &&
1851 "Invalid number of intermediate vectors");
1852 SDValue Vec1
= IntermedVals
[0].first
;
1854 if (IntermedVals
.size() > 1)
1855 Vec2
= IntermedVals
[1].first
;
1857 Vec2
= DAG
.getUNDEF(VT
);
1859 SmallVector
<int, 16> ShuffleVec(NumElems
, -1);
1860 for (unsigned i
= 0, e
= IntermedVals
[0].second
.size(); i
!= e
; ++i
)
1861 ShuffleVec
[IntermedVals
[0].second
[i
]] = i
;
1862 for (unsigned i
= 0, e
= IntermedVals
[1].second
.size(); i
!= e
; ++i
)
1863 ShuffleVec
[IntermedVals
[1].second
[i
]] = NumElems
+ i
;
1866 Res
= DAG
.getVectorShuffle(VT
, dl
, Vec1
, Vec2
, ShuffleVec
);
1867 else if (!TLI
.isShuffleMaskLegal(ShuffleVec
, VT
))
1874 /// Expand a BUILD_VECTOR node on targets that don't
1875 /// support the operation, but do support the resultant vector type.
1876 SDValue
SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode
*Node
) {
1877 unsigned NumElems
= Node
->getNumOperands();
1878 SDValue Value1
, Value2
;
1880 EVT VT
= Node
->getValueType(0);
1881 EVT OpVT
= Node
->getOperand(0).getValueType();
1882 EVT EltVT
= VT
.getVectorElementType();
1884 // If the only non-undef value is the low element, turn this into a
1885 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1886 bool isOnlyLowElement
= true;
1887 bool MoreThanTwoValues
= false;
1888 bool isConstant
= true;
1889 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1890 SDValue V
= Node
->getOperand(i
);
1894 isOnlyLowElement
= false;
1895 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
1898 if (!Value1
.getNode()) {
1900 } else if (!Value2
.getNode()) {
1903 } else if (V
!= Value1
&& V
!= Value2
) {
1904 MoreThanTwoValues
= true;
1908 if (!Value1
.getNode())
1909 return DAG
.getUNDEF(VT
);
1911 if (isOnlyLowElement
)
1912 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Node
->getOperand(0));
1914 // If all elements are constants, create a load from the constant pool.
1916 SmallVector
<Constant
*, 16> CV
;
1917 for (unsigned i
= 0, e
= NumElems
; i
!= e
; ++i
) {
1918 if (ConstantFPSDNode
*V
=
1919 dyn_cast
<ConstantFPSDNode
>(Node
->getOperand(i
))) {
1920 CV
.push_back(const_cast<ConstantFP
*>(V
->getConstantFPValue()));
1921 } else if (ConstantSDNode
*V
=
1922 dyn_cast
<ConstantSDNode
>(Node
->getOperand(i
))) {
1924 CV
.push_back(const_cast<ConstantInt
*>(V
->getConstantIntValue()));
1926 // If OpVT and EltVT don't match, EltVT is not legal and the
1927 // element values have been promoted/truncated earlier. Undo this;
1928 // we don't want a v16i8 to become a v16i32 for example.
1929 const ConstantInt
*CI
= V
->getConstantIntValue();
1930 CV
.push_back(ConstantInt::get(EltVT
.getTypeForEVT(*DAG
.getContext()),
1931 CI
->getZExtValue()));
1934 assert(Node
->getOperand(i
).isUndef());
1935 Type
*OpNTy
= EltVT
.getTypeForEVT(*DAG
.getContext());
1936 CV
.push_back(UndefValue::get(OpNTy
));
1939 Constant
*CP
= ConstantVector::get(CV
);
1941 DAG
.getConstantPool(CP
, TLI
.getPointerTy(DAG
.getDataLayout()));
1942 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
1944 VT
, dl
, DAG
.getEntryNode(), CPIdx
,
1945 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()),
1949 SmallSet
<SDValue
, 16> DefinedValues
;
1950 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1951 if (Node
->getOperand(i
).isUndef())
1953 DefinedValues
.insert(Node
->getOperand(i
));
1956 if (TLI
.shouldExpandBuildVectorWithShuffles(VT
, DefinedValues
.size())) {
1957 if (!MoreThanTwoValues
) {
1958 SmallVector
<int, 8> ShuffleVec(NumElems
, -1);
1959 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1960 SDValue V
= Node
->getOperand(i
);
1963 ShuffleVec
[i
] = V
== Value1
? 0 : NumElems
;
1965 if (TLI
.isShuffleMaskLegal(ShuffleVec
, Node
->getValueType(0))) {
1966 // Get the splatted value into the low element of a vector register.
1967 SDValue Vec1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value1
);
1969 if (Value2
.getNode())
1970 Vec2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value2
);
1972 Vec2
= DAG
.getUNDEF(VT
);
1974 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1975 return DAG
.getVectorShuffle(VT
, dl
, Vec1
, Vec2
, ShuffleVec
);
1979 if (ExpandBVWithShuffles(Node
, DAG
, TLI
, Res
))
1984 // Otherwise, we can't handle this case efficiently.
1985 return ExpandVectorBuildThroughStack(Node
);
1988 // Expand a node into a call to a libcall. If the result value
1989 // does not fit into a register, return the lo part and set the hi part to the
1990 // by-reg argument. If it does fit into a single register, return the result
1991 // and leave the Hi part unset.
1992 SDValue
SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
,
1994 TargetLowering::ArgListTy Args
;
1995 TargetLowering::ArgListEntry Entry
;
1996 for (const SDValue
&Op
: Node
->op_values()) {
1997 EVT ArgVT
= Op
.getValueType();
1998 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2001 Entry
.IsSExt
= TLI
.shouldSignExtendTypeInLibCall(ArgVT
, isSigned
);
2002 Entry
.IsZExt
= !TLI
.shouldSignExtendTypeInLibCall(ArgVT
, isSigned
);
2003 Args
.push_back(Entry
);
2005 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2006 TLI
.getPointerTy(DAG
.getDataLayout()));
2008 EVT RetVT
= Node
->getValueType(0);
2009 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2011 // By default, the input chain to this libcall is the entry node of the
2012 // function. If the libcall is going to be emitted as a tail call then
2013 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2014 // node which is being folded has a non-entry input chain.
2015 SDValue InChain
= DAG
.getEntryNode();
2017 // isTailCall may be true since the callee does not reference caller stack
2018 // frame. Check if it's in the right position and that the return types match.
2019 SDValue TCChain
= InChain
;
2020 const Function
&F
= DAG
.getMachineFunction().getFunction();
2022 TLI
.isInTailCallPosition(DAG
, Node
, TCChain
) &&
2023 (RetTy
== F
.getReturnType() || F
.getReturnType()->isVoidTy());
2027 TargetLowering::CallLoweringInfo
CLI(DAG
);
2028 bool signExtend
= TLI
.shouldSignExtendTypeInLibCall(RetVT
, isSigned
);
2029 CLI
.setDebugLoc(SDLoc(Node
))
2031 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2033 .setTailCall(isTailCall
)
2034 .setSExtResult(signExtend
)
2035 .setZExtResult(!signExtend
)
2036 .setIsPostTypeLegalization(true);
2038 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2040 if (!CallInfo
.second
.getNode()) {
2041 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG
.getRoot().dump());
2042 // It's a tailcall, return the chain (which is the DAG root).
2043 return DAG
.getRoot();
2046 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo
.first
.dump());
2047 return CallInfo
.first
;
2050 // Expand a node into a call to a libcall. Similar to
2051 // ExpandLibCall except that the first operand is the in-chain.
2052 std::pair
<SDValue
, SDValue
>
2053 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC
,
2056 SDValue InChain
= Node
->getOperand(0);
2058 TargetLowering::ArgListTy Args
;
2059 TargetLowering::ArgListEntry Entry
;
2060 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
2061 EVT ArgVT
= Node
->getOperand(i
).getValueType();
2062 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2063 Entry
.Node
= Node
->getOperand(i
);
2065 Entry
.IsSExt
= isSigned
;
2066 Entry
.IsZExt
= !isSigned
;
2067 Args
.push_back(Entry
);
2069 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2070 TLI
.getPointerTy(DAG
.getDataLayout()));
2072 Type
*RetTy
= Node
->getValueType(0).getTypeForEVT(*DAG
.getContext());
2074 TargetLowering::CallLoweringInfo
CLI(DAG
);
2075 CLI
.setDebugLoc(SDLoc(Node
))
2077 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2079 .setSExtResult(isSigned
)
2080 .setZExtResult(!isSigned
);
2082 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2087 SDValue
SelectionDAGLegalize::ExpandFPLibCall(SDNode
* Node
,
2088 RTLIB::Libcall Call_F32
,
2089 RTLIB::Libcall Call_F64
,
2090 RTLIB::Libcall Call_F80
,
2091 RTLIB::Libcall Call_F128
,
2092 RTLIB::Libcall Call_PPCF128
) {
2093 if (Node
->isStrictFPOpcode())
2094 Node
= DAG
.mutateStrictFPToFP(Node
);
2097 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2098 default: llvm_unreachable("Unexpected request for libcall!");
2099 case MVT::f32
: LC
= Call_F32
; break;
2100 case MVT::f64
: LC
= Call_F64
; break;
2101 case MVT::f80
: LC
= Call_F80
; break;
2102 case MVT::f128
: LC
= Call_F128
; break;
2103 case MVT::ppcf128
: LC
= Call_PPCF128
; break;
2105 return ExpandLibCall(LC
, Node
, false);
2108 SDValue
SelectionDAGLegalize::ExpandIntLibCall(SDNode
* Node
, bool isSigned
,
2109 RTLIB::Libcall Call_I8
,
2110 RTLIB::Libcall Call_I16
,
2111 RTLIB::Libcall Call_I32
,
2112 RTLIB::Libcall Call_I64
,
2113 RTLIB::Libcall Call_I128
) {
2115 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2116 default: llvm_unreachable("Unexpected request for libcall!");
2117 case MVT::i8
: LC
= Call_I8
; break;
2118 case MVT::i16
: LC
= Call_I16
; break;
2119 case MVT::i32
: LC
= Call_I32
; break;
2120 case MVT::i64
: LC
= Call_I64
; break;
2121 case MVT::i128
: LC
= Call_I128
; break;
2123 return ExpandLibCall(LC
, Node
, isSigned
);
2126 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2128 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode
*Node
,
2129 SmallVectorImpl
<SDValue
> &Results
) {
2130 unsigned Opcode
= Node
->getOpcode();
2131 bool isSigned
= Opcode
== ISD::SDIVREM
;
2134 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2135 default: llvm_unreachable("Unexpected request for libcall!");
2136 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
2137 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
2138 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
2139 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
2140 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
2143 // The input chain to this libcall is the entry node of the function.
2144 // Legalizing the call will automatically add the previous call to the
2146 SDValue InChain
= DAG
.getEntryNode();
2148 EVT RetVT
= Node
->getValueType(0);
2149 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2151 TargetLowering::ArgListTy Args
;
2152 TargetLowering::ArgListEntry Entry
;
2153 for (const SDValue
&Op
: Node
->op_values()) {
2154 EVT ArgVT
= Op
.getValueType();
2155 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2158 Entry
.IsSExt
= isSigned
;
2159 Entry
.IsZExt
= !isSigned
;
2160 Args
.push_back(Entry
);
2163 // Also pass the return address of the remainder.
2164 SDValue FIPtr
= DAG
.CreateStackTemporary(RetVT
);
2166 Entry
.Ty
= RetTy
->getPointerTo();
2167 Entry
.IsSExt
= isSigned
;
2168 Entry
.IsZExt
= !isSigned
;
2169 Args
.push_back(Entry
);
2171 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2172 TLI
.getPointerTy(DAG
.getDataLayout()));
2175 TargetLowering::CallLoweringInfo
CLI(DAG
);
2178 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2180 .setSExtResult(isSigned
)
2181 .setZExtResult(!isSigned
);
2183 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2185 // Remainder is loaded back from the stack frame.
2187 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, FIPtr
, MachinePointerInfo());
2188 Results
.push_back(CallInfo
.first
);
2189 Results
.push_back(Rem
);
2192 /// Return true if sincos libcall is available.
2193 static bool isSinCosLibcallAvailable(SDNode
*Node
, const TargetLowering
&TLI
) {
2195 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2196 default: llvm_unreachable("Unexpected request for libcall!");
2197 case MVT::f32
: LC
= RTLIB::SINCOS_F32
; break;
2198 case MVT::f64
: LC
= RTLIB::SINCOS_F64
; break;
2199 case MVT::f80
: LC
= RTLIB::SINCOS_F80
; break;
2200 case MVT::f128
: LC
= RTLIB::SINCOS_F128
; break;
2201 case MVT::ppcf128
: LC
= RTLIB::SINCOS_PPCF128
; break;
2203 return TLI
.getLibcallName(LC
) != nullptr;
2206 /// Only issue sincos libcall if both sin and cos are needed.
2207 static bool useSinCos(SDNode
*Node
) {
2208 unsigned OtherOpcode
= Node
->getOpcode() == ISD::FSIN
2209 ? ISD::FCOS
: ISD::FSIN
;
2211 SDValue Op0
= Node
->getOperand(0);
2212 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
2213 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
2217 // The other user might have been turned into sincos already.
2218 if (User
->getOpcode() == OtherOpcode
|| User
->getOpcode() == ISD::FSINCOS
)
2224 /// Issue libcalls to sincos to compute sin / cos pairs.
2226 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode
*Node
,
2227 SmallVectorImpl
<SDValue
> &Results
) {
2229 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2230 default: llvm_unreachable("Unexpected request for libcall!");
2231 case MVT::f32
: LC
= RTLIB::SINCOS_F32
; break;
2232 case MVT::f64
: LC
= RTLIB::SINCOS_F64
; break;
2233 case MVT::f80
: LC
= RTLIB::SINCOS_F80
; break;
2234 case MVT::f128
: LC
= RTLIB::SINCOS_F128
; break;
2235 case MVT::ppcf128
: LC
= RTLIB::SINCOS_PPCF128
; break;
2238 // The input chain to this libcall is the entry node of the function.
2239 // Legalizing the call will automatically add the previous call to the
2241 SDValue InChain
= DAG
.getEntryNode();
2243 EVT RetVT
= Node
->getValueType(0);
2244 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2246 TargetLowering::ArgListTy Args
;
2247 TargetLowering::ArgListEntry Entry
;
2249 // Pass the argument.
2250 Entry
.Node
= Node
->getOperand(0);
2252 Entry
.IsSExt
= false;
2253 Entry
.IsZExt
= false;
2254 Args
.push_back(Entry
);
2256 // Pass the return address of sin.
2257 SDValue SinPtr
= DAG
.CreateStackTemporary(RetVT
);
2258 Entry
.Node
= SinPtr
;
2259 Entry
.Ty
= RetTy
->getPointerTo();
2260 Entry
.IsSExt
= false;
2261 Entry
.IsZExt
= false;
2262 Args
.push_back(Entry
);
2264 // Also pass the return address of the cos.
2265 SDValue CosPtr
= DAG
.CreateStackTemporary(RetVT
);
2266 Entry
.Node
= CosPtr
;
2267 Entry
.Ty
= RetTy
->getPointerTo();
2268 Entry
.IsSExt
= false;
2269 Entry
.IsZExt
= false;
2270 Args
.push_back(Entry
);
2272 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2273 TLI
.getPointerTy(DAG
.getDataLayout()));
2276 TargetLowering::CallLoweringInfo
CLI(DAG
);
2277 CLI
.setDebugLoc(dl
).setChain(InChain
).setLibCallee(
2278 TLI
.getLibcallCallingConv(LC
), Type::getVoidTy(*DAG
.getContext()), Callee
,
2281 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2284 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, SinPtr
, MachinePointerInfo()));
2286 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, CosPtr
, MachinePointerInfo()));
2289 /// This function is responsible for legalizing a
2290 /// INT_TO_FP operation of the specified operand when the target requests that
2291 /// we expand it. At this point, we know that the result and operand types are
2292 /// legal for the target.
2293 SDValue
SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned
, SDValue Op0
,
2296 EVT SrcVT
= Op0
.getValueType();
2298 // TODO: Should any fast-math-flags be set for the created nodes?
2299 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2300 if (SrcVT
== MVT::i32
&& TLI
.isTypeLegal(MVT::f64
)) {
2301 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2304 // Get the stack frame index of a 8 byte buffer.
2305 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::f64
);
2307 // word offset constant for Hi/Lo address computation
2308 SDValue WordOff
= DAG
.getConstant(sizeof(int), dl
,
2309 StackSlot
.getValueType());
2310 // set up Hi and Lo (into buffer) address based on endian
2311 SDValue Hi
= StackSlot
;
2312 SDValue Lo
= DAG
.getNode(ISD::ADD
, dl
, StackSlot
.getValueType(),
2313 StackSlot
, WordOff
);
2314 if (DAG
.getDataLayout().isLittleEndian())
2317 // if signed map to unsigned space
2320 // constant used to invert sign bit (signed to unsigned mapping)
2321 SDValue SignBit
= DAG
.getConstant(0x80000000u
, dl
, MVT::i32
);
2322 Op0Mapped
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Op0
, SignBit
);
2326 // store the lo of the constructed double - based on integer input
2327 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op0Mapped
, Lo
,
2328 MachinePointerInfo());
2329 // initial hi portion of constructed double
2330 SDValue InitialHi
= DAG
.getConstant(0x43300000u
, dl
, MVT::i32
);
2331 // store the hi of the constructed double - biased exponent
2333 DAG
.getStore(Store1
, dl
, InitialHi
, Hi
, MachinePointerInfo());
2334 // load the constructed double
2336 DAG
.getLoad(MVT::f64
, dl
, Store2
, StackSlot
, MachinePointerInfo());
2337 // FP constant to bias correct the final result
2338 SDValue Bias
= DAG
.getConstantFP(isSigned
?
2339 BitsToDouble(0x4330000080000000ULL
) :
2340 BitsToDouble(0x4330000000000000ULL
),
2342 // subtract the bias
2343 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Load
, Bias
);
2345 SDValue Result
= DAG
.getFPExtendOrRound(Sub
, dl
, DestVT
);
2348 assert(!isSigned
&& "Legalize cannot Expand SINT_TO_FP for i64 yet");
2349 // Code below here assumes !isSigned without checking again.
2351 SDValue Tmp1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestVT
, Op0
);
2353 SDValue SignSet
= DAG
.getSetCC(dl
, getSetCCResultType(SrcVT
), Op0
,
2354 DAG
.getConstant(0, dl
, SrcVT
), ISD::SETLT
);
2355 SDValue Zero
= DAG
.getIntPtrConstant(0, dl
),
2356 Four
= DAG
.getIntPtrConstant(4, dl
);
2357 SDValue CstOffset
= DAG
.getSelect(dl
, Zero
.getValueType(),
2358 SignSet
, Four
, Zero
);
2360 // If the sign bit of the integer is set, the large number will be treated
2361 // as a negative number. To counteract this, the dynamic code adds an
2362 // offset depending on the data type.
2364 switch (SrcVT
.getSimpleVT().SimpleTy
) {
2365 default: llvm_unreachable("Unsupported integer type!");
2366 case MVT::i8
: FF
= 0x43800000ULL
; break; // 2^8 (as a float)
2367 case MVT::i16
: FF
= 0x47800000ULL
; break; // 2^16 (as a float)
2368 case MVT::i32
: FF
= 0x4F800000ULL
; break; // 2^32 (as a float)
2369 case MVT::i64
: FF
= 0x5F800000ULL
; break; // 2^64 (as a float)
2371 if (DAG
.getDataLayout().isLittleEndian())
2373 Constant
*FudgeFactor
= ConstantInt::get(
2374 Type::getInt64Ty(*DAG
.getContext()), FF
);
2377 DAG
.getConstantPool(FudgeFactor
, TLI
.getPointerTy(DAG
.getDataLayout()));
2378 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
2379 CPIdx
= DAG
.getNode(ISD::ADD
, dl
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
2380 Alignment
= std::min(Alignment
, 4u);
2382 if (DestVT
== MVT::f32
)
2383 FudgeInReg
= DAG
.getLoad(
2384 MVT::f32
, dl
, DAG
.getEntryNode(), CPIdx
,
2385 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()),
2388 SDValue Load
= DAG
.getExtLoad(
2389 ISD::EXTLOAD
, dl
, DestVT
, DAG
.getEntryNode(), CPIdx
,
2390 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), MVT::f32
,
2392 HandleSDNode
Handle(Load
);
2393 LegalizeOp(Load
.getNode());
2394 FudgeInReg
= Handle
.getValue();
2397 return DAG
.getNode(ISD::FADD
, dl
, DestVT
, Tmp1
, FudgeInReg
);
2400 /// This function is responsible for legalizing a
2401 /// *INT_TO_FP operation of the specified operand when the target requests that
2402 /// we promote it. At this point, we know that the result and operand types are
2403 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2404 /// operation that takes a larger input.
2405 SDValue
SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp
, EVT DestVT
,
2408 // First step, figure out the appropriate *INT_TO_FP operation to use.
2409 EVT NewInTy
= LegalOp
.getValueType();
2411 unsigned OpToUse
= 0;
2413 // Scan for the appropriate larger type to use.
2415 NewInTy
= (MVT::SimpleValueType
)(NewInTy
.getSimpleVT().SimpleTy
+1);
2416 assert(NewInTy
.isInteger() && "Ran out of possibilities!");
2418 // If the target supports SINT_TO_FP of this type, use it.
2419 if (TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, NewInTy
)) {
2420 OpToUse
= ISD::SINT_TO_FP
;
2423 if (isSigned
) continue;
2425 // If the target supports UINT_TO_FP of this type, use it.
2426 if (TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, NewInTy
)) {
2427 OpToUse
= ISD::UINT_TO_FP
;
2431 // Otherwise, try a larger type.
2434 // Okay, we found the operation and type to use. Zero extend our input to the
2435 // desired type then run the operation on it.
2436 return DAG
.getNode(OpToUse
, dl
, DestVT
,
2437 DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
2438 dl
, NewInTy
, LegalOp
));
2441 /// This function is responsible for legalizing a
2442 /// FP_TO_*INT operation of the specified operand when the target requests that
2443 /// we promote it. At this point, we know that the result and operand types are
2444 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2445 /// operation that returns a larger result.
2446 SDValue
SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp
, EVT DestVT
,
2449 // First step, figure out the appropriate FP_TO*INT operation to use.
2450 EVT NewOutTy
= DestVT
;
2452 unsigned OpToUse
= 0;
2454 // Scan for the appropriate larger type to use.
2456 NewOutTy
= (MVT::SimpleValueType
)(NewOutTy
.getSimpleVT().SimpleTy
+1);
2457 assert(NewOutTy
.isInteger() && "Ran out of possibilities!");
2459 // A larger signed type can hold all unsigned values of the requested type,
2460 // so using FP_TO_SINT is valid
2461 if (TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NewOutTy
)) {
2462 OpToUse
= ISD::FP_TO_SINT
;
2466 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2467 if (!isSigned
&& TLI
.isOperationLegalOrCustom(ISD::FP_TO_UINT
, NewOutTy
)) {
2468 OpToUse
= ISD::FP_TO_UINT
;
2472 // Otherwise, try a larger type.
2475 // Okay, we found the operation and type to use.
2476 SDValue Operation
= DAG
.getNode(OpToUse
, dl
, NewOutTy
, LegalOp
);
2478 // Truncate the result of the extended FP_TO_*INT operation to the desired
2480 return DAG
.getNode(ISD::TRUNCATE
, dl
, DestVT
, Operation
);
2483 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2484 SDValue
SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op
, const SDLoc
&dl
) {
2485 EVT VT
= Op
.getValueType();
2486 EVT SHVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2487 unsigned Sz
= VT
.getScalarSizeInBits();
2489 SDValue Tmp
, Tmp2
, Tmp3
;
2491 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2492 // and finally the i1 pairs.
2493 // TODO: We can easily support i4/i2 legal types if any target ever does.
2494 if (Sz
>= 8 && isPowerOf2_32(Sz
)) {
2495 // Create the masks - repeating the pattern every byte.
2496 APInt
MaskHi4(Sz
, 0), MaskHi2(Sz
, 0), MaskHi1(Sz
, 0);
2497 APInt
MaskLo4(Sz
, 0), MaskLo2(Sz
, 0), MaskLo1(Sz
, 0);
2498 for (unsigned J
= 0; J
!= Sz
; J
+= 8) {
2499 MaskHi4
= MaskHi4
| (0xF0ull
<< J
);
2500 MaskLo4
= MaskLo4
| (0x0Full
<< J
);
2501 MaskHi2
= MaskHi2
| (0xCCull
<< J
);
2502 MaskLo2
= MaskLo2
| (0x33ull
<< J
);
2503 MaskHi1
= MaskHi1
| (0xAAull
<< J
);
2504 MaskLo1
= MaskLo1
| (0x55ull
<< J
);
2507 // BSWAP if the type is wider than a single byte.
2508 Tmp
= (Sz
> 8 ? DAG
.getNode(ISD::BSWAP
, dl
, VT
, Op
) : Op
);
2510 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2511 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi4
, dl
, VT
));
2512 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo4
, dl
, VT
));
2513 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(4, dl
, SHVT
));
2514 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(4, dl
, SHVT
));
2515 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2517 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2518 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi2
, dl
, VT
));
2519 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo2
, dl
, VT
));
2520 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(2, dl
, SHVT
));
2521 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(2, dl
, SHVT
));
2522 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2524 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2525 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi1
, dl
, VT
));
2526 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo1
, dl
, VT
));
2527 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(1, dl
, SHVT
));
2528 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(1, dl
, SHVT
));
2529 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2533 Tmp
= DAG
.getConstant(0, dl
, VT
);
2534 for (unsigned I
= 0, J
= Sz
-1; I
< Sz
; ++I
, --J
) {
2537 DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(J
- I
, dl
, SHVT
));
2540 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(I
- J
, dl
, SHVT
));
2544 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(Shift
, dl
, VT
));
2545 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp
, Tmp2
);
2551 /// Open code the operations for BSWAP of the specified operation.
2552 SDValue
SelectionDAGLegalize::ExpandBSWAP(SDValue Op
, const SDLoc
&dl
) {
2553 EVT VT
= Op
.getValueType();
2554 EVT SHVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2555 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
, Tmp5
, Tmp6
, Tmp7
, Tmp8
;
2556 switch (VT
.getSimpleVT().getScalarType().SimpleTy
) {
2557 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2559 Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2560 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2561 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
2563 Tmp4
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2564 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2565 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2566 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2567 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
,
2568 DAG
.getConstant(0xFF0000, dl
, VT
));
2569 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(0xFF00, dl
, VT
));
2570 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
2571 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
2572 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
2574 Tmp8
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(56, dl
, SHVT
));
2575 Tmp7
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(40, dl
, SHVT
));
2576 Tmp6
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2577 Tmp5
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2578 Tmp4
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2579 Tmp3
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2580 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(40, dl
, SHVT
));
2581 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(56, dl
, SHVT
));
2582 Tmp7
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp7
,
2583 DAG
.getConstant(255ULL<<48, dl
, VT
));
2584 Tmp6
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp6
,
2585 DAG
.getConstant(255ULL<<40, dl
, VT
));
2586 Tmp5
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp5
,
2587 DAG
.getConstant(255ULL<<32, dl
, VT
));
2588 Tmp4
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp4
,
2589 DAG
.getConstant(255ULL<<24, dl
, VT
));
2590 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
,
2591 DAG
.getConstant(255ULL<<16, dl
, VT
));
2592 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
,
2593 DAG
.getConstant(255ULL<<8 , dl
, VT
));
2594 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp7
);
2595 Tmp6
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp6
, Tmp5
);
2596 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
2597 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
2598 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp6
);
2599 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
2600 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp4
);
2604 bool SelectionDAGLegalize::ExpandNode(SDNode
*Node
) {
2605 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2606 SmallVector
<SDValue
, 8> Results
;
2608 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
;
2610 switch (Node
->getOpcode()) {
2612 if (TLI
.expandABS(Node
, Tmp1
, DAG
))
2613 Results
.push_back(Tmp1
);
2616 if (TLI
.expandCTPOP(Node
, Tmp1
, DAG
))
2617 Results
.push_back(Tmp1
);
2620 case ISD::CTLZ_ZERO_UNDEF
:
2621 if (TLI
.expandCTLZ(Node
, Tmp1
, DAG
))
2622 Results
.push_back(Tmp1
);
2625 case ISD::CTTZ_ZERO_UNDEF
:
2626 if (TLI
.expandCTTZ(Node
, Tmp1
, DAG
))
2627 Results
.push_back(Tmp1
);
2629 case ISD::BITREVERSE
:
2630 Results
.push_back(ExpandBITREVERSE(Node
->getOperand(0), dl
));
2633 Results
.push_back(ExpandBSWAP(Node
->getOperand(0), dl
));
2635 case ISD::FRAMEADDR
:
2636 case ISD::RETURNADDR
:
2637 case ISD::FRAME_TO_ARGS_OFFSET
:
2638 Results
.push_back(DAG
.getConstant(0, dl
, Node
->getValueType(0)));
2640 case ISD::EH_DWARF_CFA
: {
2641 SDValue CfaArg
= DAG
.getSExtOrTrunc(Node
->getOperand(0), dl
,
2642 TLI
.getPointerTy(DAG
.getDataLayout()));
2643 SDValue Offset
= DAG
.getNode(ISD::ADD
, dl
,
2644 CfaArg
.getValueType(),
2645 DAG
.getNode(ISD::FRAME_TO_ARGS_OFFSET
, dl
,
2646 CfaArg
.getValueType()),
2648 SDValue FA
= DAG
.getNode(
2649 ISD::FRAMEADDR
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()),
2650 DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
2651 Results
.push_back(DAG
.getNode(ISD::ADD
, dl
, FA
.getValueType(),
2655 case ISD::FLT_ROUNDS_
:
2656 Results
.push_back(DAG
.getConstant(1, dl
, Node
->getValueType(0)));
2658 case ISD::EH_RETURN
:
2662 case ISD::EH_SJLJ_LONGJMP
:
2663 // If the target didn't expand these, there's nothing to do, so just
2664 // preserve the chain and be done.
2665 Results
.push_back(Node
->getOperand(0));
2667 case ISD::READCYCLECOUNTER
:
2668 // If the target didn't expand this, just return 'zero' and preserve the
2670 Results
.append(Node
->getNumValues() - 1,
2671 DAG
.getConstant(0, dl
, Node
->getValueType(0)));
2672 Results
.push_back(Node
->getOperand(0));
2674 case ISD::EH_SJLJ_SETJMP
:
2675 // If the target didn't expand this, just return 'zero' and preserve the
2677 Results
.push_back(DAG
.getConstant(0, dl
, MVT::i32
));
2678 Results
.push_back(Node
->getOperand(0));
2680 case ISD::ATOMIC_LOAD
: {
2681 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2682 SDValue Zero
= DAG
.getConstant(0, dl
, Node
->getValueType(0));
2683 SDVTList VTs
= DAG
.getVTList(Node
->getValueType(0), MVT::Other
);
2684 SDValue Swap
= DAG
.getAtomicCmpSwap(
2685 ISD::ATOMIC_CMP_SWAP
, dl
, cast
<AtomicSDNode
>(Node
)->getMemoryVT(), VTs
,
2686 Node
->getOperand(0), Node
->getOperand(1), Zero
, Zero
,
2687 cast
<AtomicSDNode
>(Node
)->getMemOperand());
2688 Results
.push_back(Swap
.getValue(0));
2689 Results
.push_back(Swap
.getValue(1));
2692 case ISD::ATOMIC_STORE
: {
2693 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2694 SDValue Swap
= DAG
.getAtomic(ISD::ATOMIC_SWAP
, dl
,
2695 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
2696 Node
->getOperand(0),
2697 Node
->getOperand(1), Node
->getOperand(2),
2698 cast
<AtomicSDNode
>(Node
)->getMemOperand());
2699 Results
.push_back(Swap
.getValue(1));
2702 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
: {
2703 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2704 // splits out the success value as a comparison. Expanding the resulting
2705 // ATOMIC_CMP_SWAP will produce a libcall.
2706 SDVTList VTs
= DAG
.getVTList(Node
->getValueType(0), MVT::Other
);
2707 SDValue Res
= DAG
.getAtomicCmpSwap(
2708 ISD::ATOMIC_CMP_SWAP
, dl
, cast
<AtomicSDNode
>(Node
)->getMemoryVT(), VTs
,
2709 Node
->getOperand(0), Node
->getOperand(1), Node
->getOperand(2),
2710 Node
->getOperand(3), cast
<MemSDNode
>(Node
)->getMemOperand());
2712 SDValue ExtRes
= Res
;
2714 SDValue RHS
= Node
->getOperand(1);
2716 EVT AtomicType
= cast
<AtomicSDNode
>(Node
)->getMemoryVT();
2717 EVT OuterType
= Node
->getValueType(0);
2718 switch (TLI
.getExtendForAtomicOps()) {
2719 case ISD::SIGN_EXTEND
:
2720 LHS
= DAG
.getNode(ISD::AssertSext
, dl
, OuterType
, Res
,
2721 DAG
.getValueType(AtomicType
));
2722 RHS
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, OuterType
,
2723 Node
->getOperand(2), DAG
.getValueType(AtomicType
));
2726 case ISD::ZERO_EXTEND
:
2727 LHS
= DAG
.getNode(ISD::AssertZext
, dl
, OuterType
, Res
,
2728 DAG
.getValueType(AtomicType
));
2729 RHS
= DAG
.getZeroExtendInReg(Node
->getOperand(2), dl
, AtomicType
);
2732 case ISD::ANY_EXTEND
:
2733 LHS
= DAG
.getZeroExtendInReg(Res
, dl
, AtomicType
);
2734 RHS
= DAG
.getZeroExtendInReg(Node
->getOperand(2), dl
, AtomicType
);
2737 llvm_unreachable("Invalid atomic op extension");
2741 DAG
.getSetCC(dl
, Node
->getValueType(1), LHS
, RHS
, ISD::SETEQ
);
2743 Results
.push_back(ExtRes
.getValue(0));
2744 Results
.push_back(Success
);
2745 Results
.push_back(Res
.getValue(1));
2748 case ISD::DYNAMIC_STACKALLOC
:
2749 ExpandDYNAMIC_STACKALLOC(Node
, Results
);
2751 case ISD::MERGE_VALUES
:
2752 for (unsigned i
= 0; i
< Node
->getNumValues(); i
++)
2753 Results
.push_back(Node
->getOperand(i
));
2756 EVT VT
= Node
->getValueType(0);
2758 Results
.push_back(DAG
.getConstant(0, dl
, VT
));
2760 assert(VT
.isFloatingPoint() && "Unknown value type!");
2761 Results
.push_back(DAG
.getConstantFP(0, dl
, VT
));
2767 Tmp1
= EmitStackConvert(Node
->getOperand(0), Node
->getValueType(0),
2768 Node
->getValueType(0), dl
);
2769 Results
.push_back(Tmp1
);
2771 case ISD::FP_EXTEND
:
2772 Tmp1
= EmitStackConvert(Node
->getOperand(0),
2773 Node
->getOperand(0).getValueType(),
2774 Node
->getValueType(0), dl
);
2775 Results
.push_back(Tmp1
);
2777 case ISD::SIGN_EXTEND_INREG
: {
2778 EVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
2779 EVT VT
= Node
->getValueType(0);
2781 // An in-register sign-extend of a boolean is a negation:
2782 // 'true' (1) sign-extended is -1.
2783 // 'false' (0) sign-extended is 0.
2784 // However, we must mask the high bits of the source operand because the
2785 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2787 // TODO: Do this for vectors too?
2788 if (ExtraVT
.getSizeInBits() == 1) {
2789 SDValue One
= DAG
.getConstant(1, dl
, VT
);
2790 SDValue And
= DAG
.getNode(ISD::AND
, dl
, VT
, Node
->getOperand(0), One
);
2791 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
2792 SDValue Neg
= DAG
.getNode(ISD::SUB
, dl
, VT
, Zero
, And
);
2793 Results
.push_back(Neg
);
2797 // NOTE: we could fall back on load/store here too for targets without
2798 // SRA. However, it is doubtful that any exist.
2799 EVT ShiftAmountTy
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2800 unsigned BitsDiff
= VT
.getScalarSizeInBits() -
2801 ExtraVT
.getScalarSizeInBits();
2802 SDValue ShiftCst
= DAG
.getConstant(BitsDiff
, dl
, ShiftAmountTy
);
2803 Tmp1
= DAG
.getNode(ISD::SHL
, dl
, Node
->getValueType(0),
2804 Node
->getOperand(0), ShiftCst
);
2805 Tmp1
= DAG
.getNode(ISD::SRA
, dl
, Node
->getValueType(0), Tmp1
, ShiftCst
);
2806 Results
.push_back(Tmp1
);
2809 case ISD::FP_ROUND_INREG
: {
2810 // The only way we can lower this is to turn it into a TRUNCSTORE,
2811 // EXTLOAD pair, targeting a temporary location (a stack slot).
2813 // NOTE: there is a choice here between constantly creating new stack
2814 // slots and always reusing the same one. We currently always create
2815 // new ones, as reuse may inhibit scheduling.
2816 EVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
2817 Tmp1
= EmitStackConvert(Node
->getOperand(0), ExtraVT
,
2818 Node
->getValueType(0), dl
);
2819 Results
.push_back(Tmp1
);
2822 case ISD::UINT_TO_FP
:
2823 if (TLI
.expandUINT_TO_FP(Node
, Tmp1
, DAG
)) {
2824 Results
.push_back(Tmp1
);
2828 case ISD::SINT_TO_FP
:
2829 Tmp1
= ExpandLegalINT_TO_FP(Node
->getOpcode() == ISD::SINT_TO_FP
,
2830 Node
->getOperand(0), Node
->getValueType(0), dl
);
2831 Results
.push_back(Tmp1
);
2833 case ISD::FP_TO_SINT
:
2834 if (TLI
.expandFP_TO_SINT(Node
, Tmp1
, DAG
))
2835 Results
.push_back(Tmp1
);
2837 case ISD::FP_TO_UINT
:
2838 if (TLI
.expandFP_TO_UINT(Node
, Tmp1
, DAG
))
2839 Results
.push_back(Tmp1
);
2842 Results
.push_back(DAG
.expandVAArg(Node
));
2843 Results
.push_back(Results
[0].getValue(1));
2846 Results
.push_back(DAG
.expandVACopy(Node
));
2848 case ISD::EXTRACT_VECTOR_ELT
:
2849 if (Node
->getOperand(0).getValueType().getVectorNumElements() == 1)
2850 // This must be an access of the only element. Return it.
2851 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, Node
->getValueType(0),
2852 Node
->getOperand(0));
2854 Tmp1
= ExpandExtractFromVectorThroughStack(SDValue(Node
, 0));
2855 Results
.push_back(Tmp1
);
2857 case ISD::EXTRACT_SUBVECTOR
:
2858 Results
.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node
, 0)));
2860 case ISD::INSERT_SUBVECTOR
:
2861 Results
.push_back(ExpandInsertToVectorThroughStack(SDValue(Node
, 0)));
2863 case ISD::CONCAT_VECTORS
:
2864 Results
.push_back(ExpandVectorBuildThroughStack(Node
));
2866 case ISD::SCALAR_TO_VECTOR
:
2867 Results
.push_back(ExpandSCALAR_TO_VECTOR(Node
));
2869 case ISD::INSERT_VECTOR_ELT
:
2870 Results
.push_back(ExpandINSERT_VECTOR_ELT(Node
->getOperand(0),
2871 Node
->getOperand(1),
2872 Node
->getOperand(2), dl
));
2874 case ISD::VECTOR_SHUFFLE
: {
2875 SmallVector
<int, 32> NewMask
;
2876 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Node
)->getMask();
2878 EVT VT
= Node
->getValueType(0);
2879 EVT EltVT
= VT
.getVectorElementType();
2880 SDValue Op0
= Node
->getOperand(0);
2881 SDValue Op1
= Node
->getOperand(1);
2882 if (!TLI
.isTypeLegal(EltVT
)) {
2883 EVT NewEltVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), EltVT
);
2885 // BUILD_VECTOR operands are allowed to be wider than the element type.
2886 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2888 if (NewEltVT
.bitsLT(EltVT
)) {
2889 // Convert shuffle node.
2890 // If original node was v4i64 and the new EltVT is i32,
2891 // cast operands to v8i32 and re-build the mask.
2893 // Calculate new VT, the size of the new VT should be equal to original.
2895 EVT::getVectorVT(*DAG
.getContext(), NewEltVT
,
2896 VT
.getSizeInBits() / NewEltVT
.getSizeInBits());
2897 assert(NewVT
.bitsEq(VT
));
2899 // cast operands to new VT
2900 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, Op0
);
2901 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, Op1
);
2903 // Convert the shuffle mask
2904 unsigned int factor
=
2905 NewVT
.getVectorNumElements()/VT
.getVectorNumElements();
2907 // EltVT gets smaller
2910 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
2912 for (unsigned fi
= 0; fi
< factor
; ++fi
)
2913 NewMask
.push_back(Mask
[i
]);
2916 for (unsigned fi
= 0; fi
< factor
; ++fi
)
2917 NewMask
.push_back(Mask
[i
]*factor
+fi
);
2925 unsigned NumElems
= VT
.getVectorNumElements();
2926 SmallVector
<SDValue
, 16> Ops
;
2927 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2929 Ops
.push_back(DAG
.getUNDEF(EltVT
));
2932 unsigned Idx
= Mask
[i
];
2934 Ops
.push_back(DAG
.getNode(
2935 ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
2936 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout()))));
2938 Ops
.push_back(DAG
.getNode(
2939 ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op1
,
2940 DAG
.getConstant(Idx
- NumElems
, dl
,
2941 TLI
.getVectorIdxTy(DAG
.getDataLayout()))));
2944 Tmp1
= DAG
.getBuildVector(VT
, dl
, Ops
);
2945 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2946 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, Node
->getValueType(0), Tmp1
);
2947 Results
.push_back(Tmp1
);
2950 case ISD::EXTRACT_ELEMENT
: {
2951 EVT OpTy
= Node
->getOperand(0).getValueType();
2952 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
2954 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, OpTy
, Node
->getOperand(0),
2955 DAG
.getConstant(OpTy
.getSizeInBits() / 2, dl
,
2956 TLI
.getShiftAmountTy(
2957 Node
->getOperand(0).getValueType(),
2958 DAG
.getDataLayout())));
2959 Tmp1
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), Tmp1
);
2962 Tmp1
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0),
2963 Node
->getOperand(0));
2965 Results
.push_back(Tmp1
);
2968 case ISD::STACKSAVE
:
2969 // Expand to CopyFromReg if the target set
2970 // StackPointerRegisterToSaveRestore.
2971 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
2972 Results
.push_back(DAG
.getCopyFromReg(Node
->getOperand(0), dl
, SP
,
2973 Node
->getValueType(0)));
2974 Results
.push_back(Results
[0].getValue(1));
2976 Results
.push_back(DAG
.getUNDEF(Node
->getValueType(0)));
2977 Results
.push_back(Node
->getOperand(0));
2980 case ISD::STACKRESTORE
:
2981 // Expand to CopyToReg if the target set
2982 // StackPointerRegisterToSaveRestore.
2983 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
2984 Results
.push_back(DAG
.getCopyToReg(Node
->getOperand(0), dl
, SP
,
2985 Node
->getOperand(1)));
2987 Results
.push_back(Node
->getOperand(0));
2990 case ISD::GET_DYNAMIC_AREA_OFFSET
:
2991 Results
.push_back(DAG
.getConstant(0, dl
, Node
->getValueType(0)));
2992 Results
.push_back(Results
[0].getValue(0));
2994 case ISD::FCOPYSIGN
:
2995 Results
.push_back(ExpandFCOPYSIGN(Node
));
2998 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
2999 Tmp1
= DAG
.getConstantFP(-0.0, dl
, Node
->getValueType(0));
3000 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3001 Tmp1
= DAG
.getNode(ISD::FSUB
, dl
, Node
->getValueType(0), Tmp1
,
3002 Node
->getOperand(0));
3003 Results
.push_back(Tmp1
);
3006 Results
.push_back(ExpandFABS(Node
));
3012 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3014 switch (Node
->getOpcode()) {
3015 default: llvm_unreachable("How did we get here?");
3016 case ISD::SMAX
: Pred
= ISD::SETGT
; break;
3017 case ISD::SMIN
: Pred
= ISD::SETLT
; break;
3018 case ISD::UMAX
: Pred
= ISD::SETUGT
; break;
3019 case ISD::UMIN
: Pred
= ISD::SETULT
; break;
3021 Tmp1
= Node
->getOperand(0);
3022 Tmp2
= Node
->getOperand(1);
3023 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
, Tmp2
, Tmp1
, Tmp2
, Pred
);
3024 Results
.push_back(Tmp1
);
3028 case ISD::FMAXNUM
: {
3029 if (SDValue Expanded
= TLI
.expandFMINNUM_FMAXNUM(Node
, DAG
))
3030 Results
.push_back(Expanded
);
3035 EVT VT
= Node
->getValueType(0);
3036 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3037 // fcos which share the same operand and both are used.
3038 if ((TLI
.isOperationLegalOrCustom(ISD::FSINCOS
, VT
) ||
3039 isSinCosLibcallAvailable(Node
, TLI
))
3040 && useSinCos(Node
)) {
3041 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3042 Tmp1
= DAG
.getNode(ISD::FSINCOS
, dl
, VTs
, Node
->getOperand(0));
3043 if (Node
->getOpcode() == ISD::FCOS
)
3044 Tmp1
= Tmp1
.getValue(1);
3045 Results
.push_back(Tmp1
);
3050 llvm_unreachable("Illegal fmad should never be formed");
3052 case ISD::FP16_TO_FP
:
3053 if (Node
->getValueType(0) != MVT::f32
) {
3054 // We can extend to types bigger than f32 in two steps without changing
3055 // the result. Since "f16 -> f32" is much more commonly available, give
3056 // CodeGen the option of emitting that before resorting to a libcall.
3058 DAG
.getNode(ISD::FP16_TO_FP
, dl
, MVT::f32
, Node
->getOperand(0));
3060 DAG
.getNode(ISD::FP_EXTEND
, dl
, Node
->getValueType(0), Res
));
3063 case ISD::FP_TO_FP16
:
3064 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3065 if (!TLI
.useSoftFloat() && TM
.Options
.UnsafeFPMath
) {
3066 SDValue Op
= Node
->getOperand(0);
3067 MVT SVT
= Op
.getSimpleValueType();
3068 if ((SVT
== MVT::f64
|| SVT
== MVT::f80
) &&
3069 TLI
.isOperationLegalOrCustom(ISD::FP_TO_FP16
, MVT::f32
)) {
3070 // Under fastmath, we can expand this node into a fround followed by
3071 // a float-half conversion.
3072 SDValue FloatVal
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, Op
,
3073 DAG
.getIntPtrConstant(0, dl
));
3075 DAG
.getNode(ISD::FP_TO_FP16
, dl
, Node
->getValueType(0), FloatVal
));
3079 case ISD::ConstantFP
: {
3080 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Node
);
3081 // Check to see if this FP immediate is already legal.
3082 // If this is a legal constant, turn it into a TargetConstantFP node.
3083 if (!TLI
.isFPImmLegal(CFP
->getValueAPF(), Node
->getValueType(0)))
3084 Results
.push_back(ExpandConstantFP(CFP
, true));
3087 case ISD::Constant
: {
3088 ConstantSDNode
*CP
= cast
<ConstantSDNode
>(Node
);
3089 Results
.push_back(ExpandConstant(CP
));
3093 EVT VT
= Node
->getValueType(0);
3094 if (TLI
.isOperationLegalOrCustom(ISD::FADD
, VT
) &&
3095 TLI
.isOperationLegalOrCustom(ISD::FNEG
, VT
)) {
3096 const SDNodeFlags Flags
= Node
->getFlags();
3097 Tmp1
= DAG
.getNode(ISD::FNEG
, dl
, VT
, Node
->getOperand(1));
3098 Tmp1
= DAG
.getNode(ISD::FADD
, dl
, VT
, Node
->getOperand(0), Tmp1
, Flags
);
3099 Results
.push_back(Tmp1
);
3104 EVT VT
= Node
->getValueType(0);
3105 assert(TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
) &&
3106 TLI
.isOperationLegalOrCustom(ISD::XOR
, VT
) &&
3107 "Don't know how to expand this subtraction!");
3108 Tmp1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Node
->getOperand(1),
3109 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
3111 Tmp1
= DAG
.getNode(ISD::ADD
, dl
, VT
, Tmp1
, DAG
.getConstant(1, dl
, VT
));
3112 Results
.push_back(DAG
.getNode(ISD::ADD
, dl
, VT
, Node
->getOperand(0), Tmp1
));
3117 EVT VT
= Node
->getValueType(0);
3118 bool isSigned
= Node
->getOpcode() == ISD::SREM
;
3119 unsigned DivOpc
= isSigned
? ISD::SDIV
: ISD::UDIV
;
3120 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3121 Tmp2
= Node
->getOperand(0);
3122 Tmp3
= Node
->getOperand(1);
3123 if (TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
)) {
3124 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3125 Tmp1
= DAG
.getNode(DivRemOpc
, dl
, VTs
, Tmp2
, Tmp3
).getValue(1);
3126 Results
.push_back(Tmp1
);
3127 } else if (TLI
.isOperationLegalOrCustom(DivOpc
, VT
)) {
3129 Tmp1
= DAG
.getNode(DivOpc
, dl
, VT
, Tmp2
, Tmp3
);
3130 Tmp1
= DAG
.getNode(ISD::MUL
, dl
, VT
, Tmp1
, Tmp3
);
3131 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, Tmp2
, Tmp1
);
3132 Results
.push_back(Tmp1
);
3138 bool isSigned
= Node
->getOpcode() == ISD::SDIV
;
3139 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3140 EVT VT
= Node
->getValueType(0);
3141 if (TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
)) {
3142 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3143 Tmp1
= DAG
.getNode(DivRemOpc
, dl
, VTs
, Node
->getOperand(0),
3144 Node
->getOperand(1));
3145 Results
.push_back(Tmp1
);
3151 unsigned ExpandOpcode
=
3152 Node
->getOpcode() == ISD::MULHU
? ISD::UMUL_LOHI
: ISD::SMUL_LOHI
;
3153 EVT VT
= Node
->getValueType(0);
3154 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3156 Tmp1
= DAG
.getNode(ExpandOpcode
, dl
, VTs
, Node
->getOperand(0),
3157 Node
->getOperand(1));
3158 Results
.push_back(Tmp1
.getValue(1));
3161 case ISD::UMUL_LOHI
:
3162 case ISD::SMUL_LOHI
: {
3163 SDValue LHS
= Node
->getOperand(0);
3164 SDValue RHS
= Node
->getOperand(1);
3165 MVT VT
= LHS
.getSimpleValueType();
3166 unsigned MULHOpcode
=
3167 Node
->getOpcode() == ISD::UMUL_LOHI
? ISD::MULHU
: ISD::MULHS
;
3169 if (TLI
.isOperationLegalOrCustom(MULHOpcode
, VT
)) {
3170 Results
.push_back(DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
));
3171 Results
.push_back(DAG
.getNode(MULHOpcode
, dl
, VT
, LHS
, RHS
));
3175 SmallVector
<SDValue
, 4> Halves
;
3176 EVT HalfType
= EVT(VT
).getHalfSizedIntegerVT(*DAG
.getContext());
3177 assert(TLI
.isTypeLegal(HalfType
));
3178 if (TLI
.expandMUL_LOHI(Node
->getOpcode(), VT
, Node
, LHS
, RHS
, Halves
,
3180 TargetLowering::MulExpansionKind::Always
)) {
3181 for (unsigned i
= 0; i
< 2; ++i
) {
3182 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Halves
[2 * i
]);
3183 SDValue Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Halves
[2 * i
+ 1]);
3184 SDValue Shift
= DAG
.getConstant(
3185 HalfType
.getScalarSizeInBits(), dl
,
3186 TLI
.getShiftAmountTy(HalfType
, DAG
.getDataLayout()));
3187 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
3188 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
));
3195 EVT VT
= Node
->getValueType(0);
3196 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3197 // See if multiply or divide can be lowered using two-result operations.
3198 // We just need the low half of the multiply; try both the signed
3199 // and unsigned forms. If the target supports both SMUL_LOHI and
3200 // UMUL_LOHI, form a preference by checking which forms of plain
3201 // MULH it supports.
3202 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
);
3203 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
);
3204 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
);
3205 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
);
3206 unsigned OpToUse
= 0;
3207 if (HasSMUL_LOHI
&& !HasMULHS
) {
3208 OpToUse
= ISD::SMUL_LOHI
;
3209 } else if (HasUMUL_LOHI
&& !HasMULHU
) {
3210 OpToUse
= ISD::UMUL_LOHI
;
3211 } else if (HasSMUL_LOHI
) {
3212 OpToUse
= ISD::SMUL_LOHI
;
3213 } else if (HasUMUL_LOHI
) {
3214 OpToUse
= ISD::UMUL_LOHI
;
3217 Results
.push_back(DAG
.getNode(OpToUse
, dl
, VTs
, Node
->getOperand(0),
3218 Node
->getOperand(1)));
3223 EVT HalfType
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
3224 if (TLI
.isOperationLegalOrCustom(ISD::ZERO_EXTEND
, VT
) &&
3225 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND
, VT
) &&
3226 TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
) &&
3227 TLI
.isOperationLegalOrCustom(ISD::OR
, VT
) &&
3228 TLI
.expandMUL(Node
, Lo
, Hi
, HalfType
, DAG
,
3229 TargetLowering::MulExpansionKind::OnlyLegalOrCustom
)) {
3230 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Lo
);
3231 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Hi
);
3233 DAG
.getConstant(HalfType
.getSizeInBits(), dl
,
3234 TLI
.getShiftAmountTy(HalfType
, DAG
.getDataLayout()));
3235 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
3236 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
));
3242 if (TLI
.expandFunnelShift(Node
, Tmp1
, DAG
))
3243 Results
.push_back(Tmp1
);
3247 if (TLI
.expandROT(Node
, Tmp1
, DAG
))
3248 Results
.push_back(Tmp1
);
3254 Results
.push_back(TLI
.expandAddSubSat(Node
, DAG
));
3258 Results
.push_back(TLI
.expandFixedPointMul(Node
, DAG
));
3262 SDValue LHS
= Node
->getOperand(0);
3263 SDValue RHS
= Node
->getOperand(1);
3264 SDValue Sum
= DAG
.getNode(Node
->getOpcode() == ISD::SADDO
?
3265 ISD::ADD
: ISD::SUB
, dl
, LHS
.getValueType(),
3267 Results
.push_back(Sum
);
3268 EVT ResultType
= Node
->getValueType(1);
3269 EVT OType
= getSetCCResultType(Node
->getValueType(0));
3271 SDValue Zero
= DAG
.getConstant(0, dl
, LHS
.getValueType());
3273 // LHSSign -> LHS >= 0
3274 // RHSSign -> RHS >= 0
3275 // SumSign -> Sum >= 0
3278 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3280 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3281 SDValue LHSSign
= DAG
.getSetCC(dl
, OType
, LHS
, Zero
, ISD::SETGE
);
3282 SDValue RHSSign
= DAG
.getSetCC(dl
, OType
, RHS
, Zero
, ISD::SETGE
);
3283 SDValue SignsMatch
= DAG
.getSetCC(dl
, OType
, LHSSign
, RHSSign
,
3284 Node
->getOpcode() == ISD::SADDO
?
3285 ISD::SETEQ
: ISD::SETNE
);
3287 SDValue SumSign
= DAG
.getSetCC(dl
, OType
, Sum
, Zero
, ISD::SETGE
);
3288 SDValue SumSignNE
= DAG
.getSetCC(dl
, OType
, LHSSign
, SumSign
, ISD::SETNE
);
3290 SDValue Cmp
= DAG
.getNode(ISD::AND
, dl
, OType
, SignsMatch
, SumSignNE
);
3291 Results
.push_back(DAG
.getBoolExtOrTrunc(Cmp
, dl
, ResultType
, ResultType
));
3296 SDValue LHS
= Node
->getOperand(0);
3297 SDValue RHS
= Node
->getOperand(1);
3298 bool IsAdd
= Node
->getOpcode() == ISD::UADDO
;
3299 // If ADD/SUBCARRY is legal, use that instead.
3300 unsigned OpcCarry
= IsAdd
? ISD::ADDCARRY
: ISD::SUBCARRY
;
3301 if (TLI
.isOperationLegalOrCustom(OpcCarry
, Node
->getValueType(0))) {
3302 SDValue CarryIn
= DAG
.getConstant(0, dl
, Node
->getValueType(1));
3303 SDValue NodeCarry
= DAG
.getNode(OpcCarry
, dl
, Node
->getVTList(),
3304 { LHS
, RHS
, CarryIn
});
3305 Results
.push_back(SDValue(NodeCarry
.getNode(), 0));
3306 Results
.push_back(SDValue(NodeCarry
.getNode(), 1));
3310 SDValue Sum
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
3311 LHS
.getValueType(), LHS
, RHS
);
3312 Results
.push_back(Sum
);
3314 EVT ResultType
= Node
->getValueType(1);
3315 EVT SetCCType
= getSetCCResultType(Node
->getValueType(0));
3316 ISD::CondCode CC
= IsAdd
? ISD::SETULT
: ISD::SETUGT
;
3317 SDValue SetCC
= DAG
.getSetCC(dl
, SetCCType
, Sum
, LHS
, CC
);
3319 Results
.push_back(DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
));
3324 auto Pair
= TLI
.expandMULO(Node
, DAG
);
3325 Results
.push_back(Pair
.first
);
3326 Results
.push_back(Pair
.second
);
3329 case ISD::BUILD_PAIR
: {
3330 EVT PairTy
= Node
->getValueType(0);
3331 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, PairTy
, Node
->getOperand(0));
3332 Tmp2
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, PairTy
, Node
->getOperand(1));
3334 ISD::SHL
, dl
, PairTy
, Tmp2
,
3335 DAG
.getConstant(PairTy
.getSizeInBits() / 2, dl
,
3336 TLI
.getShiftAmountTy(PairTy
, DAG
.getDataLayout())));
3337 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, PairTy
, Tmp1
, Tmp2
));
3341 Tmp1
= Node
->getOperand(0);
3342 Tmp2
= Node
->getOperand(1);
3343 Tmp3
= Node
->getOperand(2);
3344 if (Tmp1
.getOpcode() == ISD::SETCC
) {
3345 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
.getOperand(0), Tmp1
.getOperand(1),
3347 cast
<CondCodeSDNode
>(Tmp1
.getOperand(2))->get());
3349 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
,
3350 DAG
.getConstant(0, dl
, Tmp1
.getValueType()),
3351 Tmp2
, Tmp3
, ISD::SETNE
);
3353 Results
.push_back(Tmp1
);
3356 SDValue Chain
= Node
->getOperand(0);
3357 SDValue Table
= Node
->getOperand(1);
3358 SDValue Index
= Node
->getOperand(2);
3360 const DataLayout
&TD
= DAG
.getDataLayout();
3361 EVT PTy
= TLI
.getPointerTy(TD
);
3363 unsigned EntrySize
=
3364 DAG
.getMachineFunction().getJumpTableInfo()->getEntrySize(TD
);
3366 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3367 // This transformation needs to be done here since otherwise the MIPS
3368 // backend will end up emitting a three instruction multiply sequence
3369 // instead of a single shift and MSP430 will call a runtime function.
3370 if (llvm::isPowerOf2_32(EntrySize
))
3371 Index
= DAG
.getNode(
3372 ISD::SHL
, dl
, Index
.getValueType(), Index
,
3373 DAG
.getConstant(llvm::Log2_32(EntrySize
), dl
, Index
.getValueType()));
3375 Index
= DAG
.getNode(ISD::MUL
, dl
, Index
.getValueType(), Index
,
3376 DAG
.getConstant(EntrySize
, dl
, Index
.getValueType()));
3377 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, Index
.getValueType(),
3380 EVT MemVT
= EVT::getIntegerVT(*DAG
.getContext(), EntrySize
* 8);
3381 SDValue LD
= DAG
.getExtLoad(
3382 ISD::SEXTLOAD
, dl
, PTy
, Chain
, Addr
,
3383 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()), MemVT
);
3385 if (TLI
.isJumpTableRelative()) {
3386 // For PIC, the sequence is:
3387 // BRIND(load(Jumptable + index) + RelocBase)
3388 // RelocBase can be JumpTable, GOT or some sort of global base.
3389 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Addr
,
3390 TLI
.getPICJumpTableRelocBase(Table
, DAG
));
3393 Tmp1
= TLI
.expandIndirectJTBranch(dl
, LD
.getValue(1), Addr
, DAG
);
3394 Results
.push_back(Tmp1
);
3398 // Expand brcond's setcc into its constituent parts and create a BR_CC
3400 Tmp1
= Node
->getOperand(0);
3401 Tmp2
= Node
->getOperand(1);
3402 if (Tmp2
.getOpcode() == ISD::SETCC
) {
3403 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
,
3404 Tmp1
, Tmp2
.getOperand(2),
3405 Tmp2
.getOperand(0), Tmp2
.getOperand(1),
3406 Node
->getOperand(2));
3408 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3409 if (Tmp2
.isUndef() ||
3410 (Tmp2
.getOpcode() == ISD::AND
&&
3411 isa
<ConstantSDNode
>(Tmp2
.getOperand(1)) &&
3412 cast
<ConstantSDNode
>(Tmp2
.getOperand(1))->getZExtValue() == 1))
3415 Tmp3
= DAG
.getNode(ISD::AND
, dl
, Tmp2
.getValueType(), Tmp2
,
3416 DAG
.getConstant(1, dl
, Tmp2
.getValueType()));
3417 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
, Tmp1
,
3418 DAG
.getCondCode(ISD::SETNE
), Tmp3
,
3419 DAG
.getConstant(0, dl
, Tmp3
.getValueType()),
3420 Node
->getOperand(2));
3422 Results
.push_back(Tmp1
);
3425 Tmp1
= Node
->getOperand(0);
3426 Tmp2
= Node
->getOperand(1);
3427 Tmp3
= Node
->getOperand(2);
3428 bool Legalized
= LegalizeSetCCCondCode(Node
->getValueType(0), Tmp1
, Tmp2
,
3429 Tmp3
, NeedInvert
, dl
);
3432 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3433 // condition code, create a new SETCC node.
3435 Tmp1
= DAG
.getNode(ISD::SETCC
, dl
, Node
->getValueType(0),
3438 // If we expanded the SETCC by inverting the condition code, then wrap
3439 // the existing SETCC in a NOT to restore the intended condition.
3441 Tmp1
= DAG
.getLogicalNOT(dl
, Tmp1
, Tmp1
->getValueType(0));
3443 Results
.push_back(Tmp1
);
3447 // Otherwise, SETCC for the given comparison type must be completely
3448 // illegal; expand it into a SELECT_CC.
3449 EVT VT
= Node
->getValueType(0);
3451 switch (TLI
.getBooleanContents(Tmp1
.getValueType())) {
3452 case TargetLowering::ZeroOrOneBooleanContent
:
3453 case TargetLowering::UndefinedBooleanContent
:
3456 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
3460 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, Tmp1
, Tmp2
,
3461 DAG
.getConstant(TrueValue
, dl
, VT
),
3462 DAG
.getConstant(0, dl
, VT
),
3464 Results
.push_back(Tmp1
);
3467 case ISD::SELECT_CC
: {
3468 Tmp1
= Node
->getOperand(0); // LHS
3469 Tmp2
= Node
->getOperand(1); // RHS
3470 Tmp3
= Node
->getOperand(2); // True
3471 Tmp4
= Node
->getOperand(3); // False
3472 EVT VT
= Node
->getValueType(0);
3473 SDValue CC
= Node
->getOperand(4);
3474 ISD::CondCode CCOp
= cast
<CondCodeSDNode
>(CC
)->get();
3476 if (TLI
.isCondCodeLegalOrCustom(CCOp
, Tmp1
.getSimpleValueType())) {
3477 // If the condition code is legal, then we need to expand this
3478 // node using SETCC and SELECT.
3479 EVT CmpVT
= Tmp1
.getValueType();
3480 assert(!TLI
.isOperationExpand(ISD::SELECT
, VT
) &&
3481 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3484 TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), CmpVT
);
3485 SDValue Cond
= DAG
.getNode(ISD::SETCC
, dl
, CCVT
, Tmp1
, Tmp2
, CC
);
3486 Results
.push_back(DAG
.getSelect(dl
, VT
, Cond
, Tmp3
, Tmp4
));
3490 // SELECT_CC is legal, so the condition code must not be.
3491 bool Legalized
= false;
3492 // Try to legalize by inverting the condition. This is for targets that
3493 // might support an ordered version of a condition, but not the unordered
3494 // version (or vice versa).
3495 ISD::CondCode InvCC
= ISD::getSetCCInverse(CCOp
,
3496 Tmp1
.getValueType().isInteger());
3497 if (TLI
.isCondCodeLegalOrCustom(InvCC
, Tmp1
.getSimpleValueType())) {
3498 // Use the new condition code and swap true and false
3500 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
, Tmp2
, Tmp4
, Tmp3
, InvCC
);
3502 // If The inverse is not legal, then try to swap the arguments using
3503 // the inverse condition code.
3504 ISD::CondCode SwapInvCC
= ISD::getSetCCSwappedOperands(InvCC
);
3505 if (TLI
.isCondCodeLegalOrCustom(SwapInvCC
, Tmp1
.getSimpleValueType())) {
3506 // The swapped inverse condition is legal, so swap true and false,
3509 Tmp1
= DAG
.getSelectCC(dl
, Tmp2
, Tmp1
, Tmp4
, Tmp3
, SwapInvCC
);
3514 Legalized
= LegalizeSetCCCondCode(
3515 getSetCCResultType(Tmp1
.getValueType()), Tmp1
, Tmp2
, CC
, NeedInvert
,
3518 assert(Legalized
&& "Can't legalize SELECT_CC with legal condition!");
3520 // If we expanded the SETCC by inverting the condition code, then swap
3521 // the True/False operands to match.
3523 std::swap(Tmp3
, Tmp4
);
3525 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3526 // condition code, create a new SELECT_CC node.
3528 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, Node
->getValueType(0),
3529 Tmp1
, Tmp2
, Tmp3
, Tmp4
, CC
);
3531 Tmp2
= DAG
.getConstant(0, dl
, Tmp1
.getValueType());
3532 CC
= DAG
.getCondCode(ISD::SETNE
);
3533 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, Node
->getValueType(0), Tmp1
,
3534 Tmp2
, Tmp3
, Tmp4
, CC
);
3537 Results
.push_back(Tmp1
);
3541 Tmp1
= Node
->getOperand(0); // Chain
3542 Tmp2
= Node
->getOperand(2); // LHS
3543 Tmp3
= Node
->getOperand(3); // RHS
3544 Tmp4
= Node
->getOperand(1); // CC
3546 bool Legalized
= LegalizeSetCCCondCode(getSetCCResultType(
3547 Tmp2
.getValueType()), Tmp2
, Tmp3
, Tmp4
, NeedInvert
, dl
);
3549 assert(Legalized
&& "Can't legalize BR_CC with legal condition!");
3551 assert(!NeedInvert
&& "Don't know how to invert BR_CC!");
3553 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3555 if (Tmp4
.getNode()) {
3556 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0), Tmp1
,
3557 Tmp4
, Tmp2
, Tmp3
, Node
->getOperand(4));
3559 Tmp3
= DAG
.getConstant(0, dl
, Tmp2
.getValueType());
3560 Tmp4
= DAG
.getCondCode(ISD::SETNE
);
3561 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0), Tmp1
, Tmp4
,
3562 Tmp2
, Tmp3
, Node
->getOperand(4));
3564 Results
.push_back(Tmp1
);
3567 case ISD::BUILD_VECTOR
:
3568 Results
.push_back(ExpandBUILD_VECTOR(Node
));
3573 // Scalarize vector SRA/SRL/SHL.
3574 EVT VT
= Node
->getValueType(0);
3575 assert(VT
.isVector() && "Unable to legalize non-vector shift");
3576 assert(TLI
.isTypeLegal(VT
.getScalarType())&& "Element type must be legal");
3577 unsigned NumElem
= VT
.getVectorNumElements();
3579 SmallVector
<SDValue
, 8> Scalars
;
3580 for (unsigned Idx
= 0; Idx
< NumElem
; Idx
++) {
3581 SDValue Ex
= DAG
.getNode(
3582 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getScalarType(), Node
->getOperand(0),
3583 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3584 SDValue Sh
= DAG
.getNode(
3585 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getScalarType(), Node
->getOperand(1),
3586 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3587 Scalars
.push_back(DAG
.getNode(Node
->getOpcode(), dl
,
3588 VT
.getScalarType(), Ex
, Sh
));
3591 SDValue Result
= DAG
.getBuildVector(Node
->getValueType(0), dl
, Scalars
);
3592 ReplaceNode(SDValue(Node
, 0), Result
);
3595 case ISD::GLOBAL_OFFSET_TABLE
:
3596 case ISD::GlobalAddress
:
3597 case ISD::GlobalTLSAddress
:
3598 case ISD::ExternalSymbol
:
3599 case ISD::ConstantPool
:
3600 case ISD::JumpTable
:
3601 case ISD::INTRINSIC_W_CHAIN
:
3602 case ISD::INTRINSIC_WO_CHAIN
:
3603 case ISD::INTRINSIC_VOID
:
3604 // FIXME: Custom lowering for these operations shouldn't return null!
3608 // Replace the original node with the legalized result.
3609 if (Results
.empty()) {
3610 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3614 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3615 ReplaceNode(Node
, Results
.data());
3619 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode
*Node
) {
3620 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3621 SmallVector
<SDValue
, 8> Results
;
3623 // FIXME: Check flags on the node to see if we can use a finite call.
3624 bool CanUseFiniteLibCall
= TM
.Options
.NoInfsFPMath
&& TM
.Options
.NoNaNsFPMath
;
3625 unsigned Opc
= Node
->getOpcode();
3627 case ISD::ATOMIC_FENCE
: {
3628 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3629 // FIXME: handle "fence singlethread" more efficiently.
3630 TargetLowering::ArgListTy Args
;
3632 TargetLowering::CallLoweringInfo
CLI(DAG
);
3634 .setChain(Node
->getOperand(0))
3636 CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
3637 DAG
.getExternalSymbol("__sync_synchronize",
3638 TLI
.getPointerTy(DAG
.getDataLayout())),
3641 std::pair
<SDValue
, SDValue
> CallResult
= TLI
.LowerCallTo(CLI
);
3643 Results
.push_back(CallResult
.second
);
3646 // By default, atomic intrinsics are marked Legal and lowered. Targets
3647 // which don't support them directly, however, may want libcalls, in which
3648 // case they mark them Expand, and we get here.
3649 case ISD::ATOMIC_SWAP
:
3650 case ISD::ATOMIC_LOAD_ADD
:
3651 case ISD::ATOMIC_LOAD_SUB
:
3652 case ISD::ATOMIC_LOAD_AND
:
3653 case ISD::ATOMIC_LOAD_CLR
:
3654 case ISD::ATOMIC_LOAD_OR
:
3655 case ISD::ATOMIC_LOAD_XOR
:
3656 case ISD::ATOMIC_LOAD_NAND
:
3657 case ISD::ATOMIC_LOAD_MIN
:
3658 case ISD::ATOMIC_LOAD_MAX
:
3659 case ISD::ATOMIC_LOAD_UMIN
:
3660 case ISD::ATOMIC_LOAD_UMAX
:
3661 case ISD::ATOMIC_CMP_SWAP
: {
3662 MVT VT
= cast
<AtomicSDNode
>(Node
)->getMemoryVT().getSimpleVT();
3663 RTLIB::Libcall LC
= RTLIB::getSYNC(Opc
, VT
);
3664 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected atomic op or value type!");
3666 std::pair
<SDValue
, SDValue
> Tmp
= ExpandChainLibCall(LC
, Node
, false);
3667 Results
.push_back(Tmp
.first
);
3668 Results
.push_back(Tmp
.second
);
3672 // If this operation is not supported, lower it to 'abort()' call
3673 TargetLowering::ArgListTy Args
;
3674 TargetLowering::CallLoweringInfo
CLI(DAG
);
3676 .setChain(Node
->getOperand(0))
3677 .setLibCallee(CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
3678 DAG
.getExternalSymbol(
3679 "abort", TLI
.getPointerTy(DAG
.getDataLayout())),
3681 std::pair
<SDValue
, SDValue
> CallResult
= TLI
.LowerCallTo(CLI
);
3683 Results
.push_back(CallResult
.second
);
3687 case ISD::STRICT_FMINNUM
:
3688 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMIN_F32
, RTLIB::FMIN_F64
,
3689 RTLIB::FMIN_F80
, RTLIB::FMIN_F128
,
3690 RTLIB::FMIN_PPCF128
));
3693 case ISD::STRICT_FMAXNUM
:
3694 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMAX_F32
, RTLIB::FMAX_F64
,
3695 RTLIB::FMAX_F80
, RTLIB::FMAX_F128
,
3696 RTLIB::FMAX_PPCF128
));
3699 case ISD::STRICT_FSQRT
:
3700 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SQRT_F32
, RTLIB::SQRT_F64
,
3701 RTLIB::SQRT_F80
, RTLIB::SQRT_F128
,
3702 RTLIB::SQRT_PPCF128
));
3705 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::CBRT_F32
, RTLIB::CBRT_F64
,
3706 RTLIB::CBRT_F80
, RTLIB::CBRT_F128
,
3707 RTLIB::CBRT_PPCF128
));
3710 case ISD::STRICT_FSIN
:
3711 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SIN_F32
, RTLIB::SIN_F64
,
3712 RTLIB::SIN_F80
, RTLIB::SIN_F128
,
3713 RTLIB::SIN_PPCF128
));
3716 case ISD::STRICT_FCOS
:
3717 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::COS_F32
, RTLIB::COS_F64
,
3718 RTLIB::COS_F80
, RTLIB::COS_F128
,
3719 RTLIB::COS_PPCF128
));
3722 // Expand into sincos libcall.
3723 ExpandSinCosLibCall(Node
, Results
);
3726 case ISD::STRICT_FLOG
:
3727 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log_finite
))
3728 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG_FINITE_F32
,
3729 RTLIB::LOG_FINITE_F64
,
3730 RTLIB::LOG_FINITE_F80
,
3731 RTLIB::LOG_FINITE_F128
,
3732 RTLIB::LOG_FINITE_PPCF128
));
3734 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG_F32
, RTLIB::LOG_F64
,
3735 RTLIB::LOG_F80
, RTLIB::LOG_F128
,
3736 RTLIB::LOG_PPCF128
));
3739 case ISD::STRICT_FLOG2
:
3740 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log2_finite
))
3741 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG2_FINITE_F32
,
3742 RTLIB::LOG2_FINITE_F64
,
3743 RTLIB::LOG2_FINITE_F80
,
3744 RTLIB::LOG2_FINITE_F128
,
3745 RTLIB::LOG2_FINITE_PPCF128
));
3747 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG2_F32
, RTLIB::LOG2_F64
,
3748 RTLIB::LOG2_F80
, RTLIB::LOG2_F128
,
3749 RTLIB::LOG2_PPCF128
));
3752 case ISD::STRICT_FLOG10
:
3753 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log10_finite
))
3754 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG10_FINITE_F32
,
3755 RTLIB::LOG10_FINITE_F64
,
3756 RTLIB::LOG10_FINITE_F80
,
3757 RTLIB::LOG10_FINITE_F128
,
3758 RTLIB::LOG10_FINITE_PPCF128
));
3760 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG10_F32
, RTLIB::LOG10_F64
,
3761 RTLIB::LOG10_F80
, RTLIB::LOG10_F128
,
3762 RTLIB::LOG10_PPCF128
));
3765 case ISD::STRICT_FEXP
:
3766 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_exp_finite
))
3767 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP_FINITE_F32
,
3768 RTLIB::EXP_FINITE_F64
,
3769 RTLIB::EXP_FINITE_F80
,
3770 RTLIB::EXP_FINITE_F128
,
3771 RTLIB::EXP_FINITE_PPCF128
));
3773 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP_F32
, RTLIB::EXP_F64
,
3774 RTLIB::EXP_F80
, RTLIB::EXP_F128
,
3775 RTLIB::EXP_PPCF128
));
3778 case ISD::STRICT_FEXP2
:
3779 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_exp2_finite
))
3780 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP2_FINITE_F32
,
3781 RTLIB::EXP2_FINITE_F64
,
3782 RTLIB::EXP2_FINITE_F80
,
3783 RTLIB::EXP2_FINITE_F128
,
3784 RTLIB::EXP2_FINITE_PPCF128
));
3786 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP2_F32
, RTLIB::EXP2_F64
,
3787 RTLIB::EXP2_F80
, RTLIB::EXP2_F128
,
3788 RTLIB::EXP2_PPCF128
));
3791 case ISD::STRICT_FTRUNC
:
3792 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::TRUNC_F32
, RTLIB::TRUNC_F64
,
3793 RTLIB::TRUNC_F80
, RTLIB::TRUNC_F128
,
3794 RTLIB::TRUNC_PPCF128
));
3797 case ISD::STRICT_FFLOOR
:
3798 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FLOOR_F32
, RTLIB::FLOOR_F64
,
3799 RTLIB::FLOOR_F80
, RTLIB::FLOOR_F128
,
3800 RTLIB::FLOOR_PPCF128
));
3803 case ISD::STRICT_FCEIL
:
3804 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::CEIL_F32
, RTLIB::CEIL_F64
,
3805 RTLIB::CEIL_F80
, RTLIB::CEIL_F128
,
3806 RTLIB::CEIL_PPCF128
));
3809 case ISD::STRICT_FRINT
:
3810 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::RINT_F32
, RTLIB::RINT_F64
,
3811 RTLIB::RINT_F80
, RTLIB::RINT_F128
,
3812 RTLIB::RINT_PPCF128
));
3814 case ISD::FNEARBYINT
:
3815 case ISD::STRICT_FNEARBYINT
:
3816 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::NEARBYINT_F32
,
3817 RTLIB::NEARBYINT_F64
,
3818 RTLIB::NEARBYINT_F80
,
3819 RTLIB::NEARBYINT_F128
,
3820 RTLIB::NEARBYINT_PPCF128
));
3823 case ISD::STRICT_FROUND
:
3824 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::ROUND_F32
,
3828 RTLIB::ROUND_PPCF128
));
3831 case ISD::STRICT_FPOWI
:
3832 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POWI_F32
, RTLIB::POWI_F64
,
3833 RTLIB::POWI_F80
, RTLIB::POWI_F128
,
3834 RTLIB::POWI_PPCF128
));
3837 case ISD::STRICT_FPOW
:
3838 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_pow_finite
))
3839 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POW_FINITE_F32
,
3840 RTLIB::POW_FINITE_F64
,
3841 RTLIB::POW_FINITE_F80
,
3842 RTLIB::POW_FINITE_F128
,
3843 RTLIB::POW_FINITE_PPCF128
));
3845 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POW_F32
, RTLIB::POW_F64
,
3846 RTLIB::POW_F80
, RTLIB::POW_F128
,
3847 RTLIB::POW_PPCF128
));
3850 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::DIV_F32
, RTLIB::DIV_F64
,
3851 RTLIB::DIV_F80
, RTLIB::DIV_F128
,
3852 RTLIB::DIV_PPCF128
));
3855 case ISD::STRICT_FREM
:
3856 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::REM_F32
, RTLIB::REM_F64
,
3857 RTLIB::REM_F80
, RTLIB::REM_F128
,
3858 RTLIB::REM_PPCF128
));
3861 case ISD::STRICT_FMA
:
3862 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMA_F32
, RTLIB::FMA_F64
,
3863 RTLIB::FMA_F80
, RTLIB::FMA_F128
,
3864 RTLIB::FMA_PPCF128
));
3867 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::ADD_F32
, RTLIB::ADD_F64
,
3868 RTLIB::ADD_F80
, RTLIB::ADD_F128
,
3869 RTLIB::ADD_PPCF128
));
3872 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::MUL_F32
, RTLIB::MUL_F64
,
3873 RTLIB::MUL_F80
, RTLIB::MUL_F128
,
3874 RTLIB::MUL_PPCF128
));
3876 case ISD::FP16_TO_FP
:
3877 if (Node
->getValueType(0) == MVT::f32
) {
3878 Results
.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32
, Node
, false));
3881 case ISD::FP_TO_FP16
: {
3883 RTLIB::getFPROUND(Node
->getOperand(0).getValueType(), MVT::f16
);
3884 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unable to expand fp_to_fp16");
3885 Results
.push_back(ExpandLibCall(LC
, Node
, false));
3889 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SUB_F32
, RTLIB::SUB_F64
,
3890 RTLIB::SUB_F80
, RTLIB::SUB_F128
,
3891 RTLIB::SUB_PPCF128
));
3894 Results
.push_back(ExpandIntLibCall(Node
, true,
3896 RTLIB::SREM_I16
, RTLIB::SREM_I32
,
3897 RTLIB::SREM_I64
, RTLIB::SREM_I128
));
3900 Results
.push_back(ExpandIntLibCall(Node
, false,
3902 RTLIB::UREM_I16
, RTLIB::UREM_I32
,
3903 RTLIB::UREM_I64
, RTLIB::UREM_I128
));
3906 Results
.push_back(ExpandIntLibCall(Node
, true,
3908 RTLIB::SDIV_I16
, RTLIB::SDIV_I32
,
3909 RTLIB::SDIV_I64
, RTLIB::SDIV_I128
));
3912 Results
.push_back(ExpandIntLibCall(Node
, false,
3914 RTLIB::UDIV_I16
, RTLIB::UDIV_I32
,
3915 RTLIB::UDIV_I64
, RTLIB::UDIV_I128
));
3919 // Expand into divrem libcall
3920 ExpandDivRemLibCall(Node
, Results
);
3923 Results
.push_back(ExpandIntLibCall(Node
, false,
3925 RTLIB::MUL_I16
, RTLIB::MUL_I32
,
3926 RTLIB::MUL_I64
, RTLIB::MUL_I128
));
3928 case ISD::CTLZ_ZERO_UNDEF
:
3929 switch (Node
->getSimpleValueType(0).SimpleTy
) {
3931 llvm_unreachable("LibCall explicitly requested, but not available");
3933 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I32
, Node
, false));
3936 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I64
, Node
, false));
3939 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I128
, Node
, false));
3945 // Replace the original node with the legalized result.
3946 if (!Results
.empty()) {
3947 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
3948 ReplaceNode(Node
, Results
.data());
3950 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
3953 // Determine the vector type to use in place of an original scalar element when
3954 // promoting equally sized vectors.
3955 static MVT
getPromotedVectorElementType(const TargetLowering
&TLI
,
3956 MVT EltVT
, MVT NewEltVT
) {
3957 unsigned OldEltsPerNewElt
= EltVT
.getSizeInBits() / NewEltVT
.getSizeInBits();
3958 MVT MidVT
= MVT::getVectorVT(NewEltVT
, OldEltsPerNewElt
);
3959 assert(TLI
.isTypeLegal(MidVT
) && "unexpected");
3963 void SelectionDAGLegalize::PromoteNode(SDNode
*Node
) {
3964 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
3965 SmallVector
<SDValue
, 8> Results
;
3966 MVT OVT
= Node
->getSimpleValueType(0);
3967 if (Node
->getOpcode() == ISD::UINT_TO_FP
||
3968 Node
->getOpcode() == ISD::SINT_TO_FP
||
3969 Node
->getOpcode() == ISD::SETCC
||
3970 Node
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
3971 Node
->getOpcode() == ISD::INSERT_VECTOR_ELT
) {
3972 OVT
= Node
->getOperand(0).getSimpleValueType();
3974 if (Node
->getOpcode() == ISD::BR_CC
)
3975 OVT
= Node
->getOperand(2).getSimpleValueType();
3976 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
3978 SDValue Tmp1
, Tmp2
, Tmp3
;
3979 switch (Node
->getOpcode()) {
3981 case ISD::CTTZ_ZERO_UNDEF
:
3983 case ISD::CTLZ_ZERO_UNDEF
:
3985 // Zero extend the argument.
3986 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
3987 if (Node
->getOpcode() == ISD::CTTZ
) {
3988 // The count is the same in the promoted type except if the original
3989 // value was zero. This can be handled by setting the bit just off
3990 // the top of the original type.
3991 auto TopBit
= APInt::getOneBitSet(NVT
.getSizeInBits(),
3992 OVT
.getSizeInBits());
3993 Tmp1
= DAG
.getNode(ISD::OR
, dl
, NVT
, Tmp1
,
3994 DAG
.getConstant(TopBit
, dl
, NVT
));
3996 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3997 // already the correct result.
3998 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
3999 if (Node
->getOpcode() == ISD::CTLZ
||
4000 Node
->getOpcode() == ISD::CTLZ_ZERO_UNDEF
) {
4001 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4002 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Tmp1
,
4003 DAG
.getConstant(NVT
.getSizeInBits() -
4004 OVT
.getSizeInBits(), dl
, NVT
));
4006 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4008 case ISD::BITREVERSE
:
4010 unsigned DiffBits
= NVT
.getSizeInBits() - OVT
.getSizeInBits();
4011 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4012 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4014 ISD::SRL
, dl
, NVT
, Tmp1
,
4015 DAG
.getConstant(DiffBits
, dl
,
4016 TLI
.getShiftAmountTy(NVT
, DAG
.getDataLayout())));
4018 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4021 case ISD::FP_TO_UINT
:
4022 case ISD::FP_TO_SINT
:
4023 Tmp1
= PromoteLegalFP_TO_INT(Node
->getOperand(0), Node
->getValueType(0),
4024 Node
->getOpcode() == ISD::FP_TO_SINT
, dl
);
4025 Results
.push_back(Tmp1
);
4027 case ISD::UINT_TO_FP
:
4028 case ISD::SINT_TO_FP
:
4029 Tmp1
= PromoteLegalINT_TO_FP(Node
->getOperand(0), Node
->getValueType(0),
4030 Node
->getOpcode() == ISD::SINT_TO_FP
, dl
);
4031 Results
.push_back(Tmp1
);
4034 SDValue Chain
= Node
->getOperand(0); // Get the chain.
4035 SDValue Ptr
= Node
->getOperand(1); // Get the pointer.
4038 if (OVT
.isVector()) {
4039 TruncOp
= ISD::BITCAST
;
4041 assert(OVT
.isInteger()
4042 && "VAARG promotion is supported only for vectors or integer types");
4043 TruncOp
= ISD::TRUNCATE
;
4046 // Perform the larger operation, then convert back
4047 Tmp1
= DAG
.getVAArg(NVT
, dl
, Chain
, Ptr
, Node
->getOperand(2),
4048 Node
->getConstantOperandVal(3));
4049 Chain
= Tmp1
.getValue(1);
4051 Tmp2
= DAG
.getNode(TruncOp
, dl
, OVT
, Tmp1
);
4053 // Modified the chain result - switch anything that used the old chain to
4055 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), Tmp2
);
4056 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), Chain
);
4058 UpdatedNodes
->insert(Tmp2
.getNode());
4059 UpdatedNodes
->insert(Chain
.getNode());
4072 unsigned ExtOp
, TruncOp
;
4073 if (OVT
.isVector()) {
4074 ExtOp
= ISD::BITCAST
;
4075 TruncOp
= ISD::BITCAST
;
4077 assert(OVT
.isInteger() && "Cannot promote logic operation");
4079 switch (Node
->getOpcode()) {
4081 ExtOp
= ISD::ANY_EXTEND
;
4085 ExtOp
= ISD::SIGN_EXTEND
;
4089 ExtOp
= ISD::ZERO_EXTEND
;
4092 TruncOp
= ISD::TRUNCATE
;
4094 // Promote each of the values to the new type.
4095 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4096 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4097 // Perform the larger operation, then convert back
4098 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4099 Results
.push_back(DAG
.getNode(TruncOp
, dl
, OVT
, Tmp1
));
4102 case ISD::UMUL_LOHI
:
4103 case ISD::SMUL_LOHI
: {
4104 // Promote to a multiply in a wider integer type.
4105 unsigned ExtOp
= Node
->getOpcode() == ISD::UMUL_LOHI
? ISD::ZERO_EXTEND
4107 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4108 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4109 Tmp1
= DAG
.getNode(ISD::MUL
, dl
, NVT
, Tmp1
, Tmp2
);
4111 auto &DL
= DAG
.getDataLayout();
4112 unsigned OriginalSize
= OVT
.getScalarSizeInBits();
4114 ISD::SRL
, dl
, NVT
, Tmp1
,
4115 DAG
.getConstant(OriginalSize
, dl
, TLI
.getScalarShiftAmountTy(DL
, NVT
)));
4116 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4117 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp2
));
4121 unsigned ExtOp
, TruncOp
;
4122 if (Node
->getValueType(0).isVector() ||
4123 Node
->getValueType(0).getSizeInBits() == NVT
.getSizeInBits()) {
4124 ExtOp
= ISD::BITCAST
;
4125 TruncOp
= ISD::BITCAST
;
4126 } else if (Node
->getValueType(0).isInteger()) {
4127 ExtOp
= ISD::ANY_EXTEND
;
4128 TruncOp
= ISD::TRUNCATE
;
4130 ExtOp
= ISD::FP_EXTEND
;
4131 TruncOp
= ISD::FP_ROUND
;
4133 Tmp1
= Node
->getOperand(0);
4134 // Promote each of the values to the new type.
4135 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4136 Tmp3
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(2));
4137 // Perform the larger operation, then round down.
4138 Tmp1
= DAG
.getSelect(dl
, NVT
, Tmp1
, Tmp2
, Tmp3
);
4139 if (TruncOp
!= ISD::FP_ROUND
)
4140 Tmp1
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Tmp1
);
4142 Tmp1
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Tmp1
,
4143 DAG
.getIntPtrConstant(0, dl
));
4144 Results
.push_back(Tmp1
);
4147 case ISD::VECTOR_SHUFFLE
: {
4148 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Node
)->getMask();
4150 // Cast the two input vectors.
4151 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Node
->getOperand(0));
4152 Tmp2
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Node
->getOperand(1));
4154 // Convert the shuffle mask to the right # elements.
4155 Tmp1
= ShuffleWithNarrowerEltType(NVT
, OVT
, dl
, Tmp1
, Tmp2
, Mask
);
4156 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OVT
, Tmp1
);
4157 Results
.push_back(Tmp1
);
4161 unsigned ExtOp
= ISD::FP_EXTEND
;
4162 if (NVT
.isInteger()) {
4163 ISD::CondCode CCCode
=
4164 cast
<CondCodeSDNode
>(Node
->getOperand(2))->get();
4165 ExtOp
= isSignedIntSetCC(CCCode
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
4167 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4168 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4169 Results
.push_back(DAG
.getNode(ISD::SETCC
, dl
, Node
->getValueType(0),
4170 Tmp1
, Tmp2
, Node
->getOperand(2)));
4174 unsigned ExtOp
= ISD::FP_EXTEND
;
4175 if (NVT
.isInteger()) {
4176 ISD::CondCode CCCode
=
4177 cast
<CondCodeSDNode
>(Node
->getOperand(1))->get();
4178 ExtOp
= isSignedIntSetCC(CCCode
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
4180 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(2));
4181 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(3));
4182 Results
.push_back(DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0),
4183 Node
->getOperand(0), Node
->getOperand(1),
4184 Tmp1
, Tmp2
, Node
->getOperand(4)));
4195 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4196 Tmp2
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(1));
4197 Tmp3
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
,
4199 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4200 Tmp3
, DAG
.getIntPtrConstant(0, dl
)));
4203 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4204 Tmp2
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(1));
4205 Tmp3
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(2));
4207 DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4208 DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
, Tmp3
),
4209 DAG
.getIntPtrConstant(0, dl
)));
4211 case ISD::FCOPYSIGN
:
4213 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4214 Tmp2
= Node
->getOperand(1);
4215 Tmp3
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4217 // fcopysign doesn't change anything but the sign bit, so
4218 // (fp_round (fcopysign (fpext a), b))
4220 // (fp_round (fpext a))
4221 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4222 const bool isTrunc
= (Node
->getOpcode() == ISD::FCOPYSIGN
);
4223 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4224 Tmp3
, DAG
.getIntPtrConstant(isTrunc
, dl
)));
4230 case ISD::FNEARBYINT
:
4243 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4244 Tmp2
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4245 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4246 Tmp2
, DAG
.getIntPtrConstant(0, dl
)));
4248 case ISD::BUILD_VECTOR
: {
4249 MVT EltVT
= OVT
.getVectorElementType();
4250 MVT NewEltVT
= NVT
.getVectorElementType();
4252 // Handle bitcasts to a different vector type with the same total bit size
4254 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4256 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4258 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4259 "Invalid promote type for build_vector");
4260 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4262 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4264 SmallVector
<SDValue
, 8> NewOps
;
4265 for (unsigned I
= 0, E
= Node
->getNumOperands(); I
!= E
; ++I
) {
4266 SDValue Op
= Node
->getOperand(I
);
4267 NewOps
.push_back(DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), MidVT
, Op
));
4271 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, NVT
, NewOps
);
4272 SDValue CvtVec
= DAG
.getNode(ISD::BITCAST
, SL
, OVT
, Concat
);
4273 Results
.push_back(CvtVec
);
4276 case ISD::EXTRACT_VECTOR_ELT
: {
4277 MVT EltVT
= OVT
.getVectorElementType();
4278 MVT NewEltVT
= NVT
.getVectorElementType();
4280 // Handle bitcasts to a different vector type with the same total bit size.
4282 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4284 // v4i32:castx = bitcast x:v2i64
4287 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4288 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4291 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4292 "Invalid promote type for extract_vector_elt");
4293 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4295 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4296 unsigned NewEltsPerOldElt
= MidVT
.getVectorNumElements();
4298 SDValue Idx
= Node
->getOperand(1);
4299 EVT IdxVT
= Idx
.getValueType();
4301 SDValue Factor
= DAG
.getConstant(NewEltsPerOldElt
, SL
, IdxVT
);
4302 SDValue NewBaseIdx
= DAG
.getNode(ISD::MUL
, SL
, IdxVT
, Idx
, Factor
);
4304 SDValue CastVec
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, Node
->getOperand(0));
4306 SmallVector
<SDValue
, 8> NewOps
;
4307 for (unsigned I
= 0; I
< NewEltsPerOldElt
; ++I
) {
4308 SDValue IdxOffset
= DAG
.getConstant(I
, SL
, IdxVT
);
4309 SDValue TmpIdx
= DAG
.getNode(ISD::ADD
, SL
, IdxVT
, NewBaseIdx
, IdxOffset
);
4311 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, NewEltVT
,
4313 NewOps
.push_back(Elt
);
4316 SDValue NewVec
= DAG
.getBuildVector(MidVT
, SL
, NewOps
);
4317 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, EltVT
, NewVec
));
4320 case ISD::INSERT_VECTOR_ELT
: {
4321 MVT EltVT
= OVT
.getVectorElementType();
4322 MVT NewEltVT
= NVT
.getVectorElementType();
4324 // Handle bitcasts to a different vector type with the same total bit size
4326 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4328 // v4i32:castx = bitcast x:v2i64
4329 // v2i32:casty = bitcast y:i64
4332 // (v4i32 insert_vector_elt
4333 // (v4i32 insert_vector_elt v4i32:castx,
4334 // (extract_vector_elt casty, 0), 2 * z),
4335 // (extract_vector_elt casty, 1), (2 * z + 1))
4337 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4338 "Invalid promote type for insert_vector_elt");
4339 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4341 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4342 unsigned NewEltsPerOldElt
= MidVT
.getVectorNumElements();
4344 SDValue Val
= Node
->getOperand(1);
4345 SDValue Idx
= Node
->getOperand(2);
4346 EVT IdxVT
= Idx
.getValueType();
4349 SDValue Factor
= DAG
.getConstant(NewEltsPerOldElt
, SDLoc(), IdxVT
);
4350 SDValue NewBaseIdx
= DAG
.getNode(ISD::MUL
, SL
, IdxVT
, Idx
, Factor
);
4352 SDValue CastVec
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, Node
->getOperand(0));
4353 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, MidVT
, Val
);
4355 SDValue NewVec
= CastVec
;
4356 for (unsigned I
= 0; I
< NewEltsPerOldElt
; ++I
) {
4357 SDValue IdxOffset
= DAG
.getConstant(I
, SL
, IdxVT
);
4358 SDValue InEltIdx
= DAG
.getNode(ISD::ADD
, SL
, IdxVT
, NewBaseIdx
, IdxOffset
);
4360 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, NewEltVT
,
4361 CastVal
, IdxOffset
);
4363 NewVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SL
, NVT
,
4364 NewVec
, Elt
, InEltIdx
);
4367 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, OVT
, NewVec
));
4370 case ISD::SCALAR_TO_VECTOR
: {
4371 MVT EltVT
= OVT
.getVectorElementType();
4372 MVT NewEltVT
= NVT
.getVectorElementType();
4374 // Handle bitcasts to different vector type with the same total bit size.
4376 // e.g. v2i64 = scalar_to_vector x:i64
4378 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4381 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4382 SDValue Val
= Node
->getOperand(0);
4385 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, MidVT
, Val
);
4386 SDValue Undef
= DAG
.getUNDEF(MidVT
);
4388 SmallVector
<SDValue
, 8> NewElts
;
4389 NewElts
.push_back(CastVal
);
4390 for (unsigned I
= 1, NElts
= OVT
.getVectorNumElements(); I
!= NElts
; ++I
)
4391 NewElts
.push_back(Undef
);
4393 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, NVT
, NewElts
);
4394 SDValue CvtVec
= DAG
.getNode(ISD::BITCAST
, SL
, OVT
, Concat
);
4395 Results
.push_back(CvtVec
);
4398 case ISD::ATOMIC_SWAP
: {
4399 AtomicSDNode
*AM
= cast
<AtomicSDNode
>(Node
);
4401 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, AM
->getVal());
4402 assert(NVT
.getSizeInBits() == OVT
.getSizeInBits() &&
4403 "unexpected promotion type");
4404 assert(AM
->getMemoryVT().getSizeInBits() == NVT
.getSizeInBits() &&
4405 "unexpected atomic_swap with illegal type");
4408 = DAG
.getAtomic(ISD::ATOMIC_SWAP
, SL
, NVT
,
4409 DAG
.getVTList(NVT
, MVT::Other
),
4410 { AM
->getChain(), AM
->getBasePtr(), CastVal
},
4411 AM
->getMemOperand());
4412 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, OVT
, NewAtomic
));
4413 Results
.push_back(NewAtomic
.getValue(1));
4418 // Replace the original node with the legalized result.
4419 if (!Results
.empty()) {
4420 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4421 ReplaceNode(Node
, Results
.data());
4423 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4426 /// This is the entry point for the file.
4427 void SelectionDAG::Legalize() {
4428 AssignTopologicalOrder();
4430 SmallPtrSet
<SDNode
*, 16> LegalizedNodes
;
4431 // Use a delete listener to remove nodes which were deleted during
4432 // legalization from LegalizeNodes. This is needed to handle the situation
4433 // where a new node is allocated by the object pool to the same address of a
4434 // previously deleted node.
4435 DAGNodeDeletedListener
DeleteListener(
4437 [&LegalizedNodes
](SDNode
*N
, SDNode
*E
) { LegalizedNodes
.erase(N
); });
4439 SelectionDAGLegalize
Legalizer(*this, LegalizedNodes
);
4441 // Visit all the nodes. We start in topological order, so that we see
4442 // nodes with their original operands intact. Legalization can produce
4443 // new nodes which may themselves need to be legalized. Iterate until all
4444 // nodes have been legalized.
4446 bool AnyLegalized
= false;
4447 for (auto NI
= allnodes_end(); NI
!= allnodes_begin();) {
4451 if (N
->use_empty() && N
!= getRoot().getNode()) {
4457 if (LegalizedNodes
.insert(N
).second
) {
4458 AnyLegalized
= true;
4459 Legalizer
.LegalizeOp(N
);
4461 if (N
->use_empty() && N
!= getRoot().getNode()) {
4472 // Remove dead nodes now.
4476 bool SelectionDAG::LegalizeOp(SDNode
*N
,
4477 SmallSetVector
<SDNode
*, 16> &UpdatedNodes
) {
4478 SmallPtrSet
<SDNode
*, 16> LegalizedNodes
;
4479 SelectionDAGLegalize
Legalizer(*this, LegalizedNodes
, &UpdatedNodes
);
4481 // Directly insert the node in question, and legalize it. This will recurse
4482 // as needed through operands.
4483 LegalizedNodes
.insert(N
);
4484 Legalizer
.LegalizeOp(N
);
4486 return LegalizedNodes
.count(N
);