1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/GCStrategy.h"
26 #include "llvm/CodeGen/ISDOpcodes.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
56 #define DEBUG_TYPE "statepoint-lowering"
58 STATISTIC(NumSlotsAllocatedForStatepoints
,
59 "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints
, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired
,
62 "Maximum number of stack slots required for a singe statepoint");
64 static void pushStackMapConstant(SmallVectorImpl
<SDValue
>& Ops
,
65 SelectionDAGBuilder
&Builder
, uint64_t Value
) {
66 SDLoc L
= Builder
.getCurSDLoc();
67 Ops
.push_back(Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, L
,
69 Ops
.push_back(Builder
.DAG
.getTargetConstant(Value
, L
, MVT::i64
));
72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder
&Builder
) {
74 assert(PendingGCRelocateCalls
.empty() &&
75 "Trying to visit statepoint before finished processing previous one");
77 NextSlotToAllocate
= 0;
78 // Need to resize this on each safepoint - we need the two to stay in sync and
79 // the clear patterns of a SelectionDAGBuilder have no relation to
80 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
81 AllocatedStackSlots
.clear();
82 AllocatedStackSlots
.resize(Builder
.FuncInfo
.StatepointStackSlots
.size());
85 void StatepointLoweringState::clear() {
87 AllocatedStackSlots
.clear();
88 assert(PendingGCRelocateCalls
.empty() &&
89 "cleared before statepoint sequence completed");
93 StatepointLoweringState::allocateStackSlot(EVT ValueType
,
94 SelectionDAGBuilder
&Builder
) {
95 NumSlotsAllocatedForStatepoints
++;
96 MachineFrameInfo
&MFI
= Builder
.DAG
.getMachineFunction().getFrameInfo();
98 unsigned SpillSize
= ValueType
.getStoreSize();
99 assert((SpillSize
* 8) == ValueType
.getSizeInBits() && "Size not in bytes?");
101 // First look for a previously created stack slot which is not in
102 // use (accounting for the fact arbitrary slots may already be
103 // reserved), or to create a new stack slot and use it.
105 const size_t NumSlots
= AllocatedStackSlots
.size();
106 assert(NextSlotToAllocate
<= NumSlots
&& "Broken invariant");
108 assert(AllocatedStackSlots
.size() ==
109 Builder
.FuncInfo
.StatepointStackSlots
.size() &&
112 for (; NextSlotToAllocate
< NumSlots
; NextSlotToAllocate
++) {
113 if (!AllocatedStackSlots
.test(NextSlotToAllocate
)) {
114 const int FI
= Builder
.FuncInfo
.StatepointStackSlots
[NextSlotToAllocate
];
115 if (MFI
.getObjectSize(FI
) == SpillSize
) {
116 AllocatedStackSlots
.set(NextSlotToAllocate
);
117 // TODO: Is ValueType the right thing to use here?
118 return Builder
.DAG
.getFrameIndex(FI
, ValueType
);
123 // Couldn't find a free slot, so create a new one:
125 SDValue SpillSlot
= Builder
.DAG
.CreateStackTemporary(ValueType
);
126 const unsigned FI
= cast
<FrameIndexSDNode
>(SpillSlot
)->getIndex();
127 MFI
.markAsStatepointSpillSlotObjectIndex(FI
);
129 Builder
.FuncInfo
.StatepointStackSlots
.push_back(FI
);
130 AllocatedStackSlots
.resize(AllocatedStackSlots
.size()+1, true);
131 assert(AllocatedStackSlots
.size() ==
132 Builder
.FuncInfo
.StatepointStackSlots
.size() &&
135 StatepointMaxSlotsRequired
.updateMax(
136 Builder
.FuncInfo
.StatepointStackSlots
.size());
141 /// Utility function for reservePreviousStackSlotForValue. Tries to find
142 /// stack slot index to which we have spilled value for previous statepoints.
143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
144 static Optional
<int> findPreviousSpillSlot(const Value
*Val
,
145 SelectionDAGBuilder
&Builder
,
147 // Can not look any further - give up now
148 if (LookUpDepth
<= 0)
151 // Spill location is known for gc relocates
152 if (const auto *Relocate
= dyn_cast
<GCRelocateInst
>(Val
)) {
153 const auto &SpillMap
=
154 Builder
.FuncInfo
.StatepointSpillMaps
[Relocate
->getStatepoint()];
156 auto It
= SpillMap
.find(Relocate
->getDerivedPtr());
157 if (It
== SpillMap
.end())
163 // Look through bitcast instructions.
164 if (const BitCastInst
*Cast
= dyn_cast
<BitCastInst
>(Val
))
165 return findPreviousSpillSlot(Cast
->getOperand(0), Builder
, LookUpDepth
- 1);
167 // Look through phi nodes
168 // All incoming values should have same known stack slot, otherwise result
170 if (const PHINode
*Phi
= dyn_cast
<PHINode
>(Val
)) {
171 Optional
<int> MergedResult
= None
;
173 for (auto &IncomingValue
: Phi
->incoming_values()) {
174 Optional
<int> SpillSlot
=
175 findPreviousSpillSlot(IncomingValue
, Builder
, LookUpDepth
- 1);
176 if (!SpillSlot
.hasValue())
179 if (MergedResult
.hasValue() && *MergedResult
!= *SpillSlot
)
182 MergedResult
= SpillSlot
;
187 // TODO: We can do better for PHI nodes. In cases like this:
188 // ptr = phi(relocated_pointer, not_relocated_pointer)
190 // We will return that stack slot for ptr is unknown. And later we might
191 // assign different stack slots for ptr and relocated_pointer. This limits
192 // llvm's ability to remove redundant stores.
193 // Unfortunately it's hard to accomplish in current infrastructure.
194 // We use this function to eliminate spill store completely, while
195 // in example we still need to emit store, but instead of any location
196 // we need to use special "preferred" location.
198 // TODO: handle simple updates. If a value is modified and the original
199 // value is no longer live, it would be nice to put the modified value in the
200 // same slot. This allows folding of the memory accesses for some
201 // instructions types (like an increment).
205 // However we need to be careful for cases like this:
209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210 // put handling of simple modifications in this function like it's done
211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212 // which we visit values is unspecified.
214 // Don't know any information about this instruction
218 /// Try to find existing copies of the incoming values in stack slots used for
219 /// statepoint spilling. If we can find a spill slot for the incoming value,
220 /// mark that slot as allocated, and reuse the same slot for this safepoint.
221 /// This helps to avoid series of loads and stores that only serve to reshuffle
222 /// values on the stack between calls.
223 static void reservePreviousStackSlotForValue(const Value
*IncomingValue
,
224 SelectionDAGBuilder
&Builder
) {
225 SDValue Incoming
= Builder
.getValue(IncomingValue
);
227 if (isa
<ConstantSDNode
>(Incoming
) || isa
<FrameIndexSDNode
>(Incoming
)) {
228 // We won't need to spill this, so no need to check for previously
229 // allocated stack slots
233 SDValue OldLocation
= Builder
.StatepointLowering
.getLocation(Incoming
);
234 if (OldLocation
.getNode())
235 // Duplicates in input
238 const int LookUpDepth
= 6;
239 Optional
<int> Index
=
240 findPreviousSpillSlot(IncomingValue
, Builder
, LookUpDepth
);
241 if (!Index
.hasValue())
244 const auto &StatepointSlots
= Builder
.FuncInfo
.StatepointStackSlots
;
246 auto SlotIt
= find(StatepointSlots
, *Index
);
247 assert(SlotIt
!= StatepointSlots
.end() &&
248 "Value spilled to the unknown stack slot");
250 // This is one of our dedicated lowering slots
251 const int Offset
= std::distance(StatepointSlots
.begin(), SlotIt
);
252 if (Builder
.StatepointLowering
.isStackSlotAllocated(Offset
)) {
253 // stack slot already assigned to someone else, can't use it!
254 // TODO: currently we reserve space for gc arguments after doing
255 // normal allocation for deopt arguments. We should reserve for
256 // _all_ deopt and gc arguments, then start allocating. This
257 // will prevent some moves being inserted when vm state changes,
258 // but gc state doesn't between two calls.
261 // Reserve this stack slot
262 Builder
.StatepointLowering
.reserveStackSlot(Offset
);
264 // Cache this slot so we find it when going through the normal
267 Builder
.DAG
.getTargetFrameIndex(*Index
, Builder
.getFrameIndexTy());
268 Builder
.StatepointLowering
.setLocation(Incoming
, Loc
);
271 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This
272 /// is not required for correctness. It's purpose is to reduce the size of
273 /// StackMap section. It has no effect on the number of spill slots required
274 /// or the actual lowering.
276 removeDuplicateGCPtrs(SmallVectorImpl
<const Value
*> &Bases
,
277 SmallVectorImpl
<const Value
*> &Ptrs
,
278 SmallVectorImpl
<const GCRelocateInst
*> &Relocs
,
279 SelectionDAGBuilder
&Builder
,
280 FunctionLoweringInfo::StatepointSpillMap
&SSM
) {
281 DenseMap
<SDValue
, const Value
*> Seen
;
283 SmallVector
<const Value
*, 64> NewBases
, NewPtrs
;
284 SmallVector
<const GCRelocateInst
*, 64> NewRelocs
;
285 for (size_t i
= 0, e
= Ptrs
.size(); i
< e
; i
++) {
286 SDValue SD
= Builder
.getValue(Ptrs
[i
]);
287 auto SeenIt
= Seen
.find(SD
);
289 if (SeenIt
== Seen
.end()) {
290 // Only add non-duplicates
291 NewBases
.push_back(Bases
[i
]);
292 NewPtrs
.push_back(Ptrs
[i
]);
293 NewRelocs
.push_back(Relocs
[i
]);
296 // Duplicate pointer found, note in SSM and move on:
297 SSM
.DuplicateMap
[Ptrs
[i
]] = SeenIt
->second
;
300 assert(Bases
.size() >= NewBases
.size());
301 assert(Ptrs
.size() >= NewPtrs
.size());
302 assert(Relocs
.size() >= NewRelocs
.size());
306 assert(Ptrs
.size() == Bases
.size());
307 assert(Ptrs
.size() == Relocs
.size());
310 /// Extract call from statepoint, lower it and return pointer to the
311 /// call node. Also update NodeMap so that getValue(statepoint) will
312 /// reference lowered call result
313 static std::pair
<SDValue
, SDNode
*> lowerCallFromStatepointLoweringInfo(
314 SelectionDAGBuilder::StatepointLoweringInfo
&SI
,
315 SelectionDAGBuilder
&Builder
, SmallVectorImpl
<SDValue
> &PendingExports
) {
316 SDValue ReturnValue
, CallEndVal
;
317 std::tie(ReturnValue
, CallEndVal
) =
318 Builder
.lowerInvokable(SI
.CLI
, SI
.EHPadBB
);
319 SDNode
*CallEnd
= CallEndVal
.getNode();
321 // Get a call instruction from the call sequence chain. Tail calls are not
322 // allowed. The following code is essentially reverse engineering X86's
325 // We are expecting DAG to have the following form:
327 // ch = eh_label (only in case of invoke statepoint)
328 // ch, glue = callseq_start ch
329 // ch, glue = X86::Call ch, glue
330 // ch, glue = callseq_end ch, glue
331 // get_return_value ch, glue
333 // get_return_value can either be a sequence of CopyFromReg instructions
334 // to grab the return value from the return register(s), or it can be a LOAD
335 // to load a value returned by reference via a stack slot.
337 bool HasDef
= !SI
.CLI
.RetTy
->isVoidTy();
339 if (CallEnd
->getOpcode() == ISD::LOAD
)
340 CallEnd
= CallEnd
->getOperand(0).getNode();
342 while (CallEnd
->getOpcode() == ISD::CopyFromReg
)
343 CallEnd
= CallEnd
->getOperand(0).getNode();
346 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&& "expected!");
347 return std::make_pair(ReturnValue
, CallEnd
->getOperand(0).getNode());
350 /// Spill a value incoming to the statepoint. It might be either part of
352 /// or gcstate. In both cases unconditionally spill it on the stack unless it
353 /// is a null constant. Return pair with first element being frame index
354 /// containing saved value and second element with outgoing chain from the
356 static std::pair
<SDValue
, SDValue
>
357 spillIncomingStatepointValue(SDValue Incoming
, SDValue Chain
,
358 SelectionDAGBuilder
&Builder
) {
359 SDValue Loc
= Builder
.StatepointLowering
.getLocation(Incoming
);
361 // Emit new store if we didn't do it for this ptr before
362 if (!Loc
.getNode()) {
363 Loc
= Builder
.StatepointLowering
.allocateStackSlot(Incoming
.getValueType(),
365 int Index
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
366 // We use TargetFrameIndex so that isel will not select it into LEA
367 Loc
= Builder
.DAG
.getTargetFrameIndex(Index
, Builder
.getFrameIndexTy());
370 // Right now we always allocate spill slots that are of the same
371 // size as the value we're about to spill (the size of spillee can
372 // vary since we spill vectors of pointers too). At some point we
373 // can consider allowing spills of smaller values to larger slots
374 // (i.e. change the '==' in the assert below to a '>=').
375 MachineFrameInfo
&MFI
= Builder
.DAG
.getMachineFunction().getFrameInfo();
376 assert((MFI
.getObjectSize(Index
) * 8) == Incoming
.getValueSizeInBits() &&
377 "Bad spill: stack slot does not match!");
380 Chain
= Builder
.DAG
.getStore(Chain
, Builder
.getCurSDLoc(), Incoming
, Loc
,
381 MachinePointerInfo::getFixedStack(
382 Builder
.DAG
.getMachineFunction(), Index
));
384 Builder
.StatepointLowering
.setLocation(Incoming
, Loc
);
387 assert(Loc
.getNode());
388 return std::make_pair(Loc
, Chain
);
391 /// Lower a single value incoming to a statepoint node. This value can be
392 /// either a deopt value or a gc value, the handling is the same. We special
393 /// case constants and allocas, then fall back to spilling if required.
394 static void lowerIncomingStatepointValue(SDValue Incoming
, bool LiveInOnly
,
395 SmallVectorImpl
<SDValue
> &Ops
,
396 SelectionDAGBuilder
&Builder
) {
397 // Note: We know all of these spills are independent, but don't bother to
398 // exploit that chain wise. DAGCombine will happily do so as needed, so
399 // doing it here would be a small compile time win at most.
400 SDValue Chain
= Builder
.getRoot();
402 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Incoming
)) {
403 // If the original value was a constant, make sure it gets recorded as
404 // such in the stackmap. This is required so that the consumer can
405 // parse any internal format to the deopt state. It also handles null
406 // pointers and other constant pointers in GC states. Note the constant
407 // vectors do not appear to actually hit this path and that anything larger
408 // than an i64 value (not type!) will fail asserts here.
409 pushStackMapConstant(Ops
, Builder
, C
->getSExtValue());
410 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Incoming
)) {
411 // This handles allocas as arguments to the statepoint (this is only
412 // really meaningful for a deopt value. For GC, we'd be trying to
413 // relocate the address of the alloca itself?)
414 assert(Incoming
.getValueType() == Builder
.getFrameIndexTy() &&
415 "Incoming value is a frame index!");
416 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(FI
->getIndex(),
417 Builder
.getFrameIndexTy()));
418 } else if (LiveInOnly
) {
419 // If this value is live in (not live-on-return, or live-through), we can
420 // treat it the same way patchpoint treats it's "live in" values. We'll
421 // end up folding some of these into stack references, but they'll be
422 // handled by the register allocator. Note that we do not have the notion
423 // of a late use so these values might be placed in registers which are
424 // clobbered by the call. This is fine for live-in.
425 Ops
.push_back(Incoming
);
427 // Otherwise, locate a spill slot and explicitly spill it so it
428 // can be found by the runtime later. We currently do not support
429 // tracking values through callee saved registers to their eventual
430 // spill location. This would be a useful optimization, but would
431 // need to be optional since it requires a lot of complexity on the
432 // runtime side which not all would support.
433 auto Res
= spillIncomingStatepointValue(Incoming
, Chain
, Builder
);
434 Ops
.push_back(Res
.first
);
438 Builder
.DAG
.setRoot(Chain
);
441 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
442 /// lowering is described in lowerIncomingStatepointValue. This function is
443 /// responsible for lowering everything in the right position and playing some
444 /// tricks to avoid redundant stack manipulation where possible. On
445 /// completion, 'Ops' will contain ready to use operands for machine code
446 /// statepoint. The chain nodes will have already been created and the DAG root
447 /// will be set to the last value spilled (if any were).
449 lowerStatepointMetaArgs(SmallVectorImpl
<SDValue
> &Ops
,
450 SelectionDAGBuilder::StatepointLoweringInfo
&SI
,
451 SelectionDAGBuilder
&Builder
) {
452 // Lower the deopt and gc arguments for this statepoint. Layout will be:
453 // deopt argument length, deopt arguments.., gc arguments...
455 if (auto *GFI
= Builder
.GFI
) {
456 // Check that each of the gc pointer and bases we've gotten out of the
457 // safepoint is something the strategy thinks might be a pointer (or vector
458 // of pointers) into the GC heap. This is basically just here to help catch
459 // errors during statepoint insertion. TODO: This should actually be in the
460 // Verifier, but we can't get to the GCStrategy from there (yet).
461 GCStrategy
&S
= GFI
->getStrategy();
462 for (const Value
*V
: SI
.Bases
) {
463 auto Opt
= S
.isGCManagedPointer(V
->getType()->getScalarType());
464 if (Opt
.hasValue()) {
465 assert(Opt
.getValue() &&
466 "non gc managed base pointer found in statepoint");
469 for (const Value
*V
: SI
.Ptrs
) {
470 auto Opt
= S
.isGCManagedPointer(V
->getType()->getScalarType());
471 if (Opt
.hasValue()) {
472 assert(Opt
.getValue() &&
473 "non gc managed derived pointer found in statepoint");
476 assert(SI
.Bases
.size() == SI
.Ptrs
.size() && "Pointer without base!");
478 assert(SI
.Bases
.empty() && "No gc specified, so cannot relocate pointers!");
479 assert(SI
.Ptrs
.empty() && "No gc specified, so cannot relocate pointers!");
483 // Figure out what lowering strategy we're going to use for each part
484 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
485 // as "live-through". A "live-through" variable is one which is "live-in",
486 // "live-out", and live throughout the lifetime of the call (i.e. we can find
487 // it from any PC within the transitive callee of the statepoint). In
488 // particular, if the callee spills callee preserved registers we may not
489 // be able to find a value placed in that register during the call. This is
490 // fine for live-out, but not for live-through. If we were willing to make
491 // assumptions about the code generator producing the callee, we could
492 // potentially allow live-through values in callee saved registers.
493 const bool LiveInDeopt
=
494 SI
.StatepointFlags
& (uint64_t)StatepointFlags::DeoptLiveIn
;
496 auto isGCValue
=[&](const Value
*V
) {
497 return is_contained(SI
.Ptrs
, V
) || is_contained(SI
.Bases
, V
);
500 // Before we actually start lowering (and allocating spill slots for values),
501 // reserve any stack slots which we judge to be profitable to reuse for a
502 // particular value. This is purely an optimization over the code below and
503 // doesn't change semantics at all. It is important for performance that we
504 // reserve slots for both deopt and gc values before lowering either.
505 for (const Value
*V
: SI
.DeoptState
) {
506 if (!LiveInDeopt
|| isGCValue(V
))
507 reservePreviousStackSlotForValue(V
, Builder
);
509 for (unsigned i
= 0; i
< SI
.Bases
.size(); ++i
) {
510 reservePreviousStackSlotForValue(SI
.Bases
[i
], Builder
);
511 reservePreviousStackSlotForValue(SI
.Ptrs
[i
], Builder
);
514 // First, prefix the list with the number of unique values to be
515 // lowered. Note that this is the number of *Values* not the
516 // number of SDValues required to lower them.
517 const int NumVMSArgs
= SI
.DeoptState
.size();
518 pushStackMapConstant(Ops
, Builder
, NumVMSArgs
);
520 // The vm state arguments are lowered in an opaque manner. We do not know
521 // what type of values are contained within.
522 for (const Value
*V
: SI
.DeoptState
) {
524 // If this is a function argument at a static frame index, generate it as
526 if (const Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
527 int FI
= Builder
.FuncInfo
.getArgumentFrameIndex(Arg
);
529 Incoming
= Builder
.DAG
.getFrameIndex(FI
, Builder
.getFrameIndexTy());
531 if (!Incoming
.getNode())
532 Incoming
= Builder
.getValue(V
);
533 const bool LiveInValue
= LiveInDeopt
&& !isGCValue(V
);
534 lowerIncomingStatepointValue(Incoming
, LiveInValue
, Ops
, Builder
);
537 // Finally, go ahead and lower all the gc arguments. There's no prefixed
538 // length for this one. After lowering, we'll have the base and pointer
539 // arrays interwoven with each (lowered) base pointer immediately followed by
540 // it's (lowered) derived pointer. i.e
541 // (base[0], ptr[0], base[1], ptr[1], ...)
542 for (unsigned i
= 0; i
< SI
.Bases
.size(); ++i
) {
543 const Value
*Base
= SI
.Bases
[i
];
544 lowerIncomingStatepointValue(Builder
.getValue(Base
), /*LiveInOnly*/ false,
547 const Value
*Ptr
= SI
.Ptrs
[i
];
548 lowerIncomingStatepointValue(Builder
.getValue(Ptr
), /*LiveInOnly*/ false,
552 // If there are any explicit spill slots passed to the statepoint, record
553 // them, but otherwise do not do anything special. These are user provided
554 // allocas and give control over placement to the consumer. In this case,
555 // it is the contents of the slot which may get updated, not the pointer to
557 for (Value
*V
: SI
.GCArgs
) {
558 SDValue Incoming
= Builder
.getValue(V
);
559 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Incoming
)) {
560 // This handles allocas as arguments to the statepoint
561 assert(Incoming
.getValueType() == Builder
.getFrameIndexTy() &&
562 "Incoming value is a frame index!");
563 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(FI
->getIndex(),
564 Builder
.getFrameIndexTy()));
568 // Record computed locations for all lowered values.
569 // This can not be embedded in lowering loops as we need to record *all*
570 // values, while previous loops account only values with unique SDValues.
571 const Instruction
*StatepointInstr
= SI
.StatepointInstr
;
572 auto &SpillMap
= Builder
.FuncInfo
.StatepointSpillMaps
[StatepointInstr
];
574 for (const GCRelocateInst
*Relocate
: SI
.GCRelocates
) {
575 const Value
*V
= Relocate
->getDerivedPtr();
576 SDValue SDV
= Builder
.getValue(V
);
577 SDValue Loc
= Builder
.StatepointLowering
.getLocation(SDV
);
580 SpillMap
.SlotMap
[V
] = cast
<FrameIndexSDNode
>(Loc
)->getIndex();
582 // Record value as visited, but not spilled. This is case for allocas
583 // and constants. For this values we can avoid emitting spill load while
584 // visiting corresponding gc_relocate.
585 // Actually we do not need to record them in this map at all.
586 // We do this only to check that we are not relocating any unvisited
588 SpillMap
.SlotMap
[V
] = None
;
590 // Default llvm mechanisms for exporting values which are used in
591 // different basic blocks does not work for gc relocates.
592 // Note that it would be incorrect to teach llvm that all relocates are
593 // uses of the corresponding values so that it would automatically
594 // export them. Relocates of the spilled values does not use original
596 if (Relocate
->getParent() != StatepointInstr
->getParent())
597 Builder
.ExportFromCurrentBlock(V
);
602 SDValue
SelectionDAGBuilder::LowerAsSTATEPOINT(
603 SelectionDAGBuilder::StatepointLoweringInfo
&SI
) {
604 // The basic scheme here is that information about both the original call and
605 // the safepoint is encoded in the CallInst. We create a temporary call and
606 // lower it, then reverse engineer the calling sequence.
610 StatepointLowering
.startNewStatepoint(*this);
613 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
614 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
615 for (auto *Reloc
: SI
.GCRelocates
)
616 if (Reloc
->getParent() == SI
.StatepointInstr
->getParent())
617 StatepointLowering
.scheduleRelocCall(*Reloc
);
620 // Remove any redundant llvm::Values which map to the same SDValue as another
621 // input. Also has the effect of removing duplicates in the original
622 // llvm::Value input list as well. This is a useful optimization for
623 // reducing the size of the StackMap section. It has no other impact.
624 removeDuplicateGCPtrs(SI
.Bases
, SI
.Ptrs
, SI
.GCRelocates
, *this,
625 FuncInfo
.StatepointSpillMaps
[SI
.StatepointInstr
]);
626 assert(SI
.Bases
.size() == SI
.Ptrs
.size() &&
627 SI
.Ptrs
.size() == SI
.GCRelocates
.size());
629 // Lower statepoint vmstate and gcstate arguments
630 SmallVector
<SDValue
, 10> LoweredMetaArgs
;
631 lowerStatepointMetaArgs(LoweredMetaArgs
, SI
, *this);
633 // Now that we've emitted the spills, we need to update the root so that the
634 // call sequence is ordered correctly.
635 SI
.CLI
.setChain(getRoot());
637 // Get call node, we will replace it later with statepoint
640 std::tie(ReturnVal
, CallNode
) =
641 lowerCallFromStatepointLoweringInfo(SI
, *this, PendingExports
);
643 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
644 // nodes with all the appropriate arguments and return values.
646 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
647 SDValue Chain
= CallNode
->getOperand(0);
650 bool CallHasIncomingGlue
= CallNode
->getGluedNode();
651 if (CallHasIncomingGlue
) {
652 // Glue is always last operand
653 Glue
= CallNode
->getOperand(CallNode
->getNumOperands() - 1);
656 // Build the GC_TRANSITION_START node if necessary.
658 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
659 // order in which they appear in the call to the statepoint intrinsic. If
660 // any of the operands is a pointer-typed, that operand is immediately
661 // followed by a SRCVALUE for the pointer that may be used during lowering
662 // (e.g. to form MachinePointerInfo values for loads/stores).
663 const bool IsGCTransition
=
664 (SI
.StatepointFlags
& (uint64_t)StatepointFlags::GCTransition
) ==
665 (uint64_t)StatepointFlags::GCTransition
;
666 if (IsGCTransition
) {
667 SmallVector
<SDValue
, 8> TSOps
;
670 TSOps
.push_back(Chain
);
672 // Add GC transition arguments
673 for (const Value
*V
: SI
.GCTransitionArgs
) {
674 TSOps
.push_back(getValue(V
));
675 if (V
->getType()->isPointerTy())
676 TSOps
.push_back(DAG
.getSrcValue(V
));
679 // Add glue if necessary
680 if (CallHasIncomingGlue
)
681 TSOps
.push_back(Glue
);
683 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
685 SDValue GCTransitionStart
=
686 DAG
.getNode(ISD::GC_TRANSITION_START
, getCurSDLoc(), NodeTys
, TSOps
);
688 Chain
= GCTransitionStart
.getValue(0);
689 Glue
= GCTransitionStart
.getValue(1);
692 // TODO: Currently, all of these operands are being marked as read/write in
693 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
694 // and flags to be read-only.
695 SmallVector
<SDValue
, 40> Ops
;
697 // Add the <id> and <numBytes> constants.
698 Ops
.push_back(DAG
.getTargetConstant(SI
.ID
, getCurSDLoc(), MVT::i64
));
700 DAG
.getTargetConstant(SI
.NumPatchBytes
, getCurSDLoc(), MVT::i32
));
702 // Calculate and push starting position of vmstate arguments
703 // Get number of arguments incoming directly into call node
704 unsigned NumCallRegArgs
=
705 CallNode
->getNumOperands() - (CallHasIncomingGlue
? 4 : 3);
706 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, getCurSDLoc(), MVT::i32
));
709 SDValue CallTarget
= SDValue(CallNode
->getOperand(1).getNode(), 0);
710 Ops
.push_back(CallTarget
);
712 // Add call arguments
713 // Get position of register mask in the call
714 SDNode::op_iterator RegMaskIt
;
715 if (CallHasIncomingGlue
)
716 RegMaskIt
= CallNode
->op_end() - 2;
718 RegMaskIt
= CallNode
->op_end() - 1;
719 Ops
.insert(Ops
.end(), CallNode
->op_begin() + 2, RegMaskIt
);
721 // Add a constant argument for the calling convention
722 pushStackMapConstant(Ops
, *this, SI
.CLI
.CallConv
);
724 // Add a constant argument for the flags
725 uint64_t Flags
= SI
.StatepointFlags
;
726 assert(((Flags
& ~(uint64_t)StatepointFlags::MaskAll
) == 0) &&
727 "Unknown flag used");
728 pushStackMapConstant(Ops
, *this, Flags
);
730 // Insert all vmstate and gcstate arguments
731 Ops
.insert(Ops
.end(), LoweredMetaArgs
.begin(), LoweredMetaArgs
.end());
733 // Add register mask from call node
734 Ops
.push_back(*RegMaskIt
);
737 Ops
.push_back(Chain
);
739 // Same for the glue, but we add it only if original call had it
743 // Compute return values. Provide a glue output since we consume one as
744 // input. This allows someone else to chain off us as needed.
745 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
747 SDNode
*StatepointMCNode
=
748 DAG
.getMachineNode(TargetOpcode::STATEPOINT
, getCurSDLoc(), NodeTys
, Ops
);
750 SDNode
*SinkNode
= StatepointMCNode
;
752 // Build the GC_TRANSITION_END node if necessary.
754 // See the comment above regarding GC_TRANSITION_START for the layout of
755 // the operands to the GC_TRANSITION_END node.
756 if (IsGCTransition
) {
757 SmallVector
<SDValue
, 8> TEOps
;
760 TEOps
.push_back(SDValue(StatepointMCNode
, 0));
762 // Add GC transition arguments
763 for (const Value
*V
: SI
.GCTransitionArgs
) {
764 TEOps
.push_back(getValue(V
));
765 if (V
->getType()->isPointerTy())
766 TEOps
.push_back(DAG
.getSrcValue(V
));
770 TEOps
.push_back(SDValue(StatepointMCNode
, 1));
772 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
774 SDValue GCTransitionStart
=
775 DAG
.getNode(ISD::GC_TRANSITION_END
, getCurSDLoc(), NodeTys
, TEOps
);
777 SinkNode
= GCTransitionStart
.getNode();
780 // Replace original call
781 DAG
.ReplaceAllUsesWith(CallNode
, SinkNode
); // This may update Root
782 // Remove original call node
783 DAG
.DeleteNode(CallNode
);
785 // DON'T set the root - under the assumption that it's already set past the
786 // inserted node we created.
788 // TODO: A better future implementation would be to emit a single variable
789 // argument, variable return value STATEPOINT node here and then hookup the
790 // return value of each gc.relocate to the respective output of the
791 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
792 // to actually be possible today.
798 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP
,
799 const BasicBlock
*EHPadBB
/*= nullptr*/) {
800 assert(ISP
.getCall()->getCallingConv() != CallingConv::AnyReg
&&
801 "anyregcc is not supported on statepoints!");
804 // If this is a malformed statepoint, report it early to simplify debugging.
805 // This should catch any IR level mistake that's made when constructing or
806 // transforming statepoints.
809 // Check that the associated GCStrategy expects to encounter statepoints.
810 assert(GFI
->getStrategy().useStatepoints() &&
811 "GCStrategy does not expect to encounter statepoints");
814 SDValue ActualCallee
;
816 if (ISP
.getNumPatchBytes() > 0) {
817 // If we've been asked to emit a nop sequence instead of a call instruction
818 // for this statepoint then don't lower the call target, but use a constant
819 // `null` instead. Not lowering the call target lets statepoint clients get
820 // away without providing a physical address for the symbolic call target at
823 const auto &TLI
= DAG
.getTargetLoweringInfo();
824 const auto &DL
= DAG
.getDataLayout();
826 unsigned AS
= ISP
.getCalledValue()->getType()->getPointerAddressSpace();
827 ActualCallee
= DAG
.getConstant(0, getCurSDLoc(), TLI
.getPointerTy(DL
, AS
));
829 ActualCallee
= getValue(ISP
.getCalledValue());
832 StatepointLoweringInfo
SI(DAG
);
833 populateCallLoweringInfo(SI
.CLI
, ISP
.getCall(),
834 ImmutableStatepoint::CallArgsBeginPos
,
835 ISP
.getNumCallArgs(), ActualCallee
,
836 ISP
.getActualReturnType(), false /* IsPatchPoint */);
838 for (const GCRelocateInst
*Relocate
: ISP
.getRelocates()) {
839 SI
.GCRelocates
.push_back(Relocate
);
840 SI
.Bases
.push_back(Relocate
->getBasePtr());
841 SI
.Ptrs
.push_back(Relocate
->getDerivedPtr());
844 SI
.GCArgs
= ArrayRef
<const Use
>(ISP
.gc_args_begin(), ISP
.gc_args_end());
845 SI
.StatepointInstr
= ISP
.getInstruction();
846 SI
.GCTransitionArgs
=
847 ArrayRef
<const Use
>(ISP
.gc_args_begin(), ISP
.gc_args_end());
849 SI
.DeoptState
= ArrayRef
<const Use
>(ISP
.deopt_begin(), ISP
.deopt_end());
850 SI
.StatepointFlags
= ISP
.getFlags();
851 SI
.NumPatchBytes
= ISP
.getNumPatchBytes();
852 SI
.EHPadBB
= EHPadBB
;
854 SDValue ReturnValue
= LowerAsSTATEPOINT(SI
);
856 // Export the result value if needed
857 const GCResultInst
*GCResult
= ISP
.getGCResult();
858 Type
*RetTy
= ISP
.getActualReturnType();
859 if (!RetTy
->isVoidTy() && GCResult
) {
860 if (GCResult
->getParent() != ISP
.getCall()->getParent()) {
861 // Result value will be used in a different basic block so we need to
862 // export it now. Default exporting mechanism will not work here because
863 // statepoint call has a different type than the actual call. It means
864 // that by default llvm will create export register of the wrong type
865 // (always i32 in our case). So instead we need to create export register
866 // with correct type manually.
867 // TODO: To eliminate this problem we can remove gc.result intrinsics
868 // completely and make statepoint call to return a tuple.
869 unsigned Reg
= FuncInfo
.CreateRegs(RetTy
);
870 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
871 DAG
.getDataLayout(), Reg
, RetTy
,
872 ISP
.getCall()->getCallingConv());
873 SDValue Chain
= DAG
.getEntryNode();
875 RFV
.getCopyToRegs(ReturnValue
, DAG
, getCurSDLoc(), Chain
, nullptr);
876 PendingExports
.push_back(Chain
);
877 FuncInfo
.ValueMap
[ISP
.getInstruction()] = Reg
;
879 // Result value will be used in a same basic block. Don't export it or
880 // perform any explicit register copies.
881 // We'll replace the actuall call node shortly. gc_result will grab
883 setValue(ISP
.getInstruction(), ReturnValue
);
886 // The token value is never used from here on, just generate a poison value
887 setValue(ISP
.getInstruction(), DAG
.getIntPtrConstant(-1, getCurSDLoc()));
891 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
892 const CallBase
*Call
, SDValue Callee
, const BasicBlock
*EHPadBB
,
893 bool VarArgDisallowed
, bool ForceVoidReturnTy
) {
894 StatepointLoweringInfo
SI(DAG
);
895 unsigned ArgBeginIndex
= Call
->arg_begin() - Call
->op_begin();
896 populateCallLoweringInfo(
897 SI
.CLI
, Call
, ArgBeginIndex
, Call
->getNumArgOperands(), Callee
,
898 ForceVoidReturnTy
? Type::getVoidTy(*DAG
.getContext()) : Call
->getType(),
900 if (!VarArgDisallowed
)
901 SI
.CLI
.IsVarArg
= Call
->getFunctionType()->isVarArg();
903 auto DeoptBundle
= *Call
->getOperandBundle(LLVMContext::OB_deopt
);
905 unsigned DefaultID
= StatepointDirectives::DeoptBundleStatepointID
;
907 auto SD
= parseStatepointDirectivesFromAttrs(Call
->getAttributes());
908 SI
.ID
= SD
.StatepointID
.getValueOr(DefaultID
);
909 SI
.NumPatchBytes
= SD
.NumPatchBytes
.getValueOr(0);
912 ArrayRef
<const Use
>(DeoptBundle
.Inputs
.begin(), DeoptBundle
.Inputs
.end());
913 SI
.StatepointFlags
= static_cast<uint64_t>(StatepointFlags::None
);
914 SI
.EHPadBB
= EHPadBB
;
916 // NB! The GC arguments are deliberately left empty.
918 if (SDValue ReturnVal
= LowerAsSTATEPOINT(SI
)) {
919 ReturnVal
= lowerRangeToAssertZExt(DAG
, *Call
, ReturnVal
);
920 setValue(Call
, ReturnVal
);
924 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
925 const CallBase
*Call
, SDValue Callee
, const BasicBlock
*EHPadBB
) {
926 LowerCallSiteWithDeoptBundleImpl(Call
, Callee
, EHPadBB
,
927 /* VarArgDisallowed = */ false,
928 /* ForceVoidReturnTy = */ false);
931 void SelectionDAGBuilder::visitGCResult(const GCResultInst
&CI
) {
932 // The result value of the gc_result is simply the result of the actual
933 // call. We've already emitted this, so just grab the value.
934 const Instruction
*I
= CI
.getStatepoint();
936 if (I
->getParent() != CI
.getParent()) {
937 // Statepoint is in different basic block so we should have stored call
938 // result in a virtual register.
939 // We can not use default getValue() functionality to copy value from this
940 // register because statepoint and actual call return types can be
941 // different, and getValue() will use CopyFromReg of the wrong type,
942 // which is always i32 in our case.
943 PointerType
*CalleeType
= cast
<PointerType
>(
944 ImmutableStatepoint(I
).getCalledValue()->getType());
946 cast
<FunctionType
>(CalleeType
->getElementType())->getReturnType();
947 SDValue CopyFromReg
= getCopyFromRegs(I
, RetTy
);
949 assert(CopyFromReg
.getNode());
950 setValue(&CI
, CopyFromReg
);
952 setValue(&CI
, getValue(I
));
956 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst
&Relocate
) {
959 // We skip this check for relocates not in the same basic block as their
960 // statepoint. It would be too expensive to preserve validation info through
961 // different basic blocks.
962 if (Relocate
.getStatepoint()->getParent() == Relocate
.getParent())
963 StatepointLowering
.relocCallVisited(Relocate
);
965 auto *Ty
= Relocate
.getType()->getScalarType();
966 if (auto IsManaged
= GFI
->getStrategy().isGCManagedPointer(Ty
))
967 assert(*IsManaged
&& "Non gc managed pointer relocated!");
970 const Value
*DerivedPtr
= Relocate
.getDerivedPtr();
971 SDValue SD
= getValue(DerivedPtr
);
973 auto &SpillMap
= FuncInfo
.StatepointSpillMaps
[Relocate
.getStatepoint()];
974 auto SlotIt
= SpillMap
.find(DerivedPtr
);
975 assert(SlotIt
!= SpillMap
.end() && "Relocating not lowered gc value");
976 Optional
<int> DerivedPtrLocation
= SlotIt
->second
;
978 // We didn't need to spill these special cases (constants and allocas).
979 // See the handling in spillIncomingValueForStatepoint for detail.
980 if (!DerivedPtrLocation
) {
981 setValue(&Relocate
, SD
);
986 DAG
.getTargetFrameIndex(*DerivedPtrLocation
, getFrameIndexTy());
988 // Note: We know all of these reloads are independent, but don't bother to
989 // exploit that chain wise. DAGCombine will happily do so as needed, so
990 // doing it here would be a small compile time win at most.
991 SDValue Chain
= getRoot();
994 DAG
.getLoad(DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
996 getCurSDLoc(), Chain
, SpillSlot
,
997 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(),
998 *DerivedPtrLocation
));
1000 DAG
.setRoot(SpillLoad
.getValue(1));
1002 assert(SpillLoad
.getNode());
1003 setValue(&Relocate
, SpillLoad
);
1006 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst
*CI
) {
1007 const auto &TLI
= DAG
.getTargetLoweringInfo();
1008 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(RTLIB::DEOPTIMIZE
),
1009 TLI
.getPointerTy(DAG
.getDataLayout()));
1011 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1012 // call. We also do not lower the return value to any virtual register, and
1013 // change the immediately following return to a trap instruction.
1014 LowerCallSiteWithDeoptBundleImpl(CI
, Callee
, /* EHPadBB = */ nullptr,
1015 /* VarArgDisallowed = */ true,
1016 /* ForceVoidReturnTy = */ true);
1019 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1020 // We do not lower the return value from llvm.deoptimize to any virtual
1021 // register, and change the immediately following return to a trap
1023 if (DAG
.getTarget().Options
.TrapUnreachable
)
1025 DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));