Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
blob589cdcbcb0d12490ff87da9c344c790482f7e895
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "RuntimeDyldELF.h"
17 #include "RuntimeDyldImpl.h"
18 #include "RuntimeDyldMachO.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/MutexGuard.h"
26 #include <future>
28 using namespace llvm;
29 using namespace llvm::object;
31 #define DEBUG_TYPE "dyld"
33 namespace {
35 enum RuntimeDyldErrorCode {
36 GenericRTDyldError = 1
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory : public std::error_category {
43 public:
44 const char *name() const noexcept override { return "runtimedyld"; }
46 std::string message(int Condition) const override {
47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48 case GenericRTDyldError: return "Generic RuntimeDyld error";
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
58 char RuntimeDyldError::ID = 0;
60 void RuntimeDyldError::log(raw_ostream &OS) const {
61 OS << ErrMsg << "\n";
64 std::error_code RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
74 namespace llvm {
76 void RuntimeDyldImpl::registerEHFrames() {}
78 void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr.deregisterEHFrames();
82 #ifndef NDEBUG
83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84 dbgs() << "----- Contents of section " << S.getName() << " " << State
85 << " -----";
87 if (S.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
89 return;
92 const unsigned ColsPerRow = 16;
94 uint8_t *DataAddr = S.getAddress();
95 uint64_t LoadAddr = S.getLoadAddress();
97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98 unsigned BytesRemaining = S.getSize();
100 if (StartPadding) {
101 dbgs() << "\n" << format("0x%016" PRIx64,
102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103 while (StartPadding--)
104 dbgs() << " ";
107 while (BytesRemaining > 0) {
108 if ((LoadAddr & (ColsPerRow - 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
111 dbgs() << " " << format("%02x", *DataAddr);
113 ++DataAddr;
114 ++LoadAddr;
115 --BytesRemaining;
118 dbgs() << "\n";
120 #endif
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124 MutexGuard locked(lock);
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
128 dumpSectionMemory(Sections[i], "before relocations"););
130 // First, resolve relocations associated with external symbols.
131 if (auto Err = resolveExternalSymbols()) {
132 HasError = true;
133 ErrorStr = toString(std::move(Err));
136 resolveLocalRelocations();
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
140 dumpSectionMemory(Sections[i], "after relocations"););
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
149 int Idx = it->first;
150 uint64_t Addr = Sections[Idx].getLoadAddress();
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
152 << format("%p", (uintptr_t)Addr) << "\n");
153 resolveRelocationList(it->second, Addr);
155 Relocations.clear();
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159 uint64_t TargetAddress) {
160 MutexGuard locked(lock);
161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162 if (Sections[i].getAddress() == LocalAddress) {
163 reassignSectionAddress(i, TargetAddress);
164 return;
167 llvm_unreachable("Attempting to remap address of unknown section!");
170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171 uint64_t &Result) {
172 Expected<uint64_t> AddressOrErr = Sym.getAddress();
173 if (!AddressOrErr)
174 return AddressOrErr.takeError();
175 Result = *AddressOrErr - Sec.getAddress();
176 return Error::success();
179 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181 MutexGuard locked(lock);
183 // Save information about our target
184 Arch = (Triple::ArchType)Obj.getArch();
185 IsTargetLittleEndian = Obj.isLittleEndian();
186 setMipsABI(Obj);
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr.needsToReserveAllocationSpace()) {
191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193 if (auto Err = computeTotalAllocSize(Obj,
194 CodeSize, CodeAlign,
195 RODataSize, RODataAlign,
196 RWDataSize, RWDataAlign))
197 return std::move(Err);
198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199 RWDataSize, RWDataAlign);
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections;
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate;
208 uint64_t CommonSize = 0;
209 uint32_t CommonAlign = 0;
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet;
215 JITSymbolResolver::LookupSet Symbols;
216 for (auto &Sym : Obj.symbols()) {
217 uint32_t Flags = Sym.getFlags();
218 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
219 // Get symbol name.
220 if (auto NameOrErr = Sym.getName())
221 Symbols.insert(*NameOrErr);
222 else
223 return NameOrErr.takeError();
227 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
228 ResponsibilitySet = std::move(*ResultOrErr);
229 else
230 return ResultOrErr.takeError();
233 // Parse symbols
234 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
235 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
236 ++I) {
237 uint32_t Flags = I->getFlags();
239 // Skip undefined symbols.
240 if (Flags & SymbolRef::SF_Undefined)
241 continue;
243 // Get the symbol type.
244 object::SymbolRef::Type SymType;
245 if (auto SymTypeOrErr = I->getType())
246 SymType = *SymTypeOrErr;
247 else
248 return SymTypeOrErr.takeError();
250 // Get symbol name.
251 StringRef Name;
252 if (auto NameOrErr = I->getName())
253 Name = *NameOrErr;
254 else
255 return NameOrErr.takeError();
257 // Compute JIT symbol flags.
258 auto JITSymFlags = getJITSymbolFlags(*I);
259 if (!JITSymFlags)
260 return JITSymFlags.takeError();
262 // If this is a weak definition, check to see if there's a strong one.
263 // If there is, skip this symbol (we won't be providing it: the strong
264 // definition will). If there's no strong definition, make this definition
265 // strong.
266 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
267 // First check whether there's already a definition in this instance.
268 if (GlobalSymbolTable.count(Name))
269 continue;
271 // If we're not responsible for this symbol, skip it.
272 if (!ResponsibilitySet.count(Name))
273 continue;
275 // Otherwise update the flags on the symbol to make this definition
276 // strong.
277 if (JITSymFlags->isWeak())
278 *JITSymFlags &= ~JITSymbolFlags::Weak;
279 if (JITSymFlags->isCommon()) {
280 *JITSymFlags &= ~JITSymbolFlags::Common;
281 uint32_t Align = I->getAlignment();
282 uint64_t Size = I->getCommonSize();
283 if (!CommonAlign)
284 CommonAlign = Align;
285 CommonSize = alignTo(CommonSize, Align) + Size;
286 CommonSymbolsToAllocate.push_back(*I);
290 if (Flags & SymbolRef::SF_Absolute &&
291 SymType != object::SymbolRef::ST_File) {
292 uint64_t Addr = 0;
293 if (auto AddrOrErr = I->getAddress())
294 Addr = *AddrOrErr;
295 else
296 return AddrOrErr.takeError();
298 unsigned SectionID = AbsoluteSymbolSection;
300 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
301 << " SID: " << SectionID
302 << " Offset: " << format("%p", (uintptr_t)Addr)
303 << " flags: " << Flags << "\n");
304 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
305 } else if (SymType == object::SymbolRef::ST_Function ||
306 SymType == object::SymbolRef::ST_Data ||
307 SymType == object::SymbolRef::ST_Unknown ||
308 SymType == object::SymbolRef::ST_Other) {
310 section_iterator SI = Obj.section_end();
311 if (auto SIOrErr = I->getSection())
312 SI = *SIOrErr;
313 else
314 return SIOrErr.takeError();
316 if (SI == Obj.section_end())
317 continue;
319 // Get symbol offset.
320 uint64_t SectOffset;
321 if (auto Err = getOffset(*I, *SI, SectOffset))
322 return std::move(Err);
324 bool IsCode = SI->isText();
325 unsigned SectionID;
326 if (auto SectionIDOrErr =
327 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
328 SectionID = *SectionIDOrErr;
329 else
330 return SectionIDOrErr.takeError();
332 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
333 << " SID: " << SectionID
334 << " Offset: " << format("%p", (uintptr_t)SectOffset)
335 << " flags: " << Flags << "\n");
336 GlobalSymbolTable[Name] =
337 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
341 // Allocate common symbols
342 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
343 CommonAlign))
344 return std::move(Err);
346 // Parse and process relocations
347 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
348 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
349 SI != SE; ++SI) {
350 StubMap Stubs;
351 section_iterator RelocatedSection = SI->getRelocatedSection();
353 if (RelocatedSection == SE)
354 continue;
356 relocation_iterator I = SI->relocation_begin();
357 relocation_iterator E = SI->relocation_end();
359 if (I == E && !ProcessAllSections)
360 continue;
362 bool IsCode = RelocatedSection->isText();
363 unsigned SectionID = 0;
364 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
365 LocalSections))
366 SectionID = *SectionIDOrErr;
367 else
368 return SectionIDOrErr.takeError();
370 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
372 for (; I != E;)
373 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
374 I = *IOrErr;
375 else
376 return IOrErr.takeError();
378 // If there is an attached checker, notify it about the stubs for this
379 // section so that they can be verified.
380 if (Checker)
381 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
384 // Process remaining sections
385 if (ProcessAllSections) {
386 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
387 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
388 SI != SE; ++SI) {
390 /* Ignore already loaded sections */
391 if (LocalSections.find(*SI) != LocalSections.end())
392 continue;
394 bool IsCode = SI->isText();
395 if (auto SectionIDOrErr =
396 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
397 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
398 else
399 return SectionIDOrErr.takeError();
403 // Give the subclasses a chance to tie-up any loose ends.
404 if (auto Err = finalizeLoad(Obj, LocalSections))
405 return std::move(Err);
407 // for (auto E : LocalSections)
408 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
410 return LocalSections;
413 // A helper method for computeTotalAllocSize.
414 // Computes the memory size required to allocate sections with the given sizes,
415 // assuming that all sections are allocated with the given alignment
416 static uint64_t
417 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
418 uint64_t Alignment) {
419 uint64_t TotalSize = 0;
420 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
421 uint64_t AlignedSize =
422 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
423 TotalSize += AlignedSize;
425 return TotalSize;
428 static bool isRequiredForExecution(const SectionRef Section) {
429 const ObjectFile *Obj = Section.getObject();
430 if (isa<object::ELFObjectFileBase>(Obj))
431 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
432 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
433 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
434 // Avoid loading zero-sized COFF sections.
435 // In PE files, VirtualSize gives the section size, and SizeOfRawData
436 // may be zero for sections with content. In Obj files, SizeOfRawData
437 // gives the section size, and VirtualSize is always zero. Hence
438 // the need to check for both cases below.
439 bool HasContent =
440 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
441 bool IsDiscardable =
442 CoffSection->Characteristics &
443 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
444 return HasContent && !IsDiscardable;
447 assert(isa<MachOObjectFile>(Obj));
448 return true;
451 static bool isReadOnlyData(const SectionRef Section) {
452 const ObjectFile *Obj = Section.getObject();
453 if (isa<object::ELFObjectFileBase>(Obj))
454 return !(ELFSectionRef(Section).getFlags() &
455 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
456 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
457 return ((COFFObj->getCOFFSection(Section)->Characteristics &
458 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
459 | COFF::IMAGE_SCN_MEM_READ
460 | COFF::IMAGE_SCN_MEM_WRITE))
462 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
463 | COFF::IMAGE_SCN_MEM_READ));
465 assert(isa<MachOObjectFile>(Obj));
466 return false;
469 static bool isZeroInit(const SectionRef Section) {
470 const ObjectFile *Obj = Section.getObject();
471 if (isa<object::ELFObjectFileBase>(Obj))
472 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
473 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
474 return COFFObj->getCOFFSection(Section)->Characteristics &
475 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
477 auto *MachO = cast<MachOObjectFile>(Obj);
478 unsigned SectionType = MachO->getSectionType(Section);
479 return SectionType == MachO::S_ZEROFILL ||
480 SectionType == MachO::S_GB_ZEROFILL;
483 // Compute an upper bound of the memory size that is required to load all
484 // sections
485 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
486 uint64_t &CodeSize,
487 uint32_t &CodeAlign,
488 uint64_t &RODataSize,
489 uint32_t &RODataAlign,
490 uint64_t &RWDataSize,
491 uint32_t &RWDataAlign) {
492 // Compute the size of all sections required for execution
493 std::vector<uint64_t> CodeSectionSizes;
494 std::vector<uint64_t> ROSectionSizes;
495 std::vector<uint64_t> RWSectionSizes;
497 // Collect sizes of all sections to be loaded;
498 // also determine the max alignment of all sections
499 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
500 SI != SE; ++SI) {
501 const SectionRef &Section = *SI;
503 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
505 // Consider only the sections that are required to be loaded for execution
506 if (IsRequired) {
507 uint64_t DataSize = Section.getSize();
508 uint64_t Alignment64 = Section.getAlignment();
509 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
510 bool IsCode = Section.isText();
511 bool IsReadOnly = isReadOnlyData(Section);
513 StringRef Name;
514 if (auto EC = Section.getName(Name))
515 return errorCodeToError(EC);
517 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
518 uint64_t SectionSize = DataSize + StubBufSize;
520 // The .eh_frame section (at least on Linux) needs an extra four bytes
521 // padded
522 // with zeroes added at the end. For MachO objects, this section has a
523 // slightly different name, so this won't have any effect for MachO
524 // objects.
525 if (Name == ".eh_frame")
526 SectionSize += 4;
528 if (!SectionSize)
529 SectionSize = 1;
531 if (IsCode) {
532 CodeAlign = std::max(CodeAlign, Alignment);
533 CodeSectionSizes.push_back(SectionSize);
534 } else if (IsReadOnly) {
535 RODataAlign = std::max(RODataAlign, Alignment);
536 ROSectionSizes.push_back(SectionSize);
537 } else {
538 RWDataAlign = std::max(RWDataAlign, Alignment);
539 RWSectionSizes.push_back(SectionSize);
544 // Compute Global Offset Table size. If it is not zero we
545 // also update alignment, which is equal to a size of a
546 // single GOT entry.
547 if (unsigned GotSize = computeGOTSize(Obj)) {
548 RWSectionSizes.push_back(GotSize);
549 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
552 // Compute the size of all common symbols
553 uint64_t CommonSize = 0;
554 uint32_t CommonAlign = 1;
555 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
556 ++I) {
557 uint32_t Flags = I->getFlags();
558 if (Flags & SymbolRef::SF_Common) {
559 // Add the common symbols to a list. We'll allocate them all below.
560 uint64_t Size = I->getCommonSize();
561 uint32_t Align = I->getAlignment();
562 // If this is the first common symbol, use its alignment as the alignment
563 // for the common symbols section.
564 if (CommonSize == 0)
565 CommonAlign = Align;
566 CommonSize = alignTo(CommonSize, Align) + Size;
569 if (CommonSize != 0) {
570 RWSectionSizes.push_back(CommonSize);
571 RWDataAlign = std::max(RWDataAlign, CommonAlign);
574 // Compute the required allocation space for each different type of sections
575 // (code, read-only data, read-write data) assuming that all sections are
576 // allocated with the max alignment. Note that we cannot compute with the
577 // individual alignments of the sections, because then the required size
578 // depends on the order, in which the sections are allocated.
579 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
580 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
581 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
583 return Error::success();
586 // compute GOT size
587 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
588 size_t GotEntrySize = getGOTEntrySize();
589 if (!GotEntrySize)
590 return 0;
592 size_t GotSize = 0;
593 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
594 SI != SE; ++SI) {
596 for (const RelocationRef &Reloc : SI->relocations())
597 if (relocationNeedsGot(Reloc))
598 GotSize += GotEntrySize;
601 return GotSize;
604 // compute stub buffer size for the given section
605 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
606 const SectionRef &Section) {
607 unsigned StubSize = getMaxStubSize();
608 if (StubSize == 0) {
609 return 0;
611 // FIXME: this is an inefficient way to handle this. We should computed the
612 // necessary section allocation size in loadObject by walking all the sections
613 // once.
614 unsigned StubBufSize = 0;
615 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
616 SI != SE; ++SI) {
617 section_iterator RelSecI = SI->getRelocatedSection();
618 if (!(RelSecI == Section))
619 continue;
621 for (const RelocationRef &Reloc : SI->relocations())
622 if (relocationNeedsStub(Reloc))
623 StubBufSize += StubSize;
626 // Get section data size and alignment
627 uint64_t DataSize = Section.getSize();
628 uint64_t Alignment64 = Section.getAlignment();
630 // Add stubbuf size alignment
631 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
632 unsigned StubAlignment = getStubAlignment();
633 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
634 if (StubAlignment > EndAlignment)
635 StubBufSize += StubAlignment - EndAlignment;
636 return StubBufSize;
639 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
640 unsigned Size) const {
641 uint64_t Result = 0;
642 if (IsTargetLittleEndian) {
643 Src += Size - 1;
644 while (Size--)
645 Result = (Result << 8) | *Src--;
646 } else
647 while (Size--)
648 Result = (Result << 8) | *Src++;
650 return Result;
653 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
654 unsigned Size) const {
655 if (IsTargetLittleEndian) {
656 while (Size--) {
657 *Dst++ = Value & 0xFF;
658 Value >>= 8;
660 } else {
661 Dst += Size - 1;
662 while (Size--) {
663 *Dst-- = Value & 0xFF;
664 Value >>= 8;
669 Expected<JITSymbolFlags>
670 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
671 return JITSymbolFlags::fromObjectSymbol(SR);
674 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
675 CommonSymbolList &SymbolsToAllocate,
676 uint64_t CommonSize,
677 uint32_t CommonAlign) {
678 if (SymbolsToAllocate.empty())
679 return Error::success();
681 // Allocate memory for the section
682 unsigned SectionID = Sections.size();
683 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
684 "<common symbols>", false);
685 if (!Addr)
686 report_fatal_error("Unable to allocate memory for common symbols!");
687 uint64_t Offset = 0;
688 Sections.push_back(
689 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
690 memset(Addr, 0, CommonSize);
692 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
693 << " new addr: " << format("%p", Addr)
694 << " DataSize: " << CommonSize << "\n");
696 // Assign the address of each symbol
697 for (auto &Sym : SymbolsToAllocate) {
698 uint32_t Align = Sym.getAlignment();
699 uint64_t Size = Sym.getCommonSize();
700 StringRef Name;
701 if (auto NameOrErr = Sym.getName())
702 Name = *NameOrErr;
703 else
704 return NameOrErr.takeError();
705 if (Align) {
706 // This symbol has an alignment requirement.
707 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
708 Addr += AlignOffset;
709 Offset += AlignOffset;
711 auto JITSymFlags = getJITSymbolFlags(Sym);
713 if (!JITSymFlags)
714 return JITSymFlags.takeError();
716 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
717 << format("%p", Addr) << "\n");
718 GlobalSymbolTable[Name] =
719 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
720 Offset += Size;
721 Addr += Size;
724 if (Checker)
725 Checker->registerSection(Obj.getFileName(), SectionID);
727 return Error::success();
730 Expected<unsigned>
731 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
732 const SectionRef &Section,
733 bool IsCode) {
734 StringRef data;
735 uint64_t Alignment64 = Section.getAlignment();
737 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
738 unsigned PaddingSize = 0;
739 unsigned StubBufSize = 0;
740 bool IsRequired = isRequiredForExecution(Section);
741 bool IsVirtual = Section.isVirtual();
742 bool IsZeroInit = isZeroInit(Section);
743 bool IsReadOnly = isReadOnlyData(Section);
744 uint64_t DataSize = Section.getSize();
746 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
747 // while being more "polite". Other formats do not support 0-aligned sections
748 // anyway, so we should guarantee that the alignment is always at least 1.
749 Alignment = std::max(1u, Alignment);
751 StringRef Name;
752 if (auto EC = Section.getName(Name))
753 return errorCodeToError(EC);
755 StubBufSize = computeSectionStubBufSize(Obj, Section);
757 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
758 // with zeroes added at the end. For MachO objects, this section has a
759 // slightly different name, so this won't have any effect for MachO objects.
760 if (Name == ".eh_frame")
761 PaddingSize = 4;
763 uintptr_t Allocate;
764 unsigned SectionID = Sections.size();
765 uint8_t *Addr;
766 const char *pData = nullptr;
768 // If this section contains any bits (i.e. isn't a virtual or bss section),
769 // grab a reference to them.
770 if (!IsVirtual && !IsZeroInit) {
771 // In either case, set the location of the unrelocated section in memory,
772 // since we still process relocations for it even if we're not applying them.
773 if (auto EC = Section.getContents(data))
774 return errorCodeToError(EC);
775 pData = data.data();
778 // Code section alignment needs to be at least as high as stub alignment or
779 // padding calculations may by incorrect when the section is remapped to a
780 // higher alignment.
781 if (IsCode) {
782 Alignment = std::max(Alignment, getStubAlignment());
783 if (StubBufSize > 0)
784 PaddingSize += getStubAlignment() - 1;
787 // Some sections, such as debug info, don't need to be loaded for execution.
788 // Process those only if explicitly requested.
789 if (IsRequired || ProcessAllSections) {
790 Allocate = DataSize + PaddingSize + StubBufSize;
791 if (!Allocate)
792 Allocate = 1;
793 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
794 Name)
795 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
796 Name, IsReadOnly);
797 if (!Addr)
798 report_fatal_error("Unable to allocate section memory!");
800 // Zero-initialize or copy the data from the image
801 if (IsZeroInit || IsVirtual)
802 memset(Addr, 0, DataSize);
803 else
804 memcpy(Addr, pData, DataSize);
806 // Fill in any extra bytes we allocated for padding
807 if (PaddingSize != 0) {
808 memset(Addr + DataSize, 0, PaddingSize);
809 // Update the DataSize variable to include padding.
810 DataSize += PaddingSize;
812 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
813 // have been increased above to account for this).
814 if (StubBufSize > 0)
815 DataSize &= ~(getStubAlignment() - 1);
818 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
819 << Name << " obj addr: " << format("%p", pData)
820 << " new addr: " << format("%p", Addr) << " DataSize: "
821 << DataSize << " StubBufSize: " << StubBufSize
822 << " Allocate: " << Allocate << "\n");
823 } else {
824 // Even if we didn't load the section, we need to record an entry for it
825 // to handle later processing (and by 'handle' I mean don't do anything
826 // with these sections).
827 Allocate = 0;
828 Addr = nullptr;
829 LLVM_DEBUG(
830 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
831 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
832 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
833 << " Allocate: " << Allocate << "\n");
836 Sections.push_back(
837 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
839 // Debug info sections are linked as if their load address was zero
840 if (!IsRequired)
841 Sections.back().setLoadAddress(0);
843 if (Checker)
844 Checker->registerSection(Obj.getFileName(), SectionID);
846 return SectionID;
849 Expected<unsigned>
850 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
851 const SectionRef &Section,
852 bool IsCode,
853 ObjSectionToIDMap &LocalSections) {
855 unsigned SectionID = 0;
856 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
857 if (i != LocalSections.end())
858 SectionID = i->second;
859 else {
860 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
861 SectionID = *SectionIDOrErr;
862 else
863 return SectionIDOrErr.takeError();
864 LocalSections[Section] = SectionID;
866 return SectionID;
869 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
870 unsigned SectionID) {
871 Relocations[SectionID].push_back(RE);
874 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
875 StringRef SymbolName) {
876 // Relocation by symbol. If the symbol is found in the global symbol table,
877 // create an appropriate section relocation. Otherwise, add it to
878 // ExternalSymbolRelocations.
879 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
880 if (Loc == GlobalSymbolTable.end()) {
881 ExternalSymbolRelocations[SymbolName].push_back(RE);
882 } else {
883 // Copy the RE since we want to modify its addend.
884 RelocationEntry RECopy = RE;
885 const auto &SymInfo = Loc->second;
886 RECopy.Addend += SymInfo.getOffset();
887 Relocations[SymInfo.getSectionID()].push_back(RECopy);
891 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
892 unsigned AbiVariant) {
893 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
894 // This stub has to be able to access the full address space,
895 // since symbol lookup won't necessarily find a handy, in-range,
896 // PLT stub for functions which could be anywhere.
897 // Stub can use ip0 (== x16) to calculate address
898 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
899 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
900 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
901 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
902 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
904 return Addr;
905 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
906 // TODO: There is only ARM far stub now. We should add the Thumb stub,
907 // and stubs for branches Thumb - ARM and ARM - Thumb.
908 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
909 return Addr + 4;
910 } else if (IsMipsO32ABI || IsMipsN32ABI) {
911 // 0: 3c190000 lui t9,%hi(addr).
912 // 4: 27390000 addiu t9,t9,%lo(addr).
913 // 8: 03200008 jr t9.
914 // c: 00000000 nop.
915 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
916 const unsigned NopInstr = 0x0;
917 unsigned JrT9Instr = 0x03200008;
918 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
919 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
920 JrT9Instr = 0x03200009;
922 writeBytesUnaligned(LuiT9Instr, Addr, 4);
923 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
924 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
925 writeBytesUnaligned(NopInstr, Addr + 12, 4);
926 return Addr;
927 } else if (IsMipsN64ABI) {
928 // 0: 3c190000 lui t9,%highest(addr).
929 // 4: 67390000 daddiu t9,t9,%higher(addr).
930 // 8: 0019CC38 dsll t9,t9,16.
931 // c: 67390000 daddiu t9,t9,%hi(addr).
932 // 10: 0019CC38 dsll t9,t9,16.
933 // 14: 67390000 daddiu t9,t9,%lo(addr).
934 // 18: 03200008 jr t9.
935 // 1c: 00000000 nop.
936 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
937 DsllT9Instr = 0x19CC38;
938 const unsigned NopInstr = 0x0;
939 unsigned JrT9Instr = 0x03200008;
940 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
941 JrT9Instr = 0x03200009;
943 writeBytesUnaligned(LuiT9Instr, Addr, 4);
944 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
945 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
946 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
947 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
948 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
949 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
950 writeBytesUnaligned(NopInstr, Addr + 28, 4);
951 return Addr;
952 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
953 // Depending on which version of the ELF ABI is in use, we need to
954 // generate one of two variants of the stub. They both start with
955 // the same sequence to load the target address into r12.
956 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
957 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
958 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
959 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
960 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
961 if (AbiVariant == 2) {
962 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
963 // The address is already in r12 as required by the ABI. Branch to it.
964 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
965 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
966 writeInt32BE(Addr+28, 0x4E800420); // bctr
967 } else {
968 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
969 // Load the function address on r11 and sets it to control register. Also
970 // loads the function TOC in r2 and environment pointer to r11.
971 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
972 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
973 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
974 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
975 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
976 writeInt32BE(Addr+40, 0x4E800420); // bctr
978 return Addr;
979 } else if (Arch == Triple::systemz) {
980 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
981 writeInt16BE(Addr+2, 0x0000);
982 writeInt16BE(Addr+4, 0x0004);
983 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
984 // 8-byte address stored at Addr + 8
985 return Addr;
986 } else if (Arch == Triple::x86_64) {
987 *Addr = 0xFF; // jmp
988 *(Addr+1) = 0x25; // rip
989 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
990 } else if (Arch == Triple::x86) {
991 *Addr = 0xE9; // 32-bit pc-relative jump.
993 return Addr;
996 // Assign an address to a symbol name and resolve all the relocations
997 // associated with it.
998 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
999 uint64_t Addr) {
1000 // The address to use for relocation resolution is not
1001 // the address of the local section buffer. We must be doing
1002 // a remote execution environment of some sort. Relocations can't
1003 // be applied until all the sections have been moved. The client must
1004 // trigger this with a call to MCJIT::finalize() or
1005 // RuntimeDyld::resolveRelocations().
1007 // Addr is a uint64_t because we can't assume the pointer width
1008 // of the target is the same as that of the host. Just use a generic
1009 // "big enough" type.
1010 LLVM_DEBUG(
1011 dbgs() << "Reassigning address for section " << SectionID << " ("
1012 << Sections[SectionID].getName() << "): "
1013 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1014 << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1015 Sections[SectionID].setLoadAddress(Addr);
1018 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1019 uint64_t Value) {
1020 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1021 const RelocationEntry &RE = Relocs[i];
1022 // Ignore relocations for sections that were not loaded
1023 if (Sections[RE.SectionID].getAddress() == nullptr)
1024 continue;
1025 resolveRelocation(RE, Value);
1029 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1030 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1031 while (!ExternalSymbolRelocations.empty()) {
1033 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1035 StringRef Name = i->first();
1036 if (Name.size() == 0) {
1037 // This is an absolute symbol, use an address of zero.
1038 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1039 << "\n");
1040 RelocationList &Relocs = i->second;
1041 resolveRelocationList(Relocs, 0);
1042 } else {
1043 uint64_t Addr = 0;
1044 JITSymbolFlags Flags;
1045 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1046 if (Loc == GlobalSymbolTable.end()) {
1047 auto RRI = ExternalSymbolMap.find(Name);
1048 assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1049 Addr = RRI->second.getAddress();
1050 Flags = RRI->second.getFlags();
1051 // The call to getSymbolAddress may have caused additional modules to
1052 // be loaded, which may have added new entries to the
1053 // ExternalSymbolRelocations map. Consquently, we need to update our
1054 // iterator. This is also why retrieval of the relocation list
1055 // associated with this symbol is deferred until below this point.
1056 // New entries may have been added to the relocation list.
1057 i = ExternalSymbolRelocations.find(Name);
1058 } else {
1059 // We found the symbol in our global table. It was probably in a
1060 // Module that we loaded previously.
1061 const auto &SymInfo = Loc->second;
1062 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1063 SymInfo.getOffset();
1064 Flags = SymInfo.getFlags();
1067 // FIXME: Implement error handling that doesn't kill the host program!
1068 if (!Addr)
1069 report_fatal_error("Program used external function '" + Name +
1070 "' which could not be resolved!");
1072 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1073 // manually and we shouldn't resolve its relocations.
1074 if (Addr != UINT64_MAX) {
1076 // Tweak the address based on the symbol flags if necessary.
1077 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1078 // if the target symbol is Thumb.
1079 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1081 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1082 << format("0x%lx", Addr) << "\n");
1083 // This list may have been updated when we called getSymbolAddress, so
1084 // don't change this code to get the list earlier.
1085 RelocationList &Relocs = i->second;
1086 resolveRelocationList(Relocs, Addr);
1090 ExternalSymbolRelocations.erase(i);
1094 Error RuntimeDyldImpl::resolveExternalSymbols() {
1095 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1097 // Resolution can trigger emission of more symbols, so iterate until
1098 // we've resolved *everything*.
1100 JITSymbolResolver::LookupSet ResolvedSymbols;
1102 while (true) {
1103 JITSymbolResolver::LookupSet NewSymbols;
1105 for (auto &RelocKV : ExternalSymbolRelocations) {
1106 StringRef Name = RelocKV.first();
1107 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1108 !ResolvedSymbols.count(Name))
1109 NewSymbols.insert(Name);
1112 if (NewSymbols.empty())
1113 break;
1115 #ifdef _MSC_VER
1116 using ExpectedLookupResult =
1117 MSVCPExpected<JITSymbolResolver::LookupResult>;
1118 #else
1119 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1120 #endif
1122 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1123 auto NewSymbolsF = NewSymbolsP->get_future();
1124 Resolver.lookup(NewSymbols,
1125 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1126 NewSymbolsP->set_value(std::move(Result));
1129 auto NewResolverResults = NewSymbolsF.get();
1131 if (!NewResolverResults)
1132 return NewResolverResults.takeError();
1134 assert(NewResolverResults->size() == NewSymbols.size() &&
1135 "Should have errored on unresolved symbols");
1137 for (auto &RRKV : *NewResolverResults) {
1138 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1139 ExternalSymbolMap.insert(RRKV);
1140 ResolvedSymbols.insert(RRKV.first);
1145 applyExternalSymbolRelocations(ExternalSymbolMap);
1147 return Error::success();
1150 void RuntimeDyldImpl::finalizeAsync(
1151 std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted,
1152 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1154 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1155 // c++14.
1156 auto SharedUnderlyingBuffer =
1157 std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer));
1158 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1159 auto PostResolveContinuation =
1160 [SharedThis, OnEmitted, SharedUnderlyingBuffer](
1161 Expected<JITSymbolResolver::LookupResult> Result) {
1162 if (!Result) {
1163 OnEmitted(Result.takeError());
1164 return;
1167 /// Copy the result into a StringMap, where the keys are held by value.
1168 StringMap<JITEvaluatedSymbol> Resolved;
1169 for (auto &KV : *Result)
1170 Resolved[KV.first] = KV.second;
1172 SharedThis->applyExternalSymbolRelocations(Resolved);
1173 SharedThis->resolveLocalRelocations();
1174 SharedThis->registerEHFrames();
1175 std::string ErrMsg;
1176 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1177 OnEmitted(make_error<StringError>(std::move(ErrMsg),
1178 inconvertibleErrorCode()));
1179 else
1180 OnEmitted(Error::success());
1183 JITSymbolResolver::LookupSet Symbols;
1185 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1186 StringRef Name = RelocKV.first();
1187 assert(!Name.empty() && "Symbol has no name?");
1188 assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1189 "Name already processed. RuntimeDyld instances can not be re-used "
1190 "when finalizing with finalizeAsync.");
1191 Symbols.insert(Name);
1194 if (!Symbols.empty()) {
1195 SharedThis->Resolver.lookup(Symbols, PostResolveContinuation);
1196 } else
1197 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1200 //===----------------------------------------------------------------------===//
1201 // RuntimeDyld class implementation
1203 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1204 const object::SectionRef &Sec) const {
1206 auto I = ObjSecToIDMap.find(Sec);
1207 if (I != ObjSecToIDMap.end())
1208 return RTDyld.Sections[I->second].getLoadAddress();
1210 return 0;
1213 void RuntimeDyld::MemoryManager::anchor() {}
1214 void JITSymbolResolver::anchor() {}
1215 void LegacyJITSymbolResolver::anchor() {}
1217 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1218 JITSymbolResolver &Resolver)
1219 : MemMgr(MemMgr), Resolver(Resolver) {
1220 // FIXME: There's a potential issue lurking here if a single instance of
1221 // RuntimeDyld is used to load multiple objects. The current implementation
1222 // associates a single memory manager with a RuntimeDyld instance. Even
1223 // though the public class spawns a new 'impl' instance for each load,
1224 // they share a single memory manager. This can become a problem when page
1225 // permissions are applied.
1226 Dyld = nullptr;
1227 ProcessAllSections = false;
1228 Checker = nullptr;
1231 RuntimeDyld::~RuntimeDyld() {}
1233 static std::unique_ptr<RuntimeDyldCOFF>
1234 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1235 JITSymbolResolver &Resolver, bool ProcessAllSections,
1236 RuntimeDyldCheckerImpl *Checker) {
1237 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1238 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1239 Dyld->setProcessAllSections(ProcessAllSections);
1240 Dyld->setRuntimeDyldChecker(Checker);
1241 return Dyld;
1244 static std::unique_ptr<RuntimeDyldELF>
1245 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1246 JITSymbolResolver &Resolver, bool ProcessAllSections,
1247 RuntimeDyldCheckerImpl *Checker) {
1248 std::unique_ptr<RuntimeDyldELF> Dyld =
1249 RuntimeDyldELF::create(Arch, MM, Resolver);
1250 Dyld->setProcessAllSections(ProcessAllSections);
1251 Dyld->setRuntimeDyldChecker(Checker);
1252 return Dyld;
1255 static std::unique_ptr<RuntimeDyldMachO>
1256 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1257 JITSymbolResolver &Resolver,
1258 bool ProcessAllSections,
1259 RuntimeDyldCheckerImpl *Checker) {
1260 std::unique_ptr<RuntimeDyldMachO> Dyld =
1261 RuntimeDyldMachO::create(Arch, MM, Resolver);
1262 Dyld->setProcessAllSections(ProcessAllSections);
1263 Dyld->setRuntimeDyldChecker(Checker);
1264 return Dyld;
1267 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1268 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1269 if (!Dyld) {
1270 if (Obj.isELF())
1271 Dyld =
1272 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1273 MemMgr, Resolver, ProcessAllSections, Checker);
1274 else if (Obj.isMachO())
1275 Dyld = createRuntimeDyldMachO(
1276 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1277 ProcessAllSections, Checker);
1278 else if (Obj.isCOFF())
1279 Dyld = createRuntimeDyldCOFF(
1280 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1281 ProcessAllSections, Checker);
1282 else
1283 report_fatal_error("Incompatible object format!");
1286 if (!Dyld->isCompatibleFile(Obj))
1287 report_fatal_error("Incompatible object format!");
1289 auto LoadedObjInfo = Dyld->loadObject(Obj);
1290 MemMgr.notifyObjectLoaded(*this, Obj);
1291 return LoadedObjInfo;
1294 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1295 if (!Dyld)
1296 return nullptr;
1297 return Dyld->getSymbolLocalAddress(Name);
1300 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1301 if (!Dyld)
1302 return nullptr;
1303 return Dyld->getSymbol(Name);
1306 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1307 if (!Dyld)
1308 return std::map<StringRef, JITEvaluatedSymbol>();
1309 return Dyld->getSymbolTable();
1312 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1314 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1315 Dyld->reassignSectionAddress(SectionID, Addr);
1318 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1319 uint64_t TargetAddress) {
1320 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1323 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1325 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1327 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1328 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1329 MemMgr.FinalizationLocked = true;
1330 resolveRelocations();
1331 registerEHFrames();
1332 if (!MemoryFinalizationLocked) {
1333 MemMgr.finalizeMemory();
1334 MemMgr.FinalizationLocked = false;
1338 void RuntimeDyld::registerEHFrames() {
1339 if (Dyld)
1340 Dyld->registerEHFrames();
1343 void RuntimeDyld::deregisterEHFrames() {
1344 if (Dyld)
1345 Dyld->deregisterEHFrames();
1347 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1348 // so that we can re-use RuntimeDyld's implementation without twisting the
1349 // interface any further for ORC's purposes.
1350 void jitLinkForORC(object::ObjectFile &Obj,
1351 std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1352 RuntimeDyld::MemoryManager &MemMgr,
1353 JITSymbolResolver &Resolver, bool ProcessAllSections,
1354 std::function<Error(
1355 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1356 std::map<StringRef, JITEvaluatedSymbol>)>
1357 OnLoaded,
1358 std::function<void(Error)> OnEmitted) {
1360 RuntimeDyld RTDyld(MemMgr, Resolver);
1361 RTDyld.setProcessAllSections(ProcessAllSections);
1363 auto Info = RTDyld.loadObject(Obj);
1365 if (RTDyld.hasError()) {
1366 OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1367 inconvertibleErrorCode()));
1368 return;
1371 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1372 OnEmitted(std::move(Err));
1374 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1375 std::move(UnderlyingBuffer));
1378 } // end namespace llvm