Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / SelectionDAG / ScheduleDAGSDNodes.cpp
blob559265a3ac8e95e6dfa1c340d90e66e1966342ab
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the ScheduleDAG class, which is a base class used by
10 // scheduling implementation classes.
12 //===----------------------------------------------------------------------===//
14 #include "ScheduleDAGSDNodes.h"
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 using namespace llvm;
36 #define DEBUG_TYPE "pre-RA-sched"
38 STATISTIC(LoadsClustered, "Number of loads clustered together");
40 // This allows the latency-based scheduler to notice high latency instructions
41 // without a target itinerary. The choice of number here has more to do with
42 // balancing scheduler heuristics than with the actual machine latency.
43 static cl::opt<int> HighLatencyCycles(
44 "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45 cl::desc("Roughly estimate the number of cycles that 'long latency'"
46 "instructions take for targets with no itinerary"));
48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49 : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
50 InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
52 /// Run - perform scheduling.
53 ///
54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55 BB = bb;
56 DAG = dag;
58 // Clear the scheduler's SUnit DAG.
59 ScheduleDAG::clearDAG();
60 Sequence.clear();
62 // Invoke the target's selection of scheduler.
63 Schedule();
66 /// NewSUnit - Creates a new SUnit and return a ptr to it.
67 ///
68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69 #ifndef NDEBUG
70 const SUnit *Addr = nullptr;
71 if (!SUnits.empty())
72 Addr = &SUnits[0];
73 #endif
74 SUnits.emplace_back(N, (unsigned)SUnits.size());
75 assert((Addr == nullptr || Addr == &SUnits[0]) &&
76 "SUnits std::vector reallocated on the fly!");
77 SUnits.back().OrigNode = &SUnits.back();
78 SUnit *SU = &SUnits.back();
79 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80 if (!N ||
81 (N->isMachineOpcode() &&
82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83 SU->SchedulingPref = Sched::None;
84 else
85 SU->SchedulingPref = TLI.getSchedulingPreference(N);
86 return SU;
89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90 SUnit *SU = newSUnit(Old->getNode());
91 SU->OrigNode = Old->OrigNode;
92 SU->Latency = Old->Latency;
93 SU->isVRegCycle = Old->isVRegCycle;
94 SU->isCall = Old->isCall;
95 SU->isCallOp = Old->isCallOp;
96 SU->isTwoAddress = Old->isTwoAddress;
97 SU->isCommutable = Old->isCommutable;
98 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100 SU->isScheduleHigh = Old->isScheduleHigh;
101 SU->isScheduleLow = Old->isScheduleLow;
102 SU->SchedulingPref = Old->SchedulingPref;
103 Old->isCloned = true;
104 return SU;
107 /// CheckForPhysRegDependency - Check if the dependency between def and use of
108 /// a specified operand is a physical register dependency. If so, returns the
109 /// register and the cost of copying the register.
110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111 const TargetRegisterInfo *TRI,
112 const TargetInstrInfo *TII,
113 unsigned &PhysReg, int &Cost) {
114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115 return;
117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118 if (TargetRegisterInfo::isVirtualRegister(Reg))
119 return;
121 unsigned ResNo = User->getOperand(2).getResNo();
122 if (Def->getOpcode() == ISD::CopyFromReg &&
123 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
124 PhysReg = Reg;
125 } else if (Def->isMachineOpcode()) {
126 const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
127 if (ResNo >= II.getNumDefs() &&
128 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
129 PhysReg = Reg;
132 if (PhysReg != 0) {
133 const TargetRegisterClass *RC =
134 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
135 Cost = RC->getCopyCost();
139 // Helper for AddGlue to clone node operands.
140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
141 SDValue ExtraOper = SDValue()) {
142 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
143 if (ExtraOper.getNode())
144 Ops.push_back(ExtraOper);
146 SDVTList VTList = DAG->getVTList(VTs);
147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
149 // Store memory references.
150 SmallVector<MachineMemOperand *, 2> MMOs;
151 if (MN)
152 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end());
154 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
156 // Reset the memory references
157 if (MN)
158 DAG->setNodeMemRefs(MN, MMOs);
161 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
162 SDNode *GlueDestNode = Glue.getNode();
164 // Don't add glue from a node to itself.
165 if (GlueDestNode == N) return false;
167 // Don't add a glue operand to something that already uses glue.
168 if (GlueDestNode &&
169 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
170 return false;
172 // Don't add glue to something that already has a glue value.
173 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
175 SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end());
176 if (AddGlue)
177 VTs.push_back(MVT::Glue);
179 CloneNodeWithValues(N, DAG, VTs, Glue);
181 return true;
184 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
185 // node even though simply shrinking the value list is sufficient.
186 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
187 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
188 !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
189 "expected an unused glue value");
191 CloneNodeWithValues(N, DAG,
192 makeArrayRef(N->value_begin(), N->getNumValues() - 1));
195 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
196 /// This function finds loads of the same base and different offsets. If the
197 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
198 /// outputs to ensure they are scheduled together and in order. This
199 /// optimization may benefit some targets by improving cache locality.
200 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
201 SDNode *Chain = nullptr;
202 unsigned NumOps = Node->getNumOperands();
203 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
204 Chain = Node->getOperand(NumOps-1).getNode();
205 if (!Chain)
206 return;
208 // Look for other loads of the same chain. Find loads that are loading from
209 // the same base pointer and different offsets.
210 SmallPtrSet<SDNode*, 16> Visited;
211 SmallVector<int64_t, 4> Offsets;
212 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
213 bool Cluster = false;
214 SDNode *Base = Node;
215 // This algorithm requires a reasonably low use count before finding a match
216 // to avoid uselessly blowing up compile time in large blocks.
217 unsigned UseCount = 0;
218 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
219 I != E && UseCount < 100; ++I, ++UseCount) {
220 SDNode *User = *I;
221 if (User == Node || !Visited.insert(User).second)
222 continue;
223 int64_t Offset1, Offset2;
224 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
225 Offset1 == Offset2)
226 // FIXME: Should be ok if they addresses are identical. But earlier
227 // optimizations really should have eliminated one of the loads.
228 continue;
229 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
230 Offsets.push_back(Offset1);
231 O2SMap.insert(std::make_pair(Offset2, User));
232 Offsets.push_back(Offset2);
233 if (Offset2 < Offset1)
234 Base = User;
235 Cluster = true;
236 // Reset UseCount to allow more matches.
237 UseCount = 0;
240 if (!Cluster)
241 return;
243 // Sort them in increasing order.
244 llvm::sort(Offsets);
246 // Check if the loads are close enough.
247 SmallVector<SDNode*, 4> Loads;
248 unsigned NumLoads = 0;
249 int64_t BaseOff = Offsets[0];
250 SDNode *BaseLoad = O2SMap[BaseOff];
251 Loads.push_back(BaseLoad);
252 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
253 int64_t Offset = Offsets[i];
254 SDNode *Load = O2SMap[Offset];
255 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
256 break; // Stop right here. Ignore loads that are further away.
257 Loads.push_back(Load);
258 ++NumLoads;
261 if (NumLoads == 0)
262 return;
264 // Cluster loads by adding MVT::Glue outputs and inputs. This also
265 // ensure they are scheduled in order of increasing addresses.
266 SDNode *Lead = Loads[0];
267 SDValue InGlue = SDValue(nullptr, 0);
268 if (AddGlue(Lead, InGlue, true, DAG))
269 InGlue = SDValue(Lead, Lead->getNumValues() - 1);
270 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
271 bool OutGlue = I < E - 1;
272 SDNode *Load = Loads[I];
274 // If AddGlue fails, we could leave an unsused glue value. This should not
275 // cause any
276 if (AddGlue(Load, InGlue, OutGlue, DAG)) {
277 if (OutGlue)
278 InGlue = SDValue(Load, Load->getNumValues() - 1);
280 ++LoadsClustered;
282 else if (!OutGlue && InGlue.getNode())
283 RemoveUnusedGlue(InGlue.getNode(), DAG);
287 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
289 void ScheduleDAGSDNodes::ClusterNodes() {
290 for (SDNode &NI : DAG->allnodes()) {
291 SDNode *Node = &NI;
292 if (!Node || !Node->isMachineOpcode())
293 continue;
295 unsigned Opc = Node->getMachineOpcode();
296 const MCInstrDesc &MCID = TII->get(Opc);
297 if (MCID.mayLoad())
298 // Cluster loads from "near" addresses into combined SUnits.
299 ClusterNeighboringLoads(Node);
303 void ScheduleDAGSDNodes::BuildSchedUnits() {
304 // During scheduling, the NodeId field of SDNode is used to map SDNodes
305 // to their associated SUnits by holding SUnits table indices. A value
306 // of -1 means the SDNode does not yet have an associated SUnit.
307 unsigned NumNodes = 0;
308 for (SDNode &NI : DAG->allnodes()) {
309 NI.setNodeId(-1);
310 ++NumNodes;
313 // Reserve entries in the vector for each of the SUnits we are creating. This
314 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
315 // invalidated.
316 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
317 // This is a temporary workaround.
318 SUnits.reserve(NumNodes * 2);
320 // Add all nodes in depth first order.
321 SmallVector<SDNode*, 64> Worklist;
322 SmallPtrSet<SDNode*, 32> Visited;
323 Worklist.push_back(DAG->getRoot().getNode());
324 Visited.insert(DAG->getRoot().getNode());
326 SmallVector<SUnit*, 8> CallSUnits;
327 while (!Worklist.empty()) {
328 SDNode *NI = Worklist.pop_back_val();
330 // Add all operands to the worklist unless they've already been added.
331 for (const SDValue &Op : NI->op_values())
332 if (Visited.insert(Op.getNode()).second)
333 Worklist.push_back(Op.getNode());
335 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
336 continue;
338 // If this node has already been processed, stop now.
339 if (NI->getNodeId() != -1) continue;
341 SUnit *NodeSUnit = newSUnit(NI);
343 // See if anything is glued to this node, if so, add them to glued
344 // nodes. Nodes can have at most one glue input and one glue output. Glue
345 // is required to be the last operand and result of a node.
347 // Scan up to find glued preds.
348 SDNode *N = NI;
349 while (N->getNumOperands() &&
350 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
351 N = N->getOperand(N->getNumOperands()-1).getNode();
352 assert(N->getNodeId() == -1 && "Node already inserted!");
353 N->setNodeId(NodeSUnit->NodeNum);
354 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
355 NodeSUnit->isCall = true;
358 // Scan down to find any glued succs.
359 N = NI;
360 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
361 SDValue GlueVal(N, N->getNumValues()-1);
363 // There are either zero or one users of the Glue result.
364 bool HasGlueUse = false;
365 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
366 UI != E; ++UI)
367 if (GlueVal.isOperandOf(*UI)) {
368 HasGlueUse = true;
369 assert(N->getNodeId() == -1 && "Node already inserted!");
370 N->setNodeId(NodeSUnit->NodeNum);
371 N = *UI;
372 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
373 NodeSUnit->isCall = true;
374 break;
376 if (!HasGlueUse) break;
379 if (NodeSUnit->isCall)
380 CallSUnits.push_back(NodeSUnit);
382 // Schedule zero-latency TokenFactor below any nodes that may increase the
383 // schedule height. Otherwise, ancestors of the TokenFactor may appear to
384 // have false stalls.
385 if (NI->getOpcode() == ISD::TokenFactor)
386 NodeSUnit->isScheduleLow = true;
388 // If there are glue operands involved, N is now the bottom-most node
389 // of the sequence of nodes that are glued together.
390 // Update the SUnit.
391 NodeSUnit->setNode(N);
392 assert(N->getNodeId() == -1 && "Node already inserted!");
393 N->setNodeId(NodeSUnit->NodeNum);
395 // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
396 InitNumRegDefsLeft(NodeSUnit);
398 // Assign the Latency field of NodeSUnit using target-provided information.
399 computeLatency(NodeSUnit);
402 // Find all call operands.
403 while (!CallSUnits.empty()) {
404 SUnit *SU = CallSUnits.pop_back_val();
405 for (const SDNode *SUNode = SU->getNode(); SUNode;
406 SUNode = SUNode->getGluedNode()) {
407 if (SUNode->getOpcode() != ISD::CopyToReg)
408 continue;
409 SDNode *SrcN = SUNode->getOperand(2).getNode();
410 if (isPassiveNode(SrcN)) continue; // Not scheduled.
411 SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
412 SrcSU->isCallOp = true;
417 void ScheduleDAGSDNodes::AddSchedEdges() {
418 const TargetSubtargetInfo &ST = MF.getSubtarget();
420 // Check to see if the scheduler cares about latencies.
421 bool UnitLatencies = forceUnitLatencies();
423 // Pass 2: add the preds, succs, etc.
424 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
425 SUnit *SU = &SUnits[su];
426 SDNode *MainNode = SU->getNode();
428 if (MainNode->isMachineOpcode()) {
429 unsigned Opc = MainNode->getMachineOpcode();
430 const MCInstrDesc &MCID = TII->get(Opc);
431 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
432 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
433 SU->isTwoAddress = true;
434 break;
437 if (MCID.isCommutable())
438 SU->isCommutable = true;
441 // Find all predecessors and successors of the group.
442 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
443 if (N->isMachineOpcode() &&
444 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
445 SU->hasPhysRegClobbers = true;
446 unsigned NumUsed = InstrEmitter::CountResults(N);
447 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
448 --NumUsed; // Skip over unused values at the end.
449 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
450 SU->hasPhysRegDefs = true;
453 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
454 SDNode *OpN = N->getOperand(i).getNode();
455 if (isPassiveNode(OpN)) continue; // Not scheduled.
456 SUnit *OpSU = &SUnits[OpN->getNodeId()];
457 assert(OpSU && "Node has no SUnit!");
458 if (OpSU == SU) continue; // In the same group.
460 EVT OpVT = N->getOperand(i).getValueType();
461 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
462 bool isChain = OpVT == MVT::Other;
464 unsigned PhysReg = 0;
465 int Cost = 1;
466 // Determine if this is a physical register dependency.
467 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
468 assert((PhysReg == 0 || !isChain) &&
469 "Chain dependence via physreg data?");
470 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
471 // emits a copy from the physical register to a virtual register unless
472 // it requires a cross class copy (cost < 0). That means we are only
473 // treating "expensive to copy" register dependency as physical register
474 // dependency. This may change in the future though.
475 if (Cost >= 0 && !StressSched)
476 PhysReg = 0;
478 // If this is a ctrl dep, latency is 1.
479 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
480 // Special-case TokenFactor chains as zero-latency.
481 if(isChain && OpN->getOpcode() == ISD::TokenFactor)
482 OpLatency = 0;
484 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
485 : SDep(OpSU, SDep::Data, PhysReg);
486 Dep.setLatency(OpLatency);
487 if (!isChain && !UnitLatencies) {
488 computeOperandLatency(OpN, N, i, Dep);
489 ST.adjustSchedDependency(OpSU, SU, Dep);
492 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
493 // Multiple register uses are combined in the same SUnit. For example,
494 // we could have a set of glued nodes with all their defs consumed by
495 // another set of glued nodes. Register pressure tracking sees this as
496 // a single use, so to keep pressure balanced we reduce the defs.
498 // We can't tell (without more book-keeping) if this results from
499 // glued nodes or duplicate operands. As long as we don't reduce
500 // NumRegDefsLeft to zero, we handle the common cases well.
501 --OpSU->NumRegDefsLeft;
508 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
509 /// are input. This SUnit graph is similar to the SelectionDAG, but
510 /// excludes nodes that aren't interesting to scheduling, and represents
511 /// glued together nodes with a single SUnit.
512 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
513 // Cluster certain nodes which should be scheduled together.
514 ClusterNodes();
515 // Populate the SUnits array.
516 BuildSchedUnits();
517 // Compute all the scheduling dependencies between nodes.
518 AddSchedEdges();
521 // Initialize NumNodeDefs for the current Node's opcode.
522 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
523 // Check for phys reg copy.
524 if (!Node)
525 return;
527 if (!Node->isMachineOpcode()) {
528 if (Node->getOpcode() == ISD::CopyFromReg)
529 NodeNumDefs = 1;
530 else
531 NodeNumDefs = 0;
532 return;
534 unsigned POpc = Node->getMachineOpcode();
535 if (POpc == TargetOpcode::IMPLICIT_DEF) {
536 // No register need be allocated for this.
537 NodeNumDefs = 0;
538 return;
540 if (POpc == TargetOpcode::PATCHPOINT &&
541 Node->getValueType(0) == MVT::Other) {
542 // PATCHPOINT is defined to have one result, but it might really have none
543 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
544 // real definition.
545 NodeNumDefs = 0;
546 return;
548 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
549 // Some instructions define regs that are not represented in the selection DAG
550 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
551 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
552 DefIdx = 0;
555 // Construct a RegDefIter for this SUnit and find the first valid value.
556 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
557 const ScheduleDAGSDNodes *SD)
558 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
559 InitNodeNumDefs();
560 Advance();
563 // Advance to the next valid value defined by the SUnit.
564 void ScheduleDAGSDNodes::RegDefIter::Advance() {
565 for (;Node;) { // Visit all glued nodes.
566 for (;DefIdx < NodeNumDefs; ++DefIdx) {
567 if (!Node->hasAnyUseOfValue(DefIdx))
568 continue;
569 ValueType = Node->getSimpleValueType(DefIdx);
570 ++DefIdx;
571 return; // Found a normal regdef.
573 Node = Node->getGluedNode();
574 if (!Node) {
575 return; // No values left to visit.
577 InitNodeNumDefs();
581 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
582 assert(SU->NumRegDefsLeft == 0 && "expect a new node");
583 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
584 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
585 ++SU->NumRegDefsLeft;
589 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
590 SDNode *N = SU->getNode();
592 // TokenFactor operands are considered zero latency, and some schedulers
593 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
594 // whenever node latency is nonzero.
595 if (N && N->getOpcode() == ISD::TokenFactor) {
596 SU->Latency = 0;
597 return;
600 // Check to see if the scheduler cares about latencies.
601 if (forceUnitLatencies()) {
602 SU->Latency = 1;
603 return;
606 if (!InstrItins || InstrItins->isEmpty()) {
607 if (N && N->isMachineOpcode() &&
608 TII->isHighLatencyDef(N->getMachineOpcode()))
609 SU->Latency = HighLatencyCycles;
610 else
611 SU->Latency = 1;
612 return;
615 // Compute the latency for the node. We use the sum of the latencies for
616 // all nodes glued together into this SUnit.
617 SU->Latency = 0;
618 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
619 if (N->isMachineOpcode())
620 SU->Latency += TII->getInstrLatency(InstrItins, N);
623 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
624 unsigned OpIdx, SDep& dep) const{
625 // Check to see if the scheduler cares about latencies.
626 if (forceUnitLatencies())
627 return;
629 if (dep.getKind() != SDep::Data)
630 return;
632 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
633 if (Use->isMachineOpcode())
634 // Adjust the use operand index by num of defs.
635 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
636 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
637 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
638 !BB->succ_empty()) {
639 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
640 if (TargetRegisterInfo::isVirtualRegister(Reg))
641 // This copy is a liveout value. It is likely coalesced, so reduce the
642 // latency so not to penalize the def.
643 // FIXME: need target specific adjustment here?
644 Latency = (Latency > 1) ? Latency - 1 : 1;
646 if (Latency >= 0)
647 dep.setLatency(Latency);
650 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const {
651 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
652 dumpNodeName(SU);
653 dbgs() << ": ";
655 if (!SU.getNode()) {
656 dbgs() << "PHYS REG COPY\n";
657 return;
660 SU.getNode()->dump(DAG);
661 dbgs() << "\n";
662 SmallVector<SDNode *, 4> GluedNodes;
663 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode())
664 GluedNodes.push_back(N);
665 while (!GluedNodes.empty()) {
666 dbgs() << " ";
667 GluedNodes.back()->dump(DAG);
668 dbgs() << "\n";
669 GluedNodes.pop_back();
671 #endif
674 void ScheduleDAGSDNodes::dump() const {
675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
676 if (EntrySU.getNode() != nullptr)
677 dumpNodeAll(EntrySU);
678 for (const SUnit &SU : SUnits)
679 dumpNodeAll(SU);
680 if (ExitSU.getNode() != nullptr)
681 dumpNodeAll(ExitSU);
682 #endif
685 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
686 void ScheduleDAGSDNodes::dumpSchedule() const {
687 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
688 if (SUnit *SU = Sequence[i])
689 dumpNode(*SU);
690 else
691 dbgs() << "**** NOOP ****\n";
694 #endif
696 #ifndef NDEBUG
697 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
698 /// their state is consistent with the nodes listed in Sequence.
700 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
701 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
702 unsigned Noops = 0;
703 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
704 if (!Sequence[i])
705 ++Noops;
706 assert(Sequence.size() - Noops == ScheduledNodes &&
707 "The number of nodes scheduled doesn't match the expected number!");
709 #endif // NDEBUG
711 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
712 static void
713 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
714 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
715 DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
716 if (!N->getHasDebugValue())
717 return;
719 // Opportunistically insert immediate dbg_value uses, i.e. those with the same
720 // source order number as N.
721 MachineBasicBlock *BB = Emitter.getBlock();
722 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
723 for (auto DV : DAG->GetDbgValues(N)) {
724 if (DV->isEmitted())
725 continue;
726 unsigned DVOrder = DV->getOrder();
727 if (!Order || DVOrder == Order) {
728 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
729 if (DbgMI) {
730 Orders.push_back({DVOrder, DbgMI});
731 BB->insert(InsertPos, DbgMI);
737 // ProcessSourceNode - Process nodes with source order numbers. These are added
738 // to a vector which EmitSchedule uses to determine how to insert dbg_value
739 // instructions in the right order.
740 static void
741 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
742 DenseMap<SDValue, unsigned> &VRBaseMap,
743 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders,
744 SmallSet<unsigned, 8> &Seen, MachineInstr *NewInsn) {
745 unsigned Order = N->getIROrder();
746 if (!Order || Seen.count(Order)) {
747 // Process any valid SDDbgValues even if node does not have any order
748 // assigned.
749 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
750 return;
753 // If a new instruction was generated for this Order number, record it.
754 // Otherwise, leave this order number unseen: we will either find later
755 // instructions for it, or leave it unseen if there were no instructions at
756 // all.
757 if (NewInsn) {
758 Seen.insert(Order);
759 Orders.push_back({Order, NewInsn});
762 // Even if no instruction was generated, a Value may have become defined via
763 // earlier nodes. Try to process them now.
764 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
767 void ScheduleDAGSDNodes::
768 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
769 MachineBasicBlock::iterator InsertPos) {
770 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
771 I != E; ++I) {
772 if (I->isCtrl()) continue; // ignore chain preds
773 if (I->getSUnit()->CopyDstRC) {
774 // Copy to physical register.
775 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
776 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
777 // Find the destination physical register.
778 unsigned Reg = 0;
779 for (SUnit::const_succ_iterator II = SU->Succs.begin(),
780 EE = SU->Succs.end(); II != EE; ++II) {
781 if (II->isCtrl()) continue; // ignore chain preds
782 if (II->getReg()) {
783 Reg = II->getReg();
784 break;
787 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
788 .addReg(VRI->second);
789 } else {
790 // Copy from physical register.
791 assert(I->getReg() && "Unknown physical register!");
792 unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
793 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
794 (void)isNew; // Silence compiler warning.
795 assert(isNew && "Node emitted out of order - early");
796 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
797 .addReg(I->getReg());
799 break;
803 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
804 /// InsertPos and MachineBasicBlock that contains this insertion
805 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
806 /// not necessarily refer to returned BB. The emitter may split blocks.
807 MachineBasicBlock *ScheduleDAGSDNodes::
808 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
809 InstrEmitter Emitter(BB, InsertPos);
810 DenseMap<SDValue, unsigned> VRBaseMap;
811 DenseMap<SUnit*, unsigned> CopyVRBaseMap;
812 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
813 SmallSet<unsigned, 8> Seen;
814 bool HasDbg = DAG->hasDebugValues();
816 // Emit a node, and determine where its first instruction is for debuginfo.
817 // Zero, one, or multiple instructions can be created when emitting a node.
818 auto EmitNode =
819 [&](SDNode *Node, bool IsClone, bool IsCloned,
820 DenseMap<SDValue, unsigned> &VRBaseMap) -> MachineInstr * {
821 // Fetch instruction prior to this, or end() if nonexistant.
822 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) {
823 if (I == BB->begin())
824 return BB->end();
825 else
826 return std::prev(Emitter.getInsertPos());
829 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos());
830 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap);
831 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos());
833 // If the iterator did not change, no instructions were inserted.
834 if (Before == After)
835 return nullptr;
837 if (Before == BB->end()) {
838 // There were no prior instructions; the new ones must start at the
839 // beginning of the block.
840 return &Emitter.getBlock()->instr_front();
841 } else {
842 // Return first instruction after the pre-existing instructions.
843 return &*std::next(Before);
847 // If this is the first BB, emit byval parameter dbg_value's.
848 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
849 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
850 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
851 for (; PDI != PDE; ++PDI) {
852 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
853 if (DbgMI) {
854 BB->insert(InsertPos, DbgMI);
855 // We re-emit the dbg_value closer to its use, too, after instructions
856 // are emitted to the BB.
857 (*PDI)->clearIsEmitted();
862 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
863 SUnit *SU = Sequence[i];
864 if (!SU) {
865 // Null SUnit* is a noop.
866 TII->insertNoop(*Emitter.getBlock(), InsertPos);
867 continue;
870 // For pre-regalloc scheduling, create instructions corresponding to the
871 // SDNode and any glued SDNodes and append them to the block.
872 if (!SU->getNode()) {
873 // Emit a copy.
874 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
875 continue;
878 SmallVector<SDNode *, 4> GluedNodes;
879 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
880 GluedNodes.push_back(N);
881 while (!GluedNodes.empty()) {
882 SDNode *N = GluedNodes.back();
883 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
884 // Remember the source order of the inserted instruction.
885 if (HasDbg)
886 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn);
887 GluedNodes.pop_back();
889 auto NewInsn =
890 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
891 // Remember the source order of the inserted instruction.
892 if (HasDbg)
893 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen,
894 NewInsn);
897 // Insert all the dbg_values which have not already been inserted in source
898 // order sequence.
899 if (HasDbg) {
900 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
902 // Sort the source order instructions and use the order to insert debug
903 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
904 // regardless of the host's implementation fo std::sort.
905 std::stable_sort(Orders.begin(), Orders.end(), less_first());
906 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
907 [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
908 return LHS->getOrder() < RHS->getOrder();
911 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
912 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
913 // Now emit the rest according to source order.
914 unsigned LastOrder = 0;
915 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
916 unsigned Order = Orders[i].first;
917 MachineInstr *MI = Orders[i].second;
918 // Insert all SDDbgValue's whose order(s) are before "Order".
919 assert(MI);
920 for (; DI != DE; ++DI) {
921 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
922 break;
923 if ((*DI)->isEmitted())
924 continue;
926 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
927 if (DbgMI) {
928 if (!LastOrder)
929 // Insert to start of the BB (after PHIs).
930 BB->insert(BBBegin, DbgMI);
931 else {
932 // Insert at the instruction, which may be in a different
933 // block, if the block was split by a custom inserter.
934 MachineBasicBlock::iterator Pos = MI;
935 MI->getParent()->insert(Pos, DbgMI);
939 LastOrder = Order;
941 // Add trailing DbgValue's before the terminator. FIXME: May want to add
942 // some of them before one or more conditional branches?
943 SmallVector<MachineInstr*, 8> DbgMIs;
944 for (; DI != DE; ++DI) {
945 if ((*DI)->isEmitted())
946 continue;
947 assert((*DI)->getOrder() >= LastOrder &&
948 "emitting DBG_VALUE out of order");
949 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
950 DbgMIs.push_back(DbgMI);
953 MachineBasicBlock *InsertBB = Emitter.getBlock();
954 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
955 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
957 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
958 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
959 // Now emit the rest according to source order.
960 LastOrder = 0;
961 for (const auto &InstrOrder : Orders) {
962 unsigned Order = InstrOrder.first;
963 MachineInstr *MI = InstrOrder.second;
964 if (!MI)
965 continue;
967 // Insert all SDDbgLabel's whose order(s) are before "Order".
968 for (; DLI != DLE &&
969 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
970 ++DLI) {
971 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
972 if (DbgMI) {
973 if (!LastOrder)
974 // Insert to start of the BB (after PHIs).
975 BB->insert(BBBegin, DbgMI);
976 else {
977 // Insert at the instruction, which may be in a different
978 // block, if the block was split by a custom inserter.
979 MachineBasicBlock::iterator Pos = MI;
980 MI->getParent()->insert(Pos, DbgMI);
984 if (DLI == DLE)
985 break;
987 LastOrder = Order;
991 InsertPos = Emitter.getInsertPos();
992 return Emitter.getBlock();
995 /// Return the basic block label.
996 std::string ScheduleDAGSDNodes::getDAGName() const {
997 return "sunit-dag." + BB->getFullName();