1 //===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
14 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
16 #include "StatepointLowering.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/CallSite.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Statepoint.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/CodeGen.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MachineValueType.h"
44 class AtomicCmpXchgInst
;
51 class CatchReturnInst
;
52 class CatchSwitchInst
;
54 class CleanupReturnInst
;
57 class ConstrainedFPIntrinsic
;
61 class DILocalVariable
;
64 class FunctionLoweringInfo
;
73 class MachineBasicBlock
;
80 class TargetLibraryInfo
;
84 class UnreachableInst
;
89 //===----------------------------------------------------------------------===//
90 /// SelectionDAGBuilder - This is the common target-independent lowering
91 /// implementation that is parameterized by a TargetLowering object.
93 class SelectionDAGBuilder
{
94 /// The current instruction being visited.
95 const Instruction
*CurInst
= nullptr;
97 DenseMap
<const Value
*, SDValue
> NodeMap
;
99 /// Maps argument value for unused arguments. This is used
100 /// to preserve debug information for incoming arguments.
101 DenseMap
<const Value
*, SDValue
> UnusedArgNodeMap
;
103 /// Helper type for DanglingDebugInfoMap.
104 class DanglingDebugInfo
{
105 const DbgValueInst
* DI
= nullptr;
107 unsigned SDNodeOrder
= 0;
110 DanglingDebugInfo() = default;
111 DanglingDebugInfo(const DbgValueInst
*di
, DebugLoc DL
, unsigned SDNO
)
112 : DI(di
), dl(std::move(DL
)), SDNodeOrder(SDNO
) {}
114 const DbgValueInst
* getDI() { return DI
; }
115 DebugLoc
getdl() { return dl
; }
116 unsigned getSDNodeOrder() { return SDNodeOrder
; }
119 /// Helper type for DanglingDebugInfoMap.
120 typedef std::vector
<DanglingDebugInfo
> DanglingDebugInfoVector
;
122 /// Keeps track of dbg_values for which we have not yet seen the referent.
123 /// We defer handling these until we do see it.
124 DenseMap
<const Value
*, DanglingDebugInfoVector
> DanglingDebugInfoMap
;
127 /// Loads are not emitted to the program immediately. We bunch them up and
128 /// then emit token factor nodes when possible. This allows us to get simple
129 /// disambiguation between loads without worrying about alias analysis.
130 SmallVector
<SDValue
, 8> PendingLoads
;
132 /// State used while lowering a statepoint sequence (gc_statepoint,
133 /// gc_relocate, and gc_result). See StatepointLowering.hpp/cpp for details.
134 StatepointLoweringState StatepointLowering
;
137 /// CopyToReg nodes that copy values to virtual registers for export to other
138 /// blocks need to be emitted before any terminator instruction, but they have
139 /// no other ordering requirements. We bunch them up and the emit a single
140 /// tokenfactor for them just before terminator instructions.
141 SmallVector
<SDValue
, 8> PendingExports
;
143 /// A unique monotonically increasing number used to order the SDNodes we
145 unsigned SDNodeOrder
;
147 enum CaseClusterKind
{
148 /// A cluster of adjacent case labels with the same destination, or just one
151 /// A cluster of cases suitable for jump table lowering.
153 /// A cluster of cases suitable for bit test lowering.
157 /// A cluster of case labels.
159 CaseClusterKind Kind
;
160 const ConstantInt
*Low
, *High
;
162 MachineBasicBlock
*MBB
;
163 unsigned JTCasesIndex
;
164 unsigned BTCasesIndex
;
166 BranchProbability Prob
;
168 static CaseCluster
range(const ConstantInt
*Low
, const ConstantInt
*High
,
169 MachineBasicBlock
*MBB
, BranchProbability Prob
) {
179 static CaseCluster
jumpTable(const ConstantInt
*Low
,
180 const ConstantInt
*High
, unsigned JTCasesIndex
,
181 BranchProbability Prob
) {
183 C
.Kind
= CC_JumpTable
;
186 C
.JTCasesIndex
= JTCasesIndex
;
191 static CaseCluster
bitTests(const ConstantInt
*Low
, const ConstantInt
*High
,
192 unsigned BTCasesIndex
, BranchProbability Prob
) {
194 C
.Kind
= CC_BitTests
;
197 C
.BTCasesIndex
= BTCasesIndex
;
203 using CaseClusterVector
= std::vector
<CaseCluster
>;
204 using CaseClusterIt
= CaseClusterVector::iterator
;
208 MachineBasicBlock
* BB
= nullptr;
210 BranchProbability ExtraProb
;
212 CaseBits() = default;
213 CaseBits(uint64_t mask
, MachineBasicBlock
* bb
, unsigned bits
,
214 BranchProbability Prob
):
215 Mask(mask
), BB(bb
), Bits(bits
), ExtraProb(Prob
) {}
218 using CaseBitsVector
= std::vector
<CaseBits
>;
220 /// Sort Clusters and merge adjacent cases.
221 void sortAndRangeify(CaseClusterVector
&Clusters
);
223 /// This structure is used to communicate between SelectionDAGBuilder and
224 /// SDISel for the code generation of additional basic blocks needed by
225 /// multi-case switch statements.
227 // The condition code to use for the case block's setcc node.
230 // The LHS/MHS/RHS of the comparison to emit.
231 // Emit by default LHS op RHS. MHS is used for range comparisons:
232 // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
233 const Value
*CmpLHS
, *CmpMHS
, *CmpRHS
;
235 // The block to branch to if the setcc is true/false.
236 MachineBasicBlock
*TrueBB
, *FalseBB
;
238 // The block into which to emit the code for the setcc and branches.
239 MachineBasicBlock
*ThisBB
;
241 /// The debug location of the instruction this CaseBlock was
246 BranchProbability TrueProb
, FalseProb
;
248 CaseBlock(ISD::CondCode cc
, const Value
*cmplhs
, const Value
*cmprhs
,
249 const Value
*cmpmiddle
, MachineBasicBlock
*truebb
,
250 MachineBasicBlock
*falsebb
, MachineBasicBlock
*me
,
252 BranchProbability trueprob
= BranchProbability::getUnknown(),
253 BranchProbability falseprob
= BranchProbability::getUnknown())
254 : CC(cc
), CmpLHS(cmplhs
), CmpMHS(cmpmiddle
), CmpRHS(cmprhs
),
255 TrueBB(truebb
), FalseBB(falsebb
), ThisBB(me
), DL(dl
),
256 TrueProb(trueprob
), FalseProb(falseprob
) {}
260 /// The virtual register containing the index of the jump table entry
263 /// The JumpTableIndex for this jump table in the function.
265 /// The MBB into which to emit the code for the indirect jump.
266 MachineBasicBlock
*MBB
;
267 /// The MBB of the default bb, which is a successor of the range
268 /// check MBB. This is when updating PHI nodes in successors.
269 MachineBasicBlock
*Default
;
271 JumpTable(unsigned R
, unsigned J
, MachineBasicBlock
*M
,
272 MachineBasicBlock
*D
): Reg(R
), JTI(J
), MBB(M
), Default(D
) {}
274 struct JumpTableHeader
{
278 MachineBasicBlock
*HeaderBB
;
281 JumpTableHeader(APInt F
, APInt L
, const Value
*SV
, MachineBasicBlock
*H
,
283 : First(std::move(F
)), Last(std::move(L
)), SValue(SV
), HeaderBB(H
),
286 using JumpTableBlock
= std::pair
<JumpTableHeader
, JumpTable
>;
290 MachineBasicBlock
*ThisBB
;
291 MachineBasicBlock
*TargetBB
;
292 BranchProbability ExtraProb
;
294 BitTestCase(uint64_t M
, MachineBasicBlock
* T
, MachineBasicBlock
* Tr
,
295 BranchProbability Prob
):
296 Mask(M
), ThisBB(T
), TargetBB(Tr
), ExtraProb(Prob
) {}
299 using BitTestInfo
= SmallVector
<BitTestCase
, 3>;
301 struct BitTestBlock
{
308 bool ContiguousRange
;
309 MachineBasicBlock
*Parent
;
310 MachineBasicBlock
*Default
;
312 BranchProbability Prob
;
313 BranchProbability DefaultProb
;
315 BitTestBlock(APInt F
, APInt R
, const Value
*SV
, unsigned Rg
, MVT RgVT
,
316 bool E
, bool CR
, MachineBasicBlock
*P
, MachineBasicBlock
*D
,
317 BitTestInfo C
, BranchProbability Pr
)
318 : First(std::move(F
)), Range(std::move(R
)), SValue(SV
), Reg(Rg
),
319 RegVT(RgVT
), Emitted(E
), ContiguousRange(CR
), Parent(P
), Default(D
),
320 Cases(std::move(C
)), Prob(Pr
) {}
323 /// Return the range of value in [First..Last].
324 uint64_t getJumpTableRange(const CaseClusterVector
&Clusters
, unsigned First
,
325 unsigned Last
) const;
327 /// Return the number of cases in [First..Last].
328 uint64_t getJumpTableNumCases(const SmallVectorImpl
<unsigned> &TotalCases
,
329 unsigned First
, unsigned Last
) const;
331 /// Build a jump table cluster from Clusters[First..Last]. Returns false if it
332 /// decides it's not a good idea.
333 bool buildJumpTable(const CaseClusterVector
&Clusters
, unsigned First
,
334 unsigned Last
, const SwitchInst
*SI
,
335 MachineBasicBlock
*DefaultMBB
, CaseCluster
&JTCluster
);
337 /// Find clusters of cases suitable for jump table lowering.
338 void findJumpTables(CaseClusterVector
&Clusters
, const SwitchInst
*SI
,
339 MachineBasicBlock
*DefaultMBB
);
341 /// Build a bit test cluster from Clusters[First..Last]. Returns false if it
342 /// decides it's not a good idea.
343 bool buildBitTests(CaseClusterVector
&Clusters
, unsigned First
, unsigned Last
,
344 const SwitchInst
*SI
, CaseCluster
&BTCluster
);
346 /// Find clusters of cases suitable for bit test lowering.
347 void findBitTestClusters(CaseClusterVector
&Clusters
, const SwitchInst
*SI
);
349 struct SwitchWorkListItem
{
350 MachineBasicBlock
*MBB
;
351 CaseClusterIt FirstCluster
;
352 CaseClusterIt LastCluster
;
353 const ConstantInt
*GE
;
354 const ConstantInt
*LT
;
355 BranchProbability DefaultProb
;
357 using SwitchWorkList
= SmallVector
<SwitchWorkListItem
, 4>;
359 /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
360 /// than each cluster in the range, its rank is 0.
361 static unsigned caseClusterRank(const CaseCluster
&CC
, CaseClusterIt First
,
364 /// Emit comparison and split W into two subtrees.
365 void splitWorkItem(SwitchWorkList
&WorkList
, const SwitchWorkListItem
&W
,
366 Value
*Cond
, MachineBasicBlock
*SwitchMBB
);
369 void lowerWorkItem(SwitchWorkListItem W
, Value
*Cond
,
370 MachineBasicBlock
*SwitchMBB
,
371 MachineBasicBlock
*DefaultMBB
);
373 /// Peel the top probability case if it exceeds the threshold
374 MachineBasicBlock
*peelDominantCaseCluster(const SwitchInst
&SI
,
375 CaseClusterVector
&Clusters
,
376 BranchProbability
&PeeledCaseProb
);
378 /// A class which encapsulates all of the information needed to generate a
379 /// stack protector check and signals to isel via its state being initialized
380 /// that a stack protector needs to be generated.
382 /// *NOTE* The following is a high level documentation of SelectionDAG Stack
383 /// Protector Generation. The reason that it is placed here is for a lack of
384 /// other good places to stick it.
386 /// High Level Overview of SelectionDAG Stack Protector Generation:
388 /// Previously, generation of stack protectors was done exclusively in the
389 /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
390 /// splitting basic blocks at the IR level to create the success/failure basic
391 /// blocks in the tail of the basic block in question. As a result of this,
392 /// calls that would have qualified for the sibling call optimization were no
393 /// longer eligible for optimization since said calls were no longer right in
394 /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
397 /// Then it was noticed that since the sibling call optimization causes the
398 /// callee to reuse the caller's stack, if we could delay the generation of
399 /// the stack protector check until later in CodeGen after the sibling call
400 /// decision was made, we get both the tail call optimization and the stack
403 /// A few goals in solving this problem were:
405 /// 1. Preserve the architecture independence of stack protector generation.
407 /// 2. Preserve the normal IR level stack protector check for platforms like
408 /// OpenBSD for which we support platform-specific stack protector
411 /// The main problem that guided the present solution is that one can not
412 /// solve this problem in an architecture independent manner at the IR level
413 /// only. This is because:
415 /// 1. The decision on whether or not to perform a sibling call on certain
416 /// platforms (for instance i386) requires lower level information
417 /// related to available registers that can not be known at the IR level.
419 /// 2. Even if the previous point were not true, the decision on whether to
420 /// perform a tail call is done in LowerCallTo in SelectionDAG which
421 /// occurs after the Stack Protector Pass. As a result, one would need to
422 /// put the relevant callinst into the stack protector check success
423 /// basic block (where the return inst is placed) and then move it back
424 /// later at SelectionDAG/MI time before the stack protector check if the
425 /// tail call optimization failed. The MI level option was nixed
426 /// immediately since it would require platform-specific pattern
427 /// matching. The SelectionDAG level option was nixed because
428 /// SelectionDAG only processes one IR level basic block at a time
429 /// implying one could not create a DAG Combine to move the callinst.
431 /// To get around this problem a few things were realized:
433 /// 1. While one can not handle multiple IR level basic blocks at the
434 /// SelectionDAG Level, one can generate multiple machine basic blocks
435 /// for one IR level basic block. This is how we handle bit tests and
438 /// 2. At the MI level, tail calls are represented via a special return
439 /// MIInst called "tcreturn". Thus if we know the basic block in which we
440 /// wish to insert the stack protector check, we get the correct behavior
441 /// by always inserting the stack protector check right before the return
442 /// statement. This is a "magical transformation" since no matter where
443 /// the stack protector check intrinsic is, we always insert the stack
444 /// protector check code at the end of the BB.
446 /// Given the aforementioned constraints, the following solution was devised:
448 /// 1. On platforms that do not support SelectionDAG stack protector check
449 /// generation, allow for the normal IR level stack protector check
450 /// generation to continue.
452 /// 2. On platforms that do support SelectionDAG stack protector check
455 /// a. Use the IR level stack protector pass to decide if a stack
456 /// protector is required/which BB we insert the stack protector check
457 /// in by reusing the logic already therein. If we wish to generate a
458 /// stack protector check in a basic block, we place a special IR
459 /// intrinsic called llvm.stackprotectorcheck right before the BB's
460 /// returninst or if there is a callinst that could potentially be
461 /// sibling call optimized, before the call inst.
463 /// b. Then when a BB with said intrinsic is processed, we codegen the BB
464 /// normally via SelectBasicBlock. In said process, when we visit the
465 /// stack protector check, we do not actually emit anything into the
466 /// BB. Instead, we just initialize the stack protector descriptor
467 /// class (which involves stashing information/creating the success
468 /// mbbb and the failure mbb if we have not created one for this
469 /// function yet) and export the guard variable that we are going to
472 /// c. After we finish selecting the basic block, in FinishBasicBlock if
473 /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is
474 /// initialized, we produce the validation code with one of these
476 /// 1) with a call to a guard check function
477 /// 2) with inlined instrumentation
479 /// 1) We insert a call to the check function before the terminator.
481 /// 2) We first find a splice point in the parent basic block
482 /// before the terminator and then splice the terminator of said basic
483 /// block into the success basic block. Then we code-gen a new tail for
484 /// the parent basic block consisting of the two loads, the comparison,
485 /// and finally two branches to the success/failure basic blocks. We
486 /// conclude by code-gening the failure basic block if we have not
487 /// code-gened it already (all stack protector checks we generate in
488 /// the same function, use the same failure basic block).
489 class StackProtectorDescriptor
{
491 StackProtectorDescriptor() = default;
493 /// Returns true if all fields of the stack protector descriptor are
494 /// initialized implying that we should/are ready to emit a stack protector.
495 bool shouldEmitStackProtector() const {
496 return ParentMBB
&& SuccessMBB
&& FailureMBB
;
499 bool shouldEmitFunctionBasedCheckStackProtector() const {
500 return ParentMBB
&& !SuccessMBB
&& !FailureMBB
;
503 /// Initialize the stack protector descriptor structure for a new basic
505 void initialize(const BasicBlock
*BB
, MachineBasicBlock
*MBB
,
506 bool FunctionBasedInstrumentation
) {
507 // Make sure we are not initialized yet.
508 assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
509 "already initialized!");
511 if (!FunctionBasedInstrumentation
) {
512 SuccessMBB
= AddSuccessorMBB(BB
, MBB
, /* IsLikely */ true);
513 FailureMBB
= AddSuccessorMBB(BB
, MBB
, /* IsLikely */ false, FailureMBB
);
517 /// Reset state that changes when we handle different basic blocks.
519 /// This currently includes:
521 /// 1. The specific basic block we are generating a
522 /// stack protector for (ParentMBB).
524 /// 2. The successor machine basic block that will contain the tail of
525 /// parent mbb after we create the stack protector check (SuccessMBB). This
526 /// BB is visited only on stack protector check success.
527 void resetPerBBState() {
529 SuccessMBB
= nullptr;
532 /// Reset state that only changes when we switch functions.
534 /// This currently includes:
536 /// 1. FailureMBB since we reuse the failure code path for all stack
537 /// protector checks created in an individual function.
539 /// 2.The guard variable since the guard variable we are checking against is
541 void resetPerFunctionState() {
542 FailureMBB
= nullptr;
545 MachineBasicBlock
*getParentMBB() { return ParentMBB
; }
546 MachineBasicBlock
*getSuccessMBB() { return SuccessMBB
; }
547 MachineBasicBlock
*getFailureMBB() { return FailureMBB
; }
550 /// The basic block for which we are generating the stack protector.
552 /// As a result of stack protector generation, we will splice the
553 /// terminators of this basic block into the successor mbb SuccessMBB and
554 /// replace it with a compare/branch to the successor mbbs
555 /// SuccessMBB/FailureMBB depending on whether or not the stack protector
557 MachineBasicBlock
*ParentMBB
= nullptr;
559 /// A basic block visited on stack protector check success that contains the
560 /// terminators of ParentMBB.
561 MachineBasicBlock
*SuccessMBB
= nullptr;
563 /// This basic block visited on stack protector check failure that will
564 /// contain a call to __stack_chk_fail().
565 MachineBasicBlock
*FailureMBB
= nullptr;
567 /// Add a successor machine basic block to ParentMBB. If the successor mbb
568 /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
569 /// block will be created. Assign a large weight if IsLikely is true.
570 MachineBasicBlock
*AddSuccessorMBB(const BasicBlock
*BB
,
571 MachineBasicBlock
*ParentMBB
,
573 MachineBasicBlock
*SuccMBB
= nullptr);
577 const TargetMachine
&TM
;
580 /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
581 /// nodes without a corresponding SDNode.
582 static const unsigned LowestSDNodeOrder
= 1;
585 const DataLayout
*DL
= nullptr;
586 AliasAnalysis
*AA
= nullptr;
587 const TargetLibraryInfo
*LibInfo
;
589 /// Vector of CaseBlock structures used to communicate SwitchInst code
590 /// generation information.
591 std::vector
<CaseBlock
> SwitchCases
;
593 /// Vector of JumpTable structures used to communicate SwitchInst code
594 /// generation information.
595 std::vector
<JumpTableBlock
> JTCases
;
597 /// Vector of BitTestBlock structures used to communicate SwitchInst code
598 /// generation information.
599 std::vector
<BitTestBlock
> BitTestCases
;
601 /// A StackProtectorDescriptor structure used to communicate stack protector
602 /// information in between SelectBasicBlock and FinishBasicBlock.
603 StackProtectorDescriptor SPDescriptor
;
605 // Emit PHI-node-operand constants only once even if used by multiple
607 DenseMap
<const Constant
*, unsigned> ConstantsOut
;
609 /// Information about the function as a whole.
610 FunctionLoweringInfo
&FuncInfo
;
612 /// Garbage collection metadata for the function.
615 /// Map a landing pad to the call site indexes.
616 DenseMap
<MachineBasicBlock
*, SmallVector
<unsigned, 4>> LPadToCallSiteMap
;
618 /// This is set to true if a call in the current block has been translated as
619 /// a tail call. In this case, no subsequent DAG nodes should be created.
620 bool HasTailCall
= false;
622 LLVMContext
*Context
;
624 SelectionDAGBuilder(SelectionDAG
&dag
, FunctionLoweringInfo
&funcinfo
,
625 CodeGenOpt::Level ol
)
626 : SDNodeOrder(LowestSDNodeOrder
), TM(dag
.getTarget()), DAG(dag
),
627 FuncInfo(funcinfo
) {}
629 void init(GCFunctionInfo
*gfi
, AliasAnalysis
*AA
,
630 const TargetLibraryInfo
*li
);
632 /// Clear out the current SelectionDAG and the associated state and prepare
633 /// this SelectionDAGBuilder object to be used for a new block. This doesn't
634 /// clear out information about additional blocks that are needed to complete
635 /// switch lowering or PHI node updating; that information is cleared out as
639 /// Clear the dangling debug information map. This function is separated from
640 /// the clear so that debug information that is dangling in a basic block can
641 /// be properly resolved in a different basic block. This allows the
642 /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
643 void clearDanglingDebugInfo();
645 /// Return the current virtual root of the Selection DAG, flushing any
646 /// PendingLoad items. This must be done before emitting a store or any other
647 /// node that may need to be ordered after any prior load instructions.
650 /// Similar to getRoot, but instead of flushing all the PendingLoad items,
651 /// flush all the PendingExports items. It is necessary to do this before
652 /// emitting a terminator instruction.
653 SDValue
getControlRoot();
655 SDLoc
getCurSDLoc() const {
656 return SDLoc(CurInst
, SDNodeOrder
);
659 DebugLoc
getCurDebugLoc() const {
660 return CurInst
? CurInst
->getDebugLoc() : DebugLoc();
663 void CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
);
665 void visit(const Instruction
&I
);
667 void visit(unsigned Opcode
, const User
&I
);
669 /// If there was virtual register allocated for the value V emit CopyFromReg
670 /// of the specified type Ty. Return empty SDValue() otherwise.
671 SDValue
getCopyFromRegs(const Value
*V
, Type
*Ty
);
673 /// If we have dangling debug info that describes \p Variable, or an
674 /// overlapping part of variable considering the \p Expr, then this method
675 /// will drop that debug info as it isn't valid any longer.
676 void dropDanglingDebugInfo(const DILocalVariable
*Variable
,
677 const DIExpression
*Expr
);
679 /// If we saw an earlier dbg_value referring to V, generate the debug data
680 /// structures now that we've seen its definition.
681 void resolveDanglingDebugInfo(const Value
*V
, SDValue Val
);
683 /// For the given dangling debuginfo record, perform last-ditch efforts to
684 /// resolve the debuginfo to something that is represented in this DAG. If
685 /// this cannot be done, produce an Undef debug value record.
686 void salvageUnresolvedDbgValue(DanglingDebugInfo
&DDI
);
688 /// For a given Value, attempt to create and record a SDDbgValue in the
690 bool handleDebugValue(const Value
*V
, DILocalVariable
*Var
,
691 DIExpression
*Expr
, DebugLoc CurDL
,
692 DebugLoc InstDL
, unsigned Order
);
694 /// Evict any dangling debug information, attempting to salvage it first.
695 void resolveOrClearDbgInfo();
697 SDValue
getValue(const Value
*V
);
698 bool findValue(const Value
*V
) const;
700 /// Return the SDNode for the specified IR value if it exists.
701 SDNode
*getNodeForIRValue(const Value
*V
) {
702 if (NodeMap
.find(V
) == NodeMap
.end())
704 return NodeMap
[V
].getNode();
707 SDValue
getNonRegisterValue(const Value
*V
);
708 SDValue
getValueImpl(const Value
*V
);
710 void setValue(const Value
*V
, SDValue NewN
) {
711 SDValue
&N
= NodeMap
[V
];
712 assert(!N
.getNode() && "Already set a value for this node!");
716 void setUnusedArgValue(const Value
*V
, SDValue NewN
) {
717 SDValue
&N
= UnusedArgNodeMap
[V
];
718 assert(!N
.getNode() && "Already set a value for this node!");
722 void FindMergedConditions(const Value
*Cond
, MachineBasicBlock
*TBB
,
723 MachineBasicBlock
*FBB
, MachineBasicBlock
*CurBB
,
724 MachineBasicBlock
*SwitchBB
,
725 Instruction::BinaryOps Opc
, BranchProbability TProb
,
726 BranchProbability FProb
, bool InvertCond
);
727 void EmitBranchForMergedCondition(const Value
*Cond
, MachineBasicBlock
*TBB
,
728 MachineBasicBlock
*FBB
,
729 MachineBasicBlock
*CurBB
,
730 MachineBasicBlock
*SwitchBB
,
731 BranchProbability TProb
, BranchProbability FProb
,
733 bool ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
);
734 bool isExportableFromCurrentBlock(const Value
*V
, const BasicBlock
*FromBB
);
735 void CopyToExportRegsIfNeeded(const Value
*V
);
736 void ExportFromCurrentBlock(const Value
*V
);
737 void LowerCallTo(ImmutableCallSite CS
, SDValue Callee
, bool IsTailCall
,
738 const BasicBlock
*EHPadBB
= nullptr);
740 // Lower range metadata from 0 to N to assert zext to an integer of nearest
741 // floor power of two.
742 SDValue
lowerRangeToAssertZExt(SelectionDAG
&DAG
, const Instruction
&I
,
745 void populateCallLoweringInfo(TargetLowering::CallLoweringInfo
&CLI
,
746 const CallBase
*Call
, unsigned ArgIdx
,
747 unsigned NumArgs
, SDValue Callee
,
748 Type
*ReturnTy
, bool IsPatchPoint
);
750 std::pair
<SDValue
, SDValue
>
751 lowerInvokable(TargetLowering::CallLoweringInfo
&CLI
,
752 const BasicBlock
*EHPadBB
= nullptr);
754 /// When an MBB was split during scheduling, update the
755 /// references that need to refer to the last resulting block.
756 void UpdateSplitBlock(MachineBasicBlock
*First
, MachineBasicBlock
*Last
);
758 /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
759 /// of lowering into a STATEPOINT node.
760 struct StatepointLoweringInfo
{
761 /// Bases[i] is the base pointer for Ptrs[i]. Together they denote the set
762 /// of gc pointers this STATEPOINT has to relocate.
763 SmallVector
<const Value
*, 16> Bases
;
764 SmallVector
<const Value
*, 16> Ptrs
;
766 /// The set of gc.relocate calls associated with this gc.statepoint.
767 SmallVector
<const GCRelocateInst
*, 16> GCRelocates
;
769 /// The full list of gc arguments to the gc.statepoint being lowered.
770 ArrayRef
<const Use
> GCArgs
;
772 /// The gc.statepoint instruction.
773 const Instruction
*StatepointInstr
= nullptr;
775 /// The list of gc transition arguments present in the gc.statepoint being
777 ArrayRef
<const Use
> GCTransitionArgs
;
779 /// The ID that the resulting STATEPOINT instruction has to report.
782 /// Information regarding the underlying call instruction.
783 TargetLowering::CallLoweringInfo CLI
;
785 /// The deoptimization state associated with this gc.statepoint call, if
787 ArrayRef
<const Use
> DeoptState
;
789 /// Flags associated with the meta arguments being lowered.
790 uint64_t StatepointFlags
= -1;
792 /// The number of patchable bytes the call needs to get lowered into.
793 unsigned NumPatchBytes
= -1;
795 /// The exception handling unwind destination, in case this represents an
796 /// invoke of gc.statepoint.
797 const BasicBlock
*EHPadBB
= nullptr;
799 explicit StatepointLoweringInfo(SelectionDAG
&DAG
) : CLI(DAG
) {}
802 /// Lower \p SLI into a STATEPOINT instruction.
803 SDValue
LowerAsSTATEPOINT(StatepointLoweringInfo
&SI
);
805 // This function is responsible for the whole statepoint lowering process.
806 // It uniformly handles invoke and call statepoints.
807 void LowerStatepoint(ImmutableStatepoint ISP
,
808 const BasicBlock
*EHPadBB
= nullptr);
810 void LowerCallSiteWithDeoptBundle(const CallBase
*Call
, SDValue Callee
,
811 const BasicBlock
*EHPadBB
);
813 void LowerDeoptimizeCall(const CallInst
*CI
);
814 void LowerDeoptimizingReturn();
816 void LowerCallSiteWithDeoptBundleImpl(const CallBase
*Call
, SDValue Callee
,
817 const BasicBlock
*EHPadBB
,
818 bool VarArgDisallowed
,
819 bool ForceVoidReturnTy
);
821 /// Returns the type of FrameIndex and TargetFrameIndex nodes.
822 MVT
getFrameIndexTy() {
823 return DAG
.getTargetLoweringInfo().getFrameIndexTy(DAG
.getDataLayout());
827 // Terminator instructions.
828 void visitRet(const ReturnInst
&I
);
829 void visitBr(const BranchInst
&I
);
830 void visitSwitch(const SwitchInst
&I
);
831 void visitIndirectBr(const IndirectBrInst
&I
);
832 void visitUnreachable(const UnreachableInst
&I
);
833 void visitCleanupRet(const CleanupReturnInst
&I
);
834 void visitCatchSwitch(const CatchSwitchInst
&I
);
835 void visitCatchRet(const CatchReturnInst
&I
);
836 void visitCatchPad(const CatchPadInst
&I
);
837 void visitCleanupPad(const CleanupPadInst
&CPI
);
839 BranchProbability
getEdgeProbability(const MachineBasicBlock
*Src
,
840 const MachineBasicBlock
*Dst
) const;
841 void addSuccessorWithProb(
842 MachineBasicBlock
*Src
, MachineBasicBlock
*Dst
,
843 BranchProbability Prob
= BranchProbability::getUnknown());
846 void visitSwitchCase(CaseBlock
&CB
,
847 MachineBasicBlock
*SwitchBB
);
848 void visitSPDescriptorParent(StackProtectorDescriptor
&SPD
,
849 MachineBasicBlock
*ParentBB
);
850 void visitSPDescriptorFailure(StackProtectorDescriptor
&SPD
);
851 void visitBitTestHeader(BitTestBlock
&B
, MachineBasicBlock
*SwitchBB
);
852 void visitBitTestCase(BitTestBlock
&BB
,
853 MachineBasicBlock
* NextMBB
,
854 BranchProbability BranchProbToNext
,
857 MachineBasicBlock
*SwitchBB
);
858 void visitJumpTable(JumpTable
&JT
);
859 void visitJumpTableHeader(JumpTable
&JT
, JumpTableHeader
&JTH
,
860 MachineBasicBlock
*SwitchBB
);
863 // These all get lowered before this pass.
864 void visitInvoke(const InvokeInst
&I
);
865 void visitCallBr(const CallBrInst
&I
);
866 void visitResume(const ResumeInst
&I
);
868 void visitUnary(const User
&I
, unsigned Opcode
);
869 void visitFNeg(const User
&I
) { visitUnary(I
, ISD::FNEG
); }
871 void visitBinary(const User
&I
, unsigned Opcode
);
872 void visitShift(const User
&I
, unsigned Opcode
);
873 void visitAdd(const User
&I
) { visitBinary(I
, ISD::ADD
); }
874 void visitFAdd(const User
&I
) { visitBinary(I
, ISD::FADD
); }
875 void visitSub(const User
&I
) { visitBinary(I
, ISD::SUB
); }
876 void visitFSub(const User
&I
);
877 void visitMul(const User
&I
) { visitBinary(I
, ISD::MUL
); }
878 void visitFMul(const User
&I
) { visitBinary(I
, ISD::FMUL
); }
879 void visitURem(const User
&I
) { visitBinary(I
, ISD::UREM
); }
880 void visitSRem(const User
&I
) { visitBinary(I
, ISD::SREM
); }
881 void visitFRem(const User
&I
) { visitBinary(I
, ISD::FREM
); }
882 void visitUDiv(const User
&I
) { visitBinary(I
, ISD::UDIV
); }
883 void visitSDiv(const User
&I
);
884 void visitFDiv(const User
&I
) { visitBinary(I
, ISD::FDIV
); }
885 void visitAnd (const User
&I
) { visitBinary(I
, ISD::AND
); }
886 void visitOr (const User
&I
) { visitBinary(I
, ISD::OR
); }
887 void visitXor (const User
&I
) { visitBinary(I
, ISD::XOR
); }
888 void visitShl (const User
&I
) { visitShift(I
, ISD::SHL
); }
889 void visitLShr(const User
&I
) { visitShift(I
, ISD::SRL
); }
890 void visitAShr(const User
&I
) { visitShift(I
, ISD::SRA
); }
891 void visitICmp(const User
&I
);
892 void visitFCmp(const User
&I
);
893 // Visit the conversion instructions
894 void visitTrunc(const User
&I
);
895 void visitZExt(const User
&I
);
896 void visitSExt(const User
&I
);
897 void visitFPTrunc(const User
&I
);
898 void visitFPExt(const User
&I
);
899 void visitFPToUI(const User
&I
);
900 void visitFPToSI(const User
&I
);
901 void visitUIToFP(const User
&I
);
902 void visitSIToFP(const User
&I
);
903 void visitPtrToInt(const User
&I
);
904 void visitIntToPtr(const User
&I
);
905 void visitBitCast(const User
&I
);
906 void visitAddrSpaceCast(const User
&I
);
908 void visitExtractElement(const User
&I
);
909 void visitInsertElement(const User
&I
);
910 void visitShuffleVector(const User
&I
);
912 void visitExtractValue(const User
&I
);
913 void visitInsertValue(const User
&I
);
914 void visitLandingPad(const LandingPadInst
&LP
);
916 void visitGetElementPtr(const User
&I
);
917 void visitSelect(const User
&I
);
919 void visitAlloca(const AllocaInst
&I
);
920 void visitLoad(const LoadInst
&I
);
921 void visitStore(const StoreInst
&I
);
922 void visitMaskedLoad(const CallInst
&I
, bool IsExpanding
= false);
923 void visitMaskedStore(const CallInst
&I
, bool IsCompressing
= false);
924 void visitMaskedGather(const CallInst
&I
);
925 void visitMaskedScatter(const CallInst
&I
);
926 void visitAtomicCmpXchg(const AtomicCmpXchgInst
&I
);
927 void visitAtomicRMW(const AtomicRMWInst
&I
);
928 void visitFence(const FenceInst
&I
);
929 void visitPHI(const PHINode
&I
);
930 void visitCall(const CallInst
&I
);
931 bool visitMemCmpCall(const CallInst
&I
);
932 bool visitMemPCpyCall(const CallInst
&I
);
933 bool visitMemChrCall(const CallInst
&I
);
934 bool visitStrCpyCall(const CallInst
&I
, bool isStpcpy
);
935 bool visitStrCmpCall(const CallInst
&I
);
936 bool visitStrLenCall(const CallInst
&I
);
937 bool visitStrNLenCall(const CallInst
&I
);
938 bool visitUnaryFloatCall(const CallInst
&I
, unsigned Opcode
);
939 bool visitBinaryFloatCall(const CallInst
&I
, unsigned Opcode
);
940 void visitAtomicLoad(const LoadInst
&I
);
941 void visitAtomicStore(const StoreInst
&I
);
942 void visitLoadFromSwiftError(const LoadInst
&I
);
943 void visitStoreToSwiftError(const StoreInst
&I
);
945 void visitInlineAsm(ImmutableCallSite CS
);
946 const char *visitIntrinsicCall(const CallInst
&I
, unsigned Intrinsic
);
947 void visitTargetIntrinsic(const CallInst
&I
, unsigned Intrinsic
);
948 void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic
&FPI
);
950 void visitVAStart(const CallInst
&I
);
951 void visitVAArg(const VAArgInst
&I
);
952 void visitVAEnd(const CallInst
&I
);
953 void visitVACopy(const CallInst
&I
);
954 void visitStackmap(const CallInst
&I
);
955 void visitPatchpoint(ImmutableCallSite CS
,
956 const BasicBlock
*EHPadBB
= nullptr);
958 // These two are implemented in StatepointLowering.cpp
959 void visitGCRelocate(const GCRelocateInst
&Relocate
);
960 void visitGCResult(const GCResultInst
&I
);
962 void visitVectorReduce(const CallInst
&I
, unsigned Intrinsic
);
964 void visitUserOp1(const Instruction
&I
) {
965 llvm_unreachable("UserOp1 should not exist at instruction selection time!");
967 void visitUserOp2(const Instruction
&I
) {
968 llvm_unreachable("UserOp2 should not exist at instruction selection time!");
971 void processIntegerCallValue(const Instruction
&I
,
972 SDValue Value
, bool IsSigned
);
974 void HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
);
976 void emitInlineAsmError(ImmutableCallSite CS
, const Twine
&Message
);
978 /// If V is an function argument then create corresponding DBG_VALUE machine
979 /// instruction for it now. At the end of instruction selection, they will be
980 /// inserted to the entry BB.
981 bool EmitFuncArgumentDbgValue(const Value
*V
, DILocalVariable
*Variable
,
982 DIExpression
*Expr
, DILocation
*DL
,
983 bool IsDbgDeclare
, const SDValue
&N
);
985 /// Return the next block after MBB, or nullptr if there is none.
986 MachineBasicBlock
*NextBlock(MachineBasicBlock
*MBB
);
988 /// Update the DAG and DAG builder with the relevant information after
989 /// a new root node has been created which could be a tail call.
990 void updateDAGForMaybeTailCall(SDValue MaybeTC
);
992 /// Return the appropriate SDDbgValue based on N.
993 SDDbgValue
*getDbgValue(SDValue N
, DILocalVariable
*Variable
,
994 DIExpression
*Expr
, const DebugLoc
&dl
,
995 unsigned DbgSDNodeOrder
);
998 /// This struct represents the registers (physical or virtual)
999 /// that a particular set of values is assigned, and the type information about
1000 /// the value. The most common situation is to represent one value at a time,
1001 /// but struct or array values are handled element-wise as multiple values. The
1002 /// splitting of aggregates is performed recursively, so that we never have
1003 /// aggregate-typed registers. The values at this point do not necessarily have
1004 /// legal types, so each value may require one or more registers of some legal
1007 struct RegsForValue
{
1008 /// The value types of the values, which may not be legal, and
1009 /// may need be promoted or synthesized from one or more registers.
1010 SmallVector
<EVT
, 4> ValueVTs
;
1012 /// The value types of the registers. This is the same size as ValueVTs and it
1013 /// records, for each value, what the type of the assigned register or
1014 /// registers are. (Individual values are never synthesized from more than one
1015 /// type of register.)
1017 /// With virtual registers, the contents of RegVTs is redundant with TLI's
1018 /// getRegisterType member function, however when with physical registers
1019 /// it is necessary to have a separate record of the types.
1020 SmallVector
<MVT
, 4> RegVTs
;
1022 /// This list holds the registers assigned to the values.
1023 /// Each legal or promoted value requires one register, and each
1024 /// expanded value requires multiple registers.
1025 SmallVector
<unsigned, 4> Regs
;
1027 /// This list holds the number of registers for each value.
1028 SmallVector
<unsigned, 4> RegCount
;
1030 /// Records if this value needs to be treated in an ABI dependant manner,
1031 /// different to normal type legalization.
1032 Optional
<CallingConv::ID
> CallConv
;
1034 RegsForValue() = default;
1035 RegsForValue(const SmallVector
<unsigned, 4> ®s
, MVT regvt
, EVT valuevt
,
1036 Optional
<CallingConv::ID
> CC
= None
);
1037 RegsForValue(LLVMContext
&Context
, const TargetLowering
&TLI
,
1038 const DataLayout
&DL
, unsigned Reg
, Type
*Ty
,
1039 Optional
<CallingConv::ID
> CC
);
1041 bool isABIMangled() const {
1042 return CallConv
.hasValue();
1045 /// Add the specified values to this one.
1046 void append(const RegsForValue
&RHS
) {
1047 ValueVTs
.append(RHS
.ValueVTs
.begin(), RHS
.ValueVTs
.end());
1048 RegVTs
.append(RHS
.RegVTs
.begin(), RHS
.RegVTs
.end());
1049 Regs
.append(RHS
.Regs
.begin(), RHS
.Regs
.end());
1050 RegCount
.push_back(RHS
.Regs
.size());
1053 /// Emit a series of CopyFromReg nodes that copies from this value and returns
1054 /// the result as a ValueVTs value. This uses Chain/Flag as the input and
1055 /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
1057 SDValue
getCopyFromRegs(SelectionDAG
&DAG
, FunctionLoweringInfo
&FuncInfo
,
1058 const SDLoc
&dl
, SDValue
&Chain
, SDValue
*Flag
,
1059 const Value
*V
= nullptr) const;
1061 /// Emit a series of CopyToReg nodes that copies the specified value into the
1062 /// registers specified by this object. This uses Chain/Flag as the input and
1063 /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
1064 /// flag is used. If V is not nullptr, then it is used in printing better
1065 /// diagnostic messages on error.
1066 void getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, const SDLoc
&dl
,
1067 SDValue
&Chain
, SDValue
*Flag
, const Value
*V
= nullptr,
1068 ISD::NodeType PreferredExtendType
= ISD::ANY_EXTEND
) const;
1070 /// Add this value to the specified inlineasm node operand list. This adds the
1071 /// code marker, matching input operand index (if applicable), and includes
1072 /// the number of values added into it.
1073 void AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
1074 unsigned MatchingIdx
, const SDLoc
&dl
,
1075 SelectionDAG
&DAG
, std::vector
<SDValue
> &Ops
) const;
1077 /// Check if the total RegCount is greater than one.
1078 bool occupiesMultipleRegs() const {
1079 return std::accumulate(RegCount
.begin(), RegCount
.end(), 0) > 1;
1082 /// Return a list of registers and their sizes.
1083 SmallVector
<std::pair
<unsigned, unsigned>, 4> getRegsAndSizes() const;
1086 } // end namespace llvm
1088 #endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H