1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "RuntimeDyldELF.h"
17 #include "RuntimeDyldImpl.h"
18 #include "RuntimeDyldMachO.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/MutexGuard.h"
29 using namespace llvm::object
;
31 #define DEBUG_TYPE "dyld"
35 enum RuntimeDyldErrorCode
{
36 GenericRTDyldError
= 1
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory
: public std::error_category
{
44 const char *name() const noexcept override
{ return "runtimedyld"; }
46 std::string
message(int Condition
) const override
{
47 switch (static_cast<RuntimeDyldErrorCode
>(Condition
)) {
48 case GenericRTDyldError
: return "Generic RuntimeDyld error";
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
54 static ManagedStatic
<RuntimeDyldErrorCategory
> RTDyldErrorCategory
;
58 char RuntimeDyldError::ID
= 0;
60 void RuntimeDyldError::log(raw_ostream
&OS
) const {
64 std::error_code
RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError
, *RTDyldErrorCategory
);
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
76 void RuntimeDyldImpl::registerEHFrames() {}
78 void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr
.deregisterEHFrames();
83 static void dumpSectionMemory(const SectionEntry
&S
, StringRef State
) {
84 dbgs() << "----- Contents of section " << S
.getName() << " " << State
87 if (S
.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
92 const unsigned ColsPerRow
= 16;
94 uint8_t *DataAddr
= S
.getAddress();
95 uint64_t LoadAddr
= S
.getLoadAddress();
97 unsigned StartPadding
= LoadAddr
& (ColsPerRow
- 1);
98 unsigned BytesRemaining
= S
.getSize();
101 dbgs() << "\n" << format("0x%016" PRIx64
,
102 LoadAddr
& ~(uint64_t)(ColsPerRow
- 1)) << ":";
103 while (StartPadding
--)
107 while (BytesRemaining
> 0) {
108 if ((LoadAddr
& (ColsPerRow
- 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64
, LoadAddr
) << ":";
111 dbgs() << " " << format("%02x", *DataAddr
);
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124 MutexGuard
locked(lock
);
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i
= 0, e
= Sections
.size(); i
!= e
; ++i
)
128 dumpSectionMemory(Sections
[i
], "before relocations"););
130 // First, resolve relocations associated with external symbols.
131 if (auto Err
= resolveExternalSymbols()) {
133 ErrorStr
= toString(std::move(Err
));
136 resolveLocalRelocations();
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i
= 0, e
= Sections
.size(); i
!= e
; ++i
)
140 dumpSectionMemory(Sections
[i
], "after relocations"););
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it
= Relocations
.begin(), e
= Relocations
.end(); it
!= e
; ++it
) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
150 uint64_t Addr
= Sections
[Idx
].getLoadAddress();
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx
<< "\t"
152 << format("%p", (uintptr_t)Addr
) << "\n");
153 resolveRelocationList(it
->second
, Addr
);
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress
,
159 uint64_t TargetAddress
) {
160 MutexGuard
locked(lock
);
161 for (unsigned i
= 0, e
= Sections
.size(); i
!= e
; ++i
) {
162 if (Sections
[i
].getAddress() == LocalAddress
) {
163 reassignSectionAddress(i
, TargetAddress
);
167 llvm_unreachable("Attempting to remap address of unknown section!");
170 static Error
getOffset(const SymbolRef
&Sym
, SectionRef Sec
,
172 Expected
<uint64_t> AddressOrErr
= Sym
.getAddress();
174 return AddressOrErr
.takeError();
175 Result
= *AddressOrErr
- Sec
.getAddress();
176 return Error::success();
179 Expected
<RuntimeDyldImpl::ObjSectionToIDMap
>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile
&Obj
) {
181 MutexGuard
locked(lock
);
183 // Save information about our target
184 Arch
= (Triple::ArchType
)Obj
.getArch();
185 IsTargetLittleEndian
= Obj
.isLittleEndian();
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr
.needsToReserveAllocationSpace()) {
191 uint64_t CodeSize
= 0, RODataSize
= 0, RWDataSize
= 0;
192 uint32_t CodeAlign
= 1, RODataAlign
= 1, RWDataAlign
= 1;
193 if (auto Err
= computeTotalAllocSize(Obj
,
195 RODataSize
, RODataAlign
,
196 RWDataSize
, RWDataAlign
))
197 return std::move(Err
);
198 MemMgr
.reserveAllocationSpace(CodeSize
, CodeAlign
, RODataSize
, RODataAlign
,
199 RWDataSize
, RWDataAlign
);
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections
;
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate
;
208 uint64_t CommonSize
= 0;
209 uint32_t CommonAlign
= 0;
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet
;
215 JITSymbolResolver::LookupSet Symbols
;
216 for (auto &Sym
: Obj
.symbols()) {
217 uint32_t Flags
= Sym
.getFlags();
218 if ((Flags
& SymbolRef::SF_Common
) || (Flags
& SymbolRef::SF_Weak
)) {
220 if (auto NameOrErr
= Sym
.getName())
221 Symbols
.insert(*NameOrErr
);
223 return NameOrErr
.takeError();
227 if (auto ResultOrErr
= Resolver
.getResponsibilitySet(Symbols
))
228 ResponsibilitySet
= std::move(*ResultOrErr
);
230 return ResultOrErr
.takeError();
234 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
235 for (symbol_iterator I
= Obj
.symbol_begin(), E
= Obj
.symbol_end(); I
!= E
;
237 uint32_t Flags
= I
->getFlags();
239 // Skip undefined symbols.
240 if (Flags
& SymbolRef::SF_Undefined
)
243 // Get the symbol type.
244 object::SymbolRef::Type SymType
;
245 if (auto SymTypeOrErr
= I
->getType())
246 SymType
= *SymTypeOrErr
;
248 return SymTypeOrErr
.takeError();
252 if (auto NameOrErr
= I
->getName())
255 return NameOrErr
.takeError();
257 // Compute JIT symbol flags.
258 auto JITSymFlags
= getJITSymbolFlags(*I
);
260 return JITSymFlags
.takeError();
262 // If this is a weak definition, check to see if there's a strong one.
263 // If there is, skip this symbol (we won't be providing it: the strong
264 // definition will). If there's no strong definition, make this definition
266 if (JITSymFlags
->isWeak() || JITSymFlags
->isCommon()) {
267 // First check whether there's already a definition in this instance.
268 if (GlobalSymbolTable
.count(Name
))
271 // If we're not responsible for this symbol, skip it.
272 if (!ResponsibilitySet
.count(Name
))
275 // Otherwise update the flags on the symbol to make this definition
277 if (JITSymFlags
->isWeak())
278 *JITSymFlags
&= ~JITSymbolFlags::Weak
;
279 if (JITSymFlags
->isCommon()) {
280 *JITSymFlags
&= ~JITSymbolFlags::Common
;
281 uint32_t Align
= I
->getAlignment();
282 uint64_t Size
= I
->getCommonSize();
285 CommonSize
= alignTo(CommonSize
, Align
) + Size
;
286 CommonSymbolsToAllocate
.push_back(*I
);
290 if (Flags
& SymbolRef::SF_Absolute
&&
291 SymType
!= object::SymbolRef::ST_File
) {
293 if (auto AddrOrErr
= I
->getAddress())
296 return AddrOrErr
.takeError();
298 unsigned SectionID
= AbsoluteSymbolSection
;
300 LLVM_DEBUG(dbgs() << "\tType: " << SymType
<< " (absolute) Name: " << Name
301 << " SID: " << SectionID
302 << " Offset: " << format("%p", (uintptr_t)Addr
)
303 << " flags: " << Flags
<< "\n");
304 GlobalSymbolTable
[Name
] = SymbolTableEntry(SectionID
, Addr
, *JITSymFlags
);
305 } else if (SymType
== object::SymbolRef::ST_Function
||
306 SymType
== object::SymbolRef::ST_Data
||
307 SymType
== object::SymbolRef::ST_Unknown
||
308 SymType
== object::SymbolRef::ST_Other
) {
310 section_iterator SI
= Obj
.section_end();
311 if (auto SIOrErr
= I
->getSection())
314 return SIOrErr
.takeError();
316 if (SI
== Obj
.section_end())
319 // Get symbol offset.
321 if (auto Err
= getOffset(*I
, *SI
, SectOffset
))
322 return std::move(Err
);
324 bool IsCode
= SI
->isText();
326 if (auto SectionIDOrErr
=
327 findOrEmitSection(Obj
, *SI
, IsCode
, LocalSections
))
328 SectionID
= *SectionIDOrErr
;
330 return SectionIDOrErr
.takeError();
332 LLVM_DEBUG(dbgs() << "\tType: " << SymType
<< " Name: " << Name
333 << " SID: " << SectionID
334 << " Offset: " << format("%p", (uintptr_t)SectOffset
)
335 << " flags: " << Flags
<< "\n");
336 GlobalSymbolTable
[Name
] =
337 SymbolTableEntry(SectionID
, SectOffset
, *JITSymFlags
);
341 // Allocate common symbols
342 if (auto Err
= emitCommonSymbols(Obj
, CommonSymbolsToAllocate
, CommonSize
,
344 return std::move(Err
);
346 // Parse and process relocations
347 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
348 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
351 section_iterator RelocatedSection
= SI
->getRelocatedSection();
353 if (RelocatedSection
== SE
)
356 relocation_iterator I
= SI
->relocation_begin();
357 relocation_iterator E
= SI
->relocation_end();
359 if (I
== E
&& !ProcessAllSections
)
362 bool IsCode
= RelocatedSection
->isText();
363 unsigned SectionID
= 0;
364 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *RelocatedSection
, IsCode
,
366 SectionID
= *SectionIDOrErr
;
368 return SectionIDOrErr
.takeError();
370 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID
<< "\n");
373 if (auto IOrErr
= processRelocationRef(SectionID
, I
, Obj
, LocalSections
, Stubs
))
376 return IOrErr
.takeError();
378 // If there is an attached checker, notify it about the stubs for this
379 // section so that they can be verified.
381 Checker
->registerStubMap(Obj
.getFileName(), SectionID
, Stubs
);
384 // Process remaining sections
385 if (ProcessAllSections
) {
386 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
387 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
390 /* Ignore already loaded sections */
391 if (LocalSections
.find(*SI
) != LocalSections
.end())
394 bool IsCode
= SI
->isText();
395 if (auto SectionIDOrErr
=
396 findOrEmitSection(Obj
, *SI
, IsCode
, LocalSections
))
397 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr
) << "\n");
399 return SectionIDOrErr
.takeError();
403 // Give the subclasses a chance to tie-up any loose ends.
404 if (auto Err
= finalizeLoad(Obj
, LocalSections
))
405 return std::move(Err
);
407 // for (auto E : LocalSections)
408 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
410 return LocalSections
;
413 // A helper method for computeTotalAllocSize.
414 // Computes the memory size required to allocate sections with the given sizes,
415 // assuming that all sections are allocated with the given alignment
417 computeAllocationSizeForSections(std::vector
<uint64_t> &SectionSizes
,
418 uint64_t Alignment
) {
419 uint64_t TotalSize
= 0;
420 for (size_t Idx
= 0, Cnt
= SectionSizes
.size(); Idx
< Cnt
; Idx
++) {
421 uint64_t AlignedSize
=
422 (SectionSizes
[Idx
] + Alignment
- 1) / Alignment
* Alignment
;
423 TotalSize
+= AlignedSize
;
428 static bool isRequiredForExecution(const SectionRef Section
) {
429 const ObjectFile
*Obj
= Section
.getObject();
430 if (isa
<object::ELFObjectFileBase
>(Obj
))
431 return ELFSectionRef(Section
).getFlags() & ELF::SHF_ALLOC
;
432 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
)) {
433 const coff_section
*CoffSection
= COFFObj
->getCOFFSection(Section
);
434 // Avoid loading zero-sized COFF sections.
435 // In PE files, VirtualSize gives the section size, and SizeOfRawData
436 // may be zero for sections with content. In Obj files, SizeOfRawData
437 // gives the section size, and VirtualSize is always zero. Hence
438 // the need to check for both cases below.
440 (CoffSection
->VirtualSize
> 0) || (CoffSection
->SizeOfRawData
> 0);
442 CoffSection
->Characteristics
&
443 (COFF::IMAGE_SCN_MEM_DISCARDABLE
| COFF::IMAGE_SCN_LNK_INFO
);
444 return HasContent
&& !IsDiscardable
;
447 assert(isa
<MachOObjectFile
>(Obj
));
451 static bool isReadOnlyData(const SectionRef Section
) {
452 const ObjectFile
*Obj
= Section
.getObject();
453 if (isa
<object::ELFObjectFileBase
>(Obj
))
454 return !(ELFSectionRef(Section
).getFlags() &
455 (ELF::SHF_WRITE
| ELF::SHF_EXECINSTR
));
456 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
))
457 return ((COFFObj
->getCOFFSection(Section
)->Characteristics
&
458 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
459 | COFF::IMAGE_SCN_MEM_READ
460 | COFF::IMAGE_SCN_MEM_WRITE
))
462 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
463 | COFF::IMAGE_SCN_MEM_READ
));
465 assert(isa
<MachOObjectFile
>(Obj
));
469 static bool isZeroInit(const SectionRef Section
) {
470 const ObjectFile
*Obj
= Section
.getObject();
471 if (isa
<object::ELFObjectFileBase
>(Obj
))
472 return ELFSectionRef(Section
).getType() == ELF::SHT_NOBITS
;
473 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
))
474 return COFFObj
->getCOFFSection(Section
)->Characteristics
&
475 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA
;
477 auto *MachO
= cast
<MachOObjectFile
>(Obj
);
478 unsigned SectionType
= MachO
->getSectionType(Section
);
479 return SectionType
== MachO::S_ZEROFILL
||
480 SectionType
== MachO::S_GB_ZEROFILL
;
483 // Compute an upper bound of the memory size that is required to load all
485 Error
RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile
&Obj
,
488 uint64_t &RODataSize
,
489 uint32_t &RODataAlign
,
490 uint64_t &RWDataSize
,
491 uint32_t &RWDataAlign
) {
492 // Compute the size of all sections required for execution
493 std::vector
<uint64_t> CodeSectionSizes
;
494 std::vector
<uint64_t> ROSectionSizes
;
495 std::vector
<uint64_t> RWSectionSizes
;
497 // Collect sizes of all sections to be loaded;
498 // also determine the max alignment of all sections
499 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
501 const SectionRef
&Section
= *SI
;
503 bool IsRequired
= isRequiredForExecution(Section
) || ProcessAllSections
;
505 // Consider only the sections that are required to be loaded for execution
507 uint64_t DataSize
= Section
.getSize();
508 uint64_t Alignment64
= Section
.getAlignment();
509 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
510 bool IsCode
= Section
.isText();
511 bool IsReadOnly
= isReadOnlyData(Section
);
514 if (auto EC
= Section
.getName(Name
))
515 return errorCodeToError(EC
);
517 uint64_t StubBufSize
= computeSectionStubBufSize(Obj
, Section
);
518 uint64_t SectionSize
= DataSize
+ StubBufSize
;
520 // The .eh_frame section (at least on Linux) needs an extra four bytes
522 // with zeroes added at the end. For MachO objects, this section has a
523 // slightly different name, so this won't have any effect for MachO
525 if (Name
== ".eh_frame")
532 CodeAlign
= std::max(CodeAlign
, Alignment
);
533 CodeSectionSizes
.push_back(SectionSize
);
534 } else if (IsReadOnly
) {
535 RODataAlign
= std::max(RODataAlign
, Alignment
);
536 ROSectionSizes
.push_back(SectionSize
);
538 RWDataAlign
= std::max(RWDataAlign
, Alignment
);
539 RWSectionSizes
.push_back(SectionSize
);
544 // Compute Global Offset Table size. If it is not zero we
545 // also update alignment, which is equal to a size of a
547 if (unsigned GotSize
= computeGOTSize(Obj
)) {
548 RWSectionSizes
.push_back(GotSize
);
549 RWDataAlign
= std::max
<uint32_t>(RWDataAlign
, getGOTEntrySize());
552 // Compute the size of all common symbols
553 uint64_t CommonSize
= 0;
554 uint32_t CommonAlign
= 1;
555 for (symbol_iterator I
= Obj
.symbol_begin(), E
= Obj
.symbol_end(); I
!= E
;
557 uint32_t Flags
= I
->getFlags();
558 if (Flags
& SymbolRef::SF_Common
) {
559 // Add the common symbols to a list. We'll allocate them all below.
560 uint64_t Size
= I
->getCommonSize();
561 uint32_t Align
= I
->getAlignment();
562 // If this is the first common symbol, use its alignment as the alignment
563 // for the common symbols section.
566 CommonSize
= alignTo(CommonSize
, Align
) + Size
;
569 if (CommonSize
!= 0) {
570 RWSectionSizes
.push_back(CommonSize
);
571 RWDataAlign
= std::max(RWDataAlign
, CommonAlign
);
574 // Compute the required allocation space for each different type of sections
575 // (code, read-only data, read-write data) assuming that all sections are
576 // allocated with the max alignment. Note that we cannot compute with the
577 // individual alignments of the sections, because then the required size
578 // depends on the order, in which the sections are allocated.
579 CodeSize
= computeAllocationSizeForSections(CodeSectionSizes
, CodeAlign
);
580 RODataSize
= computeAllocationSizeForSections(ROSectionSizes
, RODataAlign
);
581 RWDataSize
= computeAllocationSizeForSections(RWSectionSizes
, RWDataAlign
);
583 return Error::success();
587 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile
&Obj
) {
588 size_t GotEntrySize
= getGOTEntrySize();
593 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
596 for (const RelocationRef
&Reloc
: SI
->relocations())
597 if (relocationNeedsGot(Reloc
))
598 GotSize
+= GotEntrySize
;
604 // compute stub buffer size for the given section
605 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile
&Obj
,
606 const SectionRef
&Section
) {
607 unsigned StubSize
= getMaxStubSize();
611 // FIXME: this is an inefficient way to handle this. We should computed the
612 // necessary section allocation size in loadObject by walking all the sections
614 unsigned StubBufSize
= 0;
615 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
617 section_iterator RelSecI
= SI
->getRelocatedSection();
618 if (!(RelSecI
== Section
))
621 for (const RelocationRef
&Reloc
: SI
->relocations())
622 if (relocationNeedsStub(Reloc
))
623 StubBufSize
+= StubSize
;
626 // Get section data size and alignment
627 uint64_t DataSize
= Section
.getSize();
628 uint64_t Alignment64
= Section
.getAlignment();
630 // Add stubbuf size alignment
631 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
632 unsigned StubAlignment
= getStubAlignment();
633 unsigned EndAlignment
= (DataSize
| Alignment
) & -(DataSize
| Alignment
);
634 if (StubAlignment
> EndAlignment
)
635 StubBufSize
+= StubAlignment
- EndAlignment
;
639 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src
,
640 unsigned Size
) const {
642 if (IsTargetLittleEndian
) {
645 Result
= (Result
<< 8) | *Src
--;
648 Result
= (Result
<< 8) | *Src
++;
653 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value
, uint8_t *Dst
,
654 unsigned Size
) const {
655 if (IsTargetLittleEndian
) {
657 *Dst
++ = Value
& 0xFF;
663 *Dst
-- = Value
& 0xFF;
669 Expected
<JITSymbolFlags
>
670 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef
&SR
) {
671 return JITSymbolFlags::fromObjectSymbol(SR
);
674 Error
RuntimeDyldImpl::emitCommonSymbols(const ObjectFile
&Obj
,
675 CommonSymbolList
&SymbolsToAllocate
,
677 uint32_t CommonAlign
) {
678 if (SymbolsToAllocate
.empty())
679 return Error::success();
681 // Allocate memory for the section
682 unsigned SectionID
= Sections
.size();
683 uint8_t *Addr
= MemMgr
.allocateDataSection(CommonSize
, CommonAlign
, SectionID
,
684 "<common symbols>", false);
686 report_fatal_error("Unable to allocate memory for common symbols!");
689 SectionEntry("<common symbols>", Addr
, CommonSize
, CommonSize
, 0));
690 memset(Addr
, 0, CommonSize
);
692 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
693 << " new addr: " << format("%p", Addr
)
694 << " DataSize: " << CommonSize
<< "\n");
696 // Assign the address of each symbol
697 for (auto &Sym
: SymbolsToAllocate
) {
698 uint32_t Align
= Sym
.getAlignment();
699 uint64_t Size
= Sym
.getCommonSize();
701 if (auto NameOrErr
= Sym
.getName())
704 return NameOrErr
.takeError();
706 // This symbol has an alignment requirement.
707 uint64_t AlignOffset
= OffsetToAlignment((uint64_t)Addr
, Align
);
709 Offset
+= AlignOffset
;
711 auto JITSymFlags
= getJITSymbolFlags(Sym
);
714 return JITSymFlags
.takeError();
716 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name
<< " address "
717 << format("%p", Addr
) << "\n");
718 GlobalSymbolTable
[Name
] =
719 SymbolTableEntry(SectionID
, Offset
, std::move(*JITSymFlags
));
725 Checker
->registerSection(Obj
.getFileName(), SectionID
);
727 return Error::success();
731 RuntimeDyldImpl::emitSection(const ObjectFile
&Obj
,
732 const SectionRef
&Section
,
735 uint64_t Alignment64
= Section
.getAlignment();
737 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
738 unsigned PaddingSize
= 0;
739 unsigned StubBufSize
= 0;
740 bool IsRequired
= isRequiredForExecution(Section
);
741 bool IsVirtual
= Section
.isVirtual();
742 bool IsZeroInit
= isZeroInit(Section
);
743 bool IsReadOnly
= isReadOnlyData(Section
);
744 uint64_t DataSize
= Section
.getSize();
746 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
747 // while being more "polite". Other formats do not support 0-aligned sections
748 // anyway, so we should guarantee that the alignment is always at least 1.
749 Alignment
= std::max(1u, Alignment
);
752 if (auto EC
= Section
.getName(Name
))
753 return errorCodeToError(EC
);
755 StubBufSize
= computeSectionStubBufSize(Obj
, Section
);
757 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
758 // with zeroes added at the end. For MachO objects, this section has a
759 // slightly different name, so this won't have any effect for MachO objects.
760 if (Name
== ".eh_frame")
764 unsigned SectionID
= Sections
.size();
766 const char *pData
= nullptr;
768 // If this section contains any bits (i.e. isn't a virtual or bss section),
769 // grab a reference to them.
770 if (!IsVirtual
&& !IsZeroInit
) {
771 // In either case, set the location of the unrelocated section in memory,
772 // since we still process relocations for it even if we're not applying them.
773 if (auto EC
= Section
.getContents(data
))
774 return errorCodeToError(EC
);
778 // Code section alignment needs to be at least as high as stub alignment or
779 // padding calculations may by incorrect when the section is remapped to a
782 Alignment
= std::max(Alignment
, getStubAlignment());
784 PaddingSize
+= getStubAlignment() - 1;
787 // Some sections, such as debug info, don't need to be loaded for execution.
788 // Process those only if explicitly requested.
789 if (IsRequired
|| ProcessAllSections
) {
790 Allocate
= DataSize
+ PaddingSize
+ StubBufSize
;
793 Addr
= IsCode
? MemMgr
.allocateCodeSection(Allocate
, Alignment
, SectionID
,
795 : MemMgr
.allocateDataSection(Allocate
, Alignment
, SectionID
,
798 report_fatal_error("Unable to allocate section memory!");
800 // Zero-initialize or copy the data from the image
801 if (IsZeroInit
|| IsVirtual
)
802 memset(Addr
, 0, DataSize
);
804 memcpy(Addr
, pData
, DataSize
);
806 // Fill in any extra bytes we allocated for padding
807 if (PaddingSize
!= 0) {
808 memset(Addr
+ DataSize
, 0, PaddingSize
);
809 // Update the DataSize variable to include padding.
810 DataSize
+= PaddingSize
;
812 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
813 // have been increased above to account for this).
815 DataSize
&= ~(getStubAlignment() - 1);
818 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " Name: "
819 << Name
<< " obj addr: " << format("%p", pData
)
820 << " new addr: " << format("%p", Addr
) << " DataSize: "
821 << DataSize
<< " StubBufSize: " << StubBufSize
822 << " Allocate: " << Allocate
<< "\n");
824 // Even if we didn't load the section, we need to record an entry for it
825 // to handle later processing (and by 'handle' I mean don't do anything
826 // with these sections).
830 dbgs() << "emitSection SectionID: " << SectionID
<< " Name: " << Name
831 << " obj addr: " << format("%p", data
.data()) << " new addr: 0"
832 << " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
833 << " Allocate: " << Allocate
<< "\n");
837 SectionEntry(Name
, Addr
, DataSize
, Allocate
, (uintptr_t)pData
));
839 // Debug info sections are linked as if their load address was zero
841 Sections
.back().setLoadAddress(0);
844 Checker
->registerSection(Obj
.getFileName(), SectionID
);
850 RuntimeDyldImpl::findOrEmitSection(const ObjectFile
&Obj
,
851 const SectionRef
&Section
,
853 ObjSectionToIDMap
&LocalSections
) {
855 unsigned SectionID
= 0;
856 ObjSectionToIDMap::iterator i
= LocalSections
.find(Section
);
857 if (i
!= LocalSections
.end())
858 SectionID
= i
->second
;
860 if (auto SectionIDOrErr
= emitSection(Obj
, Section
, IsCode
))
861 SectionID
= *SectionIDOrErr
;
863 return SectionIDOrErr
.takeError();
864 LocalSections
[Section
] = SectionID
;
869 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry
&RE
,
870 unsigned SectionID
) {
871 Relocations
[SectionID
].push_back(RE
);
874 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry
&RE
,
875 StringRef SymbolName
) {
876 // Relocation by symbol. If the symbol is found in the global symbol table,
877 // create an appropriate section relocation. Otherwise, add it to
878 // ExternalSymbolRelocations.
879 RTDyldSymbolTable::const_iterator Loc
= GlobalSymbolTable
.find(SymbolName
);
880 if (Loc
== GlobalSymbolTable
.end()) {
881 ExternalSymbolRelocations
[SymbolName
].push_back(RE
);
883 // Copy the RE since we want to modify its addend.
884 RelocationEntry RECopy
= RE
;
885 const auto &SymInfo
= Loc
->second
;
886 RECopy
.Addend
+= SymInfo
.getOffset();
887 Relocations
[SymInfo
.getSectionID()].push_back(RECopy
);
891 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr
,
892 unsigned AbiVariant
) {
893 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
) {
894 // This stub has to be able to access the full address space,
895 // since symbol lookup won't necessarily find a handy, in-range,
896 // PLT stub for functions which could be anywhere.
897 // Stub can use ip0 (== x16) to calculate address
898 writeBytesUnaligned(0xd2e00010, Addr
, 4); // movz ip0, #:abs_g3:<addr>
899 writeBytesUnaligned(0xf2c00010, Addr
+4, 4); // movk ip0, #:abs_g2_nc:<addr>
900 writeBytesUnaligned(0xf2a00010, Addr
+8, 4); // movk ip0, #:abs_g1_nc:<addr>
901 writeBytesUnaligned(0xf2800010, Addr
+12, 4); // movk ip0, #:abs_g0_nc:<addr>
902 writeBytesUnaligned(0xd61f0200, Addr
+16, 4); // br ip0
905 } else if (Arch
== Triple::arm
|| Arch
== Triple::armeb
) {
906 // TODO: There is only ARM far stub now. We should add the Thumb stub,
907 // and stubs for branches Thumb - ARM and ARM - Thumb.
908 writeBytesUnaligned(0xe51ff004, Addr
, 4); // ldr pc, [pc, #-4]
910 } else if (IsMipsO32ABI
|| IsMipsN32ABI
) {
911 // 0: 3c190000 lui t9,%hi(addr).
912 // 4: 27390000 addiu t9,t9,%lo(addr).
913 // 8: 03200008 jr t9.
915 const unsigned LuiT9Instr
= 0x3c190000, AdduiT9Instr
= 0x27390000;
916 const unsigned NopInstr
= 0x0;
917 unsigned JrT9Instr
= 0x03200008;
918 if ((AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_32R6
||
919 (AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_64R6
)
920 JrT9Instr
= 0x03200009;
922 writeBytesUnaligned(LuiT9Instr
, Addr
, 4);
923 writeBytesUnaligned(AdduiT9Instr
, Addr
+ 4, 4);
924 writeBytesUnaligned(JrT9Instr
, Addr
+ 8, 4);
925 writeBytesUnaligned(NopInstr
, Addr
+ 12, 4);
927 } else if (IsMipsN64ABI
) {
928 // 0: 3c190000 lui t9,%highest(addr).
929 // 4: 67390000 daddiu t9,t9,%higher(addr).
930 // 8: 0019CC38 dsll t9,t9,16.
931 // c: 67390000 daddiu t9,t9,%hi(addr).
932 // 10: 0019CC38 dsll t9,t9,16.
933 // 14: 67390000 daddiu t9,t9,%lo(addr).
934 // 18: 03200008 jr t9.
936 const unsigned LuiT9Instr
= 0x3c190000, DaddiuT9Instr
= 0x67390000,
937 DsllT9Instr
= 0x19CC38;
938 const unsigned NopInstr
= 0x0;
939 unsigned JrT9Instr
= 0x03200008;
940 if ((AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_64R6
)
941 JrT9Instr
= 0x03200009;
943 writeBytesUnaligned(LuiT9Instr
, Addr
, 4);
944 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 4, 4);
945 writeBytesUnaligned(DsllT9Instr
, Addr
+ 8, 4);
946 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 12, 4);
947 writeBytesUnaligned(DsllT9Instr
, Addr
+ 16, 4);
948 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 20, 4);
949 writeBytesUnaligned(JrT9Instr
, Addr
+ 24, 4);
950 writeBytesUnaligned(NopInstr
, Addr
+ 28, 4);
952 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
953 // Depending on which version of the ELF ABI is in use, we need to
954 // generate one of two variants of the stub. They both start with
955 // the same sequence to load the target address into r12.
956 writeInt32BE(Addr
, 0x3D800000); // lis r12, highest(addr)
957 writeInt32BE(Addr
+4, 0x618C0000); // ori r12, higher(addr)
958 writeInt32BE(Addr
+8, 0x798C07C6); // sldi r12, r12, 32
959 writeInt32BE(Addr
+12, 0x658C0000); // oris r12, r12, h(addr)
960 writeInt32BE(Addr
+16, 0x618C0000); // ori r12, r12, l(addr)
961 if (AbiVariant
== 2) {
962 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
963 // The address is already in r12 as required by the ABI. Branch to it.
964 writeInt32BE(Addr
+20, 0xF8410018); // std r2, 24(r1)
965 writeInt32BE(Addr
+24, 0x7D8903A6); // mtctr r12
966 writeInt32BE(Addr
+28, 0x4E800420); // bctr
968 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
969 // Load the function address on r11 and sets it to control register. Also
970 // loads the function TOC in r2 and environment pointer to r11.
971 writeInt32BE(Addr
+20, 0xF8410028); // std r2, 40(r1)
972 writeInt32BE(Addr
+24, 0xE96C0000); // ld r11, 0(r12)
973 writeInt32BE(Addr
+28, 0xE84C0008); // ld r2, 0(r12)
974 writeInt32BE(Addr
+32, 0x7D6903A6); // mtctr r11
975 writeInt32BE(Addr
+36, 0xE96C0010); // ld r11, 16(r2)
976 writeInt32BE(Addr
+40, 0x4E800420); // bctr
979 } else if (Arch
== Triple::systemz
) {
980 writeInt16BE(Addr
, 0xC418); // lgrl %r1,.+8
981 writeInt16BE(Addr
+2, 0x0000);
982 writeInt16BE(Addr
+4, 0x0004);
983 writeInt16BE(Addr
+6, 0x07F1); // brc 15,%r1
984 // 8-byte address stored at Addr + 8
986 } else if (Arch
== Triple::x86_64
) {
988 *(Addr
+1) = 0x25; // rip
989 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
990 } else if (Arch
== Triple::x86
) {
991 *Addr
= 0xE9; // 32-bit pc-relative jump.
996 // Assign an address to a symbol name and resolve all the relocations
997 // associated with it.
998 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID
,
1000 // The address to use for relocation resolution is not
1001 // the address of the local section buffer. We must be doing
1002 // a remote execution environment of some sort. Relocations can't
1003 // be applied until all the sections have been moved. The client must
1004 // trigger this with a call to MCJIT::finalize() or
1005 // RuntimeDyld::resolveRelocations().
1007 // Addr is a uint64_t because we can't assume the pointer width
1008 // of the target is the same as that of the host. Just use a generic
1009 // "big enough" type.
1011 dbgs() << "Reassigning address for section " << SectionID
<< " ("
1012 << Sections
[SectionID
].getName() << "): "
1013 << format("0x%016" PRIx64
, Sections
[SectionID
].getLoadAddress())
1014 << " -> " << format("0x%016" PRIx64
, Addr
) << "\n");
1015 Sections
[SectionID
].setLoadAddress(Addr
);
1018 void RuntimeDyldImpl::resolveRelocationList(const RelocationList
&Relocs
,
1020 for (unsigned i
= 0, e
= Relocs
.size(); i
!= e
; ++i
) {
1021 const RelocationEntry
&RE
= Relocs
[i
];
1022 // Ignore relocations for sections that were not loaded
1023 if (Sections
[RE
.SectionID
].getAddress() == nullptr)
1025 resolveRelocation(RE
, Value
);
1029 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1030 const StringMap
<JITEvaluatedSymbol
> ExternalSymbolMap
) {
1031 while (!ExternalSymbolRelocations
.empty()) {
1033 StringMap
<RelocationList
>::iterator i
= ExternalSymbolRelocations
.begin();
1035 StringRef Name
= i
->first();
1036 if (Name
.size() == 0) {
1037 // This is an absolute symbol, use an address of zero.
1038 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1040 RelocationList
&Relocs
= i
->second
;
1041 resolveRelocationList(Relocs
, 0);
1044 JITSymbolFlags Flags
;
1045 RTDyldSymbolTable::const_iterator Loc
= GlobalSymbolTable
.find(Name
);
1046 if (Loc
== GlobalSymbolTable
.end()) {
1047 auto RRI
= ExternalSymbolMap
.find(Name
);
1048 assert(RRI
!= ExternalSymbolMap
.end() && "No result for symbol");
1049 Addr
= RRI
->second
.getAddress();
1050 Flags
= RRI
->second
.getFlags();
1051 // The call to getSymbolAddress may have caused additional modules to
1052 // be loaded, which may have added new entries to the
1053 // ExternalSymbolRelocations map. Consquently, we need to update our
1054 // iterator. This is also why retrieval of the relocation list
1055 // associated with this symbol is deferred until below this point.
1056 // New entries may have been added to the relocation list.
1057 i
= ExternalSymbolRelocations
.find(Name
);
1059 // We found the symbol in our global table. It was probably in a
1060 // Module that we loaded previously.
1061 const auto &SymInfo
= Loc
->second
;
1062 Addr
= getSectionLoadAddress(SymInfo
.getSectionID()) +
1063 SymInfo
.getOffset();
1064 Flags
= SymInfo
.getFlags();
1067 // FIXME: Implement error handling that doesn't kill the host program!
1069 report_fatal_error("Program used external function '" + Name
+
1070 "' which could not be resolved!");
1072 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1073 // manually and we shouldn't resolve its relocations.
1074 if (Addr
!= UINT64_MAX
) {
1076 // Tweak the address based on the symbol flags if necessary.
1077 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1078 // if the target symbol is Thumb.
1079 Addr
= modifyAddressBasedOnFlags(Addr
, Flags
);
1081 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name
<< "\t"
1082 << format("0x%lx", Addr
) << "\n");
1083 // This list may have been updated when we called getSymbolAddress, so
1084 // don't change this code to get the list earlier.
1085 RelocationList
&Relocs
= i
->second
;
1086 resolveRelocationList(Relocs
, Addr
);
1090 ExternalSymbolRelocations
.erase(i
);
1094 Error
RuntimeDyldImpl::resolveExternalSymbols() {
1095 StringMap
<JITEvaluatedSymbol
> ExternalSymbolMap
;
1097 // Resolution can trigger emission of more symbols, so iterate until
1098 // we've resolved *everything*.
1100 JITSymbolResolver::LookupSet ResolvedSymbols
;
1103 JITSymbolResolver::LookupSet NewSymbols
;
1105 for (auto &RelocKV
: ExternalSymbolRelocations
) {
1106 StringRef Name
= RelocKV
.first();
1107 if (!Name
.empty() && !GlobalSymbolTable
.count(Name
) &&
1108 !ResolvedSymbols
.count(Name
))
1109 NewSymbols
.insert(Name
);
1112 if (NewSymbols
.empty())
1116 using ExpectedLookupResult
=
1117 MSVCPExpected
<JITSymbolResolver::LookupResult
>;
1119 using ExpectedLookupResult
= Expected
<JITSymbolResolver::LookupResult
>;
1122 auto NewSymbolsP
= std::make_shared
<std::promise
<ExpectedLookupResult
>>();
1123 auto NewSymbolsF
= NewSymbolsP
->get_future();
1124 Resolver
.lookup(NewSymbols
,
1125 [=](Expected
<JITSymbolResolver::LookupResult
> Result
) {
1126 NewSymbolsP
->set_value(std::move(Result
));
1129 auto NewResolverResults
= NewSymbolsF
.get();
1131 if (!NewResolverResults
)
1132 return NewResolverResults
.takeError();
1134 assert(NewResolverResults
->size() == NewSymbols
.size() &&
1135 "Should have errored on unresolved symbols");
1137 for (auto &RRKV
: *NewResolverResults
) {
1138 assert(!ResolvedSymbols
.count(RRKV
.first
) && "Redundant resolution?");
1139 ExternalSymbolMap
.insert(RRKV
);
1140 ResolvedSymbols
.insert(RRKV
.first
);
1145 applyExternalSymbolRelocations(ExternalSymbolMap
);
1147 return Error::success();
1150 void RuntimeDyldImpl::finalizeAsync(
1151 std::unique_ptr
<RuntimeDyldImpl
> This
, std::function
<void(Error
)> OnEmitted
,
1152 std::unique_ptr
<MemoryBuffer
> UnderlyingBuffer
) {
1154 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1156 auto SharedUnderlyingBuffer
=
1157 std::shared_ptr
<MemoryBuffer
>(std::move(UnderlyingBuffer
));
1158 auto SharedThis
= std::shared_ptr
<RuntimeDyldImpl
>(std::move(This
));
1159 auto PostResolveContinuation
=
1160 [SharedThis
, OnEmitted
, SharedUnderlyingBuffer
](
1161 Expected
<JITSymbolResolver::LookupResult
> Result
) {
1163 OnEmitted(Result
.takeError());
1167 /// Copy the result into a StringMap, where the keys are held by value.
1168 StringMap
<JITEvaluatedSymbol
> Resolved
;
1169 for (auto &KV
: *Result
)
1170 Resolved
[KV
.first
] = KV
.second
;
1172 SharedThis
->applyExternalSymbolRelocations(Resolved
);
1173 SharedThis
->resolveLocalRelocations();
1174 SharedThis
->registerEHFrames();
1176 if (SharedThis
->MemMgr
.finalizeMemory(&ErrMsg
))
1177 OnEmitted(make_error
<StringError
>(std::move(ErrMsg
),
1178 inconvertibleErrorCode()));
1180 OnEmitted(Error::success());
1183 JITSymbolResolver::LookupSet Symbols
;
1185 for (auto &RelocKV
: SharedThis
->ExternalSymbolRelocations
) {
1186 StringRef Name
= RelocKV
.first();
1187 assert(!Name
.empty() && "Symbol has no name?");
1188 assert(!SharedThis
->GlobalSymbolTable
.count(Name
) &&
1189 "Name already processed. RuntimeDyld instances can not be re-used "
1190 "when finalizing with finalizeAsync.");
1191 Symbols
.insert(Name
);
1194 if (!Symbols
.empty()) {
1195 SharedThis
->Resolver
.lookup(Symbols
, PostResolveContinuation
);
1197 PostResolveContinuation(std::map
<StringRef
, JITEvaluatedSymbol
>());
1200 //===----------------------------------------------------------------------===//
1201 // RuntimeDyld class implementation
1203 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1204 const object::SectionRef
&Sec
) const {
1206 auto I
= ObjSecToIDMap
.find(Sec
);
1207 if (I
!= ObjSecToIDMap
.end())
1208 return RTDyld
.Sections
[I
->second
].getLoadAddress();
1213 void RuntimeDyld::MemoryManager::anchor() {}
1214 void JITSymbolResolver::anchor() {}
1215 void LegacyJITSymbolResolver::anchor() {}
1217 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager
&MemMgr
,
1218 JITSymbolResolver
&Resolver
)
1219 : MemMgr(MemMgr
), Resolver(Resolver
) {
1220 // FIXME: There's a potential issue lurking here if a single instance of
1221 // RuntimeDyld is used to load multiple objects. The current implementation
1222 // associates a single memory manager with a RuntimeDyld instance. Even
1223 // though the public class spawns a new 'impl' instance for each load,
1224 // they share a single memory manager. This can become a problem when page
1225 // permissions are applied.
1227 ProcessAllSections
= false;
1231 RuntimeDyld::~RuntimeDyld() {}
1233 static std::unique_ptr
<RuntimeDyldCOFF
>
1234 createRuntimeDyldCOFF(Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1235 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1236 RuntimeDyldCheckerImpl
*Checker
) {
1237 std::unique_ptr
<RuntimeDyldCOFF
> Dyld
=
1238 RuntimeDyldCOFF::create(Arch
, MM
, Resolver
);
1239 Dyld
->setProcessAllSections(ProcessAllSections
);
1240 Dyld
->setRuntimeDyldChecker(Checker
);
1244 static std::unique_ptr
<RuntimeDyldELF
>
1245 createRuntimeDyldELF(Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1246 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1247 RuntimeDyldCheckerImpl
*Checker
) {
1248 std::unique_ptr
<RuntimeDyldELF
> Dyld
=
1249 RuntimeDyldELF::create(Arch
, MM
, Resolver
);
1250 Dyld
->setProcessAllSections(ProcessAllSections
);
1251 Dyld
->setRuntimeDyldChecker(Checker
);
1255 static std::unique_ptr
<RuntimeDyldMachO
>
1256 createRuntimeDyldMachO(Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1257 JITSymbolResolver
&Resolver
,
1258 bool ProcessAllSections
,
1259 RuntimeDyldCheckerImpl
*Checker
) {
1260 std::unique_ptr
<RuntimeDyldMachO
> Dyld
=
1261 RuntimeDyldMachO::create(Arch
, MM
, Resolver
);
1262 Dyld
->setProcessAllSections(ProcessAllSections
);
1263 Dyld
->setRuntimeDyldChecker(Checker
);
1267 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
1268 RuntimeDyld::loadObject(const ObjectFile
&Obj
) {
1272 createRuntimeDyldELF(static_cast<Triple::ArchType
>(Obj
.getArch()),
1273 MemMgr
, Resolver
, ProcessAllSections
, Checker
);
1274 else if (Obj
.isMachO())
1275 Dyld
= createRuntimeDyldMachO(
1276 static_cast<Triple::ArchType
>(Obj
.getArch()), MemMgr
, Resolver
,
1277 ProcessAllSections
, Checker
);
1278 else if (Obj
.isCOFF())
1279 Dyld
= createRuntimeDyldCOFF(
1280 static_cast<Triple::ArchType
>(Obj
.getArch()), MemMgr
, Resolver
,
1281 ProcessAllSections
, Checker
);
1283 report_fatal_error("Incompatible object format!");
1286 if (!Dyld
->isCompatibleFile(Obj
))
1287 report_fatal_error("Incompatible object format!");
1289 auto LoadedObjInfo
= Dyld
->loadObject(Obj
);
1290 MemMgr
.notifyObjectLoaded(*this, Obj
);
1291 return LoadedObjInfo
;
1294 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name
) const {
1297 return Dyld
->getSymbolLocalAddress(Name
);
1300 JITEvaluatedSymbol
RuntimeDyld::getSymbol(StringRef Name
) const {
1303 return Dyld
->getSymbol(Name
);
1306 std::map
<StringRef
, JITEvaluatedSymbol
> RuntimeDyld::getSymbolTable() const {
1308 return std::map
<StringRef
, JITEvaluatedSymbol
>();
1309 return Dyld
->getSymbolTable();
1312 void RuntimeDyld::resolveRelocations() { Dyld
->resolveRelocations(); }
1314 void RuntimeDyld::reassignSectionAddress(unsigned SectionID
, uint64_t Addr
) {
1315 Dyld
->reassignSectionAddress(SectionID
, Addr
);
1318 void RuntimeDyld::mapSectionAddress(const void *LocalAddress
,
1319 uint64_t TargetAddress
) {
1320 Dyld
->mapSectionAddress(LocalAddress
, TargetAddress
);
1323 bool RuntimeDyld::hasError() { return Dyld
->hasError(); }
1325 StringRef
RuntimeDyld::getErrorString() { return Dyld
->getErrorString(); }
1327 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1328 bool MemoryFinalizationLocked
= MemMgr
.FinalizationLocked
;
1329 MemMgr
.FinalizationLocked
= true;
1330 resolveRelocations();
1332 if (!MemoryFinalizationLocked
) {
1333 MemMgr
.finalizeMemory();
1334 MemMgr
.FinalizationLocked
= false;
1338 void RuntimeDyld::registerEHFrames() {
1340 Dyld
->registerEHFrames();
1343 void RuntimeDyld::deregisterEHFrames() {
1345 Dyld
->deregisterEHFrames();
1347 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1348 // so that we can re-use RuntimeDyld's implementation without twisting the
1349 // interface any further for ORC's purposes.
1350 void jitLinkForORC(object::ObjectFile
&Obj
,
1351 std::unique_ptr
<MemoryBuffer
> UnderlyingBuffer
,
1352 RuntimeDyld::MemoryManager
&MemMgr
,
1353 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1354 std::function
<Error(
1355 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
> LoadedObj
,
1356 std::map
<StringRef
, JITEvaluatedSymbol
>)>
1358 std::function
<void(Error
)> OnEmitted
) {
1360 RuntimeDyld
RTDyld(MemMgr
, Resolver
);
1361 RTDyld
.setProcessAllSections(ProcessAllSections
);
1363 auto Info
= RTDyld
.loadObject(Obj
);
1365 if (RTDyld
.hasError()) {
1366 OnEmitted(make_error
<StringError
>(RTDyld
.getErrorString(),
1367 inconvertibleErrorCode()));
1371 if (auto Err
= OnLoaded(std::move(Info
), RTDyld
.getSymbolTable()))
1372 OnEmitted(std::move(Err
));
1374 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld
.Dyld
), std::move(OnEmitted
),
1375 std::move(UnderlyingBuffer
));
1378 } // end namespace llvm