1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
11 // is common code shared among the LegalizeTypes*.cpp files.
13 //===----------------------------------------------------------------------===//
15 #include "LegalizeTypes.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
26 #define DEBUG_TYPE "legalize-types"
29 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden
);
31 /// Do extensive, expensive, sanity checking.
32 void DAGTypeLegalizer::PerformExpensiveChecks() {
33 // If a node is not processed, then none of its values should be mapped by any
34 // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
36 // If a node is processed, then each value with an illegal type must be mapped
37 // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
38 // Values with a legal type may be mapped by ReplacedValues, but not by any of
41 // Note that these invariants may not hold momentarily when processing a node:
42 // the node being processed may be put in a map before being marked Processed.
44 // Note that it is possible to have nodes marked NewNode in the DAG. This can
45 // occur in two ways. Firstly, a node may be created during legalization but
46 // never passed to the legalization core. This is usually due to the implicit
47 // folding that occurs when using the DAG.getNode operators. Secondly, a new
48 // node may be passed to the legalization core, but when analyzed may morph
49 // into a different node, leaving the original node as a NewNode in the DAG.
50 // A node may morph if one of its operands changes during analysis. Whether
51 // it actually morphs or not depends on whether, after updating its operands,
52 // it is equivalent to an existing node: if so, it morphs into that existing
53 // node (CSE). An operand can change during analysis if the operand is a new
54 // node that morphs, or it is a processed value that was mapped to some other
55 // value (as recorded in ReplacedValues) in which case the operand is turned
56 // into that other value. If a node morphs then the node it morphed into will
57 // be used instead of it for legalization, however the original node continues
58 // to live on in the DAG.
59 // The conclusion is that though there may be nodes marked NewNode in the DAG,
60 // all uses of such nodes are also marked NewNode: the result is a fungus of
61 // NewNodes growing on top of the useful nodes, and perhaps using them, but
64 // If a value is mapped by ReplacedValues, then it must have no uses, except
65 // by nodes marked NewNode (see above).
67 // The final node obtained by mapping by ReplacedValues is not marked NewNode.
68 // Note that ReplacedValues should be applied iteratively.
70 // Note that the ReplacedValues map may also map deleted nodes (by iterating
71 // over the DAG we never dereference deleted nodes). This means that it may
72 // also map nodes marked NewNode if the deallocated memory was reallocated as
73 // another node, and that new node was not seen by the LegalizeTypes machinery
74 // (for example because it was created but not used). In general, we cannot
75 // distinguish between new nodes and deleted nodes.
76 SmallVector
<SDNode
*, 16> NewNodes
;
77 for (SDNode
&Node
: DAG
.allnodes()) {
78 // Remember nodes marked NewNode - they are subject to extra checking below.
79 if (Node
.getNodeId() == NewNode
)
80 NewNodes
.push_back(&Node
);
82 for (unsigned i
= 0, e
= Node
.getNumValues(); i
!= e
; ++i
) {
83 SDValue
Res(&Node
, i
);
84 EVT VT
= Res
.getValueType();
86 // Don't create a value in map.
87 auto ResId
= (ValueToIdMap
.count(Res
)) ? ValueToIdMap
[Res
] : 0;
90 if (ResId
&& (ReplacedValues
.find(ResId
) != ReplacedValues
.end())) {
92 // Check that remapped values are only used by nodes marked NewNode.
93 for (SDNode::use_iterator UI
= Node
.use_begin(), UE
= Node
.use_end();
95 if (UI
.getUse().getResNo() == i
)
96 assert(UI
->getNodeId() == NewNode
&&
97 "Remapped value has non-trivial use!");
99 // Check that the final result of applying ReplacedValues is not
101 auto NewValId
= ReplacedValues
[ResId
];
102 auto I
= ReplacedValues
.find(NewValId
);
103 while (I
!= ReplacedValues
.end()) {
104 NewValId
= I
->second
;
105 I
= ReplacedValues
.find(NewValId
);
107 SDValue NewVal
= getSDValue(NewValId
);
109 assert(NewVal
.getNode()->getNodeId() != NewNode
&&
110 "ReplacedValues maps to a new node!");
112 if (ResId
&& PromotedIntegers
.find(ResId
) != PromotedIntegers
.end())
114 if (ResId
&& SoftenedFloats
.find(ResId
) != SoftenedFloats
.end())
116 if (ResId
&& ScalarizedVectors
.find(ResId
) != ScalarizedVectors
.end())
118 if (ResId
&& ExpandedIntegers
.find(ResId
) != ExpandedIntegers
.end())
120 if (ResId
&& ExpandedFloats
.find(ResId
) != ExpandedFloats
.end())
122 if (ResId
&& SplitVectors
.find(ResId
) != SplitVectors
.end())
124 if (ResId
&& WidenedVectors
.find(ResId
) != WidenedVectors
.end())
126 if (ResId
&& PromotedFloats
.find(ResId
) != PromotedFloats
.end())
129 if (Node
.getNodeId() != Processed
) {
130 // Since we allow ReplacedValues to map deleted nodes, it may map nodes
131 // marked NewNode too, since a deleted node may have been reallocated as
132 // another node that has not been seen by the LegalizeTypes machinery.
133 if ((Node
.getNodeId() == NewNode
&& Mapped
> 1) ||
134 (Node
.getNodeId() != NewNode
&& Mapped
!= 0)) {
135 dbgs() << "Unprocessed value in a map!";
138 } else if (isTypeLegal(VT
) || IgnoreNodeResults(&Node
)) {
140 dbgs() << "Value with legal type was transformed!";
144 // If the value can be kept in HW registers, softening machinery can
145 // leave it unchanged and don't put it to any map.
147 !(getTypeAction(VT
) == TargetLowering::TypeSoftenFloat
&&
148 isLegalInHWReg(VT
))) {
149 dbgs() << "Processed value not in any map!";
151 } else if (Mapped
& (Mapped
- 1)) {
152 dbgs() << "Value in multiple maps!";
159 dbgs() << " ReplacedValues";
161 dbgs() << " PromotedIntegers";
163 dbgs() << " SoftenedFloats";
165 dbgs() << " ScalarizedVectors";
167 dbgs() << " ExpandedIntegers";
169 dbgs() << " ExpandedFloats";
171 dbgs() << " SplitVectors";
173 dbgs() << " WidenedVectors";
175 dbgs() << " PromotedFloats";
177 llvm_unreachable(nullptr);
182 // Checked that NewNodes are only used by other NewNodes.
183 for (unsigned i
= 0, e
= NewNodes
.size(); i
!= e
; ++i
) {
184 SDNode
*N
= NewNodes
[i
];
185 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
187 assert(UI
->getNodeId() == NewNode
&& "NewNode used by non-NewNode!");
191 /// This is the main entry point for the type legalizer. This does a top-down
192 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
194 bool DAGTypeLegalizer::run() {
195 bool Changed
= false;
197 // Create a dummy node (which is not added to allnodes), that adds a reference
198 // to the root node, preventing it from being deleted, and tracking any
199 // changes of the root.
200 HandleSDNode
Dummy(DAG
.getRoot());
201 Dummy
.setNodeId(Unanalyzed
);
203 // The root of the dag may dangle to deleted nodes until the type legalizer is
204 // done. Set it to null to avoid confusion.
205 DAG
.setRoot(SDValue());
207 // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
208 // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
210 for (SDNode
&Node
: DAG
.allnodes()) {
211 if (Node
.getNumOperands() == 0) {
212 AddToWorklist(&Node
);
214 Node
.setNodeId(Unanalyzed
);
218 // Now that we have a set of nodes to process, handle them all.
219 while (!Worklist
.empty()) {
220 #ifndef EXPENSIVE_CHECKS
221 if (EnableExpensiveChecks
)
223 PerformExpensiveChecks();
225 SDNode
*N
= Worklist
.back();
227 assert(N
->getNodeId() == ReadyToProcess
&&
228 "Node should be ready if on worklist!");
230 LLVM_DEBUG(dbgs() << "Legalizing node: "; N
->dump(&DAG
));
231 if (IgnoreNodeResults(N
)) {
232 LLVM_DEBUG(dbgs() << "Ignoring node results\n");
236 // Scan the values produced by the node, checking to see if any result
237 // types are illegal.
238 for (unsigned i
= 0, NumResults
= N
->getNumValues(); i
< NumResults
; ++i
) {
239 EVT ResultVT
= N
->getValueType(i
);
240 LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT
.getEVTString()
242 switch (getTypeAction(ResultVT
)) {
243 case TargetLowering::TypeLegal
:
244 LLVM_DEBUG(dbgs() << "Legal result type\n");
246 // The following calls must take care of *all* of the node's results,
247 // not just the illegal result they were passed (this includes results
248 // with a legal type). Results can be remapped using ReplaceValueWith,
249 // or their promoted/expanded/etc values registered in PromotedIntegers,
250 // ExpandedIntegers etc.
251 case TargetLowering::TypePromoteInteger
:
252 PromoteIntegerResult(N
, i
);
255 case TargetLowering::TypeExpandInteger
:
256 ExpandIntegerResult(N
, i
);
259 case TargetLowering::TypeSoftenFloat
:
260 Changed
= SoftenFloatResult(N
, i
);
263 // If not changed, the result type should be legally in register.
264 assert(isLegalInHWReg(ResultVT
) &&
265 "Unchanged SoftenFloatResult should be legal in register!");
267 case TargetLowering::TypeExpandFloat
:
268 ExpandFloatResult(N
, i
);
271 case TargetLowering::TypeScalarizeVector
:
272 ScalarizeVectorResult(N
, i
);
275 case TargetLowering::TypeSplitVector
:
276 SplitVectorResult(N
, i
);
279 case TargetLowering::TypeWidenVector
:
280 WidenVectorResult(N
, i
);
283 case TargetLowering::TypePromoteFloat
:
284 PromoteFloatResult(N
, i
);
291 // Scan the operand list for the node, handling any nodes with operands that
294 unsigned NumOperands
= N
->getNumOperands();
295 bool NeedsReanalyzing
= false;
297 for (i
= 0; i
!= NumOperands
; ++i
) {
298 if (IgnoreNodeResults(N
->getOperand(i
).getNode()))
301 const auto Op
= N
->getOperand(i
);
302 LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op
.dump(&DAG
));
303 EVT OpVT
= Op
.getValueType();
304 switch (getTypeAction(OpVT
)) {
305 case TargetLowering::TypeLegal
:
306 LLVM_DEBUG(dbgs() << "Legal operand\n");
308 // The following calls must either replace all of the node's results
309 // using ReplaceValueWith, and return "false"; or update the node's
310 // operands in place, and return "true".
311 case TargetLowering::TypePromoteInteger
:
312 NeedsReanalyzing
= PromoteIntegerOperand(N
, i
);
315 case TargetLowering::TypeExpandInteger
:
316 NeedsReanalyzing
= ExpandIntegerOperand(N
, i
);
319 case TargetLowering::TypeSoftenFloat
:
320 NeedsReanalyzing
= SoftenFloatOperand(N
, i
);
323 case TargetLowering::TypeExpandFloat
:
324 NeedsReanalyzing
= ExpandFloatOperand(N
, i
);
327 case TargetLowering::TypeScalarizeVector
:
328 NeedsReanalyzing
= ScalarizeVectorOperand(N
, i
);
331 case TargetLowering::TypeSplitVector
:
332 NeedsReanalyzing
= SplitVectorOperand(N
, i
);
335 case TargetLowering::TypeWidenVector
:
336 NeedsReanalyzing
= WidenVectorOperand(N
, i
);
339 case TargetLowering::TypePromoteFloat
:
340 NeedsReanalyzing
= PromoteFloatOperand(N
, i
);
347 // The sub-method updated N in place. Check to see if any operands are new,
348 // and if so, mark them. If the node needs revisiting, don't add all users
349 // to the worklist etc.
350 if (NeedsReanalyzing
) {
351 assert(N
->getNodeId() == ReadyToProcess
&& "Node ID recalculated?");
353 N
->setNodeId(NewNode
);
354 // Recompute the NodeId and correct processed operands, adding the node to
355 // the worklist if ready.
356 SDNode
*M
= AnalyzeNewNode(N
);
358 // The node didn't morph - nothing special to do, it will be revisited.
361 // The node morphed - this is equivalent to legalizing by replacing every
362 // value of N with the corresponding value of M. So do that now.
363 assert(N
->getNumValues() == M
->getNumValues() &&
364 "Node morphing changed the number of results!");
365 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
)
366 // Replacing the value takes care of remapping the new value.
367 ReplaceValueWith(SDValue(N
, i
), SDValue(M
, i
));
368 assert(N
->getNodeId() == NewNode
&& "Unexpected node state!");
369 // The node continues to live on as part of the NewNode fungus that
370 // grows on top of the useful nodes. Nothing more needs to be done
371 // with it - move on to the next node.
375 if (i
== NumOperands
) {
376 LLVM_DEBUG(dbgs() << "Legally typed node: "; N
->dump(&DAG
);
382 // If we reach here, the node was processed, potentially creating new nodes.
383 // Mark it as processed and add its users to the worklist as appropriate.
384 assert(N
->getNodeId() == ReadyToProcess
&& "Node ID recalculated?");
385 N
->setNodeId(Processed
);
387 for (SDNode::use_iterator UI
= N
->use_begin(), E
= N
->use_end();
390 int NodeId
= User
->getNodeId();
392 // This node has two options: it can either be a new node or its Node ID
393 // may be a count of the number of operands it has that are not ready.
395 User
->setNodeId(NodeId
-1);
397 // If this was the last use it was waiting on, add it to the ready list.
398 if (NodeId
-1 == ReadyToProcess
)
399 Worklist
.push_back(User
);
403 // If this is an unreachable new node, then ignore it. If it ever becomes
404 // reachable by being used by a newly created node then it will be handled
405 // by AnalyzeNewNode.
406 if (NodeId
== NewNode
)
409 // Otherwise, this node is new: this is the first operand of it that
410 // became ready. Its new NodeId is the number of operands it has minus 1
411 // (as this node is now processed).
412 assert(NodeId
== Unanalyzed
&& "Unknown node ID!");
413 User
->setNodeId(User
->getNumOperands() - 1);
415 // If the node only has a single operand, it is now ready.
416 if (User
->getNumOperands() == 1)
417 Worklist
.push_back(User
);
421 #ifndef EXPENSIVE_CHECKS
422 if (EnableExpensiveChecks
)
424 PerformExpensiveChecks();
426 // If the root changed (e.g. it was a dead load) update the root.
427 DAG
.setRoot(Dummy
.getValue());
429 // Remove dead nodes. This is important to do for cleanliness but also before
430 // the checking loop below. Implicit folding by the DAG.getNode operators and
431 // node morphing can cause unreachable nodes to be around with their flags set
433 DAG
.RemoveDeadNodes();
435 // In a debug build, scan all the nodes to make sure we found them all. This
436 // ensures that there are no cycles and that everything got processed.
438 for (SDNode
&Node
: DAG
.allnodes()) {
441 // Check that all result types are legal.
442 // A value type is illegal if its TypeAction is not TypeLegal,
443 // and TLI.RegClassForVT does not have a register class for this type.
444 // For example, the x86_64 target has f128 that is not TypeLegal,
445 // to have softened operators, but it also has FR128 register class to
446 // pass and return f128 values. Hence a legalized node can have f128 type.
447 if (!IgnoreNodeResults(&Node
))
448 for (unsigned i
= 0, NumVals
= Node
.getNumValues(); i
< NumVals
; ++i
)
449 if (!isTypeLegal(Node
.getValueType(i
)) &&
450 !TLI
.isTypeLegal(Node
.getValueType(i
))) {
451 dbgs() << "Result type " << i
<< " illegal: ";
456 // Check that all operand types are legal.
457 for (unsigned i
= 0, NumOps
= Node
.getNumOperands(); i
< NumOps
; ++i
)
458 if (!IgnoreNodeResults(Node
.getOperand(i
).getNode()) &&
459 !isTypeLegal(Node
.getOperand(i
).getValueType()) &&
460 !TLI
.isTypeLegal(Node
.getOperand(i
).getValueType())) {
461 dbgs() << "Operand type " << i
<< " illegal: ";
462 Node
.getOperand(i
).dump(&DAG
);
466 if (Node
.getNodeId() != Processed
) {
467 if (Node
.getNodeId() == NewNode
)
468 dbgs() << "New node not analyzed?\n";
469 else if (Node
.getNodeId() == Unanalyzed
)
470 dbgs() << "Unanalyzed node not noticed?\n";
471 else if (Node
.getNodeId() > 0)
472 dbgs() << "Operand not processed?\n";
473 else if (Node
.getNodeId() == ReadyToProcess
)
474 dbgs() << "Not added to worklist?\n";
479 Node
.dump(&DAG
); dbgs() << "\n";
480 llvm_unreachable(nullptr);
488 /// The specified node is the root of a subtree of potentially new nodes.
489 /// Correct any processed operands (this may change the node) and calculate the
490 /// NodeId. If the node itself changes to a processed node, it is not remapped -
491 /// the caller needs to take care of this. Returns the potentially changed node.
492 SDNode
*DAGTypeLegalizer::AnalyzeNewNode(SDNode
*N
) {
493 // If this was an existing node that is already done, we're done.
494 if (N
->getNodeId() != NewNode
&& N
->getNodeId() != Unanalyzed
)
497 // Okay, we know that this node is new. Recursively walk all of its operands
498 // to see if they are new also. The depth of this walk is bounded by the size
499 // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
500 // about revisiting of nodes.
502 // As we walk the operands, keep track of the number of nodes that are
503 // processed. If non-zero, this will become the new nodeid of this node.
504 // Operands may morph when they are analyzed. If so, the node will be
505 // updated after all operands have been analyzed. Since this is rare,
506 // the code tries to minimize overhead in the non-morphing case.
508 std::vector
<SDValue
> NewOps
;
509 unsigned NumProcessed
= 0;
510 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
511 SDValue OrigOp
= N
->getOperand(i
);
514 AnalyzeNewValue(Op
); // Op may morph.
516 if (Op
.getNode()->getNodeId() == Processed
)
519 if (!NewOps
.empty()) {
520 // Some previous operand changed. Add this one to the list.
521 NewOps
.push_back(Op
);
522 } else if (Op
!= OrigOp
) {
523 // This is the first operand to change - add all operands so far.
524 NewOps
.insert(NewOps
.end(), N
->op_begin(), N
->op_begin() + i
);
525 NewOps
.push_back(Op
);
529 // Some operands changed - update the node.
530 if (!NewOps
.empty()) {
531 SDNode
*M
= DAG
.UpdateNodeOperands(N
, NewOps
);
533 // The node morphed into a different node. Normally for this to happen
534 // the original node would have to be marked NewNode. However this can
535 // in theory momentarily not be the case while ReplaceValueWith is doing
536 // its stuff. Mark the original node NewNode to help sanity checking.
537 N
->setNodeId(NewNode
);
538 if (M
->getNodeId() != NewNode
&& M
->getNodeId() != Unanalyzed
)
539 // It morphed into a previously analyzed node - nothing more to do.
542 // It morphed into a different new node. Do the equivalent of passing
543 // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
544 // to remap the operands, since they are the same as the operands we
550 // Calculate the NodeId.
551 N
->setNodeId(N
->getNumOperands() - NumProcessed
);
552 if (N
->getNodeId() == ReadyToProcess
)
553 Worklist
.push_back(N
);
558 /// Call AnalyzeNewNode, updating the node in Val if needed.
559 /// If the node changes to a processed node, then remap it.
560 void DAGTypeLegalizer::AnalyzeNewValue(SDValue
&Val
) {
561 Val
.setNode(AnalyzeNewNode(Val
.getNode()));
562 if (Val
.getNode()->getNodeId() == Processed
)
563 // We were passed a processed node, or it morphed into one - remap it.
567 /// If the specified value was already legalized to another value,
568 /// replace it by that value.
569 void DAGTypeLegalizer::RemapValue(SDValue
&V
) {
570 auto Id
= getTableId(V
);
574 void DAGTypeLegalizer::RemapId(TableId
&Id
) {
575 auto I
= ReplacedValues
.find(Id
);
576 if (I
!= ReplacedValues
.end()) {
577 assert(Id
!= I
->second
&& "Id is mapped to itself.");
578 // Use path compression to speed up future lookups if values get multiply
579 // replaced with other values.
583 // Note that N = IdToValueMap[Id] it is possible to have
584 // N.getNode()->getNodeId() == NewNode at this point because it is possible
585 // for a node to be put in the map before being processed.
590 /// This class is a DAGUpdateListener that listens for updates to nodes and
591 /// recomputes their ready state.
592 class NodeUpdateListener
: public SelectionDAG::DAGUpdateListener
{
593 DAGTypeLegalizer
&DTL
;
594 SmallSetVector
<SDNode
*, 16> &NodesToAnalyze
;
596 explicit NodeUpdateListener(DAGTypeLegalizer
&dtl
,
597 SmallSetVector
<SDNode
*, 16> &nta
)
598 : SelectionDAG::DAGUpdateListener(dtl
.getDAG()),
599 DTL(dtl
), NodesToAnalyze(nta
) {}
601 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
602 assert(N
->getNodeId() != DAGTypeLegalizer::ReadyToProcess
&&
603 N
->getNodeId() != DAGTypeLegalizer::Processed
&&
604 "Invalid node ID for RAUW deletion!");
605 // It is possible, though rare, for the deleted node N to occur as a
606 // target in a map, so note the replacement N -> E in ReplacedValues.
607 assert(E
&& "Node not replaced?");
608 DTL
.NoteDeletion(N
, E
);
610 // In theory the deleted node could also have been scheduled for analysis.
611 // So remove it from the set of nodes which will be analyzed.
612 NodesToAnalyze
.remove(N
);
614 // In general nothing needs to be done for E, since it didn't change but
615 // only gained new uses. However N -> E was just added to ReplacedValues,
616 // and the result of a ReplacedValues mapping is not allowed to be marked
617 // NewNode. So if E is marked NewNode, then it needs to be analyzed.
618 if (E
->getNodeId() == DAGTypeLegalizer::NewNode
)
619 NodesToAnalyze
.insert(E
);
622 void NodeUpdated(SDNode
*N
) override
{
623 // Node updates can mean pretty much anything. It is possible that an
624 // operand was set to something already processed (f.e.) in which case
625 // this node could become ready. Recompute its flags.
626 assert(N
->getNodeId() != DAGTypeLegalizer::ReadyToProcess
&&
627 N
->getNodeId() != DAGTypeLegalizer::Processed
&&
628 "Invalid node ID for RAUW deletion!");
629 N
->setNodeId(DAGTypeLegalizer::NewNode
);
630 NodesToAnalyze
.insert(N
);
636 /// The specified value was legalized to the specified other value.
637 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
638 void DAGTypeLegalizer::ReplaceValueWith(SDValue From
, SDValue To
) {
639 assert(From
.getNode() != To
.getNode() && "Potential legalization loop!");
641 // If expansion produced new nodes, make sure they are properly marked.
644 // Anything that used the old node should now use the new one. Note that this
645 // can potentially cause recursive merging.
646 SmallSetVector
<SDNode
*, 16> NodesToAnalyze
;
647 NodeUpdateListener
NUL(*this, NodesToAnalyze
);
650 // The old node may be present in a map like ExpandedIntegers or
651 // PromotedIntegers. Inform maps about the replacement.
652 auto FromId
= getTableId(From
);
653 auto ToId
= getTableId(To
);
656 ReplacedValues
[FromId
] = ToId
;
657 DAG
.ReplaceAllUsesOfValueWith(From
, To
);
659 // Process the list of nodes that need to be reanalyzed.
660 while (!NodesToAnalyze
.empty()) {
661 SDNode
*N
= NodesToAnalyze
.back();
662 NodesToAnalyze
.pop_back();
663 if (N
->getNodeId() != DAGTypeLegalizer::NewNode
)
664 // The node was analyzed while reanalyzing an earlier node - it is safe
665 // to skip. Note that this is not a morphing node - otherwise it would
666 // still be marked NewNode.
669 // Analyze the node's operands and recalculate the node ID.
670 SDNode
*M
= AnalyzeNewNode(N
);
672 // The node morphed into a different node. Make everyone use the new
674 assert(M
->getNodeId() != NewNode
&& "Analysis resulted in NewNode!");
675 assert(N
->getNumValues() == M
->getNumValues() &&
676 "Node morphing changed the number of results!");
677 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
678 SDValue
OldVal(N
, i
);
679 SDValue
NewVal(M
, i
);
680 if (M
->getNodeId() == Processed
)
682 // OldVal may be a target of the ReplacedValues map which was marked
683 // NewNode to force reanalysis because it was updated. Ensure that
684 // anything that ReplacedValues mapped to OldVal will now be mapped
685 // all the way to NewVal.
686 auto OldValId
= getTableId(OldVal
);
687 auto NewValId
= getTableId(NewVal
);
688 DAG
.ReplaceAllUsesOfValueWith(OldVal
, NewVal
);
689 if (OldValId
!= NewValId
)
690 ReplacedValues
[OldValId
] = NewValId
;
692 // The original node continues to exist in the DAG, marked NewNode.
695 // When recursively update nodes with new nodes, it is possible to have
696 // new uses of From due to CSE. If this happens, replace the new uses of
698 } while (!From
.use_empty());
701 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op
, SDValue Result
) {
702 assert(Result
.getValueType() ==
703 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
704 "Invalid type for promoted integer");
705 AnalyzeNewValue(Result
);
707 auto &OpIdEntry
= PromotedIntegers
[getTableId(Op
)];
708 assert((OpIdEntry
== 0) && "Node is already promoted!");
709 OpIdEntry
= getTableId(Result
);
711 DAG
.transferDbgValues(Op
, Result
);
714 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op
, SDValue Result
) {
715 // f128 of x86_64 could be kept in SSE registers,
716 // but sometimes softened to i128.
717 assert((Result
.getValueType() ==
718 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) ||
720 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType())) &&
721 "Invalid type for softened float");
722 AnalyzeNewValue(Result
);
724 auto &OpIdEntry
= SoftenedFloats
[getTableId(Op
)];
725 // Allow repeated calls to save f128 type nodes
726 // or any node with type that transforms to itself.
727 // Many operations on these types are not softened.
728 assert(((OpIdEntry
== 0) ||
730 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType())) &&
731 "Node is already converted to integer!");
732 OpIdEntry
= getTableId(Result
);
735 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op
, SDValue Result
) {
736 assert(Result
.getValueType() ==
737 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
738 "Invalid type for promoted float");
739 AnalyzeNewValue(Result
);
741 auto &OpIdEntry
= PromotedFloats
[getTableId(Op
)];
742 assert((OpIdEntry
== 0) && "Node is already promoted!");
743 OpIdEntry
= getTableId(Result
);
746 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op
, SDValue Result
) {
747 // Note that in some cases vector operation operands may be greater than
748 // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
749 // a constant i8 operand.
750 assert(Result
.getValueSizeInBits() >= Op
.getScalarValueSizeInBits() &&
751 "Invalid type for scalarized vector");
752 AnalyzeNewValue(Result
);
754 auto &OpIdEntry
= ScalarizedVectors
[getTableId(Op
)];
755 assert((OpIdEntry
== 0) && "Node is already scalarized!");
756 OpIdEntry
= getTableId(Result
);
759 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op
, SDValue
&Lo
,
761 std::pair
<TableId
, TableId
> &Entry
= ExpandedIntegers
[getTableId(Op
)];
762 assert((Entry
.first
!= 0) && "Operand isn't expanded");
763 Lo
= getSDValue(Entry
.first
);
764 Hi
= getSDValue(Entry
.second
);
767 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op
, SDValue Lo
,
769 assert(Lo
.getValueType() ==
770 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
771 Hi
.getValueType() == Lo
.getValueType() &&
772 "Invalid type for expanded integer");
773 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
777 // Transfer debug values. Don't invalidate the source debug value until it's
778 // been transferred to the high and low bits.
779 if (DAG
.getDataLayout().isBigEndian()) {
780 DAG
.transferDbgValues(Op
, Hi
, 0, Hi
.getValueSizeInBits(), false);
781 DAG
.transferDbgValues(Op
, Lo
, Hi
.getValueSizeInBits(),
782 Lo
.getValueSizeInBits());
784 DAG
.transferDbgValues(Op
, Lo
, 0, Lo
.getValueSizeInBits(), false);
785 DAG
.transferDbgValues(Op
, Hi
, Lo
.getValueSizeInBits(),
786 Hi
.getValueSizeInBits());
789 // Remember that this is the result of the node.
790 std::pair
<TableId
, TableId
> &Entry
= ExpandedIntegers
[getTableId(Op
)];
791 assert((Entry
.first
== 0) && "Node already expanded");
792 Entry
.first
= getTableId(Lo
);
793 Entry
.second
= getTableId(Hi
);
796 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op
, SDValue
&Lo
,
798 std::pair
<TableId
, TableId
> &Entry
= ExpandedFloats
[getTableId(Op
)];
799 assert((Entry
.first
!= 0) && "Operand isn't expanded");
800 Lo
= getSDValue(Entry
.first
);
801 Hi
= getSDValue(Entry
.second
);
804 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op
, SDValue Lo
,
806 assert(Lo
.getValueType() ==
807 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
808 Hi
.getValueType() == Lo
.getValueType() &&
809 "Invalid type for expanded float");
810 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
814 std::pair
<TableId
, TableId
> &Entry
= ExpandedFloats
[getTableId(Op
)];
815 assert((Entry
.first
== 0) && "Node already expanded");
816 Entry
.first
= getTableId(Lo
);
817 Entry
.second
= getTableId(Hi
);
820 void DAGTypeLegalizer::GetSplitVector(SDValue Op
, SDValue
&Lo
,
822 std::pair
<TableId
, TableId
> &Entry
= SplitVectors
[getTableId(Op
)];
823 Lo
= getSDValue(Entry
.first
);
824 Hi
= getSDValue(Entry
.second
);
825 assert(Lo
.getNode() && "Operand isn't split");
829 void DAGTypeLegalizer::SetSplitVector(SDValue Op
, SDValue Lo
,
831 assert(Lo
.getValueType().getVectorElementType() ==
832 Op
.getValueType().getVectorElementType() &&
833 2*Lo
.getValueType().getVectorNumElements() ==
834 Op
.getValueType().getVectorNumElements() &&
835 Hi
.getValueType() == Lo
.getValueType() &&
836 "Invalid type for split vector");
837 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
841 // Remember that this is the result of the node.
842 std::pair
<TableId
, TableId
> &Entry
= SplitVectors
[getTableId(Op
)];
843 assert((Entry
.first
== 0) && "Node already split");
844 Entry
.first
= getTableId(Lo
);
845 Entry
.second
= getTableId(Hi
);
848 void DAGTypeLegalizer::SetWidenedVector(SDValue Op
, SDValue Result
) {
849 assert(Result
.getValueType() ==
850 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
851 "Invalid type for widened vector");
852 AnalyzeNewValue(Result
);
854 auto &OpIdEntry
= WidenedVectors
[getTableId(Op
)];
855 assert((OpIdEntry
== 0) && "Node already widened!");
856 OpIdEntry
= getTableId(Result
);
860 //===----------------------------------------------------------------------===//
862 //===----------------------------------------------------------------------===//
864 /// Convert to an integer of the same size.
865 SDValue
DAGTypeLegalizer::BitConvertToInteger(SDValue Op
) {
866 unsigned BitWidth
= Op
.getValueSizeInBits();
867 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
),
868 EVT::getIntegerVT(*DAG
.getContext(), BitWidth
), Op
);
871 /// Convert to a vector of integers of the same size.
872 SDValue
DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op
) {
873 assert(Op
.getValueType().isVector() && "Only applies to vectors!");
874 unsigned EltWidth
= Op
.getScalarValueSizeInBits();
875 EVT EltNVT
= EVT::getIntegerVT(*DAG
.getContext(), EltWidth
);
876 auto EltCnt
= Op
.getValueType().getVectorElementCount();
877 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
),
878 EVT::getVectorVT(*DAG
.getContext(), EltNVT
, EltCnt
), Op
);
881 SDValue
DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op
,
884 // Create the stack frame object. Make sure it is aligned for both
885 // the source and destination types.
886 SDValue StackPtr
= DAG
.CreateStackTemporary(Op
.getValueType(), DestVT
);
887 // Emit a store to the stack slot.
889 DAG
.getStore(DAG
.getEntryNode(), dl
, Op
, StackPtr
, MachinePointerInfo());
890 // Result is a load from the stack slot.
891 return DAG
.getLoad(DestVT
, dl
, Store
, StackPtr
, MachinePointerInfo());
894 /// Replace the node's results with custom code provided by the target and
895 /// return "true", or do nothing and return "false".
896 /// The last parameter is FALSE if we are dealing with a node with legal
897 /// result types and illegal operand. The second parameter denotes the type of
898 /// illegal OperandNo in that case.
899 /// The last parameter being TRUE means we are dealing with a
900 /// node with illegal result types. The second parameter denotes the type of
901 /// illegal ResNo in that case.
902 bool DAGTypeLegalizer::CustomLowerNode(SDNode
*N
, EVT VT
, bool LegalizeResult
) {
903 // See if the target wants to custom lower this node.
904 if (TLI
.getOperationAction(N
->getOpcode(), VT
) != TargetLowering::Custom
)
907 SmallVector
<SDValue
, 8> Results
;
909 TLI
.ReplaceNodeResults(N
, Results
, DAG
);
911 TLI
.LowerOperationWrapper(N
, Results
, DAG
);
914 // The target didn't want to custom lower it after all.
917 // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
918 // provide the same kind of custom splitting behavior.
919 if (Results
.size() == N
->getNumValues() + 1 && LegalizeResult
) {
920 // We've legalized a return type by splitting it. If there is a chain,
922 SetExpandedInteger(SDValue(N
, 0), Results
[0], Results
[1]);
923 if (N
->getNumValues() > 1)
924 ReplaceValueWith(SDValue(N
, 1), Results
[2]);
928 // Make everything that once used N's values now use those in Results instead.
929 assert(Results
.size() == N
->getNumValues() &&
930 "Custom lowering returned the wrong number of results!");
931 for (unsigned i
= 0, e
= Results
.size(); i
!= e
; ++i
) {
932 ReplaceValueWith(SDValue(N
, i
), Results
[i
]);
938 /// Widen the node's results with custom code provided by the target and return
939 /// "true", or do nothing and return "false".
940 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode
*N
, EVT VT
) {
941 // See if the target wants to custom lower this node.
942 if (TLI
.getOperationAction(N
->getOpcode(), VT
) != TargetLowering::Custom
)
945 SmallVector
<SDValue
, 8> Results
;
946 TLI
.ReplaceNodeResults(N
, Results
, DAG
);
949 // The target didn't want to custom widen lower its result after all.
952 // Update the widening map.
953 assert(Results
.size() == N
->getNumValues() &&
954 "Custom lowering returned the wrong number of results!");
955 for (unsigned i
= 0, e
= Results
.size(); i
!= e
; ++i
) {
956 // If this is a chain output just replace it.
957 if (Results
[i
].getValueType() == MVT::Other
)
958 ReplaceValueWith(SDValue(N
, i
), Results
[i
]);
960 SetWidenedVector(SDValue(N
, i
), Results
[i
]);
965 SDValue
DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode
*N
, unsigned ResNo
) {
966 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
)
968 ReplaceValueWith(SDValue(N
, i
), SDValue(N
->getOperand(i
)));
969 return SDValue(N
->getOperand(ResNo
));
972 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
974 void DAGTypeLegalizer::GetPairElements(SDValue Pair
,
975 SDValue
&Lo
, SDValue
&Hi
) {
977 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), Pair
.getValueType());
978 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, NVT
, Pair
,
979 DAG
.getIntPtrConstant(0, dl
));
980 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, NVT
, Pair
,
981 DAG
.getIntPtrConstant(1, dl
));
984 /// Build an integer with low bits Lo and high bits Hi.
985 SDValue
DAGTypeLegalizer::JoinIntegers(SDValue Lo
, SDValue Hi
) {
986 // Arbitrarily use dlHi for result SDLoc
989 EVT LVT
= Lo
.getValueType();
990 EVT HVT
= Hi
.getValueType();
991 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(),
992 LVT
.getSizeInBits() + HVT
.getSizeInBits());
994 EVT ShiftAmtVT
= TLI
.getShiftAmountTy(NVT
, DAG
.getDataLayout(), false);
995 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dlLo
, NVT
, Lo
);
996 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dlHi
, NVT
, Hi
);
997 Hi
= DAG
.getNode(ISD::SHL
, dlHi
, NVT
, Hi
,
998 DAG
.getConstant(LVT
.getSizeInBits(), dlHi
, ShiftAmtVT
));
999 return DAG
.getNode(ISD::OR
, dlHi
, NVT
, Lo
, Hi
);
1002 /// Convert the node into a libcall with the same prototype.
1003 SDValue
DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC
, SDNode
*N
,
1005 unsigned NumOps
= N
->getNumOperands();
1008 return TLI
.makeLibCall(DAG
, LC
, N
->getValueType(0), None
, isSigned
,
1010 } else if (NumOps
== 1) {
1011 SDValue Op
= N
->getOperand(0);
1012 return TLI
.makeLibCall(DAG
, LC
, N
->getValueType(0), Op
, isSigned
,
1014 } else if (NumOps
== 2) {
1015 SDValue Ops
[2] = { N
->getOperand(0), N
->getOperand(1) };
1016 return TLI
.makeLibCall(DAG
, LC
, N
->getValueType(0), Ops
, isSigned
,
1019 SmallVector
<SDValue
, 8> Ops(NumOps
);
1020 for (unsigned i
= 0; i
< NumOps
; ++i
)
1021 Ops
[i
] = N
->getOperand(i
);
1023 return TLI
.makeLibCall(DAG
, LC
, N
->getValueType(0), Ops
, isSigned
, dl
).first
;
1026 /// Expand a node into a call to a libcall. Similar to ExpandLibCall except that
1027 /// the first operand is the in-chain.
1028 std::pair
<SDValue
, SDValue
>
1029 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC
, SDNode
*Node
,
1031 SDValue InChain
= Node
->getOperand(0);
1033 TargetLowering::ArgListTy Args
;
1034 TargetLowering::ArgListEntry Entry
;
1035 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
1036 EVT ArgVT
= Node
->getOperand(i
).getValueType();
1037 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
1038 Entry
.Node
= Node
->getOperand(i
);
1040 Entry
.IsSExt
= isSigned
;
1041 Entry
.IsZExt
= !isSigned
;
1042 Args
.push_back(Entry
);
1044 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
1045 TLI
.getPointerTy(DAG
.getDataLayout()));
1047 Type
*RetTy
= Node
->getValueType(0).getTypeForEVT(*DAG
.getContext());
1049 TargetLowering::CallLoweringInfo
CLI(DAG
);
1050 CLI
.setDebugLoc(SDLoc(Node
))
1052 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
1054 .setSExtResult(isSigned
)
1055 .setZExtResult(!isSigned
);
1057 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
1062 /// Promote the given target boolean to a target boolean of the given type.
1063 /// A target boolean is an integer value, not necessarily of type i1, the bits
1064 /// of which conform to getBooleanContents.
1066 /// ValVT is the type of values that produced the boolean.
1067 SDValue
DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool
, EVT ValVT
) {
1069 EVT BoolVT
= getSetCCResultType(ValVT
);
1070 ISD::NodeType ExtendCode
=
1071 TargetLowering::getExtendForContent(TLI
.getBooleanContents(ValVT
));
1072 return DAG
.getNode(ExtendCode
, dl
, BoolVT
, Bool
);
1075 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1076 void DAGTypeLegalizer::SplitInteger(SDValue Op
,
1078 SDValue
&Lo
, SDValue
&Hi
) {
1080 assert(LoVT
.getSizeInBits() + HiVT
.getSizeInBits() ==
1081 Op
.getValueSizeInBits() && "Invalid integer splitting!");
1082 Lo
= DAG
.getNode(ISD::TRUNCATE
, dl
, LoVT
, Op
);
1083 unsigned ReqShiftAmountInBits
=
1084 Log2_32_Ceil(Op
.getValueType().getSizeInBits());
1086 TLI
.getScalarShiftAmountTy(DAG
.getDataLayout(), Op
.getValueType());
1087 if (ReqShiftAmountInBits
> ShiftAmountTy
.getSizeInBits())
1088 ShiftAmountTy
= MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits
));
1089 Hi
= DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(), Op
,
1090 DAG
.getConstant(LoVT
.getSizeInBits(), dl
, ShiftAmountTy
));
1091 Hi
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiVT
, Hi
);
1094 /// Return the lower and upper halves of Op's bits in a value type half the
1096 void DAGTypeLegalizer::SplitInteger(SDValue Op
,
1097 SDValue
&Lo
, SDValue
&Hi
) {
1099 EVT::getIntegerVT(*DAG
.getContext(), Op
.getValueSizeInBits() / 2);
1100 SplitInteger(Op
, HalfVT
, HalfVT
, Lo
, Hi
);
1104 //===----------------------------------------------------------------------===//
1106 //===----------------------------------------------------------------------===//
1108 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1109 /// natively supported by the target. Returns "true" if it made any changes.
1111 /// Note that this is an involved process that may invalidate pointers into
1113 bool SelectionDAG::LegalizeTypes() {
1114 return DAGTypeLegalizer(*this).run();