Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / IR / AsmWriter.cpp
blobaf3db5186a261e47cecc5a953d00eba918429365
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/UseListOrder.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
89 using namespace llvm;
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
98 namespace {
100 struct OrderMap {
101 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
103 unsigned size() const { return IDs.size(); }
104 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
106 std::pair<unsigned, bool> lookup(const Value *V) const {
107 return IDs.lookup(V);
110 void index(const Value *V) {
111 // Explicitly sequence get-size and insert-value operations to avoid UB.
112 unsigned ID = IDs.size() + 1;
113 IDs[V].first = ID;
117 } // end anonymous namespace
119 static void orderValue(const Value *V, OrderMap &OM) {
120 if (OM.lookup(V).first)
121 return;
123 if (const Constant *C = dyn_cast<Constant>(V))
124 if (C->getNumOperands() && !isa<GlobalValue>(C))
125 for (const Value *Op : C->operands())
126 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
127 orderValue(Op, OM);
129 // Note: we cannot cache this lookup above, since inserting into the map
130 // changes the map's size, and thus affects the other IDs.
131 OM.index(V);
134 static OrderMap orderModule(const Module *M) {
135 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
136 // and ValueEnumerator::incorporateFunction().
137 OrderMap OM;
139 for (const GlobalVariable &G : M->globals()) {
140 if (G.hasInitializer())
141 if (!isa<GlobalValue>(G.getInitializer()))
142 orderValue(G.getInitializer(), OM);
143 orderValue(&G, OM);
145 for (const GlobalAlias &A : M->aliases()) {
146 if (!isa<GlobalValue>(A.getAliasee()))
147 orderValue(A.getAliasee(), OM);
148 orderValue(&A, OM);
150 for (const GlobalIFunc &I : M->ifuncs()) {
151 if (!isa<GlobalValue>(I.getResolver()))
152 orderValue(I.getResolver(), OM);
153 orderValue(&I, OM);
155 for (const Function &F : *M) {
156 for (const Use &U : F.operands())
157 if (!isa<GlobalValue>(U.get()))
158 orderValue(U.get(), OM);
160 orderValue(&F, OM);
162 if (F.isDeclaration())
163 continue;
165 for (const Argument &A : F.args())
166 orderValue(&A, OM);
167 for (const BasicBlock &BB : F) {
168 orderValue(&BB, OM);
169 for (const Instruction &I : BB) {
170 for (const Value *Op : I.operands())
171 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
172 isa<InlineAsm>(*Op))
173 orderValue(Op, OM);
174 orderValue(&I, OM);
178 return OM;
181 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
182 unsigned ID, const OrderMap &OM,
183 UseListOrderStack &Stack) {
184 // Predict use-list order for this one.
185 using Entry = std::pair<const Use *, unsigned>;
186 SmallVector<Entry, 64> List;
187 for (const Use &U : V->uses())
188 // Check if this user will be serialized.
189 if (OM.lookup(U.getUser()).first)
190 List.push_back(std::make_pair(&U, List.size()));
192 if (List.size() < 2)
193 // We may have lost some users.
194 return;
196 bool GetsReversed =
197 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
198 if (auto *BA = dyn_cast<BlockAddress>(V))
199 ID = OM.lookup(BA->getBasicBlock()).first;
200 llvm::sort(List, [&](const Entry &L, const Entry &R) {
201 const Use *LU = L.first;
202 const Use *RU = R.first;
203 if (LU == RU)
204 return false;
206 auto LID = OM.lookup(LU->getUser()).first;
207 auto RID = OM.lookup(RU->getUser()).first;
209 // If ID is 4, then expect: 7 6 5 1 2 3.
210 if (LID < RID) {
211 if (GetsReversed)
212 if (RID <= ID)
213 return true;
214 return false;
216 if (RID < LID) {
217 if (GetsReversed)
218 if (LID <= ID)
219 return false;
220 return true;
223 // LID and RID are equal, so we have different operands of the same user.
224 // Assume operands are added in order for all instructions.
225 if (GetsReversed)
226 if (LID <= ID)
227 return LU->getOperandNo() < RU->getOperandNo();
228 return LU->getOperandNo() > RU->getOperandNo();
231 if (std::is_sorted(
232 List.begin(), List.end(),
233 [](const Entry &L, const Entry &R) { return L.second < R.second; }))
234 // Order is already correct.
235 return;
237 // Store the shuffle.
238 Stack.emplace_back(V, F, List.size());
239 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
240 for (size_t I = 0, E = List.size(); I != E; ++I)
241 Stack.back().Shuffle[I] = List[I].second;
244 static void predictValueUseListOrder(const Value *V, const Function *F,
245 OrderMap &OM, UseListOrderStack &Stack) {
246 auto &IDPair = OM[V];
247 assert(IDPair.first && "Unmapped value");
248 if (IDPair.second)
249 // Already predicted.
250 return;
252 // Do the actual prediction.
253 IDPair.second = true;
254 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
255 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
257 // Recursive descent into constants.
258 if (const Constant *C = dyn_cast<Constant>(V))
259 if (C->getNumOperands()) // Visit GlobalValues.
260 for (const Value *Op : C->operands())
261 if (isa<Constant>(Op)) // Visit GlobalValues.
262 predictValueUseListOrder(Op, F, OM, Stack);
265 static UseListOrderStack predictUseListOrder(const Module *M) {
266 OrderMap OM = orderModule(M);
268 // Use-list orders need to be serialized after all the users have been added
269 // to a value, or else the shuffles will be incomplete. Store them per
270 // function in a stack.
272 // Aside from function order, the order of values doesn't matter much here.
273 UseListOrderStack Stack;
275 // We want to visit the functions backward now so we can list function-local
276 // constants in the last Function they're used in. Module-level constants
277 // have already been visited above.
278 for (const Function &F : make_range(M->rbegin(), M->rend())) {
279 if (F.isDeclaration())
280 continue;
281 for (const BasicBlock &BB : F)
282 predictValueUseListOrder(&BB, &F, OM, Stack);
283 for (const Argument &A : F.args())
284 predictValueUseListOrder(&A, &F, OM, Stack);
285 for (const BasicBlock &BB : F)
286 for (const Instruction &I : BB)
287 for (const Value *Op : I.operands())
288 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
289 predictValueUseListOrder(Op, &F, OM, Stack);
290 for (const BasicBlock &BB : F)
291 for (const Instruction &I : BB)
292 predictValueUseListOrder(&I, &F, OM, Stack);
295 // Visit globals last.
296 for (const GlobalVariable &G : M->globals())
297 predictValueUseListOrder(&G, nullptr, OM, Stack);
298 for (const Function &F : *M)
299 predictValueUseListOrder(&F, nullptr, OM, Stack);
300 for (const GlobalAlias &A : M->aliases())
301 predictValueUseListOrder(&A, nullptr, OM, Stack);
302 for (const GlobalIFunc &I : M->ifuncs())
303 predictValueUseListOrder(&I, nullptr, OM, Stack);
304 for (const GlobalVariable &G : M->globals())
305 if (G.hasInitializer())
306 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
307 for (const GlobalAlias &A : M->aliases())
308 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
309 for (const GlobalIFunc &I : M->ifuncs())
310 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
311 for (const Function &F : *M)
312 for (const Use &U : F.operands())
313 predictValueUseListOrder(U.get(), nullptr, OM, Stack);
315 return Stack;
318 static const Module *getModuleFromVal(const Value *V) {
319 if (const Argument *MA = dyn_cast<Argument>(V))
320 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
322 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
323 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
325 if (const Instruction *I = dyn_cast<Instruction>(V)) {
326 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
327 return M ? M->getParent() : nullptr;
330 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
331 return GV->getParent();
333 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
334 for (const User *U : MAV->users())
335 if (isa<Instruction>(U))
336 if (const Module *M = getModuleFromVal(U))
337 return M;
338 return nullptr;
341 return nullptr;
344 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
345 switch (cc) {
346 default: Out << "cc" << cc; break;
347 case CallingConv::Fast: Out << "fastcc"; break;
348 case CallingConv::Cold: Out << "coldcc"; break;
349 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
350 case CallingConv::AnyReg: Out << "anyregcc"; break;
351 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
352 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
353 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
354 case CallingConv::GHC: Out << "ghccc"; break;
355 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
356 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
357 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
358 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
359 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
360 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
361 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
362 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
363 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
364 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
365 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
366 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
367 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
368 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
369 case CallingConv::PTX_Device: Out << "ptx_device"; break;
370 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
371 case CallingConv::Win64: Out << "win64cc"; break;
372 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
373 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
374 case CallingConv::Swift: Out << "swiftcc"; break;
375 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
376 case CallingConv::HHVM: Out << "hhvmcc"; break;
377 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
378 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
379 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
380 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
381 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
382 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
383 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
384 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
385 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
389 enum PrefixType {
390 GlobalPrefix,
391 ComdatPrefix,
392 LabelPrefix,
393 LocalPrefix,
394 NoPrefix
397 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
398 assert(!Name.empty() && "Cannot get empty name!");
400 // Scan the name to see if it needs quotes first.
401 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
402 if (!NeedsQuotes) {
403 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
404 // By making this unsigned, the value passed in to isalnum will always be
405 // in the range 0-255. This is important when building with MSVC because
406 // its implementation will assert. This situation can arise when dealing
407 // with UTF-8 multibyte characters.
408 unsigned char C = Name[i];
409 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
410 C != '_') {
411 NeedsQuotes = true;
412 break;
417 // If we didn't need any quotes, just write out the name in one blast.
418 if (!NeedsQuotes) {
419 OS << Name;
420 return;
423 // Okay, we need quotes. Output the quotes and escape any scary characters as
424 // needed.
425 OS << '"';
426 printEscapedString(Name, OS);
427 OS << '"';
430 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
431 /// (if the string only contains simple characters) or is surrounded with ""'s
432 /// (if it has special chars in it). Print it out.
433 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
434 switch (Prefix) {
435 case NoPrefix:
436 break;
437 case GlobalPrefix:
438 OS << '@';
439 break;
440 case ComdatPrefix:
441 OS << '$';
442 break;
443 case LabelPrefix:
444 break;
445 case LocalPrefix:
446 OS << '%';
447 break;
449 printLLVMNameWithoutPrefix(OS, Name);
452 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
453 /// (if the string only contains simple characters) or is surrounded with ""'s
454 /// (if it has special chars in it). Print it out.
455 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
456 PrintLLVMName(OS, V->getName(),
457 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
460 namespace {
462 class TypePrinting {
463 public:
464 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
466 TypePrinting(const TypePrinting &) = delete;
467 TypePrinting &operator=(const TypePrinting &) = delete;
469 /// The named types that are used by the current module.
470 TypeFinder &getNamedTypes();
472 /// The numbered types, number to type mapping.
473 std::vector<StructType *> &getNumberedTypes();
475 bool empty();
477 void print(Type *Ty, raw_ostream &OS);
479 void printStructBody(StructType *Ty, raw_ostream &OS);
481 private:
482 void incorporateTypes();
484 /// A module to process lazily when needed. Set to nullptr as soon as used.
485 const Module *DeferredM;
487 TypeFinder NamedTypes;
489 // The numbered types, along with their value.
490 DenseMap<StructType *, unsigned> Type2Number;
492 std::vector<StructType *> NumberedTypes;
495 } // end anonymous namespace
497 TypeFinder &TypePrinting::getNamedTypes() {
498 incorporateTypes();
499 return NamedTypes;
502 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
503 incorporateTypes();
505 // We know all the numbers that each type is used and we know that it is a
506 // dense assignment. Convert the map to an index table, if it's not done
507 // already (judging from the sizes):
508 if (NumberedTypes.size() == Type2Number.size())
509 return NumberedTypes;
511 NumberedTypes.resize(Type2Number.size());
512 for (const auto &P : Type2Number) {
513 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
514 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
515 NumberedTypes[P.second] = P.first;
517 return NumberedTypes;
520 bool TypePrinting::empty() {
521 incorporateTypes();
522 return NamedTypes.empty() && Type2Number.empty();
525 void TypePrinting::incorporateTypes() {
526 if (!DeferredM)
527 return;
529 NamedTypes.run(*DeferredM, false);
530 DeferredM = nullptr;
532 // The list of struct types we got back includes all the struct types, split
533 // the unnamed ones out to a numbering and remove the anonymous structs.
534 unsigned NextNumber = 0;
536 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
537 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
538 StructType *STy = *I;
540 // Ignore anonymous types.
541 if (STy->isLiteral())
542 continue;
544 if (STy->getName().empty())
545 Type2Number[STy] = NextNumber++;
546 else
547 *NextToUse++ = STy;
550 NamedTypes.erase(NextToUse, NamedTypes.end());
553 /// Write the specified type to the specified raw_ostream, making use of type
554 /// names or up references to shorten the type name where possible.
555 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
556 switch (Ty->getTypeID()) {
557 case Type::VoidTyID: OS << "void"; return;
558 case Type::HalfTyID: OS << "half"; return;
559 case Type::FloatTyID: OS << "float"; return;
560 case Type::DoubleTyID: OS << "double"; return;
561 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
562 case Type::FP128TyID: OS << "fp128"; return;
563 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
564 case Type::LabelTyID: OS << "label"; return;
565 case Type::MetadataTyID: OS << "metadata"; return;
566 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
567 case Type::TokenTyID: OS << "token"; return;
568 case Type::IntegerTyID:
569 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
570 return;
572 case Type::FunctionTyID: {
573 FunctionType *FTy = cast<FunctionType>(Ty);
574 print(FTy->getReturnType(), OS);
575 OS << " (";
576 for (FunctionType::param_iterator I = FTy->param_begin(),
577 E = FTy->param_end(); I != E; ++I) {
578 if (I != FTy->param_begin())
579 OS << ", ";
580 print(*I, OS);
582 if (FTy->isVarArg()) {
583 if (FTy->getNumParams()) OS << ", ";
584 OS << "...";
586 OS << ')';
587 return;
589 case Type::StructTyID: {
590 StructType *STy = cast<StructType>(Ty);
592 if (STy->isLiteral())
593 return printStructBody(STy, OS);
595 if (!STy->getName().empty())
596 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
598 incorporateTypes();
599 const auto I = Type2Number.find(STy);
600 if (I != Type2Number.end())
601 OS << '%' << I->second;
602 else // Not enumerated, print the hex address.
603 OS << "%\"type " << STy << '\"';
604 return;
606 case Type::PointerTyID: {
607 PointerType *PTy = cast<PointerType>(Ty);
608 print(PTy->getElementType(), OS);
609 if (unsigned AddressSpace = PTy->getAddressSpace())
610 OS << " addrspace(" << AddressSpace << ')';
611 OS << '*';
612 return;
614 case Type::ArrayTyID: {
615 ArrayType *ATy = cast<ArrayType>(Ty);
616 OS << '[' << ATy->getNumElements() << " x ";
617 print(ATy->getElementType(), OS);
618 OS << ']';
619 return;
621 case Type::VectorTyID: {
622 VectorType *PTy = cast<VectorType>(Ty);
623 OS << "<" << PTy->getNumElements() << " x ";
624 print(PTy->getElementType(), OS);
625 OS << '>';
626 return;
629 llvm_unreachable("Invalid TypeID");
632 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
633 if (STy->isOpaque()) {
634 OS << "opaque";
635 return;
638 if (STy->isPacked())
639 OS << '<';
641 if (STy->getNumElements() == 0) {
642 OS << "{}";
643 } else {
644 StructType::element_iterator I = STy->element_begin();
645 OS << "{ ";
646 print(*I++, OS);
647 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
648 OS << ", ";
649 print(*I, OS);
652 OS << " }";
654 if (STy->isPacked())
655 OS << '>';
658 namespace llvm {
660 //===----------------------------------------------------------------------===//
661 // SlotTracker Class: Enumerate slot numbers for unnamed values
662 //===----------------------------------------------------------------------===//
663 /// This class provides computation of slot numbers for LLVM Assembly writing.
665 class SlotTracker {
666 public:
667 /// ValueMap - A mapping of Values to slot numbers.
668 using ValueMap = DenseMap<const Value *, unsigned>;
670 private:
671 /// TheModule - The module for which we are holding slot numbers.
672 const Module* TheModule;
674 /// TheFunction - The function for which we are holding slot numbers.
675 const Function* TheFunction = nullptr;
676 bool FunctionProcessed = false;
677 bool ShouldInitializeAllMetadata;
679 /// The summary index for which we are holding slot numbers.
680 const ModuleSummaryIndex *TheIndex = nullptr;
682 /// mMap - The slot map for the module level data.
683 ValueMap mMap;
684 unsigned mNext = 0;
686 /// fMap - The slot map for the function level data.
687 ValueMap fMap;
688 unsigned fNext = 0;
690 /// mdnMap - Map for MDNodes.
691 DenseMap<const MDNode*, unsigned> mdnMap;
692 unsigned mdnNext = 0;
694 /// asMap - The slot map for attribute sets.
695 DenseMap<AttributeSet, unsigned> asMap;
696 unsigned asNext = 0;
698 /// ModulePathMap - The slot map for Module paths used in the summary index.
699 StringMap<unsigned> ModulePathMap;
700 unsigned ModulePathNext = 0;
702 /// GUIDMap - The slot map for GUIDs used in the summary index.
703 DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
704 unsigned GUIDNext = 0;
706 /// TypeIdMap - The slot map for type ids used in the summary index.
707 StringMap<unsigned> TypeIdMap;
708 unsigned TypeIdNext = 0;
710 public:
711 /// Construct from a module.
713 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
714 /// functions, giving correct numbering for metadata referenced only from
715 /// within a function (even if no functions have been initialized).
716 explicit SlotTracker(const Module *M,
717 bool ShouldInitializeAllMetadata = false);
719 /// Construct from a function, starting out in incorp state.
721 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
722 /// functions, giving correct numbering for metadata referenced only from
723 /// within a function (even if no functions have been initialized).
724 explicit SlotTracker(const Function *F,
725 bool ShouldInitializeAllMetadata = false);
727 /// Construct from a module summary index.
728 explicit SlotTracker(const ModuleSummaryIndex *Index);
730 SlotTracker(const SlotTracker &) = delete;
731 SlotTracker &operator=(const SlotTracker &) = delete;
733 /// Return the slot number of the specified value in it's type
734 /// plane. If something is not in the SlotTracker, return -1.
735 int getLocalSlot(const Value *V);
736 int getGlobalSlot(const GlobalValue *V);
737 int getMetadataSlot(const MDNode *N);
738 int getAttributeGroupSlot(AttributeSet AS);
739 int getModulePathSlot(StringRef Path);
740 int getGUIDSlot(GlobalValue::GUID GUID);
741 int getTypeIdSlot(StringRef Id);
743 /// If you'd like to deal with a function instead of just a module, use
744 /// this method to get its data into the SlotTracker.
745 void incorporateFunction(const Function *F) {
746 TheFunction = F;
747 FunctionProcessed = false;
750 const Function *getFunction() const { return TheFunction; }
752 /// After calling incorporateFunction, use this method to remove the
753 /// most recently incorporated function from the SlotTracker. This
754 /// will reset the state of the machine back to just the module contents.
755 void purgeFunction();
757 /// MDNode map iterators.
758 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
760 mdn_iterator mdn_begin() { return mdnMap.begin(); }
761 mdn_iterator mdn_end() { return mdnMap.end(); }
762 unsigned mdn_size() const { return mdnMap.size(); }
763 bool mdn_empty() const { return mdnMap.empty(); }
765 /// AttributeSet map iterators.
766 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
768 as_iterator as_begin() { return asMap.begin(); }
769 as_iterator as_end() { return asMap.end(); }
770 unsigned as_size() const { return asMap.size(); }
771 bool as_empty() const { return asMap.empty(); }
773 /// GUID map iterators.
774 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
776 /// These functions do the actual initialization.
777 inline void initializeIfNeeded();
778 void initializeIndexIfNeeded();
780 // Implementation Details
781 private:
782 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
783 void CreateModuleSlot(const GlobalValue *V);
785 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
786 void CreateMetadataSlot(const MDNode *N);
788 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
789 void CreateFunctionSlot(const Value *V);
791 /// Insert the specified AttributeSet into the slot table.
792 void CreateAttributeSetSlot(AttributeSet AS);
794 inline void CreateModulePathSlot(StringRef Path);
795 void CreateGUIDSlot(GlobalValue::GUID GUID);
796 void CreateTypeIdSlot(StringRef Id);
798 /// Add all of the module level global variables (and their initializers)
799 /// and function declarations, but not the contents of those functions.
800 void processModule();
801 void processIndex();
803 /// Add all of the functions arguments, basic blocks, and instructions.
804 void processFunction();
806 /// Add the metadata directly attached to a GlobalObject.
807 void processGlobalObjectMetadata(const GlobalObject &GO);
809 /// Add all of the metadata from a function.
810 void processFunctionMetadata(const Function &F);
812 /// Add all of the metadata from an instruction.
813 void processInstructionMetadata(const Instruction &I);
816 } // end namespace llvm
818 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
819 const Function *F)
820 : M(M), F(F), Machine(&Machine) {}
822 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
823 bool ShouldInitializeAllMetadata)
824 : ShouldCreateStorage(M),
825 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
827 ModuleSlotTracker::~ModuleSlotTracker() = default;
829 SlotTracker *ModuleSlotTracker::getMachine() {
830 if (!ShouldCreateStorage)
831 return Machine;
833 ShouldCreateStorage = false;
834 MachineStorage =
835 llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
836 Machine = MachineStorage.get();
837 return Machine;
840 void ModuleSlotTracker::incorporateFunction(const Function &F) {
841 // Using getMachine() may lazily create the slot tracker.
842 if (!getMachine())
843 return;
845 // Nothing to do if this is the right function already.
846 if (this->F == &F)
847 return;
848 if (this->F)
849 Machine->purgeFunction();
850 Machine->incorporateFunction(&F);
851 this->F = &F;
854 int ModuleSlotTracker::getLocalSlot(const Value *V) {
855 assert(F && "No function incorporated");
856 return Machine->getLocalSlot(V);
859 static SlotTracker *createSlotTracker(const Value *V) {
860 if (const Argument *FA = dyn_cast<Argument>(V))
861 return new SlotTracker(FA->getParent());
863 if (const Instruction *I = dyn_cast<Instruction>(V))
864 if (I->getParent())
865 return new SlotTracker(I->getParent()->getParent());
867 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
868 return new SlotTracker(BB->getParent());
870 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
871 return new SlotTracker(GV->getParent());
873 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
874 return new SlotTracker(GA->getParent());
876 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
877 return new SlotTracker(GIF->getParent());
879 if (const Function *Func = dyn_cast<Function>(V))
880 return new SlotTracker(Func);
882 return nullptr;
885 #if 0
886 #define ST_DEBUG(X) dbgs() << X
887 #else
888 #define ST_DEBUG(X)
889 #endif
891 // Module level constructor. Causes the contents of the Module (sans functions)
892 // to be added to the slot table.
893 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
894 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
896 // Function level constructor. Causes the contents of the Module and the one
897 // function provided to be added to the slot table.
898 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
899 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
900 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
902 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
903 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
905 inline void SlotTracker::initializeIfNeeded() {
906 if (TheModule) {
907 processModule();
908 TheModule = nullptr; ///< Prevent re-processing next time we're called.
911 if (TheFunction && !FunctionProcessed)
912 processFunction();
915 void SlotTracker::initializeIndexIfNeeded() {
916 if (!TheIndex)
917 return;
918 processIndex();
919 TheIndex = nullptr; ///< Prevent re-processing next time we're called.
922 // Iterate through all the global variables, functions, and global
923 // variable initializers and create slots for them.
924 void SlotTracker::processModule() {
925 ST_DEBUG("begin processModule!\n");
927 // Add all of the unnamed global variables to the value table.
928 for (const GlobalVariable &Var : TheModule->globals()) {
929 if (!Var.hasName())
930 CreateModuleSlot(&Var);
931 processGlobalObjectMetadata(Var);
932 auto Attrs = Var.getAttributes();
933 if (Attrs.hasAttributes())
934 CreateAttributeSetSlot(Attrs);
937 for (const GlobalAlias &A : TheModule->aliases()) {
938 if (!A.hasName())
939 CreateModuleSlot(&A);
942 for (const GlobalIFunc &I : TheModule->ifuncs()) {
943 if (!I.hasName())
944 CreateModuleSlot(&I);
947 // Add metadata used by named metadata.
948 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
949 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
950 CreateMetadataSlot(NMD.getOperand(i));
953 for (const Function &F : *TheModule) {
954 if (!F.hasName())
955 // Add all the unnamed functions to the table.
956 CreateModuleSlot(&F);
958 if (ShouldInitializeAllMetadata)
959 processFunctionMetadata(F);
961 // Add all the function attributes to the table.
962 // FIXME: Add attributes of other objects?
963 AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
964 if (FnAttrs.hasAttributes())
965 CreateAttributeSetSlot(FnAttrs);
968 ST_DEBUG("end processModule!\n");
971 // Process the arguments, basic blocks, and instructions of a function.
972 void SlotTracker::processFunction() {
973 ST_DEBUG("begin processFunction!\n");
974 fNext = 0;
976 // Process function metadata if it wasn't hit at the module-level.
977 if (!ShouldInitializeAllMetadata)
978 processFunctionMetadata(*TheFunction);
980 // Add all the function arguments with no names.
981 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
982 AE = TheFunction->arg_end(); AI != AE; ++AI)
983 if (!AI->hasName())
984 CreateFunctionSlot(&*AI);
986 ST_DEBUG("Inserting Instructions:\n");
988 // Add all of the basic blocks and instructions with no names.
989 for (auto &BB : *TheFunction) {
990 if (!BB.hasName())
991 CreateFunctionSlot(&BB);
993 for (auto &I : BB) {
994 if (!I.getType()->isVoidTy() && !I.hasName())
995 CreateFunctionSlot(&I);
997 // We allow direct calls to any llvm.foo function here, because the
998 // target may not be linked into the optimizer.
999 if (const auto *Call = dyn_cast<CallBase>(&I)) {
1000 // Add all the call attributes to the table.
1001 AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1002 if (Attrs.hasAttributes())
1003 CreateAttributeSetSlot(Attrs);
1008 FunctionProcessed = true;
1010 ST_DEBUG("end processFunction!\n");
1013 // Iterate through all the GUID in the index and create slots for them.
1014 void SlotTracker::processIndex() {
1015 ST_DEBUG("begin processIndex!\n");
1016 assert(TheIndex);
1018 // The first block of slots are just the module ids, which start at 0 and are
1019 // assigned consecutively. Since the StringMap iteration order isn't
1020 // guaranteed, use a std::map to order by module ID before assigning slots.
1021 std::map<uint64_t, StringRef> ModuleIdToPathMap;
1022 for (auto &ModPath : TheIndex->modulePaths())
1023 ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1024 for (auto &ModPair : ModuleIdToPathMap)
1025 CreateModulePathSlot(ModPair.second);
1027 // Start numbering the GUIDs after the module ids.
1028 GUIDNext = ModulePathNext;
1030 for (auto &GlobalList : *TheIndex)
1031 CreateGUIDSlot(GlobalList.first);
1033 // Start numbering the TypeIds after the GUIDs.
1034 TypeIdNext = GUIDNext;
1036 for (auto TidIter = TheIndex->typeIds().begin();
1037 TidIter != TheIndex->typeIds().end(); TidIter++)
1038 CreateTypeIdSlot(TidIter->second.first);
1040 ST_DEBUG("end processIndex!\n");
1043 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1044 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1045 GO.getAllMetadata(MDs);
1046 for (auto &MD : MDs)
1047 CreateMetadataSlot(MD.second);
1050 void SlotTracker::processFunctionMetadata(const Function &F) {
1051 processGlobalObjectMetadata(F);
1052 for (auto &BB : F) {
1053 for (auto &I : BB)
1054 processInstructionMetadata(I);
1058 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1059 // Process metadata used directly by intrinsics.
1060 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1061 if (Function *F = CI->getCalledFunction())
1062 if (F->isIntrinsic())
1063 for (auto &Op : I.operands())
1064 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1065 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1066 CreateMetadataSlot(N);
1068 // Process metadata attached to this instruction.
1069 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1070 I.getAllMetadata(MDs);
1071 for (auto &MD : MDs)
1072 CreateMetadataSlot(MD.second);
1075 /// Clean up after incorporating a function. This is the only way to get out of
1076 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1077 /// incorporation state is indicated by TheFunction != 0.
1078 void SlotTracker::purgeFunction() {
1079 ST_DEBUG("begin purgeFunction!\n");
1080 fMap.clear(); // Simply discard the function level map
1081 TheFunction = nullptr;
1082 FunctionProcessed = false;
1083 ST_DEBUG("end purgeFunction!\n");
1086 /// getGlobalSlot - Get the slot number of a global value.
1087 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1088 // Check for uninitialized state and do lazy initialization.
1089 initializeIfNeeded();
1091 // Find the value in the module map
1092 ValueMap::iterator MI = mMap.find(V);
1093 return MI == mMap.end() ? -1 : (int)MI->second;
1096 /// getMetadataSlot - Get the slot number of a MDNode.
1097 int SlotTracker::getMetadataSlot(const MDNode *N) {
1098 // Check for uninitialized state and do lazy initialization.
1099 initializeIfNeeded();
1101 // Find the MDNode in the module map
1102 mdn_iterator MI = mdnMap.find(N);
1103 return MI == mdnMap.end() ? -1 : (int)MI->second;
1106 /// getLocalSlot - Get the slot number for a value that is local to a function.
1107 int SlotTracker::getLocalSlot(const Value *V) {
1108 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1110 // Check for uninitialized state and do lazy initialization.
1111 initializeIfNeeded();
1113 ValueMap::iterator FI = fMap.find(V);
1114 return FI == fMap.end() ? -1 : (int)FI->second;
1117 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1118 // Check for uninitialized state and do lazy initialization.
1119 initializeIfNeeded();
1121 // Find the AttributeSet in the module map.
1122 as_iterator AI = asMap.find(AS);
1123 return AI == asMap.end() ? -1 : (int)AI->second;
1126 int SlotTracker::getModulePathSlot(StringRef Path) {
1127 // Check for uninitialized state and do lazy initialization.
1128 initializeIndexIfNeeded();
1130 // Find the Module path in the map
1131 auto I = ModulePathMap.find(Path);
1132 return I == ModulePathMap.end() ? -1 : (int)I->second;
1135 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1136 // Check for uninitialized state and do lazy initialization.
1137 initializeIndexIfNeeded();
1139 // Find the GUID in the map
1140 guid_iterator I = GUIDMap.find(GUID);
1141 return I == GUIDMap.end() ? -1 : (int)I->second;
1144 int SlotTracker::getTypeIdSlot(StringRef Id) {
1145 // Check for uninitialized state and do lazy initialization.
1146 initializeIndexIfNeeded();
1148 // Find the TypeId string in the map
1149 auto I = TypeIdMap.find(Id);
1150 return I == TypeIdMap.end() ? -1 : (int)I->second;
1153 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1154 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1155 assert(V && "Can't insert a null Value into SlotTracker!");
1156 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1157 assert(!V->hasName() && "Doesn't need a slot!");
1159 unsigned DestSlot = mNext++;
1160 mMap[V] = DestSlot;
1162 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1163 DestSlot << " [");
1164 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1165 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1166 (isa<Function>(V) ? 'F' :
1167 (isa<GlobalAlias>(V) ? 'A' :
1168 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1171 /// CreateSlot - Create a new slot for the specified value if it has no name.
1172 void SlotTracker::CreateFunctionSlot(const Value *V) {
1173 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1175 unsigned DestSlot = fNext++;
1176 fMap[V] = DestSlot;
1178 // G = Global, F = Function, o = other
1179 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1180 DestSlot << " [o]\n");
1183 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1184 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1185 assert(N && "Can't insert a null Value into SlotTracker!");
1187 // Don't make slots for DIExpressions. We just print them inline everywhere.
1188 if (isa<DIExpression>(N))
1189 return;
1191 unsigned DestSlot = mdnNext;
1192 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1193 return;
1194 ++mdnNext;
1196 // Recursively add any MDNodes referenced by operands.
1197 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1198 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1199 CreateMetadataSlot(Op);
1202 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1203 assert(AS.hasAttributes() && "Doesn't need a slot!");
1205 as_iterator I = asMap.find(AS);
1206 if (I != asMap.end())
1207 return;
1209 unsigned DestSlot = asNext++;
1210 asMap[AS] = DestSlot;
1213 /// Create a new slot for the specified Module
1214 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1215 ModulePathMap[Path] = ModulePathNext++;
1218 /// Create a new slot for the specified GUID
1219 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1220 GUIDMap[GUID] = GUIDNext++;
1223 /// Create a new slot for the specified Id
1224 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1225 TypeIdMap[Id] = TypeIdNext++;
1228 //===----------------------------------------------------------------------===//
1229 // AsmWriter Implementation
1230 //===----------------------------------------------------------------------===//
1232 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1233 TypePrinting *TypePrinter,
1234 SlotTracker *Machine,
1235 const Module *Context);
1237 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1238 TypePrinting *TypePrinter,
1239 SlotTracker *Machine, const Module *Context,
1240 bool FromValue = false);
1242 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1243 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1244 // 'Fast' is an abbreviation for all fast-math-flags.
1245 if (FPO->isFast())
1246 Out << " fast";
1247 else {
1248 if (FPO->hasAllowReassoc())
1249 Out << " reassoc";
1250 if (FPO->hasNoNaNs())
1251 Out << " nnan";
1252 if (FPO->hasNoInfs())
1253 Out << " ninf";
1254 if (FPO->hasNoSignedZeros())
1255 Out << " nsz";
1256 if (FPO->hasAllowReciprocal())
1257 Out << " arcp";
1258 if (FPO->hasAllowContract())
1259 Out << " contract";
1260 if (FPO->hasApproxFunc())
1261 Out << " afn";
1265 if (const OverflowingBinaryOperator *OBO =
1266 dyn_cast<OverflowingBinaryOperator>(U)) {
1267 if (OBO->hasNoUnsignedWrap())
1268 Out << " nuw";
1269 if (OBO->hasNoSignedWrap())
1270 Out << " nsw";
1271 } else if (const PossiblyExactOperator *Div =
1272 dyn_cast<PossiblyExactOperator>(U)) {
1273 if (Div->isExact())
1274 Out << " exact";
1275 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1276 if (GEP->isInBounds())
1277 Out << " inbounds";
1281 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1282 TypePrinting &TypePrinter,
1283 SlotTracker *Machine,
1284 const Module *Context) {
1285 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1286 if (CI->getType()->isIntegerTy(1)) {
1287 Out << (CI->getZExtValue() ? "true" : "false");
1288 return;
1290 Out << CI->getValue();
1291 return;
1294 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1295 const APFloat &APF = CFP->getValueAPF();
1296 if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1297 &APF.getSemantics() == &APFloat::IEEEdouble()) {
1298 // We would like to output the FP constant value in exponential notation,
1299 // but we cannot do this if doing so will lose precision. Check here to
1300 // make sure that we only output it in exponential format if we can parse
1301 // the value back and get the same value.
1303 bool ignored;
1304 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1305 bool isInf = APF.isInfinity();
1306 bool isNaN = APF.isNaN();
1307 if (!isInf && !isNaN) {
1308 double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1309 SmallString<128> StrVal;
1310 APF.toString(StrVal, 6, 0, false);
1311 // Check to make sure that the stringized number is not some string like
1312 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1313 // that the string matches the "[-+]?[0-9]" regex.
1315 assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1316 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1317 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1318 "[-+]?[0-9] regex does not match!");
1319 // Reparse stringized version!
1320 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1321 Out << StrVal;
1322 return;
1325 // Otherwise we could not reparse it to exactly the same value, so we must
1326 // output the string in hexadecimal format! Note that loading and storing
1327 // floating point types changes the bits of NaNs on some hosts, notably
1328 // x86, so we must not use these types.
1329 static_assert(sizeof(double) == sizeof(uint64_t),
1330 "assuming that double is 64 bits!");
1331 APFloat apf = APF;
1332 // Floats are represented in ASCII IR as double, convert.
1333 if (!isDouble)
1334 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1335 &ignored);
1336 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1337 return;
1340 // Either half, or some form of long double.
1341 // These appear as a magic letter identifying the type, then a
1342 // fixed number of hex digits.
1343 Out << "0x";
1344 APInt API = APF.bitcastToAPInt();
1345 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1346 Out << 'K';
1347 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1348 /*Upper=*/true);
1349 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1350 /*Upper=*/true);
1351 return;
1352 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1353 Out << 'L';
1354 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1355 /*Upper=*/true);
1356 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1357 /*Upper=*/true);
1358 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1359 Out << 'M';
1360 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1361 /*Upper=*/true);
1362 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1363 /*Upper=*/true);
1364 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1365 Out << 'H';
1366 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1367 /*Upper=*/true);
1368 } else
1369 llvm_unreachable("Unsupported floating point type");
1370 return;
1373 if (isa<ConstantAggregateZero>(CV)) {
1374 Out << "zeroinitializer";
1375 return;
1378 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1379 Out << "blockaddress(";
1380 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1381 Context);
1382 Out << ", ";
1383 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1384 Context);
1385 Out << ")";
1386 return;
1389 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1390 Type *ETy = CA->getType()->getElementType();
1391 Out << '[';
1392 TypePrinter.print(ETy, Out);
1393 Out << ' ';
1394 WriteAsOperandInternal(Out, CA->getOperand(0),
1395 &TypePrinter, Machine,
1396 Context);
1397 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1398 Out << ", ";
1399 TypePrinter.print(ETy, Out);
1400 Out << ' ';
1401 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1402 Context);
1404 Out << ']';
1405 return;
1408 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1409 // As a special case, print the array as a string if it is an array of
1410 // i8 with ConstantInt values.
1411 if (CA->isString()) {
1412 Out << "c\"";
1413 printEscapedString(CA->getAsString(), Out);
1414 Out << '"';
1415 return;
1418 Type *ETy = CA->getType()->getElementType();
1419 Out << '[';
1420 TypePrinter.print(ETy, Out);
1421 Out << ' ';
1422 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1423 &TypePrinter, Machine,
1424 Context);
1425 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1426 Out << ", ";
1427 TypePrinter.print(ETy, Out);
1428 Out << ' ';
1429 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1430 Machine, Context);
1432 Out << ']';
1433 return;
1436 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1437 if (CS->getType()->isPacked())
1438 Out << '<';
1439 Out << '{';
1440 unsigned N = CS->getNumOperands();
1441 if (N) {
1442 Out << ' ';
1443 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1444 Out << ' ';
1446 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1447 Context);
1449 for (unsigned i = 1; i < N; i++) {
1450 Out << ", ";
1451 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1452 Out << ' ';
1454 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1455 Context);
1457 Out << ' ';
1460 Out << '}';
1461 if (CS->getType()->isPacked())
1462 Out << '>';
1463 return;
1466 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1467 Type *ETy = CV->getType()->getVectorElementType();
1468 Out << '<';
1469 TypePrinter.print(ETy, Out);
1470 Out << ' ';
1471 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1472 Machine, Context);
1473 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1474 Out << ", ";
1475 TypePrinter.print(ETy, Out);
1476 Out << ' ';
1477 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1478 Machine, Context);
1480 Out << '>';
1481 return;
1484 if (isa<ConstantPointerNull>(CV)) {
1485 Out << "null";
1486 return;
1489 if (isa<ConstantTokenNone>(CV)) {
1490 Out << "none";
1491 return;
1494 if (isa<UndefValue>(CV)) {
1495 Out << "undef";
1496 return;
1499 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1500 Out << CE->getOpcodeName();
1501 WriteOptimizationInfo(Out, CE);
1502 if (CE->isCompare())
1503 Out << ' ' << CmpInst::getPredicateName(
1504 static_cast<CmpInst::Predicate>(CE->getPredicate()));
1505 Out << " (";
1507 Optional<unsigned> InRangeOp;
1508 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1509 TypePrinter.print(GEP->getSourceElementType(), Out);
1510 Out << ", ";
1511 InRangeOp = GEP->getInRangeIndex();
1512 if (InRangeOp)
1513 ++*InRangeOp;
1516 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1517 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1518 Out << "inrange ";
1519 TypePrinter.print((*OI)->getType(), Out);
1520 Out << ' ';
1521 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1522 if (OI+1 != CE->op_end())
1523 Out << ", ";
1526 if (CE->hasIndices()) {
1527 ArrayRef<unsigned> Indices = CE->getIndices();
1528 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1529 Out << ", " << Indices[i];
1532 if (CE->isCast()) {
1533 Out << " to ";
1534 TypePrinter.print(CE->getType(), Out);
1537 Out << ')';
1538 return;
1541 Out << "<placeholder or erroneous Constant>";
1544 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1545 TypePrinting *TypePrinter, SlotTracker *Machine,
1546 const Module *Context) {
1547 Out << "!{";
1548 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1549 const Metadata *MD = Node->getOperand(mi);
1550 if (!MD)
1551 Out << "null";
1552 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1553 Value *V = MDV->getValue();
1554 TypePrinter->print(V->getType(), Out);
1555 Out << ' ';
1556 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1557 } else {
1558 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1560 if (mi + 1 != me)
1561 Out << ", ";
1564 Out << "}";
1567 namespace {
1569 struct FieldSeparator {
1570 bool Skip = true;
1571 const char *Sep;
1573 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1576 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1577 if (FS.Skip) {
1578 FS.Skip = false;
1579 return OS;
1581 return OS << FS.Sep;
1584 struct MDFieldPrinter {
1585 raw_ostream &Out;
1586 FieldSeparator FS;
1587 TypePrinting *TypePrinter = nullptr;
1588 SlotTracker *Machine = nullptr;
1589 const Module *Context = nullptr;
1591 explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1592 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1593 SlotTracker *Machine, const Module *Context)
1594 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1597 void printTag(const DINode *N);
1598 void printMacinfoType(const DIMacroNode *N);
1599 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1600 void printString(StringRef Name, StringRef Value,
1601 bool ShouldSkipEmpty = true);
1602 void printMetadata(StringRef Name, const Metadata *MD,
1603 bool ShouldSkipNull = true);
1604 template <class IntTy>
1605 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1606 void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1607 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1608 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1609 template <class IntTy, class Stringifier>
1610 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1611 bool ShouldSkipZero = true);
1612 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1613 void printNameTableKind(StringRef Name,
1614 DICompileUnit::DebugNameTableKind NTK);
1617 } // end anonymous namespace
1619 void MDFieldPrinter::printTag(const DINode *N) {
1620 Out << FS << "tag: ";
1621 auto Tag = dwarf::TagString(N->getTag());
1622 if (!Tag.empty())
1623 Out << Tag;
1624 else
1625 Out << N->getTag();
1628 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1629 Out << FS << "type: ";
1630 auto Type = dwarf::MacinfoString(N->getMacinfoType());
1631 if (!Type.empty())
1632 Out << Type;
1633 else
1634 Out << N->getMacinfoType();
1637 void MDFieldPrinter::printChecksum(
1638 const DIFile::ChecksumInfo<StringRef> &Checksum) {
1639 Out << FS << "checksumkind: " << Checksum.getKindAsString();
1640 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1643 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1644 bool ShouldSkipEmpty) {
1645 if (ShouldSkipEmpty && Value.empty())
1646 return;
1648 Out << FS << Name << ": \"";
1649 printEscapedString(Value, Out);
1650 Out << "\"";
1653 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1654 TypePrinting *TypePrinter,
1655 SlotTracker *Machine,
1656 const Module *Context) {
1657 if (!MD) {
1658 Out << "null";
1659 return;
1661 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1664 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1665 bool ShouldSkipNull) {
1666 if (ShouldSkipNull && !MD)
1667 return;
1669 Out << FS << Name << ": ";
1670 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1673 template <class IntTy>
1674 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1675 if (ShouldSkipZero && !Int)
1676 return;
1678 Out << FS << Name << ": " << Int;
1681 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1682 Optional<bool> Default) {
1683 if (Default && Value == *Default)
1684 return;
1685 Out << FS << Name << ": " << (Value ? "true" : "false");
1688 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1689 if (!Flags)
1690 return;
1692 Out << FS << Name << ": ";
1694 SmallVector<DINode::DIFlags, 8> SplitFlags;
1695 auto Extra = DINode::splitFlags(Flags, SplitFlags);
1697 FieldSeparator FlagsFS(" | ");
1698 for (auto F : SplitFlags) {
1699 auto StringF = DINode::getFlagString(F);
1700 assert(!StringF.empty() && "Expected valid flag");
1701 Out << FlagsFS << StringF;
1703 if (Extra || SplitFlags.empty())
1704 Out << FlagsFS << Extra;
1707 void MDFieldPrinter::printDISPFlags(StringRef Name,
1708 DISubprogram::DISPFlags Flags) {
1709 // Always print this field, because no flags in the IR at all will be
1710 // interpreted as old-style isDefinition: true.
1711 Out << FS << Name << ": ";
1713 if (!Flags) {
1714 Out << 0;
1715 return;
1718 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1719 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1721 FieldSeparator FlagsFS(" | ");
1722 for (auto F : SplitFlags) {
1723 auto StringF = DISubprogram::getFlagString(F);
1724 assert(!StringF.empty() && "Expected valid flag");
1725 Out << FlagsFS << StringF;
1727 if (Extra || SplitFlags.empty())
1728 Out << FlagsFS << Extra;
1731 void MDFieldPrinter::printEmissionKind(StringRef Name,
1732 DICompileUnit::DebugEmissionKind EK) {
1733 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1736 void MDFieldPrinter::printNameTableKind(StringRef Name,
1737 DICompileUnit::DebugNameTableKind NTK) {
1738 if (NTK == DICompileUnit::DebugNameTableKind::Default)
1739 return;
1740 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1743 template <class IntTy, class Stringifier>
1744 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1745 Stringifier toString, bool ShouldSkipZero) {
1746 if (!Value)
1747 return;
1749 Out << FS << Name << ": ";
1750 auto S = toString(Value);
1751 if (!S.empty())
1752 Out << S;
1753 else
1754 Out << Value;
1757 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1758 TypePrinting *TypePrinter, SlotTracker *Machine,
1759 const Module *Context) {
1760 Out << "!GenericDINode(";
1761 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1762 Printer.printTag(N);
1763 Printer.printString("header", N->getHeader());
1764 if (N->getNumDwarfOperands()) {
1765 Out << Printer.FS << "operands: {";
1766 FieldSeparator IFS;
1767 for (auto &I : N->dwarf_operands()) {
1768 Out << IFS;
1769 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1771 Out << "}";
1773 Out << ")";
1776 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1777 TypePrinting *TypePrinter, SlotTracker *Machine,
1778 const Module *Context) {
1779 Out << "!DILocation(";
1780 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1781 // Always output the line, since 0 is a relevant and important value for it.
1782 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1783 Printer.printInt("column", DL->getColumn());
1784 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1785 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1786 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1787 /* Default */ false);
1788 Out << ")";
1791 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1792 TypePrinting *TypePrinter, SlotTracker *Machine,
1793 const Module *Context) {
1794 Out << "!DISubrange(";
1795 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1796 if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1797 Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1798 else
1799 Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
1800 /*ShouldSkipNull */ false);
1801 Printer.printInt("lowerBound", N->getLowerBound());
1802 Out << ")";
1805 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1806 TypePrinting *, SlotTracker *, const Module *) {
1807 Out << "!DIEnumerator(";
1808 MDFieldPrinter Printer(Out);
1809 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1810 if (N->isUnsigned()) {
1811 auto Value = static_cast<uint64_t>(N->getValue());
1812 Printer.printInt("value", Value, /* ShouldSkipZero */ false);
1813 Printer.printBool("isUnsigned", true);
1814 } else {
1815 Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1817 Out << ")";
1820 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1821 TypePrinting *, SlotTracker *, const Module *) {
1822 Out << "!DIBasicType(";
1823 MDFieldPrinter Printer(Out);
1824 if (N->getTag() != dwarf::DW_TAG_base_type)
1825 Printer.printTag(N);
1826 Printer.printString("name", N->getName());
1827 Printer.printInt("size", N->getSizeInBits());
1828 Printer.printInt("align", N->getAlignInBits());
1829 Printer.printDwarfEnum("encoding", N->getEncoding(),
1830 dwarf::AttributeEncodingString);
1831 Printer.printDIFlags("flags", N->getFlags());
1832 Out << ")";
1835 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1836 TypePrinting *TypePrinter, SlotTracker *Machine,
1837 const Module *Context) {
1838 Out << "!DIDerivedType(";
1839 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1840 Printer.printTag(N);
1841 Printer.printString("name", N->getName());
1842 Printer.printMetadata("scope", N->getRawScope());
1843 Printer.printMetadata("file", N->getRawFile());
1844 Printer.printInt("line", N->getLine());
1845 Printer.printMetadata("baseType", N->getRawBaseType(),
1846 /* ShouldSkipNull */ false);
1847 Printer.printInt("size", N->getSizeInBits());
1848 Printer.printInt("align", N->getAlignInBits());
1849 Printer.printInt("offset", N->getOffsetInBits());
1850 Printer.printDIFlags("flags", N->getFlags());
1851 Printer.printMetadata("extraData", N->getRawExtraData());
1852 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1853 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1854 /* ShouldSkipZero */ false);
1855 Out << ")";
1858 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1859 TypePrinting *TypePrinter,
1860 SlotTracker *Machine, const Module *Context) {
1861 Out << "!DICompositeType(";
1862 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1863 Printer.printTag(N);
1864 Printer.printString("name", N->getName());
1865 Printer.printMetadata("scope", N->getRawScope());
1866 Printer.printMetadata("file", N->getRawFile());
1867 Printer.printInt("line", N->getLine());
1868 Printer.printMetadata("baseType", N->getRawBaseType());
1869 Printer.printInt("size", N->getSizeInBits());
1870 Printer.printInt("align", N->getAlignInBits());
1871 Printer.printInt("offset", N->getOffsetInBits());
1872 Printer.printDIFlags("flags", N->getFlags());
1873 Printer.printMetadata("elements", N->getRawElements());
1874 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1875 dwarf::LanguageString);
1876 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1877 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1878 Printer.printString("identifier", N->getIdentifier());
1879 Printer.printMetadata("discriminator", N->getRawDiscriminator());
1880 Out << ")";
1883 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1884 TypePrinting *TypePrinter,
1885 SlotTracker *Machine, const Module *Context) {
1886 Out << "!DISubroutineType(";
1887 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1888 Printer.printDIFlags("flags", N->getFlags());
1889 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1890 Printer.printMetadata("types", N->getRawTypeArray(),
1891 /* ShouldSkipNull */ false);
1892 Out << ")";
1895 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1896 SlotTracker *, const Module *) {
1897 Out << "!DIFile(";
1898 MDFieldPrinter Printer(Out);
1899 Printer.printString("filename", N->getFilename(),
1900 /* ShouldSkipEmpty */ false);
1901 Printer.printString("directory", N->getDirectory(),
1902 /* ShouldSkipEmpty */ false);
1903 // Print all values for checksum together, or not at all.
1904 if (N->getChecksum())
1905 Printer.printChecksum(*N->getChecksum());
1906 Printer.printString("source", N->getSource().getValueOr(StringRef()),
1907 /* ShouldSkipEmpty */ true);
1908 Out << ")";
1911 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1912 TypePrinting *TypePrinter, SlotTracker *Machine,
1913 const Module *Context) {
1914 Out << "!DICompileUnit(";
1915 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1916 Printer.printDwarfEnum("language", N->getSourceLanguage(),
1917 dwarf::LanguageString, /* ShouldSkipZero */ false);
1918 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1919 Printer.printString("producer", N->getProducer());
1920 Printer.printBool("isOptimized", N->isOptimized());
1921 Printer.printString("flags", N->getFlags());
1922 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1923 /* ShouldSkipZero */ false);
1924 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1925 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1926 Printer.printMetadata("enums", N->getRawEnumTypes());
1927 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1928 Printer.printMetadata("globals", N->getRawGlobalVariables());
1929 Printer.printMetadata("imports", N->getRawImportedEntities());
1930 Printer.printMetadata("macros", N->getRawMacros());
1931 Printer.printInt("dwoId", N->getDWOId());
1932 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1933 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
1934 false);
1935 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
1936 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
1937 Out << ")";
1940 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1941 TypePrinting *TypePrinter, SlotTracker *Machine,
1942 const Module *Context) {
1943 Out << "!DISubprogram(";
1944 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1945 Printer.printString("name", N->getName());
1946 Printer.printString("linkageName", N->getLinkageName());
1947 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1948 Printer.printMetadata("file", N->getRawFile());
1949 Printer.printInt("line", N->getLine());
1950 Printer.printMetadata("type", N->getRawType());
1951 Printer.printInt("scopeLine", N->getScopeLine());
1952 Printer.printMetadata("containingType", N->getRawContainingType());
1953 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1954 N->getVirtualIndex() != 0)
1955 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1956 Printer.printInt("thisAdjustment", N->getThisAdjustment());
1957 Printer.printDIFlags("flags", N->getFlags());
1958 Printer.printDISPFlags("spFlags", N->getSPFlags());
1959 Printer.printMetadata("unit", N->getRawUnit());
1960 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1961 Printer.printMetadata("declaration", N->getRawDeclaration());
1962 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
1963 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
1964 Out << ")";
1967 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1968 TypePrinting *TypePrinter, SlotTracker *Machine,
1969 const Module *Context) {
1970 Out << "!DILexicalBlock(";
1971 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1972 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1973 Printer.printMetadata("file", N->getRawFile());
1974 Printer.printInt("line", N->getLine());
1975 Printer.printInt("column", N->getColumn());
1976 Out << ")";
1979 static void writeDILexicalBlockFile(raw_ostream &Out,
1980 const DILexicalBlockFile *N,
1981 TypePrinting *TypePrinter,
1982 SlotTracker *Machine,
1983 const Module *Context) {
1984 Out << "!DILexicalBlockFile(";
1985 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1986 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1987 Printer.printMetadata("file", N->getRawFile());
1988 Printer.printInt("discriminator", N->getDiscriminator(),
1989 /* ShouldSkipZero */ false);
1990 Out << ")";
1993 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1994 TypePrinting *TypePrinter, SlotTracker *Machine,
1995 const Module *Context) {
1996 Out << "!DINamespace(";
1997 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1998 Printer.printString("name", N->getName());
1999 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2000 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2001 Out << ")";
2004 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2005 TypePrinting *TypePrinter, SlotTracker *Machine,
2006 const Module *Context) {
2007 Out << "!DIMacro(";
2008 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2009 Printer.printMacinfoType(N);
2010 Printer.printInt("line", N->getLine());
2011 Printer.printString("name", N->getName());
2012 Printer.printString("value", N->getValue());
2013 Out << ")";
2016 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2017 TypePrinting *TypePrinter, SlotTracker *Machine,
2018 const Module *Context) {
2019 Out << "!DIMacroFile(";
2020 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2021 Printer.printInt("line", N->getLine());
2022 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2023 Printer.printMetadata("nodes", N->getRawElements());
2024 Out << ")";
2027 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2028 TypePrinting *TypePrinter, SlotTracker *Machine,
2029 const Module *Context) {
2030 Out << "!DIModule(";
2031 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2032 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2033 Printer.printString("name", N->getName());
2034 Printer.printString("configMacros", N->getConfigurationMacros());
2035 Printer.printString("includePath", N->getIncludePath());
2036 Printer.printString("isysroot", N->getISysRoot());
2037 Out << ")";
2041 static void writeDITemplateTypeParameter(raw_ostream &Out,
2042 const DITemplateTypeParameter *N,
2043 TypePrinting *TypePrinter,
2044 SlotTracker *Machine,
2045 const Module *Context) {
2046 Out << "!DITemplateTypeParameter(";
2047 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2048 Printer.printString("name", N->getName());
2049 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2050 Out << ")";
2053 static void writeDITemplateValueParameter(raw_ostream &Out,
2054 const DITemplateValueParameter *N,
2055 TypePrinting *TypePrinter,
2056 SlotTracker *Machine,
2057 const Module *Context) {
2058 Out << "!DITemplateValueParameter(";
2059 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2060 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2061 Printer.printTag(N);
2062 Printer.printString("name", N->getName());
2063 Printer.printMetadata("type", N->getRawType());
2064 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2065 Out << ")";
2068 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2069 TypePrinting *TypePrinter,
2070 SlotTracker *Machine, const Module *Context) {
2071 Out << "!DIGlobalVariable(";
2072 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2073 Printer.printString("name", N->getName());
2074 Printer.printString("linkageName", N->getLinkageName());
2075 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2076 Printer.printMetadata("file", N->getRawFile());
2077 Printer.printInt("line", N->getLine());
2078 Printer.printMetadata("type", N->getRawType());
2079 Printer.printBool("isLocal", N->isLocalToUnit());
2080 Printer.printBool("isDefinition", N->isDefinition());
2081 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2082 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2083 Printer.printInt("align", N->getAlignInBits());
2084 Out << ")";
2087 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2088 TypePrinting *TypePrinter,
2089 SlotTracker *Machine, const Module *Context) {
2090 Out << "!DILocalVariable(";
2091 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2092 Printer.printString("name", N->getName());
2093 Printer.printInt("arg", N->getArg());
2094 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2095 Printer.printMetadata("file", N->getRawFile());
2096 Printer.printInt("line", N->getLine());
2097 Printer.printMetadata("type", N->getRawType());
2098 Printer.printDIFlags("flags", N->getFlags());
2099 Printer.printInt("align", N->getAlignInBits());
2100 Out << ")";
2103 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2104 TypePrinting *TypePrinter,
2105 SlotTracker *Machine, const Module *Context) {
2106 Out << "!DILabel(";
2107 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2108 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2109 Printer.printString("name", N->getName());
2110 Printer.printMetadata("file", N->getRawFile());
2111 Printer.printInt("line", N->getLine());
2112 Out << ")";
2115 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2116 TypePrinting *TypePrinter, SlotTracker *Machine,
2117 const Module *Context) {
2118 Out << "!DIExpression(";
2119 FieldSeparator FS;
2120 if (N->isValid()) {
2121 for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2122 auto OpStr = dwarf::OperationEncodingString(I->getOp());
2123 assert(!OpStr.empty() && "Expected valid opcode");
2125 Out << FS << OpStr;
2126 for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2127 Out << FS << I->getArg(A);
2129 } else {
2130 for (const auto &I : N->getElements())
2131 Out << FS << I;
2133 Out << ")";
2136 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2137 const DIGlobalVariableExpression *N,
2138 TypePrinting *TypePrinter,
2139 SlotTracker *Machine,
2140 const Module *Context) {
2141 Out << "!DIGlobalVariableExpression(";
2142 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2143 Printer.printMetadata("var", N->getVariable());
2144 Printer.printMetadata("expr", N->getExpression());
2145 Out << ")";
2148 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2149 TypePrinting *TypePrinter, SlotTracker *Machine,
2150 const Module *Context) {
2151 Out << "!DIObjCProperty(";
2152 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2153 Printer.printString("name", N->getName());
2154 Printer.printMetadata("file", N->getRawFile());
2155 Printer.printInt("line", N->getLine());
2156 Printer.printString("setter", N->getSetterName());
2157 Printer.printString("getter", N->getGetterName());
2158 Printer.printInt("attributes", N->getAttributes());
2159 Printer.printMetadata("type", N->getRawType());
2160 Out << ")";
2163 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2164 TypePrinting *TypePrinter,
2165 SlotTracker *Machine, const Module *Context) {
2166 Out << "!DIImportedEntity(";
2167 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2168 Printer.printTag(N);
2169 Printer.printString("name", N->getName());
2170 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2171 Printer.printMetadata("entity", N->getRawEntity());
2172 Printer.printMetadata("file", N->getRawFile());
2173 Printer.printInt("line", N->getLine());
2174 Out << ")";
2177 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2178 TypePrinting *TypePrinter,
2179 SlotTracker *Machine,
2180 const Module *Context) {
2181 if (Node->isDistinct())
2182 Out << "distinct ";
2183 else if (Node->isTemporary())
2184 Out << "<temporary!> "; // Handle broken code.
2186 switch (Node->getMetadataID()) {
2187 default:
2188 llvm_unreachable("Expected uniquable MDNode");
2189 #define HANDLE_MDNODE_LEAF(CLASS) \
2190 case Metadata::CLASS##Kind: \
2191 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
2192 break;
2193 #include "llvm/IR/Metadata.def"
2197 // Full implementation of printing a Value as an operand with support for
2198 // TypePrinting, etc.
2199 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2200 TypePrinting *TypePrinter,
2201 SlotTracker *Machine,
2202 const Module *Context) {
2203 if (V->hasName()) {
2204 PrintLLVMName(Out, V);
2205 return;
2208 const Constant *CV = dyn_cast<Constant>(V);
2209 if (CV && !isa<GlobalValue>(CV)) {
2210 assert(TypePrinter && "Constants require TypePrinting!");
2211 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2212 return;
2215 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2216 Out << "asm ";
2217 if (IA->hasSideEffects())
2218 Out << "sideeffect ";
2219 if (IA->isAlignStack())
2220 Out << "alignstack ";
2221 // We don't emit the AD_ATT dialect as it's the assumed default.
2222 if (IA->getDialect() == InlineAsm::AD_Intel)
2223 Out << "inteldialect ";
2224 Out << '"';
2225 printEscapedString(IA->getAsmString(), Out);
2226 Out << "\", \"";
2227 printEscapedString(IA->getConstraintString(), Out);
2228 Out << '"';
2229 return;
2232 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2233 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2234 Context, /* FromValue */ true);
2235 return;
2238 char Prefix = '%';
2239 int Slot;
2240 // If we have a SlotTracker, use it.
2241 if (Machine) {
2242 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2243 Slot = Machine->getGlobalSlot(GV);
2244 Prefix = '@';
2245 } else {
2246 Slot = Machine->getLocalSlot(V);
2248 // If the local value didn't succeed, then we may be referring to a value
2249 // from a different function. Translate it, as this can happen when using
2250 // address of blocks.
2251 if (Slot == -1)
2252 if ((Machine = createSlotTracker(V))) {
2253 Slot = Machine->getLocalSlot(V);
2254 delete Machine;
2257 } else if ((Machine = createSlotTracker(V))) {
2258 // Otherwise, create one to get the # and then destroy it.
2259 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2260 Slot = Machine->getGlobalSlot(GV);
2261 Prefix = '@';
2262 } else {
2263 Slot = Machine->getLocalSlot(V);
2265 delete Machine;
2266 Machine = nullptr;
2267 } else {
2268 Slot = -1;
2271 if (Slot != -1)
2272 Out << Prefix << Slot;
2273 else
2274 Out << "<badref>";
2277 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2278 TypePrinting *TypePrinter,
2279 SlotTracker *Machine, const Module *Context,
2280 bool FromValue) {
2281 // Write DIExpressions inline when used as a value. Improves readability of
2282 // debug info intrinsics.
2283 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2284 writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2285 return;
2288 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2289 std::unique_ptr<SlotTracker> MachineStorage;
2290 if (!Machine) {
2291 MachineStorage = make_unique<SlotTracker>(Context);
2292 Machine = MachineStorage.get();
2294 int Slot = Machine->getMetadataSlot(N);
2295 if (Slot == -1) {
2296 if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2297 writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2298 return;
2300 // Give the pointer value instead of "badref", since this comes up all
2301 // the time when debugging.
2302 Out << "<" << N << ">";
2303 } else
2304 Out << '!' << Slot;
2305 return;
2308 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2309 Out << "!\"";
2310 printEscapedString(MDS->getString(), Out);
2311 Out << '"';
2312 return;
2315 auto *V = cast<ValueAsMetadata>(MD);
2316 assert(TypePrinter && "TypePrinter required for metadata values");
2317 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2318 "Unexpected function-local metadata outside of value argument");
2320 TypePrinter->print(V->getValue()->getType(), Out);
2321 Out << ' ';
2322 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2325 namespace {
2327 class AssemblyWriter {
2328 formatted_raw_ostream &Out;
2329 const Module *TheModule = nullptr;
2330 const ModuleSummaryIndex *TheIndex = nullptr;
2331 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2332 SlotTracker &Machine;
2333 TypePrinting TypePrinter;
2334 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2335 SetVector<const Comdat *> Comdats;
2336 bool IsForDebug;
2337 bool ShouldPreserveUseListOrder;
2338 UseListOrderStack UseListOrders;
2339 SmallVector<StringRef, 8> MDNames;
2340 /// Synchronization scope names registered with LLVMContext.
2341 SmallVector<StringRef, 8> SSNs;
2342 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2344 public:
2345 /// Construct an AssemblyWriter with an external SlotTracker
2346 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2347 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2348 bool ShouldPreserveUseListOrder = false);
2350 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2351 const ModuleSummaryIndex *Index, bool IsForDebug);
2353 void printMDNodeBody(const MDNode *MD);
2354 void printNamedMDNode(const NamedMDNode *NMD);
2356 void printModule(const Module *M);
2358 void writeOperand(const Value *Op, bool PrintType);
2359 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2360 void writeOperandBundles(const CallBase *Call);
2361 void writeSyncScope(const LLVMContext &Context,
2362 SyncScope::ID SSID);
2363 void writeAtomic(const LLVMContext &Context,
2364 AtomicOrdering Ordering,
2365 SyncScope::ID SSID);
2366 void writeAtomicCmpXchg(const LLVMContext &Context,
2367 AtomicOrdering SuccessOrdering,
2368 AtomicOrdering FailureOrdering,
2369 SyncScope::ID SSID);
2371 void writeAllMDNodes();
2372 void writeMDNode(unsigned Slot, const MDNode *Node);
2373 void writeAllAttributeGroups();
2375 void printTypeIdentities();
2376 void printGlobal(const GlobalVariable *GV);
2377 void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2378 void printComdat(const Comdat *C);
2379 void printFunction(const Function *F);
2380 void printArgument(const Argument *FA, AttributeSet Attrs);
2381 void printBasicBlock(const BasicBlock *BB);
2382 void printInstructionLine(const Instruction &I);
2383 void printInstruction(const Instruction &I);
2385 void printUseListOrder(const UseListOrder &Order);
2386 void printUseLists(const Function *F);
2388 void printModuleSummaryIndex();
2389 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2390 void printSummary(const GlobalValueSummary &Summary);
2391 void printAliasSummary(const AliasSummary *AS);
2392 void printGlobalVarSummary(const GlobalVarSummary *GS);
2393 void printFunctionSummary(const FunctionSummary *FS);
2394 void printTypeIdSummary(const TypeIdSummary &TIS);
2395 void printTypeTestResolution(const TypeTestResolution &TTRes);
2396 void printArgs(const std::vector<uint64_t> &Args);
2397 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2398 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2399 void printVFuncId(const FunctionSummary::VFuncId VFId);
2400 void
2401 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
2402 const char *Tag);
2403 void
2404 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
2405 const char *Tag);
2407 private:
2408 /// Print out metadata attachments.
2409 void printMetadataAttachments(
2410 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2411 StringRef Separator);
2413 // printInfoComment - Print a little comment after the instruction indicating
2414 // which slot it occupies.
2415 void printInfoComment(const Value &V);
2417 // printGCRelocateComment - print comment after call to the gc.relocate
2418 // intrinsic indicating base and derived pointer names.
2419 void printGCRelocateComment(const GCRelocateInst &Relocate);
2422 } // end anonymous namespace
2424 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2425 const Module *M, AssemblyAnnotationWriter *AAW,
2426 bool IsForDebug, bool ShouldPreserveUseListOrder)
2427 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2428 IsForDebug(IsForDebug),
2429 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2430 if (!TheModule)
2431 return;
2432 for (const GlobalObject &GO : TheModule->global_objects())
2433 if (const Comdat *C = GO.getComdat())
2434 Comdats.insert(C);
2437 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2438 const ModuleSummaryIndex *Index, bool IsForDebug)
2439 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2440 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2442 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2443 if (!Operand) {
2444 Out << "<null operand!>";
2445 return;
2447 if (PrintType) {
2448 TypePrinter.print(Operand->getType(), Out);
2449 Out << ' ';
2451 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2454 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2455 SyncScope::ID SSID) {
2456 switch (SSID) {
2457 case SyncScope::System: {
2458 break;
2460 default: {
2461 if (SSNs.empty())
2462 Context.getSyncScopeNames(SSNs);
2464 Out << " syncscope(\"";
2465 printEscapedString(SSNs[SSID], Out);
2466 Out << "\")";
2467 break;
2472 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2473 AtomicOrdering Ordering,
2474 SyncScope::ID SSID) {
2475 if (Ordering == AtomicOrdering::NotAtomic)
2476 return;
2478 writeSyncScope(Context, SSID);
2479 Out << " " << toIRString(Ordering);
2482 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2483 AtomicOrdering SuccessOrdering,
2484 AtomicOrdering FailureOrdering,
2485 SyncScope::ID SSID) {
2486 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2487 FailureOrdering != AtomicOrdering::NotAtomic);
2489 writeSyncScope(Context, SSID);
2490 Out << " " << toIRString(SuccessOrdering);
2491 Out << " " << toIRString(FailureOrdering);
2494 void AssemblyWriter::writeParamOperand(const Value *Operand,
2495 AttributeSet Attrs) {
2496 if (!Operand) {
2497 Out << "<null operand!>";
2498 return;
2501 // Print the type
2502 TypePrinter.print(Operand->getType(), Out);
2503 // Print parameter attributes list
2504 if (Attrs.hasAttributes())
2505 Out << ' ' << Attrs.getAsString();
2506 Out << ' ';
2507 // Print the operand
2508 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2511 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2512 if (!Call->hasOperandBundles())
2513 return;
2515 Out << " [ ";
2517 bool FirstBundle = true;
2518 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2519 OperandBundleUse BU = Call->getOperandBundleAt(i);
2521 if (!FirstBundle)
2522 Out << ", ";
2523 FirstBundle = false;
2525 Out << '"';
2526 printEscapedString(BU.getTagName(), Out);
2527 Out << '"';
2529 Out << '(';
2531 bool FirstInput = true;
2532 for (const auto &Input : BU.Inputs) {
2533 if (!FirstInput)
2534 Out << ", ";
2535 FirstInput = false;
2537 TypePrinter.print(Input->getType(), Out);
2538 Out << " ";
2539 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2542 Out << ')';
2545 Out << " ]";
2548 void AssemblyWriter::printModule(const Module *M) {
2549 Machine.initializeIfNeeded();
2551 if (ShouldPreserveUseListOrder)
2552 UseListOrders = predictUseListOrder(M);
2554 if (!M->getModuleIdentifier().empty() &&
2555 // Don't print the ID if it will start a new line (which would
2556 // require a comment char before it).
2557 M->getModuleIdentifier().find('\n') == std::string::npos)
2558 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2560 if (!M->getSourceFileName().empty()) {
2561 Out << "source_filename = \"";
2562 printEscapedString(M->getSourceFileName(), Out);
2563 Out << "\"\n";
2566 const std::string &DL = M->getDataLayoutStr();
2567 if (!DL.empty())
2568 Out << "target datalayout = \"" << DL << "\"\n";
2569 if (!M->getTargetTriple().empty())
2570 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2572 if (!M->getModuleInlineAsm().empty()) {
2573 Out << '\n';
2575 // Split the string into lines, to make it easier to read the .ll file.
2576 StringRef Asm = M->getModuleInlineAsm();
2577 do {
2578 StringRef Front;
2579 std::tie(Front, Asm) = Asm.split('\n');
2581 // We found a newline, print the portion of the asm string from the
2582 // last newline up to this newline.
2583 Out << "module asm \"";
2584 printEscapedString(Front, Out);
2585 Out << "\"\n";
2586 } while (!Asm.empty());
2589 printTypeIdentities();
2591 // Output all comdats.
2592 if (!Comdats.empty())
2593 Out << '\n';
2594 for (const Comdat *C : Comdats) {
2595 printComdat(C);
2596 if (C != Comdats.back())
2597 Out << '\n';
2600 // Output all globals.
2601 if (!M->global_empty()) Out << '\n';
2602 for (const GlobalVariable &GV : M->globals()) {
2603 printGlobal(&GV); Out << '\n';
2606 // Output all aliases.
2607 if (!M->alias_empty()) Out << "\n";
2608 for (const GlobalAlias &GA : M->aliases())
2609 printIndirectSymbol(&GA);
2611 // Output all ifuncs.
2612 if (!M->ifunc_empty()) Out << "\n";
2613 for (const GlobalIFunc &GI : M->ifuncs())
2614 printIndirectSymbol(&GI);
2616 // Output global use-lists.
2617 printUseLists(nullptr);
2619 // Output all of the functions.
2620 for (const Function &F : *M)
2621 printFunction(&F);
2622 assert(UseListOrders.empty() && "All use-lists should have been consumed");
2624 // Output all attribute groups.
2625 if (!Machine.as_empty()) {
2626 Out << '\n';
2627 writeAllAttributeGroups();
2630 // Output named metadata.
2631 if (!M->named_metadata_empty()) Out << '\n';
2633 for (const NamedMDNode &Node : M->named_metadata())
2634 printNamedMDNode(&Node);
2636 // Output metadata.
2637 if (!Machine.mdn_empty()) {
2638 Out << '\n';
2639 writeAllMDNodes();
2643 void AssemblyWriter::printModuleSummaryIndex() {
2644 assert(TheIndex);
2645 Machine.initializeIndexIfNeeded();
2647 Out << "\n";
2649 // Print module path entries. To print in order, add paths to a vector
2650 // indexed by module slot.
2651 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2652 std::string RegularLTOModuleName = "[Regular LTO]";
2653 moduleVec.resize(TheIndex->modulePaths().size());
2654 for (auto &ModPath : TheIndex->modulePaths())
2655 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2656 // A module id of -1 is a special entry for a regular LTO module created
2657 // during the thin link.
2658 ModPath.second.first == -1u ? RegularLTOModuleName
2659 : (std::string)ModPath.first(),
2660 ModPath.second.second);
2662 unsigned i = 0;
2663 for (auto &ModPair : moduleVec) {
2664 Out << "^" << i++ << " = module: (";
2665 Out << "path: \"";
2666 printEscapedString(ModPair.first, Out);
2667 Out << "\", hash: (";
2668 FieldSeparator FS;
2669 for (auto Hash : ModPair.second)
2670 Out << FS << Hash;
2671 Out << "))\n";
2674 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2675 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2676 for (auto &GlobalList : *TheIndex) {
2677 auto GUID = GlobalList.first;
2678 for (auto &Summary : GlobalList.second.SummaryList)
2679 SummaryToGUIDMap[Summary.get()] = GUID;
2682 // Print the global value summary entries.
2683 for (auto &GlobalList : *TheIndex) {
2684 auto GUID = GlobalList.first;
2685 auto VI = TheIndex->getValueInfo(GlobalList);
2686 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2689 // Print the TypeIdMap entries.
2690 for (auto TidIter = TheIndex->typeIds().begin();
2691 TidIter != TheIndex->typeIds().end(); TidIter++) {
2692 Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
2693 << " = typeid: (name: \"" << TidIter->second.first << "\"";
2694 printTypeIdSummary(TidIter->second.second);
2695 Out << ") ; guid = " << TidIter->first << "\n";
2699 static const char *
2700 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2701 switch (K) {
2702 case WholeProgramDevirtResolution::Indir:
2703 return "indir";
2704 case WholeProgramDevirtResolution::SingleImpl:
2705 return "singleImpl";
2706 case WholeProgramDevirtResolution::BranchFunnel:
2707 return "branchFunnel";
2709 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2712 static const char *getWholeProgDevirtResByArgKindName(
2713 WholeProgramDevirtResolution::ByArg::Kind K) {
2714 switch (K) {
2715 case WholeProgramDevirtResolution::ByArg::Indir:
2716 return "indir";
2717 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2718 return "uniformRetVal";
2719 case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2720 return "uniqueRetVal";
2721 case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2722 return "virtualConstProp";
2724 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2727 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2728 switch (K) {
2729 case TypeTestResolution::Unsat:
2730 return "unsat";
2731 case TypeTestResolution::ByteArray:
2732 return "byteArray";
2733 case TypeTestResolution::Inline:
2734 return "inline";
2735 case TypeTestResolution::Single:
2736 return "single";
2737 case TypeTestResolution::AllOnes:
2738 return "allOnes";
2740 llvm_unreachable("invalid TypeTestResolution kind");
2743 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2744 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2745 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2747 // The following fields are only used if the target does not support the use
2748 // of absolute symbols to store constants. Print only if non-zero.
2749 if (TTRes.AlignLog2)
2750 Out << ", alignLog2: " << TTRes.AlignLog2;
2751 if (TTRes.SizeM1)
2752 Out << ", sizeM1: " << TTRes.SizeM1;
2753 if (TTRes.BitMask)
2754 // BitMask is uint8_t which causes it to print the corresponding char.
2755 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2756 if (TTRes.InlineBits)
2757 Out << ", inlineBits: " << TTRes.InlineBits;
2759 Out << ")";
2762 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2763 Out << ", summary: (";
2764 printTypeTestResolution(TIS.TTRes);
2765 if (!TIS.WPDRes.empty()) {
2766 Out << ", wpdResolutions: (";
2767 FieldSeparator FS;
2768 for (auto &WPDRes : TIS.WPDRes) {
2769 Out << FS;
2770 Out << "(offset: " << WPDRes.first << ", ";
2771 printWPDRes(WPDRes.second);
2772 Out << ")";
2774 Out << ")";
2776 Out << ")";
2779 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2780 Out << "args: (";
2781 FieldSeparator FS;
2782 for (auto arg : Args) {
2783 Out << FS;
2784 Out << arg;
2786 Out << ")";
2789 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2790 Out << "wpdRes: (kind: ";
2791 Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2793 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2794 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2796 if (!WPDRes.ResByArg.empty()) {
2797 Out << ", resByArg: (";
2798 FieldSeparator FS;
2799 for (auto &ResByArg : WPDRes.ResByArg) {
2800 Out << FS;
2801 printArgs(ResByArg.first);
2802 Out << ", byArg: (kind: ";
2803 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2804 if (ResByArg.second.TheKind ==
2805 WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2806 ResByArg.second.TheKind ==
2807 WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2808 Out << ", info: " << ResByArg.second.Info;
2810 // The following fields are only used if the target does not support the
2811 // use of absolute symbols to store constants. Print only if non-zero.
2812 if (ResByArg.second.Byte || ResByArg.second.Bit)
2813 Out << ", byte: " << ResByArg.second.Byte
2814 << ", bit: " << ResByArg.second.Bit;
2816 Out << ")";
2818 Out << ")";
2820 Out << ")";
2823 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2824 switch (SK) {
2825 case GlobalValueSummary::AliasKind:
2826 return "alias";
2827 case GlobalValueSummary::FunctionKind:
2828 return "function";
2829 case GlobalValueSummary::GlobalVarKind:
2830 return "variable";
2832 llvm_unreachable("invalid summary kind");
2835 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2836 Out << ", aliasee: ";
2837 // The indexes emitted for distributed backends may not include the
2838 // aliasee summary (only if it is being imported directly). Handle
2839 // that case by just emitting "null" as the aliasee.
2840 if (AS->hasAliasee())
2841 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2842 else
2843 Out << "null";
2846 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2847 Out << ", varFlags: (readonly: " << GS->VarFlags.ReadOnly << ")";
2850 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
2851 switch (LT) {
2852 case GlobalValue::ExternalLinkage:
2853 return "external";
2854 case GlobalValue::PrivateLinkage:
2855 return "private";
2856 case GlobalValue::InternalLinkage:
2857 return "internal";
2858 case GlobalValue::LinkOnceAnyLinkage:
2859 return "linkonce";
2860 case GlobalValue::LinkOnceODRLinkage:
2861 return "linkonce_odr";
2862 case GlobalValue::WeakAnyLinkage:
2863 return "weak";
2864 case GlobalValue::WeakODRLinkage:
2865 return "weak_odr";
2866 case GlobalValue::CommonLinkage:
2867 return "common";
2868 case GlobalValue::AppendingLinkage:
2869 return "appending";
2870 case GlobalValue::ExternalWeakLinkage:
2871 return "extern_weak";
2872 case GlobalValue::AvailableExternallyLinkage:
2873 return "available_externally";
2875 llvm_unreachable("invalid linkage");
2878 // When printing the linkage types in IR where the ExternalLinkage is
2879 // not printed, and other linkage types are expected to be printed with
2880 // a space after the name.
2881 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
2882 if (LT == GlobalValue::ExternalLinkage)
2883 return "";
2884 return getLinkageName(LT) + " ";
2887 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
2888 Out << ", insts: " << FS->instCount();
2890 FunctionSummary::FFlags FFlags = FS->fflags();
2891 if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
2892 FFlags.ReturnDoesNotAlias) {
2893 Out << ", funcFlags: (";
2894 Out << "readNone: " << FFlags.ReadNone;
2895 Out << ", readOnly: " << FFlags.ReadOnly;
2896 Out << ", noRecurse: " << FFlags.NoRecurse;
2897 Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
2898 Out << ", noInline: " << FFlags.NoInline;
2899 Out << ")";
2901 if (!FS->calls().empty()) {
2902 Out << ", calls: (";
2903 FieldSeparator IFS;
2904 for (auto &Call : FS->calls()) {
2905 Out << IFS;
2906 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
2907 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
2908 Out << ", hotness: " << getHotnessName(Call.second.getHotness());
2909 else if (Call.second.RelBlockFreq)
2910 Out << ", relbf: " << Call.second.RelBlockFreq;
2911 Out << ")";
2913 Out << ")";
2916 if (const auto *TIdInfo = FS->getTypeIdInfo())
2917 printTypeIdInfo(*TIdInfo);
2920 void AssemblyWriter::printTypeIdInfo(
2921 const FunctionSummary::TypeIdInfo &TIDInfo) {
2922 Out << ", typeIdInfo: (";
2923 FieldSeparator TIDFS;
2924 if (!TIDInfo.TypeTests.empty()) {
2925 Out << TIDFS;
2926 Out << "typeTests: (";
2927 FieldSeparator FS;
2928 for (auto &GUID : TIDInfo.TypeTests) {
2929 auto TidIter = TheIndex->typeIds().equal_range(GUID);
2930 if (TidIter.first == TidIter.second) {
2931 Out << FS;
2932 Out << GUID;
2933 continue;
2935 // Print all type id that correspond to this GUID.
2936 for (auto It = TidIter.first; It != TidIter.second; ++It) {
2937 Out << FS;
2938 auto Slot = Machine.getTypeIdSlot(It->second.first);
2939 assert(Slot != -1);
2940 Out << "^" << Slot;
2943 Out << ")";
2945 if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
2946 Out << TIDFS;
2947 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
2949 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
2950 Out << TIDFS;
2951 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
2953 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
2954 Out << TIDFS;
2955 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
2956 "typeTestAssumeConstVCalls");
2958 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
2959 Out << TIDFS;
2960 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
2961 "typeCheckedLoadConstVCalls");
2963 Out << ")";
2966 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
2967 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
2968 if (TidIter.first == TidIter.second) {
2969 Out << "vFuncId: (";
2970 Out << "guid: " << VFId.GUID;
2971 Out << ", offset: " << VFId.Offset;
2972 Out << ")";
2973 return;
2975 // Print all type id that correspond to this GUID.
2976 FieldSeparator FS;
2977 for (auto It = TidIter.first; It != TidIter.second; ++It) {
2978 Out << FS;
2979 Out << "vFuncId: (";
2980 auto Slot = Machine.getTypeIdSlot(It->second.first);
2981 assert(Slot != -1);
2982 Out << "^" << Slot;
2983 Out << ", offset: " << VFId.Offset;
2984 Out << ")";
2988 void AssemblyWriter::printNonConstVCalls(
2989 const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
2990 Out << Tag << ": (";
2991 FieldSeparator FS;
2992 for (auto &VFuncId : VCallList) {
2993 Out << FS;
2994 printVFuncId(VFuncId);
2996 Out << ")";
2999 void AssemblyWriter::printConstVCalls(
3000 const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
3001 Out << Tag << ": (";
3002 FieldSeparator FS;
3003 for (auto &ConstVCall : VCallList) {
3004 Out << FS;
3005 Out << "(";
3006 printVFuncId(ConstVCall.VFunc);
3007 if (!ConstVCall.Args.empty()) {
3008 Out << ", ";
3009 printArgs(ConstVCall.Args);
3011 Out << ")";
3013 Out << ")";
3016 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3017 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3018 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3019 Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3020 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3021 << ", flags: (";
3022 Out << "linkage: " << getLinkageName(LT);
3023 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3024 Out << ", live: " << GVFlags.Live;
3025 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3026 Out << ")";
3028 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3029 printAliasSummary(cast<AliasSummary>(&Summary));
3030 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3031 printFunctionSummary(cast<FunctionSummary>(&Summary));
3032 else
3033 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3035 auto RefList = Summary.refs();
3036 if (!RefList.empty()) {
3037 Out << ", refs: (";
3038 FieldSeparator FS;
3039 for (auto &Ref : RefList) {
3040 Out << FS;
3041 if (Ref.isReadOnly())
3042 Out << "readonly ";
3043 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3045 Out << ")";
3048 Out << ")";
3051 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3052 Out << "^" << Slot << " = gv: (";
3053 if (!VI.name().empty())
3054 Out << "name: \"" << VI.name() << "\"";
3055 else
3056 Out << "guid: " << VI.getGUID();
3057 if (!VI.getSummaryList().empty()) {
3058 Out << ", summaries: (";
3059 FieldSeparator FS;
3060 for (auto &Summary : VI.getSummaryList()) {
3061 Out << FS;
3062 printSummary(*Summary);
3064 Out << ")";
3066 Out << ")";
3067 if (!VI.name().empty())
3068 Out << " ; guid = " << VI.getGUID();
3069 Out << "\n";
3072 static void printMetadataIdentifier(StringRef Name,
3073 formatted_raw_ostream &Out) {
3074 if (Name.empty()) {
3075 Out << "<empty name> ";
3076 } else {
3077 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3078 Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3079 Out << Name[0];
3080 else
3081 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3082 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3083 unsigned char C = Name[i];
3084 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3085 C == '.' || C == '_')
3086 Out << C;
3087 else
3088 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3093 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3094 Out << '!';
3095 printMetadataIdentifier(NMD->getName(), Out);
3096 Out << " = !{";
3097 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3098 if (i)
3099 Out << ", ";
3101 // Write DIExpressions inline.
3102 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3103 MDNode *Op = NMD->getOperand(i);
3104 if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3105 writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3106 continue;
3109 int Slot = Machine.getMetadataSlot(Op);
3110 if (Slot == -1)
3111 Out << "<badref>";
3112 else
3113 Out << '!' << Slot;
3115 Out << "}\n";
3118 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3119 formatted_raw_ostream &Out) {
3120 switch (Vis) {
3121 case GlobalValue::DefaultVisibility: break;
3122 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3123 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3127 static void PrintDSOLocation(const GlobalValue &GV,
3128 formatted_raw_ostream &Out) {
3129 // GVs with local linkage or non default visibility are implicitly dso_local,
3130 // so we don't print it.
3131 bool Implicit = GV.hasLocalLinkage() ||
3132 (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
3133 if (GV.isDSOLocal() && !Implicit)
3134 Out << "dso_local ";
3137 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3138 formatted_raw_ostream &Out) {
3139 switch (SCT) {
3140 case GlobalValue::DefaultStorageClass: break;
3141 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3142 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3146 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3147 formatted_raw_ostream &Out) {
3148 switch (TLM) {
3149 case GlobalVariable::NotThreadLocal:
3150 break;
3151 case GlobalVariable::GeneralDynamicTLSModel:
3152 Out << "thread_local ";
3153 break;
3154 case GlobalVariable::LocalDynamicTLSModel:
3155 Out << "thread_local(localdynamic) ";
3156 break;
3157 case GlobalVariable::InitialExecTLSModel:
3158 Out << "thread_local(initialexec) ";
3159 break;
3160 case GlobalVariable::LocalExecTLSModel:
3161 Out << "thread_local(localexec) ";
3162 break;
3166 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3167 switch (UA) {
3168 case GlobalVariable::UnnamedAddr::None:
3169 return "";
3170 case GlobalVariable::UnnamedAddr::Local:
3171 return "local_unnamed_addr";
3172 case GlobalVariable::UnnamedAddr::Global:
3173 return "unnamed_addr";
3175 llvm_unreachable("Unknown UnnamedAddr");
3178 static void maybePrintComdat(formatted_raw_ostream &Out,
3179 const GlobalObject &GO) {
3180 const Comdat *C = GO.getComdat();
3181 if (!C)
3182 return;
3184 if (isa<GlobalVariable>(GO))
3185 Out << ',';
3186 Out << " comdat";
3188 if (GO.getName() == C->getName())
3189 return;
3191 Out << '(';
3192 PrintLLVMName(Out, C->getName(), ComdatPrefix);
3193 Out << ')';
3196 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3197 if (GV->isMaterializable())
3198 Out << "; Materializable\n";
3200 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3201 Out << " = ";
3203 if (!GV->hasInitializer() && GV->hasExternalLinkage())
3204 Out << "external ";
3206 Out << getLinkageNameWithSpace(GV->getLinkage());
3207 PrintDSOLocation(*GV, Out);
3208 PrintVisibility(GV->getVisibility(), Out);
3209 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3210 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3211 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3212 if (!UA.empty())
3213 Out << UA << ' ';
3215 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3216 Out << "addrspace(" << AddressSpace << ") ";
3217 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3218 Out << (GV->isConstant() ? "constant " : "global ");
3219 TypePrinter.print(GV->getValueType(), Out);
3221 if (GV->hasInitializer()) {
3222 Out << ' ';
3223 writeOperand(GV->getInitializer(), false);
3226 if (GV->hasSection()) {
3227 Out << ", section \"";
3228 printEscapedString(GV->getSection(), Out);
3229 Out << '"';
3231 maybePrintComdat(Out, *GV);
3232 if (GV->getAlignment())
3233 Out << ", align " << GV->getAlignment();
3235 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3236 GV->getAllMetadata(MDs);
3237 printMetadataAttachments(MDs, ", ");
3239 auto Attrs = GV->getAttributes();
3240 if (Attrs.hasAttributes())
3241 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3243 printInfoComment(*GV);
3246 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3247 if (GIS->isMaterializable())
3248 Out << "; Materializable\n";
3250 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3251 Out << " = ";
3253 Out << getLinkageNameWithSpace(GIS->getLinkage());
3254 PrintDSOLocation(*GIS, Out);
3255 PrintVisibility(GIS->getVisibility(), Out);
3256 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3257 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3258 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3259 if (!UA.empty())
3260 Out << UA << ' ';
3262 if (isa<GlobalAlias>(GIS))
3263 Out << "alias ";
3264 else if (isa<GlobalIFunc>(GIS))
3265 Out << "ifunc ";
3266 else
3267 llvm_unreachable("Not an alias or ifunc!");
3269 TypePrinter.print(GIS->getValueType(), Out);
3271 Out << ", ";
3273 const Constant *IS = GIS->getIndirectSymbol();
3275 if (!IS) {
3276 TypePrinter.print(GIS->getType(), Out);
3277 Out << " <<NULL ALIASEE>>";
3278 } else {
3279 writeOperand(IS, !isa<ConstantExpr>(IS));
3282 printInfoComment(*GIS);
3283 Out << '\n';
3286 void AssemblyWriter::printComdat(const Comdat *C) {
3287 C->print(Out);
3290 void AssemblyWriter::printTypeIdentities() {
3291 if (TypePrinter.empty())
3292 return;
3294 Out << '\n';
3296 // Emit all numbered types.
3297 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3298 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3299 Out << '%' << I << " = type ";
3301 // Make sure we print out at least one level of the type structure, so
3302 // that we do not get %2 = type %2
3303 TypePrinter.printStructBody(NumberedTypes[I], Out);
3304 Out << '\n';
3307 auto &NamedTypes = TypePrinter.getNamedTypes();
3308 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3309 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3310 Out << " = type ";
3312 // Make sure we print out at least one level of the type structure, so
3313 // that we do not get %FILE = type %FILE
3314 TypePrinter.printStructBody(NamedTypes[I], Out);
3315 Out << '\n';
3319 /// printFunction - Print all aspects of a function.
3320 void AssemblyWriter::printFunction(const Function *F) {
3321 // Print out the return type and name.
3322 Out << '\n';
3324 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3326 if (F->isMaterializable())
3327 Out << "; Materializable\n";
3329 const AttributeList &Attrs = F->getAttributes();
3330 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3331 AttributeSet AS = Attrs.getFnAttributes();
3332 std::string AttrStr;
3334 for (const Attribute &Attr : AS) {
3335 if (!Attr.isStringAttribute()) {
3336 if (!AttrStr.empty()) AttrStr += ' ';
3337 AttrStr += Attr.getAsString();
3341 if (!AttrStr.empty())
3342 Out << "; Function Attrs: " << AttrStr << '\n';
3345 Machine.incorporateFunction(F);
3347 if (F->isDeclaration()) {
3348 Out << "declare";
3349 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3350 F->getAllMetadata(MDs);
3351 printMetadataAttachments(MDs, " ");
3352 Out << ' ';
3353 } else
3354 Out << "define ";
3356 Out << getLinkageNameWithSpace(F->getLinkage());
3357 PrintDSOLocation(*F, Out);
3358 PrintVisibility(F->getVisibility(), Out);
3359 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3361 // Print the calling convention.
3362 if (F->getCallingConv() != CallingConv::C) {
3363 PrintCallingConv(F->getCallingConv(), Out);
3364 Out << " ";
3367 FunctionType *FT = F->getFunctionType();
3368 if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3369 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3370 TypePrinter.print(F->getReturnType(), Out);
3371 Out << ' ';
3372 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3373 Out << '(';
3375 // Loop over the arguments, printing them...
3376 if (F->isDeclaration() && !IsForDebug) {
3377 // We're only interested in the type here - don't print argument names.
3378 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3379 // Insert commas as we go... the first arg doesn't get a comma
3380 if (I)
3381 Out << ", ";
3382 // Output type...
3383 TypePrinter.print(FT->getParamType(I), Out);
3385 AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3386 if (ArgAttrs.hasAttributes())
3387 Out << ' ' << ArgAttrs.getAsString();
3389 } else {
3390 // The arguments are meaningful here, print them in detail.
3391 for (const Argument &Arg : F->args()) {
3392 // Insert commas as we go... the first arg doesn't get a comma
3393 if (Arg.getArgNo() != 0)
3394 Out << ", ";
3395 printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3399 // Finish printing arguments...
3400 if (FT->isVarArg()) {
3401 if (FT->getNumParams()) Out << ", ";
3402 Out << "..."; // Output varargs portion of signature!
3404 Out << ')';
3405 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3406 if (!UA.empty())
3407 Out << ' ' << UA;
3408 // We print the function address space if it is non-zero or if we are writing
3409 // a module with a non-zero program address space or if there is no valid
3410 // Module* so that the file can be parsed without the datalayout string.
3411 const Module *Mod = F->getParent();
3412 if (F->getAddressSpace() != 0 || !Mod ||
3413 Mod->getDataLayout().getProgramAddressSpace() != 0)
3414 Out << " addrspace(" << F->getAddressSpace() << ")";
3415 if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3416 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3417 if (F->hasSection()) {
3418 Out << " section \"";
3419 printEscapedString(F->getSection(), Out);
3420 Out << '"';
3422 maybePrintComdat(Out, *F);
3423 if (F->getAlignment())
3424 Out << " align " << F->getAlignment();
3425 if (F->hasGC())
3426 Out << " gc \"" << F->getGC() << '"';
3427 if (F->hasPrefixData()) {
3428 Out << " prefix ";
3429 writeOperand(F->getPrefixData(), true);
3431 if (F->hasPrologueData()) {
3432 Out << " prologue ";
3433 writeOperand(F->getPrologueData(), true);
3435 if (F->hasPersonalityFn()) {
3436 Out << " personality ";
3437 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3440 if (F->isDeclaration()) {
3441 Out << '\n';
3442 } else {
3443 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3444 F->getAllMetadata(MDs);
3445 printMetadataAttachments(MDs, " ");
3447 Out << " {";
3448 // Output all of the function's basic blocks.
3449 for (const BasicBlock &BB : *F)
3450 printBasicBlock(&BB);
3452 // Output the function's use-lists.
3453 printUseLists(F);
3455 Out << "}\n";
3458 Machine.purgeFunction();
3461 /// printArgument - This member is called for every argument that is passed into
3462 /// the function. Simply print it out
3463 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3464 // Output type...
3465 TypePrinter.print(Arg->getType(), Out);
3467 // Output parameter attributes list
3468 if (Attrs.hasAttributes())
3469 Out << ' ' << Attrs.getAsString();
3471 // Output name, if available...
3472 if (Arg->hasName()) {
3473 Out << ' ';
3474 PrintLLVMName(Out, Arg);
3478 /// printBasicBlock - This member is called for each basic block in a method.
3479 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3480 if (BB->hasName()) { // Print out the label if it exists...
3481 Out << "\n";
3482 PrintLLVMName(Out, BB->getName(), LabelPrefix);
3483 Out << ':';
3484 } else if (!BB->use_empty()) { // Don't print block # of no uses...
3485 Out << "\n; <label>:";
3486 int Slot = Machine.getLocalSlot(BB);
3487 if (Slot != -1)
3488 Out << Slot << ":";
3489 else
3490 Out << "<badref>";
3493 if (!BB->getParent()) {
3494 Out.PadToColumn(50);
3495 Out << "; Error: Block without parent!";
3496 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
3497 // Output predecessors for the block.
3498 Out.PadToColumn(50);
3499 Out << ";";
3500 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3502 if (PI == PE) {
3503 Out << " No predecessors!";
3504 } else {
3505 Out << " preds = ";
3506 writeOperand(*PI, false);
3507 for (++PI; PI != PE; ++PI) {
3508 Out << ", ";
3509 writeOperand(*PI, false);
3514 Out << "\n";
3516 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3518 // Output all of the instructions in the basic block...
3519 for (const Instruction &I : *BB) {
3520 printInstructionLine(I);
3523 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3526 /// printInstructionLine - Print an instruction and a newline character.
3527 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3528 printInstruction(I);
3529 Out << '\n';
3532 /// printGCRelocateComment - print comment after call to the gc.relocate
3533 /// intrinsic indicating base and derived pointer names.
3534 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3535 Out << " ; (";
3536 writeOperand(Relocate.getBasePtr(), false);
3537 Out << ", ";
3538 writeOperand(Relocate.getDerivedPtr(), false);
3539 Out << ")";
3542 /// printInfoComment - Print a little comment after the instruction indicating
3543 /// which slot it occupies.
3544 void AssemblyWriter::printInfoComment(const Value &V) {
3545 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3546 printGCRelocateComment(*Relocate);
3548 if (AnnotationWriter)
3549 AnnotationWriter->printInfoComment(V, Out);
3552 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3553 raw_ostream &Out) {
3554 // We print the address space of the call if it is non-zero.
3555 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3556 bool PrintAddrSpace = CallAddrSpace != 0;
3557 if (!PrintAddrSpace) {
3558 const Module *Mod = getModuleFromVal(I);
3559 // We also print it if it is zero but not equal to the program address space
3560 // or if we can't find a valid Module* to make it possible to parse
3561 // the resulting file even without a datalayout string.
3562 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3563 PrintAddrSpace = true;
3565 if (PrintAddrSpace)
3566 Out << " addrspace(" << CallAddrSpace << ")";
3569 // This member is called for each Instruction in a function..
3570 void AssemblyWriter::printInstruction(const Instruction &I) {
3571 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3573 // Print out indentation for an instruction.
3574 Out << " ";
3576 // Print out name if it exists...
3577 if (I.hasName()) {
3578 PrintLLVMName(Out, &I);
3579 Out << " = ";
3580 } else if (!I.getType()->isVoidTy()) {
3581 // Print out the def slot taken.
3582 int SlotNum = Machine.getLocalSlot(&I);
3583 if (SlotNum == -1)
3584 Out << "<badref> = ";
3585 else
3586 Out << '%' << SlotNum << " = ";
3589 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3590 if (CI->isMustTailCall())
3591 Out << "musttail ";
3592 else if (CI->isTailCall())
3593 Out << "tail ";
3594 else if (CI->isNoTailCall())
3595 Out << "notail ";
3598 // Print out the opcode...
3599 Out << I.getOpcodeName();
3601 // If this is an atomic load or store, print out the atomic marker.
3602 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
3603 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3604 Out << " atomic";
3606 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3607 Out << " weak";
3609 // If this is a volatile operation, print out the volatile marker.
3610 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
3611 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3612 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3613 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3614 Out << " volatile";
3616 // Print out optimization information.
3617 WriteOptimizationInfo(Out, &I);
3619 // Print out the compare instruction predicates
3620 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3621 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3623 // Print out the atomicrmw operation
3624 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3625 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3627 // Print out the type of the operands...
3628 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3630 // Special case conditional branches to swizzle the condition out to the front
3631 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3632 const BranchInst &BI(cast<BranchInst>(I));
3633 Out << ' ';
3634 writeOperand(BI.getCondition(), true);
3635 Out << ", ";
3636 writeOperand(BI.getSuccessor(0), true);
3637 Out << ", ";
3638 writeOperand(BI.getSuccessor(1), true);
3640 } else if (isa<SwitchInst>(I)) {
3641 const SwitchInst& SI(cast<SwitchInst>(I));
3642 // Special case switch instruction to get formatting nice and correct.
3643 Out << ' ';
3644 writeOperand(SI.getCondition(), true);
3645 Out << ", ";
3646 writeOperand(SI.getDefaultDest(), true);
3647 Out << " [";
3648 for (auto Case : SI.cases()) {
3649 Out << "\n ";
3650 writeOperand(Case.getCaseValue(), true);
3651 Out << ", ";
3652 writeOperand(Case.getCaseSuccessor(), true);
3654 Out << "\n ]";
3655 } else if (isa<IndirectBrInst>(I)) {
3656 // Special case indirectbr instruction to get formatting nice and correct.
3657 Out << ' ';
3658 writeOperand(Operand, true);
3659 Out << ", [";
3661 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3662 if (i != 1)
3663 Out << ", ";
3664 writeOperand(I.getOperand(i), true);
3666 Out << ']';
3667 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3668 Out << ' ';
3669 TypePrinter.print(I.getType(), Out);
3670 Out << ' ';
3672 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3673 if (op) Out << ", ";
3674 Out << "[ ";
3675 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3676 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3678 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3679 Out << ' ';
3680 writeOperand(I.getOperand(0), true);
3681 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3682 Out << ", " << *i;
3683 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3684 Out << ' ';
3685 writeOperand(I.getOperand(0), true); Out << ", ";
3686 writeOperand(I.getOperand(1), true);
3687 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3688 Out << ", " << *i;
3689 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3690 Out << ' ';
3691 TypePrinter.print(I.getType(), Out);
3692 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3693 Out << '\n';
3695 if (LPI->isCleanup())
3696 Out << " cleanup";
3698 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3699 if (i != 0 || LPI->isCleanup()) Out << "\n";
3700 if (LPI->isCatch(i))
3701 Out << " catch ";
3702 else
3703 Out << " filter ";
3705 writeOperand(LPI->getClause(i), true);
3707 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3708 Out << " within ";
3709 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3710 Out << " [";
3711 unsigned Op = 0;
3712 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3713 if (Op > 0)
3714 Out << ", ";
3715 writeOperand(PadBB, /*PrintType=*/true);
3716 ++Op;
3718 Out << "] unwind ";
3719 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3720 writeOperand(UnwindDest, /*PrintType=*/true);
3721 else
3722 Out << "to caller";
3723 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3724 Out << " within ";
3725 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3726 Out << " [";
3727 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3728 ++Op) {
3729 if (Op > 0)
3730 Out << ", ";
3731 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3733 Out << ']';
3734 } else if (isa<ReturnInst>(I) && !Operand) {
3735 Out << " void";
3736 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3737 Out << " from ";
3738 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3740 Out << " to ";
3741 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3742 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3743 Out << " from ";
3744 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3746 Out << " unwind ";
3747 if (CRI->hasUnwindDest())
3748 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3749 else
3750 Out << "to caller";
3751 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3752 // Print the calling convention being used.
3753 if (CI->getCallingConv() != CallingConv::C) {
3754 Out << " ";
3755 PrintCallingConv(CI->getCallingConv(), Out);
3758 Operand = CI->getCalledValue();
3759 FunctionType *FTy = CI->getFunctionType();
3760 Type *RetTy = FTy->getReturnType();
3761 const AttributeList &PAL = CI->getAttributes();
3763 if (PAL.hasAttributes(AttributeList::ReturnIndex))
3764 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3766 // Only print addrspace(N) if necessary:
3767 maybePrintCallAddrSpace(Operand, &I, Out);
3769 // If possible, print out the short form of the call instruction. We can
3770 // only do this if the first argument is a pointer to a nonvararg function,
3771 // and if the return type is not a pointer to a function.
3773 Out << ' ';
3774 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3775 Out << ' ';
3776 writeOperand(Operand, false);
3777 Out << '(';
3778 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3779 if (op > 0)
3780 Out << ", ";
3781 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3784 // Emit an ellipsis if this is a musttail call in a vararg function. This
3785 // is only to aid readability, musttail calls forward varargs by default.
3786 if (CI->isMustTailCall() && CI->getParent() &&
3787 CI->getParent()->getParent() &&
3788 CI->getParent()->getParent()->isVarArg())
3789 Out << ", ...";
3791 Out << ')';
3792 if (PAL.hasAttributes(AttributeList::FunctionIndex))
3793 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3795 writeOperandBundles(CI);
3796 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3797 Operand = II->getCalledValue();
3798 FunctionType *FTy = II->getFunctionType();
3799 Type *RetTy = FTy->getReturnType();
3800 const AttributeList &PAL = II->getAttributes();
3802 // Print the calling convention being used.
3803 if (II->getCallingConv() != CallingConv::C) {
3804 Out << " ";
3805 PrintCallingConv(II->getCallingConv(), Out);
3808 if (PAL.hasAttributes(AttributeList::ReturnIndex))
3809 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3811 // Only print addrspace(N) if necessary:
3812 maybePrintCallAddrSpace(Operand, &I, Out);
3814 // If possible, print out the short form of the invoke instruction. We can
3815 // only do this if the first argument is a pointer to a nonvararg function,
3816 // and if the return type is not a pointer to a function.
3818 Out << ' ';
3819 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3820 Out << ' ';
3821 writeOperand(Operand, false);
3822 Out << '(';
3823 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3824 if (op)
3825 Out << ", ";
3826 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
3829 Out << ')';
3830 if (PAL.hasAttributes(AttributeList::FunctionIndex))
3831 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3833 writeOperandBundles(II);
3835 Out << "\n to ";
3836 writeOperand(II->getNormalDest(), true);
3837 Out << " unwind ";
3838 writeOperand(II->getUnwindDest(), true);
3839 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
3840 Operand = CBI->getCalledValue();
3841 FunctionType *FTy = CBI->getFunctionType();
3842 Type *RetTy = FTy->getReturnType();
3843 const AttributeList &PAL = CBI->getAttributes();
3845 // Print the calling convention being used.
3846 if (CBI->getCallingConv() != CallingConv::C) {
3847 Out << " ";
3848 PrintCallingConv(CBI->getCallingConv(), Out);
3851 if (PAL.hasAttributes(AttributeList::ReturnIndex))
3852 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3854 // If possible, print out the short form of the callbr instruction. We can
3855 // only do this if the first argument is a pointer to a nonvararg function,
3856 // and if the return type is not a pointer to a function.
3858 Out << ' ';
3859 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3860 Out << ' ';
3861 writeOperand(Operand, false);
3862 Out << '(';
3863 for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
3864 if (op)
3865 Out << ", ";
3866 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
3869 Out << ')';
3870 if (PAL.hasAttributes(AttributeList::FunctionIndex))
3871 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3873 writeOperandBundles(CBI);
3875 Out << "\n to ";
3876 writeOperand(CBI->getDefaultDest(), true);
3877 Out << " [";
3878 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
3879 if (i != 0)
3880 Out << ", ";
3881 writeOperand(CBI->getIndirectDest(i), true);
3883 Out << ']';
3884 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3885 Out << ' ';
3886 if (AI->isUsedWithInAlloca())
3887 Out << "inalloca ";
3888 if (AI->isSwiftError())
3889 Out << "swifterror ";
3890 TypePrinter.print(AI->getAllocatedType(), Out);
3892 // Explicitly write the array size if the code is broken, if it's an array
3893 // allocation, or if the type is not canonical for scalar allocations. The
3894 // latter case prevents the type from mutating when round-tripping through
3895 // assembly.
3896 if (!AI->getArraySize() || AI->isArrayAllocation() ||
3897 !AI->getArraySize()->getType()->isIntegerTy(32)) {
3898 Out << ", ";
3899 writeOperand(AI->getArraySize(), true);
3901 if (AI->getAlignment()) {
3902 Out << ", align " << AI->getAlignment();
3905 unsigned AddrSpace = AI->getType()->getAddressSpace();
3906 if (AddrSpace != 0) {
3907 Out << ", addrspace(" << AddrSpace << ')';
3909 } else if (isa<CastInst>(I)) {
3910 if (Operand) {
3911 Out << ' ';
3912 writeOperand(Operand, true); // Work with broken code
3914 Out << " to ";
3915 TypePrinter.print(I.getType(), Out);
3916 } else if (isa<VAArgInst>(I)) {
3917 if (Operand) {
3918 Out << ' ';
3919 writeOperand(Operand, true); // Work with broken code
3921 Out << ", ";
3922 TypePrinter.print(I.getType(), Out);
3923 } else if (Operand) { // Print the normal way.
3924 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3925 Out << ' ';
3926 TypePrinter.print(GEP->getSourceElementType(), Out);
3927 Out << ',';
3928 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3929 Out << ' ';
3930 TypePrinter.print(LI->getType(), Out);
3931 Out << ',';
3934 // PrintAllTypes - Instructions who have operands of all the same type
3935 // omit the type from all but the first operand. If the instruction has
3936 // different type operands (for example br), then they are all printed.
3937 bool PrintAllTypes = false;
3938 Type *TheType = Operand->getType();
3940 // Select, Store and ShuffleVector always print all types.
3941 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3942 || isa<ReturnInst>(I)) {
3943 PrintAllTypes = true;
3944 } else {
3945 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3946 Operand = I.getOperand(i);
3947 // note that Operand shouldn't be null, but the test helps make dump()
3948 // more tolerant of malformed IR
3949 if (Operand && Operand->getType() != TheType) {
3950 PrintAllTypes = true; // We have differing types! Print them all!
3951 break;
3956 if (!PrintAllTypes) {
3957 Out << ' ';
3958 TypePrinter.print(TheType, Out);
3961 Out << ' ';
3962 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3963 if (i) Out << ", ";
3964 writeOperand(I.getOperand(i), PrintAllTypes);
3968 // Print atomic ordering/alignment for memory operations
3969 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3970 if (LI->isAtomic())
3971 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
3972 if (LI->getAlignment())
3973 Out << ", align " << LI->getAlignment();
3974 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3975 if (SI->isAtomic())
3976 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
3977 if (SI->getAlignment())
3978 Out << ", align " << SI->getAlignment();
3979 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3980 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
3981 CXI->getFailureOrdering(), CXI->getSyncScopeID());
3982 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3983 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
3984 RMWI->getSyncScopeID());
3985 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3986 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
3989 // Print Metadata info.
3990 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3991 I.getAllMetadata(InstMD);
3992 printMetadataAttachments(InstMD, ", ");
3994 // Print a nice comment.
3995 printInfoComment(I);
3998 void AssemblyWriter::printMetadataAttachments(
3999 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4000 StringRef Separator) {
4001 if (MDs.empty())
4002 return;
4004 if (MDNames.empty())
4005 MDs[0].second->getContext().getMDKindNames(MDNames);
4007 for (const auto &I : MDs) {
4008 unsigned Kind = I.first;
4009 Out << Separator;
4010 if (Kind < MDNames.size()) {
4011 Out << "!";
4012 printMetadataIdentifier(MDNames[Kind], Out);
4013 } else
4014 Out << "!<unknown kind #" << Kind << ">";
4015 Out << ' ';
4016 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4020 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4021 Out << '!' << Slot << " = ";
4022 printMDNodeBody(Node);
4023 Out << "\n";
4026 void AssemblyWriter::writeAllMDNodes() {
4027 SmallVector<const MDNode *, 16> Nodes;
4028 Nodes.resize(Machine.mdn_size());
4029 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
4030 I != E; ++I)
4031 Nodes[I->second] = cast<MDNode>(I->first);
4033 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4034 writeMDNode(i, Nodes[i]);
4038 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4039 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4042 void AssemblyWriter::writeAllAttributeGroups() {
4043 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4044 asVec.resize(Machine.as_size());
4046 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
4047 I != E; ++I)
4048 asVec[I->second] = *I;
4050 for (const auto &I : asVec)
4051 Out << "attributes #" << I.second << " = { "
4052 << I.first.getAsString(true) << " }\n";
4055 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
4056 bool IsInFunction = Machine.getFunction();
4057 if (IsInFunction)
4058 Out << " ";
4060 Out << "uselistorder";
4061 if (const BasicBlock *BB =
4062 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
4063 Out << "_bb ";
4064 writeOperand(BB->getParent(), false);
4065 Out << ", ";
4066 writeOperand(BB, false);
4067 } else {
4068 Out << " ";
4069 writeOperand(Order.V, true);
4071 Out << ", { ";
4073 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4074 Out << Order.Shuffle[0];
4075 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4076 Out << ", " << Order.Shuffle[I];
4077 Out << " }\n";
4080 void AssemblyWriter::printUseLists(const Function *F) {
4081 auto hasMore =
4082 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4083 if (!hasMore())
4084 // Nothing to do.
4085 return;
4087 Out << "\n; uselistorder directives\n";
4088 while (hasMore()) {
4089 printUseListOrder(UseListOrders.back());
4090 UseListOrders.pop_back();
4094 //===----------------------------------------------------------------------===//
4095 // External Interface declarations
4096 //===----------------------------------------------------------------------===//
4098 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4099 bool ShouldPreserveUseListOrder,
4100 bool IsForDebug) const {
4101 SlotTracker SlotTable(this->getParent());
4102 formatted_raw_ostream OS(ROS);
4103 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4104 IsForDebug,
4105 ShouldPreserveUseListOrder);
4106 W.printFunction(this);
4109 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4110 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4111 SlotTracker SlotTable(this);
4112 formatted_raw_ostream OS(ROS);
4113 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4114 ShouldPreserveUseListOrder);
4115 W.printModule(this);
4118 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4119 SlotTracker SlotTable(getParent());
4120 formatted_raw_ostream OS(ROS);
4121 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4122 W.printNamedMDNode(this);
4125 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4126 bool IsForDebug) const {
4127 Optional<SlotTracker> LocalST;
4128 SlotTracker *SlotTable;
4129 if (auto *ST = MST.getMachine())
4130 SlotTable = ST;
4131 else {
4132 LocalST.emplace(getParent());
4133 SlotTable = &*LocalST;
4136 formatted_raw_ostream OS(ROS);
4137 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4138 W.printNamedMDNode(this);
4141 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4142 PrintLLVMName(ROS, getName(), ComdatPrefix);
4143 ROS << " = comdat ";
4145 switch (getSelectionKind()) {
4146 case Comdat::Any:
4147 ROS << "any";
4148 break;
4149 case Comdat::ExactMatch:
4150 ROS << "exactmatch";
4151 break;
4152 case Comdat::Largest:
4153 ROS << "largest";
4154 break;
4155 case Comdat::NoDuplicates:
4156 ROS << "noduplicates";
4157 break;
4158 case Comdat::SameSize:
4159 ROS << "samesize";
4160 break;
4163 ROS << '\n';
4166 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4167 TypePrinting TP;
4168 TP.print(const_cast<Type*>(this), OS);
4170 if (NoDetails)
4171 return;
4173 // If the type is a named struct type, print the body as well.
4174 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4175 if (!STy->isLiteral()) {
4176 OS << " = type ";
4177 TP.printStructBody(STy, OS);
4181 static bool isReferencingMDNode(const Instruction &I) {
4182 if (const auto *CI = dyn_cast<CallInst>(&I))
4183 if (Function *F = CI->getCalledFunction())
4184 if (F->isIntrinsic())
4185 for (auto &Op : I.operands())
4186 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4187 if (isa<MDNode>(V->getMetadata()))
4188 return true;
4189 return false;
4192 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4193 bool ShouldInitializeAllMetadata = false;
4194 if (auto *I = dyn_cast<Instruction>(this))
4195 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4196 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4197 ShouldInitializeAllMetadata = true;
4199 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4200 print(ROS, MST, IsForDebug);
4203 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4204 bool IsForDebug) const {
4205 formatted_raw_ostream OS(ROS);
4206 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4207 SlotTracker &SlotTable =
4208 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4209 auto incorporateFunction = [&](const Function *F) {
4210 if (F)
4211 MST.incorporateFunction(*F);
4214 if (const Instruction *I = dyn_cast<Instruction>(this)) {
4215 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4216 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4217 W.printInstruction(*I);
4218 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4219 incorporateFunction(BB->getParent());
4220 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4221 W.printBasicBlock(BB);
4222 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4223 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4224 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4225 W.printGlobal(V);
4226 else if (const Function *F = dyn_cast<Function>(GV))
4227 W.printFunction(F);
4228 else
4229 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4230 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4231 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4232 } else if (const Constant *C = dyn_cast<Constant>(this)) {
4233 TypePrinting TypePrinter;
4234 TypePrinter.print(C->getType(), OS);
4235 OS << ' ';
4236 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4237 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4238 this->printAsOperand(OS, /* PrintType */ true, MST);
4239 } else {
4240 llvm_unreachable("Unknown value to print out!");
4244 /// Print without a type, skipping the TypePrinting object.
4246 /// \return \c true iff printing was successful.
4247 static bool printWithoutType(const Value &V, raw_ostream &O,
4248 SlotTracker *Machine, const Module *M) {
4249 if (V.hasName() || isa<GlobalValue>(V) ||
4250 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4251 WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4252 return true;
4254 return false;
4257 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4258 ModuleSlotTracker &MST) {
4259 TypePrinting TypePrinter(MST.getModule());
4260 if (PrintType) {
4261 TypePrinter.print(V.getType(), O);
4262 O << ' ';
4265 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4266 MST.getModule());
4269 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4270 const Module *M) const {
4271 if (!M)
4272 M = getModuleFromVal(this);
4274 if (!PrintType)
4275 if (printWithoutType(*this, O, nullptr, M))
4276 return;
4278 SlotTracker Machine(
4279 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4280 ModuleSlotTracker MST(Machine, M);
4281 printAsOperandImpl(*this, O, PrintType, MST);
4284 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4285 ModuleSlotTracker &MST) const {
4286 if (!PrintType)
4287 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4288 return;
4290 printAsOperandImpl(*this, O, PrintType, MST);
4293 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4294 ModuleSlotTracker &MST, const Module *M,
4295 bool OnlyAsOperand) {
4296 formatted_raw_ostream OS(ROS);
4298 TypePrinting TypePrinter(M);
4300 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4301 /* FromValue */ true);
4303 auto *N = dyn_cast<MDNode>(&MD);
4304 if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4305 return;
4307 OS << " = ";
4308 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4311 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4312 ModuleSlotTracker MST(M, isa<MDNode>(this));
4313 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4316 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4317 const Module *M) const {
4318 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4321 void Metadata::print(raw_ostream &OS, const Module *M,
4322 bool /*IsForDebug*/) const {
4323 ModuleSlotTracker MST(M, isa<MDNode>(this));
4324 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4327 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4328 const Module *M, bool /*IsForDebug*/) const {
4329 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4332 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4333 SlotTracker SlotTable(this);
4334 formatted_raw_ostream OS(ROS);
4335 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4336 W.printModuleSummaryIndex();
4339 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4340 // Value::dump - allow easy printing of Values from the debugger.
4341 LLVM_DUMP_METHOD
4342 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4344 // Type::dump - allow easy printing of Types from the debugger.
4345 LLVM_DUMP_METHOD
4346 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4348 // Module::dump() - Allow printing of Modules from the debugger.
4349 LLVM_DUMP_METHOD
4350 void Module::dump() const {
4351 print(dbgs(), nullptr,
4352 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4355 // Allow printing of Comdats from the debugger.
4356 LLVM_DUMP_METHOD
4357 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4359 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4360 LLVM_DUMP_METHOD
4361 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4363 LLVM_DUMP_METHOD
4364 void Metadata::dump() const { dump(nullptr); }
4366 LLVM_DUMP_METHOD
4367 void Metadata::dump(const Module *M) const {
4368 print(dbgs(), M, /*IsForDebug=*/true);
4369 dbgs() << '\n';
4372 // Allow printing of ModuleSummaryIndex from the debugger.
4373 LLVM_DUMP_METHOD
4374 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4375 #endif