Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / SelectionDAG / LegalizeVectorOps.cpp
blob5d080e06d7598812168a2c4c7b1a87a2b58669ac
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
49 using namespace llvm;
51 #define DEBUG_TYPE "legalizevectorops"
53 namespace {
55 class VectorLegalizer {
56 SelectionDAG& DAG;
57 const TargetLowering &TLI;
58 bool Changed = false; // Keep track of whether anything changed
60 /// For nodes that are of legal width, and that have more than one use, this
61 /// map indicates what regularized operand to use. This allows us to avoid
62 /// legalizing the same thing more than once.
63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 /// Adds a node to the translation cache.
66 void AddLegalizedOperand(SDValue From, SDValue To) {
67 LegalizedNodes.insert(std::make_pair(From, To));
68 // If someone requests legalization of the new node, return itself.
69 if (From != To)
70 LegalizedNodes.insert(std::make_pair(To, To));
73 /// Legalizes the given node.
74 SDValue LegalizeOp(SDValue Op);
76 /// Assuming the node is legal, "legalize" the results.
77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 /// Implements unrolling a VSETCC.
80 SDValue UnrollVSETCC(SDValue Op);
82 /// Implement expand-based legalization of vector operations.
83 ///
84 /// This is just a high-level routine to dispatch to specific code paths for
85 /// operations to legalize them.
86 SDValue Expand(SDValue Op);
88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89 /// FP_TO_SINT isn't legal.
90 SDValue ExpandFP_TO_UINT(SDValue Op);
92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97 SDValue ExpandSEXTINREG(SDValue Op);
99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102 /// type. The contents of the bits in the extended part of each element are
103 /// undef.
104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109 /// type, then shifts left and arithmetic shifts right to introduce a sign
110 /// extension.
111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115 /// Shuffles the low lanes of the operand into place and blends zeros into
116 /// the remaining lanes, finally bitcasting to the proper type.
117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
119 /// Implement expand-based legalization of ABS vector operations.
120 /// If following expanding is legal/custom then do it:
121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122 /// else unroll the operation.
123 SDValue ExpandABS(SDValue Op);
125 /// Expand bswap of vectors into a shuffle if legal.
126 SDValue ExpandBSWAP(SDValue Op);
128 /// Implement vselect in terms of XOR, AND, OR when blend is not
129 /// supported by the target.
130 SDValue ExpandVSELECT(SDValue Op);
131 SDValue ExpandSELECT(SDValue Op);
132 SDValue ExpandLoad(SDValue Op);
133 SDValue ExpandStore(SDValue Op);
134 SDValue ExpandFNEG(SDValue Op);
135 SDValue ExpandFSUB(SDValue Op);
136 SDValue ExpandBITREVERSE(SDValue Op);
137 SDValue ExpandCTPOP(SDValue Op);
138 SDValue ExpandCTLZ(SDValue Op);
139 SDValue ExpandCTTZ(SDValue Op);
140 SDValue ExpandFunnelShift(SDValue Op);
141 SDValue ExpandROT(SDValue Op);
142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
143 SDValue ExpandAddSubSat(SDValue Op);
144 SDValue ExpandFixedPointMul(SDValue Op);
145 SDValue ExpandStrictFPOp(SDValue Op);
147 /// Implements vector promotion.
149 /// This is essentially just bitcasting the operands to a different type and
150 /// bitcasting the result back to the original type.
151 SDValue Promote(SDValue Op);
153 /// Implements [SU]INT_TO_FP vector promotion.
155 /// This is a [zs]ext of the input operand to a larger integer type.
156 SDValue PromoteINT_TO_FP(SDValue Op);
158 /// Implements FP_TO_[SU]INT vector promotion of the result type.
160 /// It is promoted to a larger integer type. The result is then
161 /// truncated back to the original type.
162 SDValue PromoteFP_TO_INT(SDValue Op);
164 public:
165 VectorLegalizer(SelectionDAG& dag) :
166 DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
168 /// Begin legalizer the vector operations in the DAG.
169 bool Run();
172 } // end anonymous namespace
174 bool VectorLegalizer::Run() {
175 // Before we start legalizing vector nodes, check if there are any vectors.
176 bool HasVectors = false;
177 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
178 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
179 // Check if the values of the nodes contain vectors. We don't need to check
180 // the operands because we are going to check their values at some point.
181 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
182 J != E; ++J)
183 HasVectors |= J->isVector();
185 // If we found a vector node we can start the legalization.
186 if (HasVectors)
187 break;
190 // If this basic block has no vectors then no need to legalize vectors.
191 if (!HasVectors)
192 return false;
194 // The legalize process is inherently a bottom-up recursive process (users
195 // legalize their uses before themselves). Given infinite stack space, we
196 // could just start legalizing on the root and traverse the whole graph. In
197 // practice however, this causes us to run out of stack space on large basic
198 // blocks. To avoid this problem, compute an ordering of the nodes where each
199 // node is only legalized after all of its operands are legalized.
200 DAG.AssignTopologicalOrder();
201 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
202 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
203 LegalizeOp(SDValue(&*I, 0));
205 // Finally, it's possible the root changed. Get the new root.
206 SDValue OldRoot = DAG.getRoot();
207 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
208 DAG.setRoot(LegalizedNodes[OldRoot]);
210 LegalizedNodes.clear();
212 // Remove dead nodes now.
213 DAG.RemoveDeadNodes();
215 return Changed;
218 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
219 // Generic legalization: just pass the operand through.
220 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
221 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
222 return Result.getValue(Op.getResNo());
225 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
226 // Note that LegalizeOp may be reentered even from single-use nodes, which
227 // means that we always must cache transformed nodes.
228 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
229 if (I != LegalizedNodes.end()) return I->second;
231 SDNode* Node = Op.getNode();
233 // Legalize the operands
234 SmallVector<SDValue, 8> Ops;
235 for (const SDValue &Op : Node->op_values())
236 Ops.push_back(LegalizeOp(Op));
238 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
239 Op.getResNo());
241 if (Op.getOpcode() == ISD::LOAD) {
242 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
243 ISD::LoadExtType ExtType = LD->getExtensionType();
244 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
245 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
246 Node->dump(&DAG));
247 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
248 LD->getMemoryVT())) {
249 default: llvm_unreachable("This action is not supported yet!");
250 case TargetLowering::Legal:
251 return TranslateLegalizeResults(Op, Result);
252 case TargetLowering::Custom:
253 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
254 assert(Lowered->getNumValues() == Op->getNumValues() &&
255 "Unexpected number of results");
256 if (Lowered != Result) {
257 // Make sure the new code is also legal.
258 Lowered = LegalizeOp(Lowered);
259 Changed = true;
261 return TranslateLegalizeResults(Op, Lowered);
263 LLVM_FALLTHROUGH;
264 case TargetLowering::Expand:
265 Changed = true;
266 return LegalizeOp(ExpandLoad(Op));
269 } else if (Op.getOpcode() == ISD::STORE) {
270 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
271 EVT StVT = ST->getMemoryVT();
272 MVT ValVT = ST->getValue().getSimpleValueType();
273 if (StVT.isVector() && ST->isTruncatingStore()) {
274 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
275 Node->dump(&DAG));
276 switch (TLI.getTruncStoreAction(ValVT, StVT)) {
277 default: llvm_unreachable("This action is not supported yet!");
278 case TargetLowering::Legal:
279 return TranslateLegalizeResults(Op, Result);
280 case TargetLowering::Custom: {
281 SDValue Lowered = TLI.LowerOperation(Result, DAG);
282 if (Lowered != Result) {
283 // Make sure the new code is also legal.
284 Lowered = LegalizeOp(Lowered);
285 Changed = true;
287 return TranslateLegalizeResults(Op, Lowered);
289 case TargetLowering::Expand:
290 Changed = true;
291 return LegalizeOp(ExpandStore(Op));
296 bool HasVectorValue = false;
297 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
298 J != E;
299 ++J)
300 HasVectorValue |= J->isVector();
301 if (!HasVectorValue)
302 return TranslateLegalizeResults(Op, Result);
304 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
305 switch (Op.getOpcode()) {
306 default:
307 return TranslateLegalizeResults(Op, Result);
308 case ISD::STRICT_FADD:
309 case ISD::STRICT_FSUB:
310 case ISD::STRICT_FMUL:
311 case ISD::STRICT_FDIV:
312 case ISD::STRICT_FREM:
313 case ISD::STRICT_FSQRT:
314 case ISD::STRICT_FMA:
315 case ISD::STRICT_FPOW:
316 case ISD::STRICT_FPOWI:
317 case ISD::STRICT_FSIN:
318 case ISD::STRICT_FCOS:
319 case ISD::STRICT_FEXP:
320 case ISD::STRICT_FEXP2:
321 case ISD::STRICT_FLOG:
322 case ISD::STRICT_FLOG10:
323 case ISD::STRICT_FLOG2:
324 case ISD::STRICT_FRINT:
325 case ISD::STRICT_FNEARBYINT:
326 case ISD::STRICT_FMAXNUM:
327 case ISD::STRICT_FMINNUM:
328 case ISD::STRICT_FCEIL:
329 case ISD::STRICT_FFLOOR:
330 case ISD::STRICT_FROUND:
331 case ISD::STRICT_FTRUNC:
332 // These pseudo-ops get legalized as if they were their non-strict
333 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
334 // is also legal, but if ISD::FSQRT requires expansion then so does
335 // ISD::STRICT_FSQRT.
336 Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
337 Node->getValueType(0));
338 break;
339 case ISD::ADD:
340 case ISD::SUB:
341 case ISD::MUL:
342 case ISD::MULHS:
343 case ISD::MULHU:
344 case ISD::SDIV:
345 case ISD::UDIV:
346 case ISD::SREM:
347 case ISD::UREM:
348 case ISD::SDIVREM:
349 case ISD::UDIVREM:
350 case ISD::FADD:
351 case ISD::FSUB:
352 case ISD::FMUL:
353 case ISD::FDIV:
354 case ISD::FREM:
355 case ISD::AND:
356 case ISD::OR:
357 case ISD::XOR:
358 case ISD::SHL:
359 case ISD::SRA:
360 case ISD::SRL:
361 case ISD::FSHL:
362 case ISD::FSHR:
363 case ISD::ROTL:
364 case ISD::ROTR:
365 case ISD::ABS:
366 case ISD::BSWAP:
367 case ISD::BITREVERSE:
368 case ISD::CTLZ:
369 case ISD::CTTZ:
370 case ISD::CTLZ_ZERO_UNDEF:
371 case ISD::CTTZ_ZERO_UNDEF:
372 case ISD::CTPOP:
373 case ISD::SELECT:
374 case ISD::VSELECT:
375 case ISD::SELECT_CC:
376 case ISD::SETCC:
377 case ISD::ZERO_EXTEND:
378 case ISD::ANY_EXTEND:
379 case ISD::TRUNCATE:
380 case ISD::SIGN_EXTEND:
381 case ISD::FP_TO_SINT:
382 case ISD::FP_TO_UINT:
383 case ISD::FNEG:
384 case ISD::FABS:
385 case ISD::FMINNUM:
386 case ISD::FMAXNUM:
387 case ISD::FMINNUM_IEEE:
388 case ISD::FMAXNUM_IEEE:
389 case ISD::FMINIMUM:
390 case ISD::FMAXIMUM:
391 case ISD::FCOPYSIGN:
392 case ISD::FSQRT:
393 case ISD::FSIN:
394 case ISD::FCOS:
395 case ISD::FPOWI:
396 case ISD::FPOW:
397 case ISD::FLOG:
398 case ISD::FLOG2:
399 case ISD::FLOG10:
400 case ISD::FEXP:
401 case ISD::FEXP2:
402 case ISD::FCEIL:
403 case ISD::FTRUNC:
404 case ISD::FRINT:
405 case ISD::FNEARBYINT:
406 case ISD::FROUND:
407 case ISD::FFLOOR:
408 case ISD::FP_ROUND:
409 case ISD::FP_EXTEND:
410 case ISD::FMA:
411 case ISD::SIGN_EXTEND_INREG:
412 case ISD::ANY_EXTEND_VECTOR_INREG:
413 case ISD::SIGN_EXTEND_VECTOR_INREG:
414 case ISD::ZERO_EXTEND_VECTOR_INREG:
415 case ISD::SMIN:
416 case ISD::SMAX:
417 case ISD::UMIN:
418 case ISD::UMAX:
419 case ISD::SMUL_LOHI:
420 case ISD::UMUL_LOHI:
421 case ISD::FCANONICALIZE:
422 case ISD::SADDSAT:
423 case ISD::UADDSAT:
424 case ISD::SSUBSAT:
425 case ISD::USUBSAT:
426 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
427 break;
428 case ISD::SMULFIX:
429 case ISD::UMULFIX: {
430 unsigned Scale = Node->getConstantOperandVal(2);
431 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
432 Node->getValueType(0), Scale);
433 break;
435 case ISD::FP_ROUND_INREG:
436 Action = TLI.getOperationAction(Node->getOpcode(),
437 cast<VTSDNode>(Node->getOperand(1))->getVT());
438 break;
439 case ISD::SINT_TO_FP:
440 case ISD::UINT_TO_FP:
441 Action = TLI.getOperationAction(Node->getOpcode(),
442 Node->getOperand(0).getValueType());
443 break;
446 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
448 switch (Action) {
449 default: llvm_unreachable("This action is not supported yet!");
450 case TargetLowering::Promote:
451 Result = Promote(Op);
452 Changed = true;
453 break;
454 case TargetLowering::Legal:
455 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
456 break;
457 case TargetLowering::Custom: {
458 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
459 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
460 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
461 Result = Tmp1;
462 break;
464 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
465 LLVM_FALLTHROUGH;
467 case TargetLowering::Expand:
468 Result = Expand(Op);
471 // Make sure that the generated code is itself legal.
472 if (Result != Op) {
473 Result = LegalizeOp(Result);
474 Changed = true;
477 // Note that LegalizeOp may be reentered even from single-use nodes, which
478 // means that we always must cache transformed nodes.
479 AddLegalizedOperand(Op, Result);
480 return Result;
483 SDValue VectorLegalizer::Promote(SDValue Op) {
484 // For a few operations there is a specific concept for promotion based on
485 // the operand's type.
486 switch (Op.getOpcode()) {
487 case ISD::SINT_TO_FP:
488 case ISD::UINT_TO_FP:
489 // "Promote" the operation by extending the operand.
490 return PromoteINT_TO_FP(Op);
491 case ISD::FP_TO_UINT:
492 case ISD::FP_TO_SINT:
493 // Promote the operation by extending the operand.
494 return PromoteFP_TO_INT(Op);
497 // There are currently two cases of vector promotion:
498 // 1) Bitcasting a vector of integers to a different type to a vector of the
499 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
500 // 2) Extending a vector of floats to a vector of the same number of larger
501 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
502 MVT VT = Op.getSimpleValueType();
503 assert(Op.getNode()->getNumValues() == 1 &&
504 "Can't promote a vector with multiple results!");
505 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
506 SDLoc dl(Op);
507 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
509 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
510 if (Op.getOperand(j).getValueType().isVector())
511 if (Op.getOperand(j)
512 .getValueType()
513 .getVectorElementType()
514 .isFloatingPoint() &&
515 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
516 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
517 else
518 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
519 else
520 Operands[j] = Op.getOperand(j);
523 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
524 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
525 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
526 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
527 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
528 else
529 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
532 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
533 // INT_TO_FP operations may require the input operand be promoted even
534 // when the type is otherwise legal.
535 MVT VT = Op.getOperand(0).getSimpleValueType();
536 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
537 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
538 "Vectors have different number of elements!");
540 SDLoc dl(Op);
541 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
543 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
544 ISD::SIGN_EXTEND;
545 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
546 if (Op.getOperand(j).getValueType().isVector())
547 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
548 else
549 Operands[j] = Op.getOperand(j);
552 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
555 // For FP_TO_INT we promote the result type to a vector type with wider
556 // elements and then truncate the result. This is different from the default
557 // PromoteVector which uses bitcast to promote thus assumning that the
558 // promoted vector type has the same overall size.
559 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
560 MVT VT = Op.getSimpleValueType();
561 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
562 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
563 "Vectors have different number of elements!");
565 unsigned NewOpc = Op->getOpcode();
566 // Change FP_TO_UINT to FP_TO_SINT if possible.
567 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
568 if (NewOpc == ISD::FP_TO_UINT &&
569 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
570 NewOpc = ISD::FP_TO_SINT;
572 SDLoc dl(Op);
573 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
575 // Assert that the converted value fits in the original type. If it doesn't
576 // (eg: because the value being converted is too big), then the result of the
577 // original operation was undefined anyway, so the assert is still correct.
578 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
579 : ISD::AssertSext,
580 dl, NVT, Promoted,
581 DAG.getValueType(VT.getScalarType()));
582 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
585 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
586 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
588 EVT SrcVT = LD->getMemoryVT();
589 EVT SrcEltVT = SrcVT.getScalarType();
590 unsigned NumElem = SrcVT.getVectorNumElements();
592 SDValue NewChain;
593 SDValue Value;
594 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
595 SDLoc dl(Op);
597 SmallVector<SDValue, 8> Vals;
598 SmallVector<SDValue, 8> LoadChains;
600 EVT DstEltVT = LD->getValueType(0).getScalarType();
601 SDValue Chain = LD->getChain();
602 SDValue BasePTR = LD->getBasePtr();
603 ISD::LoadExtType ExtType = LD->getExtensionType();
605 // When elements in a vector is not byte-addressable, we cannot directly
606 // load each element by advancing pointer, which could only address bytes.
607 // Instead, we load all significant words, mask bits off, and concatenate
608 // them to form each element. Finally, they are extended to destination
609 // scalar type to build the destination vector.
610 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
612 assert(WideVT.isRound() &&
613 "Could not handle the sophisticated case when the widest integer is"
614 " not power of 2.");
615 assert(WideVT.bitsGE(SrcEltVT) &&
616 "Type is not legalized?");
618 unsigned WideBytes = WideVT.getStoreSize();
619 unsigned Offset = 0;
620 unsigned RemainingBytes = SrcVT.getStoreSize();
621 SmallVector<SDValue, 8> LoadVals;
622 while (RemainingBytes > 0) {
623 SDValue ScalarLoad;
624 unsigned LoadBytes = WideBytes;
626 if (RemainingBytes >= LoadBytes) {
627 ScalarLoad =
628 DAG.getLoad(WideVT, dl, Chain, BasePTR,
629 LD->getPointerInfo().getWithOffset(Offset),
630 MinAlign(LD->getAlignment(), Offset),
631 LD->getMemOperand()->getFlags(), LD->getAAInfo());
632 } else {
633 EVT LoadVT = WideVT;
634 while (RemainingBytes < LoadBytes) {
635 LoadBytes >>= 1; // Reduce the load size by half.
636 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
638 ScalarLoad =
639 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
640 LD->getPointerInfo().getWithOffset(Offset), LoadVT,
641 MinAlign(LD->getAlignment(), Offset),
642 LD->getMemOperand()->getFlags(), LD->getAAInfo());
645 RemainingBytes -= LoadBytes;
646 Offset += LoadBytes;
648 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
650 LoadVals.push_back(ScalarLoad.getValue(0));
651 LoadChains.push_back(ScalarLoad.getValue(1));
654 // Extract bits, pack and extend/trunc them into destination type.
655 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
656 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
658 unsigned BitOffset = 0;
659 unsigned WideIdx = 0;
660 unsigned WideBits = WideVT.getSizeInBits();
662 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
663 SDValue Lo, Hi, ShAmt;
665 if (BitOffset < WideBits) {
666 ShAmt = DAG.getConstant(
667 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
668 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
669 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
672 BitOffset += SrcEltBits;
673 if (BitOffset >= WideBits) {
674 WideIdx++;
675 BitOffset -= WideBits;
676 if (BitOffset > 0) {
677 ShAmt = DAG.getConstant(
678 SrcEltBits - BitOffset, dl,
679 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
680 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
681 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
685 if (Hi.getNode())
686 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
688 switch (ExtType) {
689 default: llvm_unreachable("Unknown extended-load op!");
690 case ISD::EXTLOAD:
691 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
692 break;
693 case ISD::ZEXTLOAD:
694 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
695 break;
696 case ISD::SEXTLOAD:
697 ShAmt =
698 DAG.getConstant(WideBits - SrcEltBits, dl,
699 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
700 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
701 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
702 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
703 break;
705 Vals.push_back(Lo);
708 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
709 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
710 } else {
711 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
712 // Skip past MERGE_VALUE node if known.
713 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
714 NewChain = Scalarized.getOperand(1);
715 Value = Scalarized.getOperand(0);
716 } else {
717 NewChain = Scalarized.getValue(1);
718 Value = Scalarized.getValue(0);
722 AddLegalizedOperand(Op.getValue(0), Value);
723 AddLegalizedOperand(Op.getValue(1), NewChain);
725 return (Op.getResNo() ? NewChain : Value);
728 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
729 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
730 SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
731 AddLegalizedOperand(Op, TF);
732 return TF;
735 SDValue VectorLegalizer::Expand(SDValue Op) {
736 switch (Op->getOpcode()) {
737 case ISD::SIGN_EXTEND_INREG:
738 return ExpandSEXTINREG(Op);
739 case ISD::ANY_EXTEND_VECTOR_INREG:
740 return ExpandANY_EXTEND_VECTOR_INREG(Op);
741 case ISD::SIGN_EXTEND_VECTOR_INREG:
742 return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
743 case ISD::ZERO_EXTEND_VECTOR_INREG:
744 return ExpandZERO_EXTEND_VECTOR_INREG(Op);
745 case ISD::BSWAP:
746 return ExpandBSWAP(Op);
747 case ISD::VSELECT:
748 return ExpandVSELECT(Op);
749 case ISD::SELECT:
750 return ExpandSELECT(Op);
751 case ISD::FP_TO_UINT:
752 return ExpandFP_TO_UINT(Op);
753 case ISD::UINT_TO_FP:
754 return ExpandUINT_TO_FLOAT(Op);
755 case ISD::FNEG:
756 return ExpandFNEG(Op);
757 case ISD::FSUB:
758 return ExpandFSUB(Op);
759 case ISD::SETCC:
760 return UnrollVSETCC(Op);
761 case ISD::ABS:
762 return ExpandABS(Op);
763 case ISD::BITREVERSE:
764 return ExpandBITREVERSE(Op);
765 case ISD::CTPOP:
766 return ExpandCTPOP(Op);
767 case ISD::CTLZ:
768 case ISD::CTLZ_ZERO_UNDEF:
769 return ExpandCTLZ(Op);
770 case ISD::CTTZ:
771 case ISD::CTTZ_ZERO_UNDEF:
772 return ExpandCTTZ(Op);
773 case ISD::FSHL:
774 case ISD::FSHR:
775 return ExpandFunnelShift(Op);
776 case ISD::ROTL:
777 case ISD::ROTR:
778 return ExpandROT(Op);
779 case ISD::FMINNUM:
780 case ISD::FMAXNUM:
781 return ExpandFMINNUM_FMAXNUM(Op);
782 case ISD::USUBSAT:
783 case ISD::SSUBSAT:
784 case ISD::UADDSAT:
785 case ISD::SADDSAT:
786 return ExpandAddSubSat(Op);
787 case ISD::SMULFIX:
788 case ISD::UMULFIX:
789 return ExpandFixedPointMul(Op);
790 case ISD::STRICT_FADD:
791 case ISD::STRICT_FSUB:
792 case ISD::STRICT_FMUL:
793 case ISD::STRICT_FDIV:
794 case ISD::STRICT_FREM:
795 case ISD::STRICT_FSQRT:
796 case ISD::STRICT_FMA:
797 case ISD::STRICT_FPOW:
798 case ISD::STRICT_FPOWI:
799 case ISD::STRICT_FSIN:
800 case ISD::STRICT_FCOS:
801 case ISD::STRICT_FEXP:
802 case ISD::STRICT_FEXP2:
803 case ISD::STRICT_FLOG:
804 case ISD::STRICT_FLOG10:
805 case ISD::STRICT_FLOG2:
806 case ISD::STRICT_FRINT:
807 case ISD::STRICT_FNEARBYINT:
808 case ISD::STRICT_FMAXNUM:
809 case ISD::STRICT_FMINNUM:
810 case ISD::STRICT_FCEIL:
811 case ISD::STRICT_FFLOOR:
812 case ISD::STRICT_FROUND:
813 case ISD::STRICT_FTRUNC:
814 return ExpandStrictFPOp(Op);
815 default:
816 return DAG.UnrollVectorOp(Op.getNode());
820 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
821 // Lower a select instruction where the condition is a scalar and the
822 // operands are vectors. Lower this select to VSELECT and implement it
823 // using XOR AND OR. The selector bit is broadcasted.
824 EVT VT = Op.getValueType();
825 SDLoc DL(Op);
827 SDValue Mask = Op.getOperand(0);
828 SDValue Op1 = Op.getOperand(1);
829 SDValue Op2 = Op.getOperand(2);
831 assert(VT.isVector() && !Mask.getValueType().isVector()
832 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
834 // If we can't even use the basic vector operations of
835 // AND,OR,XOR, we will have to scalarize the op.
836 // Notice that the operation may be 'promoted' which means that it is
837 // 'bitcasted' to another type which is handled.
838 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
839 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
840 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
841 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
842 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
843 return DAG.UnrollVectorOp(Op.getNode());
845 // Generate a mask operand.
846 EVT MaskTy = VT.changeVectorElementTypeToInteger();
848 // What is the size of each element in the vector mask.
849 EVT BitTy = MaskTy.getScalarType();
851 Mask = DAG.getSelect(DL, BitTy, Mask,
852 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
853 BitTy),
854 DAG.getConstant(0, DL, BitTy));
856 // Broadcast the mask so that the entire vector is all-one or all zero.
857 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
859 // Bitcast the operands to be the same type as the mask.
860 // This is needed when we select between FP types because
861 // the mask is a vector of integers.
862 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
863 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
865 SDValue AllOnes = DAG.getConstant(
866 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
867 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
869 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
870 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
871 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
872 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
875 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
876 EVT VT = Op.getValueType();
878 // Make sure that the SRA and SHL instructions are available.
879 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
880 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
881 return DAG.UnrollVectorOp(Op.getNode());
883 SDLoc DL(Op);
884 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
886 unsigned BW = VT.getScalarSizeInBits();
887 unsigned OrigBW = OrigTy.getScalarSizeInBits();
888 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
890 Op = Op.getOperand(0);
891 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
892 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
895 // Generically expand a vector anyext in register to a shuffle of the relevant
896 // lanes into the appropriate locations, with other lanes left undef.
897 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
898 SDLoc DL(Op);
899 EVT VT = Op.getValueType();
900 int NumElements = VT.getVectorNumElements();
901 SDValue Src = Op.getOperand(0);
902 EVT SrcVT = Src.getValueType();
903 int NumSrcElements = SrcVT.getVectorNumElements();
905 // Build a base mask of undef shuffles.
906 SmallVector<int, 16> ShuffleMask;
907 ShuffleMask.resize(NumSrcElements, -1);
909 // Place the extended lanes into the correct locations.
910 int ExtLaneScale = NumSrcElements / NumElements;
911 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
912 for (int i = 0; i < NumElements; ++i)
913 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
915 return DAG.getNode(
916 ISD::BITCAST, DL, VT,
917 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
920 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
921 SDLoc DL(Op);
922 EVT VT = Op.getValueType();
923 SDValue Src = Op.getOperand(0);
924 EVT SrcVT = Src.getValueType();
926 // First build an any-extend node which can be legalized above when we
927 // recurse through it.
928 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
930 // Now we need sign extend. Do this by shifting the elements. Even if these
931 // aren't legal operations, they have a better chance of being legalized
932 // without full scalarization than the sign extension does.
933 unsigned EltWidth = VT.getScalarSizeInBits();
934 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
935 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
936 return DAG.getNode(ISD::SRA, DL, VT,
937 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
938 ShiftAmount);
941 // Generically expand a vector zext in register to a shuffle of the relevant
942 // lanes into the appropriate locations, a blend of zero into the high bits,
943 // and a bitcast to the wider element type.
944 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
945 SDLoc DL(Op);
946 EVT VT = Op.getValueType();
947 int NumElements = VT.getVectorNumElements();
948 SDValue Src = Op.getOperand(0);
949 EVT SrcVT = Src.getValueType();
950 int NumSrcElements = SrcVT.getVectorNumElements();
952 // Build up a zero vector to blend into this one.
953 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
955 // Shuffle the incoming lanes into the correct position, and pull all other
956 // lanes from the zero vector.
957 SmallVector<int, 16> ShuffleMask;
958 ShuffleMask.reserve(NumSrcElements);
959 for (int i = 0; i < NumSrcElements; ++i)
960 ShuffleMask.push_back(i);
962 int ExtLaneScale = NumSrcElements / NumElements;
963 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
964 for (int i = 0; i < NumElements; ++i)
965 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
967 return DAG.getNode(ISD::BITCAST, DL, VT,
968 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
971 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
972 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
973 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
974 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
975 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
978 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
979 EVT VT = Op.getValueType();
981 // Generate a byte wise shuffle mask for the BSWAP.
982 SmallVector<int, 16> ShuffleMask;
983 createBSWAPShuffleMask(VT, ShuffleMask);
984 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
986 // Only emit a shuffle if the mask is legal.
987 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
988 return DAG.UnrollVectorOp(Op.getNode());
990 SDLoc DL(Op);
991 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
992 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
993 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
996 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
997 EVT VT = Op.getValueType();
999 // If we have the scalar operation, it's probably cheaper to unroll it.
1000 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1001 return DAG.UnrollVectorOp(Op.getNode());
1003 // If the vector element width is a whole number of bytes, test if its legal
1004 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1005 // vector. This greatly reduces the number of bit shifts necessary.
1006 unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1007 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1008 SmallVector<int, 16> BSWAPMask;
1009 createBSWAPShuffleMask(VT, BSWAPMask);
1011 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1012 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1013 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1014 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1015 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1016 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1017 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1018 SDLoc DL(Op);
1019 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1020 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1021 BSWAPMask);
1022 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1023 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1027 // If we have the appropriate vector bit operations, it is better to use them
1028 // than unrolling and expanding each component.
1029 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1030 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1031 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1032 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1033 return DAG.UnrollVectorOp(Op.getNode());
1035 // Let LegalizeDAG handle this later.
1036 return Op;
1039 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1040 // Implement VSELECT in terms of XOR, AND, OR
1041 // on platforms which do not support blend natively.
1042 SDLoc DL(Op);
1044 SDValue Mask = Op.getOperand(0);
1045 SDValue Op1 = Op.getOperand(1);
1046 SDValue Op2 = Op.getOperand(2);
1048 EVT VT = Mask.getValueType();
1050 // If we can't even use the basic vector operations of
1051 // AND,OR,XOR, we will have to scalarize the op.
1052 // Notice that the operation may be 'promoted' which means that it is
1053 // 'bitcasted' to another type which is handled.
1054 // This operation also isn't safe with AND, OR, XOR when the boolean
1055 // type is 0/1 as we need an all ones vector constant to mask with.
1056 // FIXME: Sign extend 1 to all ones if thats legal on the target.
1057 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1058 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1059 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1060 TLI.getBooleanContents(Op1.getValueType()) !=
1061 TargetLowering::ZeroOrNegativeOneBooleanContent)
1062 return DAG.UnrollVectorOp(Op.getNode());
1064 // If the mask and the type are different sizes, unroll the vector op. This
1065 // can occur when getSetCCResultType returns something that is different in
1066 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1067 if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1068 return DAG.UnrollVectorOp(Op.getNode());
1070 // Bitcast the operands to be the same type as the mask.
1071 // This is needed when we select between FP types because
1072 // the mask is a vector of integers.
1073 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1074 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1076 SDValue AllOnes = DAG.getConstant(
1077 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1078 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1080 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1081 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1082 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1083 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1086 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1087 // Attempt to expand using TargetLowering.
1088 SDValue Result;
1089 if (TLI.expandABS(Op.getNode(), Result, DAG))
1090 return Result;
1092 // Otherwise go ahead and unroll.
1093 return DAG.UnrollVectorOp(Op.getNode());
1096 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1097 // Attempt to expand using TargetLowering.
1098 SDValue Result;
1099 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1100 return Result;
1102 // Otherwise go ahead and unroll.
1103 return DAG.UnrollVectorOp(Op.getNode());
1106 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1107 EVT VT = Op.getOperand(0).getValueType();
1108 SDLoc DL(Op);
1110 // Attempt to expand using TargetLowering.
1111 SDValue Result;
1112 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1113 return Result;
1115 // Make sure that the SINT_TO_FP and SRL instructions are available.
1116 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1117 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
1118 return DAG.UnrollVectorOp(Op.getNode());
1120 unsigned BW = VT.getScalarSizeInBits();
1121 assert((BW == 64 || BW == 32) &&
1122 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1124 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1126 // Constants to clear the upper part of the word.
1127 // Notice that we can also use SHL+SHR, but using a constant is slightly
1128 // faster on x86.
1129 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1130 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1132 // Two to the power of half-word-size.
1133 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1135 // Clear upper part of LO, lower HI
1136 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1137 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1139 // Convert hi and lo to floats
1140 // Convert the hi part back to the upper values
1141 // TODO: Can any fast-math-flags be set on these nodes?
1142 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1143 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1144 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1146 // Add the two halves
1147 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1150 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1151 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1152 SDLoc DL(Op);
1153 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1154 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1155 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1156 Zero, Op.getOperand(0));
1158 return DAG.UnrollVectorOp(Op.getNode());
1161 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1162 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1163 // we can defer this to operation legalization where it will be lowered as
1164 // a+(-b).
1165 EVT VT = Op.getValueType();
1166 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1167 TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1168 return Op; // Defer to LegalizeDAG
1170 return DAG.UnrollVectorOp(Op.getNode());
1173 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1174 SDValue Result;
1175 if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1176 return Result;
1178 return DAG.UnrollVectorOp(Op.getNode());
1181 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1182 SDValue Result;
1183 if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1184 return Result;
1186 return DAG.UnrollVectorOp(Op.getNode());
1189 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1190 SDValue Result;
1191 if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1192 return Result;
1194 return DAG.UnrollVectorOp(Op.getNode());
1197 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1198 SDValue Result;
1199 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1200 return Result;
1202 return DAG.UnrollVectorOp(Op.getNode());
1205 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1206 SDValue Result;
1207 if (TLI.expandROT(Op.getNode(), Result, DAG))
1208 return Result;
1210 return DAG.UnrollVectorOp(Op.getNode());
1213 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1214 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1215 return Expanded;
1216 return DAG.UnrollVectorOp(Op.getNode());
1219 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1220 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1221 return Expanded;
1222 return DAG.UnrollVectorOp(Op.getNode());
1225 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1226 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1227 return Expanded;
1228 return DAG.UnrollVectorOp(Op.getNode());
1231 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1232 EVT VT = Op.getValueType();
1233 EVT EltVT = VT.getVectorElementType();
1234 unsigned NumElems = VT.getVectorNumElements();
1235 unsigned NumOpers = Op.getNumOperands();
1236 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1237 EVT ValueVTs[] = {EltVT, MVT::Other};
1238 SDValue Chain = Op.getOperand(0);
1239 SDLoc dl(Op);
1241 SmallVector<SDValue, 32> OpValues;
1242 SmallVector<SDValue, 32> OpChains;
1243 for (unsigned i = 0; i < NumElems; ++i) {
1244 SmallVector<SDValue, 4> Opers;
1245 SDValue Idx = DAG.getConstant(i, dl,
1246 TLI.getVectorIdxTy(DAG.getDataLayout()));
1248 // The Chain is the first operand.
1249 Opers.push_back(Chain);
1251 // Now process the remaining operands.
1252 for (unsigned j = 1; j < NumOpers; ++j) {
1253 SDValue Oper = Op.getOperand(j);
1254 EVT OperVT = Oper.getValueType();
1256 if (OperVT.isVector())
1257 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1258 EltVT, Oper, Idx);
1260 Opers.push_back(Oper);
1263 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1265 OpValues.push_back(ScalarOp.getValue(0));
1266 OpChains.push_back(ScalarOp.getValue(1));
1269 SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1270 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1272 AddLegalizedOperand(Op.getValue(0), Result);
1273 AddLegalizedOperand(Op.getValue(1), NewChain);
1275 return Op.getResNo() ? NewChain : Result;
1278 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1279 EVT VT = Op.getValueType();
1280 unsigned NumElems = VT.getVectorNumElements();
1281 EVT EltVT = VT.getVectorElementType();
1282 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1283 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1284 SDLoc dl(Op);
1285 SmallVector<SDValue, 8> Ops(NumElems);
1286 for (unsigned i = 0; i < NumElems; ++i) {
1287 SDValue LHSElem = DAG.getNode(
1288 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1289 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1290 SDValue RHSElem = DAG.getNode(
1291 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1292 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1293 Ops[i] = DAG.getNode(ISD::SETCC, dl,
1294 TLI.getSetCCResultType(DAG.getDataLayout(),
1295 *DAG.getContext(), TmpEltVT),
1296 LHSElem, RHSElem, CC);
1297 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1298 DAG.getConstant(APInt::getAllOnesValue
1299 (EltVT.getSizeInBits()), dl, EltVT),
1300 DAG.getConstant(0, dl, EltVT));
1302 return DAG.getBuildVector(VT, dl, Ops);
1305 bool SelectionDAG::LegalizeVectors() {
1306 return VectorLegalizer(*this).Run();