Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / SplitKit.cpp
blob0bdbdce30d0355c2771f4e65c1fcf1a7f786a068
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
12 //===----------------------------------------------------------------------===//
14 #include "SplitKit.h"
15 #include "LiveRangeCalc.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/LiveRangeEdit.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetOpcodes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/VirtRegMap.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/BlockFrequency.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <limits>
54 #include <tuple>
55 #include <utility>
57 using namespace llvm;
59 #define DEBUG_TYPE "regalloc"
61 STATISTIC(NumFinished, "Number of splits finished");
62 STATISTIC(NumSimple, "Number of splits that were simple");
63 STATISTIC(NumCopies, "Number of copies inserted for splitting");
64 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
65 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
67 //===----------------------------------------------------------------------===//
68 // Last Insert Point Analysis
69 //===----------------------------------------------------------------------===//
71 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
72 unsigned BBNum)
73 : LIS(lis), LastInsertPoint(BBNum) {}
75 SlotIndex
76 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
77 const MachineBasicBlock &MBB) {
78 unsigned Num = MBB.getNumber();
79 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
80 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
82 SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors;
83 for (const MachineBasicBlock *SMBB : MBB.successors())
84 if (SMBB->isEHPad())
85 EHPadSuccessors.push_back(SMBB);
87 // Compute insert points on the first call. The pair is independent of the
88 // current live interval.
89 if (!LIP.first.isValid()) {
90 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
91 if (FirstTerm == MBB.end())
92 LIP.first = MBBEnd;
93 else
94 LIP.first = LIS.getInstructionIndex(*FirstTerm);
96 // If there is a landing pad successor, also find the call instruction.
97 if (EHPadSuccessors.empty())
98 return LIP.first;
99 // There may not be a call instruction (?) in which case we ignore LPad.
100 LIP.second = LIP.first;
101 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
102 I != E;) {
103 --I;
104 if (I->isCall()) {
105 LIP.second = LIS.getInstructionIndex(*I);
106 break;
111 // If CurLI is live into a landing pad successor, move the last insert point
112 // back to the call that may throw.
113 if (!LIP.second)
114 return LIP.first;
116 if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) {
117 return LIS.isLiveInToMBB(CurLI, EHPad);
119 return LIP.first;
121 // Find the value leaving MBB.
122 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
123 if (!VNI)
124 return LIP.first;
126 // If the value leaving MBB was defined after the call in MBB, it can't
127 // really be live-in to the landing pad. This can happen if the landing pad
128 // has a PHI, and this register is undef on the exceptional edge.
129 // <rdar://problem/10664933>
130 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
131 return LIP.first;
133 // Value is properly live-in to the landing pad.
134 // Only allow inserts before the call.
135 return LIP.second;
138 MachineBasicBlock::iterator
139 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
140 MachineBasicBlock &MBB) {
141 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
142 if (LIP == LIS.getMBBEndIdx(&MBB))
143 return MBB.end();
144 return LIS.getInstructionFromIndex(LIP);
147 //===----------------------------------------------------------------------===//
148 // Split Analysis
149 //===----------------------------------------------------------------------===//
151 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
152 const MachineLoopInfo &mli)
153 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
154 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
156 void SplitAnalysis::clear() {
157 UseSlots.clear();
158 UseBlocks.clear();
159 ThroughBlocks.clear();
160 CurLI = nullptr;
161 DidRepairRange = false;
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166 assert(UseSlots.empty() && "Call clear first");
168 // First get all the defs from the interval values. This provides the correct
169 // slots for early clobbers.
170 for (const VNInfo *VNI : CurLI->valnos)
171 if (!VNI->isPHIDef() && !VNI->isUnused())
172 UseSlots.push_back(VNI->def);
174 // Get use slots form the use-def chain.
175 const MachineRegisterInfo &MRI = MF.getRegInfo();
176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
177 if (!MO.isUndef())
178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
180 array_pod_sort(UseSlots.begin(), UseSlots.end());
182 // Remove duplicates, keeping the smaller slot for each instruction.
183 // That is what we want for early clobbers.
184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
185 SlotIndex::isSameInstr),
186 UseSlots.end());
188 // Compute per-live block info.
189 if (!calcLiveBlockInfo()) {
190 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
191 // I am looking at you, RegisterCoalescer!
192 DidRepairRange = true;
193 ++NumRepairs;
194 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
195 const_cast<LiveIntervals&>(LIS)
196 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
197 UseBlocks.clear();
198 ThroughBlocks.clear();
199 bool fixed = calcLiveBlockInfo();
200 (void)fixed;
201 assert(fixed && "Couldn't fix broken live interval");
204 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
205 << UseBlocks.size() << " blocks, through "
206 << NumThroughBlocks << " blocks.\n");
209 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
210 /// where CurLI is live.
211 bool SplitAnalysis::calcLiveBlockInfo() {
212 ThroughBlocks.resize(MF.getNumBlockIDs());
213 NumThroughBlocks = NumGapBlocks = 0;
214 if (CurLI->empty())
215 return true;
217 LiveInterval::const_iterator LVI = CurLI->begin();
218 LiveInterval::const_iterator LVE = CurLI->end();
220 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
221 UseI = UseSlots.begin();
222 UseE = UseSlots.end();
224 // Loop over basic blocks where CurLI is live.
225 MachineFunction::iterator MFI =
226 LIS.getMBBFromIndex(LVI->start)->getIterator();
227 while (true) {
228 BlockInfo BI;
229 BI.MBB = &*MFI;
230 SlotIndex Start, Stop;
231 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
233 // If the block contains no uses, the range must be live through. At one
234 // point, RegisterCoalescer could create dangling ranges that ended
235 // mid-block.
236 if (UseI == UseE || *UseI >= Stop) {
237 ++NumThroughBlocks;
238 ThroughBlocks.set(BI.MBB->getNumber());
239 // The range shouldn't end mid-block if there are no uses. This shouldn't
240 // happen.
241 if (LVI->end < Stop)
242 return false;
243 } else {
244 // This block has uses. Find the first and last uses in the block.
245 BI.FirstInstr = *UseI;
246 assert(BI.FirstInstr >= Start);
247 do ++UseI;
248 while (UseI != UseE && *UseI < Stop);
249 BI.LastInstr = UseI[-1];
250 assert(BI.LastInstr < Stop);
252 // LVI is the first live segment overlapping MBB.
253 BI.LiveIn = LVI->start <= Start;
255 // When not live in, the first use should be a def.
256 if (!BI.LiveIn) {
257 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
258 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
259 BI.FirstDef = BI.FirstInstr;
262 // Look for gaps in the live range.
263 BI.LiveOut = true;
264 while (LVI->end < Stop) {
265 SlotIndex LastStop = LVI->end;
266 if (++LVI == LVE || LVI->start >= Stop) {
267 BI.LiveOut = false;
268 BI.LastInstr = LastStop;
269 break;
272 if (LastStop < LVI->start) {
273 // There is a gap in the live range. Create duplicate entries for the
274 // live-in snippet and the live-out snippet.
275 ++NumGapBlocks;
277 // Push the Live-in part.
278 BI.LiveOut = false;
279 UseBlocks.push_back(BI);
280 UseBlocks.back().LastInstr = LastStop;
282 // Set up BI for the live-out part.
283 BI.LiveIn = false;
284 BI.LiveOut = true;
285 BI.FirstInstr = BI.FirstDef = LVI->start;
288 // A Segment that starts in the middle of the block must be a def.
289 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
290 if (!BI.FirstDef)
291 BI.FirstDef = LVI->start;
294 UseBlocks.push_back(BI);
296 // LVI is now at LVE or LVI->end >= Stop.
297 if (LVI == LVE)
298 break;
301 // Live segment ends exactly at Stop. Move to the next segment.
302 if (LVI->end == Stop && ++LVI == LVE)
303 break;
305 // Pick the next basic block.
306 if (LVI->start < Stop)
307 ++MFI;
308 else
309 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
312 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
313 return true;
316 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
317 if (cli->empty())
318 return 0;
319 LiveInterval *li = const_cast<LiveInterval*>(cli);
320 LiveInterval::iterator LVI = li->begin();
321 LiveInterval::iterator LVE = li->end();
322 unsigned Count = 0;
324 // Loop over basic blocks where li is live.
325 MachineFunction::const_iterator MFI =
326 LIS.getMBBFromIndex(LVI->start)->getIterator();
327 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
328 while (true) {
329 ++Count;
330 LVI = li->advanceTo(LVI, Stop);
331 if (LVI == LVE)
332 return Count;
333 do {
334 ++MFI;
335 Stop = LIS.getMBBEndIdx(&*MFI);
336 } while (Stop <= LVI->start);
340 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
341 unsigned OrigReg = VRM.getOriginal(CurLI->reg);
342 const LiveInterval &Orig = LIS.getInterval(OrigReg);
343 assert(!Orig.empty() && "Splitting empty interval?");
344 LiveInterval::const_iterator I = Orig.find(Idx);
346 // Range containing Idx should begin at Idx.
347 if (I != Orig.end() && I->start <= Idx)
348 return I->start == Idx;
350 // Range does not contain Idx, previous must end at Idx.
351 return I != Orig.begin() && (--I)->end == Idx;
354 void SplitAnalysis::analyze(const LiveInterval *li) {
355 clear();
356 CurLI = li;
357 analyzeUses();
360 //===----------------------------------------------------------------------===//
361 // Split Editor
362 //===----------------------------------------------------------------------===//
364 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
365 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
366 LiveIntervals &lis, VirtRegMap &vrm,
367 MachineDominatorTree &mdt,
368 MachineBlockFrequencyInfo &mbfi)
369 : SA(sa), AA(aa), LIS(lis), VRM(vrm),
370 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
371 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
372 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
373 MBFI(mbfi), RegAssign(Allocator) {}
375 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
376 Edit = &LRE;
377 SpillMode = SM;
378 OpenIdx = 0;
379 RegAssign.clear();
380 Values.clear();
382 // Reset the LiveRangeCalc instances needed for this spill mode.
383 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
384 &LIS.getVNInfoAllocator());
385 if (SpillMode)
386 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
387 &LIS.getVNInfoAllocator());
389 // We don't need an AliasAnalysis since we will only be performing
390 // cheap-as-a-copy remats anyway.
391 Edit->anyRematerializable(nullptr);
394 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
395 LLVM_DUMP_METHOD void SplitEditor::dump() const {
396 if (RegAssign.empty()) {
397 dbgs() << " empty\n";
398 return;
401 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
402 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
403 dbgs() << '\n';
405 #endif
407 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
408 LiveInterval &LI) {
409 for (LiveInterval::SubRange &S : LI.subranges())
410 if (S.LaneMask == LM)
411 return S;
412 llvm_unreachable("SubRange for this mask not found");
415 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
416 if (!LI.hasSubRanges()) {
417 LI.createDeadDef(VNI);
418 return;
421 SlotIndex Def = VNI->def;
422 if (Original) {
423 // If we are transferring a def from the original interval, make sure
424 // to only update the subranges for which the original subranges had
425 // a def at this location.
426 for (LiveInterval::SubRange &S : LI.subranges()) {
427 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
428 VNInfo *PV = PS.getVNInfoAt(Def);
429 if (PV != nullptr && PV->def == Def)
430 S.createDeadDef(Def, LIS.getVNInfoAllocator());
432 } else {
433 // This is a new def: either from rematerialization, or from an inserted
434 // copy. Since rematerialization can regenerate a definition of a sub-
435 // register, we need to check which subranges need to be updated.
436 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
437 assert(DefMI != nullptr);
438 LaneBitmask LM;
439 for (const MachineOperand &DefOp : DefMI->defs()) {
440 unsigned R = DefOp.getReg();
441 if (R != LI.reg)
442 continue;
443 if (unsigned SR = DefOp.getSubReg())
444 LM |= TRI.getSubRegIndexLaneMask(SR);
445 else {
446 LM = MRI.getMaxLaneMaskForVReg(R);
447 break;
450 for (LiveInterval::SubRange &S : LI.subranges())
451 if ((S.LaneMask & LM).any())
452 S.createDeadDef(Def, LIS.getVNInfoAllocator());
456 VNInfo *SplitEditor::defValue(unsigned RegIdx,
457 const VNInfo *ParentVNI,
458 SlotIndex Idx,
459 bool Original) {
460 assert(ParentVNI && "Mapping NULL value");
461 assert(Idx.isValid() && "Invalid SlotIndex");
462 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
463 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
465 // Create a new value.
466 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
468 bool Force = LI->hasSubRanges();
469 ValueForcePair FP(Force ? nullptr : VNI, Force);
470 // Use insert for lookup, so we can add missing values with a second lookup.
471 std::pair<ValueMap::iterator, bool> InsP =
472 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
474 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
475 // forced. Keep it as a simple def without any liveness.
476 if (!Force && InsP.second)
477 return VNI;
479 // If the previous value was a simple mapping, add liveness for it now.
480 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
481 addDeadDef(*LI, OldVNI, Original);
483 // No longer a simple mapping. Switch to a complex mapping. If the
484 // interval has subranges, make it a forced mapping.
485 InsP.first->second = ValueForcePair(nullptr, Force);
488 // This is a complex mapping, add liveness for VNI
489 addDeadDef(*LI, VNI, Original);
490 return VNI;
493 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
494 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
495 VNInfo *VNI = VFP.getPointer();
497 // ParentVNI was either unmapped or already complex mapped. Either way, just
498 // set the force bit.
499 if (!VNI) {
500 VFP.setInt(true);
501 return;
504 // This was previously a single mapping. Make sure the old def is represented
505 // by a trivial live range.
506 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
508 // Mark as complex mapped, forced.
509 VFP = ValueForcePair(nullptr, true);
512 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
513 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
514 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
515 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
516 bool FirstCopy = !Def.isValid();
517 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
518 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
519 | getInternalReadRegState(!FirstCopy), SubIdx)
520 .addReg(FromReg, 0, SubIdx);
522 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
523 if (FirstCopy) {
524 SlotIndexes &Indexes = *LIS.getSlotIndexes();
525 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
526 } else {
527 CopyMI->bundleWithPred();
529 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
530 DestLI.refineSubRanges(Allocator, LaneMask,
531 [Def, &Allocator](LiveInterval::SubRange& SR) {
532 SR.createDeadDef(Def, Allocator);
534 return Def;
537 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
538 LaneBitmask LaneMask, MachineBasicBlock &MBB,
539 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
540 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
541 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
542 // The full vreg is copied.
543 MachineInstr *CopyMI =
544 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
545 SlotIndexes &Indexes = *LIS.getSlotIndexes();
546 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
549 // Only a subset of lanes needs to be copied. The following is a simple
550 // heuristic to construct a sequence of COPYs. We could add a target
551 // specific callback if this turns out to be suboptimal.
552 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
554 // First pass: Try to find a perfectly matching subregister index. If none
555 // exists find the one covering the most lanemask bits.
556 SmallVector<unsigned, 8> PossibleIndexes;
557 unsigned BestIdx = 0;
558 unsigned BestCover = 0;
559 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
560 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
561 for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
562 // Is this index even compatible with the given class?
563 if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
564 continue;
565 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
566 // Early exit if we found a perfect match.
567 if (SubRegMask == LaneMask) {
568 BestIdx = Idx;
569 break;
572 // The index must not cover any lanes outside \p LaneMask.
573 if ((SubRegMask & ~LaneMask).any())
574 continue;
576 unsigned PopCount = SubRegMask.getNumLanes();
577 PossibleIndexes.push_back(Idx);
578 if (PopCount > BestCover) {
579 BestCover = PopCount;
580 BestIdx = Idx;
584 // Abort if we cannot possibly implement the COPY with the given indexes.
585 if (BestIdx == 0)
586 report_fatal_error("Impossible to implement partial COPY");
588 SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
589 BestIdx, DestLI, Late, SlotIndex());
591 // Greedy heuristic: Keep iterating keeping the best covering subreg index
592 // each time.
593 LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
594 while (LanesLeft.any()) {
595 unsigned BestIdx = 0;
596 int BestCover = std::numeric_limits<int>::min();
597 for (unsigned Idx : PossibleIndexes) {
598 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
599 // Early exit if we found a perfect match.
600 if (SubRegMask == LanesLeft) {
601 BestIdx = Idx;
602 break;
605 // Try to cover as much of the remaining lanes as possible but
606 // as few of the already covered lanes as possible.
607 int Cover = (SubRegMask & LanesLeft).getNumLanes()
608 - (SubRegMask & ~LanesLeft).getNumLanes();
609 if (Cover > BestCover) {
610 BestCover = Cover;
611 BestIdx = Idx;
615 if (BestIdx == 0)
616 report_fatal_error("Impossible to implement partial COPY");
618 buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
619 DestLI, Late, Def);
620 LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
623 return Def;
626 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
627 VNInfo *ParentVNI,
628 SlotIndex UseIdx,
629 MachineBasicBlock &MBB,
630 MachineBasicBlock::iterator I) {
631 SlotIndex Def;
632 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
634 // We may be trying to avoid interference that ends at a deleted instruction,
635 // so always begin RegIdx 0 early and all others late.
636 bool Late = RegIdx != 0;
638 // Attempt cheap-as-a-copy rematerialization.
639 unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
640 LiveInterval &OrigLI = LIS.getInterval(Original);
641 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
643 unsigned Reg = LI->reg;
644 bool DidRemat = false;
645 if (OrigVNI) {
646 LiveRangeEdit::Remat RM(ParentVNI);
647 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
648 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
649 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
650 ++NumRemats;
651 DidRemat = true;
654 if (!DidRemat) {
655 LaneBitmask LaneMask;
656 if (LI->hasSubRanges()) {
657 LaneMask = LaneBitmask::getNone();
658 for (LiveInterval::SubRange &S : LI->subranges())
659 LaneMask |= S.LaneMask;
660 } else {
661 LaneMask = LaneBitmask::getAll();
664 ++NumCopies;
665 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
668 // Define the value in Reg.
669 return defValue(RegIdx, ParentVNI, Def, false);
672 /// Create a new virtual register and live interval.
673 unsigned SplitEditor::openIntv() {
674 // Create the complement as index 0.
675 if (Edit->empty())
676 Edit->createEmptyInterval();
678 // Create the open interval.
679 OpenIdx = Edit->size();
680 Edit->createEmptyInterval();
681 return OpenIdx;
684 void SplitEditor::selectIntv(unsigned Idx) {
685 assert(Idx != 0 && "Cannot select the complement interval");
686 assert(Idx < Edit->size() && "Can only select previously opened interval");
687 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
688 OpenIdx = Idx;
691 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
692 assert(OpenIdx && "openIntv not called before enterIntvBefore");
693 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
694 Idx = Idx.getBaseIndex();
695 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
696 if (!ParentVNI) {
697 LLVM_DEBUG(dbgs() << ": not live\n");
698 return Idx;
700 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
701 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
702 assert(MI && "enterIntvBefore called with invalid index");
704 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
705 return VNI->def;
708 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
709 assert(OpenIdx && "openIntv not called before enterIntvAfter");
710 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
711 Idx = Idx.getBoundaryIndex();
712 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
713 if (!ParentVNI) {
714 LLVM_DEBUG(dbgs() << ": not live\n");
715 return Idx;
717 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
718 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
719 assert(MI && "enterIntvAfter called with invalid index");
721 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
722 std::next(MachineBasicBlock::iterator(MI)));
723 return VNI->def;
726 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
727 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
728 SlotIndex End = LIS.getMBBEndIdx(&MBB);
729 SlotIndex Last = End.getPrevSlot();
730 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
731 << Last);
732 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
733 if (!ParentVNI) {
734 LLVM_DEBUG(dbgs() << ": not live\n");
735 return End;
737 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
738 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
739 SA.getLastSplitPointIter(&MBB));
740 RegAssign.insert(VNI->def, End, OpenIdx);
741 LLVM_DEBUG(dump());
742 return VNI->def;
745 /// useIntv - indicate that all instructions in MBB should use OpenLI.
746 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
747 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
750 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
751 assert(OpenIdx && "openIntv not called before useIntv");
752 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
753 RegAssign.insert(Start, End, OpenIdx);
754 LLVM_DEBUG(dump());
757 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
758 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
759 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
761 // The interval must be live beyond the instruction at Idx.
762 SlotIndex Boundary = Idx.getBoundaryIndex();
763 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
764 if (!ParentVNI) {
765 LLVM_DEBUG(dbgs() << ": not live\n");
766 return Boundary.getNextSlot();
768 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
769 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
770 assert(MI && "No instruction at index");
772 // In spill mode, make live ranges as short as possible by inserting the copy
773 // before MI. This is only possible if that instruction doesn't redefine the
774 // value. The inserted COPY is not a kill, and we don't need to recompute
775 // the source live range. The spiller also won't try to hoist this copy.
776 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
777 MI->readsVirtualRegister(Edit->getReg())) {
778 forceRecompute(0, *ParentVNI);
779 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
780 return Idx;
783 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
784 std::next(MachineBasicBlock::iterator(MI)));
785 return VNI->def;
788 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
789 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
790 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
792 // The interval must be live into the instruction at Idx.
793 Idx = Idx.getBaseIndex();
794 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
795 if (!ParentVNI) {
796 LLVM_DEBUG(dbgs() << ": not live\n");
797 return Idx.getNextSlot();
799 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
801 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
802 assert(MI && "No instruction at index");
803 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
804 return VNI->def;
807 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
808 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
809 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
810 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
811 << Start);
813 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
814 if (!ParentVNI) {
815 LLVM_DEBUG(dbgs() << ": not live\n");
816 return Start;
819 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
820 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
821 RegAssign.insert(Start, VNI->def, OpenIdx);
822 LLVM_DEBUG(dump());
823 return VNI->def;
826 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
827 assert(OpenIdx && "openIntv not called before overlapIntv");
828 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
829 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
830 "Parent changes value in extended range");
831 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
832 "Range cannot span basic blocks");
834 // The complement interval will be extended as needed by LRCalc.extend().
835 if (ParentVNI)
836 forceRecompute(0, *ParentVNI);
837 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
838 RegAssign.insert(Start, End, OpenIdx);
839 LLVM_DEBUG(dump());
842 //===----------------------------------------------------------------------===//
843 // Spill modes
844 //===----------------------------------------------------------------------===//
846 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
847 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
848 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
849 RegAssignMap::iterator AssignI;
850 AssignI.setMap(RegAssign);
852 for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
853 SlotIndex Def = Copies[i]->def;
854 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
855 assert(MI && "No instruction for back-copy");
857 MachineBasicBlock *MBB = MI->getParent();
858 MachineBasicBlock::iterator MBBI(MI);
859 bool AtBegin;
860 do AtBegin = MBBI == MBB->begin();
861 while (!AtBegin && (--MBBI)->isDebugInstr());
863 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
864 LIS.removeVRegDefAt(*LI, Def);
865 LIS.RemoveMachineInstrFromMaps(*MI);
866 MI->eraseFromParent();
868 // Adjust RegAssign if a register assignment is killed at Def. We want to
869 // avoid calculating the live range of the source register if possible.
870 AssignI.find(Def.getPrevSlot());
871 if (!AssignI.valid() || AssignI.start() >= Def)
872 continue;
873 // If MI doesn't kill the assigned register, just leave it.
874 if (AssignI.stop() != Def)
875 continue;
876 unsigned RegIdx = AssignI.value();
877 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
878 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
879 << '\n');
880 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
881 } else {
882 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
883 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
884 AssignI.setStop(Kill);
889 MachineBasicBlock*
890 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
891 MachineBasicBlock *DefMBB) {
892 if (MBB == DefMBB)
893 return MBB;
894 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
896 const MachineLoopInfo &Loops = SA.Loops;
897 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
898 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
900 // Best candidate so far.
901 MachineBasicBlock *BestMBB = MBB;
902 unsigned BestDepth = std::numeric_limits<unsigned>::max();
904 while (true) {
905 const MachineLoop *Loop = Loops.getLoopFor(MBB);
907 // MBB isn't in a loop, it doesn't get any better. All dominators have a
908 // higher frequency by definition.
909 if (!Loop) {
910 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
911 << " dominates " << printMBBReference(*MBB)
912 << " at depth 0\n");
913 return MBB;
916 // We'll never be able to exit the DefLoop.
917 if (Loop == DefLoop) {
918 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
919 << " dominates " << printMBBReference(*MBB)
920 << " in the same loop\n");
921 return MBB;
924 // Least busy dominator seen so far.
925 unsigned Depth = Loop->getLoopDepth();
926 if (Depth < BestDepth) {
927 BestMBB = MBB;
928 BestDepth = Depth;
929 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
930 << " dominates " << printMBBReference(*MBB)
931 << " at depth " << Depth << '\n');
934 // Leave loop by going to the immediate dominator of the loop header.
935 // This is a bigger stride than simply walking up the dominator tree.
936 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
938 // Too far up the dominator tree?
939 if (!IDom || !MDT.dominates(DefDomNode, IDom))
940 return BestMBB;
942 MBB = IDom->getBlock();
946 void SplitEditor::computeRedundantBackCopies(
947 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
948 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
949 LiveInterval *Parent = &Edit->getParent();
950 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
951 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
953 // Aggregate VNIs having the same value as ParentVNI.
954 for (VNInfo *VNI : LI->valnos) {
955 if (VNI->isUnused())
956 continue;
957 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
958 EqualVNs[ParentVNI->id].insert(VNI);
961 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
962 // redundant VNIs to BackCopies.
963 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
964 VNInfo *ParentVNI = Parent->getValNumInfo(i);
965 if (!NotToHoistSet.count(ParentVNI->id))
966 continue;
967 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
968 SmallPtrSetIterator<VNInfo *> It2 = It1;
969 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
970 It2 = It1;
971 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
972 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
973 continue;
975 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
976 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
977 if (MBB1 == MBB2) {
978 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
979 } else if (MDT.dominates(MBB1, MBB2)) {
980 DominatedVNIs.insert(*It2);
981 } else if (MDT.dominates(MBB2, MBB1)) {
982 DominatedVNIs.insert(*It1);
986 if (!DominatedVNIs.empty()) {
987 forceRecompute(0, *ParentVNI);
988 for (auto VNI : DominatedVNIs) {
989 BackCopies.push_back(VNI);
991 DominatedVNIs.clear();
996 /// For SM_Size mode, find a common dominator for all the back-copies for
997 /// the same ParentVNI and hoist the backcopies to the dominator BB.
998 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
999 /// to do the hoisting, simply remove the dominated backcopies for the same
1000 /// ParentVNI.
1001 void SplitEditor::hoistCopies() {
1002 // Get the complement interval, always RegIdx 0.
1003 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1004 LiveInterval *Parent = &Edit->getParent();
1006 // Track the nearest common dominator for all back-copies for each ParentVNI,
1007 // indexed by ParentVNI->id.
1008 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1009 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1010 // The total cost of all the back-copies for each ParentVNI.
1011 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1012 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1013 // for Speed.
1014 DenseSet<unsigned> NotToHoistSet;
1016 // Find the nearest common dominator for parent values with multiple
1017 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1018 for (VNInfo *VNI : LI->valnos) {
1019 if (VNI->isUnused())
1020 continue;
1021 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1022 assert(ParentVNI && "Parent not live at complement def");
1024 // Don't hoist remats. The complement is probably going to disappear
1025 // completely anyway.
1026 if (Edit->didRematerialize(ParentVNI))
1027 continue;
1029 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1031 DomPair &Dom = NearestDom[ParentVNI->id];
1033 // Keep directly defined parent values. This is either a PHI or an
1034 // instruction in the complement range. All other copies of ParentVNI
1035 // should be eliminated.
1036 if (VNI->def == ParentVNI->def) {
1037 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1038 Dom = DomPair(ValMBB, VNI->def);
1039 continue;
1041 // Skip the singly mapped values. There is nothing to gain from hoisting a
1042 // single back-copy.
1043 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1044 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1045 continue;
1048 if (!Dom.first) {
1049 // First time we see ParentVNI. VNI dominates itself.
1050 Dom = DomPair(ValMBB, VNI->def);
1051 } else if (Dom.first == ValMBB) {
1052 // Two defs in the same block. Pick the earlier def.
1053 if (!Dom.second.isValid() || VNI->def < Dom.second)
1054 Dom.second = VNI->def;
1055 } else {
1056 // Different basic blocks. Check if one dominates.
1057 MachineBasicBlock *Near =
1058 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1059 if (Near == ValMBB)
1060 // Def ValMBB dominates.
1061 Dom = DomPair(ValMBB, VNI->def);
1062 else if (Near != Dom.first)
1063 // None dominate. Hoist to common dominator, need new def.
1064 Dom = DomPair(Near, SlotIndex());
1065 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1068 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1069 << VNI->def << " for parent " << ParentVNI->id << '@'
1070 << ParentVNI->def << " hoist to "
1071 << printMBBReference(*Dom.first) << ' ' << Dom.second
1072 << '\n');
1075 // Insert the hoisted copies.
1076 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1077 DomPair &Dom = NearestDom[i];
1078 if (!Dom.first || Dom.second.isValid())
1079 continue;
1080 // This value needs a hoisted copy inserted at the end of Dom.first.
1081 VNInfo *ParentVNI = Parent->getValNumInfo(i);
1082 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1083 // Get a less loopy dominator than Dom.first.
1084 Dom.first = findShallowDominator(Dom.first, DefMBB);
1085 if (SpillMode == SM_Speed &&
1086 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1087 NotToHoistSet.insert(ParentVNI->id);
1088 continue;
1090 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1091 Dom.second =
1092 defFromParent(0, ParentVNI, Last, *Dom.first,
1093 SA.getLastSplitPointIter(Dom.first))->def;
1096 // Remove redundant back-copies that are now known to be dominated by another
1097 // def with the same value.
1098 SmallVector<VNInfo*, 8> BackCopies;
1099 for (VNInfo *VNI : LI->valnos) {
1100 if (VNI->isUnused())
1101 continue;
1102 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1103 const DomPair &Dom = NearestDom[ParentVNI->id];
1104 if (!Dom.first || Dom.second == VNI->def ||
1105 NotToHoistSet.count(ParentVNI->id))
1106 continue;
1107 BackCopies.push_back(VNI);
1108 forceRecompute(0, *ParentVNI);
1111 // If it is not beneficial to hoist all the BackCopies, simply remove
1112 // redundant BackCopies in speed mode.
1113 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1114 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1116 removeBackCopies(BackCopies);
1119 /// transferValues - Transfer all possible values to the new live ranges.
1120 /// Values that were rematerialized are left alone, they need LRCalc.extend().
1121 bool SplitEditor::transferValues() {
1122 bool Skipped = false;
1123 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1124 for (const LiveRange::Segment &S : Edit->getParent()) {
1125 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1126 VNInfo *ParentVNI = S.valno;
1127 // RegAssign has holes where RegIdx 0 should be used.
1128 SlotIndex Start = S.start;
1129 AssignI.advanceTo(Start);
1130 do {
1131 unsigned RegIdx;
1132 SlotIndex End = S.end;
1133 if (!AssignI.valid()) {
1134 RegIdx = 0;
1135 } else if (AssignI.start() <= Start) {
1136 RegIdx = AssignI.value();
1137 if (AssignI.stop() < End) {
1138 End = AssignI.stop();
1139 ++AssignI;
1141 } else {
1142 RegIdx = 0;
1143 End = std::min(End, AssignI.start());
1146 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1147 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1148 << printReg(Edit->get(RegIdx)) << ')');
1149 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1151 // Check for a simply defined value that can be blitted directly.
1152 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1153 if (VNInfo *VNI = VFP.getPointer()) {
1154 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1155 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1156 Start = End;
1157 continue;
1160 // Skip values with forced recomputation.
1161 if (VFP.getInt()) {
1162 LLVM_DEBUG(dbgs() << "(recalc)");
1163 Skipped = true;
1164 Start = End;
1165 continue;
1168 LiveRangeCalc &LRC = getLRCalc(RegIdx);
1170 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1171 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1172 // LiveInBlocks.
1173 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1174 SlotIndex BlockStart, BlockEnd;
1175 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1177 // The first block may be live-in, or it may have its own def.
1178 if (Start != BlockStart) {
1179 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1180 assert(VNI && "Missing def for complex mapped value");
1181 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1182 // MBB has its own def. Is it also live-out?
1183 if (BlockEnd <= End)
1184 LRC.setLiveOutValue(&*MBB, VNI);
1186 // Skip to the next block for live-in.
1187 ++MBB;
1188 BlockStart = BlockEnd;
1191 // Handle the live-in blocks covered by [Start;End).
1192 assert(Start <= BlockStart && "Expected live-in block");
1193 while (BlockStart < End) {
1194 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1195 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1196 if (BlockStart == ParentVNI->def) {
1197 // This block has the def of a parent PHI, so it isn't live-in.
1198 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1199 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1200 assert(VNI && "Missing def for complex mapped parent PHI");
1201 if (End >= BlockEnd)
1202 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1203 } else {
1204 // This block needs a live-in value. The last block covered may not
1205 // be live-out.
1206 if (End < BlockEnd)
1207 LRC.addLiveInBlock(LI, MDT[&*MBB], End);
1208 else {
1209 // Live-through, and we don't know the value.
1210 LRC.addLiveInBlock(LI, MDT[&*MBB]);
1211 LRC.setLiveOutValue(&*MBB, nullptr);
1214 BlockStart = BlockEnd;
1215 ++MBB;
1217 Start = End;
1218 } while (Start != S.end);
1219 LLVM_DEBUG(dbgs() << '\n');
1222 LRCalc[0].calculateValues();
1223 if (SpillMode)
1224 LRCalc[1].calculateValues();
1226 return Skipped;
1229 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1230 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1231 if (Seg == nullptr)
1232 return true;
1233 if (Seg->end != Def.getDeadSlot())
1234 return false;
1235 // This is a dead PHI. Remove it.
1236 LR.removeSegment(*Seg, true);
1237 return true;
1240 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
1241 LiveRange &LR, LaneBitmask LM,
1242 ArrayRef<SlotIndex> Undefs) {
1243 for (MachineBasicBlock *P : B.predecessors()) {
1244 SlotIndex End = LIS.getMBBEndIdx(P);
1245 SlotIndex LastUse = End.getPrevSlot();
1246 // The predecessor may not have a live-out value. That is OK, like an
1247 // undef PHI operand.
1248 LiveInterval &PLI = Edit->getParent();
1249 // Need the cast because the inputs to ?: would otherwise be deemed
1250 // "incompatible": SubRange vs LiveInterval.
1251 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
1252 : static_cast<LiveRange&>(PLI);
1253 if (PSR.liveAt(LastUse))
1254 LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
1258 void SplitEditor::extendPHIKillRanges() {
1259 // Extend live ranges to be live-out for successor PHI values.
1261 // Visit each PHI def slot in the parent live interval. If the def is dead,
1262 // remove it. Otherwise, extend the live interval to reach the end indexes
1263 // of all predecessor blocks.
1265 LiveInterval &ParentLI = Edit->getParent();
1266 for (const VNInfo *V : ParentLI.valnos) {
1267 if (V->isUnused() || !V->isPHIDef())
1268 continue;
1270 unsigned RegIdx = RegAssign.lookup(V->def);
1271 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1272 LiveRangeCalc &LRC = getLRCalc(RegIdx);
1273 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1274 if (!removeDeadSegment(V->def, LI))
1275 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1278 SmallVector<SlotIndex, 4> Undefs;
1279 LiveRangeCalc SubLRC;
1281 for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1282 for (const VNInfo *V : PS.valnos) {
1283 if (V->isUnused() || !V->isPHIDef())
1284 continue;
1285 unsigned RegIdx = RegAssign.lookup(V->def);
1286 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1287 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
1288 if (removeDeadSegment(V->def, S))
1289 continue;
1291 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1292 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1293 &LIS.getVNInfoAllocator());
1294 Undefs.clear();
1295 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1296 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
1301 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1302 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1303 struct ExtPoint {
1304 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1305 : MO(O), RegIdx(R), Next(N) {}
1307 MachineOperand MO;
1308 unsigned RegIdx;
1309 SlotIndex Next;
1312 SmallVector<ExtPoint,4> ExtPoints;
1314 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1315 RE = MRI.reg_end(); RI != RE;) {
1316 MachineOperand &MO = *RI;
1317 MachineInstr *MI = MO.getParent();
1318 ++RI;
1319 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1320 if (MI->isDebugValue()) {
1321 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1322 MO.setReg(0);
1323 continue;
1326 // <undef> operands don't really read the register, so it doesn't matter
1327 // which register we choose. When the use operand is tied to a def, we must
1328 // use the same register as the def, so just do that always.
1329 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1330 if (MO.isDef() || MO.isUndef())
1331 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1333 // Rewrite to the mapped register at Idx.
1334 unsigned RegIdx = RegAssign.lookup(Idx);
1335 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1336 MO.setReg(LI.reg);
1337 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1338 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1340 // Extend liveness to Idx if the instruction reads reg.
1341 if (!ExtendRanges || MO.isUndef())
1342 continue;
1344 // Skip instructions that don't read Reg.
1345 if (MO.isDef()) {
1346 if (!MO.getSubReg() && !MO.isEarlyClobber())
1347 continue;
1348 // We may want to extend a live range for a partial redef, or for a use
1349 // tied to an early clobber.
1350 Idx = Idx.getPrevSlot();
1351 if (!Edit->getParent().liveAt(Idx))
1352 continue;
1353 } else
1354 Idx = Idx.getRegSlot(true);
1356 SlotIndex Next = Idx.getNextSlot();
1357 if (LI.hasSubRanges()) {
1358 // We have to delay extending subranges until we have seen all operands
1359 // defining the register. This is because a <def,read-undef> operand
1360 // will create an "undef" point, and we cannot extend any subranges
1361 // until all of them have been accounted for.
1362 if (MO.isUse())
1363 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1364 } else {
1365 LiveRangeCalc &LRC = getLRCalc(RegIdx);
1366 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1370 for (ExtPoint &EP : ExtPoints) {
1371 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1372 assert(LI.hasSubRanges());
1374 LiveRangeCalc SubLRC;
1375 unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1376 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1377 : MRI.getMaxLaneMaskForVReg(Reg);
1378 for (LiveInterval::SubRange &S : LI.subranges()) {
1379 if ((S.LaneMask & LM).none())
1380 continue;
1381 // The problem here can be that the new register may have been created
1382 // for a partially defined original register. For example:
1383 // %0:subreg_hireg<def,read-undef> = ...
1384 // ...
1385 // %1 = COPY %0
1386 if (S.empty())
1387 continue;
1388 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1389 &LIS.getVNInfoAllocator());
1390 SmallVector<SlotIndex, 4> Undefs;
1391 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1392 SubLRC.extend(S, EP.Next, 0, Undefs);
1396 for (unsigned R : *Edit) {
1397 LiveInterval &LI = LIS.getInterval(R);
1398 if (!LI.hasSubRanges())
1399 continue;
1400 LI.clear();
1401 LI.removeEmptySubRanges();
1402 LIS.constructMainRangeFromSubranges(LI);
1406 void SplitEditor::deleteRematVictims() {
1407 SmallVector<MachineInstr*, 8> Dead;
1408 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1409 LiveInterval *LI = &LIS.getInterval(*I);
1410 for (const LiveRange::Segment &S : LI->segments) {
1411 // Dead defs end at the dead slot.
1412 if (S.end != S.valno->def.getDeadSlot())
1413 continue;
1414 if (S.valno->isPHIDef())
1415 continue;
1416 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1417 assert(MI && "Missing instruction for dead def");
1418 MI->addRegisterDead(LI->reg, &TRI);
1420 if (!MI->allDefsAreDead())
1421 continue;
1423 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1424 Dead.push_back(MI);
1428 if (Dead.empty())
1429 return;
1431 Edit->eliminateDeadDefs(Dead, None, &AA);
1434 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1435 // Fast-path for common case.
1436 if (!ParentVNI.isPHIDef()) {
1437 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1438 forceRecompute(I, ParentVNI);
1439 return;
1442 // Trace value through phis.
1443 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1444 SmallVector<const VNInfo *, 4> WorkList;
1445 Visited.insert(&ParentVNI);
1446 WorkList.push_back(&ParentVNI);
1448 const LiveInterval &ParentLI = Edit->getParent();
1449 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1450 do {
1451 const VNInfo &VNI = *WorkList.back();
1452 WorkList.pop_back();
1453 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1454 forceRecompute(I, VNI);
1455 if (!VNI.isPHIDef())
1456 continue;
1458 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1459 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1460 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1461 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1462 assert(PredVNI && "Value available in PhiVNI predecessor");
1463 if (Visited.insert(PredVNI).second)
1464 WorkList.push_back(PredVNI);
1466 } while(!WorkList.empty());
1469 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1470 ++NumFinished;
1472 // At this point, the live intervals in Edit contain VNInfos corresponding to
1473 // the inserted copies.
1475 // Add the original defs from the parent interval.
1476 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1477 if (ParentVNI->isUnused())
1478 continue;
1479 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1480 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1482 // Force rematted values to be recomputed everywhere.
1483 // The new live ranges may be truncated.
1484 if (Edit->didRematerialize(ParentVNI))
1485 forceRecomputeVNI(*ParentVNI);
1488 // Hoist back-copies to the complement interval when in spill mode.
1489 switch (SpillMode) {
1490 case SM_Partition:
1491 // Leave all back-copies as is.
1492 break;
1493 case SM_Size:
1494 case SM_Speed:
1495 // hoistCopies will behave differently between size and speed.
1496 hoistCopies();
1499 // Transfer the simply mapped values, check if any are skipped.
1500 bool Skipped = transferValues();
1502 // Rewrite virtual registers, possibly extending ranges.
1503 rewriteAssigned(Skipped);
1505 if (Skipped)
1506 extendPHIKillRanges();
1507 else
1508 ++NumSimple;
1510 // Delete defs that were rematted everywhere.
1511 if (Skipped)
1512 deleteRematVictims();
1514 // Get rid of unused values and set phi-kill flags.
1515 for (unsigned Reg : *Edit) {
1516 LiveInterval &LI = LIS.getInterval(Reg);
1517 LI.removeEmptySubRanges();
1518 LI.RenumberValues();
1521 // Provide a reverse mapping from original indices to Edit ranges.
1522 if (LRMap) {
1523 LRMap->clear();
1524 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1525 LRMap->push_back(i);
1528 // Now check if any registers were separated into multiple components.
1529 ConnectedVNInfoEqClasses ConEQ(LIS);
1530 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1531 // Don't use iterators, they are invalidated by create() below.
1532 unsigned VReg = Edit->get(i);
1533 LiveInterval &LI = LIS.getInterval(VReg);
1534 SmallVector<LiveInterval*, 8> SplitLIs;
1535 LIS.splitSeparateComponents(LI, SplitLIs);
1536 unsigned Original = VRM.getOriginal(VReg);
1537 for (LiveInterval *SplitLI : SplitLIs)
1538 VRM.setIsSplitFromReg(SplitLI->reg, Original);
1540 // The new intervals all map back to i.
1541 if (LRMap)
1542 LRMap->resize(Edit->size(), i);
1545 // Calculate spill weight and allocation hints for new intervals.
1546 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1548 assert(!LRMap || LRMap->size() == Edit->size());
1551 //===----------------------------------------------------------------------===//
1552 // Single Block Splitting
1553 //===----------------------------------------------------------------------===//
1555 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1556 bool SingleInstrs) const {
1557 // Always split for multiple instructions.
1558 if (!BI.isOneInstr())
1559 return true;
1560 // Don't split for single instructions unless explicitly requested.
1561 if (!SingleInstrs)
1562 return false;
1563 // Splitting a live-through range always makes progress.
1564 if (BI.LiveIn && BI.LiveOut)
1565 return true;
1566 // No point in isolating a copy. It has no register class constraints.
1567 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1568 return false;
1569 // Finally, don't isolate an end point that was created by earlier splits.
1570 return isOriginalEndpoint(BI.FirstInstr);
1573 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1574 openIntv();
1575 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1576 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1577 LastSplitPoint));
1578 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1579 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1580 } else {
1581 // The last use is after the last valid split point.
1582 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1583 useIntv(SegStart, SegStop);
1584 overlapIntv(SegStop, BI.LastInstr);
1588 //===----------------------------------------------------------------------===//
1589 // Global Live Range Splitting Support
1590 //===----------------------------------------------------------------------===//
1592 // These methods support a method of global live range splitting that uses a
1593 // global algorithm to decide intervals for CFG edges. They will insert split
1594 // points and color intervals in basic blocks while avoiding interference.
1596 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1597 // are on the stack.
1599 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1600 unsigned IntvIn, SlotIndex LeaveBefore,
1601 unsigned IntvOut, SlotIndex EnterAfter){
1602 SlotIndex Start, Stop;
1603 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1605 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1606 << ") intf " << LeaveBefore << '-' << EnterAfter
1607 << ", live-through " << IntvIn << " -> " << IntvOut);
1609 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1611 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1612 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1613 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1615 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1617 if (!IntvOut) {
1618 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1620 // <<<<<<<<< Possible LeaveBefore interference.
1621 // |-----------| Live through.
1622 // -____________ Spill on entry.
1624 selectIntv(IntvIn);
1625 SlotIndex Idx = leaveIntvAtTop(*MBB);
1626 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1627 (void)Idx;
1628 return;
1631 if (!IntvIn) {
1632 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1634 // >>>>>>> Possible EnterAfter interference.
1635 // |-----------| Live through.
1636 // ___________-- Reload on exit.
1638 selectIntv(IntvOut);
1639 SlotIndex Idx = enterIntvAtEnd(*MBB);
1640 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1641 (void)Idx;
1642 return;
1645 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1646 LLVM_DEBUG(dbgs() << ", straight through.\n");
1648 // |-----------| Live through.
1649 // ------------- Straight through, same intv, no interference.
1651 selectIntv(IntvOut);
1652 useIntv(Start, Stop);
1653 return;
1656 // We cannot legally insert splits after LSP.
1657 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1658 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1660 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1661 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1662 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1664 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1665 // |-----------| Live through.
1666 // ------======= Switch intervals between interference.
1668 selectIntv(IntvOut);
1669 SlotIndex Idx;
1670 if (LeaveBefore && LeaveBefore < LSP) {
1671 Idx = enterIntvBefore(LeaveBefore);
1672 useIntv(Idx, Stop);
1673 } else {
1674 Idx = enterIntvAtEnd(*MBB);
1676 selectIntv(IntvIn);
1677 useIntv(Start, Idx);
1678 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1679 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1680 return;
1683 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1685 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1686 // |-----------| Live through.
1687 // ==---------== Switch intervals before/after interference.
1689 assert(LeaveBefore <= EnterAfter && "Missed case");
1691 selectIntv(IntvOut);
1692 SlotIndex Idx = enterIntvAfter(EnterAfter);
1693 useIntv(Idx, Stop);
1694 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1696 selectIntv(IntvIn);
1697 Idx = leaveIntvBefore(LeaveBefore);
1698 useIntv(Start, Idx);
1699 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1702 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1703 unsigned IntvIn, SlotIndex LeaveBefore) {
1704 SlotIndex Start, Stop;
1705 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1707 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1708 << Stop << "), uses " << BI.FirstInstr << '-'
1709 << BI.LastInstr << ", reg-in " << IntvIn
1710 << ", leave before " << LeaveBefore
1711 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1713 assert(IntvIn && "Must have register in");
1714 assert(BI.LiveIn && "Must be live-in");
1715 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1717 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1718 LLVM_DEBUG(dbgs() << " before interference.\n");
1720 // <<< Interference after kill.
1721 // |---o---x | Killed in block.
1722 // ========= Use IntvIn everywhere.
1724 selectIntv(IntvIn);
1725 useIntv(Start, BI.LastInstr);
1726 return;
1729 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1731 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1733 // <<< Possible interference after last use.
1734 // |---o---o---| Live-out on stack.
1735 // =========____ Leave IntvIn after last use.
1737 // < Interference after last use.
1738 // |---o---o--o| Live-out on stack, late last use.
1739 // ============ Copy to stack after LSP, overlap IntvIn.
1740 // \_____ Stack interval is live-out.
1742 if (BI.LastInstr < LSP) {
1743 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1744 selectIntv(IntvIn);
1745 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1746 useIntv(Start, Idx);
1747 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1748 } else {
1749 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1750 selectIntv(IntvIn);
1751 SlotIndex Idx = leaveIntvBefore(LSP);
1752 overlapIntv(Idx, BI.LastInstr);
1753 useIntv(Start, Idx);
1754 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1756 return;
1759 // The interference is overlapping somewhere we wanted to use IntvIn. That
1760 // means we need to create a local interval that can be allocated a
1761 // different register.
1762 unsigned LocalIntv = openIntv();
1763 (void)LocalIntv;
1764 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1766 if (!BI.LiveOut || BI.LastInstr < LSP) {
1768 // <<<<<<< Interference overlapping uses.
1769 // |---o---o---| Live-out on stack.
1770 // =====----____ Leave IntvIn before interference, then spill.
1772 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1773 SlotIndex From = enterIntvBefore(LeaveBefore);
1774 useIntv(From, To);
1775 selectIntv(IntvIn);
1776 useIntv(Start, From);
1777 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1778 return;
1781 // <<<<<<< Interference overlapping uses.
1782 // |---o---o--o| Live-out on stack, late last use.
1783 // =====------- Copy to stack before LSP, overlap LocalIntv.
1784 // \_____ Stack interval is live-out.
1786 SlotIndex To = leaveIntvBefore(LSP);
1787 overlapIntv(To, BI.LastInstr);
1788 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1789 useIntv(From, To);
1790 selectIntv(IntvIn);
1791 useIntv(Start, From);
1792 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1795 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1796 unsigned IntvOut, SlotIndex EnterAfter) {
1797 SlotIndex Start, Stop;
1798 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1800 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1801 << Stop << "), uses " << BI.FirstInstr << '-'
1802 << BI.LastInstr << ", reg-out " << IntvOut
1803 << ", enter after " << EnterAfter
1804 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1806 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1808 assert(IntvOut && "Must have register out");
1809 assert(BI.LiveOut && "Must be live-out");
1810 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1812 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1813 LLVM_DEBUG(dbgs() << " after interference.\n");
1815 // >>>> Interference before def.
1816 // | o---o---| Defined in block.
1817 // ========= Use IntvOut everywhere.
1819 selectIntv(IntvOut);
1820 useIntv(BI.FirstInstr, Stop);
1821 return;
1824 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1825 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1827 // >>>> Interference before def.
1828 // |---o---o---| Live-through, stack-in.
1829 // ____========= Enter IntvOut before first use.
1831 selectIntv(IntvOut);
1832 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1833 useIntv(Idx, Stop);
1834 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1835 return;
1838 // The interference is overlapping somewhere we wanted to use IntvOut. That
1839 // means we need to create a local interval that can be allocated a
1840 // different register.
1841 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1843 // >>>>>>> Interference overlapping uses.
1844 // |---o---o---| Live-through, stack-in.
1845 // ____---====== Create local interval for interference range.
1847 selectIntv(IntvOut);
1848 SlotIndex Idx = enterIntvAfter(EnterAfter);
1849 useIntv(Idx, Stop);
1850 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1852 openIntv();
1853 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1854 useIntv(From, Idx);