Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blob385bd346b7b9ff3d2b46cce8f2a87f7ecc1f4d86
1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/RuntimeLibcalls.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <tuple>
51 #include <utility>
53 using namespace llvm;
55 #define DEBUG_TYPE "legalizedag"
57 namespace {
59 /// Keeps track of state when getting the sign of a floating-point value as an
60 /// integer.
61 struct FloatSignAsInt {
62 EVT FloatVT;
63 SDValue Chain;
64 SDValue FloatPtr;
65 SDValue IntPtr;
66 MachinePointerInfo IntPointerInfo;
67 MachinePointerInfo FloatPointerInfo;
68 SDValue IntValue;
69 APInt SignMask;
70 uint8_t SignBit;
73 //===----------------------------------------------------------------------===//
74 /// This takes an arbitrary SelectionDAG as input and
75 /// hacks on it until the target machine can handle it. This involves
76 /// eliminating value sizes the machine cannot handle (promoting small sizes to
77 /// large sizes or splitting up large values into small values) as well as
78 /// eliminating operations the machine cannot handle.
79 ///
80 /// This code also does a small amount of optimization and recognition of idioms
81 /// as part of its processing. For example, if a target does not support a
82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
83 /// will attempt merge setcc and brc instructions into brcc's.
84 class SelectionDAGLegalize {
85 const TargetMachine &TM;
86 const TargetLowering &TLI;
87 SelectionDAG &DAG;
89 /// The set of nodes which have already been legalized. We hold a
90 /// reference to it in order to update as necessary on node deletion.
91 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 /// A set of all the nodes updated during legalization.
94 SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 EVT getSetCCResultType(EVT VT) const {
97 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
100 // Libcall insertion helpers.
102 public:
103 SelectionDAGLegalize(SelectionDAG &DAG,
104 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
105 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
106 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
107 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 /// Legalizes the given operation.
110 void LegalizeOp(SDNode *Node);
112 private:
113 SDValue OptimizeFloatStore(StoreSDNode *ST);
115 void LegalizeLoadOps(SDNode *Node);
116 void LegalizeStoreOps(SDNode *Node);
118 /// Some targets cannot handle a variable
119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
120 /// is necessary to spill the vector being inserted into to memory, perform
121 /// the insert there, and then read the result back.
122 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
123 const SDLoc &dl);
124 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
125 const SDLoc &dl);
127 /// Return a vector shuffle operation which
128 /// performs the same shuffe in terms of order or result bytes, but on a type
129 /// whose vector element type is narrower than the original shuffle type.
130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
131 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
132 SDValue N1, SDValue N2,
133 ArrayRef<int> Mask) const;
135 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
136 bool &NeedInvert, const SDLoc &dl);
138 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
140 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
141 SDNode *Node, bool isSigned);
142 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144 RTLIB::Libcall Call_F128,
145 RTLIB::Libcall Call_PPCF128);
146 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
147 RTLIB::Libcall Call_I8,
148 RTLIB::Libcall Call_I16,
149 RTLIB::Libcall Call_I32,
150 RTLIB::Libcall Call_I64,
151 RTLIB::Libcall Call_I128);
152 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
153 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
155 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
156 const SDLoc &dl);
157 SDValue ExpandBUILD_VECTOR(SDNode *Node);
158 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
159 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160 SmallVectorImpl<SDValue> &Results);
161 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
162 SDValue Value) const;
163 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
164 SDValue NewIntValue) const;
165 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
166 SDValue ExpandFABS(SDNode *Node) const;
167 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT,
168 const SDLoc &dl);
169 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
170 const SDLoc &dl);
171 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
172 const SDLoc &dl);
174 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
175 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
177 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
178 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
179 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
181 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
182 SDValue ExpandConstant(ConstantSDNode *CP);
184 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
185 bool ExpandNode(SDNode *Node);
186 void ConvertNodeToLibcall(SDNode *Node);
187 void PromoteNode(SDNode *Node);
189 public:
190 // Node replacement helpers
192 void ReplacedNode(SDNode *N) {
193 LegalizedNodes.erase(N);
194 if (UpdatedNodes)
195 UpdatedNodes->insert(N);
198 void ReplaceNode(SDNode *Old, SDNode *New) {
199 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
200 dbgs() << " with: "; New->dump(&DAG));
202 assert(Old->getNumValues() == New->getNumValues() &&
203 "Replacing one node with another that produces a different number "
204 "of values!");
205 DAG.ReplaceAllUsesWith(Old, New);
206 if (UpdatedNodes)
207 UpdatedNodes->insert(New);
208 ReplacedNode(Old);
211 void ReplaceNode(SDValue Old, SDValue New) {
212 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
213 dbgs() << " with: "; New->dump(&DAG));
215 DAG.ReplaceAllUsesWith(Old, New);
216 if (UpdatedNodes)
217 UpdatedNodes->insert(New.getNode());
218 ReplacedNode(Old.getNode());
221 void ReplaceNode(SDNode *Old, const SDValue *New) {
222 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
224 DAG.ReplaceAllUsesWith(Old, New);
225 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
226 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: ");
227 New[i]->dump(&DAG));
228 if (UpdatedNodes)
229 UpdatedNodes->insert(New[i].getNode());
231 ReplacedNode(Old);
235 } // end anonymous namespace
237 /// Return a vector shuffle operation which
238 /// performs the same shuffle in terms of order or result bytes, but on a type
239 /// whose vector element type is narrower than the original shuffle type.
240 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
241 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
242 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
243 ArrayRef<int> Mask) const {
244 unsigned NumMaskElts = VT.getVectorNumElements();
245 unsigned NumDestElts = NVT.getVectorNumElements();
246 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
248 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
250 if (NumEltsGrowth == 1)
251 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
253 SmallVector<int, 8> NewMask;
254 for (unsigned i = 0; i != NumMaskElts; ++i) {
255 int Idx = Mask[i];
256 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
257 if (Idx < 0)
258 NewMask.push_back(-1);
259 else
260 NewMask.push_back(Idx * NumEltsGrowth + j);
263 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
264 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
265 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
268 /// Expands the ConstantFP node to an integer constant or
269 /// a load from the constant pool.
270 SDValue
271 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
272 bool Extend = false;
273 SDLoc dl(CFP);
275 // If a FP immediate is precise when represented as a float and if the
276 // target can do an extending load from float to double, we put it into
277 // the constant pool as a float, even if it's is statically typed as a
278 // double. This shrinks FP constants and canonicalizes them for targets where
279 // an FP extending load is the same cost as a normal load (such as on the x87
280 // fp stack or PPC FP unit).
281 EVT VT = CFP->getValueType(0);
282 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
283 if (!UseCP) {
284 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
285 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
286 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
289 APFloat APF = CFP->getValueAPF();
290 EVT OrigVT = VT;
291 EVT SVT = VT;
293 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
294 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
295 if (!APF.isSignaling()) {
296 while (SVT != MVT::f32 && SVT != MVT::f16) {
297 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
298 if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
299 // Only do this if the target has a native EXTLOAD instruction from
300 // smaller type.
301 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
302 TLI.ShouldShrinkFPConstant(OrigVT)) {
303 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
304 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
305 VT = SVT;
306 Extend = true;
311 SDValue CPIdx =
312 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
313 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
314 if (Extend) {
315 SDValue Result = DAG.getExtLoad(
316 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
317 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
318 Alignment);
319 return Result;
321 SDValue Result = DAG.getLoad(
322 OrigVT, dl, DAG.getEntryNode(), CPIdx,
323 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
324 return Result;
327 /// Expands the Constant node to a load from the constant pool.
328 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
329 SDLoc dl(CP);
330 EVT VT = CP->getValueType(0);
331 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
332 TLI.getPointerTy(DAG.getDataLayout()));
333 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
334 SDValue Result = DAG.getLoad(
335 VT, dl, DAG.getEntryNode(), CPIdx,
336 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
337 return Result;
340 /// Some target cannot handle a variable insertion index for the
341 /// INSERT_VECTOR_ELT instruction. In this case, it
342 /// is necessary to spill the vector being inserted into to memory, perform
343 /// the insert there, and then read the result back.
344 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
345 SDValue Val,
346 SDValue Idx,
347 const SDLoc &dl) {
348 SDValue Tmp1 = Vec;
349 SDValue Tmp2 = Val;
350 SDValue Tmp3 = Idx;
352 // If the target doesn't support this, we have to spill the input vector
353 // to a temporary stack slot, update the element, then reload it. This is
354 // badness. We could also load the value into a vector register (either
355 // with a "move to register" or "extload into register" instruction, then
356 // permute it into place, if the idx is a constant and if the idx is
357 // supported by the target.
358 EVT VT = Tmp1.getValueType();
359 EVT EltVT = VT.getVectorElementType();
360 SDValue StackPtr = DAG.CreateStackTemporary(VT);
362 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
364 // Store the vector.
365 SDValue Ch = DAG.getStore(
366 DAG.getEntryNode(), dl, Tmp1, StackPtr,
367 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
369 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
371 // Store the scalar value.
372 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
373 // Load the updated vector.
374 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
375 DAG.getMachineFunction(), SPFI));
378 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
379 SDValue Idx,
380 const SDLoc &dl) {
381 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
382 // SCALAR_TO_VECTOR requires that the type of the value being inserted
383 // match the element type of the vector being created, except for
384 // integers in which case the inserted value can be over width.
385 EVT EltVT = Vec.getValueType().getVectorElementType();
386 if (Val.getValueType() == EltVT ||
387 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
388 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
389 Vec.getValueType(), Val);
391 unsigned NumElts = Vec.getValueType().getVectorNumElements();
392 // We generate a shuffle of InVec and ScVec, so the shuffle mask
393 // should be 0,1,2,3,4,5... with the appropriate element replaced with
394 // elt 0 of the RHS.
395 SmallVector<int, 8> ShufOps;
396 for (unsigned i = 0; i != NumElts; ++i)
397 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
399 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
402 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
405 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
406 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
407 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
408 // FIXME: We shouldn't do this for TargetConstantFP's.
409 // FIXME: move this to the DAG Combiner! Note that we can't regress due
410 // to phase ordering between legalized code and the dag combiner. This
411 // probably means that we need to integrate dag combiner and legalizer
412 // together.
413 // We generally can't do this one for long doubles.
414 SDValue Chain = ST->getChain();
415 SDValue Ptr = ST->getBasePtr();
416 unsigned Alignment = ST->getAlignment();
417 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
418 AAMDNodes AAInfo = ST->getAAInfo();
419 SDLoc dl(ST);
420 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
421 if (CFP->getValueType(0) == MVT::f32 &&
422 TLI.isTypeLegal(MVT::i32)) {
423 SDValue Con = DAG.getConstant(CFP->getValueAPF().
424 bitcastToAPInt().zextOrTrunc(32),
425 SDLoc(CFP), MVT::i32);
426 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment,
427 MMOFlags, AAInfo);
430 if (CFP->getValueType(0) == MVT::f64) {
431 // If this target supports 64-bit registers, do a single 64-bit store.
432 if (TLI.isTypeLegal(MVT::i64)) {
433 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
434 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
435 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
436 Alignment, MMOFlags, AAInfo);
439 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
440 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
441 // stores. If the target supports neither 32- nor 64-bits, this
442 // xform is certainly not worth it.
443 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
444 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
445 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
446 if (DAG.getDataLayout().isBigEndian())
447 std::swap(Lo, Hi);
449 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment,
450 MMOFlags, AAInfo);
451 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
452 DAG.getConstant(4, dl, Ptr.getValueType()));
453 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
454 ST->getPointerInfo().getWithOffset(4),
455 MinAlign(Alignment, 4U), MMOFlags, AAInfo);
457 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
461 return SDValue(nullptr, 0);
464 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
465 StoreSDNode *ST = cast<StoreSDNode>(Node);
466 SDValue Chain = ST->getChain();
467 SDValue Ptr = ST->getBasePtr();
468 SDLoc dl(Node);
470 unsigned Alignment = ST->getAlignment();
471 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
472 AAMDNodes AAInfo = ST->getAAInfo();
474 if (!ST->isTruncatingStore()) {
475 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
476 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
477 ReplaceNode(ST, OptStore);
478 return;
481 SDValue Value = ST->getValue();
482 MVT VT = Value.getSimpleValueType();
483 switch (TLI.getOperationAction(ISD::STORE, VT)) {
484 default: llvm_unreachable("This action is not supported yet!");
485 case TargetLowering::Legal: {
486 // If this is an unaligned store and the target doesn't support it,
487 // expand it.
488 EVT MemVT = ST->getMemoryVT();
489 unsigned AS = ST->getAddressSpace();
490 unsigned Align = ST->getAlignment();
491 const DataLayout &DL = DAG.getDataLayout();
492 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
493 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
494 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
495 ReplaceNode(SDValue(ST, 0), Result);
496 } else
497 LLVM_DEBUG(dbgs() << "Legal store\n");
498 break;
500 case TargetLowering::Custom: {
501 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
502 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
503 if (Res && Res != SDValue(Node, 0))
504 ReplaceNode(SDValue(Node, 0), Res);
505 return;
507 case TargetLowering::Promote: {
508 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
509 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
510 "Can only promote stores to same size type");
511 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
512 SDValue Result =
513 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
514 Alignment, MMOFlags, AAInfo);
515 ReplaceNode(SDValue(Node, 0), Result);
516 break;
519 return;
522 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
523 SDValue Value = ST->getValue();
524 EVT StVT = ST->getMemoryVT();
525 unsigned StWidth = StVT.getSizeInBits();
526 auto &DL = DAG.getDataLayout();
528 if (StWidth != StVT.getStoreSizeInBits()) {
529 // Promote to a byte-sized store with upper bits zero if not
530 // storing an integral number of bytes. For example, promote
531 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
532 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
533 StVT.getStoreSizeInBits());
534 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
535 SDValue Result =
536 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
537 Alignment, MMOFlags, AAInfo);
538 ReplaceNode(SDValue(Node, 0), Result);
539 } else if (StWidth & (StWidth - 1)) {
540 // If not storing a power-of-2 number of bits, expand as two stores.
541 assert(!StVT.isVector() && "Unsupported truncstore!");
542 unsigned RoundWidth = 1 << Log2_32(StWidth);
543 assert(RoundWidth < StWidth);
544 unsigned ExtraWidth = StWidth - RoundWidth;
545 assert(ExtraWidth < RoundWidth);
546 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
547 "Store size not an integral number of bytes!");
548 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
549 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
550 SDValue Lo, Hi;
551 unsigned IncrementSize;
553 if (DL.isLittleEndian()) {
554 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
555 // Store the bottom RoundWidth bits.
556 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
557 RoundVT, Alignment, MMOFlags, AAInfo);
559 // Store the remaining ExtraWidth bits.
560 IncrementSize = RoundWidth / 8;
561 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
562 DAG.getConstant(IncrementSize, dl,
563 Ptr.getValueType()));
564 Hi = DAG.getNode(
565 ISD::SRL, dl, Value.getValueType(), Value,
566 DAG.getConstant(RoundWidth, dl,
567 TLI.getShiftAmountTy(Value.getValueType(), DL)));
568 Hi = DAG.getTruncStore(
569 Chain, dl, Hi, Ptr,
570 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
571 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
572 } else {
573 // Big endian - avoid unaligned stores.
574 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
575 // Store the top RoundWidth bits.
576 Hi = DAG.getNode(
577 ISD::SRL, dl, Value.getValueType(), Value,
578 DAG.getConstant(ExtraWidth, dl,
579 TLI.getShiftAmountTy(Value.getValueType(), DL)));
580 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
581 RoundVT, Alignment, MMOFlags, AAInfo);
583 // Store the remaining ExtraWidth bits.
584 IncrementSize = RoundWidth / 8;
585 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
586 DAG.getConstant(IncrementSize, dl,
587 Ptr.getValueType()));
588 Lo = DAG.getTruncStore(
589 Chain, dl, Value, Ptr,
590 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
591 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
594 // The order of the stores doesn't matter.
595 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
596 ReplaceNode(SDValue(Node, 0), Result);
597 } else {
598 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
599 default: llvm_unreachable("This action is not supported yet!");
600 case TargetLowering::Legal: {
601 EVT MemVT = ST->getMemoryVT();
602 unsigned AS = ST->getAddressSpace();
603 unsigned Align = ST->getAlignment();
604 // If this is an unaligned store and the target doesn't support it,
605 // expand it.
606 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
607 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
608 ReplaceNode(SDValue(ST, 0), Result);
610 break;
612 case TargetLowering::Custom: {
613 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
614 if (Res && Res != SDValue(Node, 0))
615 ReplaceNode(SDValue(Node, 0), Res);
616 return;
618 case TargetLowering::Expand:
619 assert(!StVT.isVector() &&
620 "Vector Stores are handled in LegalizeVectorOps");
622 SDValue Result;
624 // TRUNCSTORE:i16 i32 -> STORE i16
625 if (TLI.isTypeLegal(StVT)) {
626 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
627 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
628 Alignment, MMOFlags, AAInfo);
629 } else {
630 // The in-memory type isn't legal. Truncate to the type it would promote
631 // to, and then do a truncstore.
632 Value = DAG.getNode(ISD::TRUNCATE, dl,
633 TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
634 Value);
635 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
636 StVT, Alignment, MMOFlags, AAInfo);
639 ReplaceNode(SDValue(Node, 0), Result);
640 break;
645 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
646 LoadSDNode *LD = cast<LoadSDNode>(Node);
647 SDValue Chain = LD->getChain(); // The chain.
648 SDValue Ptr = LD->getBasePtr(); // The base pointer.
649 SDValue Value; // The value returned by the load op.
650 SDLoc dl(Node);
652 ISD::LoadExtType ExtType = LD->getExtensionType();
653 if (ExtType == ISD::NON_EXTLOAD) {
654 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
655 MVT VT = Node->getSimpleValueType(0);
656 SDValue RVal = SDValue(Node, 0);
657 SDValue RChain = SDValue(Node, 1);
659 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
660 default: llvm_unreachable("This action is not supported yet!");
661 case TargetLowering::Legal: {
662 EVT MemVT = LD->getMemoryVT();
663 unsigned AS = LD->getAddressSpace();
664 unsigned Align = LD->getAlignment();
665 const DataLayout &DL = DAG.getDataLayout();
666 // If this is an unaligned load and the target doesn't support it,
667 // expand it.
668 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
669 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
671 break;
673 case TargetLowering::Custom:
674 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
675 RVal = Res;
676 RChain = Res.getValue(1);
678 break;
680 case TargetLowering::Promote: {
681 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
682 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
683 "Can only promote loads to same size type");
685 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
686 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
687 RChain = Res.getValue(1);
688 break;
691 if (RChain.getNode() != Node) {
692 assert(RVal.getNode() != Node && "Load must be completely replaced");
693 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
694 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
695 if (UpdatedNodes) {
696 UpdatedNodes->insert(RVal.getNode());
697 UpdatedNodes->insert(RChain.getNode());
699 ReplacedNode(Node);
701 return;
704 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
705 EVT SrcVT = LD->getMemoryVT();
706 unsigned SrcWidth = SrcVT.getSizeInBits();
707 unsigned Alignment = LD->getAlignment();
708 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
709 AAMDNodes AAInfo = LD->getAAInfo();
711 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
712 // Some targets pretend to have an i1 loading operation, and actually
713 // load an i8. This trick is correct for ZEXTLOAD because the top 7
714 // bits are guaranteed to be zero; it helps the optimizers understand
715 // that these bits are zero. It is also useful for EXTLOAD, since it
716 // tells the optimizers that those bits are undefined. It would be
717 // nice to have an effective generic way of getting these benefits...
718 // Until such a way is found, don't insist on promoting i1 here.
719 (SrcVT != MVT::i1 ||
720 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
721 TargetLowering::Promote)) {
722 // Promote to a byte-sized load if not loading an integral number of
723 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
724 unsigned NewWidth = SrcVT.getStoreSizeInBits();
725 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
726 SDValue Ch;
728 // The extra bits are guaranteed to be zero, since we stored them that
729 // way. A zext load from NVT thus automatically gives zext from SrcVT.
731 ISD::LoadExtType NewExtType =
732 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
734 SDValue Result =
735 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr,
736 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo);
738 Ch = Result.getValue(1); // The chain.
740 if (ExtType == ISD::SEXTLOAD)
741 // Having the top bits zero doesn't help when sign extending.
742 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
743 Result.getValueType(),
744 Result, DAG.getValueType(SrcVT));
745 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
746 // All the top bits are guaranteed to be zero - inform the optimizers.
747 Result = DAG.getNode(ISD::AssertZext, dl,
748 Result.getValueType(), Result,
749 DAG.getValueType(SrcVT));
751 Value = Result;
752 Chain = Ch;
753 } else if (SrcWidth & (SrcWidth - 1)) {
754 // If not loading a power-of-2 number of bits, expand as two loads.
755 assert(!SrcVT.isVector() && "Unsupported extload!");
756 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
757 assert(RoundWidth < SrcWidth);
758 unsigned ExtraWidth = SrcWidth - RoundWidth;
759 assert(ExtraWidth < RoundWidth);
760 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
761 "Load size not an integral number of bytes!");
762 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
763 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
764 SDValue Lo, Hi, Ch;
765 unsigned IncrementSize;
766 auto &DL = DAG.getDataLayout();
768 if (DL.isLittleEndian()) {
769 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
770 // Load the bottom RoundWidth bits.
771 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
772 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
773 AAInfo);
775 // Load the remaining ExtraWidth bits.
776 IncrementSize = RoundWidth / 8;
777 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
778 DAG.getConstant(IncrementSize, dl,
779 Ptr.getValueType()));
780 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
781 LD->getPointerInfo().getWithOffset(IncrementSize),
782 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
783 AAInfo);
785 // Build a factor node to remember that this load is independent of
786 // the other one.
787 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
788 Hi.getValue(1));
790 // Move the top bits to the right place.
791 Hi = DAG.getNode(
792 ISD::SHL, dl, Hi.getValueType(), Hi,
793 DAG.getConstant(RoundWidth, dl,
794 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
796 // Join the hi and lo parts.
797 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
798 } else {
799 // Big endian - avoid unaligned loads.
800 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
801 // Load the top RoundWidth bits.
802 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
803 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
804 AAInfo);
806 // Load the remaining ExtraWidth bits.
807 IncrementSize = RoundWidth / 8;
808 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
809 DAG.getConstant(IncrementSize, dl,
810 Ptr.getValueType()));
811 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
812 LD->getPointerInfo().getWithOffset(IncrementSize),
813 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
814 AAInfo);
816 // Build a factor node to remember that this load is independent of
817 // the other one.
818 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
819 Hi.getValue(1));
821 // Move the top bits to the right place.
822 Hi = DAG.getNode(
823 ISD::SHL, dl, Hi.getValueType(), Hi,
824 DAG.getConstant(ExtraWidth, dl,
825 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
827 // Join the hi and lo parts.
828 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
831 Chain = Ch;
832 } else {
833 bool isCustom = false;
834 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
835 SrcVT.getSimpleVT())) {
836 default: llvm_unreachable("This action is not supported yet!");
837 case TargetLowering::Custom:
838 isCustom = true;
839 LLVM_FALLTHROUGH;
840 case TargetLowering::Legal:
841 Value = SDValue(Node, 0);
842 Chain = SDValue(Node, 1);
844 if (isCustom) {
845 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
846 Value = Res;
847 Chain = Res.getValue(1);
849 } else {
850 // If this is an unaligned load and the target doesn't support it,
851 // expand it.
852 EVT MemVT = LD->getMemoryVT();
853 unsigned AS = LD->getAddressSpace();
854 unsigned Align = LD->getAlignment();
855 const DataLayout &DL = DAG.getDataLayout();
856 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
857 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
860 break;
862 case TargetLowering::Expand: {
863 EVT DestVT = Node->getValueType(0);
864 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
865 // If the source type is not legal, see if there is a legal extload to
866 // an intermediate type that we can then extend further.
867 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
868 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
869 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
870 // If we are loading a legal type, this is a non-extload followed by a
871 // full extend.
872 ISD::LoadExtType MidExtType =
873 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
875 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
876 SrcVT, LD->getMemOperand());
877 unsigned ExtendOp =
878 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
879 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
880 Chain = Load.getValue(1);
881 break;
884 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
885 // normal undefined upper bits behavior to allow using an in-reg extend
886 // with the illegal FP type, so load as an integer and do the
887 // from-integer conversion.
888 if (SrcVT.getScalarType() == MVT::f16) {
889 EVT ISrcVT = SrcVT.changeTypeToInteger();
890 EVT IDestVT = DestVT.changeTypeToInteger();
891 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
893 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT,
894 Chain, Ptr, ISrcVT,
895 LD->getMemOperand());
896 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
897 Chain = Result.getValue(1);
898 break;
902 assert(!SrcVT.isVector() &&
903 "Vector Loads are handled in LegalizeVectorOps");
905 // FIXME: This does not work for vectors on most targets. Sign-
906 // and zero-extend operations are currently folded into extending
907 // loads, whether they are legal or not, and then we end up here
908 // without any support for legalizing them.
909 assert(ExtType != ISD::EXTLOAD &&
910 "EXTLOAD should always be supported!");
911 // Turn the unsupported load into an EXTLOAD followed by an
912 // explicit zero/sign extend inreg.
913 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
914 Node->getValueType(0),
915 Chain, Ptr, SrcVT,
916 LD->getMemOperand());
917 SDValue ValRes;
918 if (ExtType == ISD::SEXTLOAD)
919 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
920 Result.getValueType(),
921 Result, DAG.getValueType(SrcVT));
922 else
923 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
924 Value = ValRes;
925 Chain = Result.getValue(1);
926 break;
931 // Since loads produce two values, make sure to remember that we legalized
932 // both of them.
933 if (Chain.getNode() != Node) {
934 assert(Value.getNode() != Node && "Load must be completely replaced");
935 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
936 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
937 if (UpdatedNodes) {
938 UpdatedNodes->insert(Value.getNode());
939 UpdatedNodes->insert(Chain.getNode());
941 ReplacedNode(Node);
945 /// Return a legal replacement for the given operation, with all legal operands.
946 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
947 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
949 // Allow illegal target nodes and illegal registers.
950 if (Node->getOpcode() == ISD::TargetConstant ||
951 Node->getOpcode() == ISD::Register)
952 return;
954 #ifndef NDEBUG
955 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
956 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
957 TargetLowering::TypeLegal ||
958 TLI.isTypeLegal(Node->getValueType(i))) &&
959 "Unexpected illegal type!");
961 for (const SDValue &Op : Node->op_values())
962 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
963 TargetLowering::TypeLegal ||
964 TLI.isTypeLegal(Op.getValueType()) ||
965 Op.getOpcode() == ISD::TargetConstant ||
966 Op.getOpcode() == ISD::Register) &&
967 "Unexpected illegal type!");
968 #endif
970 // Figure out the correct action; the way to query this varies by opcode
971 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
972 bool SimpleFinishLegalizing = true;
973 switch (Node->getOpcode()) {
974 case ISD::INTRINSIC_W_CHAIN:
975 case ISD::INTRINSIC_WO_CHAIN:
976 case ISD::INTRINSIC_VOID:
977 case ISD::STACKSAVE:
978 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
979 break;
980 case ISD::GET_DYNAMIC_AREA_OFFSET:
981 Action = TLI.getOperationAction(Node->getOpcode(),
982 Node->getValueType(0));
983 break;
984 case ISD::VAARG:
985 Action = TLI.getOperationAction(Node->getOpcode(),
986 Node->getValueType(0));
987 if (Action != TargetLowering::Promote)
988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
989 break;
990 case ISD::FP_TO_FP16:
991 case ISD::SINT_TO_FP:
992 case ISD::UINT_TO_FP:
993 case ISD::EXTRACT_VECTOR_ELT:
994 Action = TLI.getOperationAction(Node->getOpcode(),
995 Node->getOperand(0).getValueType());
996 break;
997 case ISD::FP_ROUND_INREG:
998 case ISD::SIGN_EXTEND_INREG: {
999 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1000 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1001 break;
1003 case ISD::ATOMIC_STORE:
1004 Action = TLI.getOperationAction(Node->getOpcode(),
1005 Node->getOperand(2).getValueType());
1006 break;
1007 case ISD::SELECT_CC:
1008 case ISD::SETCC:
1009 case ISD::BR_CC: {
1010 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1011 Node->getOpcode() == ISD::SETCC ? 2 : 1;
1012 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1013 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1014 ISD::CondCode CCCode =
1015 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1016 Action = TLI.getCondCodeAction(CCCode, OpVT);
1017 if (Action == TargetLowering::Legal) {
1018 if (Node->getOpcode() == ISD::SELECT_CC)
1019 Action = TLI.getOperationAction(Node->getOpcode(),
1020 Node->getValueType(0));
1021 else
1022 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1024 break;
1026 case ISD::LOAD:
1027 case ISD::STORE:
1028 // FIXME: Model these properly. LOAD and STORE are complicated, and
1029 // STORE expects the unlegalized operand in some cases.
1030 SimpleFinishLegalizing = false;
1031 break;
1032 case ISD::CALLSEQ_START:
1033 case ISD::CALLSEQ_END:
1034 // FIXME: This shouldn't be necessary. These nodes have special properties
1035 // dealing with the recursive nature of legalization. Removing this
1036 // special case should be done as part of making LegalizeDAG non-recursive.
1037 SimpleFinishLegalizing = false;
1038 break;
1039 case ISD::EXTRACT_ELEMENT:
1040 case ISD::FLT_ROUNDS_:
1041 case ISD::MERGE_VALUES:
1042 case ISD::EH_RETURN:
1043 case ISD::FRAME_TO_ARGS_OFFSET:
1044 case ISD::EH_DWARF_CFA:
1045 case ISD::EH_SJLJ_SETJMP:
1046 case ISD::EH_SJLJ_LONGJMP:
1047 case ISD::EH_SJLJ_SETUP_DISPATCH:
1048 // These operations lie about being legal: when they claim to be legal,
1049 // they should actually be expanded.
1050 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1051 if (Action == TargetLowering::Legal)
1052 Action = TargetLowering::Expand;
1053 break;
1054 case ISD::INIT_TRAMPOLINE:
1055 case ISD::ADJUST_TRAMPOLINE:
1056 case ISD::FRAMEADDR:
1057 case ISD::RETURNADDR:
1058 case ISD::ADDROFRETURNADDR:
1059 case ISD::SPONENTRY:
1060 // These operations lie about being legal: when they claim to be legal,
1061 // they should actually be custom-lowered.
1062 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1063 if (Action == TargetLowering::Legal)
1064 Action = TargetLowering::Custom;
1065 break;
1066 case ISD::READCYCLECOUNTER:
1067 // READCYCLECOUNTER returns an i64, even if type legalization might have
1068 // expanded that to several smaller types.
1069 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1070 break;
1071 case ISD::READ_REGISTER:
1072 case ISD::WRITE_REGISTER:
1073 // Named register is legal in the DAG, but blocked by register name
1074 // selection if not implemented by target (to chose the correct register)
1075 // They'll be converted to Copy(To/From)Reg.
1076 Action = TargetLowering::Legal;
1077 break;
1078 case ISD::DEBUGTRAP:
1079 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1080 if (Action == TargetLowering::Expand) {
1081 // replace ISD::DEBUGTRAP with ISD::TRAP
1082 SDValue NewVal;
1083 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1084 Node->getOperand(0));
1085 ReplaceNode(Node, NewVal.getNode());
1086 LegalizeOp(NewVal.getNode());
1087 return;
1089 break;
1090 case ISD::STRICT_FADD:
1091 case ISD::STRICT_FSUB:
1092 case ISD::STRICT_FMUL:
1093 case ISD::STRICT_FDIV:
1094 case ISD::STRICT_FREM:
1095 case ISD::STRICT_FSQRT:
1096 case ISD::STRICT_FMA:
1097 case ISD::STRICT_FPOW:
1098 case ISD::STRICT_FPOWI:
1099 case ISD::STRICT_FSIN:
1100 case ISD::STRICT_FCOS:
1101 case ISD::STRICT_FEXP:
1102 case ISD::STRICT_FEXP2:
1103 case ISD::STRICT_FLOG:
1104 case ISD::STRICT_FLOG10:
1105 case ISD::STRICT_FLOG2:
1106 case ISD::STRICT_FRINT:
1107 case ISD::STRICT_FNEARBYINT:
1108 case ISD::STRICT_FMAXNUM:
1109 case ISD::STRICT_FMINNUM:
1110 case ISD::STRICT_FCEIL:
1111 case ISD::STRICT_FFLOOR:
1112 case ISD::STRICT_FROUND:
1113 case ISD::STRICT_FTRUNC:
1114 // These pseudo-ops get legalized as if they were their non-strict
1115 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
1116 // is also legal, but if ISD::FSQRT requires expansion then so does
1117 // ISD::STRICT_FSQRT.
1118 Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
1119 Node->getValueType(0));
1120 break;
1121 case ISD::SADDSAT:
1122 case ISD::UADDSAT:
1123 case ISD::SSUBSAT:
1124 case ISD::USUBSAT: {
1125 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1126 break;
1128 case ISD::SMULFIX:
1129 case ISD::UMULFIX: {
1130 unsigned Scale = Node->getConstantOperandVal(2);
1131 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1132 Node->getValueType(0), Scale);
1133 break;
1135 case ISD::MSCATTER:
1136 Action = TLI.getOperationAction(Node->getOpcode(),
1137 cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1138 break;
1139 case ISD::MSTORE:
1140 Action = TLI.getOperationAction(Node->getOpcode(),
1141 cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1142 break;
1143 default:
1144 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1145 Action = TargetLowering::Legal;
1146 } else {
1147 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1149 break;
1152 if (SimpleFinishLegalizing) {
1153 SDNode *NewNode = Node;
1154 switch (Node->getOpcode()) {
1155 default: break;
1156 case ISD::SHL:
1157 case ISD::SRL:
1158 case ISD::SRA:
1159 case ISD::ROTL:
1160 case ISD::ROTR: {
1161 // Legalizing shifts/rotates requires adjusting the shift amount
1162 // to the appropriate width.
1163 SDValue Op0 = Node->getOperand(0);
1164 SDValue Op1 = Node->getOperand(1);
1165 if (!Op1.getValueType().isVector()) {
1166 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1167 // The getShiftAmountOperand() may create a new operand node or
1168 // return the existing one. If new operand is created we need
1169 // to update the parent node.
1170 // Do not try to legalize SAO here! It will be automatically legalized
1171 // in the next round.
1172 if (SAO != Op1)
1173 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1176 break;
1177 case ISD::FSHL:
1178 case ISD::FSHR:
1179 case ISD::SRL_PARTS:
1180 case ISD::SRA_PARTS:
1181 case ISD::SHL_PARTS: {
1182 // Legalizing shifts/rotates requires adjusting the shift amount
1183 // to the appropriate width.
1184 SDValue Op0 = Node->getOperand(0);
1185 SDValue Op1 = Node->getOperand(1);
1186 SDValue Op2 = Node->getOperand(2);
1187 if (!Op2.getValueType().isVector()) {
1188 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1189 // The getShiftAmountOperand() may create a new operand node or
1190 // return the existing one. If new operand is created we need
1191 // to update the parent node.
1192 if (SAO != Op2)
1193 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1195 break;
1199 if (NewNode != Node) {
1200 ReplaceNode(Node, NewNode);
1201 Node = NewNode;
1203 switch (Action) {
1204 case TargetLowering::Legal:
1205 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1206 return;
1207 case TargetLowering::Custom:
1208 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1209 // FIXME: The handling for custom lowering with multiple results is
1210 // a complete mess.
1211 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1212 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1213 return;
1215 if (Node->getNumValues() == 1) {
1216 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1217 // We can just directly replace this node with the lowered value.
1218 ReplaceNode(SDValue(Node, 0), Res);
1219 return;
1222 SmallVector<SDValue, 8> ResultVals;
1223 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1224 ResultVals.push_back(Res.getValue(i));
1225 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1226 ReplaceNode(Node, ResultVals.data());
1227 return;
1229 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1230 LLVM_FALLTHROUGH;
1231 case TargetLowering::Expand:
1232 if (ExpandNode(Node))
1233 return;
1234 LLVM_FALLTHROUGH;
1235 case TargetLowering::LibCall:
1236 ConvertNodeToLibcall(Node);
1237 return;
1238 case TargetLowering::Promote:
1239 PromoteNode(Node);
1240 return;
1244 switch (Node->getOpcode()) {
1245 default:
1246 #ifndef NDEBUG
1247 dbgs() << "NODE: ";
1248 Node->dump( &DAG);
1249 dbgs() << "\n";
1250 #endif
1251 llvm_unreachable("Do not know how to legalize this operator!");
1253 case ISD::CALLSEQ_START:
1254 case ISD::CALLSEQ_END:
1255 break;
1256 case ISD::LOAD:
1257 return LegalizeLoadOps(Node);
1258 case ISD::STORE:
1259 return LegalizeStoreOps(Node);
1263 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1264 SDValue Vec = Op.getOperand(0);
1265 SDValue Idx = Op.getOperand(1);
1266 SDLoc dl(Op);
1268 // Before we generate a new store to a temporary stack slot, see if there is
1269 // already one that we can use. There often is because when we scalarize
1270 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1271 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1272 // the vector. If all are expanded here, we don't want one store per vector
1273 // element.
1275 // Caches for hasPredecessorHelper
1276 SmallPtrSet<const SDNode *, 32> Visited;
1277 SmallVector<const SDNode *, 16> Worklist;
1278 Visited.insert(Op.getNode());
1279 Worklist.push_back(Idx.getNode());
1280 SDValue StackPtr, Ch;
1281 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1282 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1283 SDNode *User = *UI;
1284 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1285 if (ST->isIndexed() || ST->isTruncatingStore() ||
1286 ST->getValue() != Vec)
1287 continue;
1289 // Make sure that nothing else could have stored into the destination of
1290 // this store.
1291 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1292 continue;
1294 // If the index is dependent on the store we will introduce a cycle when
1295 // creating the load (the load uses the index, and by replacing the chain
1296 // we will make the index dependent on the load). Also, the store might be
1297 // dependent on the extractelement and introduce a cycle when creating
1298 // the load.
1299 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1300 ST->hasPredecessor(Op.getNode()))
1301 continue;
1303 StackPtr = ST->getBasePtr();
1304 Ch = SDValue(ST, 0);
1305 break;
1309 EVT VecVT = Vec.getValueType();
1311 if (!Ch.getNode()) {
1312 // Store the value to a temporary stack slot, then LOAD the returned part.
1313 StackPtr = DAG.CreateStackTemporary(VecVT);
1314 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1315 MachinePointerInfo());
1318 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1320 SDValue NewLoad;
1322 if (Op.getValueType().isVector())
1323 NewLoad =
1324 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1325 else
1326 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1327 MachinePointerInfo(),
1328 VecVT.getVectorElementType());
1330 // Replace the chain going out of the store, by the one out of the load.
1331 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1333 // We introduced a cycle though, so update the loads operands, making sure
1334 // to use the original store's chain as an incoming chain.
1335 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1336 NewLoad->op_end());
1337 NewLoadOperands[0] = Ch;
1338 NewLoad =
1339 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1340 return NewLoad;
1343 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1344 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1346 SDValue Vec = Op.getOperand(0);
1347 SDValue Part = Op.getOperand(1);
1348 SDValue Idx = Op.getOperand(2);
1349 SDLoc dl(Op);
1351 // Store the value to a temporary stack slot, then LOAD the returned part.
1352 EVT VecVT = Vec.getValueType();
1353 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1354 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1355 MachinePointerInfo PtrInfo =
1356 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1358 // First store the whole vector.
1359 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1361 // Then store the inserted part.
1362 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1364 // Store the subvector.
1365 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1367 // Finally, load the updated vector.
1368 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1371 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1372 // We can't handle this case efficiently. Allocate a sufficiently
1373 // aligned object on the stack, store each element into it, then load
1374 // the result as a vector.
1375 // Create the stack frame object.
1376 EVT VT = Node->getValueType(0);
1377 EVT EltVT = VT.getVectorElementType();
1378 SDLoc dl(Node);
1379 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1380 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1381 MachinePointerInfo PtrInfo =
1382 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1384 // Emit a store of each element to the stack slot.
1385 SmallVector<SDValue, 8> Stores;
1386 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1387 // Store (in the right endianness) the elements to memory.
1388 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1389 // Ignore undef elements.
1390 if (Node->getOperand(i).isUndef()) continue;
1392 unsigned Offset = TypeByteSize*i;
1394 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1395 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1397 // If the destination vector element type is narrower than the source
1398 // element type, only store the bits necessary.
1399 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1400 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1401 Node->getOperand(i), Idx,
1402 PtrInfo.getWithOffset(Offset), EltVT));
1403 } else
1404 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1405 Idx, PtrInfo.getWithOffset(Offset)));
1408 SDValue StoreChain;
1409 if (!Stores.empty()) // Not all undef elements?
1410 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1411 else
1412 StoreChain = DAG.getEntryNode();
1414 // Result is a load from the stack slot.
1415 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1418 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1419 /// containing the sign bit if the target has no integer value capable of
1420 /// holding all bits of the floating-point value.
1421 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1422 const SDLoc &DL,
1423 SDValue Value) const {
1424 EVT FloatVT = Value.getValueType();
1425 unsigned NumBits = FloatVT.getSizeInBits();
1426 State.FloatVT = FloatVT;
1427 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1428 // Convert to an integer of the same size.
1429 if (TLI.isTypeLegal(IVT)) {
1430 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1431 State.SignMask = APInt::getSignMask(NumBits);
1432 State.SignBit = NumBits - 1;
1433 return;
1436 auto &DataLayout = DAG.getDataLayout();
1437 // Store the float to memory, then load the sign part out as an integer.
1438 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1439 // First create a temporary that is aligned for both the load and store.
1440 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1441 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1442 // Then store the float to it.
1443 State.FloatPtr = StackPtr;
1444 MachineFunction &MF = DAG.getMachineFunction();
1445 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1446 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1447 State.FloatPointerInfo);
1449 SDValue IntPtr;
1450 if (DataLayout.isBigEndian()) {
1451 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1452 // Load out a legal integer with the same sign bit as the float.
1453 IntPtr = StackPtr;
1454 State.IntPointerInfo = State.FloatPointerInfo;
1455 } else {
1456 // Advance the pointer so that the loaded byte will contain the sign bit.
1457 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1458 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
1459 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
1460 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1461 ByteOffset);
1464 State.IntPtr = IntPtr;
1465 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1466 State.IntPointerInfo, MVT::i8);
1467 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1468 State.SignBit = 7;
1471 /// Replace the integer value produced by getSignAsIntValue() with a new value
1472 /// and cast the result back to a floating-point type.
1473 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1474 const SDLoc &DL,
1475 SDValue NewIntValue) const {
1476 if (!State.Chain)
1477 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1479 // Override the part containing the sign bit in the value stored on the stack.
1480 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1481 State.IntPointerInfo, MVT::i8);
1482 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1483 State.FloatPointerInfo);
1486 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1487 SDLoc DL(Node);
1488 SDValue Mag = Node->getOperand(0);
1489 SDValue Sign = Node->getOperand(1);
1491 // Get sign bit into an integer value.
1492 FloatSignAsInt SignAsInt;
1493 getSignAsIntValue(SignAsInt, DL, Sign);
1495 EVT IntVT = SignAsInt.IntValue.getValueType();
1496 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1497 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1498 SignMask);
1500 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1501 EVT FloatVT = Mag.getValueType();
1502 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1503 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1504 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1505 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1506 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1507 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1508 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1511 // Transform Mag value to integer, and clear the sign bit.
1512 FloatSignAsInt MagAsInt;
1513 getSignAsIntValue(MagAsInt, DL, Mag);
1514 EVT MagVT = MagAsInt.IntValue.getValueType();
1515 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1516 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1517 ClearSignMask);
1519 // Get the signbit at the right position for MagAsInt.
1520 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1521 EVT ShiftVT = IntVT;
1522 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1523 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1524 ShiftVT = MagVT;
1526 if (ShiftAmount > 0) {
1527 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1528 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1529 } else if (ShiftAmount < 0) {
1530 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1531 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1533 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1534 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1537 // Store the part with the modified sign and convert back to float.
1538 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1539 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1542 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1543 SDLoc DL(Node);
1544 SDValue Value = Node->getOperand(0);
1546 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1547 EVT FloatVT = Value.getValueType();
1548 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1549 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1550 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1553 // Transform value to integer, clear the sign bit and transform back.
1554 FloatSignAsInt ValueAsInt;
1555 getSignAsIntValue(ValueAsInt, DL, Value);
1556 EVT IntVT = ValueAsInt.IntValue.getValueType();
1557 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1558 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1559 ClearSignMask);
1560 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1563 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1564 SmallVectorImpl<SDValue> &Results) {
1565 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1566 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1567 " not tell us which reg is the stack pointer!");
1568 SDLoc dl(Node);
1569 EVT VT = Node->getValueType(0);
1570 SDValue Tmp1 = SDValue(Node, 0);
1571 SDValue Tmp2 = SDValue(Node, 1);
1572 SDValue Tmp3 = Node->getOperand(2);
1573 SDValue Chain = Tmp1.getOperand(0);
1575 // Chain the dynamic stack allocation so that it doesn't modify the stack
1576 // pointer when other instructions are using the stack.
1577 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1579 SDValue Size = Tmp2.getOperand(1);
1580 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1581 Chain = SP.getValue(1);
1582 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1583 unsigned StackAlign =
1584 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1585 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1586 if (Align > StackAlign)
1587 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1588 DAG.getConstant(-(uint64_t)Align, dl, VT));
1589 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1591 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1592 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1594 Results.push_back(Tmp1);
1595 Results.push_back(Tmp2);
1598 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1599 /// target.
1601 /// If the SETCC has been legalized using AND / OR, then the legalized node
1602 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1603 /// will be set to false.
1605 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1606 /// then the values of LHS and RHS will be swapped, CC will be set to the
1607 /// new condition, and NeedInvert will be set to false.
1609 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1610 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1611 /// will be set to true. The caller must invert the result of the SETCC with
1612 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1613 /// of a true/false result.
1615 /// \returns true if the SetCC has been legalized, false if it hasn't.
1616 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS,
1617 SDValue &RHS, SDValue &CC,
1618 bool &NeedInvert,
1619 const SDLoc &dl) {
1620 MVT OpVT = LHS.getSimpleValueType();
1621 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1622 NeedInvert = false;
1623 bool NeedSwap = false;
1624 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1625 default: llvm_unreachable("Unknown condition code action!");
1626 case TargetLowering::Legal:
1627 // Nothing to do.
1628 break;
1629 case TargetLowering::Expand: {
1630 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1631 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1632 std::swap(LHS, RHS);
1633 CC = DAG.getCondCode(InvCC);
1634 return true;
1636 // Swapping operands didn't work. Try inverting the condition.
1637 InvCC = getSetCCInverse(CCCode, OpVT.isInteger());
1638 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1639 // If inverting the condition is not enough, try swapping operands
1640 // on top of it.
1641 InvCC = ISD::getSetCCSwappedOperands(InvCC);
1642 NeedSwap = true;
1644 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1645 CC = DAG.getCondCode(InvCC);
1646 NeedInvert = true;
1647 if (NeedSwap)
1648 std::swap(LHS, RHS);
1649 return true;
1652 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1653 unsigned Opc = 0;
1654 switch (CCCode) {
1655 default: llvm_unreachable("Don't know how to expand this condition!");
1656 case ISD::SETO:
1657 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1658 && "If SETO is expanded, SETOEQ must be legal!");
1659 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1660 case ISD::SETUO:
1661 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1662 && "If SETUO is expanded, SETUNE must be legal!");
1663 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1664 case ISD::SETOEQ:
1665 case ISD::SETOGT:
1666 case ISD::SETOGE:
1667 case ISD::SETOLT:
1668 case ISD::SETOLE:
1669 case ISD::SETONE:
1670 case ISD::SETUEQ:
1671 case ISD::SETUNE:
1672 case ISD::SETUGT:
1673 case ISD::SETUGE:
1674 case ISD::SETULT:
1675 case ISD::SETULE:
1676 // If we are floating point, assign and break, otherwise fall through.
1677 if (!OpVT.isInteger()) {
1678 // We can use the 4th bit to tell if we are the unordered
1679 // or ordered version of the opcode.
1680 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1681 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1682 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1683 break;
1685 // Fallthrough if we are unsigned integer.
1686 LLVM_FALLTHROUGH;
1687 case ISD::SETLE:
1688 case ISD::SETGT:
1689 case ISD::SETGE:
1690 case ISD::SETLT:
1691 case ISD::SETNE:
1692 case ISD::SETEQ:
1693 // If all combinations of inverting the condition and swapping operands
1694 // didn't work then we have no means to expand the condition.
1695 llvm_unreachable("Don't know how to expand this condition!");
1698 SDValue SetCC1, SetCC2;
1699 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1700 // If we aren't the ordered or unorder operation,
1701 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1702 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1703 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1704 } else {
1705 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1706 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1707 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1709 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1710 RHS = SDValue();
1711 CC = SDValue();
1712 return true;
1715 return false;
1718 /// Emit a store/load combination to the stack. This stores
1719 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1720 /// a load from the stack slot to DestVT, extending it if needed.
1721 /// The resultant code need not be legal.
1722 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1723 EVT DestVT, const SDLoc &dl) {
1724 // Create the stack frame object.
1725 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1726 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1727 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1729 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1730 int SPFI = StackPtrFI->getIndex();
1731 MachinePointerInfo PtrInfo =
1732 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1734 unsigned SrcSize = SrcOp.getValueSizeInBits();
1735 unsigned SlotSize = SlotVT.getSizeInBits();
1736 unsigned DestSize = DestVT.getSizeInBits();
1737 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1738 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1740 // Emit a store to the stack slot. Use a truncstore if the input value is
1741 // later than DestVT.
1742 SDValue Store;
1744 if (SrcSize > SlotSize)
1745 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo,
1746 SlotVT, SrcAlign);
1747 else {
1748 assert(SrcSize == SlotSize && "Invalid store");
1749 Store =
1750 DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1753 // Result is a load from the stack slot.
1754 if (SlotSize == DestSize)
1755 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1757 assert(SlotSize < DestSize && "Unknown extension!");
1758 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1759 DestAlign);
1762 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1763 SDLoc dl(Node);
1764 // Create a vector sized/aligned stack slot, store the value to element #0,
1765 // then load the whole vector back out.
1766 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1768 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1769 int SPFI = StackPtrFI->getIndex();
1771 SDValue Ch = DAG.getTruncStore(
1772 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1773 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1774 Node->getValueType(0).getVectorElementType());
1775 return DAG.getLoad(
1776 Node->getValueType(0), dl, Ch, StackPtr,
1777 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1780 static bool
1781 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1782 const TargetLowering &TLI, SDValue &Res) {
1783 unsigned NumElems = Node->getNumOperands();
1784 SDLoc dl(Node);
1785 EVT VT = Node->getValueType(0);
1787 // Try to group the scalars into pairs, shuffle the pairs together, then
1788 // shuffle the pairs of pairs together, etc. until the vector has
1789 // been built. This will work only if all of the necessary shuffle masks
1790 // are legal.
1792 // We do this in two phases; first to check the legality of the shuffles,
1793 // and next, assuming that all shuffles are legal, to create the new nodes.
1794 for (int Phase = 0; Phase < 2; ++Phase) {
1795 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1796 NewIntermedVals;
1797 for (unsigned i = 0; i < NumElems; ++i) {
1798 SDValue V = Node->getOperand(i);
1799 if (V.isUndef())
1800 continue;
1802 SDValue Vec;
1803 if (Phase)
1804 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1805 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1808 while (IntermedVals.size() > 2) {
1809 NewIntermedVals.clear();
1810 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1811 // This vector and the next vector are shuffled together (simply to
1812 // append the one to the other).
1813 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1815 SmallVector<int, 16> FinalIndices;
1816 FinalIndices.reserve(IntermedVals[i].second.size() +
1817 IntermedVals[i+1].second.size());
1819 int k = 0;
1820 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1821 ++j, ++k) {
1822 ShuffleVec[k] = j;
1823 FinalIndices.push_back(IntermedVals[i].second[j]);
1825 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1826 ++j, ++k) {
1827 ShuffleVec[k] = NumElems + j;
1828 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1831 SDValue Shuffle;
1832 if (Phase)
1833 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1834 IntermedVals[i+1].first,
1835 ShuffleVec);
1836 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1837 return false;
1838 NewIntermedVals.push_back(
1839 std::make_pair(Shuffle, std::move(FinalIndices)));
1842 // If we had an odd number of defined values, then append the last
1843 // element to the array of new vectors.
1844 if ((IntermedVals.size() & 1) != 0)
1845 NewIntermedVals.push_back(IntermedVals.back());
1847 IntermedVals.swap(NewIntermedVals);
1850 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1851 "Invalid number of intermediate vectors");
1852 SDValue Vec1 = IntermedVals[0].first;
1853 SDValue Vec2;
1854 if (IntermedVals.size() > 1)
1855 Vec2 = IntermedVals[1].first;
1856 else if (Phase)
1857 Vec2 = DAG.getUNDEF(VT);
1859 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1860 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1861 ShuffleVec[IntermedVals[0].second[i]] = i;
1862 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1863 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1865 if (Phase)
1866 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1867 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1868 return false;
1871 return true;
1874 /// Expand a BUILD_VECTOR node on targets that don't
1875 /// support the operation, but do support the resultant vector type.
1876 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1877 unsigned NumElems = Node->getNumOperands();
1878 SDValue Value1, Value2;
1879 SDLoc dl(Node);
1880 EVT VT = Node->getValueType(0);
1881 EVT OpVT = Node->getOperand(0).getValueType();
1882 EVT EltVT = VT.getVectorElementType();
1884 // If the only non-undef value is the low element, turn this into a
1885 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1886 bool isOnlyLowElement = true;
1887 bool MoreThanTwoValues = false;
1888 bool isConstant = true;
1889 for (unsigned i = 0; i < NumElems; ++i) {
1890 SDValue V = Node->getOperand(i);
1891 if (V.isUndef())
1892 continue;
1893 if (i > 0)
1894 isOnlyLowElement = false;
1895 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1896 isConstant = false;
1898 if (!Value1.getNode()) {
1899 Value1 = V;
1900 } else if (!Value2.getNode()) {
1901 if (V != Value1)
1902 Value2 = V;
1903 } else if (V != Value1 && V != Value2) {
1904 MoreThanTwoValues = true;
1908 if (!Value1.getNode())
1909 return DAG.getUNDEF(VT);
1911 if (isOnlyLowElement)
1912 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1914 // If all elements are constants, create a load from the constant pool.
1915 if (isConstant) {
1916 SmallVector<Constant*, 16> CV;
1917 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1918 if (ConstantFPSDNode *V =
1919 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1920 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1921 } else if (ConstantSDNode *V =
1922 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1923 if (OpVT==EltVT)
1924 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1925 else {
1926 // If OpVT and EltVT don't match, EltVT is not legal and the
1927 // element values have been promoted/truncated earlier. Undo this;
1928 // we don't want a v16i8 to become a v16i32 for example.
1929 const ConstantInt *CI = V->getConstantIntValue();
1930 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1931 CI->getZExtValue()));
1933 } else {
1934 assert(Node->getOperand(i).isUndef());
1935 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1936 CV.push_back(UndefValue::get(OpNTy));
1939 Constant *CP = ConstantVector::get(CV);
1940 SDValue CPIdx =
1941 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1942 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1943 return DAG.getLoad(
1944 VT, dl, DAG.getEntryNode(), CPIdx,
1945 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1946 Alignment);
1949 SmallSet<SDValue, 16> DefinedValues;
1950 for (unsigned i = 0; i < NumElems; ++i) {
1951 if (Node->getOperand(i).isUndef())
1952 continue;
1953 DefinedValues.insert(Node->getOperand(i));
1956 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1957 if (!MoreThanTwoValues) {
1958 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1959 for (unsigned i = 0; i < NumElems; ++i) {
1960 SDValue V = Node->getOperand(i);
1961 if (V.isUndef())
1962 continue;
1963 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1965 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1966 // Get the splatted value into the low element of a vector register.
1967 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1968 SDValue Vec2;
1969 if (Value2.getNode())
1970 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1971 else
1972 Vec2 = DAG.getUNDEF(VT);
1974 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1975 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1977 } else {
1978 SDValue Res;
1979 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
1980 return Res;
1984 // Otherwise, we can't handle this case efficiently.
1985 return ExpandVectorBuildThroughStack(Node);
1988 // Expand a node into a call to a libcall. If the result value
1989 // does not fit into a register, return the lo part and set the hi part to the
1990 // by-reg argument. If it does fit into a single register, return the result
1991 // and leave the Hi part unset.
1992 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1993 bool isSigned) {
1994 TargetLowering::ArgListTy Args;
1995 TargetLowering::ArgListEntry Entry;
1996 for (const SDValue &Op : Node->op_values()) {
1997 EVT ArgVT = Op.getValueType();
1998 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1999 Entry.Node = Op;
2000 Entry.Ty = ArgTy;
2001 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2002 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2003 Args.push_back(Entry);
2005 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2006 TLI.getPointerTy(DAG.getDataLayout()));
2008 EVT RetVT = Node->getValueType(0);
2009 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2011 // By default, the input chain to this libcall is the entry node of the
2012 // function. If the libcall is going to be emitted as a tail call then
2013 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2014 // node which is being folded has a non-entry input chain.
2015 SDValue InChain = DAG.getEntryNode();
2017 // isTailCall may be true since the callee does not reference caller stack
2018 // frame. Check if it's in the right position and that the return types match.
2019 SDValue TCChain = InChain;
2020 const Function &F = DAG.getMachineFunction().getFunction();
2021 bool isTailCall =
2022 TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2023 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2024 if (isTailCall)
2025 InChain = TCChain;
2027 TargetLowering::CallLoweringInfo CLI(DAG);
2028 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2029 CLI.setDebugLoc(SDLoc(Node))
2030 .setChain(InChain)
2031 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2032 std::move(Args))
2033 .setTailCall(isTailCall)
2034 .setSExtResult(signExtend)
2035 .setZExtResult(!signExtend)
2036 .setIsPostTypeLegalization(true);
2038 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2040 if (!CallInfo.second.getNode()) {
2041 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump());
2042 // It's a tailcall, return the chain (which is the DAG root).
2043 return DAG.getRoot();
2046 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump());
2047 return CallInfo.first;
2050 // Expand a node into a call to a libcall. Similar to
2051 // ExpandLibCall except that the first operand is the in-chain.
2052 std::pair<SDValue, SDValue>
2053 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2054 SDNode *Node,
2055 bool isSigned) {
2056 SDValue InChain = Node->getOperand(0);
2058 TargetLowering::ArgListTy Args;
2059 TargetLowering::ArgListEntry Entry;
2060 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2061 EVT ArgVT = Node->getOperand(i).getValueType();
2062 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2063 Entry.Node = Node->getOperand(i);
2064 Entry.Ty = ArgTy;
2065 Entry.IsSExt = isSigned;
2066 Entry.IsZExt = !isSigned;
2067 Args.push_back(Entry);
2069 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2070 TLI.getPointerTy(DAG.getDataLayout()));
2072 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2074 TargetLowering::CallLoweringInfo CLI(DAG);
2075 CLI.setDebugLoc(SDLoc(Node))
2076 .setChain(InChain)
2077 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2078 std::move(Args))
2079 .setSExtResult(isSigned)
2080 .setZExtResult(!isSigned);
2082 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2084 return CallInfo;
2087 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2088 RTLIB::Libcall Call_F32,
2089 RTLIB::Libcall Call_F64,
2090 RTLIB::Libcall Call_F80,
2091 RTLIB::Libcall Call_F128,
2092 RTLIB::Libcall Call_PPCF128) {
2093 if (Node->isStrictFPOpcode())
2094 Node = DAG.mutateStrictFPToFP(Node);
2096 RTLIB::Libcall LC;
2097 switch (Node->getSimpleValueType(0).SimpleTy) {
2098 default: llvm_unreachable("Unexpected request for libcall!");
2099 case MVT::f32: LC = Call_F32; break;
2100 case MVT::f64: LC = Call_F64; break;
2101 case MVT::f80: LC = Call_F80; break;
2102 case MVT::f128: LC = Call_F128; break;
2103 case MVT::ppcf128: LC = Call_PPCF128; break;
2105 return ExpandLibCall(LC, Node, false);
2108 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2109 RTLIB::Libcall Call_I8,
2110 RTLIB::Libcall Call_I16,
2111 RTLIB::Libcall Call_I32,
2112 RTLIB::Libcall Call_I64,
2113 RTLIB::Libcall Call_I128) {
2114 RTLIB::Libcall LC;
2115 switch (Node->getSimpleValueType(0).SimpleTy) {
2116 default: llvm_unreachable("Unexpected request for libcall!");
2117 case MVT::i8: LC = Call_I8; break;
2118 case MVT::i16: LC = Call_I16; break;
2119 case MVT::i32: LC = Call_I32; break;
2120 case MVT::i64: LC = Call_I64; break;
2121 case MVT::i128: LC = Call_I128; break;
2123 return ExpandLibCall(LC, Node, isSigned);
2126 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2127 void
2128 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2129 SmallVectorImpl<SDValue> &Results) {
2130 unsigned Opcode = Node->getOpcode();
2131 bool isSigned = Opcode == ISD::SDIVREM;
2133 RTLIB::Libcall LC;
2134 switch (Node->getSimpleValueType(0).SimpleTy) {
2135 default: llvm_unreachable("Unexpected request for libcall!");
2136 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2137 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2138 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2139 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2140 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2143 // The input chain to this libcall is the entry node of the function.
2144 // Legalizing the call will automatically add the previous call to the
2145 // dependence.
2146 SDValue InChain = DAG.getEntryNode();
2148 EVT RetVT = Node->getValueType(0);
2149 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2151 TargetLowering::ArgListTy Args;
2152 TargetLowering::ArgListEntry Entry;
2153 for (const SDValue &Op : Node->op_values()) {
2154 EVT ArgVT = Op.getValueType();
2155 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2156 Entry.Node = Op;
2157 Entry.Ty = ArgTy;
2158 Entry.IsSExt = isSigned;
2159 Entry.IsZExt = !isSigned;
2160 Args.push_back(Entry);
2163 // Also pass the return address of the remainder.
2164 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2165 Entry.Node = FIPtr;
2166 Entry.Ty = RetTy->getPointerTo();
2167 Entry.IsSExt = isSigned;
2168 Entry.IsZExt = !isSigned;
2169 Args.push_back(Entry);
2171 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2172 TLI.getPointerTy(DAG.getDataLayout()));
2174 SDLoc dl(Node);
2175 TargetLowering::CallLoweringInfo CLI(DAG);
2176 CLI.setDebugLoc(dl)
2177 .setChain(InChain)
2178 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2179 std::move(Args))
2180 .setSExtResult(isSigned)
2181 .setZExtResult(!isSigned);
2183 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2185 // Remainder is loaded back from the stack frame.
2186 SDValue Rem =
2187 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2188 Results.push_back(CallInfo.first);
2189 Results.push_back(Rem);
2192 /// Return true if sincos libcall is available.
2193 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2194 RTLIB::Libcall LC;
2195 switch (Node->getSimpleValueType(0).SimpleTy) {
2196 default: llvm_unreachable("Unexpected request for libcall!");
2197 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2198 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2199 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2200 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2201 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2203 return TLI.getLibcallName(LC) != nullptr;
2206 /// Only issue sincos libcall if both sin and cos are needed.
2207 static bool useSinCos(SDNode *Node) {
2208 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2209 ? ISD::FCOS : ISD::FSIN;
2211 SDValue Op0 = Node->getOperand(0);
2212 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2213 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2214 SDNode *User = *UI;
2215 if (User == Node)
2216 continue;
2217 // The other user might have been turned into sincos already.
2218 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2219 return true;
2221 return false;
2224 /// Issue libcalls to sincos to compute sin / cos pairs.
2225 void
2226 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2227 SmallVectorImpl<SDValue> &Results) {
2228 RTLIB::Libcall LC;
2229 switch (Node->getSimpleValueType(0).SimpleTy) {
2230 default: llvm_unreachable("Unexpected request for libcall!");
2231 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2232 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2233 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2234 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2235 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2238 // The input chain to this libcall is the entry node of the function.
2239 // Legalizing the call will automatically add the previous call to the
2240 // dependence.
2241 SDValue InChain = DAG.getEntryNode();
2243 EVT RetVT = Node->getValueType(0);
2244 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2246 TargetLowering::ArgListTy Args;
2247 TargetLowering::ArgListEntry Entry;
2249 // Pass the argument.
2250 Entry.Node = Node->getOperand(0);
2251 Entry.Ty = RetTy;
2252 Entry.IsSExt = false;
2253 Entry.IsZExt = false;
2254 Args.push_back(Entry);
2256 // Pass the return address of sin.
2257 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2258 Entry.Node = SinPtr;
2259 Entry.Ty = RetTy->getPointerTo();
2260 Entry.IsSExt = false;
2261 Entry.IsZExt = false;
2262 Args.push_back(Entry);
2264 // Also pass the return address of the cos.
2265 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2266 Entry.Node = CosPtr;
2267 Entry.Ty = RetTy->getPointerTo();
2268 Entry.IsSExt = false;
2269 Entry.IsZExt = false;
2270 Args.push_back(Entry);
2272 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2273 TLI.getPointerTy(DAG.getDataLayout()));
2275 SDLoc dl(Node);
2276 TargetLowering::CallLoweringInfo CLI(DAG);
2277 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2278 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2279 std::move(Args));
2281 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2283 Results.push_back(
2284 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2285 Results.push_back(
2286 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2289 /// This function is responsible for legalizing a
2290 /// INT_TO_FP operation of the specified operand when the target requests that
2291 /// we expand it. At this point, we know that the result and operand types are
2292 /// legal for the target.
2293 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0,
2294 EVT DestVT,
2295 const SDLoc &dl) {
2296 EVT SrcVT = Op0.getValueType();
2298 // TODO: Should any fast-math-flags be set for the created nodes?
2299 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2300 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2301 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2302 "expansion\n");
2304 // Get the stack frame index of a 8 byte buffer.
2305 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2307 // word offset constant for Hi/Lo address computation
2308 SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2309 StackSlot.getValueType());
2310 // set up Hi and Lo (into buffer) address based on endian
2311 SDValue Hi = StackSlot;
2312 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2313 StackSlot, WordOff);
2314 if (DAG.getDataLayout().isLittleEndian())
2315 std::swap(Hi, Lo);
2317 // if signed map to unsigned space
2318 SDValue Op0Mapped;
2319 if (isSigned) {
2320 // constant used to invert sign bit (signed to unsigned mapping)
2321 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2322 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2323 } else {
2324 Op0Mapped = Op0;
2326 // store the lo of the constructed double - based on integer input
2327 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2328 MachinePointerInfo());
2329 // initial hi portion of constructed double
2330 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2331 // store the hi of the constructed double - biased exponent
2332 SDValue Store2 =
2333 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2334 // load the constructed double
2335 SDValue Load =
2336 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2337 // FP constant to bias correct the final result
2338 SDValue Bias = DAG.getConstantFP(isSigned ?
2339 BitsToDouble(0x4330000080000000ULL) :
2340 BitsToDouble(0x4330000000000000ULL),
2341 dl, MVT::f64);
2342 // subtract the bias
2343 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2344 // final result
2345 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2346 return Result;
2348 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2349 // Code below here assumes !isSigned without checking again.
2351 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2353 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2354 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2355 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2356 Four = DAG.getIntPtrConstant(4, dl);
2357 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2358 SignSet, Four, Zero);
2360 // If the sign bit of the integer is set, the large number will be treated
2361 // as a negative number. To counteract this, the dynamic code adds an
2362 // offset depending on the data type.
2363 uint64_t FF;
2364 switch (SrcVT.getSimpleVT().SimpleTy) {
2365 default: llvm_unreachable("Unsupported integer type!");
2366 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2367 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2368 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2369 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2371 if (DAG.getDataLayout().isLittleEndian())
2372 FF <<= 32;
2373 Constant *FudgeFactor = ConstantInt::get(
2374 Type::getInt64Ty(*DAG.getContext()), FF);
2376 SDValue CPIdx =
2377 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2378 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2379 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2380 Alignment = std::min(Alignment, 4u);
2381 SDValue FudgeInReg;
2382 if (DestVT == MVT::f32)
2383 FudgeInReg = DAG.getLoad(
2384 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2385 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2386 Alignment);
2387 else {
2388 SDValue Load = DAG.getExtLoad(
2389 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2390 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2391 Alignment);
2392 HandleSDNode Handle(Load);
2393 LegalizeOp(Load.getNode());
2394 FudgeInReg = Handle.getValue();
2397 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2400 /// This function is responsible for legalizing a
2401 /// *INT_TO_FP operation of the specified operand when the target requests that
2402 /// we promote it. At this point, we know that the result and operand types are
2403 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2404 /// operation that takes a larger input.
2405 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT,
2406 bool isSigned,
2407 const SDLoc &dl) {
2408 // First step, figure out the appropriate *INT_TO_FP operation to use.
2409 EVT NewInTy = LegalOp.getValueType();
2411 unsigned OpToUse = 0;
2413 // Scan for the appropriate larger type to use.
2414 while (true) {
2415 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2416 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2418 // If the target supports SINT_TO_FP of this type, use it.
2419 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2420 OpToUse = ISD::SINT_TO_FP;
2421 break;
2423 if (isSigned) continue;
2425 // If the target supports UINT_TO_FP of this type, use it.
2426 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2427 OpToUse = ISD::UINT_TO_FP;
2428 break;
2431 // Otherwise, try a larger type.
2434 // Okay, we found the operation and type to use. Zero extend our input to the
2435 // desired type then run the operation on it.
2436 return DAG.getNode(OpToUse, dl, DestVT,
2437 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2438 dl, NewInTy, LegalOp));
2441 /// This function is responsible for legalizing a
2442 /// FP_TO_*INT operation of the specified operand when the target requests that
2443 /// we promote it. At this point, we know that the result and operand types are
2444 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2445 /// operation that returns a larger result.
2446 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT,
2447 bool isSigned,
2448 const SDLoc &dl) {
2449 // First step, figure out the appropriate FP_TO*INT operation to use.
2450 EVT NewOutTy = DestVT;
2452 unsigned OpToUse = 0;
2454 // Scan for the appropriate larger type to use.
2455 while (true) {
2456 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2457 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2459 // A larger signed type can hold all unsigned values of the requested type,
2460 // so using FP_TO_SINT is valid
2461 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2462 OpToUse = ISD::FP_TO_SINT;
2463 break;
2466 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2467 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2468 OpToUse = ISD::FP_TO_UINT;
2469 break;
2472 // Otherwise, try a larger type.
2475 // Okay, we found the operation and type to use.
2476 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2478 // Truncate the result of the extended FP_TO_*INT operation to the desired
2479 // size.
2480 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2483 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2484 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2485 EVT VT = Op.getValueType();
2486 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2487 unsigned Sz = VT.getScalarSizeInBits();
2489 SDValue Tmp, Tmp2, Tmp3;
2491 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2492 // and finally the i1 pairs.
2493 // TODO: We can easily support i4/i2 legal types if any target ever does.
2494 if (Sz >= 8 && isPowerOf2_32(Sz)) {
2495 // Create the masks - repeating the pattern every byte.
2496 APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0);
2497 APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0);
2498 for (unsigned J = 0; J != Sz; J += 8) {
2499 MaskHi4 = MaskHi4 | (0xF0ull << J);
2500 MaskLo4 = MaskLo4 | (0x0Full << J);
2501 MaskHi2 = MaskHi2 | (0xCCull << J);
2502 MaskLo2 = MaskLo2 | (0x33ull << J);
2503 MaskHi1 = MaskHi1 | (0xAAull << J);
2504 MaskLo1 = MaskLo1 | (0x55ull << J);
2507 // BSWAP if the type is wider than a single byte.
2508 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2510 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2511 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2512 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2513 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2514 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2515 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2517 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2518 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2519 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2520 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2521 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2522 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2524 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2525 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2526 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2527 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2528 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2529 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2530 return Tmp;
2533 Tmp = DAG.getConstant(0, dl, VT);
2534 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2535 if (I < J)
2536 Tmp2 =
2537 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2538 else
2539 Tmp2 =
2540 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2542 APInt Shift(Sz, 1);
2543 Shift <<= J;
2544 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2545 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2548 return Tmp;
2551 /// Open code the operations for BSWAP of the specified operation.
2552 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2553 EVT VT = Op.getValueType();
2554 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2555 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2556 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2557 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2558 case MVT::i16:
2559 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2560 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2561 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2562 case MVT::i32:
2563 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2564 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2565 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2566 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2567 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2568 DAG.getConstant(0xFF0000, dl, VT));
2569 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2570 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2571 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2572 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2573 case MVT::i64:
2574 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2575 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2576 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2577 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2578 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2579 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2580 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2581 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2582 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2583 DAG.getConstant(255ULL<<48, dl, VT));
2584 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2585 DAG.getConstant(255ULL<<40, dl, VT));
2586 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2587 DAG.getConstant(255ULL<<32, dl, VT));
2588 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2589 DAG.getConstant(255ULL<<24, dl, VT));
2590 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2591 DAG.getConstant(255ULL<<16, dl, VT));
2592 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2593 DAG.getConstant(255ULL<<8 , dl, VT));
2594 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2595 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2596 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2597 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2598 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2599 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2600 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2604 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2605 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2606 SmallVector<SDValue, 8> Results;
2607 SDLoc dl(Node);
2608 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2609 bool NeedInvert;
2610 switch (Node->getOpcode()) {
2611 case ISD::ABS:
2612 if (TLI.expandABS(Node, Tmp1, DAG))
2613 Results.push_back(Tmp1);
2614 break;
2615 case ISD::CTPOP:
2616 if (TLI.expandCTPOP(Node, Tmp1, DAG))
2617 Results.push_back(Tmp1);
2618 break;
2619 case ISD::CTLZ:
2620 case ISD::CTLZ_ZERO_UNDEF:
2621 if (TLI.expandCTLZ(Node, Tmp1, DAG))
2622 Results.push_back(Tmp1);
2623 break;
2624 case ISD::CTTZ:
2625 case ISD::CTTZ_ZERO_UNDEF:
2626 if (TLI.expandCTTZ(Node, Tmp1, DAG))
2627 Results.push_back(Tmp1);
2628 break;
2629 case ISD::BITREVERSE:
2630 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2631 break;
2632 case ISD::BSWAP:
2633 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2634 break;
2635 case ISD::FRAMEADDR:
2636 case ISD::RETURNADDR:
2637 case ISD::FRAME_TO_ARGS_OFFSET:
2638 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2639 break;
2640 case ISD::EH_DWARF_CFA: {
2641 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2642 TLI.getPointerTy(DAG.getDataLayout()));
2643 SDValue Offset = DAG.getNode(ISD::ADD, dl,
2644 CfaArg.getValueType(),
2645 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2646 CfaArg.getValueType()),
2647 CfaArg);
2648 SDValue FA = DAG.getNode(
2649 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2650 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2651 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2652 FA, Offset));
2653 break;
2655 case ISD::FLT_ROUNDS_:
2656 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2657 break;
2658 case ISD::EH_RETURN:
2659 case ISD::EH_LABEL:
2660 case ISD::PREFETCH:
2661 case ISD::VAEND:
2662 case ISD::EH_SJLJ_LONGJMP:
2663 // If the target didn't expand these, there's nothing to do, so just
2664 // preserve the chain and be done.
2665 Results.push_back(Node->getOperand(0));
2666 break;
2667 case ISD::READCYCLECOUNTER:
2668 // If the target didn't expand this, just return 'zero' and preserve the
2669 // chain.
2670 Results.append(Node->getNumValues() - 1,
2671 DAG.getConstant(0, dl, Node->getValueType(0)));
2672 Results.push_back(Node->getOperand(0));
2673 break;
2674 case ISD::EH_SJLJ_SETJMP:
2675 // If the target didn't expand this, just return 'zero' and preserve the
2676 // chain.
2677 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2678 Results.push_back(Node->getOperand(0));
2679 break;
2680 case ISD::ATOMIC_LOAD: {
2681 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2682 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2683 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2684 SDValue Swap = DAG.getAtomicCmpSwap(
2685 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2686 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2687 cast<AtomicSDNode>(Node)->getMemOperand());
2688 Results.push_back(Swap.getValue(0));
2689 Results.push_back(Swap.getValue(1));
2690 break;
2692 case ISD::ATOMIC_STORE: {
2693 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2694 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2695 cast<AtomicSDNode>(Node)->getMemoryVT(),
2696 Node->getOperand(0),
2697 Node->getOperand(1), Node->getOperand(2),
2698 cast<AtomicSDNode>(Node)->getMemOperand());
2699 Results.push_back(Swap.getValue(1));
2700 break;
2702 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2703 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2704 // splits out the success value as a comparison. Expanding the resulting
2705 // ATOMIC_CMP_SWAP will produce a libcall.
2706 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2707 SDValue Res = DAG.getAtomicCmpSwap(
2708 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2709 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2710 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2712 SDValue ExtRes = Res;
2713 SDValue LHS = Res;
2714 SDValue RHS = Node->getOperand(1);
2716 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2717 EVT OuterType = Node->getValueType(0);
2718 switch (TLI.getExtendForAtomicOps()) {
2719 case ISD::SIGN_EXTEND:
2720 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2721 DAG.getValueType(AtomicType));
2722 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2723 Node->getOperand(2), DAG.getValueType(AtomicType));
2724 ExtRes = LHS;
2725 break;
2726 case ISD::ZERO_EXTEND:
2727 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2728 DAG.getValueType(AtomicType));
2729 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2730 ExtRes = LHS;
2731 break;
2732 case ISD::ANY_EXTEND:
2733 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2734 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2735 break;
2736 default:
2737 llvm_unreachable("Invalid atomic op extension");
2740 SDValue Success =
2741 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2743 Results.push_back(ExtRes.getValue(0));
2744 Results.push_back(Success);
2745 Results.push_back(Res.getValue(1));
2746 break;
2748 case ISD::DYNAMIC_STACKALLOC:
2749 ExpandDYNAMIC_STACKALLOC(Node, Results);
2750 break;
2751 case ISD::MERGE_VALUES:
2752 for (unsigned i = 0; i < Node->getNumValues(); i++)
2753 Results.push_back(Node->getOperand(i));
2754 break;
2755 case ISD::UNDEF: {
2756 EVT VT = Node->getValueType(0);
2757 if (VT.isInteger())
2758 Results.push_back(DAG.getConstant(0, dl, VT));
2759 else {
2760 assert(VT.isFloatingPoint() && "Unknown value type!");
2761 Results.push_back(DAG.getConstantFP(0, dl, VT));
2763 break;
2765 case ISD::FP_ROUND:
2766 case ISD::BITCAST:
2767 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2768 Node->getValueType(0), dl);
2769 Results.push_back(Tmp1);
2770 break;
2771 case ISD::FP_EXTEND:
2772 Tmp1 = EmitStackConvert(Node->getOperand(0),
2773 Node->getOperand(0).getValueType(),
2774 Node->getValueType(0), dl);
2775 Results.push_back(Tmp1);
2776 break;
2777 case ISD::SIGN_EXTEND_INREG: {
2778 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2779 EVT VT = Node->getValueType(0);
2781 // An in-register sign-extend of a boolean is a negation:
2782 // 'true' (1) sign-extended is -1.
2783 // 'false' (0) sign-extended is 0.
2784 // However, we must mask the high bits of the source operand because the
2785 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2787 // TODO: Do this for vectors too?
2788 if (ExtraVT.getSizeInBits() == 1) {
2789 SDValue One = DAG.getConstant(1, dl, VT);
2790 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2791 SDValue Zero = DAG.getConstant(0, dl, VT);
2792 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2793 Results.push_back(Neg);
2794 break;
2797 // NOTE: we could fall back on load/store here too for targets without
2798 // SRA. However, it is doubtful that any exist.
2799 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2800 unsigned BitsDiff = VT.getScalarSizeInBits() -
2801 ExtraVT.getScalarSizeInBits();
2802 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2803 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2804 Node->getOperand(0), ShiftCst);
2805 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2806 Results.push_back(Tmp1);
2807 break;
2809 case ISD::FP_ROUND_INREG: {
2810 // The only way we can lower this is to turn it into a TRUNCSTORE,
2811 // EXTLOAD pair, targeting a temporary location (a stack slot).
2813 // NOTE: there is a choice here between constantly creating new stack
2814 // slots and always reusing the same one. We currently always create
2815 // new ones, as reuse may inhibit scheduling.
2816 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2817 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2818 Node->getValueType(0), dl);
2819 Results.push_back(Tmp1);
2820 break;
2822 case ISD::UINT_TO_FP:
2823 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) {
2824 Results.push_back(Tmp1);
2825 break;
2827 LLVM_FALLTHROUGH;
2828 case ISD::SINT_TO_FP:
2829 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2830 Node->getOperand(0), Node->getValueType(0), dl);
2831 Results.push_back(Tmp1);
2832 break;
2833 case ISD::FP_TO_SINT:
2834 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2835 Results.push_back(Tmp1);
2836 break;
2837 case ISD::FP_TO_UINT:
2838 if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG))
2839 Results.push_back(Tmp1);
2840 break;
2841 case ISD::VAARG:
2842 Results.push_back(DAG.expandVAArg(Node));
2843 Results.push_back(Results[0].getValue(1));
2844 break;
2845 case ISD::VACOPY:
2846 Results.push_back(DAG.expandVACopy(Node));
2847 break;
2848 case ISD::EXTRACT_VECTOR_ELT:
2849 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2850 // This must be an access of the only element. Return it.
2851 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2852 Node->getOperand(0));
2853 else
2854 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2855 Results.push_back(Tmp1);
2856 break;
2857 case ISD::EXTRACT_SUBVECTOR:
2858 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2859 break;
2860 case ISD::INSERT_SUBVECTOR:
2861 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2862 break;
2863 case ISD::CONCAT_VECTORS:
2864 Results.push_back(ExpandVectorBuildThroughStack(Node));
2865 break;
2866 case ISD::SCALAR_TO_VECTOR:
2867 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2868 break;
2869 case ISD::INSERT_VECTOR_ELT:
2870 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2871 Node->getOperand(1),
2872 Node->getOperand(2), dl));
2873 break;
2874 case ISD::VECTOR_SHUFFLE: {
2875 SmallVector<int, 32> NewMask;
2876 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2878 EVT VT = Node->getValueType(0);
2879 EVT EltVT = VT.getVectorElementType();
2880 SDValue Op0 = Node->getOperand(0);
2881 SDValue Op1 = Node->getOperand(1);
2882 if (!TLI.isTypeLegal(EltVT)) {
2883 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2885 // BUILD_VECTOR operands are allowed to be wider than the element type.
2886 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2887 // it.
2888 if (NewEltVT.bitsLT(EltVT)) {
2889 // Convert shuffle node.
2890 // If original node was v4i64 and the new EltVT is i32,
2891 // cast operands to v8i32 and re-build the mask.
2893 // Calculate new VT, the size of the new VT should be equal to original.
2894 EVT NewVT =
2895 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2896 VT.getSizeInBits() / NewEltVT.getSizeInBits());
2897 assert(NewVT.bitsEq(VT));
2899 // cast operands to new VT
2900 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2901 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2903 // Convert the shuffle mask
2904 unsigned int factor =
2905 NewVT.getVectorNumElements()/VT.getVectorNumElements();
2907 // EltVT gets smaller
2908 assert(factor > 0);
2910 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2911 if (Mask[i] < 0) {
2912 for (unsigned fi = 0; fi < factor; ++fi)
2913 NewMask.push_back(Mask[i]);
2915 else {
2916 for (unsigned fi = 0; fi < factor; ++fi)
2917 NewMask.push_back(Mask[i]*factor+fi);
2920 Mask = NewMask;
2921 VT = NewVT;
2923 EltVT = NewEltVT;
2925 unsigned NumElems = VT.getVectorNumElements();
2926 SmallVector<SDValue, 16> Ops;
2927 for (unsigned i = 0; i != NumElems; ++i) {
2928 if (Mask[i] < 0) {
2929 Ops.push_back(DAG.getUNDEF(EltVT));
2930 continue;
2932 unsigned Idx = Mask[i];
2933 if (Idx < NumElems)
2934 Ops.push_back(DAG.getNode(
2935 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
2936 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
2937 else
2938 Ops.push_back(DAG.getNode(
2939 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
2940 DAG.getConstant(Idx - NumElems, dl,
2941 TLI.getVectorIdxTy(DAG.getDataLayout()))));
2944 Tmp1 = DAG.getBuildVector(VT, dl, Ops);
2945 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2946 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2947 Results.push_back(Tmp1);
2948 break;
2950 case ISD::EXTRACT_ELEMENT: {
2951 EVT OpTy = Node->getOperand(0).getValueType();
2952 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2953 // 1 -> Hi
2954 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2955 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
2956 TLI.getShiftAmountTy(
2957 Node->getOperand(0).getValueType(),
2958 DAG.getDataLayout())));
2959 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2960 } else {
2961 // 0 -> Lo
2962 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2963 Node->getOperand(0));
2965 Results.push_back(Tmp1);
2966 break;
2968 case ISD::STACKSAVE:
2969 // Expand to CopyFromReg if the target set
2970 // StackPointerRegisterToSaveRestore.
2971 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2972 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2973 Node->getValueType(0)));
2974 Results.push_back(Results[0].getValue(1));
2975 } else {
2976 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2977 Results.push_back(Node->getOperand(0));
2979 break;
2980 case ISD::STACKRESTORE:
2981 // Expand to CopyToReg if the target set
2982 // StackPointerRegisterToSaveRestore.
2983 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2984 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2985 Node->getOperand(1)));
2986 } else {
2987 Results.push_back(Node->getOperand(0));
2989 break;
2990 case ISD::GET_DYNAMIC_AREA_OFFSET:
2991 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2992 Results.push_back(Results[0].getValue(0));
2993 break;
2994 case ISD::FCOPYSIGN:
2995 Results.push_back(ExpandFCOPYSIGN(Node));
2996 break;
2997 case ISD::FNEG:
2998 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
2999 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3000 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3001 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3002 Node->getOperand(0));
3003 Results.push_back(Tmp1);
3004 break;
3005 case ISD::FABS:
3006 Results.push_back(ExpandFABS(Node));
3007 break;
3008 case ISD::SMIN:
3009 case ISD::SMAX:
3010 case ISD::UMIN:
3011 case ISD::UMAX: {
3012 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3013 ISD::CondCode Pred;
3014 switch (Node->getOpcode()) {
3015 default: llvm_unreachable("How did we get here?");
3016 case ISD::SMAX: Pred = ISD::SETGT; break;
3017 case ISD::SMIN: Pred = ISD::SETLT; break;
3018 case ISD::UMAX: Pred = ISD::SETUGT; break;
3019 case ISD::UMIN: Pred = ISD::SETULT; break;
3021 Tmp1 = Node->getOperand(0);
3022 Tmp2 = Node->getOperand(1);
3023 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3024 Results.push_back(Tmp1);
3025 break;
3027 case ISD::FMINNUM:
3028 case ISD::FMAXNUM: {
3029 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3030 Results.push_back(Expanded);
3031 break;
3033 case ISD::FSIN:
3034 case ISD::FCOS: {
3035 EVT VT = Node->getValueType(0);
3036 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3037 // fcos which share the same operand and both are used.
3038 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3039 isSinCosLibcallAvailable(Node, TLI))
3040 && useSinCos(Node)) {
3041 SDVTList VTs = DAG.getVTList(VT, VT);
3042 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3043 if (Node->getOpcode() == ISD::FCOS)
3044 Tmp1 = Tmp1.getValue(1);
3045 Results.push_back(Tmp1);
3047 break;
3049 case ISD::FMAD:
3050 llvm_unreachable("Illegal fmad should never be formed");
3052 case ISD::FP16_TO_FP:
3053 if (Node->getValueType(0) != MVT::f32) {
3054 // We can extend to types bigger than f32 in two steps without changing
3055 // the result. Since "f16 -> f32" is much more commonly available, give
3056 // CodeGen the option of emitting that before resorting to a libcall.
3057 SDValue Res =
3058 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3059 Results.push_back(
3060 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3062 break;
3063 case ISD::FP_TO_FP16:
3064 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3065 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3066 SDValue Op = Node->getOperand(0);
3067 MVT SVT = Op.getSimpleValueType();
3068 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3069 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3070 // Under fastmath, we can expand this node into a fround followed by
3071 // a float-half conversion.
3072 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3073 DAG.getIntPtrConstant(0, dl));
3074 Results.push_back(
3075 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3078 break;
3079 case ISD::ConstantFP: {
3080 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3081 // Check to see if this FP immediate is already legal.
3082 // If this is a legal constant, turn it into a TargetConstantFP node.
3083 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3084 Results.push_back(ExpandConstantFP(CFP, true));
3085 break;
3087 case ISD::Constant: {
3088 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3089 Results.push_back(ExpandConstant(CP));
3090 break;
3092 case ISD::FSUB: {
3093 EVT VT = Node->getValueType(0);
3094 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3095 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3096 const SDNodeFlags Flags = Node->getFlags();
3097 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3098 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3099 Results.push_back(Tmp1);
3101 break;
3103 case ISD::SUB: {
3104 EVT VT = Node->getValueType(0);
3105 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3106 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3107 "Don't know how to expand this subtraction!");
3108 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3109 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3110 VT));
3111 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3112 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3113 break;
3115 case ISD::UREM:
3116 case ISD::SREM: {
3117 EVT VT = Node->getValueType(0);
3118 bool isSigned = Node->getOpcode() == ISD::SREM;
3119 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3120 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3121 Tmp2 = Node->getOperand(0);
3122 Tmp3 = Node->getOperand(1);
3123 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3124 SDVTList VTs = DAG.getVTList(VT, VT);
3125 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3126 Results.push_back(Tmp1);
3127 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3128 // X % Y -> X-X/Y*Y
3129 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3130 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3131 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3132 Results.push_back(Tmp1);
3134 break;
3136 case ISD::UDIV:
3137 case ISD::SDIV: {
3138 bool isSigned = Node->getOpcode() == ISD::SDIV;
3139 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3140 EVT VT = Node->getValueType(0);
3141 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3142 SDVTList VTs = DAG.getVTList(VT, VT);
3143 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3144 Node->getOperand(1));
3145 Results.push_back(Tmp1);
3147 break;
3149 case ISD::MULHU:
3150 case ISD::MULHS: {
3151 unsigned ExpandOpcode =
3152 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3153 EVT VT = Node->getValueType(0);
3154 SDVTList VTs = DAG.getVTList(VT, VT);
3156 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3157 Node->getOperand(1));
3158 Results.push_back(Tmp1.getValue(1));
3159 break;
3161 case ISD::UMUL_LOHI:
3162 case ISD::SMUL_LOHI: {
3163 SDValue LHS = Node->getOperand(0);
3164 SDValue RHS = Node->getOperand(1);
3165 MVT VT = LHS.getSimpleValueType();
3166 unsigned MULHOpcode =
3167 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3169 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3170 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3171 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3172 break;
3175 SmallVector<SDValue, 4> Halves;
3176 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3177 assert(TLI.isTypeLegal(HalfType));
3178 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3179 HalfType, DAG,
3180 TargetLowering::MulExpansionKind::Always)) {
3181 for (unsigned i = 0; i < 2; ++i) {
3182 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3183 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3184 SDValue Shift = DAG.getConstant(
3185 HalfType.getScalarSizeInBits(), dl,
3186 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3187 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3188 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3190 break;
3192 break;
3194 case ISD::MUL: {
3195 EVT VT = Node->getValueType(0);
3196 SDVTList VTs = DAG.getVTList(VT, VT);
3197 // See if multiply or divide can be lowered using two-result operations.
3198 // We just need the low half of the multiply; try both the signed
3199 // and unsigned forms. If the target supports both SMUL_LOHI and
3200 // UMUL_LOHI, form a preference by checking which forms of plain
3201 // MULH it supports.
3202 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3203 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3204 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3205 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3206 unsigned OpToUse = 0;
3207 if (HasSMUL_LOHI && !HasMULHS) {
3208 OpToUse = ISD::SMUL_LOHI;
3209 } else if (HasUMUL_LOHI && !HasMULHU) {
3210 OpToUse = ISD::UMUL_LOHI;
3211 } else if (HasSMUL_LOHI) {
3212 OpToUse = ISD::SMUL_LOHI;
3213 } else if (HasUMUL_LOHI) {
3214 OpToUse = ISD::UMUL_LOHI;
3216 if (OpToUse) {
3217 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3218 Node->getOperand(1)));
3219 break;
3222 SDValue Lo, Hi;
3223 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3224 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3225 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3226 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3227 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3228 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3229 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3230 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3231 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3232 SDValue Shift =
3233 DAG.getConstant(HalfType.getSizeInBits(), dl,
3234 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3235 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3236 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3238 break;
3240 case ISD::FSHL:
3241 case ISD::FSHR:
3242 if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3243 Results.push_back(Tmp1);
3244 break;
3245 case ISD::ROTL:
3246 case ISD::ROTR:
3247 if (TLI.expandROT(Node, Tmp1, DAG))
3248 Results.push_back(Tmp1);
3249 break;
3250 case ISD::SADDSAT:
3251 case ISD::UADDSAT:
3252 case ISD::SSUBSAT:
3253 case ISD::USUBSAT:
3254 Results.push_back(TLI.expandAddSubSat(Node, DAG));
3255 break;
3256 case ISD::SMULFIX:
3257 case ISD::UMULFIX:
3258 Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3259 break;
3260 case ISD::SADDO:
3261 case ISD::SSUBO: {
3262 SDValue LHS = Node->getOperand(0);
3263 SDValue RHS = Node->getOperand(1);
3264 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3265 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3266 LHS, RHS);
3267 Results.push_back(Sum);
3268 EVT ResultType = Node->getValueType(1);
3269 EVT OType = getSetCCResultType(Node->getValueType(0));
3271 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
3273 // LHSSign -> LHS >= 0
3274 // RHSSign -> RHS >= 0
3275 // SumSign -> Sum >= 0
3277 // Add:
3278 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3279 // Sub:
3280 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3281 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3282 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3283 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3284 Node->getOpcode() == ISD::SADDO ?
3285 ISD::SETEQ : ISD::SETNE);
3287 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3288 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3290 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3291 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
3292 break;
3294 case ISD::UADDO:
3295 case ISD::USUBO: {
3296 SDValue LHS = Node->getOperand(0);
3297 SDValue RHS = Node->getOperand(1);
3298 bool IsAdd = Node->getOpcode() == ISD::UADDO;
3299 // If ADD/SUBCARRY is legal, use that instead.
3300 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
3301 if (TLI.isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
3302 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
3303 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
3304 { LHS, RHS, CarryIn });
3305 Results.push_back(SDValue(NodeCarry.getNode(), 0));
3306 Results.push_back(SDValue(NodeCarry.getNode(), 1));
3307 break;
3310 SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
3311 LHS.getValueType(), LHS, RHS);
3312 Results.push_back(Sum);
3314 EVT ResultType = Node->getValueType(1);
3315 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3316 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3317 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3319 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
3320 break;
3322 case ISD::UMULO:
3323 case ISD::SMULO: {
3324 auto Pair = TLI.expandMULO(Node, DAG);
3325 Results.push_back(Pair.first);
3326 Results.push_back(Pair.second);
3327 break;
3329 case ISD::BUILD_PAIR: {
3330 EVT PairTy = Node->getValueType(0);
3331 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3332 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3333 Tmp2 = DAG.getNode(
3334 ISD::SHL, dl, PairTy, Tmp2,
3335 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3336 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3337 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3338 break;
3340 case ISD::SELECT:
3341 Tmp1 = Node->getOperand(0);
3342 Tmp2 = Node->getOperand(1);
3343 Tmp3 = Node->getOperand(2);
3344 if (Tmp1.getOpcode() == ISD::SETCC) {
3345 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3346 Tmp2, Tmp3,
3347 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3348 } else {
3349 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3350 DAG.getConstant(0, dl, Tmp1.getValueType()),
3351 Tmp2, Tmp3, ISD::SETNE);
3353 Results.push_back(Tmp1);
3354 break;
3355 case ISD::BR_JT: {
3356 SDValue Chain = Node->getOperand(0);
3357 SDValue Table = Node->getOperand(1);
3358 SDValue Index = Node->getOperand(2);
3360 const DataLayout &TD = DAG.getDataLayout();
3361 EVT PTy = TLI.getPointerTy(TD);
3363 unsigned EntrySize =
3364 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3366 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3367 // This transformation needs to be done here since otherwise the MIPS
3368 // backend will end up emitting a three instruction multiply sequence
3369 // instead of a single shift and MSP430 will call a runtime function.
3370 if (llvm::isPowerOf2_32(EntrySize))
3371 Index = DAG.getNode(
3372 ISD::SHL, dl, Index.getValueType(), Index,
3373 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3374 else
3375 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3376 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3377 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3378 Index, Table);
3380 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3381 SDValue LD = DAG.getExtLoad(
3382 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3383 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3384 Addr = LD;
3385 if (TLI.isJumpTableRelative()) {
3386 // For PIC, the sequence is:
3387 // BRIND(load(Jumptable + index) + RelocBase)
3388 // RelocBase can be JumpTable, GOT or some sort of global base.
3389 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3390 TLI.getPICJumpTableRelocBase(Table, DAG));
3393 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3394 Results.push_back(Tmp1);
3395 break;
3397 case ISD::BRCOND:
3398 // Expand brcond's setcc into its constituent parts and create a BR_CC
3399 // Node.
3400 Tmp1 = Node->getOperand(0);
3401 Tmp2 = Node->getOperand(1);
3402 if (Tmp2.getOpcode() == ISD::SETCC) {
3403 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3404 Tmp1, Tmp2.getOperand(2),
3405 Tmp2.getOperand(0), Tmp2.getOperand(1),
3406 Node->getOperand(2));
3407 } else {
3408 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3409 if (Tmp2.isUndef() ||
3410 (Tmp2.getOpcode() == ISD::AND &&
3411 isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3412 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3413 Tmp3 = Tmp2;
3414 else
3415 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3416 DAG.getConstant(1, dl, Tmp2.getValueType()));
3417 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3418 DAG.getCondCode(ISD::SETNE), Tmp3,
3419 DAG.getConstant(0, dl, Tmp3.getValueType()),
3420 Node->getOperand(2));
3422 Results.push_back(Tmp1);
3423 break;
3424 case ISD::SETCC: {
3425 Tmp1 = Node->getOperand(0);
3426 Tmp2 = Node->getOperand(1);
3427 Tmp3 = Node->getOperand(2);
3428 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3429 Tmp3, NeedInvert, dl);
3431 if (Legalized) {
3432 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3433 // condition code, create a new SETCC node.
3434 if (Tmp3.getNode())
3435 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3436 Tmp1, Tmp2, Tmp3);
3438 // If we expanded the SETCC by inverting the condition code, then wrap
3439 // the existing SETCC in a NOT to restore the intended condition.
3440 if (NeedInvert)
3441 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3443 Results.push_back(Tmp1);
3444 break;
3447 // Otherwise, SETCC for the given comparison type must be completely
3448 // illegal; expand it into a SELECT_CC.
3449 EVT VT = Node->getValueType(0);
3450 int TrueValue;
3451 switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3452 case TargetLowering::ZeroOrOneBooleanContent:
3453 case TargetLowering::UndefinedBooleanContent:
3454 TrueValue = 1;
3455 break;
3456 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3457 TrueValue = -1;
3458 break;
3460 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3461 DAG.getConstant(TrueValue, dl, VT),
3462 DAG.getConstant(0, dl, VT),
3463 Tmp3);
3464 Results.push_back(Tmp1);
3465 break;
3467 case ISD::SELECT_CC: {
3468 Tmp1 = Node->getOperand(0); // LHS
3469 Tmp2 = Node->getOperand(1); // RHS
3470 Tmp3 = Node->getOperand(2); // True
3471 Tmp4 = Node->getOperand(3); // False
3472 EVT VT = Node->getValueType(0);
3473 SDValue CC = Node->getOperand(4);
3474 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3476 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3477 // If the condition code is legal, then we need to expand this
3478 // node using SETCC and SELECT.
3479 EVT CmpVT = Tmp1.getValueType();
3480 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3481 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3482 "expanded.");
3483 EVT CCVT =
3484 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
3485 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
3486 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3487 break;
3490 // SELECT_CC is legal, so the condition code must not be.
3491 bool Legalized = false;
3492 // Try to legalize by inverting the condition. This is for targets that
3493 // might support an ordered version of a condition, but not the unordered
3494 // version (or vice versa).
3495 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3496 Tmp1.getValueType().isInteger());
3497 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3498 // Use the new condition code and swap true and false
3499 Legalized = true;
3500 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3501 } else {
3502 // If The inverse is not legal, then try to swap the arguments using
3503 // the inverse condition code.
3504 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3505 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3506 // The swapped inverse condition is legal, so swap true and false,
3507 // lhs and rhs.
3508 Legalized = true;
3509 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3513 if (!Legalized) {
3514 Legalized = LegalizeSetCCCondCode(
3515 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3516 dl);
3518 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3520 // If we expanded the SETCC by inverting the condition code, then swap
3521 // the True/False operands to match.
3522 if (NeedInvert)
3523 std::swap(Tmp3, Tmp4);
3525 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3526 // condition code, create a new SELECT_CC node.
3527 if (CC.getNode()) {
3528 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3529 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3530 } else {
3531 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3532 CC = DAG.getCondCode(ISD::SETNE);
3533 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3534 Tmp2, Tmp3, Tmp4, CC);
3537 Results.push_back(Tmp1);
3538 break;
3540 case ISD::BR_CC: {
3541 Tmp1 = Node->getOperand(0); // Chain
3542 Tmp2 = Node->getOperand(2); // LHS
3543 Tmp3 = Node->getOperand(3); // RHS
3544 Tmp4 = Node->getOperand(1); // CC
3546 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3547 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3548 (void)Legalized;
3549 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3551 assert(!NeedInvert && "Don't know how to invert BR_CC!");
3553 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3554 // node.
3555 if (Tmp4.getNode()) {
3556 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3557 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3558 } else {
3559 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3560 Tmp4 = DAG.getCondCode(ISD::SETNE);
3561 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3562 Tmp2, Tmp3, Node->getOperand(4));
3564 Results.push_back(Tmp1);
3565 break;
3567 case ISD::BUILD_VECTOR:
3568 Results.push_back(ExpandBUILD_VECTOR(Node));
3569 break;
3570 case ISD::SRA:
3571 case ISD::SRL:
3572 case ISD::SHL: {
3573 // Scalarize vector SRA/SRL/SHL.
3574 EVT VT = Node->getValueType(0);
3575 assert(VT.isVector() && "Unable to legalize non-vector shift");
3576 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3577 unsigned NumElem = VT.getVectorNumElements();
3579 SmallVector<SDValue, 8> Scalars;
3580 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3581 SDValue Ex = DAG.getNode(
3582 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3583 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3584 SDValue Sh = DAG.getNode(
3585 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3586 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3587 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3588 VT.getScalarType(), Ex, Sh));
3591 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3592 ReplaceNode(SDValue(Node, 0), Result);
3593 break;
3595 case ISD::GLOBAL_OFFSET_TABLE:
3596 case ISD::GlobalAddress:
3597 case ISD::GlobalTLSAddress:
3598 case ISD::ExternalSymbol:
3599 case ISD::ConstantPool:
3600 case ISD::JumpTable:
3601 case ISD::INTRINSIC_W_CHAIN:
3602 case ISD::INTRINSIC_WO_CHAIN:
3603 case ISD::INTRINSIC_VOID:
3604 // FIXME: Custom lowering for these operations shouldn't return null!
3605 break;
3608 // Replace the original node with the legalized result.
3609 if (Results.empty()) {
3610 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3611 return false;
3614 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3615 ReplaceNode(Node, Results.data());
3616 return true;
3619 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3620 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3621 SmallVector<SDValue, 8> Results;
3622 SDLoc dl(Node);
3623 // FIXME: Check flags on the node to see if we can use a finite call.
3624 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath;
3625 unsigned Opc = Node->getOpcode();
3626 switch (Opc) {
3627 case ISD::ATOMIC_FENCE: {
3628 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3629 // FIXME: handle "fence singlethread" more efficiently.
3630 TargetLowering::ArgListTy Args;
3632 TargetLowering::CallLoweringInfo CLI(DAG);
3633 CLI.setDebugLoc(dl)
3634 .setChain(Node->getOperand(0))
3635 .setLibCallee(
3636 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3637 DAG.getExternalSymbol("__sync_synchronize",
3638 TLI.getPointerTy(DAG.getDataLayout())),
3639 std::move(Args));
3641 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3643 Results.push_back(CallResult.second);
3644 break;
3646 // By default, atomic intrinsics are marked Legal and lowered. Targets
3647 // which don't support them directly, however, may want libcalls, in which
3648 // case they mark them Expand, and we get here.
3649 case ISD::ATOMIC_SWAP:
3650 case ISD::ATOMIC_LOAD_ADD:
3651 case ISD::ATOMIC_LOAD_SUB:
3652 case ISD::ATOMIC_LOAD_AND:
3653 case ISD::ATOMIC_LOAD_CLR:
3654 case ISD::ATOMIC_LOAD_OR:
3655 case ISD::ATOMIC_LOAD_XOR:
3656 case ISD::ATOMIC_LOAD_NAND:
3657 case ISD::ATOMIC_LOAD_MIN:
3658 case ISD::ATOMIC_LOAD_MAX:
3659 case ISD::ATOMIC_LOAD_UMIN:
3660 case ISD::ATOMIC_LOAD_UMAX:
3661 case ISD::ATOMIC_CMP_SWAP: {
3662 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3663 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3664 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3666 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
3667 Results.push_back(Tmp.first);
3668 Results.push_back(Tmp.second);
3669 break;
3671 case ISD::TRAP: {
3672 // If this operation is not supported, lower it to 'abort()' call
3673 TargetLowering::ArgListTy Args;
3674 TargetLowering::CallLoweringInfo CLI(DAG);
3675 CLI.setDebugLoc(dl)
3676 .setChain(Node->getOperand(0))
3677 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3678 DAG.getExternalSymbol(
3679 "abort", TLI.getPointerTy(DAG.getDataLayout())),
3680 std::move(Args));
3681 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3683 Results.push_back(CallResult.second);
3684 break;
3686 case ISD::FMINNUM:
3687 case ISD::STRICT_FMINNUM:
3688 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3689 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3690 RTLIB::FMIN_PPCF128));
3691 break;
3692 case ISD::FMAXNUM:
3693 case ISD::STRICT_FMAXNUM:
3694 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3695 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3696 RTLIB::FMAX_PPCF128));
3697 break;
3698 case ISD::FSQRT:
3699 case ISD::STRICT_FSQRT:
3700 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3701 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3702 RTLIB::SQRT_PPCF128));
3703 break;
3704 case ISD::FCBRT:
3705 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3706 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3707 RTLIB::CBRT_PPCF128));
3708 break;
3709 case ISD::FSIN:
3710 case ISD::STRICT_FSIN:
3711 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3712 RTLIB::SIN_F80, RTLIB::SIN_F128,
3713 RTLIB::SIN_PPCF128));
3714 break;
3715 case ISD::FCOS:
3716 case ISD::STRICT_FCOS:
3717 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3718 RTLIB::COS_F80, RTLIB::COS_F128,
3719 RTLIB::COS_PPCF128));
3720 break;
3721 case ISD::FSINCOS:
3722 // Expand into sincos libcall.
3723 ExpandSinCosLibCall(Node, Results);
3724 break;
3725 case ISD::FLOG:
3726 case ISD::STRICT_FLOG:
3727 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite))
3728 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32,
3729 RTLIB::LOG_FINITE_F64,
3730 RTLIB::LOG_FINITE_F80,
3731 RTLIB::LOG_FINITE_F128,
3732 RTLIB::LOG_FINITE_PPCF128));
3733 else
3734 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3735 RTLIB::LOG_F80, RTLIB::LOG_F128,
3736 RTLIB::LOG_PPCF128));
3737 break;
3738 case ISD::FLOG2:
3739 case ISD::STRICT_FLOG2:
3740 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite))
3741 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32,
3742 RTLIB::LOG2_FINITE_F64,
3743 RTLIB::LOG2_FINITE_F80,
3744 RTLIB::LOG2_FINITE_F128,
3745 RTLIB::LOG2_FINITE_PPCF128));
3746 else
3747 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3748 RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3749 RTLIB::LOG2_PPCF128));
3750 break;
3751 case ISD::FLOG10:
3752 case ISD::STRICT_FLOG10:
3753 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite))
3754 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32,
3755 RTLIB::LOG10_FINITE_F64,
3756 RTLIB::LOG10_FINITE_F80,
3757 RTLIB::LOG10_FINITE_F128,
3758 RTLIB::LOG10_FINITE_PPCF128));
3759 else
3760 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3761 RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3762 RTLIB::LOG10_PPCF128));
3763 break;
3764 case ISD::FEXP:
3765 case ISD::STRICT_FEXP:
3766 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite))
3767 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32,
3768 RTLIB::EXP_FINITE_F64,
3769 RTLIB::EXP_FINITE_F80,
3770 RTLIB::EXP_FINITE_F128,
3771 RTLIB::EXP_FINITE_PPCF128));
3772 else
3773 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3774 RTLIB::EXP_F80, RTLIB::EXP_F128,
3775 RTLIB::EXP_PPCF128));
3776 break;
3777 case ISD::FEXP2:
3778 case ISD::STRICT_FEXP2:
3779 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite))
3780 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32,
3781 RTLIB::EXP2_FINITE_F64,
3782 RTLIB::EXP2_FINITE_F80,
3783 RTLIB::EXP2_FINITE_F128,
3784 RTLIB::EXP2_FINITE_PPCF128));
3785 else
3786 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3787 RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3788 RTLIB::EXP2_PPCF128));
3789 break;
3790 case ISD::FTRUNC:
3791 case ISD::STRICT_FTRUNC:
3792 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3793 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3794 RTLIB::TRUNC_PPCF128));
3795 break;
3796 case ISD::FFLOOR:
3797 case ISD::STRICT_FFLOOR:
3798 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3799 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3800 RTLIB::FLOOR_PPCF128));
3801 break;
3802 case ISD::FCEIL:
3803 case ISD::STRICT_FCEIL:
3804 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3805 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3806 RTLIB::CEIL_PPCF128));
3807 break;
3808 case ISD::FRINT:
3809 case ISD::STRICT_FRINT:
3810 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3811 RTLIB::RINT_F80, RTLIB::RINT_F128,
3812 RTLIB::RINT_PPCF128));
3813 break;
3814 case ISD::FNEARBYINT:
3815 case ISD::STRICT_FNEARBYINT:
3816 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3817 RTLIB::NEARBYINT_F64,
3818 RTLIB::NEARBYINT_F80,
3819 RTLIB::NEARBYINT_F128,
3820 RTLIB::NEARBYINT_PPCF128));
3821 break;
3822 case ISD::FROUND:
3823 case ISD::STRICT_FROUND:
3824 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3825 RTLIB::ROUND_F64,
3826 RTLIB::ROUND_F80,
3827 RTLIB::ROUND_F128,
3828 RTLIB::ROUND_PPCF128));
3829 break;
3830 case ISD::FPOWI:
3831 case ISD::STRICT_FPOWI:
3832 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3833 RTLIB::POWI_F80, RTLIB::POWI_F128,
3834 RTLIB::POWI_PPCF128));
3835 break;
3836 case ISD::FPOW:
3837 case ISD::STRICT_FPOW:
3838 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite))
3839 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32,
3840 RTLIB::POW_FINITE_F64,
3841 RTLIB::POW_FINITE_F80,
3842 RTLIB::POW_FINITE_F128,
3843 RTLIB::POW_FINITE_PPCF128));
3844 else
3845 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3846 RTLIB::POW_F80, RTLIB::POW_F128,
3847 RTLIB::POW_PPCF128));
3848 break;
3849 case ISD::FDIV:
3850 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3851 RTLIB::DIV_F80, RTLIB::DIV_F128,
3852 RTLIB::DIV_PPCF128));
3853 break;
3854 case ISD::FREM:
3855 case ISD::STRICT_FREM:
3856 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3857 RTLIB::REM_F80, RTLIB::REM_F128,
3858 RTLIB::REM_PPCF128));
3859 break;
3860 case ISD::FMA:
3861 case ISD::STRICT_FMA:
3862 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3863 RTLIB::FMA_F80, RTLIB::FMA_F128,
3864 RTLIB::FMA_PPCF128));
3865 break;
3866 case ISD::FADD:
3867 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
3868 RTLIB::ADD_F80, RTLIB::ADD_F128,
3869 RTLIB::ADD_PPCF128));
3870 break;
3871 case ISD::FMUL:
3872 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
3873 RTLIB::MUL_F80, RTLIB::MUL_F128,
3874 RTLIB::MUL_PPCF128));
3875 break;
3876 case ISD::FP16_TO_FP:
3877 if (Node->getValueType(0) == MVT::f32) {
3878 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3880 break;
3881 case ISD::FP_TO_FP16: {
3882 RTLIB::Libcall LC =
3883 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
3884 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
3885 Results.push_back(ExpandLibCall(LC, Node, false));
3886 break;
3888 case ISD::FSUB:
3889 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
3890 RTLIB::SUB_F80, RTLIB::SUB_F128,
3891 RTLIB::SUB_PPCF128));
3892 break;
3893 case ISD::SREM:
3894 Results.push_back(ExpandIntLibCall(Node, true,
3895 RTLIB::SREM_I8,
3896 RTLIB::SREM_I16, RTLIB::SREM_I32,
3897 RTLIB::SREM_I64, RTLIB::SREM_I128));
3898 break;
3899 case ISD::UREM:
3900 Results.push_back(ExpandIntLibCall(Node, false,
3901 RTLIB::UREM_I8,
3902 RTLIB::UREM_I16, RTLIB::UREM_I32,
3903 RTLIB::UREM_I64, RTLIB::UREM_I128));
3904 break;
3905 case ISD::SDIV:
3906 Results.push_back(ExpandIntLibCall(Node, true,
3907 RTLIB::SDIV_I8,
3908 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3909 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
3910 break;
3911 case ISD::UDIV:
3912 Results.push_back(ExpandIntLibCall(Node, false,
3913 RTLIB::UDIV_I8,
3914 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3915 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
3916 break;
3917 case ISD::SDIVREM:
3918 case ISD::UDIVREM:
3919 // Expand into divrem libcall
3920 ExpandDivRemLibCall(Node, Results);
3921 break;
3922 case ISD::MUL:
3923 Results.push_back(ExpandIntLibCall(Node, false,
3924 RTLIB::MUL_I8,
3925 RTLIB::MUL_I16, RTLIB::MUL_I32,
3926 RTLIB::MUL_I64, RTLIB::MUL_I128));
3927 break;
3928 case ISD::CTLZ_ZERO_UNDEF:
3929 switch (Node->getSimpleValueType(0).SimpleTy) {
3930 default:
3931 llvm_unreachable("LibCall explicitly requested, but not available");
3932 case MVT::i32:
3933 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
3934 break;
3935 case MVT::i64:
3936 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
3937 break;
3938 case MVT::i128:
3939 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
3940 break;
3942 break;
3945 // Replace the original node with the legalized result.
3946 if (!Results.empty()) {
3947 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
3948 ReplaceNode(Node, Results.data());
3949 } else
3950 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
3953 // Determine the vector type to use in place of an original scalar element when
3954 // promoting equally sized vectors.
3955 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
3956 MVT EltVT, MVT NewEltVT) {
3957 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
3958 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
3959 assert(TLI.isTypeLegal(MidVT) && "unexpected");
3960 return MidVT;
3963 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3964 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
3965 SmallVector<SDValue, 8> Results;
3966 MVT OVT = Node->getSimpleValueType(0);
3967 if (Node->getOpcode() == ISD::UINT_TO_FP ||
3968 Node->getOpcode() == ISD::SINT_TO_FP ||
3969 Node->getOpcode() == ISD::SETCC ||
3970 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
3971 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
3972 OVT = Node->getOperand(0).getSimpleValueType();
3974 if (Node->getOpcode() == ISD::BR_CC)
3975 OVT = Node->getOperand(2).getSimpleValueType();
3976 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3977 SDLoc dl(Node);
3978 SDValue Tmp1, Tmp2, Tmp3;
3979 switch (Node->getOpcode()) {
3980 case ISD::CTTZ:
3981 case ISD::CTTZ_ZERO_UNDEF:
3982 case ISD::CTLZ:
3983 case ISD::CTLZ_ZERO_UNDEF:
3984 case ISD::CTPOP:
3985 // Zero extend the argument.
3986 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3987 if (Node->getOpcode() == ISD::CTTZ) {
3988 // The count is the same in the promoted type except if the original
3989 // value was zero. This can be handled by setting the bit just off
3990 // the top of the original type.
3991 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
3992 OVT.getSizeInBits());
3993 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
3994 DAG.getConstant(TopBit, dl, NVT));
3996 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3997 // already the correct result.
3998 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3999 if (Node->getOpcode() == ISD::CTLZ ||
4000 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4001 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4002 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4003 DAG.getConstant(NVT.getSizeInBits() -
4004 OVT.getSizeInBits(), dl, NVT));
4006 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4007 break;
4008 case ISD::BITREVERSE:
4009 case ISD::BSWAP: {
4010 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4011 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4012 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4013 Tmp1 = DAG.getNode(
4014 ISD::SRL, dl, NVT, Tmp1,
4015 DAG.getConstant(DiffBits, dl,
4016 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4018 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4019 break;
4021 case ISD::FP_TO_UINT:
4022 case ISD::FP_TO_SINT:
4023 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4024 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4025 Results.push_back(Tmp1);
4026 break;
4027 case ISD::UINT_TO_FP:
4028 case ISD::SINT_TO_FP:
4029 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4030 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4031 Results.push_back(Tmp1);
4032 break;
4033 case ISD::VAARG: {
4034 SDValue Chain = Node->getOperand(0); // Get the chain.
4035 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4037 unsigned TruncOp;
4038 if (OVT.isVector()) {
4039 TruncOp = ISD::BITCAST;
4040 } else {
4041 assert(OVT.isInteger()
4042 && "VAARG promotion is supported only for vectors or integer types");
4043 TruncOp = ISD::TRUNCATE;
4046 // Perform the larger operation, then convert back
4047 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4048 Node->getConstantOperandVal(3));
4049 Chain = Tmp1.getValue(1);
4051 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4053 // Modified the chain result - switch anything that used the old chain to
4054 // use the new one.
4055 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4056 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4057 if (UpdatedNodes) {
4058 UpdatedNodes->insert(Tmp2.getNode());
4059 UpdatedNodes->insert(Chain.getNode());
4061 ReplacedNode(Node);
4062 break;
4064 case ISD::MUL:
4065 case ISD::SDIV:
4066 case ISD::SREM:
4067 case ISD::UDIV:
4068 case ISD::UREM:
4069 case ISD::AND:
4070 case ISD::OR:
4071 case ISD::XOR: {
4072 unsigned ExtOp, TruncOp;
4073 if (OVT.isVector()) {
4074 ExtOp = ISD::BITCAST;
4075 TruncOp = ISD::BITCAST;
4076 } else {
4077 assert(OVT.isInteger() && "Cannot promote logic operation");
4079 switch (Node->getOpcode()) {
4080 default:
4081 ExtOp = ISD::ANY_EXTEND;
4082 break;
4083 case ISD::SDIV:
4084 case ISD::SREM:
4085 ExtOp = ISD::SIGN_EXTEND;
4086 break;
4087 case ISD::UDIV:
4088 case ISD::UREM:
4089 ExtOp = ISD::ZERO_EXTEND;
4090 break;
4092 TruncOp = ISD::TRUNCATE;
4094 // Promote each of the values to the new type.
4095 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4096 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4097 // Perform the larger operation, then convert back
4098 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4099 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4100 break;
4102 case ISD::UMUL_LOHI:
4103 case ISD::SMUL_LOHI: {
4104 // Promote to a multiply in a wider integer type.
4105 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4106 : ISD::SIGN_EXTEND;
4107 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4108 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4109 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4111 auto &DL = DAG.getDataLayout();
4112 unsigned OriginalSize = OVT.getScalarSizeInBits();
4113 Tmp2 = DAG.getNode(
4114 ISD::SRL, dl, NVT, Tmp1,
4115 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4116 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4117 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4118 break;
4120 case ISD::SELECT: {
4121 unsigned ExtOp, TruncOp;
4122 if (Node->getValueType(0).isVector() ||
4123 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4124 ExtOp = ISD::BITCAST;
4125 TruncOp = ISD::BITCAST;
4126 } else if (Node->getValueType(0).isInteger()) {
4127 ExtOp = ISD::ANY_EXTEND;
4128 TruncOp = ISD::TRUNCATE;
4129 } else {
4130 ExtOp = ISD::FP_EXTEND;
4131 TruncOp = ISD::FP_ROUND;
4133 Tmp1 = Node->getOperand(0);
4134 // Promote each of the values to the new type.
4135 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4136 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4137 // Perform the larger operation, then round down.
4138 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4139 if (TruncOp != ISD::FP_ROUND)
4140 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4141 else
4142 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4143 DAG.getIntPtrConstant(0, dl));
4144 Results.push_back(Tmp1);
4145 break;
4147 case ISD::VECTOR_SHUFFLE: {
4148 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4150 // Cast the two input vectors.
4151 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4152 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4154 // Convert the shuffle mask to the right # elements.
4155 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4156 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4157 Results.push_back(Tmp1);
4158 break;
4160 case ISD::SETCC: {
4161 unsigned ExtOp = ISD::FP_EXTEND;
4162 if (NVT.isInteger()) {
4163 ISD::CondCode CCCode =
4164 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4165 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4167 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4168 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4169 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4170 Tmp1, Tmp2, Node->getOperand(2)));
4171 break;
4173 case ISD::BR_CC: {
4174 unsigned ExtOp = ISD::FP_EXTEND;
4175 if (NVT.isInteger()) {
4176 ISD::CondCode CCCode =
4177 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4178 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4180 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4181 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4182 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4183 Node->getOperand(0), Node->getOperand(1),
4184 Tmp1, Tmp2, Node->getOperand(4)));
4185 break;
4187 case ISD::FADD:
4188 case ISD::FSUB:
4189 case ISD::FMUL:
4190 case ISD::FDIV:
4191 case ISD::FREM:
4192 case ISD::FMINNUM:
4193 case ISD::FMAXNUM:
4194 case ISD::FPOW:
4195 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4196 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4197 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4198 Node->getFlags());
4199 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4200 Tmp3, DAG.getIntPtrConstant(0, dl)));
4201 break;
4202 case ISD::FMA:
4203 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4204 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4205 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4206 Results.push_back(
4207 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4208 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4209 DAG.getIntPtrConstant(0, dl)));
4210 break;
4211 case ISD::FCOPYSIGN:
4212 case ISD::FPOWI: {
4213 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4214 Tmp2 = Node->getOperand(1);
4215 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4217 // fcopysign doesn't change anything but the sign bit, so
4218 // (fp_round (fcopysign (fpext a), b))
4219 // is as precise as
4220 // (fp_round (fpext a))
4221 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4222 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4223 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4224 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4225 break;
4227 case ISD::FFLOOR:
4228 case ISD::FCEIL:
4229 case ISD::FRINT:
4230 case ISD::FNEARBYINT:
4231 case ISD::FROUND:
4232 case ISD::FTRUNC:
4233 case ISD::FNEG:
4234 case ISD::FSQRT:
4235 case ISD::FSIN:
4236 case ISD::FCOS:
4237 case ISD::FLOG:
4238 case ISD::FLOG2:
4239 case ISD::FLOG10:
4240 case ISD::FABS:
4241 case ISD::FEXP:
4242 case ISD::FEXP2:
4243 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4244 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4245 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4246 Tmp2, DAG.getIntPtrConstant(0, dl)));
4247 break;
4248 case ISD::BUILD_VECTOR: {
4249 MVT EltVT = OVT.getVectorElementType();
4250 MVT NewEltVT = NVT.getVectorElementType();
4252 // Handle bitcasts to a different vector type with the same total bit size
4254 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4255 // =>
4256 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4258 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4259 "Invalid promote type for build_vector");
4260 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4262 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4264 SmallVector<SDValue, 8> NewOps;
4265 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4266 SDValue Op = Node->getOperand(I);
4267 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4270 SDLoc SL(Node);
4271 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4272 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4273 Results.push_back(CvtVec);
4274 break;
4276 case ISD::EXTRACT_VECTOR_ELT: {
4277 MVT EltVT = OVT.getVectorElementType();
4278 MVT NewEltVT = NVT.getVectorElementType();
4280 // Handle bitcasts to a different vector type with the same total bit size.
4282 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4283 // =>
4284 // v4i32:castx = bitcast x:v2i64
4286 // i64 = bitcast
4287 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4288 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4291 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4292 "Invalid promote type for extract_vector_elt");
4293 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4295 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4296 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4298 SDValue Idx = Node->getOperand(1);
4299 EVT IdxVT = Idx.getValueType();
4300 SDLoc SL(Node);
4301 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4302 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4304 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4306 SmallVector<SDValue, 8> NewOps;
4307 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4308 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4309 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4311 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4312 CastVec, TmpIdx);
4313 NewOps.push_back(Elt);
4316 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4317 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4318 break;
4320 case ISD::INSERT_VECTOR_ELT: {
4321 MVT EltVT = OVT.getVectorElementType();
4322 MVT NewEltVT = NVT.getVectorElementType();
4324 // Handle bitcasts to a different vector type with the same total bit size
4326 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4327 // =>
4328 // v4i32:castx = bitcast x:v2i64
4329 // v2i32:casty = bitcast y:i64
4331 // v2i64 = bitcast
4332 // (v4i32 insert_vector_elt
4333 // (v4i32 insert_vector_elt v4i32:castx,
4334 // (extract_vector_elt casty, 0), 2 * z),
4335 // (extract_vector_elt casty, 1), (2 * z + 1))
4337 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4338 "Invalid promote type for insert_vector_elt");
4339 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4341 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4342 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4344 SDValue Val = Node->getOperand(1);
4345 SDValue Idx = Node->getOperand(2);
4346 EVT IdxVT = Idx.getValueType();
4347 SDLoc SL(Node);
4349 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4350 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4352 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4353 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4355 SDValue NewVec = CastVec;
4356 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4357 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4358 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4360 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4361 CastVal, IdxOffset);
4363 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4364 NewVec, Elt, InEltIdx);
4367 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4368 break;
4370 case ISD::SCALAR_TO_VECTOR: {
4371 MVT EltVT = OVT.getVectorElementType();
4372 MVT NewEltVT = NVT.getVectorElementType();
4374 // Handle bitcasts to different vector type with the same total bit size.
4376 // e.g. v2i64 = scalar_to_vector x:i64
4377 // =>
4378 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4381 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4382 SDValue Val = Node->getOperand(0);
4383 SDLoc SL(Node);
4385 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4386 SDValue Undef = DAG.getUNDEF(MidVT);
4388 SmallVector<SDValue, 8> NewElts;
4389 NewElts.push_back(CastVal);
4390 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4391 NewElts.push_back(Undef);
4393 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4394 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4395 Results.push_back(CvtVec);
4396 break;
4398 case ISD::ATOMIC_SWAP: {
4399 AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4400 SDLoc SL(Node);
4401 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4402 assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4403 "unexpected promotion type");
4404 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4405 "unexpected atomic_swap with illegal type");
4407 SDValue NewAtomic
4408 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4409 DAG.getVTList(NVT, MVT::Other),
4410 { AM->getChain(), AM->getBasePtr(), CastVal },
4411 AM->getMemOperand());
4412 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4413 Results.push_back(NewAtomic.getValue(1));
4414 break;
4418 // Replace the original node with the legalized result.
4419 if (!Results.empty()) {
4420 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4421 ReplaceNode(Node, Results.data());
4422 } else
4423 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4426 /// This is the entry point for the file.
4427 void SelectionDAG::Legalize() {
4428 AssignTopologicalOrder();
4430 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4431 // Use a delete listener to remove nodes which were deleted during
4432 // legalization from LegalizeNodes. This is needed to handle the situation
4433 // where a new node is allocated by the object pool to the same address of a
4434 // previously deleted node.
4435 DAGNodeDeletedListener DeleteListener(
4436 *this,
4437 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4439 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4441 // Visit all the nodes. We start in topological order, so that we see
4442 // nodes with their original operands intact. Legalization can produce
4443 // new nodes which may themselves need to be legalized. Iterate until all
4444 // nodes have been legalized.
4445 while (true) {
4446 bool AnyLegalized = false;
4447 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4448 --NI;
4450 SDNode *N = &*NI;
4451 if (N->use_empty() && N != getRoot().getNode()) {
4452 ++NI;
4453 DeleteNode(N);
4454 continue;
4457 if (LegalizedNodes.insert(N).second) {
4458 AnyLegalized = true;
4459 Legalizer.LegalizeOp(N);
4461 if (N->use_empty() && N != getRoot().getNode()) {
4462 ++NI;
4463 DeleteNode(N);
4467 if (!AnyLegalized)
4468 break;
4472 // Remove dead nodes now.
4473 RemoveDeadNodes();
4476 bool SelectionDAG::LegalizeOp(SDNode *N,
4477 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4478 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4479 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4481 // Directly insert the node in question, and legalize it. This will recurse
4482 // as needed through operands.
4483 LegalizedNodes.insert(N);
4484 Legalizer.LegalizeOp(N);
4486 return LegalizedNodes.count(N);