Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / ShrinkWrap.cpp
blob3306100792fffecbfdadfcda58aa6339f98f2a78
1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass looks for safe point where the prologue and epilogue can be
10 // inserted.
11 // The safe point for the prologue (resp. epilogue) is called Save
12 // (resp. Restore).
13 // A point is safe for prologue (resp. epilogue) if and only if
14 // it 1) dominates (resp. post-dominates) all the frame related operations and
15 // between 2) two executions of the Save (resp. Restore) point there is an
16 // execution of the Restore (resp. Save) point.
18 // For instance, the following points are safe:
19 // for (int i = 0; i < 10; ++i) {
20 // Save
21 // ...
22 // Restore
23 // }
24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
25 // And the following points are not:
26 // for (int i = 0; i < 10; ++i) {
27 // Save
28 // ...
29 // }
30 // for (int i = 0; i < 10; ++i) {
31 // ...
32 // Restore
33 // }
34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
36 // This pass also ensures that the safe points are 3) cheaper than the regular
37 // entry and exits blocks.
39 // Property #1 is ensured via the use of MachineDominatorTree and
40 // MachinePostDominatorTree.
41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
42 // points must be in the same loop.
43 // Property #3 is ensured via the MachineBlockFrequencyInfo.
45 // If this pass found points matching all these properties, then
46 // MachineFrameInfo is updated with this information.
48 //===----------------------------------------------------------------------===//
50 #include "llvm/ADT/BitVector.h"
51 #include "llvm/ADT/PostOrderIterator.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
58 #include "llvm/CodeGen/MachineDominators.h"
59 #include "llvm/CodeGen/MachineFrameInfo.h"
60 #include "llvm/CodeGen/MachineFunction.h"
61 #include "llvm/CodeGen/MachineFunctionPass.h"
62 #include "llvm/CodeGen/MachineInstr.h"
63 #include "llvm/CodeGen/MachineLoopInfo.h"
64 #include "llvm/CodeGen/MachineOperand.h"
65 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
66 #include "llvm/CodeGen/MachinePostDominators.h"
67 #include "llvm/CodeGen/RegisterClassInfo.h"
68 #include "llvm/CodeGen/RegisterScavenging.h"
69 #include "llvm/CodeGen/TargetFrameLowering.h"
70 #include "llvm/CodeGen/TargetInstrInfo.h"
71 #include "llvm/CodeGen/TargetLowering.h"
72 #include "llvm/CodeGen/TargetRegisterInfo.h"
73 #include "llvm/CodeGen/TargetSubtargetInfo.h"
74 #include "llvm/IR/Attributes.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/MC/MCAsmInfo.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Target/TargetMachine.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <memory>
87 using namespace llvm;
89 #define DEBUG_TYPE "shrink-wrap"
91 STATISTIC(NumFunc, "Number of functions");
92 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
93 STATISTIC(NumCandidatesDropped,
94 "Number of shrink-wrapping candidates dropped because of frequency");
96 static cl::opt<cl::boolOrDefault>
97 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
98 cl::desc("enable the shrink-wrapping pass"));
100 namespace {
102 /// Class to determine where the safe point to insert the
103 /// prologue and epilogue are.
104 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
105 /// shrink-wrapping term for prologue/epilogue placement, this pass
106 /// does not rely on expensive data-flow analysis. Instead we use the
107 /// dominance properties and loop information to decide which point
108 /// are safe for such insertion.
109 class ShrinkWrap : public MachineFunctionPass {
110 /// Hold callee-saved information.
111 RegisterClassInfo RCI;
112 MachineDominatorTree *MDT;
113 MachinePostDominatorTree *MPDT;
115 /// Current safe point found for the prologue.
116 /// The prologue will be inserted before the first instruction
117 /// in this basic block.
118 MachineBasicBlock *Save;
120 /// Current safe point found for the epilogue.
121 /// The epilogue will be inserted before the first terminator instruction
122 /// in this basic block.
123 MachineBasicBlock *Restore;
125 /// Hold the information of the basic block frequency.
126 /// Use to check the profitability of the new points.
127 MachineBlockFrequencyInfo *MBFI;
129 /// Hold the loop information. Used to determine if Save and Restore
130 /// are in the same loop.
131 MachineLoopInfo *MLI;
133 // Emit remarks.
134 MachineOptimizationRemarkEmitter *ORE = nullptr;
136 /// Frequency of the Entry block.
137 uint64_t EntryFreq;
139 /// Current opcode for frame setup.
140 unsigned FrameSetupOpcode;
142 /// Current opcode for frame destroy.
143 unsigned FrameDestroyOpcode;
145 /// Stack pointer register, used by llvm.{savestack,restorestack}
146 unsigned SP;
148 /// Entry block.
149 const MachineBasicBlock *Entry;
151 using SetOfRegs = SmallSetVector<unsigned, 16>;
153 /// Registers that need to be saved for the current function.
154 mutable SetOfRegs CurrentCSRs;
156 /// Current MachineFunction.
157 MachineFunction *MachineFunc;
159 /// Check if \p MI uses or defines a callee-saved register or
160 /// a frame index. If this is the case, this means \p MI must happen
161 /// after Save and before Restore.
162 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
164 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
165 if (CurrentCSRs.empty()) {
166 BitVector SavedRegs;
167 const TargetFrameLowering *TFI =
168 MachineFunc->getSubtarget().getFrameLowering();
170 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
172 for (int Reg = SavedRegs.find_first(); Reg != -1;
173 Reg = SavedRegs.find_next(Reg))
174 CurrentCSRs.insert((unsigned)Reg);
176 return CurrentCSRs;
179 /// Update the Save and Restore points such that \p MBB is in
180 /// the region that is dominated by Save and post-dominated by Restore
181 /// and Save and Restore still match the safe point definition.
182 /// Such point may not exist and Save and/or Restore may be null after
183 /// this call.
184 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
186 /// Initialize the pass for \p MF.
187 void init(MachineFunction &MF) {
188 RCI.runOnMachineFunction(MF);
189 MDT = &getAnalysis<MachineDominatorTree>();
190 MPDT = &getAnalysis<MachinePostDominatorTree>();
191 Save = nullptr;
192 Restore = nullptr;
193 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
194 MLI = &getAnalysis<MachineLoopInfo>();
195 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
196 EntryFreq = MBFI->getEntryFreq();
197 const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
198 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
199 FrameSetupOpcode = TII.getCallFrameSetupOpcode();
200 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
201 SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
202 Entry = &MF.front();
203 CurrentCSRs.clear();
204 MachineFunc = &MF;
206 ++NumFunc;
209 /// Check whether or not Save and Restore points are still interesting for
210 /// shrink-wrapping.
211 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
213 /// Check if shrink wrapping is enabled for this target and function.
214 static bool isShrinkWrapEnabled(const MachineFunction &MF);
216 public:
217 static char ID;
219 ShrinkWrap() : MachineFunctionPass(ID) {
220 initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
223 void getAnalysisUsage(AnalysisUsage &AU) const override {
224 AU.setPreservesAll();
225 AU.addRequired<MachineBlockFrequencyInfo>();
226 AU.addRequired<MachineDominatorTree>();
227 AU.addRequired<MachinePostDominatorTree>();
228 AU.addRequired<MachineLoopInfo>();
229 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
230 MachineFunctionPass::getAnalysisUsage(AU);
233 MachineFunctionProperties getRequiredProperties() const override {
234 return MachineFunctionProperties().set(
235 MachineFunctionProperties::Property::NoVRegs);
238 StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
240 /// Perform the shrink-wrapping analysis and update
241 /// the MachineFrameInfo attached to \p MF with the results.
242 bool runOnMachineFunction(MachineFunction &MF) override;
245 } // end anonymous namespace
247 char ShrinkWrap::ID = 0;
249 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
251 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
252 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
253 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
254 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
255 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
256 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
257 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
259 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
260 RegScavenger *RS) const {
261 if (MI.getOpcode() == FrameSetupOpcode ||
262 MI.getOpcode() == FrameDestroyOpcode) {
263 LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
264 return true;
266 for (const MachineOperand &MO : MI.operands()) {
267 bool UseOrDefCSR = false;
268 if (MO.isReg()) {
269 // Ignore instructions like DBG_VALUE which don't read/def the register.
270 if (!MO.isDef() && !MO.readsReg())
271 continue;
272 unsigned PhysReg = MO.getReg();
273 if (!PhysReg)
274 continue;
275 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
276 "Unallocated register?!");
277 // The stack pointer is not normally described as a callee-saved register
278 // in calling convention definitions, so we need to watch for it
279 // separately. An SP mentioned by a call instruction, we can ignore,
280 // though, as it's harmless and we do not want to effectively disable tail
281 // calls by forcing the restore point to post-dominate them.
282 UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
283 RCI.getLastCalleeSavedAlias(PhysReg);
284 } else if (MO.isRegMask()) {
285 // Check if this regmask clobbers any of the CSRs.
286 for (unsigned Reg : getCurrentCSRs(RS)) {
287 if (MO.clobbersPhysReg(Reg)) {
288 UseOrDefCSR = true;
289 break;
293 // Skip FrameIndex operands in DBG_VALUE instructions.
294 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
295 LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
296 << MO.isFI() << "): " << MI << '\n');
297 return true;
300 return false;
303 /// Helper function to find the immediate (post) dominator.
304 template <typename ListOfBBs, typename DominanceAnalysis>
305 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
306 DominanceAnalysis &Dom) {
307 MachineBasicBlock *IDom = &Block;
308 for (MachineBasicBlock *BB : BBs) {
309 IDom = Dom.findNearestCommonDominator(IDom, BB);
310 if (!IDom)
311 break;
313 if (IDom == &Block)
314 return nullptr;
315 return IDom;
318 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
319 RegScavenger *RS) {
320 // Get rid of the easy cases first.
321 if (!Save)
322 Save = &MBB;
323 else
324 Save = MDT->findNearestCommonDominator(Save, &MBB);
326 if (!Save) {
327 LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
328 return;
331 if (!Restore)
332 Restore = &MBB;
333 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
334 // means the block never returns. If that's the
335 // case, we don't want to call
336 // `findNearestCommonDominator`, which will
337 // return `Restore`.
338 Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
339 else
340 Restore = nullptr; // Abort, we can't find a restore point in this case.
342 // Make sure we would be able to insert the restore code before the
343 // terminator.
344 if (Restore == &MBB) {
345 for (const MachineInstr &Terminator : MBB.terminators()) {
346 if (!useOrDefCSROrFI(Terminator, RS))
347 continue;
348 // One of the terminator needs to happen before the restore point.
349 if (MBB.succ_empty()) {
350 Restore = nullptr; // Abort, we can't find a restore point in this case.
351 break;
353 // Look for a restore point that post-dominates all the successors.
354 // The immediate post-dominator is what we are looking for.
355 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
356 break;
360 if (!Restore) {
361 LLVM_DEBUG(
362 dbgs() << "Restore point needs to be spanned on several blocks\n");
363 return;
366 // Make sure Save and Restore are suitable for shrink-wrapping:
367 // 1. all path from Save needs to lead to Restore before exiting.
368 // 2. all path to Restore needs to go through Save from Entry.
369 // We achieve that by making sure that:
370 // A. Save dominates Restore.
371 // B. Restore post-dominates Save.
372 // C. Save and Restore are in the same loop.
373 bool SaveDominatesRestore = false;
374 bool RestorePostDominatesSave = false;
375 while (Save && Restore &&
376 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
377 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
378 // Post-dominance is not enough in loops to ensure that all uses/defs
379 // are after the prologue and before the epilogue at runtime.
380 // E.g.,
381 // while(1) {
382 // Save
383 // Restore
384 // if (...)
385 // break;
386 // use/def CSRs
387 // }
388 // All the uses/defs of CSRs are dominated by Save and post-dominated
389 // by Restore. However, the CSRs uses are still reachable after
390 // Restore and before Save are executed.
392 // For now, just push the restore/save points outside of loops.
393 // FIXME: Refine the criteria to still find interesting cases
394 // for loops.
395 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
396 // Fix (A).
397 if (!SaveDominatesRestore) {
398 Save = MDT->findNearestCommonDominator(Save, Restore);
399 continue;
401 // Fix (B).
402 if (!RestorePostDominatesSave)
403 Restore = MPDT->findNearestCommonDominator(Restore, Save);
405 // Fix (C).
406 if (Save && Restore &&
407 (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
408 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
409 // Push Save outside of this loop if immediate dominator is different
410 // from save block. If immediate dominator is not different, bail out.
411 Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
412 if (!Save)
413 break;
414 } else {
415 // If the loop does not exit, there is no point in looking
416 // for a post-dominator outside the loop.
417 SmallVector<MachineBasicBlock*, 4> ExitBlocks;
418 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
419 // Push Restore outside of this loop.
420 // Look for the immediate post-dominator of the loop exits.
421 MachineBasicBlock *IPdom = Restore;
422 for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
423 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
424 if (!IPdom)
425 break;
427 // If the immediate post-dominator is not in a less nested loop,
428 // then we are stuck in a program with an infinite loop.
429 // In that case, we will not find a safe point, hence, bail out.
430 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
431 Restore = IPdom;
432 else {
433 Restore = nullptr;
434 break;
441 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
442 StringRef RemarkName, StringRef RemarkMessage,
443 const DiagnosticLocation &Loc,
444 const MachineBasicBlock *MBB) {
445 ORE->emit([&]() {
446 return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
447 << RemarkMessage;
450 LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
451 return false;
454 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
455 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
456 return false;
458 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
460 init(MF);
462 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
463 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
464 // If MF is irreducible, a block may be in a loop without
465 // MachineLoopInfo reporting it. I.e., we may use the
466 // post-dominance property in loops, which lead to incorrect
467 // results. Moreover, we may miss that the prologue and
468 // epilogue are not in the same loop, leading to unbalanced
469 // construction/deconstruction of the stack frame.
470 return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
471 "Irreducible CFGs are not supported yet.",
472 MF.getFunction().getSubprogram(), &MF.front());
475 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
476 std::unique_ptr<RegScavenger> RS(
477 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
479 for (MachineBasicBlock &MBB : MF) {
480 LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
481 << MBB.getName() << '\n');
483 if (MBB.isEHFuncletEntry())
484 return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
485 "EH Funclets are not supported yet.",
486 MBB.front().getDebugLoc(), &MBB);
488 if (MBB.isEHPad()) {
489 // Push the prologue and epilogue outside of
490 // the region that may throw by making sure
491 // that all the landing pads are at least at the
492 // boundary of the save and restore points.
493 // The problem with exceptions is that the throw
494 // is not properly modeled and in particular, a
495 // basic block can jump out from the middle.
496 updateSaveRestorePoints(MBB, RS.get());
497 if (!ArePointsInteresting()) {
498 LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
499 return false;
501 continue;
504 for (const MachineInstr &MI : MBB) {
505 if (!useOrDefCSROrFI(MI, RS.get()))
506 continue;
507 // Save (resp. restore) point must dominate (resp. post dominate)
508 // MI. Look for the proper basic block for those.
509 updateSaveRestorePoints(MBB, RS.get());
510 // If we are at a point where we cannot improve the placement of
511 // save/restore instructions, just give up.
512 if (!ArePointsInteresting()) {
513 LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
514 return false;
516 // No need to look for other instructions, this basic block
517 // will already be part of the handled region.
518 break;
521 if (!ArePointsInteresting()) {
522 // If the points are not interesting at this point, then they must be null
523 // because it means we did not encounter any frame/CSR related code.
524 // Otherwise, we would have returned from the previous loop.
525 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
526 LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
527 return false;
530 LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
531 << '\n');
533 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
534 do {
535 LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
536 << Save->getNumber() << ' ' << Save->getName() << ' '
537 << MBFI->getBlockFreq(Save).getFrequency()
538 << "\nRestore: " << Restore->getNumber() << ' '
539 << Restore->getName() << ' '
540 << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
542 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
543 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
544 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
545 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
546 TFI->canUseAsEpilogue(*Restore)))
547 break;
548 LLVM_DEBUG(
549 dbgs() << "New points are too expensive or invalid for the target\n");
550 MachineBasicBlock *NewBB;
551 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
552 Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
553 if (!Save)
554 break;
555 NewBB = Save;
556 } else {
557 // Restore is expensive.
558 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
559 if (!Restore)
560 break;
561 NewBB = Restore;
563 updateSaveRestorePoints(*NewBB, RS.get());
564 } while (Save && Restore);
566 if (!ArePointsInteresting()) {
567 ++NumCandidatesDropped;
568 return false;
571 LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
572 << Save->getNumber() << ' ' << Save->getName()
573 << "\nRestore: " << Restore->getNumber() << ' '
574 << Restore->getName() << '\n');
576 MachineFrameInfo &MFI = MF.getFrameInfo();
577 MFI.setSavePoint(Save);
578 MFI.setRestorePoint(Restore);
579 ++NumCandidates;
580 return false;
583 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
584 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
586 switch (EnableShrinkWrapOpt) {
587 case cl::BOU_UNSET:
588 return TFI->enableShrinkWrapping(MF) &&
589 // Windows with CFI has some limitations that make it impossible
590 // to use shrink-wrapping.
591 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
592 // Sanitizers look at the value of the stack at the location
593 // of the crash. Since a crash can happen anywhere, the
594 // frame must be lowered before anything else happen for the
595 // sanitizers to be able to get a correct stack frame.
596 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
597 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
598 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
599 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
600 // If EnableShrinkWrap is set, it takes precedence on whatever the
601 // target sets. The rational is that we assume we want to test
602 // something related to shrink-wrapping.
603 case cl::BOU_TRUE:
604 return true;
605 case cl::BOU_FALSE:
606 return false;
608 llvm_unreachable("Invalid shrink-wrapping state");