Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / TargetRegisterInfo.cpp
blob264999804a10a7347d9cfe449cd22c943006c2c9
1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetRegisterInfo interface.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetRegisterInfo.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/CodeGen/VirtRegMap.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MachineValueType.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/Printable.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <cassert>
35 #include <utility>
37 #define DEBUG_TYPE "target-reg-info"
39 using namespace llvm;
41 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
42 regclass_iterator RCB, regclass_iterator RCE,
43 const char *const *SRINames,
44 const LaneBitmask *SRILaneMasks,
45 LaneBitmask SRICoveringLanes,
46 const RegClassInfo *const RCIs,
47 unsigned Mode)
48 : InfoDesc(ID), SubRegIndexNames(SRINames),
49 SubRegIndexLaneMasks(SRILaneMasks),
50 RegClassBegin(RCB), RegClassEnd(RCE),
51 CoveringLanes(SRICoveringLanes),
52 RCInfos(RCIs), HwMode(Mode) {
55 TargetRegisterInfo::~TargetRegisterInfo() = default;
57 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
58 const {
59 for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
60 RegisterSet.set(*AI);
63 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
64 ArrayRef<MCPhysReg> Exceptions) const {
65 // Check that all super registers of reserved regs are reserved as well.
66 BitVector Checked(getNumRegs());
67 for (unsigned Reg : RegisterSet.set_bits()) {
68 if (Checked[Reg])
69 continue;
70 for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
71 if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
72 dbgs() << "Error: Super register " << printReg(*SR, this)
73 << " of reserved register " << printReg(Reg, this)
74 << " is not reserved.\n";
75 return false;
78 // We transitively check superregs. So we can remember this for later
79 // to avoid compiletime explosion in deep register hierarchies.
80 Checked.set(*SR);
83 return true;
86 namespace llvm {
88 Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI,
89 unsigned SubIdx, const MachineRegisterInfo *MRI) {
90 return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
91 if (!Reg)
92 OS << "$noreg";
93 else if (TargetRegisterInfo::isStackSlot(Reg))
94 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
95 else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
96 StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
97 if (Name != "") {
98 OS << '%' << Name;
99 } else {
100 OS << '%' << TargetRegisterInfo::virtReg2Index(Reg);
103 else if (!TRI)
104 OS << '$' << "physreg" << Reg;
105 else if (Reg < TRI->getNumRegs()) {
106 OS << '$';
107 printLowerCase(TRI->getName(Reg), OS);
108 } else
109 llvm_unreachable("Register kind is unsupported.");
111 if (SubIdx) {
112 if (TRI)
113 OS << ':' << TRI->getSubRegIndexName(SubIdx);
114 else
115 OS << ":sub(" << SubIdx << ')';
120 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
121 return Printable([Unit, TRI](raw_ostream &OS) {
122 // Generic printout when TRI is missing.
123 if (!TRI) {
124 OS << "Unit~" << Unit;
125 return;
128 // Check for invalid register units.
129 if (Unit >= TRI->getNumRegUnits()) {
130 OS << "BadUnit~" << Unit;
131 return;
134 // Normal units have at least one root.
135 MCRegUnitRootIterator Roots(Unit, TRI);
136 assert(Roots.isValid() && "Unit has no roots.");
137 OS << TRI->getName(*Roots);
138 for (++Roots; Roots.isValid(); ++Roots)
139 OS << '~' << TRI->getName(*Roots);
143 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
144 return Printable([Unit, TRI](raw_ostream &OS) {
145 if (TRI && TRI->isVirtualRegister(Unit)) {
146 OS << '%' << TargetRegisterInfo::virtReg2Index(Unit);
147 } else {
148 OS << printRegUnit(Unit, TRI);
153 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
154 const TargetRegisterInfo *TRI) {
155 return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
156 if (RegInfo.getRegClassOrNull(Reg))
157 OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
158 else if (RegInfo.getRegBankOrNull(Reg))
159 OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
160 else {
161 OS << "_";
162 assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
163 "Generic registers must have a valid type");
168 } // end namespace llvm
170 /// getAllocatableClass - Return the maximal subclass of the given register
171 /// class that is alloctable, or NULL.
172 const TargetRegisterClass *
173 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
174 if (!RC || RC->isAllocatable())
175 return RC;
177 for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
178 ++It) {
179 const TargetRegisterClass *SubRC = getRegClass(It.getID());
180 if (SubRC->isAllocatable())
181 return SubRC;
183 return nullptr;
186 /// getMinimalPhysRegClass - Returns the Register Class of a physical
187 /// register of the given type, picking the most sub register class of
188 /// the right type that contains this physreg.
189 const TargetRegisterClass *
190 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
191 assert(isPhysicalRegister(reg) && "reg must be a physical register");
193 // Pick the most sub register class of the right type that contains
194 // this physreg.
195 const TargetRegisterClass* BestRC = nullptr;
196 for (const TargetRegisterClass* RC : regclasses()) {
197 if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
198 RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
199 BestRC = RC;
202 assert(BestRC && "Couldn't find the register class");
203 return BestRC;
206 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
207 /// registers for the specific register class.
208 static void getAllocatableSetForRC(const MachineFunction &MF,
209 const TargetRegisterClass *RC, BitVector &R){
210 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
211 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
212 for (unsigned i = 0; i != Order.size(); ++i)
213 R.set(Order[i]);
216 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
217 const TargetRegisterClass *RC) const {
218 BitVector Allocatable(getNumRegs());
219 if (RC) {
220 // A register class with no allocatable subclass returns an empty set.
221 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
222 if (SubClass)
223 getAllocatableSetForRC(MF, SubClass, Allocatable);
224 } else {
225 for (const TargetRegisterClass *C : regclasses())
226 if (C->isAllocatable())
227 getAllocatableSetForRC(MF, C, Allocatable);
230 // Mask out the reserved registers
231 BitVector Reserved = getReservedRegs(MF);
232 Allocatable &= Reserved.flip();
234 return Allocatable;
237 static inline
238 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
239 const uint32_t *B,
240 const TargetRegisterInfo *TRI,
241 const MVT::SimpleValueType SVT =
242 MVT::SimpleValueType::Any) {
243 const MVT VT(SVT);
244 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
245 if (unsigned Common = *A++ & *B++) {
246 const TargetRegisterClass *RC =
247 TRI->getRegClass(I + countTrailingZeros(Common));
248 if (SVT == MVT::SimpleValueType::Any || TRI->isTypeLegalForClass(*RC, VT))
249 return RC;
251 return nullptr;
254 const TargetRegisterClass *
255 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
256 const TargetRegisterClass *B,
257 const MVT::SimpleValueType SVT) const {
258 // First take care of the trivial cases.
259 if (A == B)
260 return A;
261 if (!A || !B)
262 return nullptr;
264 // Register classes are ordered topologically, so the largest common
265 // sub-class it the common sub-class with the smallest ID.
266 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
269 const TargetRegisterClass *
270 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
271 const TargetRegisterClass *B,
272 unsigned Idx) const {
273 assert(A && B && "Missing register class");
274 assert(Idx && "Bad sub-register index");
276 // Find Idx in the list of super-register indices.
277 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
278 if (RCI.getSubReg() == Idx)
279 // The bit mask contains all register classes that are projected into B
280 // by Idx. Find a class that is also a sub-class of A.
281 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
282 return nullptr;
285 const TargetRegisterClass *TargetRegisterInfo::
286 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
287 const TargetRegisterClass *RCB, unsigned SubB,
288 unsigned &PreA, unsigned &PreB) const {
289 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
291 // Search all pairs of sub-register indices that project into RCA and RCB
292 // respectively. This is quadratic, but usually the sets are very small. On
293 // most targets like X86, there will only be a single sub-register index
294 // (e.g., sub_16bit projecting into GR16).
296 // The worst case is a register class like DPR on ARM.
297 // We have indices dsub_0..dsub_7 projecting into that class.
299 // It is very common that one register class is a sub-register of the other.
300 // Arrange for RCA to be the larger register so the answer will be found in
301 // the first iteration. This makes the search linear for the most common
302 // case.
303 const TargetRegisterClass *BestRC = nullptr;
304 unsigned *BestPreA = &PreA;
305 unsigned *BestPreB = &PreB;
306 if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
307 std::swap(RCA, RCB);
308 std::swap(SubA, SubB);
309 std::swap(BestPreA, BestPreB);
312 // Also terminate the search one we have found a register class as small as
313 // RCA.
314 unsigned MinSize = getRegSizeInBits(*RCA);
316 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
317 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
318 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
319 // Check if a common super-register class exists for this index pair.
320 const TargetRegisterClass *RC =
321 firstCommonClass(IA.getMask(), IB.getMask(), this);
322 if (!RC || getRegSizeInBits(*RC) < MinSize)
323 continue;
325 // The indexes must compose identically: PreA+SubA == PreB+SubB.
326 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
327 if (FinalA != FinalB)
328 continue;
330 // Is RC a better candidate than BestRC?
331 if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
332 continue;
334 // Yes, RC is the smallest super-register seen so far.
335 BestRC = RC;
336 *BestPreA = IA.getSubReg();
337 *BestPreB = IB.getSubReg();
339 // Bail early if we reached MinSize. We won't find a better candidate.
340 if (getRegSizeInBits(*BestRC) == MinSize)
341 return BestRC;
344 return BestRC;
347 /// Check if the registers defined by the pair (RegisterClass, SubReg)
348 /// share the same register file.
349 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
350 const TargetRegisterClass *DefRC,
351 unsigned DefSubReg,
352 const TargetRegisterClass *SrcRC,
353 unsigned SrcSubReg) {
354 // Same register class.
355 if (DefRC == SrcRC)
356 return true;
358 // Both operands are sub registers. Check if they share a register class.
359 unsigned SrcIdx, DefIdx;
360 if (SrcSubReg && DefSubReg) {
361 return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
362 SrcIdx, DefIdx) != nullptr;
365 // At most one of the register is a sub register, make it Src to avoid
366 // duplicating the test.
367 if (!SrcSubReg) {
368 std::swap(DefSubReg, SrcSubReg);
369 std::swap(DefRC, SrcRC);
372 // One of the register is a sub register, check if we can get a superclass.
373 if (SrcSubReg)
374 return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
376 // Plain copy.
377 return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
380 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
381 unsigned DefSubReg,
382 const TargetRegisterClass *SrcRC,
383 unsigned SrcSubReg) const {
384 // If this source does not incur a cross register bank copy, use it.
385 return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
388 // Compute target-independent register allocator hints to help eliminate copies.
389 bool
390 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
391 ArrayRef<MCPhysReg> Order,
392 SmallVectorImpl<MCPhysReg> &Hints,
393 const MachineFunction &MF,
394 const VirtRegMap *VRM,
395 const LiveRegMatrix *Matrix) const {
396 const MachineRegisterInfo &MRI = MF.getRegInfo();
397 const std::pair<unsigned, SmallVector<unsigned, 4>> &Hints_MRI =
398 MRI.getRegAllocationHints(VirtReg);
400 // First hint may be a target hint.
401 bool Skip = (Hints_MRI.first != 0);
402 for (auto Reg : Hints_MRI.second) {
403 if (Skip) {
404 Skip = false;
405 continue;
408 // Target-independent hints are either a physical or a virtual register.
409 unsigned Phys = Reg;
410 if (VRM && isVirtualRegister(Phys))
411 Phys = VRM->getPhys(Phys);
413 // Check that Phys is a valid hint in VirtReg's register class.
414 if (!isPhysicalRegister(Phys))
415 continue;
416 if (MRI.isReserved(Phys))
417 continue;
418 // Check that Phys is in the allocation order. We shouldn't heed hints
419 // from VirtReg's register class if they aren't in the allocation order. The
420 // target probably has a reason for removing the register.
421 if (!is_contained(Order, Phys))
422 continue;
424 // All clear, tell the register allocator to prefer this register.
425 Hints.push_back(Phys);
427 return false;
430 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
431 return !MF.getFunction().hasFnAttribute("no-realign-stack");
434 bool TargetRegisterInfo::needsStackRealignment(
435 const MachineFunction &MF) const {
436 const MachineFrameInfo &MFI = MF.getFrameInfo();
437 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
438 const Function &F = MF.getFunction();
439 unsigned StackAlign = TFI->getStackAlignment();
440 bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
441 F.hasFnAttribute(Attribute::StackAlignment));
442 if (F.hasFnAttribute("stackrealign") || requiresRealignment) {
443 if (canRealignStack(MF))
444 return true;
445 LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName()
446 << "\n");
448 return false;
451 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
452 const uint32_t *mask1) const {
453 unsigned N = (getNumRegs()+31) / 32;
454 for (unsigned I = 0; I < N; ++I)
455 if ((mask0[I] & mask1[I]) != mask0[I])
456 return false;
457 return true;
460 unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg,
461 const MachineRegisterInfo &MRI) const {
462 const TargetRegisterClass *RC{};
463 if (isPhysicalRegister(Reg)) {
464 // The size is not directly available for physical registers.
465 // Instead, we need to access a register class that contains Reg and
466 // get the size of that register class.
467 RC = getMinimalPhysRegClass(Reg);
468 } else {
469 LLT Ty = MRI.getType(Reg);
470 unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
471 // If Reg is not a generic register, query the register class to
472 // get its size.
473 if (RegSize)
474 return RegSize;
475 // Since Reg is not a generic register, it must have a register class.
476 RC = MRI.getRegClass(Reg);
478 assert(RC && "Unable to deduce the register class");
479 return getRegSizeInBits(*RC);
482 unsigned
483 TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg,
484 const MachineRegisterInfo *MRI) const {
485 while (true) {
486 const MachineInstr *MI = MRI->getVRegDef(SrcReg);
487 if (!MI->isCopyLike())
488 return SrcReg;
490 unsigned CopySrcReg;
491 if (MI->isCopy())
492 CopySrcReg = MI->getOperand(1).getReg();
493 else {
494 assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
495 CopySrcReg = MI->getOperand(2).getReg();
498 if (!isVirtualRegister(CopySrcReg))
499 return CopySrcReg;
501 SrcReg = CopySrcReg;
505 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
506 LLVM_DUMP_METHOD
507 void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
508 const TargetRegisterInfo *TRI) {
509 dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
511 #endif