Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
blob737d01eaa17d50940d54900bdb82a8a98a42ff68
1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
11 // from:
13 // A = B op C
15 // to:
17 // A = B
18 // A op= C
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
22 // virtual registers.
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/SlotIndexes.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetOpcodes.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <iterator>
63 #include <utility>
65 using namespace llvm;
67 #define DEBUG_TYPE "twoaddressinstruction"
69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
73 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
74 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
75 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
77 // Temporary flag to disable rescheduling.
78 static cl::opt<bool>
79 EnableRescheduling("twoaddr-reschedule",
80 cl::desc("Coalesce copies by rescheduling (default=true)"),
81 cl::init(true), cl::Hidden);
83 // Limit the number of dataflow edges to traverse when evaluating the benefit
84 // of commuting operands.
85 static cl::opt<unsigned> MaxDataFlowEdge(
86 "dataflow-edge-limit", cl::Hidden, cl::init(3),
87 cl::desc("Maximum number of dataflow edges to traverse when evaluating "
88 "the benefit of commuting operands"));
90 namespace {
92 class TwoAddressInstructionPass : public MachineFunctionPass {
93 MachineFunction *MF;
94 const TargetInstrInfo *TII;
95 const TargetRegisterInfo *TRI;
96 const InstrItineraryData *InstrItins;
97 MachineRegisterInfo *MRI;
98 LiveVariables *LV;
99 LiveIntervals *LIS;
100 AliasAnalysis *AA;
101 CodeGenOpt::Level OptLevel;
103 // The current basic block being processed.
104 MachineBasicBlock *MBB;
106 // Keep track the distance of a MI from the start of the current basic block.
107 DenseMap<MachineInstr*, unsigned> DistanceMap;
109 // Set of already processed instructions in the current block.
110 SmallPtrSet<MachineInstr*, 8> Processed;
112 // Set of instructions converted to three-address by target and then sunk
113 // down current basic block.
114 SmallPtrSet<MachineInstr*, 8> SunkInstrs;
116 // A map from virtual registers to physical registers which are likely targets
117 // to be coalesced to due to copies from physical registers to virtual
118 // registers. e.g. v1024 = move r0.
119 DenseMap<unsigned, unsigned> SrcRegMap;
121 // A map from virtual registers to physical registers which are likely targets
122 // to be coalesced to due to copies to physical registers from virtual
123 // registers. e.g. r1 = move v1024.
124 DenseMap<unsigned, unsigned> DstRegMap;
126 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
127 MachineBasicBlock::iterator OldPos);
129 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
131 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
133 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
134 MachineInstr *MI, unsigned Dist);
136 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
137 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
139 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
141 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
142 MachineBasicBlock::iterator &nmi,
143 unsigned RegA, unsigned RegB, unsigned Dist);
145 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
147 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
148 MachineBasicBlock::iterator &nmi,
149 unsigned Reg);
150 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
151 MachineBasicBlock::iterator &nmi,
152 unsigned Reg);
154 bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
155 MachineBasicBlock::iterator &nmi,
156 unsigned SrcIdx, unsigned DstIdx,
157 unsigned Dist, bool shouldOnlyCommute);
159 bool tryInstructionCommute(MachineInstr *MI,
160 unsigned DstOpIdx,
161 unsigned BaseOpIdx,
162 bool BaseOpKilled,
163 unsigned Dist);
164 void scanUses(unsigned DstReg);
166 void processCopy(MachineInstr *MI);
168 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
169 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
171 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
172 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
173 void eliminateRegSequence(MachineBasicBlock::iterator&);
175 public:
176 static char ID; // Pass identification, replacement for typeid
178 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
179 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
182 void getAnalysisUsage(AnalysisUsage &AU) const override {
183 AU.setPreservesCFG();
184 AU.addUsedIfAvailable<AAResultsWrapperPass>();
185 AU.addUsedIfAvailable<LiveVariables>();
186 AU.addPreserved<LiveVariables>();
187 AU.addPreserved<SlotIndexes>();
188 AU.addPreserved<LiveIntervals>();
189 AU.addPreservedID(MachineLoopInfoID);
190 AU.addPreservedID(MachineDominatorsID);
191 MachineFunctionPass::getAnalysisUsage(AU);
194 /// Pass entry point.
195 bool runOnMachineFunction(MachineFunction&) override;
198 } // end anonymous namespace
200 char TwoAddressInstructionPass::ID = 0;
202 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
204 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
205 "Two-Address instruction pass", false, false)
206 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
207 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
208 "Two-Address instruction pass", false, false)
210 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
212 /// A two-address instruction has been converted to a three-address instruction
213 /// to avoid clobbering a register. Try to sink it past the instruction that
214 /// would kill the above mentioned register to reduce register pressure.
215 bool TwoAddressInstructionPass::
216 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
217 MachineBasicBlock::iterator OldPos) {
218 // FIXME: Shouldn't we be trying to do this before we three-addressify the
219 // instruction? After this transformation is done, we no longer need
220 // the instruction to be in three-address form.
222 // Check if it's safe to move this instruction.
223 bool SeenStore = true; // Be conservative.
224 if (!MI->isSafeToMove(AA, SeenStore))
225 return false;
227 unsigned DefReg = 0;
228 SmallSet<unsigned, 4> UseRegs;
230 for (const MachineOperand &MO : MI->operands()) {
231 if (!MO.isReg())
232 continue;
233 unsigned MOReg = MO.getReg();
234 if (!MOReg)
235 continue;
236 if (MO.isUse() && MOReg != SavedReg)
237 UseRegs.insert(MO.getReg());
238 if (!MO.isDef())
239 continue;
240 if (MO.isImplicit())
241 // Don't try to move it if it implicitly defines a register.
242 return false;
243 if (DefReg)
244 // For now, don't move any instructions that define multiple registers.
245 return false;
246 DefReg = MO.getReg();
249 // Find the instruction that kills SavedReg.
250 MachineInstr *KillMI = nullptr;
251 if (LIS) {
252 LiveInterval &LI = LIS->getInterval(SavedReg);
253 assert(LI.end() != LI.begin() &&
254 "Reg should not have empty live interval.");
256 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
257 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
258 if (I != LI.end() && I->start < MBBEndIdx)
259 return false;
261 --I;
262 KillMI = LIS->getInstructionFromIndex(I->end);
264 if (!KillMI) {
265 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) {
266 if (!UseMO.isKill())
267 continue;
268 KillMI = UseMO.getParent();
269 break;
273 // If we find the instruction that kills SavedReg, and it is in an
274 // appropriate location, we can try to sink the current instruction
275 // past it.
276 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
277 MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator())
278 return false;
280 // If any of the definitions are used by another instruction between the
281 // position and the kill use, then it's not safe to sink it.
283 // FIXME: This can be sped up if there is an easy way to query whether an
284 // instruction is before or after another instruction. Then we can use
285 // MachineRegisterInfo def / use instead.
286 MachineOperand *KillMO = nullptr;
287 MachineBasicBlock::iterator KillPos = KillMI;
288 ++KillPos;
290 unsigned NumVisited = 0;
291 for (MachineInstr &OtherMI : make_range(std::next(OldPos), KillPos)) {
292 // Debug instructions cannot be counted against the limit.
293 if (OtherMI.isDebugInstr())
294 continue;
295 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
296 return false;
297 ++NumVisited;
298 for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) {
299 MachineOperand &MO = OtherMI.getOperand(i);
300 if (!MO.isReg())
301 continue;
302 unsigned MOReg = MO.getReg();
303 if (!MOReg)
304 continue;
305 if (DefReg == MOReg)
306 return false;
308 if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) {
309 if (&OtherMI == KillMI && MOReg == SavedReg)
310 // Save the operand that kills the register. We want to unset the kill
311 // marker if we can sink MI past it.
312 KillMO = &MO;
313 else if (UseRegs.count(MOReg))
314 // One of the uses is killed before the destination.
315 return false;
319 assert(KillMO && "Didn't find kill");
321 if (!LIS) {
322 // Update kill and LV information.
323 KillMO->setIsKill(false);
324 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
325 KillMO->setIsKill(true);
327 if (LV)
328 LV->replaceKillInstruction(SavedReg, *KillMI, *MI);
331 // Move instruction to its destination.
332 MBB->remove(MI);
333 MBB->insert(KillPos, MI);
335 if (LIS)
336 LIS->handleMove(*MI);
338 ++Num3AddrSunk;
339 return true;
342 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
343 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
344 const MachineRegisterInfo *MRI) {
345 MachineInstr *Ret = nullptr;
346 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
347 if (DefMI.getParent() != BB || DefMI.isDebugValue())
348 continue;
349 if (!Ret)
350 Ret = &DefMI;
351 else if (Ret != &DefMI)
352 return nullptr;
354 return Ret;
357 /// Check if there is a reversed copy chain from FromReg to ToReg:
358 /// %Tmp1 = copy %Tmp2;
359 /// %FromReg = copy %Tmp1;
360 /// %ToReg = add %FromReg ...
361 /// %Tmp2 = copy %ToReg;
362 /// MaxLen specifies the maximum length of the copy chain the func
363 /// can walk through.
364 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
365 int Maxlen) {
366 unsigned TmpReg = FromReg;
367 for (int i = 0; i < Maxlen; i++) {
368 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
369 if (!Def || !Def->isCopy())
370 return false;
372 TmpReg = Def->getOperand(1).getReg();
374 if (TmpReg == ToReg)
375 return true;
377 return false;
380 /// Return true if there are no intervening uses between the last instruction
381 /// in the MBB that defines the specified register and the two-address
382 /// instruction which is being processed. It also returns the last def location
383 /// by reference.
384 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
385 unsigned &LastDef) {
386 LastDef = 0;
387 unsigned LastUse = Dist;
388 for (MachineOperand &MO : MRI->reg_operands(Reg)) {
389 MachineInstr *MI = MO.getParent();
390 if (MI->getParent() != MBB || MI->isDebugValue())
391 continue;
392 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
393 if (DI == DistanceMap.end())
394 continue;
395 if (MO.isUse() && DI->second < LastUse)
396 LastUse = DI->second;
397 if (MO.isDef() && DI->second > LastDef)
398 LastDef = DI->second;
401 return !(LastUse > LastDef && LastUse < Dist);
404 /// Return true if the specified MI is a copy instruction or an extract_subreg
405 /// instruction. It also returns the source and destination registers and
406 /// whether they are physical registers by reference.
407 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
408 unsigned &SrcReg, unsigned &DstReg,
409 bool &IsSrcPhys, bool &IsDstPhys) {
410 SrcReg = 0;
411 DstReg = 0;
412 if (MI.isCopy()) {
413 DstReg = MI.getOperand(0).getReg();
414 SrcReg = MI.getOperand(1).getReg();
415 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
416 DstReg = MI.getOperand(0).getReg();
417 SrcReg = MI.getOperand(2).getReg();
418 } else
419 return false;
421 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
422 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
423 return true;
426 /// Test if the given register value, which is used by the
427 /// given instruction, is killed by the given instruction.
428 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
429 LiveIntervals *LIS) {
430 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
431 !LIS->isNotInMIMap(*MI)) {
432 // FIXME: Sometimes tryInstructionTransform() will add instructions and
433 // test whether they can be folded before keeping them. In this case it
434 // sets a kill before recursively calling tryInstructionTransform() again.
435 // If there is no interval available, we assume that this instruction is
436 // one of those. A kill flag is manually inserted on the operand so the
437 // check below will handle it.
438 LiveInterval &LI = LIS->getInterval(Reg);
439 // This is to match the kill flag version where undefs don't have kill
440 // flags.
441 if (!LI.hasAtLeastOneValue())
442 return false;
444 SlotIndex useIdx = LIS->getInstructionIndex(*MI);
445 LiveInterval::const_iterator I = LI.find(useIdx);
446 assert(I != LI.end() && "Reg must be live-in to use.");
447 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
450 return MI->killsRegister(Reg);
453 /// Test if the given register value, which is used by the given
454 /// instruction, is killed by the given instruction. This looks through
455 /// coalescable copies to see if the original value is potentially not killed.
457 /// For example, in this code:
459 /// %reg1034 = copy %reg1024
460 /// %reg1035 = copy killed %reg1025
461 /// %reg1036 = add killed %reg1034, killed %reg1035
463 /// %reg1034 is not considered to be killed, since it is copied from a
464 /// register which is not killed. Treating it as not killed lets the
465 /// normal heuristics commute the (two-address) add, which lets
466 /// coalescing eliminate the extra copy.
468 /// If allowFalsePositives is true then likely kills are treated as kills even
469 /// if it can't be proven that they are kills.
470 static bool isKilled(MachineInstr &MI, unsigned Reg,
471 const MachineRegisterInfo *MRI,
472 const TargetInstrInfo *TII,
473 LiveIntervals *LIS,
474 bool allowFalsePositives) {
475 MachineInstr *DefMI = &MI;
476 while (true) {
477 // All uses of physical registers are likely to be kills.
478 if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
479 (allowFalsePositives || MRI->hasOneUse(Reg)))
480 return true;
481 if (!isPlainlyKilled(DefMI, Reg, LIS))
482 return false;
483 if (TargetRegisterInfo::isPhysicalRegister(Reg))
484 return true;
485 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
486 // If there are multiple defs, we can't do a simple analysis, so just
487 // go with what the kill flag says.
488 if (std::next(Begin) != MRI->def_end())
489 return true;
490 DefMI = Begin->getParent();
491 bool IsSrcPhys, IsDstPhys;
492 unsigned SrcReg, DstReg;
493 // If the def is something other than a copy, then it isn't going to
494 // be coalesced, so follow the kill flag.
495 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
496 return true;
497 Reg = SrcReg;
501 /// Return true if the specified MI uses the specified register as a two-address
502 /// use. If so, return the destination register by reference.
503 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
504 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
505 const MachineOperand &MO = MI.getOperand(i);
506 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
507 continue;
508 unsigned ti;
509 if (MI.isRegTiedToDefOperand(i, &ti)) {
510 DstReg = MI.getOperand(ti).getReg();
511 return true;
514 return false;
517 /// Given a register, if has a single in-basic block use, return the use
518 /// instruction if it's a copy or a two-address use.
519 static
520 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
521 MachineRegisterInfo *MRI,
522 const TargetInstrInfo *TII,
523 bool &IsCopy,
524 unsigned &DstReg, bool &IsDstPhys) {
525 if (!MRI->hasOneNonDBGUse(Reg))
526 // None or more than one use.
527 return nullptr;
528 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
529 if (UseMI.getParent() != MBB)
530 return nullptr;
531 unsigned SrcReg;
532 bool IsSrcPhys;
533 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
534 IsCopy = true;
535 return &UseMI;
537 IsDstPhys = false;
538 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
539 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
540 return &UseMI;
542 return nullptr;
545 /// Return the physical register the specified virtual register might be mapped
546 /// to.
547 static unsigned
548 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
549 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
550 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
551 if (SI == RegMap.end())
552 return 0;
553 Reg = SI->second;
555 if (TargetRegisterInfo::isPhysicalRegister(Reg))
556 return Reg;
557 return 0;
560 /// Return true if the two registers are equal or aliased.
561 static bool
562 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
563 if (RegA == RegB)
564 return true;
565 if (!RegA || !RegB)
566 return false;
567 return TRI->regsOverlap(RegA, RegB);
570 // Returns true if Reg is equal or aliased to at least one register in Set.
571 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg,
572 const TargetRegisterInfo *TRI) {
573 for (unsigned R : Set)
574 if (TRI->regsOverlap(R, Reg))
575 return true;
577 return false;
580 /// Return true if it's potentially profitable to commute the two-address
581 /// instruction that's being processed.
582 bool
583 TwoAddressInstructionPass::
584 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
585 MachineInstr *MI, unsigned Dist) {
586 if (OptLevel == CodeGenOpt::None)
587 return false;
589 // Determine if it's profitable to commute this two address instruction. In
590 // general, we want no uses between this instruction and the definition of
591 // the two-address register.
592 // e.g.
593 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
594 // %reg1029 = COPY %reg1028
595 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
596 // insert => %reg1030 = COPY %reg1028
597 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
598 // In this case, it might not be possible to coalesce the second COPY
599 // instruction if the first one is coalesced. So it would be profitable to
600 // commute it:
601 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
602 // %reg1029 = COPY %reg1028
603 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
604 // insert => %reg1030 = COPY %reg1029
605 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
607 if (!isPlainlyKilled(MI, regC, LIS))
608 return false;
610 // Ok, we have something like:
611 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
612 // let's see if it's worth commuting it.
614 // Look for situations like this:
615 // %reg1024 = MOV r1
616 // %reg1025 = MOV r0
617 // %reg1026 = ADD %reg1024, %reg1025
618 // r0 = MOV %reg1026
619 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
620 unsigned ToRegA = getMappedReg(regA, DstRegMap);
621 if (ToRegA) {
622 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
623 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
624 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
625 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
627 // Compute if any of the following are true:
628 // -RegB is not tied to a register and RegC is compatible with RegA.
629 // -RegB is tied to the wrong physical register, but RegC is.
630 // -RegB is tied to the wrong physical register, and RegC isn't tied.
631 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
632 return true;
633 // Don't compute if any of the following are true:
634 // -RegC is not tied to a register and RegB is compatible with RegA.
635 // -RegC is tied to the wrong physical register, but RegB is.
636 // -RegC is tied to the wrong physical register, and RegB isn't tied.
637 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
638 return false;
641 // If there is a use of regC between its last def (could be livein) and this
642 // instruction, then bail.
643 unsigned LastDefC = 0;
644 if (!noUseAfterLastDef(regC, Dist, LastDefC))
645 return false;
647 // If there is a use of regB between its last def (could be livein) and this
648 // instruction, then go ahead and make this transformation.
649 unsigned LastDefB = 0;
650 if (!noUseAfterLastDef(regB, Dist, LastDefB))
651 return true;
653 // Look for situation like this:
654 // %reg101 = MOV %reg100
655 // %reg102 = ...
656 // %reg103 = ADD %reg102, %reg101
657 // ... = %reg103 ...
658 // %reg100 = MOV %reg103
659 // If there is a reversed copy chain from reg101 to reg103, commute the ADD
660 // to eliminate an otherwise unavoidable copy.
661 // FIXME:
662 // We can extend the logic further: If an pair of operands in an insn has
663 // been merged, the insn could be regarded as a virtual copy, and the virtual
664 // copy could also be used to construct a copy chain.
665 // To more generally minimize register copies, ideally the logic of two addr
666 // instruction pass should be integrated with register allocation pass where
667 // interference graph is available.
668 if (isRevCopyChain(regC, regA, MaxDataFlowEdge))
669 return true;
671 if (isRevCopyChain(regB, regA, MaxDataFlowEdge))
672 return false;
674 // Since there are no intervening uses for both registers, then commute
675 // if the def of regC is closer. Its live interval is shorter.
676 return LastDefB && LastDefC && LastDefC > LastDefB;
679 /// Commute a two-address instruction and update the basic block, distance map,
680 /// and live variables if needed. Return true if it is successful.
681 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
682 unsigned DstIdx,
683 unsigned RegBIdx,
684 unsigned RegCIdx,
685 unsigned Dist) {
686 unsigned RegC = MI->getOperand(RegCIdx).getReg();
687 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
688 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
690 if (NewMI == nullptr) {
691 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
692 return false;
695 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
696 assert(NewMI == MI &&
697 "TargetInstrInfo::commuteInstruction() should not return a new "
698 "instruction unless it was requested.");
700 // Update source register map.
701 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
702 if (FromRegC) {
703 unsigned RegA = MI->getOperand(DstIdx).getReg();
704 SrcRegMap[RegA] = FromRegC;
707 return true;
710 /// Return true if it is profitable to convert the given 2-address instruction
711 /// to a 3-address one.
712 bool
713 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
714 // Look for situations like this:
715 // %reg1024 = MOV r1
716 // %reg1025 = MOV r0
717 // %reg1026 = ADD %reg1024, %reg1025
718 // r2 = MOV %reg1026
719 // Turn ADD into a 3-address instruction to avoid a copy.
720 unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
721 if (!FromRegB)
722 return false;
723 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
724 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
727 /// Convert the specified two-address instruction into a three address one.
728 /// Return true if this transformation was successful.
729 bool
730 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
731 MachineBasicBlock::iterator &nmi,
732 unsigned RegA, unsigned RegB,
733 unsigned Dist) {
734 // FIXME: Why does convertToThreeAddress() need an iterator reference?
735 MachineFunction::iterator MFI = MBB->getIterator();
736 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
737 assert(MBB->getIterator() == MFI &&
738 "convertToThreeAddress changed iterator reference");
739 if (!NewMI)
740 return false;
742 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
743 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
744 bool Sunk = false;
746 if (LIS)
747 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);
749 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
750 // FIXME: Temporary workaround. If the new instruction doesn't
751 // uses RegB, convertToThreeAddress must have created more
752 // then one instruction.
753 Sunk = sink3AddrInstruction(NewMI, RegB, mi);
755 MBB->erase(mi); // Nuke the old inst.
757 if (!Sunk) {
758 DistanceMap.insert(std::make_pair(NewMI, Dist));
759 mi = NewMI;
760 nmi = std::next(mi);
762 else
763 SunkInstrs.insert(NewMI);
765 // Update source and destination register maps.
766 SrcRegMap.erase(RegA);
767 DstRegMap.erase(RegB);
768 return true;
771 /// Scan forward recursively for only uses, update maps if the use is a copy or
772 /// a two-address instruction.
773 void
774 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
775 SmallVector<unsigned, 4> VirtRegPairs;
776 bool IsDstPhys;
777 bool IsCopy = false;
778 unsigned NewReg = 0;
779 unsigned Reg = DstReg;
780 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
781 NewReg, IsDstPhys)) {
782 if (IsCopy && !Processed.insert(UseMI).second)
783 break;
785 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
786 if (DI != DistanceMap.end())
787 // Earlier in the same MBB.Reached via a back edge.
788 break;
790 if (IsDstPhys) {
791 VirtRegPairs.push_back(NewReg);
792 break;
794 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
795 if (!isNew)
796 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
797 VirtRegPairs.push_back(NewReg);
798 Reg = NewReg;
801 if (!VirtRegPairs.empty()) {
802 unsigned ToReg = VirtRegPairs.back();
803 VirtRegPairs.pop_back();
804 while (!VirtRegPairs.empty()) {
805 unsigned FromReg = VirtRegPairs.back();
806 VirtRegPairs.pop_back();
807 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
808 if (!isNew)
809 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
810 ToReg = FromReg;
812 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
813 if (!isNew)
814 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
818 /// If the specified instruction is not yet processed, process it if it's a
819 /// copy. For a copy instruction, we find the physical registers the
820 /// source and destination registers might be mapped to. These are kept in
821 /// point-to maps used to determine future optimizations. e.g.
822 /// v1024 = mov r0
823 /// v1025 = mov r1
824 /// v1026 = add v1024, v1025
825 /// r1 = mov r1026
826 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
827 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
828 /// potentially joined with r1 on the output side. It's worthwhile to commute
829 /// 'add' to eliminate a copy.
830 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
831 if (Processed.count(MI))
832 return;
834 bool IsSrcPhys, IsDstPhys;
835 unsigned SrcReg, DstReg;
836 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
837 return;
839 if (IsDstPhys && !IsSrcPhys)
840 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
841 else if (!IsDstPhys && IsSrcPhys) {
842 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
843 if (!isNew)
844 assert(SrcRegMap[DstReg] == SrcReg &&
845 "Can't map to two src physical registers!");
847 scanUses(DstReg);
850 Processed.insert(MI);
853 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
854 /// consider moving the instruction below the kill instruction in order to
855 /// eliminate the need for the copy.
856 bool TwoAddressInstructionPass::
857 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
858 MachineBasicBlock::iterator &nmi,
859 unsigned Reg) {
860 // Bail immediately if we don't have LV or LIS available. We use them to find
861 // kills efficiently.
862 if (!LV && !LIS)
863 return false;
865 MachineInstr *MI = &*mi;
866 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
867 if (DI == DistanceMap.end())
868 // Must be created from unfolded load. Don't waste time trying this.
869 return false;
871 MachineInstr *KillMI = nullptr;
872 if (LIS) {
873 LiveInterval &LI = LIS->getInterval(Reg);
874 assert(LI.end() != LI.begin() &&
875 "Reg should not have empty live interval.");
877 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
878 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
879 if (I != LI.end() && I->start < MBBEndIdx)
880 return false;
882 --I;
883 KillMI = LIS->getInstructionFromIndex(I->end);
884 } else {
885 KillMI = LV->getVarInfo(Reg).findKill(MBB);
887 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
888 // Don't mess with copies, they may be coalesced later.
889 return false;
891 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
892 KillMI->isBranch() || KillMI->isTerminator())
893 // Don't move pass calls, etc.
894 return false;
896 unsigned DstReg;
897 if (isTwoAddrUse(*KillMI, Reg, DstReg))
898 return false;
900 bool SeenStore = true;
901 if (!MI->isSafeToMove(AA, SeenStore))
902 return false;
904 if (TII->getInstrLatency(InstrItins, *MI) > 1)
905 // FIXME: Needs more sophisticated heuristics.
906 return false;
908 SmallVector<unsigned, 2> Uses;
909 SmallVector<unsigned, 2> Kills;
910 SmallVector<unsigned, 2> Defs;
911 for (const MachineOperand &MO : MI->operands()) {
912 if (!MO.isReg())
913 continue;
914 unsigned MOReg = MO.getReg();
915 if (!MOReg)
916 continue;
917 if (MO.isDef())
918 Defs.push_back(MOReg);
919 else {
920 Uses.push_back(MOReg);
921 if (MOReg != Reg && (MO.isKill() ||
922 (LIS && isPlainlyKilled(MI, MOReg, LIS))))
923 Kills.push_back(MOReg);
927 // Move the copies connected to MI down as well.
928 MachineBasicBlock::iterator Begin = MI;
929 MachineBasicBlock::iterator AfterMI = std::next(Begin);
930 MachineBasicBlock::iterator End = AfterMI;
931 while (End != MBB->end()) {
932 End = skipDebugInstructionsForward(End, MBB->end());
933 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
934 Defs.push_back(End->getOperand(0).getReg());
935 else
936 break;
937 ++End;
940 // Check if the reschedule will not break dependencies.
941 unsigned NumVisited = 0;
942 MachineBasicBlock::iterator KillPos = KillMI;
943 ++KillPos;
944 for (MachineInstr &OtherMI : make_range(End, KillPos)) {
945 // Debug instructions cannot be counted against the limit.
946 if (OtherMI.isDebugInstr())
947 continue;
948 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
949 return false;
950 ++NumVisited;
951 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
952 OtherMI.isBranch() || OtherMI.isTerminator())
953 // Don't move pass calls, etc.
954 return false;
955 for (const MachineOperand &MO : OtherMI.operands()) {
956 if (!MO.isReg())
957 continue;
958 unsigned MOReg = MO.getReg();
959 if (!MOReg)
960 continue;
961 if (MO.isDef()) {
962 if (regOverlapsSet(Uses, MOReg, TRI))
963 // Physical register use would be clobbered.
964 return false;
965 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
966 // May clobber a physical register def.
967 // FIXME: This may be too conservative. It's ok if the instruction
968 // is sunken completely below the use.
969 return false;
970 } else {
971 if (regOverlapsSet(Defs, MOReg, TRI))
972 return false;
973 bool isKill =
974 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
975 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
976 regOverlapsSet(Kills, MOReg, TRI)))
977 // Don't want to extend other live ranges and update kills.
978 return false;
979 if (MOReg == Reg && !isKill)
980 // We can't schedule across a use of the register in question.
981 return false;
982 // Ensure that if this is register in question, its the kill we expect.
983 assert((MOReg != Reg || &OtherMI == KillMI) &&
984 "Found multiple kills of a register in a basic block");
989 // Move debug info as well.
990 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
991 --Begin;
993 nmi = End;
994 MachineBasicBlock::iterator InsertPos = KillPos;
995 if (LIS) {
996 // We have to move the copies first so that the MBB is still well-formed
997 // when calling handleMove().
998 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
999 auto CopyMI = MBBI++;
1000 MBB->splice(InsertPos, MBB, CopyMI);
1001 LIS->handleMove(*CopyMI);
1002 InsertPos = CopyMI;
1004 End = std::next(MachineBasicBlock::iterator(MI));
1007 // Copies following MI may have been moved as well.
1008 MBB->splice(InsertPos, MBB, Begin, End);
1009 DistanceMap.erase(DI);
1011 // Update live variables
1012 if (LIS) {
1013 LIS->handleMove(*MI);
1014 } else {
1015 LV->removeVirtualRegisterKilled(Reg, *KillMI);
1016 LV->addVirtualRegisterKilled(Reg, *MI);
1019 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
1020 return true;
1023 /// Return true if the re-scheduling will put the given instruction too close
1024 /// to the defs of its register dependencies.
1025 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1026 MachineInstr *MI) {
1027 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
1028 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
1029 continue;
1030 if (&DefMI == MI)
1031 return true; // MI is defining something KillMI uses
1032 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
1033 if (DDI == DistanceMap.end())
1034 return true; // Below MI
1035 unsigned DefDist = DDI->second;
1036 assert(Dist > DefDist && "Visited def already?");
1037 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
1038 return true;
1040 return false;
1043 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1044 /// consider moving the kill instruction above the current two-address
1045 /// instruction in order to eliminate the need for the copy.
1046 bool TwoAddressInstructionPass::
1047 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
1048 MachineBasicBlock::iterator &nmi,
1049 unsigned Reg) {
1050 // Bail immediately if we don't have LV or LIS available. We use them to find
1051 // kills efficiently.
1052 if (!LV && !LIS)
1053 return false;
1055 MachineInstr *MI = &*mi;
1056 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1057 if (DI == DistanceMap.end())
1058 // Must be created from unfolded load. Don't waste time trying this.
1059 return false;
1061 MachineInstr *KillMI = nullptr;
1062 if (LIS) {
1063 LiveInterval &LI = LIS->getInterval(Reg);
1064 assert(LI.end() != LI.begin() &&
1065 "Reg should not have empty live interval.");
1067 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1068 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1069 if (I != LI.end() && I->start < MBBEndIdx)
1070 return false;
1072 --I;
1073 KillMI = LIS->getInstructionFromIndex(I->end);
1074 } else {
1075 KillMI = LV->getVarInfo(Reg).findKill(MBB);
1077 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1078 // Don't mess with copies, they may be coalesced later.
1079 return false;
1081 unsigned DstReg;
1082 if (isTwoAddrUse(*KillMI, Reg, DstReg))
1083 return false;
1085 bool SeenStore = true;
1086 if (!KillMI->isSafeToMove(AA, SeenStore))
1087 return false;
1089 SmallSet<unsigned, 2> Uses;
1090 SmallSet<unsigned, 2> Kills;
1091 SmallSet<unsigned, 2> Defs;
1092 SmallSet<unsigned, 2> LiveDefs;
1093 for (const MachineOperand &MO : KillMI->operands()) {
1094 if (!MO.isReg())
1095 continue;
1096 unsigned MOReg = MO.getReg();
1097 if (MO.isUse()) {
1098 if (!MOReg)
1099 continue;
1100 if (isDefTooClose(MOReg, DI->second, MI))
1101 return false;
1102 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1103 if (MOReg == Reg && !isKill)
1104 return false;
1105 Uses.insert(MOReg);
1106 if (isKill && MOReg != Reg)
1107 Kills.insert(MOReg);
1108 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1109 Defs.insert(MOReg);
1110 if (!MO.isDead())
1111 LiveDefs.insert(MOReg);
1115 // Check if the reschedule will not break depedencies.
1116 unsigned NumVisited = 0;
1117 for (MachineInstr &OtherMI :
1118 make_range(mi, MachineBasicBlock::iterator(KillMI))) {
1119 // Debug instructions cannot be counted against the limit.
1120 if (OtherMI.isDebugInstr())
1121 continue;
1122 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
1123 return false;
1124 ++NumVisited;
1125 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1126 OtherMI.isBranch() || OtherMI.isTerminator())
1127 // Don't move pass calls, etc.
1128 return false;
1129 SmallVector<unsigned, 2> OtherDefs;
1130 for (const MachineOperand &MO : OtherMI.operands()) {
1131 if (!MO.isReg())
1132 continue;
1133 unsigned MOReg = MO.getReg();
1134 if (!MOReg)
1135 continue;
1136 if (MO.isUse()) {
1137 if (Defs.count(MOReg))
1138 // Moving KillMI can clobber the physical register if the def has
1139 // not been seen.
1140 return false;
1141 if (Kills.count(MOReg))
1142 // Don't want to extend other live ranges and update kills.
1143 return false;
1144 if (&OtherMI != MI && MOReg == Reg &&
1145 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
1146 // We can't schedule across a use of the register in question.
1147 return false;
1148 } else {
1149 OtherDefs.push_back(MOReg);
1153 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1154 unsigned MOReg = OtherDefs[i];
1155 if (Uses.count(MOReg))
1156 return false;
1157 if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1158 LiveDefs.count(MOReg))
1159 return false;
1160 // Physical register def is seen.
1161 Defs.erase(MOReg);
1165 // Move the old kill above MI, don't forget to move debug info as well.
1166 MachineBasicBlock::iterator InsertPos = mi;
1167 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1168 --InsertPos;
1169 MachineBasicBlock::iterator From = KillMI;
1170 MachineBasicBlock::iterator To = std::next(From);
1171 while (std::prev(From)->isDebugInstr())
1172 --From;
1173 MBB->splice(InsertPos, MBB, From, To);
1175 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1176 DistanceMap.erase(DI);
1178 // Update live variables
1179 if (LIS) {
1180 LIS->handleMove(*KillMI);
1181 } else {
1182 LV->removeVirtualRegisterKilled(Reg, *KillMI);
1183 LV->addVirtualRegisterKilled(Reg, *MI);
1186 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1187 return true;
1190 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1191 /// given machine instruction to improve opportunities for coalescing and
1192 /// elimination of a register to register copy.
1194 /// 'DstOpIdx' specifies the index of MI def operand.
1195 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1196 /// operand is killed by the given instruction.
1197 /// The 'Dist' arguments provides the distance of MI from the start of the
1198 /// current basic block and it is used to determine if it is profitable
1199 /// to commute operands in the instruction.
1201 /// Returns true if the transformation happened. Otherwise, returns false.
1202 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1203 unsigned DstOpIdx,
1204 unsigned BaseOpIdx,
1205 bool BaseOpKilled,
1206 unsigned Dist) {
1207 if (!MI->isCommutable())
1208 return false;
1210 bool MadeChange = false;
1211 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg();
1212 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1213 unsigned OpsNum = MI->getDesc().getNumOperands();
1214 unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1215 for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1216 // The call of findCommutedOpIndices below only checks if BaseOpIdx
1217 // and OtherOpIdx are commutable, it does not really search for
1218 // other commutable operands and does not change the values of passed
1219 // variables.
1220 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1221 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1222 continue;
1224 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1225 bool AggressiveCommute = false;
1227 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1228 // operands. This makes the live ranges of DstOp and OtherOp joinable.
1229 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1230 bool DoCommute = !BaseOpKilled && OtherOpKilled;
1232 if (!DoCommute &&
1233 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1234 DoCommute = true;
1235 AggressiveCommute = true;
1238 // If it's profitable to commute, try to do so.
1239 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1240 Dist)) {
1241 MadeChange = true;
1242 ++NumCommuted;
1243 if (AggressiveCommute) {
1244 ++NumAggrCommuted;
1245 // There might be more than two commutable operands, update BaseOp and
1246 // continue scanning.
1247 BaseOpReg = OtherOpReg;
1248 BaseOpKilled = OtherOpKilled;
1249 continue;
1251 // If this was a commute based on kill, we won't do better continuing.
1252 return MadeChange;
1255 return MadeChange;
1258 /// For the case where an instruction has a single pair of tied register
1259 /// operands, attempt some transformations that may either eliminate the tied
1260 /// operands or improve the opportunities for coalescing away the register copy.
1261 /// Returns true if no copy needs to be inserted to untie mi's operands
1262 /// (either because they were untied, or because mi was rescheduled, and will
1263 /// be visited again later). If the shouldOnlyCommute flag is true, only
1264 /// instruction commutation is attempted.
1265 bool TwoAddressInstructionPass::
1266 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1267 MachineBasicBlock::iterator &nmi,
1268 unsigned SrcIdx, unsigned DstIdx,
1269 unsigned Dist, bool shouldOnlyCommute) {
1270 if (OptLevel == CodeGenOpt::None)
1271 return false;
1273 MachineInstr &MI = *mi;
1274 unsigned regA = MI.getOperand(DstIdx).getReg();
1275 unsigned regB = MI.getOperand(SrcIdx).getReg();
1277 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1278 "cannot make instruction into two-address form");
1279 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1281 if (TargetRegisterInfo::isVirtualRegister(regA))
1282 scanUses(regA);
1284 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1286 // If the instruction is convertible to 3 Addr, instead
1287 // of returning try 3 Addr transformation aggresively and
1288 // use this variable to check later. Because it might be better.
1289 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1290 // instead of the following code.
1291 // addl %esi, %edi
1292 // movl %edi, %eax
1293 // ret
1294 if (Commuted && !MI.isConvertibleTo3Addr())
1295 return false;
1297 if (shouldOnlyCommute)
1298 return false;
1300 // If there is one more use of regB later in the same MBB, consider
1301 // re-schedule this MI below it.
1302 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1303 ++NumReSchedDowns;
1304 return true;
1307 // If we commuted, regB may have changed so we should re-sample it to avoid
1308 // confusing the three address conversion below.
1309 if (Commuted) {
1310 regB = MI.getOperand(SrcIdx).getReg();
1311 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1314 if (MI.isConvertibleTo3Addr()) {
1315 // This instruction is potentially convertible to a true
1316 // three-address instruction. Check if it is profitable.
1317 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1318 // Try to convert it.
1319 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1320 ++NumConvertedTo3Addr;
1321 return true; // Done with this instruction.
1326 // Return if it is commuted but 3 addr conversion is failed.
1327 if (Commuted)
1328 return false;
1330 // If there is one more use of regB later in the same MBB, consider
1331 // re-schedule it before this MI if it's legal.
1332 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1333 ++NumReSchedUps;
1334 return true;
1337 // If this is an instruction with a load folded into it, try unfolding
1338 // the load, e.g. avoid this:
1339 // movq %rdx, %rcx
1340 // addq (%rax), %rcx
1341 // in favor of this:
1342 // movq (%rax), %rcx
1343 // addq %rdx, %rcx
1344 // because it's preferable to schedule a load than a register copy.
1345 if (MI.mayLoad() && !regBKilled) {
1346 // Determine if a load can be unfolded.
1347 unsigned LoadRegIndex;
1348 unsigned NewOpc =
1349 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1350 /*UnfoldLoad=*/true,
1351 /*UnfoldStore=*/false,
1352 &LoadRegIndex);
1353 if (NewOpc != 0) {
1354 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1355 if (UnfoldMCID.getNumDefs() == 1) {
1356 // Unfold the load.
1357 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
1358 const TargetRegisterClass *RC =
1359 TRI->getAllocatableClass(
1360 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1361 unsigned Reg = MRI->createVirtualRegister(RC);
1362 SmallVector<MachineInstr *, 2> NewMIs;
1363 if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1364 /*UnfoldLoad=*/true,
1365 /*UnfoldStore=*/false, NewMIs)) {
1366 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1367 return false;
1369 assert(NewMIs.size() == 2 &&
1370 "Unfolded a load into multiple instructions!");
1371 // The load was previously folded, so this is the only use.
1372 NewMIs[1]->addRegisterKilled(Reg, TRI);
1374 // Tentatively insert the instructions into the block so that they
1375 // look "normal" to the transformation logic.
1376 MBB->insert(mi, NewMIs[0]);
1377 MBB->insert(mi, NewMIs[1]);
1379 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
1380 << "2addr: NEW INST: " << *NewMIs[1]);
1382 // Transform the instruction, now that it no longer has a load.
1383 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1384 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1385 MachineBasicBlock::iterator NewMI = NewMIs[1];
1386 bool TransformResult =
1387 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1388 (void)TransformResult;
1389 assert(!TransformResult &&
1390 "tryInstructionTransform() should return false.");
1391 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1392 // Success, or at least we made an improvement. Keep the unfolded
1393 // instructions and discard the original.
1394 if (LV) {
1395 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1396 MachineOperand &MO = MI.getOperand(i);
1397 if (MO.isReg() &&
1398 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1399 if (MO.isUse()) {
1400 if (MO.isKill()) {
1401 if (NewMIs[0]->killsRegister(MO.getReg()))
1402 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1403 else {
1404 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1405 "Kill missing after load unfold!");
1406 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1409 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1410 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1411 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1412 else {
1413 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1414 "Dead flag missing after load unfold!");
1415 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1420 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1423 SmallVector<unsigned, 4> OrigRegs;
1424 if (LIS) {
1425 for (const MachineOperand &MO : MI.operands()) {
1426 if (MO.isReg())
1427 OrigRegs.push_back(MO.getReg());
1431 MI.eraseFromParent();
1433 // Update LiveIntervals.
1434 if (LIS) {
1435 MachineBasicBlock::iterator Begin(NewMIs[0]);
1436 MachineBasicBlock::iterator End(NewMIs[1]);
1437 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1440 mi = NewMIs[1];
1441 } else {
1442 // Transforming didn't eliminate the tie and didn't lead to an
1443 // improvement. Clean up the unfolded instructions and keep the
1444 // original.
1445 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1446 NewMIs[0]->eraseFromParent();
1447 NewMIs[1]->eraseFromParent();
1453 return false;
1456 // Collect tied operands of MI that need to be handled.
1457 // Rewrite trivial cases immediately.
1458 // Return true if any tied operands where found, including the trivial ones.
1459 bool TwoAddressInstructionPass::
1460 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1461 const MCInstrDesc &MCID = MI->getDesc();
1462 bool AnyOps = false;
1463 unsigned NumOps = MI->getNumOperands();
1465 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1466 unsigned DstIdx = 0;
1467 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1468 continue;
1469 AnyOps = true;
1470 MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1471 MachineOperand &DstMO = MI->getOperand(DstIdx);
1472 unsigned SrcReg = SrcMO.getReg();
1473 unsigned DstReg = DstMO.getReg();
1474 // Tied constraint already satisfied?
1475 if (SrcReg == DstReg)
1476 continue;
1478 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1480 // Deal with undef uses immediately - simply rewrite the src operand.
1481 if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1482 // Constrain the DstReg register class if required.
1483 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1484 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1485 TRI, *MF))
1486 MRI->constrainRegClass(DstReg, RC);
1487 SrcMO.setReg(DstReg);
1488 SrcMO.setSubReg(0);
1489 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1490 continue;
1492 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1494 return AnyOps;
1497 // Process a list of tied MI operands that all use the same source register.
1498 // The tied pairs are of the form (SrcIdx, DstIdx).
1499 void
1500 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1501 TiedPairList &TiedPairs,
1502 unsigned &Dist) {
1503 bool IsEarlyClobber = false;
1504 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1505 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1506 IsEarlyClobber |= DstMO.isEarlyClobber();
1509 bool RemovedKillFlag = false;
1510 bool AllUsesCopied = true;
1511 unsigned LastCopiedReg = 0;
1512 SlotIndex LastCopyIdx;
1513 unsigned RegB = 0;
1514 unsigned SubRegB = 0;
1515 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1516 unsigned SrcIdx = TiedPairs[tpi].first;
1517 unsigned DstIdx = TiedPairs[tpi].second;
1519 const MachineOperand &DstMO = MI->getOperand(DstIdx);
1520 unsigned RegA = DstMO.getReg();
1522 // Grab RegB from the instruction because it may have changed if the
1523 // instruction was commuted.
1524 RegB = MI->getOperand(SrcIdx).getReg();
1525 SubRegB = MI->getOperand(SrcIdx).getSubReg();
1527 if (RegA == RegB) {
1528 // The register is tied to multiple destinations (or else we would
1529 // not have continued this far), but this use of the register
1530 // already matches the tied destination. Leave it.
1531 AllUsesCopied = false;
1532 continue;
1534 LastCopiedReg = RegA;
1536 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1537 "cannot make instruction into two-address form");
1539 #ifndef NDEBUG
1540 // First, verify that we don't have a use of "a" in the instruction
1541 // (a = b + a for example) because our transformation will not
1542 // work. This should never occur because we are in SSA form.
1543 for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1544 assert(i == DstIdx ||
1545 !MI->getOperand(i).isReg() ||
1546 MI->getOperand(i).getReg() != RegA);
1547 #endif
1549 // Emit a copy.
1550 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1551 TII->get(TargetOpcode::COPY), RegA);
1552 // If this operand is folding a truncation, the truncation now moves to the
1553 // copy so that the register classes remain valid for the operands.
1554 MIB.addReg(RegB, 0, SubRegB);
1555 const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1556 if (SubRegB) {
1557 if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1558 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1559 SubRegB) &&
1560 "tied subregister must be a truncation");
1561 // The superreg class will not be used to constrain the subreg class.
1562 RC = nullptr;
1564 else {
1565 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1566 && "tied subregister must be a truncation");
1570 // Update DistanceMap.
1571 MachineBasicBlock::iterator PrevMI = MI;
1572 --PrevMI;
1573 DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1574 DistanceMap[MI] = ++Dist;
1576 if (LIS) {
1577 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1579 if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1580 LiveInterval &LI = LIS->getInterval(RegA);
1581 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1582 SlotIndex endIdx =
1583 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1584 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1588 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1590 MachineOperand &MO = MI->getOperand(SrcIdx);
1591 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1592 "inconsistent operand info for 2-reg pass");
1593 if (MO.isKill()) {
1594 MO.setIsKill(false);
1595 RemovedKillFlag = true;
1598 // Make sure regA is a legal regclass for the SrcIdx operand.
1599 if (TargetRegisterInfo::isVirtualRegister(RegA) &&
1600 TargetRegisterInfo::isVirtualRegister(RegB))
1601 MRI->constrainRegClass(RegA, RC);
1602 MO.setReg(RegA);
1603 // The getMatchingSuper asserts guarantee that the register class projected
1604 // by SubRegB is compatible with RegA with no subregister. So regardless of
1605 // whether the dest oper writes a subreg, the source oper should not.
1606 MO.setSubReg(0);
1608 // Propagate SrcRegMap.
1609 SrcRegMap[RegA] = RegB;
1612 if (AllUsesCopied) {
1613 bool ReplacedAllUntiedUses = true;
1614 if (!IsEarlyClobber) {
1615 // Replace other (un-tied) uses of regB with LastCopiedReg.
1616 for (MachineOperand &MO : MI->operands()) {
1617 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1618 if (MO.getSubReg() == SubRegB) {
1619 if (MO.isKill()) {
1620 MO.setIsKill(false);
1621 RemovedKillFlag = true;
1623 MO.setReg(LastCopiedReg);
1624 MO.setSubReg(0);
1625 } else {
1626 ReplacedAllUntiedUses = false;
1632 // Update live variables for regB.
1633 if (RemovedKillFlag && ReplacedAllUntiedUses &&
1634 LV && LV->getVarInfo(RegB).removeKill(*MI)) {
1635 MachineBasicBlock::iterator PrevMI = MI;
1636 --PrevMI;
1637 LV->addVirtualRegisterKilled(RegB, *PrevMI);
1640 // Update LiveIntervals.
1641 if (LIS) {
1642 LiveInterval &LI = LIS->getInterval(RegB);
1643 SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
1644 LiveInterval::const_iterator I = LI.find(MIIdx);
1645 assert(I != LI.end() && "RegB must be live-in to use.");
1647 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1648 if (I->end == UseIdx)
1649 LI.removeSegment(LastCopyIdx, UseIdx);
1651 } else if (RemovedKillFlag) {
1652 // Some tied uses of regB matched their destination registers, so
1653 // regB is still used in this instruction, but a kill flag was
1654 // removed from a different tied use of regB, so now we need to add
1655 // a kill flag to one of the remaining uses of regB.
1656 for (MachineOperand &MO : MI->operands()) {
1657 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1658 MO.setIsKill(true);
1659 break;
1665 /// Reduce two-address instructions to two operands.
1666 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1667 MF = &Func;
1668 const TargetMachine &TM = MF->getTarget();
1669 MRI = &MF->getRegInfo();
1670 TII = MF->getSubtarget().getInstrInfo();
1671 TRI = MF->getSubtarget().getRegisterInfo();
1672 InstrItins = MF->getSubtarget().getInstrItineraryData();
1673 LV = getAnalysisIfAvailable<LiveVariables>();
1674 LIS = getAnalysisIfAvailable<LiveIntervals>();
1675 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1676 AA = &AAPass->getAAResults();
1677 else
1678 AA = nullptr;
1679 OptLevel = TM.getOptLevel();
1680 // Disable optimizations if requested. We cannot skip the whole pass as some
1681 // fixups are necessary for correctness.
1682 if (skipFunction(Func.getFunction()))
1683 OptLevel = CodeGenOpt::None;
1685 bool MadeChange = false;
1687 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1688 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1690 // This pass takes the function out of SSA form.
1691 MRI->leaveSSA();
1693 TiedOperandMap TiedOperands;
1694 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1695 MBBI != MBBE; ++MBBI) {
1696 MBB = &*MBBI;
1697 unsigned Dist = 0;
1698 DistanceMap.clear();
1699 SrcRegMap.clear();
1700 DstRegMap.clear();
1701 Processed.clear();
1702 SunkInstrs.clear();
1703 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1704 mi != me; ) {
1705 MachineBasicBlock::iterator nmi = std::next(mi);
1706 // Don't revisit an instruction previously converted by target. It may
1707 // contain undef register operands (%noreg), which are not handled.
1708 if (mi->isDebugInstr() || SunkInstrs.count(&*mi)) {
1709 mi = nmi;
1710 continue;
1713 // Expand REG_SEQUENCE instructions. This will position mi at the first
1714 // expanded instruction.
1715 if (mi->isRegSequence())
1716 eliminateRegSequence(mi);
1718 DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1720 processCopy(&*mi);
1722 // First scan through all the tied register uses in this instruction
1723 // and record a list of pairs of tied operands for each register.
1724 if (!collectTiedOperands(&*mi, TiedOperands)) {
1725 mi = nmi;
1726 continue;
1729 ++NumTwoAddressInstrs;
1730 MadeChange = true;
1731 LLVM_DEBUG(dbgs() << '\t' << *mi);
1733 // If the instruction has a single pair of tied operands, try some
1734 // transformations that may either eliminate the tied operands or
1735 // improve the opportunities for coalescing away the register copy.
1736 if (TiedOperands.size() == 1) {
1737 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1738 = TiedOperands.begin()->second;
1739 if (TiedPairs.size() == 1) {
1740 unsigned SrcIdx = TiedPairs[0].first;
1741 unsigned DstIdx = TiedPairs[0].second;
1742 unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1743 unsigned DstReg = mi->getOperand(DstIdx).getReg();
1744 if (SrcReg != DstReg &&
1745 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1746 // The tied operands have been eliminated or shifted further down
1747 // the block to ease elimination. Continue processing with 'nmi'.
1748 TiedOperands.clear();
1749 mi = nmi;
1750 continue;
1755 // Now iterate over the information collected above.
1756 for (auto &TO : TiedOperands) {
1757 processTiedPairs(&*mi, TO.second, Dist);
1758 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1761 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1762 if (mi->isInsertSubreg()) {
1763 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1764 // To %reg:subidx = COPY %subreg
1765 unsigned SubIdx = mi->getOperand(3).getImm();
1766 mi->RemoveOperand(3);
1767 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1768 mi->getOperand(0).setSubReg(SubIdx);
1769 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1770 mi->RemoveOperand(1);
1771 mi->setDesc(TII->get(TargetOpcode::COPY));
1772 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1775 // Clear TiedOperands here instead of at the top of the loop
1776 // since most instructions do not have tied operands.
1777 TiedOperands.clear();
1778 mi = nmi;
1782 if (LIS)
1783 MF->verify(this, "After two-address instruction pass");
1785 return MadeChange;
1788 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1790 /// The instruction is turned into a sequence of sub-register copies:
1792 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1794 /// Becomes:
1796 /// undef %dst:ssub0 = COPY %v1
1797 /// %dst:ssub1 = COPY %v2
1798 void TwoAddressInstructionPass::
1799 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1800 MachineInstr &MI = *MBBI;
1801 unsigned DstReg = MI.getOperand(0).getReg();
1802 if (MI.getOperand(0).getSubReg() ||
1803 TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1804 !(MI.getNumOperands() & 1)) {
1805 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1806 llvm_unreachable(nullptr);
1809 SmallVector<unsigned, 4> OrigRegs;
1810 if (LIS) {
1811 OrigRegs.push_back(MI.getOperand(0).getReg());
1812 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1813 OrigRegs.push_back(MI.getOperand(i).getReg());
1816 bool DefEmitted = false;
1817 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1818 MachineOperand &UseMO = MI.getOperand(i);
1819 unsigned SrcReg = UseMO.getReg();
1820 unsigned SubIdx = MI.getOperand(i+1).getImm();
1821 // Nothing needs to be inserted for undef operands.
1822 if (UseMO.isUndef())
1823 continue;
1825 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1826 // might insert a COPY that uses SrcReg after is was killed.
1827 bool isKill = UseMO.isKill();
1828 if (isKill)
1829 for (unsigned j = i + 2; j < e; j += 2)
1830 if (MI.getOperand(j).getReg() == SrcReg) {
1831 MI.getOperand(j).setIsKill();
1832 UseMO.setIsKill(false);
1833 isKill = false;
1834 break;
1837 // Insert the sub-register copy.
1838 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1839 TII->get(TargetOpcode::COPY))
1840 .addReg(DstReg, RegState::Define, SubIdx)
1841 .add(UseMO);
1843 // The first def needs an undef flag because there is no live register
1844 // before it.
1845 if (!DefEmitted) {
1846 CopyMI->getOperand(0).setIsUndef(true);
1847 // Return an iterator pointing to the first inserted instr.
1848 MBBI = CopyMI;
1850 DefEmitted = true;
1852 // Update LiveVariables' kill info.
1853 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1854 LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1856 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1859 MachineBasicBlock::iterator EndMBBI =
1860 std::next(MachineBasicBlock::iterator(MI));
1862 if (!DefEmitted) {
1863 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1864 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1865 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1866 MI.RemoveOperand(j);
1867 } else {
1868 LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1869 MI.eraseFromParent();
1872 // Udpate LiveIntervals.
1873 if (LIS)
1874 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);