1 //===- StackColoring.cpp --------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements the stack-coloring optimization that looks for
10 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
11 // which represent the possible lifetime of stack slots. It attempts to
12 // merge disjoint stack slots and reduce the used stack space.
13 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 // TODO: In the future we plan to improve stack coloring in the following ways:
16 // 1. Allow merging multiple small slots into a single larger slot at different
18 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/LiveInterval.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
65 #define DEBUG_TYPE "stack-coloring"
68 DisableColoring("no-stack-coloring",
69 cl::init(false), cl::Hidden
,
70 cl::desc("Disable stack coloring"));
72 /// The user may write code that uses allocas outside of the declared lifetime
73 /// zone. This can happen when the user returns a reference to a local
74 /// data-structure. We can detect these cases and decide not to optimize the
75 /// code. If this flag is enabled, we try to save the user. This option
76 /// is treated as overriding LifetimeStartOnFirstUse below.
78 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
79 cl::init(false), cl::Hidden
,
80 cl::desc("Do not optimize lifetime zones that "
83 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
84 /// use of stack slot as start of slot lifetime, as opposed to looking
85 /// for LIFETIME_START marker). See "Implementation notes" below for
88 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
89 cl::init(true), cl::Hidden
,
90 cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
93 STATISTIC(NumMarkerSeen
, "Number of lifetime markers found.");
94 STATISTIC(StackSpaceSaved
, "Number of bytes saved due to merging slots.");
95 STATISTIC(StackSlotMerged
, "Number of stack slot merged.");
96 STATISTIC(EscapedAllocas
, "Number of allocas that escaped the lifetime region");
98 //===----------------------------------------------------------------------===//
100 //===----------------------------------------------------------------------===//
102 // Stack Coloring reduces stack usage by merging stack slots when they
103 // can't be used together. For example, consider the following C program:
105 // void bar(char *, int);
106 // void foo(bool var) {
125 // Naively-compiled, this program would use 12k of stack space. However, the
126 // stack slot corresponding to `z` is always destroyed before either of the
127 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
128 // is true, while `y` is only used if `var` is false. So in no time are 2
129 // of the stack slots used together, and therefore we can merge them,
130 // compiling the function using only a single 4k alloca:
132 // void foo(bool var) { // equivalent
145 // This is an important optimization if we want stack space to be under
146 // control in large functions, both open-coded ones and ones created by
149 // Implementation Notes:
150 // ---------------------
152 // An important part of the above reasoning is that `z` can't be accessed
153 // while the latter 2 calls to `bar` are running. This is justified because
154 // `z`'s lifetime is over after we exit from block `A:`, so any further
155 // accesses to it would be UB. The way we represent this information
156 // in LLVM is by having frontends delimit blocks with `lifetime.start`
157 // and `lifetime.end` intrinsics.
159 // The effect of these intrinsics seems to be as follows (maybe I should
160 // specify this in the reference?):
162 // L1) at start, each stack-slot is marked as *out-of-scope*, unless no
163 // lifetime intrinsic refers to that stack slot, in which case
164 // it is marked as *in-scope*.
165 // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
166 // the stack slot is overwritten with `undef`.
167 // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
168 // L4) on function exit, all stack slots are marked as *out-of-scope*.
169 // L5) `lifetime.end` is a no-op when called on a slot that is already
171 // L6) memory accesses to *out-of-scope* stack slots are UB.
172 // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
173 // are invalidated, unless the slot is "degenerate". This is used to
174 // justify not marking slots as in-use until the pointer to them is
175 // used, but feels a bit hacky in the presence of things like LICM. See
176 // the "Degenerate Slots" section for more details.
178 // Now, let's ground stack coloring on these rules. We'll define a slot
179 // as *in-use* at a (dynamic) point in execution if it either can be
180 // written to at that point, or if it has a live and non-undef content
183 // Obviously, slots that are never *in-use* together can be merged, and
184 // in our example `foo`, the slots for `x`, `y` and `z` are never
185 // in-use together (of course, sometimes slots that *are* in-use together
186 // might still be mergable, but we don't care about that here).
188 // In this implementation, we successively merge pairs of slots that are
189 // not *in-use* together. We could be smarter - for example, we could merge
190 // a single large slot with 2 small slots, or we could construct the
191 // interference graph and run a "smart" graph coloring algorithm, but with
192 // that aside, how do we find out whether a pair of slots might be *in-use*
195 // From our rules, we see that *out-of-scope* slots are never *in-use*,
196 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
197 // until their address is taken. Therefore, we can approximate slot activity
200 // A subtle point: naively, we might try to figure out which pairs of
201 // stack-slots interfere by propagating `S in-use` through the CFG for every
202 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
203 // which they are both *in-use*.
205 // That is sound, but overly conservative in some cases: in our (artificial)
206 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
207 // as `x` is only in use if we came in from the `var` edge and `y` only
208 // if we came from the `!var` edge, they still can't be in use together.
209 // See PR32488 for an important real-life case.
211 // If we wanted to find all points of interference precisely, we could
212 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
213 // would be precise, but requires propagating `O(n^2)` dataflow facts.
215 // However, we aren't interested in the *set* of points of interference
216 // between 2 stack slots, only *whether* there *is* such a point. So we
217 // can rely on a little trick: for `S` and `T` to be in-use together,
218 // one of them needs to become in-use while the other is in-use (or
219 // they might both become in use simultaneously). We can check this
220 // by also keeping track of the points at which a stack slot might *start*
226 // Consider the following motivating example:
229 // char b1[1024], b2[1024];
235 // char b4[1024], b5[1024];
236 // <uses of b2, b4, b5>;
241 // In the code above, "b3" and "b4" are declared in distinct lexical
242 // scopes, meaning that it is easy to prove that they can share the
243 // same stack slot. Variables "b1" and "b2" are declared in the same
244 // scope, meaning that from a lexical point of view, their lifetimes
245 // overlap. From a control flow pointer of view, however, the two
246 // variables are accessed in disjoint regions of the CFG, thus it
247 // should be possible for them to share the same stack slot. An ideal
248 // stack allocation for the function above would look like:
254 // Achieving this allocation is tricky, however, due to the way
255 // lifetime markers are inserted. Here is a simplified view of the
256 // control flow graph for the code above:
258 // +------ block 0 -------+
259 // 0| LIFETIME_START b1, b2 |
260 // 1| <test 'if' condition> |
261 // +-----------------------+
263 // +------ block 1 -------+ +------ block 2 -------+
264 // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
265 // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
266 // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
267 // +-----------------------+ +-----------------------+
269 // +------ block 3 -------+
270 // 8| <cleanupcode> |
271 // 9| LIFETIME_END b1, b2 |
273 // +-----------------------+
275 // If we create live intervals for the variables above strictly based
276 // on the lifetime markers, we'll get the set of intervals on the
277 // left. If we ignore the lifetime start markers and instead treat a
278 // variable's lifetime as beginning with the first reference to the
279 // var, then we get the intervals on the right.
281 // LIFETIME_START First Use
282 // b1: [0,9] [3,4] [8,9]
288 // For the intervals on the left, the best we can do is overlap two
289 // variables (b3 and b4, for example); this gives us a stack size of
290 // 4*1024 bytes, not ideal. When treating first-use as the start of a
291 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
292 // byte stack (better).
297 // Relying entirely on first-use of stack slots is problematic,
298 // however, due to the fact that optimizations can sometimes migrate
299 // uses of a variable outside of its lifetime start/end region. Here
303 // char b1[1024], b2[1024];
316 // Before optimization, the control flow graph for the code above
317 // might look like the following:
319 // +------ block 0 -------+
320 // 0| LIFETIME_START b1, b2 |
321 // 1| <test 'if' condition> |
322 // +-----------------------+
324 // +------ block 1 -------+ +------- block 2 -------+
325 // 2| <uses of b2> | 3| <uses of b1> |
326 // +-----------------------+ +-----------------------+
328 // | +------- block 3 -------+ <-\.
329 // | 4| <while condition> | |
330 // | +-----------------------+ |
332 // | / +------- block 4 -------+
333 // \ / 5| LIFETIME_START b3 | |
334 // \ / 6| <uses of b3> | |
335 // \ / 7| LIFETIME_END b3 | |
336 // \ | +------------------------+ |
338 // +------ block 5 -----+ \---------------
339 // 8| <cleanupcode> |
340 // 9| LIFETIME_END b1, b2 |
342 // +---------------------+
344 // During optimization, however, it can happen that an instruction
345 // computing an address in "b3" (for example, a loop-invariant GEP) is
346 // hoisted up out of the loop from block 4 to block 2. [Note that
347 // this is not an actual load from the stack, only an instruction that
348 // computes the address to be loaded]. If this happens, there is now a
349 // path leading from the first use of b3 to the return instruction
350 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
351 // now larger than if we were computing live intervals strictly based
352 // on lifetime markers. In the example above, this lengthened lifetime
353 // would mean that it would appear illegal to overlap b3 with b2.
355 // To deal with this such cases, the code in ::collectMarkers() below
356 // tries to identify "degenerate" slots -- those slots where on a single
357 // forward pass through the CFG we encounter a first reference to slot
358 // K before we hit the slot K lifetime start marker. For such slots,
359 // we fall back on using the lifetime start marker as the beginning of
360 // the variable's lifetime. NB: with this implementation, slots can
361 // appear degenerate in cases where there is unstructured control flow:
366 // memcpy(&b[0], ...);
371 // If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
372 // before visiting the memcpy block (which will contain the lifetime start
373 // for "b" then it will appear that 'b' has a degenerate lifetime.
378 /// StackColoring - A machine pass for merging disjoint stack allocations,
379 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
380 class StackColoring
: public MachineFunctionPass
{
381 MachineFrameInfo
*MFI
;
384 /// A class representing liveness information for a single basic block.
385 /// Each bit in the BitVector represents the liveness property
386 /// for a different stack slot.
387 struct BlockLifetimeInfo
{
388 /// Which slots BEGINs in each basic block.
391 /// Which slots ENDs in each basic block.
394 /// Which slots are marked as LIVE_IN, coming into each basic block.
397 /// Which slots are marked as LIVE_OUT, coming out of each basic block.
401 /// Maps active slots (per bit) for each basic block.
402 using LivenessMap
= DenseMap
<const MachineBasicBlock
*, BlockLifetimeInfo
>;
403 LivenessMap BlockLiveness
;
405 /// Maps serial numbers to basic blocks.
406 DenseMap
<const MachineBasicBlock
*, int> BasicBlocks
;
408 /// Maps basic blocks to a serial number.
409 SmallVector
<const MachineBasicBlock
*, 8> BasicBlockNumbering
;
411 /// Maps slots to their use interval. Outside of this interval, slots
412 /// values are either dead or `undef` and they will not be written to.
413 SmallVector
<std::unique_ptr
<LiveInterval
>, 16> Intervals
;
415 /// Maps slots to the points where they can become in-use.
416 SmallVector
<SmallVector
<SlotIndex
, 4>, 16> LiveStarts
;
418 /// VNInfo is used for the construction of LiveIntervals.
419 VNInfo::Allocator VNInfoAllocator
;
421 /// SlotIndex analysis object.
422 SlotIndexes
*Indexes
;
424 /// The list of lifetime markers found. These markers are to be removed
425 /// once the coloring is done.
426 SmallVector
<MachineInstr
*, 8> Markers
;
428 /// Record the FI slots for which we have seen some sort of
429 /// lifetime marker (either start or end).
430 BitVector InterestingSlots
;
432 /// FI slots that need to be handled conservatively (for these
433 /// slots lifetime-start-on-first-use is disabled).
434 BitVector ConservativeSlots
;
436 /// Number of iterations taken during data flow analysis.
437 unsigned NumIterations
;
442 StackColoring() : MachineFunctionPass(ID
) {
443 initializeStackColoringPass(*PassRegistry::getPassRegistry());
446 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
447 bool runOnMachineFunction(MachineFunction
&Func
) override
;
450 /// Used in collectMarkers
451 using BlockBitVecMap
= DenseMap
<const MachineBasicBlock
*, BitVector
>;
455 void dumpIntervals() const;
456 void dumpBB(MachineBasicBlock
*MBB
) const;
457 void dumpBV(const char *tag
, const BitVector
&BV
) const;
459 /// Removes all of the lifetime marker instructions from the function.
460 /// \returns true if any markers were removed.
461 bool removeAllMarkers();
463 /// Scan the machine function and find all of the lifetime markers.
464 /// Record the findings in the BEGIN and END vectors.
465 /// \returns the number of markers found.
466 unsigned collectMarkers(unsigned NumSlot
);
468 /// Perform the dataflow calculation and calculate the lifetime for each of
469 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
470 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
471 /// in and out blocks.
472 void calculateLocalLiveness();
474 /// Returns TRUE if we're using the first-use-begins-lifetime method for
475 /// this slot (if FALSE, then the start marker is treated as start of lifetime).
476 bool applyFirstUse(int Slot
) {
477 if (!LifetimeStartOnFirstUse
|| ProtectFromEscapedAllocas
)
479 if (ConservativeSlots
.test(Slot
))
484 /// Examines the specified instruction and returns TRUE if the instruction
485 /// represents the start or end of an interesting lifetime. The slot or slots
486 /// starting or ending are added to the vector "slots" and "isStart" is set
488 /// \returns True if inst contains a lifetime start or end
489 bool isLifetimeStartOrEnd(const MachineInstr
&MI
,
490 SmallVector
<int, 4> &slots
,
493 /// Construct the LiveIntervals for the slots.
494 void calculateLiveIntervals(unsigned NumSlots
);
496 /// Go over the machine function and change instructions which use stack
497 /// slots to use the joint slots.
498 void remapInstructions(DenseMap
<int, int> &SlotRemap
);
500 /// The input program may contain instructions which are not inside lifetime
501 /// markers. This can happen due to a bug in the compiler or due to a bug in
502 /// user code (for example, returning a reference to a local variable).
503 /// This procedure checks all of the instructions in the function and
504 /// invalidates lifetime ranges which do not contain all of the instructions
505 /// which access that frame slot.
506 void removeInvalidSlotRanges();
508 /// Map entries which point to other entries to their destination.
509 /// A->B->C becomes A->C.
510 void expungeSlotMap(DenseMap
<int, int> &SlotRemap
, unsigned NumSlots
);
513 } // end anonymous namespace
515 char StackColoring::ID
= 0;
517 char &llvm::StackColoringID
= StackColoring::ID
;
519 INITIALIZE_PASS_BEGIN(StackColoring
, DEBUG_TYPE
,
520 "Merge disjoint stack slots", false, false)
521 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
522 INITIALIZE_PASS_END(StackColoring
, DEBUG_TYPE
,
523 "Merge disjoint stack slots", false, false)
525 void StackColoring::getAnalysisUsage(AnalysisUsage
&AU
) const {
526 AU
.addRequired
<SlotIndexes
>();
527 MachineFunctionPass::getAnalysisUsage(AU
);
530 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
531 LLVM_DUMP_METHOD
void StackColoring::dumpBV(const char *tag
,
532 const BitVector
&BV
) const {
533 dbgs() << tag
<< " : { ";
534 for (unsigned I
= 0, E
= BV
.size(); I
!= E
; ++I
)
535 dbgs() << BV
.test(I
) << " ";
539 LLVM_DUMP_METHOD
void StackColoring::dumpBB(MachineBasicBlock
*MBB
) const {
540 LivenessMap::const_iterator BI
= BlockLiveness
.find(MBB
);
541 assert(BI
!= BlockLiveness
.end() && "Block not found");
542 const BlockLifetimeInfo
&BlockInfo
= BI
->second
;
544 dumpBV("BEGIN", BlockInfo
.Begin
);
545 dumpBV("END", BlockInfo
.End
);
546 dumpBV("LIVE_IN", BlockInfo
.LiveIn
);
547 dumpBV("LIVE_OUT", BlockInfo
.LiveOut
);
550 LLVM_DUMP_METHOD
void StackColoring::dump() const {
551 for (MachineBasicBlock
*MBB
: depth_first(MF
)) {
552 dbgs() << "Inspecting block #" << MBB
->getNumber() << " ["
553 << MBB
->getName() << "]\n";
558 LLVM_DUMP_METHOD
void StackColoring::dumpIntervals() const {
559 for (unsigned I
= 0, E
= Intervals
.size(); I
!= E
; ++I
) {
560 dbgs() << "Interval[" << I
<< "]:\n";
561 Intervals
[I
]->dump();
566 static inline int getStartOrEndSlot(const MachineInstr
&MI
)
568 assert((MI
.getOpcode() == TargetOpcode::LIFETIME_START
||
569 MI
.getOpcode() == TargetOpcode::LIFETIME_END
) &&
570 "Expected LIFETIME_START or LIFETIME_END op");
571 const MachineOperand
&MO
= MI
.getOperand(0);
572 int Slot
= MO
.getIndex();
578 // At the moment the only way to end a variable lifetime is with
579 // a VARIABLE_LIFETIME op (which can't contain a start). If things
580 // change and the IR allows for a single inst that both begins
581 // and ends lifetime(s), this interface will need to be reworked.
582 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr
&MI
,
583 SmallVector
<int, 4> &slots
,
585 if (MI
.getOpcode() == TargetOpcode::LIFETIME_START
||
586 MI
.getOpcode() == TargetOpcode::LIFETIME_END
) {
587 int Slot
= getStartOrEndSlot(MI
);
590 if (!InterestingSlots
.test(Slot
))
592 slots
.push_back(Slot
);
593 if (MI
.getOpcode() == TargetOpcode::LIFETIME_END
) {
597 if (!applyFirstUse(Slot
)) {
601 } else if (LifetimeStartOnFirstUse
&& !ProtectFromEscapedAllocas
) {
602 if (!MI
.isDebugInstr()) {
604 for (const MachineOperand
&MO
: MI
.operands()) {
607 int Slot
= MO
.getIndex();
610 if (InterestingSlots
.test(Slot
) && applyFirstUse(Slot
)) {
611 slots
.push_back(Slot
);
624 unsigned StackColoring::collectMarkers(unsigned NumSlot
) {
625 unsigned MarkersFound
= 0;
626 BlockBitVecMap SeenStartMap
;
627 InterestingSlots
.clear();
628 InterestingSlots
.resize(NumSlot
);
629 ConservativeSlots
.clear();
630 ConservativeSlots
.resize(NumSlot
);
632 // number of start and end lifetime ops for each slot
633 SmallVector
<int, 8> NumStartLifetimes(NumSlot
, 0);
634 SmallVector
<int, 8> NumEndLifetimes(NumSlot
, 0);
636 // Step 1: collect markers and populate the "InterestingSlots"
637 // and "ConservativeSlots" sets.
638 for (MachineBasicBlock
*MBB
: depth_first(MF
)) {
639 // Compute the set of slots for which we've seen a START marker but have
640 // not yet seen an END marker at this point in the walk (e.g. on entry
642 BitVector BetweenStartEnd
;
643 BetweenStartEnd
.resize(NumSlot
);
644 for (MachineBasicBlock::const_pred_iterator PI
= MBB
->pred_begin(),
645 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
) {
646 BlockBitVecMap::const_iterator I
= SeenStartMap
.find(*PI
);
647 if (I
!= SeenStartMap
.end()) {
648 BetweenStartEnd
|= I
->second
;
652 // Walk the instructions in the block to look for start/end ops.
653 for (MachineInstr
&MI
: *MBB
) {
654 if (MI
.getOpcode() == TargetOpcode::LIFETIME_START
||
655 MI
.getOpcode() == TargetOpcode::LIFETIME_END
) {
656 int Slot
= getStartOrEndSlot(MI
);
659 InterestingSlots
.set(Slot
);
660 if (MI
.getOpcode() == TargetOpcode::LIFETIME_START
) {
661 BetweenStartEnd
.set(Slot
);
662 NumStartLifetimes
[Slot
] += 1;
664 BetweenStartEnd
.reset(Slot
);
665 NumEndLifetimes
[Slot
] += 1;
667 const AllocaInst
*Allocation
= MFI
->getObjectAllocation(Slot
);
669 LLVM_DEBUG(dbgs() << "Found a lifetime ");
670 LLVM_DEBUG(dbgs() << (MI
.getOpcode() == TargetOpcode::LIFETIME_START
673 LLVM_DEBUG(dbgs() << " marker for slot #" << Slot
);
675 << " with allocation: " << Allocation
->getName() << "\n");
677 Markers
.push_back(&MI
);
680 for (const MachineOperand
&MO
: MI
.operands()) {
683 int Slot
= MO
.getIndex();
686 if (! BetweenStartEnd
.test(Slot
)) {
687 ConservativeSlots
.set(Slot
);
692 BitVector
&SeenStart
= SeenStartMap
[MBB
];
693 SeenStart
|= BetweenStartEnd
;
699 // PR27903: slots with multiple start or end lifetime ops are not
700 // safe to enable for "lifetime-start-on-first-use".
701 for (unsigned slot
= 0; slot
< NumSlot
; ++slot
)
702 if (NumStartLifetimes
[slot
] > 1 || NumEndLifetimes
[slot
] > 1)
703 ConservativeSlots
.set(slot
);
704 LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots
));
706 // Step 2: compute begin/end sets for each block
708 // NOTE: We use a depth-first iteration to ensure that we obtain a
709 // deterministic numbering.
710 for (MachineBasicBlock
*MBB
: depth_first(MF
)) {
711 // Assign a serial number to this basic block.
712 BasicBlocks
[MBB
] = BasicBlockNumbering
.size();
713 BasicBlockNumbering
.push_back(MBB
);
715 // Keep a reference to avoid repeated lookups.
716 BlockLifetimeInfo
&BlockInfo
= BlockLiveness
[MBB
];
718 BlockInfo
.Begin
.resize(NumSlot
);
719 BlockInfo
.End
.resize(NumSlot
);
721 SmallVector
<int, 4> slots
;
722 for (MachineInstr
&MI
: *MBB
) {
723 bool isStart
= false;
725 if (isLifetimeStartOrEnd(MI
, slots
, isStart
)) {
727 assert(slots
.size() == 1 && "unexpected: MI ends multiple slots");
729 if (BlockInfo
.Begin
.test(Slot
)) {
730 BlockInfo
.Begin
.reset(Slot
);
732 BlockInfo
.End
.set(Slot
);
734 for (auto Slot
: slots
) {
735 LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot
);
737 << " at " << printMBBReference(*MBB
) << " index ");
738 LLVM_DEBUG(Indexes
->getInstructionIndex(MI
).print(dbgs()));
739 const AllocaInst
*Allocation
= MFI
->getObjectAllocation(Slot
);
742 << " with allocation: " << Allocation
->getName());
744 LLVM_DEBUG(dbgs() << "\n");
745 if (BlockInfo
.End
.test(Slot
)) {
746 BlockInfo
.End
.reset(Slot
);
748 BlockInfo
.Begin
.set(Slot
);
755 // Update statistics.
756 NumMarkerSeen
+= MarkersFound
;
760 void StackColoring::calculateLocalLiveness() {
761 unsigned NumIters
= 0;
767 for (const MachineBasicBlock
*BB
: BasicBlockNumbering
) {
768 // Use an iterator to avoid repeated lookups.
769 LivenessMap::iterator BI
= BlockLiveness
.find(BB
);
770 assert(BI
!= BlockLiveness
.end() && "Block not found");
771 BlockLifetimeInfo
&BlockInfo
= BI
->second
;
773 // Compute LiveIn by unioning together the LiveOut sets of all preds.
774 BitVector LocalLiveIn
;
775 for (MachineBasicBlock::const_pred_iterator PI
= BB
->pred_begin(),
776 PE
= BB
->pred_end(); PI
!= PE
; ++PI
) {
777 LivenessMap::const_iterator I
= BlockLiveness
.find(*PI
);
778 // PR37130: transformations prior to stack coloring can
779 // sometimes leave behind statically unreachable blocks; these
780 // can be safely skipped here.
781 if (I
!= BlockLiveness
.end())
782 LocalLiveIn
|= I
->second
.LiveOut
;
785 // Compute LiveOut by subtracting out lifetimes that end in this
786 // block, then adding in lifetimes that begin in this block. If
787 // we have both BEGIN and END markers in the same basic block
788 // then we know that the BEGIN marker comes after the END,
789 // because we already handle the case where the BEGIN comes
790 // before the END when collecting the markers (and building the
791 // BEGIN/END vectors).
792 BitVector LocalLiveOut
= LocalLiveIn
;
793 LocalLiveOut
.reset(BlockInfo
.End
);
794 LocalLiveOut
|= BlockInfo
.Begin
;
796 // Update block LiveIn set, noting whether it has changed.
797 if (LocalLiveIn
.test(BlockInfo
.LiveIn
)) {
799 BlockInfo
.LiveIn
|= LocalLiveIn
;
802 // Update block LiveOut set, noting whether it has changed.
803 if (LocalLiveOut
.test(BlockInfo
.LiveOut
)) {
805 BlockInfo
.LiveOut
|= LocalLiveOut
;
810 NumIterations
= NumIters
;
813 void StackColoring::calculateLiveIntervals(unsigned NumSlots
) {
814 SmallVector
<SlotIndex
, 16> Starts
;
815 SmallVector
<bool, 16> DefinitelyInUse
;
817 // For each block, find which slots are active within this block
818 // and update the live intervals.
819 for (const MachineBasicBlock
&MBB
: *MF
) {
821 Starts
.resize(NumSlots
);
822 DefinitelyInUse
.clear();
823 DefinitelyInUse
.resize(NumSlots
);
825 // Start the interval of the slots that we previously found to be 'in-use'.
826 BlockLifetimeInfo
&MBBLiveness
= BlockLiveness
[&MBB
];
827 for (int pos
= MBBLiveness
.LiveIn
.find_first(); pos
!= -1;
828 pos
= MBBLiveness
.LiveIn
.find_next(pos
)) {
829 Starts
[pos
] = Indexes
->getMBBStartIdx(&MBB
);
832 // Create the interval for the basic blocks containing lifetime begin/end.
833 for (const MachineInstr
&MI
: MBB
) {
834 SmallVector
<int, 4> slots
;
835 bool IsStart
= false;
836 if (!isLifetimeStartOrEnd(MI
, slots
, IsStart
))
838 SlotIndex ThisIndex
= Indexes
->getInstructionIndex(MI
);
839 for (auto Slot
: slots
) {
841 // If a slot is already definitely in use, we don't have to emit
842 // a new start marker because there is already a pre-existing
844 if (!DefinitelyInUse
[Slot
]) {
845 LiveStarts
[Slot
].push_back(ThisIndex
);
846 DefinitelyInUse
[Slot
] = true;
848 if (!Starts
[Slot
].isValid())
849 Starts
[Slot
] = ThisIndex
;
851 if (Starts
[Slot
].isValid()) {
852 VNInfo
*VNI
= Intervals
[Slot
]->getValNumInfo(0);
853 Intervals
[Slot
]->addSegment(
854 LiveInterval::Segment(Starts
[Slot
], ThisIndex
, VNI
));
855 Starts
[Slot
] = SlotIndex(); // Invalidate the start index
856 DefinitelyInUse
[Slot
] = false;
862 // Finish up started segments
863 for (unsigned i
= 0; i
< NumSlots
; ++i
) {
864 if (!Starts
[i
].isValid())
867 SlotIndex EndIdx
= Indexes
->getMBBEndIdx(&MBB
);
868 VNInfo
*VNI
= Intervals
[i
]->getValNumInfo(0);
869 Intervals
[i
]->addSegment(LiveInterval::Segment(Starts
[i
], EndIdx
, VNI
));
874 bool StackColoring::removeAllMarkers() {
876 for (MachineInstr
*MI
: Markers
) {
877 MI
->eraseFromParent();
882 LLVM_DEBUG(dbgs() << "Removed " << Count
<< " markers.\n");
886 void StackColoring::remapInstructions(DenseMap
<int, int> &SlotRemap
) {
887 unsigned FixedInstr
= 0;
888 unsigned FixedMemOp
= 0;
889 unsigned FixedDbg
= 0;
891 // Remap debug information that refers to stack slots.
892 for (auto &VI
: MF
->getVariableDbgInfo()) {
895 if (SlotRemap
.count(VI
.Slot
)) {
896 LLVM_DEBUG(dbgs() << "Remapping debug info for ["
897 << cast
<DILocalVariable
>(VI
.Var
)->getName() << "].\n");
898 VI
.Slot
= SlotRemap
[VI
.Slot
];
903 // Keep a list of *allocas* which need to be remapped.
904 DenseMap
<const AllocaInst
*, const AllocaInst
*> Allocas
;
906 // Keep a list of allocas which has been affected by the remap.
907 SmallPtrSet
<const AllocaInst
*, 32> MergedAllocas
;
909 for (const std::pair
<int, int> &SI
: SlotRemap
) {
910 const AllocaInst
*From
= MFI
->getObjectAllocation(SI
.first
);
911 const AllocaInst
*To
= MFI
->getObjectAllocation(SI
.second
);
912 assert(To
&& From
&& "Invalid allocation object");
915 // AA might be used later for instruction scheduling, and we need it to be
916 // able to deduce the correct aliasing releationships between pointers
917 // derived from the alloca being remapped and the target of that remapping.
918 // The only safe way, without directly informing AA about the remapping
919 // somehow, is to directly update the IR to reflect the change being made
921 Instruction
*Inst
= const_cast<AllocaInst
*>(To
);
922 if (From
->getType() != To
->getType()) {
923 BitCastInst
*Cast
= new BitCastInst(Inst
, From
->getType());
924 Cast
->insertAfter(Inst
);
928 // We keep both slots to maintain AliasAnalysis metadata later.
929 MergedAllocas
.insert(From
);
930 MergedAllocas
.insert(To
);
932 // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
933 // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
934 // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
935 MachineFrameInfo::SSPLayoutKind FromKind
936 = MFI
->getObjectSSPLayout(SI
.first
);
937 MachineFrameInfo::SSPLayoutKind ToKind
= MFI
->getObjectSSPLayout(SI
.second
);
938 if (FromKind
!= MachineFrameInfo::SSPLK_None
&&
939 (ToKind
== MachineFrameInfo::SSPLK_None
||
940 (ToKind
!= MachineFrameInfo::SSPLK_LargeArray
&&
941 FromKind
!= MachineFrameInfo::SSPLK_AddrOf
)))
942 MFI
->setObjectSSPLayout(SI
.second
, FromKind
);
944 // The new alloca might not be valid in a llvm.dbg.declare for this
945 // variable, so undef out the use to make the verifier happy.
946 AllocaInst
*FromAI
= const_cast<AllocaInst
*>(From
);
947 if (FromAI
->isUsedByMetadata())
948 ValueAsMetadata::handleRAUW(FromAI
, UndefValue::get(FromAI
->getType()));
949 for (auto &Use
: FromAI
->uses()) {
950 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Use
.get()))
951 if (BCI
->isUsedByMetadata())
952 ValueAsMetadata::handleRAUW(BCI
, UndefValue::get(BCI
->getType()));
955 // Note that this will not replace uses in MMOs (which we'll update below),
956 // or anywhere else (which is why we won't delete the original
958 FromAI
->replaceAllUsesWith(Inst
);
961 // Remap all instructions to the new stack slots.
962 for (MachineBasicBlock
&BB
: *MF
)
963 for (MachineInstr
&I
: BB
) {
964 // Skip lifetime markers. We'll remove them soon.
965 if (I
.getOpcode() == TargetOpcode::LIFETIME_START
||
966 I
.getOpcode() == TargetOpcode::LIFETIME_END
)
969 // Update the MachineMemOperand to use the new alloca.
970 for (MachineMemOperand
*MMO
: I
.memoperands()) {
971 // We've replaced IR-level uses of the remapped allocas, so we only
972 // need to replace direct uses here.
973 const AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(MMO
->getValue());
977 if (!Allocas
.count(AI
))
980 MMO
->setValue(Allocas
[AI
]);
984 // Update all of the machine instruction operands.
985 for (MachineOperand
&MO
: I
.operands()) {
988 int FromSlot
= MO
.getIndex();
990 // Don't touch arguments.
994 // Only look at mapped slots.
995 if (!SlotRemap
.count(FromSlot
))
998 // In a debug build, check that the instruction that we are modifying is
999 // inside the expected live range. If the instruction is not inside
1000 // the calculated range then it means that the alloca usage moved
1001 // outside of the lifetime markers, or that the user has a bug.
1002 // NOTE: Alloca address calculations which happen outside the lifetime
1003 // zone are okay, despite the fact that we don't have a good way
1004 // for validating all of the usages of the calculation.
1006 bool TouchesMemory
= I
.mayLoad() || I
.mayStore();
1007 // If we *don't* protect the user from escaped allocas, don't bother
1008 // validating the instructions.
1009 if (!I
.isDebugInstr() && TouchesMemory
&& ProtectFromEscapedAllocas
) {
1010 SlotIndex Index
= Indexes
->getInstructionIndex(I
);
1011 const LiveInterval
*Interval
= &*Intervals
[FromSlot
];
1012 assert(Interval
->find(Index
) != Interval
->end() &&
1013 "Found instruction usage outside of live range.");
1017 // Fix the machine instructions.
1018 int ToSlot
= SlotRemap
[FromSlot
];
1019 MO
.setIndex(ToSlot
);
1023 // We adjust AliasAnalysis information for merged stack slots.
1024 SmallVector
<MachineMemOperand
*, 2> NewMMOs
;
1025 bool ReplaceMemOps
= false;
1026 for (MachineMemOperand
*MMO
: I
.memoperands()) {
1027 // If this memory location can be a slot remapped here,
1028 // we remove AA information.
1029 bool MayHaveConflictingAAMD
= false;
1030 if (MMO
->getAAInfo()) {
1031 if (const Value
*MMOV
= MMO
->getValue()) {
1032 SmallVector
<Value
*, 4> Objs
;
1033 getUnderlyingObjectsForCodeGen(MMOV
, Objs
, MF
->getDataLayout());
1036 MayHaveConflictingAAMD
= true;
1038 for (Value
*V
: Objs
) {
1039 // If this memory location comes from a known stack slot
1040 // that is not remapped, we continue checking.
1041 // Otherwise, we need to invalidate AA infomation.
1042 const AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(V
);
1043 if (AI
&& MergedAllocas
.count(AI
)) {
1044 MayHaveConflictingAAMD
= true;
1050 if (MayHaveConflictingAAMD
) {
1051 NewMMOs
.push_back(MF
->getMachineMemOperand(MMO
, AAMDNodes()));
1052 ReplaceMemOps
= true;
1054 NewMMOs
.push_back(MMO
);
1058 // If any memory operand is updated, set memory references of
1059 // this instruction.
1061 I
.setMemRefs(*MF
, NewMMOs
);
1064 // Update the location of C++ catch objects for the MSVC personality routine.
1065 if (WinEHFuncInfo
*EHInfo
= MF
->getWinEHFuncInfo())
1066 for (WinEHTryBlockMapEntry
&TBME
: EHInfo
->TryBlockMap
)
1067 for (WinEHHandlerType
&H
: TBME
.HandlerArray
)
1068 if (H
.CatchObj
.FrameIndex
!= std::numeric_limits
<int>::max() &&
1069 SlotRemap
.count(H
.CatchObj
.FrameIndex
))
1070 H
.CatchObj
.FrameIndex
= SlotRemap
[H
.CatchObj
.FrameIndex
];
1072 LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp
<< " machine memory operands.\n");
1073 LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg
<< " debug locations.\n");
1074 LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr
<< " machine instructions.\n");
1077 void StackColoring::removeInvalidSlotRanges() {
1078 for (MachineBasicBlock
&BB
: *MF
)
1079 for (MachineInstr
&I
: BB
) {
1080 if (I
.getOpcode() == TargetOpcode::LIFETIME_START
||
1081 I
.getOpcode() == TargetOpcode::LIFETIME_END
|| I
.isDebugInstr())
1084 // Some intervals are suspicious! In some cases we find address
1085 // calculations outside of the lifetime zone, but not actual memory
1086 // read or write. Memory accesses outside of the lifetime zone are a clear
1087 // violation, but address calculations are okay. This can happen when
1088 // GEPs are hoisted outside of the lifetime zone.
1089 // So, in here we only check instructions which can read or write memory.
1090 if (!I
.mayLoad() && !I
.mayStore())
1093 // Check all of the machine operands.
1094 for (const MachineOperand
&MO
: I
.operands()) {
1098 int Slot
= MO
.getIndex();
1103 if (Intervals
[Slot
]->empty())
1106 // Check that the used slot is inside the calculated lifetime range.
1107 // If it is not, warn about it and invalidate the range.
1108 LiveInterval
*Interval
= &*Intervals
[Slot
];
1109 SlotIndex Index
= Indexes
->getInstructionIndex(I
);
1110 if (Interval
->find(Index
) == Interval
->end()) {
1112 LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot
<< "\n");
1119 void StackColoring::expungeSlotMap(DenseMap
<int, int> &SlotRemap
,
1120 unsigned NumSlots
) {
1121 // Expunge slot remap map.
1122 for (unsigned i
=0; i
< NumSlots
; ++i
) {
1123 // If we are remapping i
1124 if (SlotRemap
.count(i
)) {
1125 int Target
= SlotRemap
[i
];
1126 // As long as our target is mapped to something else, follow it.
1127 while (SlotRemap
.count(Target
)) {
1128 Target
= SlotRemap
[Target
];
1129 SlotRemap
[i
] = Target
;
1135 bool StackColoring::runOnMachineFunction(MachineFunction
&Func
) {
1136 LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1137 << "********** Function: " << Func
.getName() << '\n');
1139 MFI
= &MF
->getFrameInfo();
1140 Indexes
= &getAnalysis
<SlotIndexes
>();
1141 BlockLiveness
.clear();
1142 BasicBlocks
.clear();
1143 BasicBlockNumbering
.clear();
1147 VNInfoAllocator
.Reset();
1149 unsigned NumSlots
= MFI
->getObjectIndexEnd();
1151 // If there are no stack slots then there are no markers to remove.
1155 SmallVector
<int, 8> SortedSlots
;
1156 SortedSlots
.reserve(NumSlots
);
1157 Intervals
.reserve(NumSlots
);
1158 LiveStarts
.resize(NumSlots
);
1160 unsigned NumMarkers
= collectMarkers(NumSlots
);
1162 unsigned TotalSize
= 0;
1163 LLVM_DEBUG(dbgs() << "Found " << NumMarkers
<< " markers and " << NumSlots
1165 LLVM_DEBUG(dbgs() << "Slot structure:\n");
1167 for (int i
=0; i
< MFI
->getObjectIndexEnd(); ++i
) {
1168 LLVM_DEBUG(dbgs() << "Slot #" << i
<< " - " << MFI
->getObjectSize(i
)
1170 TotalSize
+= MFI
->getObjectSize(i
);
1173 LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize
<< " bytes\n\n");
1175 // Don't continue because there are not enough lifetime markers, or the
1176 // stack is too small, or we are told not to optimize the slots.
1177 if (NumMarkers
< 2 || TotalSize
< 16 || DisableColoring
||
1178 skipFunction(Func
.getFunction())) {
1179 LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1180 return removeAllMarkers();
1183 for (unsigned i
=0; i
< NumSlots
; ++i
) {
1184 std::unique_ptr
<LiveInterval
> LI(new LiveInterval(i
, 0));
1185 LI
->getNextValue(Indexes
->getZeroIndex(), VNInfoAllocator
);
1186 Intervals
.push_back(std::move(LI
));
1187 SortedSlots
.push_back(i
);
1190 // Calculate the liveness of each block.
1191 calculateLocalLiveness();
1192 LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations
<< "\n");
1195 // Propagate the liveness information.
1196 calculateLiveIntervals(NumSlots
);
1197 LLVM_DEBUG(dumpIntervals());
1199 // Search for allocas which are used outside of the declared lifetime
1201 if (ProtectFromEscapedAllocas
)
1202 removeInvalidSlotRanges();
1204 // Maps old slots to new slots.
1205 DenseMap
<int, int> SlotRemap
;
1206 unsigned RemovedSlots
= 0;
1207 unsigned ReducedSize
= 0;
1209 // Do not bother looking at empty intervals.
1210 for (unsigned I
= 0; I
< NumSlots
; ++I
) {
1211 if (Intervals
[SortedSlots
[I
]]->empty())
1212 SortedSlots
[I
] = -1;
1215 // This is a simple greedy algorithm for merging allocas. First, sort the
1216 // slots, placing the largest slots first. Next, perform an n^2 scan and look
1217 // for disjoint slots. When you find disjoint slots, merge the samller one
1218 // into the bigger one and update the live interval. Remove the small alloca
1221 // Sort the slots according to their size. Place unused slots at the end.
1222 // Use stable sort to guarantee deterministic code generation.
1223 std::stable_sort(SortedSlots
.begin(), SortedSlots
.end(),
1224 [this](int LHS
, int RHS
) {
1225 // We use -1 to denote a uninteresting slot. Place these slots at the end.
1226 if (LHS
== -1) return false;
1227 if (RHS
== -1) return true;
1228 // Sort according to size.
1229 return MFI
->getObjectSize(LHS
) > MFI
->getObjectSize(RHS
);
1232 for (auto &s
: LiveStarts
)
1235 bool Changed
= true;
1238 for (unsigned I
= 0; I
< NumSlots
; ++I
) {
1239 if (SortedSlots
[I
] == -1)
1242 for (unsigned J
=I
+1; J
< NumSlots
; ++J
) {
1243 if (SortedSlots
[J
] == -1)
1246 int FirstSlot
= SortedSlots
[I
];
1247 int SecondSlot
= SortedSlots
[J
];
1248 LiveInterval
*First
= &*Intervals
[FirstSlot
];
1249 LiveInterval
*Second
= &*Intervals
[SecondSlot
];
1250 auto &FirstS
= LiveStarts
[FirstSlot
];
1251 auto &SecondS
= LiveStarts
[SecondSlot
];
1252 assert(!First
->empty() && !Second
->empty() && "Found an empty range");
1254 // Merge disjoint slots. This is a little bit tricky - see the
1255 // Implementation Notes section for an explanation.
1256 if (!First
->isLiveAtIndexes(SecondS
) &&
1257 !Second
->isLiveAtIndexes(FirstS
)) {
1259 First
->MergeSegmentsInAsValue(*Second
, First
->getValNumInfo(0));
1261 int OldSize
= FirstS
.size();
1262 FirstS
.append(SecondS
.begin(), SecondS
.end());
1263 auto Mid
= FirstS
.begin() + OldSize
;
1264 std::inplace_merge(FirstS
.begin(), Mid
, FirstS
.end());
1266 SlotRemap
[SecondSlot
] = FirstSlot
;
1267 SortedSlots
[J
] = -1;
1268 LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot
<< " and slots #"
1269 << SecondSlot
<< " together.\n");
1270 unsigned MaxAlignment
= std::max(MFI
->getObjectAlignment(FirstSlot
),
1271 MFI
->getObjectAlignment(SecondSlot
));
1273 assert(MFI
->getObjectSize(FirstSlot
) >=
1274 MFI
->getObjectSize(SecondSlot
) &&
1275 "Merging a small object into a larger one");
1278 ReducedSize
+= MFI
->getObjectSize(SecondSlot
);
1279 MFI
->setObjectAlignment(FirstSlot
, MaxAlignment
);
1280 MFI
->RemoveStackObject(SecondSlot
);
1286 // Record statistics.
1287 StackSpaceSaved
+= ReducedSize
;
1288 StackSlotMerged
+= RemovedSlots
;
1289 LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots
<< " slots. Saved "
1290 << ReducedSize
<< " bytes\n");
1292 // Scan the entire function and update all machine operands that use frame
1293 // indices to use the remapped frame index.
1294 expungeSlotMap(SlotRemap
, NumSlots
);
1295 remapInstructions(SlotRemap
);
1297 return removeAllMarkers();