1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/UseListOrder.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/raw_ostream.h"
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
94 //===----------------------------------------------------------------------===//
96 //===----------------------------------------------------------------------===//
101 DenseMap
<const Value
*, std::pair
<unsigned, bool>> IDs
;
103 unsigned size() const { return IDs
.size(); }
104 std::pair
<unsigned, bool> &operator[](const Value
*V
) { return IDs
[V
]; }
106 std::pair
<unsigned, bool> lookup(const Value
*V
) const {
107 return IDs
.lookup(V
);
110 void index(const Value
*V
) {
111 // Explicitly sequence get-size and insert-value operations to avoid UB.
112 unsigned ID
= IDs
.size() + 1;
117 } // end anonymous namespace
119 static void orderValue(const Value
*V
, OrderMap
&OM
) {
120 if (OM
.lookup(V
).first
)
123 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
124 if (C
->getNumOperands() && !isa
<GlobalValue
>(C
))
125 for (const Value
*Op
: C
->operands())
126 if (!isa
<BasicBlock
>(Op
) && !isa
<GlobalValue
>(Op
))
129 // Note: we cannot cache this lookup above, since inserting into the map
130 // changes the map's size, and thus affects the other IDs.
134 static OrderMap
orderModule(const Module
*M
) {
135 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
136 // and ValueEnumerator::incorporateFunction().
139 for (const GlobalVariable
&G
: M
->globals()) {
140 if (G
.hasInitializer())
141 if (!isa
<GlobalValue
>(G
.getInitializer()))
142 orderValue(G
.getInitializer(), OM
);
145 for (const GlobalAlias
&A
: M
->aliases()) {
146 if (!isa
<GlobalValue
>(A
.getAliasee()))
147 orderValue(A
.getAliasee(), OM
);
150 for (const GlobalIFunc
&I
: M
->ifuncs()) {
151 if (!isa
<GlobalValue
>(I
.getResolver()))
152 orderValue(I
.getResolver(), OM
);
155 for (const Function
&F
: *M
) {
156 for (const Use
&U
: F
.operands())
157 if (!isa
<GlobalValue
>(U
.get()))
158 orderValue(U
.get(), OM
);
162 if (F
.isDeclaration())
165 for (const Argument
&A
: F
.args())
167 for (const BasicBlock
&BB
: F
) {
169 for (const Instruction
&I
: BB
) {
170 for (const Value
*Op
: I
.operands())
171 if ((isa
<Constant
>(*Op
) && !isa
<GlobalValue
>(*Op
)) ||
181 static void predictValueUseListOrderImpl(const Value
*V
, const Function
*F
,
182 unsigned ID
, const OrderMap
&OM
,
183 UseListOrderStack
&Stack
) {
184 // Predict use-list order for this one.
185 using Entry
= std::pair
<const Use
*, unsigned>;
186 SmallVector
<Entry
, 64> List
;
187 for (const Use
&U
: V
->uses())
188 // Check if this user will be serialized.
189 if (OM
.lookup(U
.getUser()).first
)
190 List
.push_back(std::make_pair(&U
, List
.size()));
193 // We may have lost some users.
197 !isa
<GlobalVariable
>(V
) && !isa
<Function
>(V
) && !isa
<BasicBlock
>(V
);
198 if (auto *BA
= dyn_cast
<BlockAddress
>(V
))
199 ID
= OM
.lookup(BA
->getBasicBlock()).first
;
200 llvm::sort(List
, [&](const Entry
&L
, const Entry
&R
) {
201 const Use
*LU
= L
.first
;
202 const Use
*RU
= R
.first
;
206 auto LID
= OM
.lookup(LU
->getUser()).first
;
207 auto RID
= OM
.lookup(RU
->getUser()).first
;
209 // If ID is 4, then expect: 7 6 5 1 2 3.
223 // LID and RID are equal, so we have different operands of the same user.
224 // Assume operands are added in order for all instructions.
227 return LU
->getOperandNo() < RU
->getOperandNo();
228 return LU
->getOperandNo() > RU
->getOperandNo();
232 List
.begin(), List
.end(),
233 [](const Entry
&L
, const Entry
&R
) { return L
.second
< R
.second
; }))
234 // Order is already correct.
237 // Store the shuffle.
238 Stack
.emplace_back(V
, F
, List
.size());
239 assert(List
.size() == Stack
.back().Shuffle
.size() && "Wrong size");
240 for (size_t I
= 0, E
= List
.size(); I
!= E
; ++I
)
241 Stack
.back().Shuffle
[I
] = List
[I
].second
;
244 static void predictValueUseListOrder(const Value
*V
, const Function
*F
,
245 OrderMap
&OM
, UseListOrderStack
&Stack
) {
246 auto &IDPair
= OM
[V
];
247 assert(IDPair
.first
&& "Unmapped value");
249 // Already predicted.
252 // Do the actual prediction.
253 IDPair
.second
= true;
254 if (!V
->use_empty() && std::next(V
->use_begin()) != V
->use_end())
255 predictValueUseListOrderImpl(V
, F
, IDPair
.first
, OM
, Stack
);
257 // Recursive descent into constants.
258 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
259 if (C
->getNumOperands()) // Visit GlobalValues.
260 for (const Value
*Op
: C
->operands())
261 if (isa
<Constant
>(Op
)) // Visit GlobalValues.
262 predictValueUseListOrder(Op
, F
, OM
, Stack
);
265 static UseListOrderStack
predictUseListOrder(const Module
*M
) {
266 OrderMap OM
= orderModule(M
);
268 // Use-list orders need to be serialized after all the users have been added
269 // to a value, or else the shuffles will be incomplete. Store them per
270 // function in a stack.
272 // Aside from function order, the order of values doesn't matter much here.
273 UseListOrderStack Stack
;
275 // We want to visit the functions backward now so we can list function-local
276 // constants in the last Function they're used in. Module-level constants
277 // have already been visited above.
278 for (const Function
&F
: make_range(M
->rbegin(), M
->rend())) {
279 if (F
.isDeclaration())
281 for (const BasicBlock
&BB
: F
)
282 predictValueUseListOrder(&BB
, &F
, OM
, Stack
);
283 for (const Argument
&A
: F
.args())
284 predictValueUseListOrder(&A
, &F
, OM
, Stack
);
285 for (const BasicBlock
&BB
: F
)
286 for (const Instruction
&I
: BB
)
287 for (const Value
*Op
: I
.operands())
288 if (isa
<Constant
>(*Op
) || isa
<InlineAsm
>(*Op
)) // Visit GlobalValues.
289 predictValueUseListOrder(Op
, &F
, OM
, Stack
);
290 for (const BasicBlock
&BB
: F
)
291 for (const Instruction
&I
: BB
)
292 predictValueUseListOrder(&I
, &F
, OM
, Stack
);
295 // Visit globals last.
296 for (const GlobalVariable
&G
: M
->globals())
297 predictValueUseListOrder(&G
, nullptr, OM
, Stack
);
298 for (const Function
&F
: *M
)
299 predictValueUseListOrder(&F
, nullptr, OM
, Stack
);
300 for (const GlobalAlias
&A
: M
->aliases())
301 predictValueUseListOrder(&A
, nullptr, OM
, Stack
);
302 for (const GlobalIFunc
&I
: M
->ifuncs())
303 predictValueUseListOrder(&I
, nullptr, OM
, Stack
);
304 for (const GlobalVariable
&G
: M
->globals())
305 if (G
.hasInitializer())
306 predictValueUseListOrder(G
.getInitializer(), nullptr, OM
, Stack
);
307 for (const GlobalAlias
&A
: M
->aliases())
308 predictValueUseListOrder(A
.getAliasee(), nullptr, OM
, Stack
);
309 for (const GlobalIFunc
&I
: M
->ifuncs())
310 predictValueUseListOrder(I
.getResolver(), nullptr, OM
, Stack
);
311 for (const Function
&F
: *M
)
312 for (const Use
&U
: F
.operands())
313 predictValueUseListOrder(U
.get(), nullptr, OM
, Stack
);
318 static const Module
*getModuleFromVal(const Value
*V
) {
319 if (const Argument
*MA
= dyn_cast
<Argument
>(V
))
320 return MA
->getParent() ? MA
->getParent()->getParent() : nullptr;
322 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
323 return BB
->getParent() ? BB
->getParent()->getParent() : nullptr;
325 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
326 const Function
*M
= I
->getParent() ? I
->getParent()->getParent() : nullptr;
327 return M
? M
->getParent() : nullptr;
330 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
331 return GV
->getParent();
333 if (const auto *MAV
= dyn_cast
<MetadataAsValue
>(V
)) {
334 for (const User
*U
: MAV
->users())
335 if (isa
<Instruction
>(U
))
336 if (const Module
*M
= getModuleFromVal(U
))
344 static void PrintCallingConv(unsigned cc
, raw_ostream
&Out
) {
346 default: Out
<< "cc" << cc
; break;
347 case CallingConv::Fast
: Out
<< "fastcc"; break;
348 case CallingConv::Cold
: Out
<< "coldcc"; break;
349 case CallingConv::WebKit_JS
: Out
<< "webkit_jscc"; break;
350 case CallingConv::AnyReg
: Out
<< "anyregcc"; break;
351 case CallingConv::PreserveMost
: Out
<< "preserve_mostcc"; break;
352 case CallingConv::PreserveAll
: Out
<< "preserve_allcc"; break;
353 case CallingConv::CXX_FAST_TLS
: Out
<< "cxx_fast_tlscc"; break;
354 case CallingConv::GHC
: Out
<< "ghccc"; break;
355 case CallingConv::X86_StdCall
: Out
<< "x86_stdcallcc"; break;
356 case CallingConv::X86_FastCall
: Out
<< "x86_fastcallcc"; break;
357 case CallingConv::X86_ThisCall
: Out
<< "x86_thiscallcc"; break;
358 case CallingConv::X86_RegCall
: Out
<< "x86_regcallcc"; break;
359 case CallingConv::X86_VectorCall
:Out
<< "x86_vectorcallcc"; break;
360 case CallingConv::Intel_OCL_BI
: Out
<< "intel_ocl_bicc"; break;
361 case CallingConv::ARM_APCS
: Out
<< "arm_apcscc"; break;
362 case CallingConv::ARM_AAPCS
: Out
<< "arm_aapcscc"; break;
363 case CallingConv::ARM_AAPCS_VFP
: Out
<< "arm_aapcs_vfpcc"; break;
364 case CallingConv::AArch64_VectorCall
: Out
<< "aarch64_vector_pcs"; break;
365 case CallingConv::MSP430_INTR
: Out
<< "msp430_intrcc"; break;
366 case CallingConv::AVR_INTR
: Out
<< "avr_intrcc "; break;
367 case CallingConv::AVR_SIGNAL
: Out
<< "avr_signalcc "; break;
368 case CallingConv::PTX_Kernel
: Out
<< "ptx_kernel"; break;
369 case CallingConv::PTX_Device
: Out
<< "ptx_device"; break;
370 case CallingConv::X86_64_SysV
: Out
<< "x86_64_sysvcc"; break;
371 case CallingConv::Win64
: Out
<< "win64cc"; break;
372 case CallingConv::SPIR_FUNC
: Out
<< "spir_func"; break;
373 case CallingConv::SPIR_KERNEL
: Out
<< "spir_kernel"; break;
374 case CallingConv::Swift
: Out
<< "swiftcc"; break;
375 case CallingConv::X86_INTR
: Out
<< "x86_intrcc"; break;
376 case CallingConv::HHVM
: Out
<< "hhvmcc"; break;
377 case CallingConv::HHVM_C
: Out
<< "hhvm_ccc"; break;
378 case CallingConv::AMDGPU_VS
: Out
<< "amdgpu_vs"; break;
379 case CallingConv::AMDGPU_LS
: Out
<< "amdgpu_ls"; break;
380 case CallingConv::AMDGPU_HS
: Out
<< "amdgpu_hs"; break;
381 case CallingConv::AMDGPU_ES
: Out
<< "amdgpu_es"; break;
382 case CallingConv::AMDGPU_GS
: Out
<< "amdgpu_gs"; break;
383 case CallingConv::AMDGPU_PS
: Out
<< "amdgpu_ps"; break;
384 case CallingConv::AMDGPU_CS
: Out
<< "amdgpu_cs"; break;
385 case CallingConv::AMDGPU_KERNEL
: Out
<< "amdgpu_kernel"; break;
397 void llvm::printLLVMNameWithoutPrefix(raw_ostream
&OS
, StringRef Name
) {
398 assert(!Name
.empty() && "Cannot get empty name!");
400 // Scan the name to see if it needs quotes first.
401 bool NeedsQuotes
= isdigit(static_cast<unsigned char>(Name
[0]));
403 for (unsigned i
= 0, e
= Name
.size(); i
!= e
; ++i
) {
404 // By making this unsigned, the value passed in to isalnum will always be
405 // in the range 0-255. This is important when building with MSVC because
406 // its implementation will assert. This situation can arise when dealing
407 // with UTF-8 multibyte characters.
408 unsigned char C
= Name
[i
];
409 if (!isalnum(static_cast<unsigned char>(C
)) && C
!= '-' && C
!= '.' &&
417 // If we didn't need any quotes, just write out the name in one blast.
423 // Okay, we need quotes. Output the quotes and escape any scary characters as
426 printEscapedString(Name
, OS
);
430 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
431 /// (if the string only contains simple characters) or is surrounded with ""'s
432 /// (if it has special chars in it). Print it out.
433 static void PrintLLVMName(raw_ostream
&OS
, StringRef Name
, PrefixType Prefix
) {
449 printLLVMNameWithoutPrefix(OS
, Name
);
452 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
453 /// (if the string only contains simple characters) or is surrounded with ""'s
454 /// (if it has special chars in it). Print it out.
455 static void PrintLLVMName(raw_ostream
&OS
, const Value
*V
) {
456 PrintLLVMName(OS
, V
->getName(),
457 isa
<GlobalValue
>(V
) ? GlobalPrefix
: LocalPrefix
);
464 TypePrinting(const Module
*M
= nullptr) : DeferredM(M
) {}
466 TypePrinting(const TypePrinting
&) = delete;
467 TypePrinting
&operator=(const TypePrinting
&) = delete;
469 /// The named types that are used by the current module.
470 TypeFinder
&getNamedTypes();
472 /// The numbered types, number to type mapping.
473 std::vector
<StructType
*> &getNumberedTypes();
477 void print(Type
*Ty
, raw_ostream
&OS
);
479 void printStructBody(StructType
*Ty
, raw_ostream
&OS
);
482 void incorporateTypes();
484 /// A module to process lazily when needed. Set to nullptr as soon as used.
485 const Module
*DeferredM
;
487 TypeFinder NamedTypes
;
489 // The numbered types, along with their value.
490 DenseMap
<StructType
*, unsigned> Type2Number
;
492 std::vector
<StructType
*> NumberedTypes
;
495 } // end anonymous namespace
497 TypeFinder
&TypePrinting::getNamedTypes() {
502 std::vector
<StructType
*> &TypePrinting::getNumberedTypes() {
505 // We know all the numbers that each type is used and we know that it is a
506 // dense assignment. Convert the map to an index table, if it's not done
507 // already (judging from the sizes):
508 if (NumberedTypes
.size() == Type2Number
.size())
509 return NumberedTypes
;
511 NumberedTypes
.resize(Type2Number
.size());
512 for (const auto &P
: Type2Number
) {
513 assert(P
.second
< NumberedTypes
.size() && "Didn't get a dense numbering?");
514 assert(!NumberedTypes
[P
.second
] && "Didn't get a unique numbering?");
515 NumberedTypes
[P
.second
] = P
.first
;
517 return NumberedTypes
;
520 bool TypePrinting::empty() {
522 return NamedTypes
.empty() && Type2Number
.empty();
525 void TypePrinting::incorporateTypes() {
529 NamedTypes
.run(*DeferredM
, false);
532 // The list of struct types we got back includes all the struct types, split
533 // the unnamed ones out to a numbering and remove the anonymous structs.
534 unsigned NextNumber
= 0;
536 std::vector
<StructType
*>::iterator NextToUse
= NamedTypes
.begin(), I
, E
;
537 for (I
= NamedTypes
.begin(), E
= NamedTypes
.end(); I
!= E
; ++I
) {
538 StructType
*STy
= *I
;
540 // Ignore anonymous types.
541 if (STy
->isLiteral())
544 if (STy
->getName().empty())
545 Type2Number
[STy
] = NextNumber
++;
550 NamedTypes
.erase(NextToUse
, NamedTypes
.end());
553 /// Write the specified type to the specified raw_ostream, making use of type
554 /// names or up references to shorten the type name where possible.
555 void TypePrinting::print(Type
*Ty
, raw_ostream
&OS
) {
556 switch (Ty
->getTypeID()) {
557 case Type::VoidTyID
: OS
<< "void"; return;
558 case Type::HalfTyID
: OS
<< "half"; return;
559 case Type::FloatTyID
: OS
<< "float"; return;
560 case Type::DoubleTyID
: OS
<< "double"; return;
561 case Type::X86_FP80TyID
: OS
<< "x86_fp80"; return;
562 case Type::FP128TyID
: OS
<< "fp128"; return;
563 case Type::PPC_FP128TyID
: OS
<< "ppc_fp128"; return;
564 case Type::LabelTyID
: OS
<< "label"; return;
565 case Type::MetadataTyID
: OS
<< "metadata"; return;
566 case Type::X86_MMXTyID
: OS
<< "x86_mmx"; return;
567 case Type::TokenTyID
: OS
<< "token"; return;
568 case Type::IntegerTyID
:
569 OS
<< 'i' << cast
<IntegerType
>(Ty
)->getBitWidth();
572 case Type::FunctionTyID
: {
573 FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
574 print(FTy
->getReturnType(), OS
);
576 for (FunctionType::param_iterator I
= FTy
->param_begin(),
577 E
= FTy
->param_end(); I
!= E
; ++I
) {
578 if (I
!= FTy
->param_begin())
582 if (FTy
->isVarArg()) {
583 if (FTy
->getNumParams()) OS
<< ", ";
589 case Type::StructTyID
: {
590 StructType
*STy
= cast
<StructType
>(Ty
);
592 if (STy
->isLiteral())
593 return printStructBody(STy
, OS
);
595 if (!STy
->getName().empty())
596 return PrintLLVMName(OS
, STy
->getName(), LocalPrefix
);
599 const auto I
= Type2Number
.find(STy
);
600 if (I
!= Type2Number
.end())
601 OS
<< '%' << I
->second
;
602 else // Not enumerated, print the hex address.
603 OS
<< "%\"type " << STy
<< '\"';
606 case Type::PointerTyID
: {
607 PointerType
*PTy
= cast
<PointerType
>(Ty
);
608 print(PTy
->getElementType(), OS
);
609 if (unsigned AddressSpace
= PTy
->getAddressSpace())
610 OS
<< " addrspace(" << AddressSpace
<< ')';
614 case Type::ArrayTyID
: {
615 ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
616 OS
<< '[' << ATy
->getNumElements() << " x ";
617 print(ATy
->getElementType(), OS
);
621 case Type::VectorTyID
: {
622 VectorType
*PTy
= cast
<VectorType
>(Ty
);
623 OS
<< "<" << PTy
->getNumElements() << " x ";
624 print(PTy
->getElementType(), OS
);
629 llvm_unreachable("Invalid TypeID");
632 void TypePrinting::printStructBody(StructType
*STy
, raw_ostream
&OS
) {
633 if (STy
->isOpaque()) {
641 if (STy
->getNumElements() == 0) {
644 StructType::element_iterator I
= STy
->element_begin();
647 for (StructType::element_iterator E
= STy
->element_end(); I
!= E
; ++I
) {
660 //===----------------------------------------------------------------------===//
661 // SlotTracker Class: Enumerate slot numbers for unnamed values
662 //===----------------------------------------------------------------------===//
663 /// This class provides computation of slot numbers for LLVM Assembly writing.
667 /// ValueMap - A mapping of Values to slot numbers.
668 using ValueMap
= DenseMap
<const Value
*, unsigned>;
671 /// TheModule - The module for which we are holding slot numbers.
672 const Module
* TheModule
;
674 /// TheFunction - The function for which we are holding slot numbers.
675 const Function
* TheFunction
= nullptr;
676 bool FunctionProcessed
= false;
677 bool ShouldInitializeAllMetadata
;
679 /// The summary index for which we are holding slot numbers.
680 const ModuleSummaryIndex
*TheIndex
= nullptr;
682 /// mMap - The slot map for the module level data.
686 /// fMap - The slot map for the function level data.
690 /// mdnMap - Map for MDNodes.
691 DenseMap
<const MDNode
*, unsigned> mdnMap
;
692 unsigned mdnNext
= 0;
694 /// asMap - The slot map for attribute sets.
695 DenseMap
<AttributeSet
, unsigned> asMap
;
698 /// ModulePathMap - The slot map for Module paths used in the summary index.
699 StringMap
<unsigned> ModulePathMap
;
700 unsigned ModulePathNext
= 0;
702 /// GUIDMap - The slot map for GUIDs used in the summary index.
703 DenseMap
<GlobalValue::GUID
, unsigned> GUIDMap
;
704 unsigned GUIDNext
= 0;
706 /// TypeIdMap - The slot map for type ids used in the summary index.
707 StringMap
<unsigned> TypeIdMap
;
708 unsigned TypeIdNext
= 0;
711 /// Construct from a module.
713 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
714 /// functions, giving correct numbering for metadata referenced only from
715 /// within a function (even if no functions have been initialized).
716 explicit SlotTracker(const Module
*M
,
717 bool ShouldInitializeAllMetadata
= false);
719 /// Construct from a function, starting out in incorp state.
721 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
722 /// functions, giving correct numbering for metadata referenced only from
723 /// within a function (even if no functions have been initialized).
724 explicit SlotTracker(const Function
*F
,
725 bool ShouldInitializeAllMetadata
= false);
727 /// Construct from a module summary index.
728 explicit SlotTracker(const ModuleSummaryIndex
*Index
);
730 SlotTracker(const SlotTracker
&) = delete;
731 SlotTracker
&operator=(const SlotTracker
&) = delete;
733 /// Return the slot number of the specified value in it's type
734 /// plane. If something is not in the SlotTracker, return -1.
735 int getLocalSlot(const Value
*V
);
736 int getGlobalSlot(const GlobalValue
*V
);
737 int getMetadataSlot(const MDNode
*N
);
738 int getAttributeGroupSlot(AttributeSet AS
);
739 int getModulePathSlot(StringRef Path
);
740 int getGUIDSlot(GlobalValue::GUID GUID
);
741 int getTypeIdSlot(StringRef Id
);
743 /// If you'd like to deal with a function instead of just a module, use
744 /// this method to get its data into the SlotTracker.
745 void incorporateFunction(const Function
*F
) {
747 FunctionProcessed
= false;
750 const Function
*getFunction() const { return TheFunction
; }
752 /// After calling incorporateFunction, use this method to remove the
753 /// most recently incorporated function from the SlotTracker. This
754 /// will reset the state of the machine back to just the module contents.
755 void purgeFunction();
757 /// MDNode map iterators.
758 using mdn_iterator
= DenseMap
<const MDNode
*, unsigned>::iterator
;
760 mdn_iterator
mdn_begin() { return mdnMap
.begin(); }
761 mdn_iterator
mdn_end() { return mdnMap
.end(); }
762 unsigned mdn_size() const { return mdnMap
.size(); }
763 bool mdn_empty() const { return mdnMap
.empty(); }
765 /// AttributeSet map iterators.
766 using as_iterator
= DenseMap
<AttributeSet
, unsigned>::iterator
;
768 as_iterator
as_begin() { return asMap
.begin(); }
769 as_iterator
as_end() { return asMap
.end(); }
770 unsigned as_size() const { return asMap
.size(); }
771 bool as_empty() const { return asMap
.empty(); }
773 /// GUID map iterators.
774 using guid_iterator
= DenseMap
<GlobalValue::GUID
, unsigned>::iterator
;
776 /// These functions do the actual initialization.
777 inline void initializeIfNeeded();
778 void initializeIndexIfNeeded();
780 // Implementation Details
782 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
783 void CreateModuleSlot(const GlobalValue
*V
);
785 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
786 void CreateMetadataSlot(const MDNode
*N
);
788 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
789 void CreateFunctionSlot(const Value
*V
);
791 /// Insert the specified AttributeSet into the slot table.
792 void CreateAttributeSetSlot(AttributeSet AS
);
794 inline void CreateModulePathSlot(StringRef Path
);
795 void CreateGUIDSlot(GlobalValue::GUID GUID
);
796 void CreateTypeIdSlot(StringRef Id
);
798 /// Add all of the module level global variables (and their initializers)
799 /// and function declarations, but not the contents of those functions.
800 void processModule();
803 /// Add all of the functions arguments, basic blocks, and instructions.
804 void processFunction();
806 /// Add the metadata directly attached to a GlobalObject.
807 void processGlobalObjectMetadata(const GlobalObject
&GO
);
809 /// Add all of the metadata from a function.
810 void processFunctionMetadata(const Function
&F
);
812 /// Add all of the metadata from an instruction.
813 void processInstructionMetadata(const Instruction
&I
);
816 } // end namespace llvm
818 ModuleSlotTracker::ModuleSlotTracker(SlotTracker
&Machine
, const Module
*M
,
820 : M(M
), F(F
), Machine(&Machine
) {}
822 ModuleSlotTracker::ModuleSlotTracker(const Module
*M
,
823 bool ShouldInitializeAllMetadata
)
824 : ShouldCreateStorage(M
),
825 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
), M(M
) {}
827 ModuleSlotTracker::~ModuleSlotTracker() = default;
829 SlotTracker
*ModuleSlotTracker::getMachine() {
830 if (!ShouldCreateStorage
)
833 ShouldCreateStorage
= false;
835 llvm::make_unique
<SlotTracker
>(M
, ShouldInitializeAllMetadata
);
836 Machine
= MachineStorage
.get();
840 void ModuleSlotTracker::incorporateFunction(const Function
&F
) {
841 // Using getMachine() may lazily create the slot tracker.
845 // Nothing to do if this is the right function already.
849 Machine
->purgeFunction();
850 Machine
->incorporateFunction(&F
);
854 int ModuleSlotTracker::getLocalSlot(const Value
*V
) {
855 assert(F
&& "No function incorporated");
856 return Machine
->getLocalSlot(V
);
859 static SlotTracker
*createSlotTracker(const Value
*V
) {
860 if (const Argument
*FA
= dyn_cast
<Argument
>(V
))
861 return new SlotTracker(FA
->getParent());
863 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
865 return new SlotTracker(I
->getParent()->getParent());
867 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
868 return new SlotTracker(BB
->getParent());
870 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
871 return new SlotTracker(GV
->getParent());
873 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
874 return new SlotTracker(GA
->getParent());
876 if (const GlobalIFunc
*GIF
= dyn_cast
<GlobalIFunc
>(V
))
877 return new SlotTracker(GIF
->getParent());
879 if (const Function
*Func
= dyn_cast
<Function
>(V
))
880 return new SlotTracker(Func
);
886 #define ST_DEBUG(X) dbgs() << X
891 // Module level constructor. Causes the contents of the Module (sans functions)
892 // to be added to the slot table.
893 SlotTracker::SlotTracker(const Module
*M
, bool ShouldInitializeAllMetadata
)
894 : TheModule(M
), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
) {}
896 // Function level constructor. Causes the contents of the Module and the one
897 // function provided to be added to the slot table.
898 SlotTracker::SlotTracker(const Function
*F
, bool ShouldInitializeAllMetadata
)
899 : TheModule(F
? F
->getParent() : nullptr), TheFunction(F
),
900 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
) {}
902 SlotTracker::SlotTracker(const ModuleSummaryIndex
*Index
)
903 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index
) {}
905 inline void SlotTracker::initializeIfNeeded() {
908 TheModule
= nullptr; ///< Prevent re-processing next time we're called.
911 if (TheFunction
&& !FunctionProcessed
)
915 void SlotTracker::initializeIndexIfNeeded() {
919 TheIndex
= nullptr; ///< Prevent re-processing next time we're called.
922 // Iterate through all the global variables, functions, and global
923 // variable initializers and create slots for them.
924 void SlotTracker::processModule() {
925 ST_DEBUG("begin processModule!\n");
927 // Add all of the unnamed global variables to the value table.
928 for (const GlobalVariable
&Var
: TheModule
->globals()) {
930 CreateModuleSlot(&Var
);
931 processGlobalObjectMetadata(Var
);
932 auto Attrs
= Var
.getAttributes();
933 if (Attrs
.hasAttributes())
934 CreateAttributeSetSlot(Attrs
);
937 for (const GlobalAlias
&A
: TheModule
->aliases()) {
939 CreateModuleSlot(&A
);
942 for (const GlobalIFunc
&I
: TheModule
->ifuncs()) {
944 CreateModuleSlot(&I
);
947 // Add metadata used by named metadata.
948 for (const NamedMDNode
&NMD
: TheModule
->named_metadata()) {
949 for (unsigned i
= 0, e
= NMD
.getNumOperands(); i
!= e
; ++i
)
950 CreateMetadataSlot(NMD
.getOperand(i
));
953 for (const Function
&F
: *TheModule
) {
955 // Add all the unnamed functions to the table.
956 CreateModuleSlot(&F
);
958 if (ShouldInitializeAllMetadata
)
959 processFunctionMetadata(F
);
961 // Add all the function attributes to the table.
962 // FIXME: Add attributes of other objects?
963 AttributeSet FnAttrs
= F
.getAttributes().getFnAttributes();
964 if (FnAttrs
.hasAttributes())
965 CreateAttributeSetSlot(FnAttrs
);
968 ST_DEBUG("end processModule!\n");
971 // Process the arguments, basic blocks, and instructions of a function.
972 void SlotTracker::processFunction() {
973 ST_DEBUG("begin processFunction!\n");
976 // Process function metadata if it wasn't hit at the module-level.
977 if (!ShouldInitializeAllMetadata
)
978 processFunctionMetadata(*TheFunction
);
980 // Add all the function arguments with no names.
981 for(Function::const_arg_iterator AI
= TheFunction
->arg_begin(),
982 AE
= TheFunction
->arg_end(); AI
!= AE
; ++AI
)
984 CreateFunctionSlot(&*AI
);
986 ST_DEBUG("Inserting Instructions:\n");
988 // Add all of the basic blocks and instructions with no names.
989 for (auto &BB
: *TheFunction
) {
991 CreateFunctionSlot(&BB
);
994 if (!I
.getType()->isVoidTy() && !I
.hasName())
995 CreateFunctionSlot(&I
);
997 // We allow direct calls to any llvm.foo function here, because the
998 // target may not be linked into the optimizer.
999 if (const auto *Call
= dyn_cast
<CallBase
>(&I
)) {
1000 // Add all the call attributes to the table.
1001 AttributeSet Attrs
= Call
->getAttributes().getFnAttributes();
1002 if (Attrs
.hasAttributes())
1003 CreateAttributeSetSlot(Attrs
);
1008 FunctionProcessed
= true;
1010 ST_DEBUG("end processFunction!\n");
1013 // Iterate through all the GUID in the index and create slots for them.
1014 void SlotTracker::processIndex() {
1015 ST_DEBUG("begin processIndex!\n");
1018 // The first block of slots are just the module ids, which start at 0 and are
1019 // assigned consecutively. Since the StringMap iteration order isn't
1020 // guaranteed, use a std::map to order by module ID before assigning slots.
1021 std::map
<uint64_t, StringRef
> ModuleIdToPathMap
;
1022 for (auto &ModPath
: TheIndex
->modulePaths())
1023 ModuleIdToPathMap
[ModPath
.second
.first
] = ModPath
.first();
1024 for (auto &ModPair
: ModuleIdToPathMap
)
1025 CreateModulePathSlot(ModPair
.second
);
1027 // Start numbering the GUIDs after the module ids.
1028 GUIDNext
= ModulePathNext
;
1030 for (auto &GlobalList
: *TheIndex
)
1031 CreateGUIDSlot(GlobalList
.first
);
1033 // Start numbering the TypeIds after the GUIDs.
1034 TypeIdNext
= GUIDNext
;
1036 for (auto TidIter
= TheIndex
->typeIds().begin();
1037 TidIter
!= TheIndex
->typeIds().end(); TidIter
++)
1038 CreateTypeIdSlot(TidIter
->second
.first
);
1040 ST_DEBUG("end processIndex!\n");
1043 void SlotTracker::processGlobalObjectMetadata(const GlobalObject
&GO
) {
1044 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
1045 GO
.getAllMetadata(MDs
);
1046 for (auto &MD
: MDs
)
1047 CreateMetadataSlot(MD
.second
);
1050 void SlotTracker::processFunctionMetadata(const Function
&F
) {
1051 processGlobalObjectMetadata(F
);
1052 for (auto &BB
: F
) {
1054 processInstructionMetadata(I
);
1058 void SlotTracker::processInstructionMetadata(const Instruction
&I
) {
1059 // Process metadata used directly by intrinsics.
1060 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
1061 if (Function
*F
= CI
->getCalledFunction())
1062 if (F
->isIntrinsic())
1063 for (auto &Op
: I
.operands())
1064 if (auto *V
= dyn_cast_or_null
<MetadataAsValue
>(Op
))
1065 if (MDNode
*N
= dyn_cast
<MDNode
>(V
->getMetadata()))
1066 CreateMetadataSlot(N
);
1068 // Process metadata attached to this instruction.
1069 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
1070 I
.getAllMetadata(MDs
);
1071 for (auto &MD
: MDs
)
1072 CreateMetadataSlot(MD
.second
);
1075 /// Clean up after incorporating a function. This is the only way to get out of
1076 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1077 /// incorporation state is indicated by TheFunction != 0.
1078 void SlotTracker::purgeFunction() {
1079 ST_DEBUG("begin purgeFunction!\n");
1080 fMap
.clear(); // Simply discard the function level map
1081 TheFunction
= nullptr;
1082 FunctionProcessed
= false;
1083 ST_DEBUG("end purgeFunction!\n");
1086 /// getGlobalSlot - Get the slot number of a global value.
1087 int SlotTracker::getGlobalSlot(const GlobalValue
*V
) {
1088 // Check for uninitialized state and do lazy initialization.
1089 initializeIfNeeded();
1091 // Find the value in the module map
1092 ValueMap::iterator MI
= mMap
.find(V
);
1093 return MI
== mMap
.end() ? -1 : (int)MI
->second
;
1096 /// getMetadataSlot - Get the slot number of a MDNode.
1097 int SlotTracker::getMetadataSlot(const MDNode
*N
) {
1098 // Check for uninitialized state and do lazy initialization.
1099 initializeIfNeeded();
1101 // Find the MDNode in the module map
1102 mdn_iterator MI
= mdnMap
.find(N
);
1103 return MI
== mdnMap
.end() ? -1 : (int)MI
->second
;
1106 /// getLocalSlot - Get the slot number for a value that is local to a function.
1107 int SlotTracker::getLocalSlot(const Value
*V
) {
1108 assert(!isa
<Constant
>(V
) && "Can't get a constant or global slot with this!");
1110 // Check for uninitialized state and do lazy initialization.
1111 initializeIfNeeded();
1113 ValueMap::iterator FI
= fMap
.find(V
);
1114 return FI
== fMap
.end() ? -1 : (int)FI
->second
;
1117 int SlotTracker::getAttributeGroupSlot(AttributeSet AS
) {
1118 // Check for uninitialized state and do lazy initialization.
1119 initializeIfNeeded();
1121 // Find the AttributeSet in the module map.
1122 as_iterator AI
= asMap
.find(AS
);
1123 return AI
== asMap
.end() ? -1 : (int)AI
->second
;
1126 int SlotTracker::getModulePathSlot(StringRef Path
) {
1127 // Check for uninitialized state and do lazy initialization.
1128 initializeIndexIfNeeded();
1130 // Find the Module path in the map
1131 auto I
= ModulePathMap
.find(Path
);
1132 return I
== ModulePathMap
.end() ? -1 : (int)I
->second
;
1135 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID
) {
1136 // Check for uninitialized state and do lazy initialization.
1137 initializeIndexIfNeeded();
1139 // Find the GUID in the map
1140 guid_iterator I
= GUIDMap
.find(GUID
);
1141 return I
== GUIDMap
.end() ? -1 : (int)I
->second
;
1144 int SlotTracker::getTypeIdSlot(StringRef Id
) {
1145 // Check for uninitialized state and do lazy initialization.
1146 initializeIndexIfNeeded();
1148 // Find the TypeId string in the map
1149 auto I
= TypeIdMap
.find(Id
);
1150 return I
== TypeIdMap
.end() ? -1 : (int)I
->second
;
1153 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1154 void SlotTracker::CreateModuleSlot(const GlobalValue
*V
) {
1155 assert(V
&& "Can't insert a null Value into SlotTracker!");
1156 assert(!V
->getType()->isVoidTy() && "Doesn't need a slot!");
1157 assert(!V
->hasName() && "Doesn't need a slot!");
1159 unsigned DestSlot
= mNext
++;
1162 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
1164 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1165 ST_DEBUG((isa
<GlobalVariable
>(V
) ? 'G' :
1166 (isa
<Function
>(V
) ? 'F' :
1167 (isa
<GlobalAlias
>(V
) ? 'A' :
1168 (isa
<GlobalIFunc
>(V
) ? 'I' : 'o')))) << "]\n");
1171 /// CreateSlot - Create a new slot for the specified value if it has no name.
1172 void SlotTracker::CreateFunctionSlot(const Value
*V
) {
1173 assert(!V
->getType()->isVoidTy() && !V
->hasName() && "Doesn't need a slot!");
1175 unsigned DestSlot
= fNext
++;
1178 // G = Global, F = Function, o = other
1179 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
1180 DestSlot
<< " [o]\n");
1183 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1184 void SlotTracker::CreateMetadataSlot(const MDNode
*N
) {
1185 assert(N
&& "Can't insert a null Value into SlotTracker!");
1187 // Don't make slots for DIExpressions. We just print them inline everywhere.
1188 if (isa
<DIExpression
>(N
))
1191 unsigned DestSlot
= mdnNext
;
1192 if (!mdnMap
.insert(std::make_pair(N
, DestSlot
)).second
)
1196 // Recursively add any MDNodes referenced by operands.
1197 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
1198 if (const MDNode
*Op
= dyn_cast_or_null
<MDNode
>(N
->getOperand(i
)))
1199 CreateMetadataSlot(Op
);
1202 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS
) {
1203 assert(AS
.hasAttributes() && "Doesn't need a slot!");
1205 as_iterator I
= asMap
.find(AS
);
1206 if (I
!= asMap
.end())
1209 unsigned DestSlot
= asNext
++;
1210 asMap
[AS
] = DestSlot
;
1213 /// Create a new slot for the specified Module
1214 void SlotTracker::CreateModulePathSlot(StringRef Path
) {
1215 ModulePathMap
[Path
] = ModulePathNext
++;
1218 /// Create a new slot for the specified GUID
1219 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID
) {
1220 GUIDMap
[GUID
] = GUIDNext
++;
1223 /// Create a new slot for the specified Id
1224 void SlotTracker::CreateTypeIdSlot(StringRef Id
) {
1225 TypeIdMap
[Id
] = TypeIdNext
++;
1228 //===----------------------------------------------------------------------===//
1229 // AsmWriter Implementation
1230 //===----------------------------------------------------------------------===//
1232 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
1233 TypePrinting
*TypePrinter
,
1234 SlotTracker
*Machine
,
1235 const Module
*Context
);
1237 static void WriteAsOperandInternal(raw_ostream
&Out
, const Metadata
*MD
,
1238 TypePrinting
*TypePrinter
,
1239 SlotTracker
*Machine
, const Module
*Context
,
1240 bool FromValue
= false);
1242 static void WriteOptimizationInfo(raw_ostream
&Out
, const User
*U
) {
1243 if (const FPMathOperator
*FPO
= dyn_cast
<const FPMathOperator
>(U
)) {
1244 // 'Fast' is an abbreviation for all fast-math-flags.
1248 if (FPO
->hasAllowReassoc())
1250 if (FPO
->hasNoNaNs())
1252 if (FPO
->hasNoInfs())
1254 if (FPO
->hasNoSignedZeros())
1256 if (FPO
->hasAllowReciprocal())
1258 if (FPO
->hasAllowContract())
1260 if (FPO
->hasApproxFunc())
1265 if (const OverflowingBinaryOperator
*OBO
=
1266 dyn_cast
<OverflowingBinaryOperator
>(U
)) {
1267 if (OBO
->hasNoUnsignedWrap())
1269 if (OBO
->hasNoSignedWrap())
1271 } else if (const PossiblyExactOperator
*Div
=
1272 dyn_cast
<PossiblyExactOperator
>(U
)) {
1275 } else if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(U
)) {
1276 if (GEP
->isInBounds())
1281 static void WriteConstantInternal(raw_ostream
&Out
, const Constant
*CV
,
1282 TypePrinting
&TypePrinter
,
1283 SlotTracker
*Machine
,
1284 const Module
*Context
) {
1285 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1286 if (CI
->getType()->isIntegerTy(1)) {
1287 Out
<< (CI
->getZExtValue() ? "true" : "false");
1290 Out
<< CI
->getValue();
1294 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
1295 const APFloat
&APF
= CFP
->getValueAPF();
1296 if (&APF
.getSemantics() == &APFloat::IEEEsingle() ||
1297 &APF
.getSemantics() == &APFloat::IEEEdouble()) {
1298 // We would like to output the FP constant value in exponential notation,
1299 // but we cannot do this if doing so will lose precision. Check here to
1300 // make sure that we only output it in exponential format if we can parse
1301 // the value back and get the same value.
1304 bool isDouble
= &APF
.getSemantics() == &APFloat::IEEEdouble();
1305 bool isInf
= APF
.isInfinity();
1306 bool isNaN
= APF
.isNaN();
1307 if (!isInf
&& !isNaN
) {
1308 double Val
= isDouble
? APF
.convertToDouble() : APF
.convertToFloat();
1309 SmallString
<128> StrVal
;
1310 APF
.toString(StrVal
, 6, 0, false);
1311 // Check to make sure that the stringized number is not some string like
1312 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1313 // that the string matches the "[-+]?[0-9]" regex.
1315 assert(((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
1316 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
1317 (StrVal
[1] >= '0' && StrVal
[1] <= '9'))) &&
1318 "[-+]?[0-9] regex does not match!");
1319 // Reparse stringized version!
1320 if (APFloat(APFloat::IEEEdouble(), StrVal
).convertToDouble() == Val
) {
1325 // Otherwise we could not reparse it to exactly the same value, so we must
1326 // output the string in hexadecimal format! Note that loading and storing
1327 // floating point types changes the bits of NaNs on some hosts, notably
1328 // x86, so we must not use these types.
1329 static_assert(sizeof(double) == sizeof(uint64_t),
1330 "assuming that double is 64 bits!");
1332 // Floats are represented in ASCII IR as double, convert.
1334 apf
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
,
1336 Out
<< format_hex(apf
.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1340 // Either half, or some form of long double.
1341 // These appear as a magic letter identifying the type, then a
1342 // fixed number of hex digits.
1344 APInt API
= APF
.bitcastToAPInt();
1345 if (&APF
.getSemantics() == &APFloat::x87DoubleExtended()) {
1347 Out
<< format_hex_no_prefix(API
.getHiBits(16).getZExtValue(), 4,
1349 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1352 } else if (&APF
.getSemantics() == &APFloat::IEEEquad()) {
1354 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1356 Out
<< format_hex_no_prefix(API
.getHiBits(64).getZExtValue(), 16,
1358 } else if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble()) {
1360 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1362 Out
<< format_hex_no_prefix(API
.getHiBits(64).getZExtValue(), 16,
1364 } else if (&APF
.getSemantics() == &APFloat::IEEEhalf()) {
1366 Out
<< format_hex_no_prefix(API
.getZExtValue(), 4,
1369 llvm_unreachable("Unsupported floating point type");
1373 if (isa
<ConstantAggregateZero
>(CV
)) {
1374 Out
<< "zeroinitializer";
1378 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(CV
)) {
1379 Out
<< "blockaddress(";
1380 WriteAsOperandInternal(Out
, BA
->getFunction(), &TypePrinter
, Machine
,
1383 WriteAsOperandInternal(Out
, BA
->getBasicBlock(), &TypePrinter
, Machine
,
1389 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
1390 Type
*ETy
= CA
->getType()->getElementType();
1392 TypePrinter
.print(ETy
, Out
);
1394 WriteAsOperandInternal(Out
, CA
->getOperand(0),
1395 &TypePrinter
, Machine
,
1397 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
1399 TypePrinter
.print(ETy
, Out
);
1401 WriteAsOperandInternal(Out
, CA
->getOperand(i
), &TypePrinter
, Machine
,
1408 if (const ConstantDataArray
*CA
= dyn_cast
<ConstantDataArray
>(CV
)) {
1409 // As a special case, print the array as a string if it is an array of
1410 // i8 with ConstantInt values.
1411 if (CA
->isString()) {
1413 printEscapedString(CA
->getAsString(), Out
);
1418 Type
*ETy
= CA
->getType()->getElementType();
1420 TypePrinter
.print(ETy
, Out
);
1422 WriteAsOperandInternal(Out
, CA
->getElementAsConstant(0),
1423 &TypePrinter
, Machine
,
1425 for (unsigned i
= 1, e
= CA
->getNumElements(); i
!= e
; ++i
) {
1427 TypePrinter
.print(ETy
, Out
);
1429 WriteAsOperandInternal(Out
, CA
->getElementAsConstant(i
), &TypePrinter
,
1436 if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
1437 if (CS
->getType()->isPacked())
1440 unsigned N
= CS
->getNumOperands();
1443 TypePrinter
.print(CS
->getOperand(0)->getType(), Out
);
1446 WriteAsOperandInternal(Out
, CS
->getOperand(0), &TypePrinter
, Machine
,
1449 for (unsigned i
= 1; i
< N
; i
++) {
1451 TypePrinter
.print(CS
->getOperand(i
)->getType(), Out
);
1454 WriteAsOperandInternal(Out
, CS
->getOperand(i
), &TypePrinter
, Machine
,
1461 if (CS
->getType()->isPacked())
1466 if (isa
<ConstantVector
>(CV
) || isa
<ConstantDataVector
>(CV
)) {
1467 Type
*ETy
= CV
->getType()->getVectorElementType();
1469 TypePrinter
.print(ETy
, Out
);
1471 WriteAsOperandInternal(Out
, CV
->getAggregateElement(0U), &TypePrinter
,
1473 for (unsigned i
= 1, e
= CV
->getType()->getVectorNumElements(); i
!= e
;++i
){
1475 TypePrinter
.print(ETy
, Out
);
1477 WriteAsOperandInternal(Out
, CV
->getAggregateElement(i
), &TypePrinter
,
1484 if (isa
<ConstantPointerNull
>(CV
)) {
1489 if (isa
<ConstantTokenNone
>(CV
)) {
1494 if (isa
<UndefValue
>(CV
)) {
1499 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
1500 Out
<< CE
->getOpcodeName();
1501 WriteOptimizationInfo(Out
, CE
);
1502 if (CE
->isCompare())
1503 Out
<< ' ' << CmpInst::getPredicateName(
1504 static_cast<CmpInst::Predicate
>(CE
->getPredicate()));
1507 Optional
<unsigned> InRangeOp
;
1508 if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(CE
)) {
1509 TypePrinter
.print(GEP
->getSourceElementType(), Out
);
1511 InRangeOp
= GEP
->getInRangeIndex();
1516 for (User::const_op_iterator OI
=CE
->op_begin(); OI
!= CE
->op_end(); ++OI
) {
1517 if (InRangeOp
&& unsigned(OI
- CE
->op_begin()) == *InRangeOp
)
1519 TypePrinter
.print((*OI
)->getType(), Out
);
1521 WriteAsOperandInternal(Out
, *OI
, &TypePrinter
, Machine
, Context
);
1522 if (OI
+1 != CE
->op_end())
1526 if (CE
->hasIndices()) {
1527 ArrayRef
<unsigned> Indices
= CE
->getIndices();
1528 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
1529 Out
<< ", " << Indices
[i
];
1534 TypePrinter
.print(CE
->getType(), Out
);
1541 Out
<< "<placeholder or erroneous Constant>";
1544 static void writeMDTuple(raw_ostream
&Out
, const MDTuple
*Node
,
1545 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1546 const Module
*Context
) {
1548 for (unsigned mi
= 0, me
= Node
->getNumOperands(); mi
!= me
; ++mi
) {
1549 const Metadata
*MD
= Node
->getOperand(mi
);
1552 else if (auto *MDV
= dyn_cast
<ValueAsMetadata
>(MD
)) {
1553 Value
*V
= MDV
->getValue();
1554 TypePrinter
->print(V
->getType(), Out
);
1556 WriteAsOperandInternal(Out
, V
, TypePrinter
, Machine
, Context
);
1558 WriteAsOperandInternal(Out
, MD
, TypePrinter
, Machine
, Context
);
1569 struct FieldSeparator
{
1573 FieldSeparator(const char *Sep
= ", ") : Sep(Sep
) {}
1576 raw_ostream
&operator<<(raw_ostream
&OS
, FieldSeparator
&FS
) {
1581 return OS
<< FS
.Sep
;
1584 struct MDFieldPrinter
{
1587 TypePrinting
*TypePrinter
= nullptr;
1588 SlotTracker
*Machine
= nullptr;
1589 const Module
*Context
= nullptr;
1591 explicit MDFieldPrinter(raw_ostream
&Out
) : Out(Out
) {}
1592 MDFieldPrinter(raw_ostream
&Out
, TypePrinting
*TypePrinter
,
1593 SlotTracker
*Machine
, const Module
*Context
)
1594 : Out(Out
), TypePrinter(TypePrinter
), Machine(Machine
), Context(Context
) {
1597 void printTag(const DINode
*N
);
1598 void printMacinfoType(const DIMacroNode
*N
);
1599 void printChecksum(const DIFile::ChecksumInfo
<StringRef
> &N
);
1600 void printString(StringRef Name
, StringRef Value
,
1601 bool ShouldSkipEmpty
= true);
1602 void printMetadata(StringRef Name
, const Metadata
*MD
,
1603 bool ShouldSkipNull
= true);
1604 template <class IntTy
>
1605 void printInt(StringRef Name
, IntTy Int
, bool ShouldSkipZero
= true);
1606 void printBool(StringRef Name
, bool Value
, Optional
<bool> Default
= None
);
1607 void printDIFlags(StringRef Name
, DINode::DIFlags Flags
);
1608 void printDISPFlags(StringRef Name
, DISubprogram::DISPFlags Flags
);
1609 template <class IntTy
, class Stringifier
>
1610 void printDwarfEnum(StringRef Name
, IntTy Value
, Stringifier toString
,
1611 bool ShouldSkipZero
= true);
1612 void printEmissionKind(StringRef Name
, DICompileUnit::DebugEmissionKind EK
);
1613 void printNameTableKind(StringRef Name
,
1614 DICompileUnit::DebugNameTableKind NTK
);
1617 } // end anonymous namespace
1619 void MDFieldPrinter::printTag(const DINode
*N
) {
1620 Out
<< FS
<< "tag: ";
1621 auto Tag
= dwarf::TagString(N
->getTag());
1628 void MDFieldPrinter::printMacinfoType(const DIMacroNode
*N
) {
1629 Out
<< FS
<< "type: ";
1630 auto Type
= dwarf::MacinfoString(N
->getMacinfoType());
1634 Out
<< N
->getMacinfoType();
1637 void MDFieldPrinter::printChecksum(
1638 const DIFile::ChecksumInfo
<StringRef
> &Checksum
) {
1639 Out
<< FS
<< "checksumkind: " << Checksum
.getKindAsString();
1640 printString("checksum", Checksum
.Value
, /* ShouldSkipEmpty */ false);
1643 void MDFieldPrinter::printString(StringRef Name
, StringRef Value
,
1644 bool ShouldSkipEmpty
) {
1645 if (ShouldSkipEmpty
&& Value
.empty())
1648 Out
<< FS
<< Name
<< ": \"";
1649 printEscapedString(Value
, Out
);
1653 static void writeMetadataAsOperand(raw_ostream
&Out
, const Metadata
*MD
,
1654 TypePrinting
*TypePrinter
,
1655 SlotTracker
*Machine
,
1656 const Module
*Context
) {
1661 WriteAsOperandInternal(Out
, MD
, TypePrinter
, Machine
, Context
);
1664 void MDFieldPrinter::printMetadata(StringRef Name
, const Metadata
*MD
,
1665 bool ShouldSkipNull
) {
1666 if (ShouldSkipNull
&& !MD
)
1669 Out
<< FS
<< Name
<< ": ";
1670 writeMetadataAsOperand(Out
, MD
, TypePrinter
, Machine
, Context
);
1673 template <class IntTy
>
1674 void MDFieldPrinter::printInt(StringRef Name
, IntTy Int
, bool ShouldSkipZero
) {
1675 if (ShouldSkipZero
&& !Int
)
1678 Out
<< FS
<< Name
<< ": " << Int
;
1681 void MDFieldPrinter::printBool(StringRef Name
, bool Value
,
1682 Optional
<bool> Default
) {
1683 if (Default
&& Value
== *Default
)
1685 Out
<< FS
<< Name
<< ": " << (Value
? "true" : "false");
1688 void MDFieldPrinter::printDIFlags(StringRef Name
, DINode::DIFlags Flags
) {
1692 Out
<< FS
<< Name
<< ": ";
1694 SmallVector
<DINode::DIFlags
, 8> SplitFlags
;
1695 auto Extra
= DINode::splitFlags(Flags
, SplitFlags
);
1697 FieldSeparator
FlagsFS(" | ");
1698 for (auto F
: SplitFlags
) {
1699 auto StringF
= DINode::getFlagString(F
);
1700 assert(!StringF
.empty() && "Expected valid flag");
1701 Out
<< FlagsFS
<< StringF
;
1703 if (Extra
|| SplitFlags
.empty())
1704 Out
<< FlagsFS
<< Extra
;
1707 void MDFieldPrinter::printDISPFlags(StringRef Name
,
1708 DISubprogram::DISPFlags Flags
) {
1709 // Always print this field, because no flags in the IR at all will be
1710 // interpreted as old-style isDefinition: true.
1711 Out
<< FS
<< Name
<< ": ";
1718 SmallVector
<DISubprogram::DISPFlags
, 8> SplitFlags
;
1719 auto Extra
= DISubprogram::splitFlags(Flags
, SplitFlags
);
1721 FieldSeparator
FlagsFS(" | ");
1722 for (auto F
: SplitFlags
) {
1723 auto StringF
= DISubprogram::getFlagString(F
);
1724 assert(!StringF
.empty() && "Expected valid flag");
1725 Out
<< FlagsFS
<< StringF
;
1727 if (Extra
|| SplitFlags
.empty())
1728 Out
<< FlagsFS
<< Extra
;
1731 void MDFieldPrinter::printEmissionKind(StringRef Name
,
1732 DICompileUnit::DebugEmissionKind EK
) {
1733 Out
<< FS
<< Name
<< ": " << DICompileUnit::emissionKindString(EK
);
1736 void MDFieldPrinter::printNameTableKind(StringRef Name
,
1737 DICompileUnit::DebugNameTableKind NTK
) {
1738 if (NTK
== DICompileUnit::DebugNameTableKind::Default
)
1740 Out
<< FS
<< Name
<< ": " << DICompileUnit::nameTableKindString(NTK
);
1743 template <class IntTy
, class Stringifier
>
1744 void MDFieldPrinter::printDwarfEnum(StringRef Name
, IntTy Value
,
1745 Stringifier toString
, bool ShouldSkipZero
) {
1749 Out
<< FS
<< Name
<< ": ";
1750 auto S
= toString(Value
);
1757 static void writeGenericDINode(raw_ostream
&Out
, const GenericDINode
*N
,
1758 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1759 const Module
*Context
) {
1760 Out
<< "!GenericDINode(";
1761 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1762 Printer
.printTag(N
);
1763 Printer
.printString("header", N
->getHeader());
1764 if (N
->getNumDwarfOperands()) {
1765 Out
<< Printer
.FS
<< "operands: {";
1767 for (auto &I
: N
->dwarf_operands()) {
1769 writeMetadataAsOperand(Out
, I
, TypePrinter
, Machine
, Context
);
1776 static void writeDILocation(raw_ostream
&Out
, const DILocation
*DL
,
1777 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1778 const Module
*Context
) {
1779 Out
<< "!DILocation(";
1780 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1781 // Always output the line, since 0 is a relevant and important value for it.
1782 Printer
.printInt("line", DL
->getLine(), /* ShouldSkipZero */ false);
1783 Printer
.printInt("column", DL
->getColumn());
1784 Printer
.printMetadata("scope", DL
->getRawScope(), /* ShouldSkipNull */ false);
1785 Printer
.printMetadata("inlinedAt", DL
->getRawInlinedAt());
1786 Printer
.printBool("isImplicitCode", DL
->isImplicitCode(),
1787 /* Default */ false);
1791 static void writeDISubrange(raw_ostream
&Out
, const DISubrange
*N
,
1792 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1793 const Module
*Context
) {
1794 Out
<< "!DISubrange(";
1795 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1796 if (auto *CE
= N
->getCount().dyn_cast
<ConstantInt
*>())
1797 Printer
.printInt("count", CE
->getSExtValue(), /* ShouldSkipZero */ false);
1799 Printer
.printMetadata("count", N
->getCount().dyn_cast
<DIVariable
*>(),
1800 /*ShouldSkipNull */ false);
1801 Printer
.printInt("lowerBound", N
->getLowerBound());
1805 static void writeDIEnumerator(raw_ostream
&Out
, const DIEnumerator
*N
,
1806 TypePrinting
*, SlotTracker
*, const Module
*) {
1807 Out
<< "!DIEnumerator(";
1808 MDFieldPrinter
Printer(Out
);
1809 Printer
.printString("name", N
->getName(), /* ShouldSkipEmpty */ false);
1810 if (N
->isUnsigned()) {
1811 auto Value
= static_cast<uint64_t>(N
->getValue());
1812 Printer
.printInt("value", Value
, /* ShouldSkipZero */ false);
1813 Printer
.printBool("isUnsigned", true);
1815 Printer
.printInt("value", N
->getValue(), /* ShouldSkipZero */ false);
1820 static void writeDIBasicType(raw_ostream
&Out
, const DIBasicType
*N
,
1821 TypePrinting
*, SlotTracker
*, const Module
*) {
1822 Out
<< "!DIBasicType(";
1823 MDFieldPrinter
Printer(Out
);
1824 if (N
->getTag() != dwarf::DW_TAG_base_type
)
1825 Printer
.printTag(N
);
1826 Printer
.printString("name", N
->getName());
1827 Printer
.printInt("size", N
->getSizeInBits());
1828 Printer
.printInt("align", N
->getAlignInBits());
1829 Printer
.printDwarfEnum("encoding", N
->getEncoding(),
1830 dwarf::AttributeEncodingString
);
1831 Printer
.printDIFlags("flags", N
->getFlags());
1835 static void writeDIDerivedType(raw_ostream
&Out
, const DIDerivedType
*N
,
1836 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1837 const Module
*Context
) {
1838 Out
<< "!DIDerivedType(";
1839 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1840 Printer
.printTag(N
);
1841 Printer
.printString("name", N
->getName());
1842 Printer
.printMetadata("scope", N
->getRawScope());
1843 Printer
.printMetadata("file", N
->getRawFile());
1844 Printer
.printInt("line", N
->getLine());
1845 Printer
.printMetadata("baseType", N
->getRawBaseType(),
1846 /* ShouldSkipNull */ false);
1847 Printer
.printInt("size", N
->getSizeInBits());
1848 Printer
.printInt("align", N
->getAlignInBits());
1849 Printer
.printInt("offset", N
->getOffsetInBits());
1850 Printer
.printDIFlags("flags", N
->getFlags());
1851 Printer
.printMetadata("extraData", N
->getRawExtraData());
1852 if (const auto &DWARFAddressSpace
= N
->getDWARFAddressSpace())
1853 Printer
.printInt("dwarfAddressSpace", *DWARFAddressSpace
,
1854 /* ShouldSkipZero */ false);
1858 static void writeDICompositeType(raw_ostream
&Out
, const DICompositeType
*N
,
1859 TypePrinting
*TypePrinter
,
1860 SlotTracker
*Machine
, const Module
*Context
) {
1861 Out
<< "!DICompositeType(";
1862 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1863 Printer
.printTag(N
);
1864 Printer
.printString("name", N
->getName());
1865 Printer
.printMetadata("scope", N
->getRawScope());
1866 Printer
.printMetadata("file", N
->getRawFile());
1867 Printer
.printInt("line", N
->getLine());
1868 Printer
.printMetadata("baseType", N
->getRawBaseType());
1869 Printer
.printInt("size", N
->getSizeInBits());
1870 Printer
.printInt("align", N
->getAlignInBits());
1871 Printer
.printInt("offset", N
->getOffsetInBits());
1872 Printer
.printDIFlags("flags", N
->getFlags());
1873 Printer
.printMetadata("elements", N
->getRawElements());
1874 Printer
.printDwarfEnum("runtimeLang", N
->getRuntimeLang(),
1875 dwarf::LanguageString
);
1876 Printer
.printMetadata("vtableHolder", N
->getRawVTableHolder());
1877 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
1878 Printer
.printString("identifier", N
->getIdentifier());
1879 Printer
.printMetadata("discriminator", N
->getRawDiscriminator());
1883 static void writeDISubroutineType(raw_ostream
&Out
, const DISubroutineType
*N
,
1884 TypePrinting
*TypePrinter
,
1885 SlotTracker
*Machine
, const Module
*Context
) {
1886 Out
<< "!DISubroutineType(";
1887 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1888 Printer
.printDIFlags("flags", N
->getFlags());
1889 Printer
.printDwarfEnum("cc", N
->getCC(), dwarf::ConventionString
);
1890 Printer
.printMetadata("types", N
->getRawTypeArray(),
1891 /* ShouldSkipNull */ false);
1895 static void writeDIFile(raw_ostream
&Out
, const DIFile
*N
, TypePrinting
*,
1896 SlotTracker
*, const Module
*) {
1898 MDFieldPrinter
Printer(Out
);
1899 Printer
.printString("filename", N
->getFilename(),
1900 /* ShouldSkipEmpty */ false);
1901 Printer
.printString("directory", N
->getDirectory(),
1902 /* ShouldSkipEmpty */ false);
1903 // Print all values for checksum together, or not at all.
1904 if (N
->getChecksum())
1905 Printer
.printChecksum(*N
->getChecksum());
1906 Printer
.printString("source", N
->getSource().getValueOr(StringRef()),
1907 /* ShouldSkipEmpty */ true);
1911 static void writeDICompileUnit(raw_ostream
&Out
, const DICompileUnit
*N
,
1912 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1913 const Module
*Context
) {
1914 Out
<< "!DICompileUnit(";
1915 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1916 Printer
.printDwarfEnum("language", N
->getSourceLanguage(),
1917 dwarf::LanguageString
, /* ShouldSkipZero */ false);
1918 Printer
.printMetadata("file", N
->getRawFile(), /* ShouldSkipNull */ false);
1919 Printer
.printString("producer", N
->getProducer());
1920 Printer
.printBool("isOptimized", N
->isOptimized());
1921 Printer
.printString("flags", N
->getFlags());
1922 Printer
.printInt("runtimeVersion", N
->getRuntimeVersion(),
1923 /* ShouldSkipZero */ false);
1924 Printer
.printString("splitDebugFilename", N
->getSplitDebugFilename());
1925 Printer
.printEmissionKind("emissionKind", N
->getEmissionKind());
1926 Printer
.printMetadata("enums", N
->getRawEnumTypes());
1927 Printer
.printMetadata("retainedTypes", N
->getRawRetainedTypes());
1928 Printer
.printMetadata("globals", N
->getRawGlobalVariables());
1929 Printer
.printMetadata("imports", N
->getRawImportedEntities());
1930 Printer
.printMetadata("macros", N
->getRawMacros());
1931 Printer
.printInt("dwoId", N
->getDWOId());
1932 Printer
.printBool("splitDebugInlining", N
->getSplitDebugInlining(), true);
1933 Printer
.printBool("debugInfoForProfiling", N
->getDebugInfoForProfiling(),
1935 Printer
.printNameTableKind("nameTableKind", N
->getNameTableKind());
1936 Printer
.printBool("rangesBaseAddress", N
->getRangesBaseAddress(), false);
1940 static void writeDISubprogram(raw_ostream
&Out
, const DISubprogram
*N
,
1941 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1942 const Module
*Context
) {
1943 Out
<< "!DISubprogram(";
1944 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1945 Printer
.printString("name", N
->getName());
1946 Printer
.printString("linkageName", N
->getLinkageName());
1947 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
1948 Printer
.printMetadata("file", N
->getRawFile());
1949 Printer
.printInt("line", N
->getLine());
1950 Printer
.printMetadata("type", N
->getRawType());
1951 Printer
.printInt("scopeLine", N
->getScopeLine());
1952 Printer
.printMetadata("containingType", N
->getRawContainingType());
1953 if (N
->getVirtuality() != dwarf::DW_VIRTUALITY_none
||
1954 N
->getVirtualIndex() != 0)
1955 Printer
.printInt("virtualIndex", N
->getVirtualIndex(), false);
1956 Printer
.printInt("thisAdjustment", N
->getThisAdjustment());
1957 Printer
.printDIFlags("flags", N
->getFlags());
1958 Printer
.printDISPFlags("spFlags", N
->getSPFlags());
1959 Printer
.printMetadata("unit", N
->getRawUnit());
1960 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
1961 Printer
.printMetadata("declaration", N
->getRawDeclaration());
1962 Printer
.printMetadata("retainedNodes", N
->getRawRetainedNodes());
1963 Printer
.printMetadata("thrownTypes", N
->getRawThrownTypes());
1967 static void writeDILexicalBlock(raw_ostream
&Out
, const DILexicalBlock
*N
,
1968 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1969 const Module
*Context
) {
1970 Out
<< "!DILexicalBlock(";
1971 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1972 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
1973 Printer
.printMetadata("file", N
->getRawFile());
1974 Printer
.printInt("line", N
->getLine());
1975 Printer
.printInt("column", N
->getColumn());
1979 static void writeDILexicalBlockFile(raw_ostream
&Out
,
1980 const DILexicalBlockFile
*N
,
1981 TypePrinting
*TypePrinter
,
1982 SlotTracker
*Machine
,
1983 const Module
*Context
) {
1984 Out
<< "!DILexicalBlockFile(";
1985 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1986 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
1987 Printer
.printMetadata("file", N
->getRawFile());
1988 Printer
.printInt("discriminator", N
->getDiscriminator(),
1989 /* ShouldSkipZero */ false);
1993 static void writeDINamespace(raw_ostream
&Out
, const DINamespace
*N
,
1994 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1995 const Module
*Context
) {
1996 Out
<< "!DINamespace(";
1997 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1998 Printer
.printString("name", N
->getName());
1999 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2000 Printer
.printBool("exportSymbols", N
->getExportSymbols(), false);
2004 static void writeDIMacro(raw_ostream
&Out
, const DIMacro
*N
,
2005 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2006 const Module
*Context
) {
2008 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2009 Printer
.printMacinfoType(N
);
2010 Printer
.printInt("line", N
->getLine());
2011 Printer
.printString("name", N
->getName());
2012 Printer
.printString("value", N
->getValue());
2016 static void writeDIMacroFile(raw_ostream
&Out
, const DIMacroFile
*N
,
2017 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2018 const Module
*Context
) {
2019 Out
<< "!DIMacroFile(";
2020 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2021 Printer
.printInt("line", N
->getLine());
2022 Printer
.printMetadata("file", N
->getRawFile(), /* ShouldSkipNull */ false);
2023 Printer
.printMetadata("nodes", N
->getRawElements());
2027 static void writeDIModule(raw_ostream
&Out
, const DIModule
*N
,
2028 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2029 const Module
*Context
) {
2030 Out
<< "!DIModule(";
2031 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2032 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2033 Printer
.printString("name", N
->getName());
2034 Printer
.printString("configMacros", N
->getConfigurationMacros());
2035 Printer
.printString("includePath", N
->getIncludePath());
2036 Printer
.printString("isysroot", N
->getISysRoot());
2041 static void writeDITemplateTypeParameter(raw_ostream
&Out
,
2042 const DITemplateTypeParameter
*N
,
2043 TypePrinting
*TypePrinter
,
2044 SlotTracker
*Machine
,
2045 const Module
*Context
) {
2046 Out
<< "!DITemplateTypeParameter(";
2047 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2048 Printer
.printString("name", N
->getName());
2049 Printer
.printMetadata("type", N
->getRawType(), /* ShouldSkipNull */ false);
2053 static void writeDITemplateValueParameter(raw_ostream
&Out
,
2054 const DITemplateValueParameter
*N
,
2055 TypePrinting
*TypePrinter
,
2056 SlotTracker
*Machine
,
2057 const Module
*Context
) {
2058 Out
<< "!DITemplateValueParameter(";
2059 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2060 if (N
->getTag() != dwarf::DW_TAG_template_value_parameter
)
2061 Printer
.printTag(N
);
2062 Printer
.printString("name", N
->getName());
2063 Printer
.printMetadata("type", N
->getRawType());
2064 Printer
.printMetadata("value", N
->getValue(), /* ShouldSkipNull */ false);
2068 static void writeDIGlobalVariable(raw_ostream
&Out
, const DIGlobalVariable
*N
,
2069 TypePrinting
*TypePrinter
,
2070 SlotTracker
*Machine
, const Module
*Context
) {
2071 Out
<< "!DIGlobalVariable(";
2072 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2073 Printer
.printString("name", N
->getName());
2074 Printer
.printString("linkageName", N
->getLinkageName());
2075 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2076 Printer
.printMetadata("file", N
->getRawFile());
2077 Printer
.printInt("line", N
->getLine());
2078 Printer
.printMetadata("type", N
->getRawType());
2079 Printer
.printBool("isLocal", N
->isLocalToUnit());
2080 Printer
.printBool("isDefinition", N
->isDefinition());
2081 Printer
.printMetadata("declaration", N
->getRawStaticDataMemberDeclaration());
2082 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
2083 Printer
.printInt("align", N
->getAlignInBits());
2087 static void writeDILocalVariable(raw_ostream
&Out
, const DILocalVariable
*N
,
2088 TypePrinting
*TypePrinter
,
2089 SlotTracker
*Machine
, const Module
*Context
) {
2090 Out
<< "!DILocalVariable(";
2091 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2092 Printer
.printString("name", N
->getName());
2093 Printer
.printInt("arg", N
->getArg());
2094 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2095 Printer
.printMetadata("file", N
->getRawFile());
2096 Printer
.printInt("line", N
->getLine());
2097 Printer
.printMetadata("type", N
->getRawType());
2098 Printer
.printDIFlags("flags", N
->getFlags());
2099 Printer
.printInt("align", N
->getAlignInBits());
2103 static void writeDILabel(raw_ostream
&Out
, const DILabel
*N
,
2104 TypePrinting
*TypePrinter
,
2105 SlotTracker
*Machine
, const Module
*Context
) {
2107 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2108 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2109 Printer
.printString("name", N
->getName());
2110 Printer
.printMetadata("file", N
->getRawFile());
2111 Printer
.printInt("line", N
->getLine());
2115 static void writeDIExpression(raw_ostream
&Out
, const DIExpression
*N
,
2116 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2117 const Module
*Context
) {
2118 Out
<< "!DIExpression(";
2121 for (auto I
= N
->expr_op_begin(), E
= N
->expr_op_end(); I
!= E
; ++I
) {
2122 auto OpStr
= dwarf::OperationEncodingString(I
->getOp());
2123 assert(!OpStr
.empty() && "Expected valid opcode");
2126 for (unsigned A
= 0, AE
= I
->getNumArgs(); A
!= AE
; ++A
)
2127 Out
<< FS
<< I
->getArg(A
);
2130 for (const auto &I
: N
->getElements())
2136 static void writeDIGlobalVariableExpression(raw_ostream
&Out
,
2137 const DIGlobalVariableExpression
*N
,
2138 TypePrinting
*TypePrinter
,
2139 SlotTracker
*Machine
,
2140 const Module
*Context
) {
2141 Out
<< "!DIGlobalVariableExpression(";
2142 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2143 Printer
.printMetadata("var", N
->getVariable());
2144 Printer
.printMetadata("expr", N
->getExpression());
2148 static void writeDIObjCProperty(raw_ostream
&Out
, const DIObjCProperty
*N
,
2149 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2150 const Module
*Context
) {
2151 Out
<< "!DIObjCProperty(";
2152 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2153 Printer
.printString("name", N
->getName());
2154 Printer
.printMetadata("file", N
->getRawFile());
2155 Printer
.printInt("line", N
->getLine());
2156 Printer
.printString("setter", N
->getSetterName());
2157 Printer
.printString("getter", N
->getGetterName());
2158 Printer
.printInt("attributes", N
->getAttributes());
2159 Printer
.printMetadata("type", N
->getRawType());
2163 static void writeDIImportedEntity(raw_ostream
&Out
, const DIImportedEntity
*N
,
2164 TypePrinting
*TypePrinter
,
2165 SlotTracker
*Machine
, const Module
*Context
) {
2166 Out
<< "!DIImportedEntity(";
2167 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2168 Printer
.printTag(N
);
2169 Printer
.printString("name", N
->getName());
2170 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2171 Printer
.printMetadata("entity", N
->getRawEntity());
2172 Printer
.printMetadata("file", N
->getRawFile());
2173 Printer
.printInt("line", N
->getLine());
2177 static void WriteMDNodeBodyInternal(raw_ostream
&Out
, const MDNode
*Node
,
2178 TypePrinting
*TypePrinter
,
2179 SlotTracker
*Machine
,
2180 const Module
*Context
) {
2181 if (Node
->isDistinct())
2183 else if (Node
->isTemporary())
2184 Out
<< "<temporary!> "; // Handle broken code.
2186 switch (Node
->getMetadataID()) {
2188 llvm_unreachable("Expected uniquable MDNode");
2189 #define HANDLE_MDNODE_LEAF(CLASS) \
2190 case Metadata::CLASS##Kind: \
2191 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
2193 #include "llvm/IR/Metadata.def"
2197 // Full implementation of printing a Value as an operand with support for
2198 // TypePrinting, etc.
2199 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
2200 TypePrinting
*TypePrinter
,
2201 SlotTracker
*Machine
,
2202 const Module
*Context
) {
2204 PrintLLVMName(Out
, V
);
2208 const Constant
*CV
= dyn_cast
<Constant
>(V
);
2209 if (CV
&& !isa
<GlobalValue
>(CV
)) {
2210 assert(TypePrinter
&& "Constants require TypePrinting!");
2211 WriteConstantInternal(Out
, CV
, *TypePrinter
, Machine
, Context
);
2215 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
2217 if (IA
->hasSideEffects())
2218 Out
<< "sideeffect ";
2219 if (IA
->isAlignStack())
2220 Out
<< "alignstack ";
2221 // We don't emit the AD_ATT dialect as it's the assumed default.
2222 if (IA
->getDialect() == InlineAsm::AD_Intel
)
2223 Out
<< "inteldialect ";
2225 printEscapedString(IA
->getAsmString(), Out
);
2227 printEscapedString(IA
->getConstraintString(), Out
);
2232 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
)) {
2233 WriteAsOperandInternal(Out
, MD
->getMetadata(), TypePrinter
, Machine
,
2234 Context
, /* FromValue */ true);
2240 // If we have a SlotTracker, use it.
2242 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
2243 Slot
= Machine
->getGlobalSlot(GV
);
2246 Slot
= Machine
->getLocalSlot(V
);
2248 // If the local value didn't succeed, then we may be referring to a value
2249 // from a different function. Translate it, as this can happen when using
2250 // address of blocks.
2252 if ((Machine
= createSlotTracker(V
))) {
2253 Slot
= Machine
->getLocalSlot(V
);
2257 } else if ((Machine
= createSlotTracker(V
))) {
2258 // Otherwise, create one to get the # and then destroy it.
2259 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
2260 Slot
= Machine
->getGlobalSlot(GV
);
2263 Slot
= Machine
->getLocalSlot(V
);
2272 Out
<< Prefix
<< Slot
;
2277 static void WriteAsOperandInternal(raw_ostream
&Out
, const Metadata
*MD
,
2278 TypePrinting
*TypePrinter
,
2279 SlotTracker
*Machine
, const Module
*Context
,
2281 // Write DIExpressions inline when used as a value. Improves readability of
2282 // debug info intrinsics.
2283 if (const DIExpression
*Expr
= dyn_cast
<DIExpression
>(MD
)) {
2284 writeDIExpression(Out
, Expr
, TypePrinter
, Machine
, Context
);
2288 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
2289 std::unique_ptr
<SlotTracker
> MachineStorage
;
2291 MachineStorage
= make_unique
<SlotTracker
>(Context
);
2292 Machine
= MachineStorage
.get();
2294 int Slot
= Machine
->getMetadataSlot(N
);
2296 if (const DILocation
*Loc
= dyn_cast
<DILocation
>(N
)) {
2297 writeDILocation(Out
, Loc
, TypePrinter
, Machine
, Context
);
2300 // Give the pointer value instead of "badref", since this comes up all
2301 // the time when debugging.
2302 Out
<< "<" << N
<< ">";
2308 if (const MDString
*MDS
= dyn_cast
<MDString
>(MD
)) {
2310 printEscapedString(MDS
->getString(), Out
);
2315 auto *V
= cast
<ValueAsMetadata
>(MD
);
2316 assert(TypePrinter
&& "TypePrinter required for metadata values");
2317 assert((FromValue
|| !isa
<LocalAsMetadata
>(V
)) &&
2318 "Unexpected function-local metadata outside of value argument");
2320 TypePrinter
->print(V
->getValue()->getType(), Out
);
2322 WriteAsOperandInternal(Out
, V
->getValue(), TypePrinter
, Machine
, Context
);
2327 class AssemblyWriter
{
2328 formatted_raw_ostream
&Out
;
2329 const Module
*TheModule
= nullptr;
2330 const ModuleSummaryIndex
*TheIndex
= nullptr;
2331 std::unique_ptr
<SlotTracker
> SlotTrackerStorage
;
2332 SlotTracker
&Machine
;
2333 TypePrinting TypePrinter
;
2334 AssemblyAnnotationWriter
*AnnotationWriter
= nullptr;
2335 SetVector
<const Comdat
*> Comdats
;
2337 bool ShouldPreserveUseListOrder
;
2338 UseListOrderStack UseListOrders
;
2339 SmallVector
<StringRef
, 8> MDNames
;
2340 /// Synchronization scope names registered with LLVMContext.
2341 SmallVector
<StringRef
, 8> SSNs
;
2342 DenseMap
<const GlobalValueSummary
*, GlobalValue::GUID
> SummaryToGUIDMap
;
2345 /// Construct an AssemblyWriter with an external SlotTracker
2346 AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
, const Module
*M
,
2347 AssemblyAnnotationWriter
*AAW
, bool IsForDebug
,
2348 bool ShouldPreserveUseListOrder
= false);
2350 AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2351 const ModuleSummaryIndex
*Index
, bool IsForDebug
);
2353 void printMDNodeBody(const MDNode
*MD
);
2354 void printNamedMDNode(const NamedMDNode
*NMD
);
2356 void printModule(const Module
*M
);
2358 void writeOperand(const Value
*Op
, bool PrintType
);
2359 void writeParamOperand(const Value
*Operand
, AttributeSet Attrs
);
2360 void writeOperandBundles(const CallBase
*Call
);
2361 void writeSyncScope(const LLVMContext
&Context
,
2362 SyncScope::ID SSID
);
2363 void writeAtomic(const LLVMContext
&Context
,
2364 AtomicOrdering Ordering
,
2365 SyncScope::ID SSID
);
2366 void writeAtomicCmpXchg(const LLVMContext
&Context
,
2367 AtomicOrdering SuccessOrdering
,
2368 AtomicOrdering FailureOrdering
,
2369 SyncScope::ID SSID
);
2371 void writeAllMDNodes();
2372 void writeMDNode(unsigned Slot
, const MDNode
*Node
);
2373 void writeAllAttributeGroups();
2375 void printTypeIdentities();
2376 void printGlobal(const GlobalVariable
*GV
);
2377 void printIndirectSymbol(const GlobalIndirectSymbol
*GIS
);
2378 void printComdat(const Comdat
*C
);
2379 void printFunction(const Function
*F
);
2380 void printArgument(const Argument
*FA
, AttributeSet Attrs
);
2381 void printBasicBlock(const BasicBlock
*BB
);
2382 void printInstructionLine(const Instruction
&I
);
2383 void printInstruction(const Instruction
&I
);
2385 void printUseListOrder(const UseListOrder
&Order
);
2386 void printUseLists(const Function
*F
);
2388 void printModuleSummaryIndex();
2389 void printSummaryInfo(unsigned Slot
, const ValueInfo
&VI
);
2390 void printSummary(const GlobalValueSummary
&Summary
);
2391 void printAliasSummary(const AliasSummary
*AS
);
2392 void printGlobalVarSummary(const GlobalVarSummary
*GS
);
2393 void printFunctionSummary(const FunctionSummary
*FS
);
2394 void printTypeIdSummary(const TypeIdSummary
&TIS
);
2395 void printTypeTestResolution(const TypeTestResolution
&TTRes
);
2396 void printArgs(const std::vector
<uint64_t> &Args
);
2397 void printWPDRes(const WholeProgramDevirtResolution
&WPDRes
);
2398 void printTypeIdInfo(const FunctionSummary::TypeIdInfo
&TIDInfo
);
2399 void printVFuncId(const FunctionSummary::VFuncId VFId
);
2401 printNonConstVCalls(const std::vector
<FunctionSummary::VFuncId
> VCallList
,
2404 printConstVCalls(const std::vector
<FunctionSummary::ConstVCall
> VCallList
,
2408 /// Print out metadata attachments.
2409 void printMetadataAttachments(
2410 const SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
,
2411 StringRef Separator
);
2413 // printInfoComment - Print a little comment after the instruction indicating
2414 // which slot it occupies.
2415 void printInfoComment(const Value
&V
);
2417 // printGCRelocateComment - print comment after call to the gc.relocate
2418 // intrinsic indicating base and derived pointer names.
2419 void printGCRelocateComment(const GCRelocateInst
&Relocate
);
2422 } // end anonymous namespace
2424 AssemblyWriter::AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2425 const Module
*M
, AssemblyAnnotationWriter
*AAW
,
2426 bool IsForDebug
, bool ShouldPreserveUseListOrder
)
2427 : Out(o
), TheModule(M
), Machine(Mac
), TypePrinter(M
), AnnotationWriter(AAW
),
2428 IsForDebug(IsForDebug
),
2429 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder
) {
2432 for (const GlobalObject
&GO
: TheModule
->global_objects())
2433 if (const Comdat
*C
= GO
.getComdat())
2437 AssemblyWriter::AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2438 const ModuleSummaryIndex
*Index
, bool IsForDebug
)
2439 : Out(o
), TheIndex(Index
), Machine(Mac
), TypePrinter(/*Module=*/nullptr),
2440 IsForDebug(IsForDebug
), ShouldPreserveUseListOrder(false) {}
2442 void AssemblyWriter::writeOperand(const Value
*Operand
, bool PrintType
) {
2444 Out
<< "<null operand!>";
2448 TypePrinter
.print(Operand
->getType(), Out
);
2451 WriteAsOperandInternal(Out
, Operand
, &TypePrinter
, &Machine
, TheModule
);
2454 void AssemblyWriter::writeSyncScope(const LLVMContext
&Context
,
2455 SyncScope::ID SSID
) {
2457 case SyncScope::System
: {
2462 Context
.getSyncScopeNames(SSNs
);
2464 Out
<< " syncscope(\"";
2465 printEscapedString(SSNs
[SSID
], Out
);
2472 void AssemblyWriter::writeAtomic(const LLVMContext
&Context
,
2473 AtomicOrdering Ordering
,
2474 SyncScope::ID SSID
) {
2475 if (Ordering
== AtomicOrdering::NotAtomic
)
2478 writeSyncScope(Context
, SSID
);
2479 Out
<< " " << toIRString(Ordering
);
2482 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext
&Context
,
2483 AtomicOrdering SuccessOrdering
,
2484 AtomicOrdering FailureOrdering
,
2485 SyncScope::ID SSID
) {
2486 assert(SuccessOrdering
!= AtomicOrdering::NotAtomic
&&
2487 FailureOrdering
!= AtomicOrdering::NotAtomic
);
2489 writeSyncScope(Context
, SSID
);
2490 Out
<< " " << toIRString(SuccessOrdering
);
2491 Out
<< " " << toIRString(FailureOrdering
);
2494 void AssemblyWriter::writeParamOperand(const Value
*Operand
,
2495 AttributeSet Attrs
) {
2497 Out
<< "<null operand!>";
2502 TypePrinter
.print(Operand
->getType(), Out
);
2503 // Print parameter attributes list
2504 if (Attrs
.hasAttributes())
2505 Out
<< ' ' << Attrs
.getAsString();
2507 // Print the operand
2508 WriteAsOperandInternal(Out
, Operand
, &TypePrinter
, &Machine
, TheModule
);
2511 void AssemblyWriter::writeOperandBundles(const CallBase
*Call
) {
2512 if (!Call
->hasOperandBundles())
2517 bool FirstBundle
= true;
2518 for (unsigned i
= 0, e
= Call
->getNumOperandBundles(); i
!= e
; ++i
) {
2519 OperandBundleUse BU
= Call
->getOperandBundleAt(i
);
2523 FirstBundle
= false;
2526 printEscapedString(BU
.getTagName(), Out
);
2531 bool FirstInput
= true;
2532 for (const auto &Input
: BU
.Inputs
) {
2537 TypePrinter
.print(Input
->getType(), Out
);
2539 WriteAsOperandInternal(Out
, Input
, &TypePrinter
, &Machine
, TheModule
);
2548 void AssemblyWriter::printModule(const Module
*M
) {
2549 Machine
.initializeIfNeeded();
2551 if (ShouldPreserveUseListOrder
)
2552 UseListOrders
= predictUseListOrder(M
);
2554 if (!M
->getModuleIdentifier().empty() &&
2555 // Don't print the ID if it will start a new line (which would
2556 // require a comment char before it).
2557 M
->getModuleIdentifier().find('\n') == std::string::npos
)
2558 Out
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
2560 if (!M
->getSourceFileName().empty()) {
2561 Out
<< "source_filename = \"";
2562 printEscapedString(M
->getSourceFileName(), Out
);
2566 const std::string
&DL
= M
->getDataLayoutStr();
2568 Out
<< "target datalayout = \"" << DL
<< "\"\n";
2569 if (!M
->getTargetTriple().empty())
2570 Out
<< "target triple = \"" << M
->getTargetTriple() << "\"\n";
2572 if (!M
->getModuleInlineAsm().empty()) {
2575 // Split the string into lines, to make it easier to read the .ll file.
2576 StringRef Asm
= M
->getModuleInlineAsm();
2579 std::tie(Front
, Asm
) = Asm
.split('\n');
2581 // We found a newline, print the portion of the asm string from the
2582 // last newline up to this newline.
2583 Out
<< "module asm \"";
2584 printEscapedString(Front
, Out
);
2586 } while (!Asm
.empty());
2589 printTypeIdentities();
2591 // Output all comdats.
2592 if (!Comdats
.empty())
2594 for (const Comdat
*C
: Comdats
) {
2596 if (C
!= Comdats
.back())
2600 // Output all globals.
2601 if (!M
->global_empty()) Out
<< '\n';
2602 for (const GlobalVariable
&GV
: M
->globals()) {
2603 printGlobal(&GV
); Out
<< '\n';
2606 // Output all aliases.
2607 if (!M
->alias_empty()) Out
<< "\n";
2608 for (const GlobalAlias
&GA
: M
->aliases())
2609 printIndirectSymbol(&GA
);
2611 // Output all ifuncs.
2612 if (!M
->ifunc_empty()) Out
<< "\n";
2613 for (const GlobalIFunc
&GI
: M
->ifuncs())
2614 printIndirectSymbol(&GI
);
2616 // Output global use-lists.
2617 printUseLists(nullptr);
2619 // Output all of the functions.
2620 for (const Function
&F
: *M
)
2622 assert(UseListOrders
.empty() && "All use-lists should have been consumed");
2624 // Output all attribute groups.
2625 if (!Machine
.as_empty()) {
2627 writeAllAttributeGroups();
2630 // Output named metadata.
2631 if (!M
->named_metadata_empty()) Out
<< '\n';
2633 for (const NamedMDNode
&Node
: M
->named_metadata())
2634 printNamedMDNode(&Node
);
2637 if (!Machine
.mdn_empty()) {
2643 void AssemblyWriter::printModuleSummaryIndex() {
2645 Machine
.initializeIndexIfNeeded();
2649 // Print module path entries. To print in order, add paths to a vector
2650 // indexed by module slot.
2651 std::vector
<std::pair
<std::string
, ModuleHash
>> moduleVec
;
2652 std::string RegularLTOModuleName
= "[Regular LTO]";
2653 moduleVec
.resize(TheIndex
->modulePaths().size());
2654 for (auto &ModPath
: TheIndex
->modulePaths())
2655 moduleVec
[Machine
.getModulePathSlot(ModPath
.first())] = std::make_pair(
2656 // A module id of -1 is a special entry for a regular LTO module created
2657 // during the thin link.
2658 ModPath
.second
.first
== -1u ? RegularLTOModuleName
2659 : (std::string
)ModPath
.first(),
2660 ModPath
.second
.second
);
2663 for (auto &ModPair
: moduleVec
) {
2664 Out
<< "^" << i
++ << " = module: (";
2666 printEscapedString(ModPair
.first
, Out
);
2667 Out
<< "\", hash: (";
2669 for (auto Hash
: ModPair
.second
)
2674 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2675 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2676 for (auto &GlobalList
: *TheIndex
) {
2677 auto GUID
= GlobalList
.first
;
2678 for (auto &Summary
: GlobalList
.second
.SummaryList
)
2679 SummaryToGUIDMap
[Summary
.get()] = GUID
;
2682 // Print the global value summary entries.
2683 for (auto &GlobalList
: *TheIndex
) {
2684 auto GUID
= GlobalList
.first
;
2685 auto VI
= TheIndex
->getValueInfo(GlobalList
);
2686 printSummaryInfo(Machine
.getGUIDSlot(GUID
), VI
);
2689 // Print the TypeIdMap entries.
2690 for (auto TidIter
= TheIndex
->typeIds().begin();
2691 TidIter
!= TheIndex
->typeIds().end(); TidIter
++) {
2692 Out
<< "^" << Machine
.getTypeIdSlot(TidIter
->second
.first
)
2693 << " = typeid: (name: \"" << TidIter
->second
.first
<< "\"";
2694 printTypeIdSummary(TidIter
->second
.second
);
2695 Out
<< ") ; guid = " << TidIter
->first
<< "\n";
2700 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K
) {
2702 case WholeProgramDevirtResolution::Indir
:
2704 case WholeProgramDevirtResolution::SingleImpl
:
2705 return "singleImpl";
2706 case WholeProgramDevirtResolution::BranchFunnel
:
2707 return "branchFunnel";
2709 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2712 static const char *getWholeProgDevirtResByArgKindName(
2713 WholeProgramDevirtResolution::ByArg::Kind K
) {
2715 case WholeProgramDevirtResolution::ByArg::Indir
:
2717 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
2718 return "uniformRetVal";
2719 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
:
2720 return "uniqueRetVal";
2721 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
:
2722 return "virtualConstProp";
2724 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2727 static const char *getTTResKindName(TypeTestResolution::Kind K
) {
2729 case TypeTestResolution::Unsat
:
2731 case TypeTestResolution::ByteArray
:
2733 case TypeTestResolution::Inline
:
2735 case TypeTestResolution::Single
:
2737 case TypeTestResolution::AllOnes
:
2740 llvm_unreachable("invalid TypeTestResolution kind");
2743 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution
&TTRes
) {
2744 Out
<< "typeTestRes: (kind: " << getTTResKindName(TTRes
.TheKind
)
2745 << ", sizeM1BitWidth: " << TTRes
.SizeM1BitWidth
;
2747 // The following fields are only used if the target does not support the use
2748 // of absolute symbols to store constants. Print only if non-zero.
2749 if (TTRes
.AlignLog2
)
2750 Out
<< ", alignLog2: " << TTRes
.AlignLog2
;
2752 Out
<< ", sizeM1: " << TTRes
.SizeM1
;
2754 // BitMask is uint8_t which causes it to print the corresponding char.
2755 Out
<< ", bitMask: " << (unsigned)TTRes
.BitMask
;
2756 if (TTRes
.InlineBits
)
2757 Out
<< ", inlineBits: " << TTRes
.InlineBits
;
2762 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary
&TIS
) {
2763 Out
<< ", summary: (";
2764 printTypeTestResolution(TIS
.TTRes
);
2765 if (!TIS
.WPDRes
.empty()) {
2766 Out
<< ", wpdResolutions: (";
2768 for (auto &WPDRes
: TIS
.WPDRes
) {
2770 Out
<< "(offset: " << WPDRes
.first
<< ", ";
2771 printWPDRes(WPDRes
.second
);
2779 void AssemblyWriter::printArgs(const std::vector
<uint64_t> &Args
) {
2782 for (auto arg
: Args
) {
2789 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution
&WPDRes
) {
2790 Out
<< "wpdRes: (kind: ";
2791 Out
<< getWholeProgDevirtResKindName(WPDRes
.TheKind
);
2793 if (WPDRes
.TheKind
== WholeProgramDevirtResolution::SingleImpl
)
2794 Out
<< ", singleImplName: \"" << WPDRes
.SingleImplName
<< "\"";
2796 if (!WPDRes
.ResByArg
.empty()) {
2797 Out
<< ", resByArg: (";
2799 for (auto &ResByArg
: WPDRes
.ResByArg
) {
2801 printArgs(ResByArg
.first
);
2802 Out
<< ", byArg: (kind: ";
2803 Out
<< getWholeProgDevirtResByArgKindName(ResByArg
.second
.TheKind
);
2804 if (ResByArg
.second
.TheKind
==
2805 WholeProgramDevirtResolution::ByArg::UniformRetVal
||
2806 ResByArg
.second
.TheKind
==
2807 WholeProgramDevirtResolution::ByArg::UniqueRetVal
)
2808 Out
<< ", info: " << ResByArg
.second
.Info
;
2810 // The following fields are only used if the target does not support the
2811 // use of absolute symbols to store constants. Print only if non-zero.
2812 if (ResByArg
.second
.Byte
|| ResByArg
.second
.Bit
)
2813 Out
<< ", byte: " << ResByArg
.second
.Byte
2814 << ", bit: " << ResByArg
.second
.Bit
;
2823 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK
) {
2825 case GlobalValueSummary::AliasKind
:
2827 case GlobalValueSummary::FunctionKind
:
2829 case GlobalValueSummary::GlobalVarKind
:
2832 llvm_unreachable("invalid summary kind");
2835 void AssemblyWriter::printAliasSummary(const AliasSummary
*AS
) {
2836 Out
<< ", aliasee: ";
2837 // The indexes emitted for distributed backends may not include the
2838 // aliasee summary (only if it is being imported directly). Handle
2839 // that case by just emitting "null" as the aliasee.
2840 if (AS
->hasAliasee())
2841 Out
<< "^" << Machine
.getGUIDSlot(SummaryToGUIDMap
[&AS
->getAliasee()]);
2846 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary
*GS
) {
2847 Out
<< ", varFlags: (readonly: " << GS
->VarFlags
.ReadOnly
<< ")";
2850 static std::string
getLinkageName(GlobalValue::LinkageTypes LT
) {
2852 case GlobalValue::ExternalLinkage
:
2854 case GlobalValue::PrivateLinkage
:
2856 case GlobalValue::InternalLinkage
:
2858 case GlobalValue::LinkOnceAnyLinkage
:
2860 case GlobalValue::LinkOnceODRLinkage
:
2861 return "linkonce_odr";
2862 case GlobalValue::WeakAnyLinkage
:
2864 case GlobalValue::WeakODRLinkage
:
2866 case GlobalValue::CommonLinkage
:
2868 case GlobalValue::AppendingLinkage
:
2870 case GlobalValue::ExternalWeakLinkage
:
2871 return "extern_weak";
2872 case GlobalValue::AvailableExternallyLinkage
:
2873 return "available_externally";
2875 llvm_unreachable("invalid linkage");
2878 // When printing the linkage types in IR where the ExternalLinkage is
2879 // not printed, and other linkage types are expected to be printed with
2880 // a space after the name.
2881 static std::string
getLinkageNameWithSpace(GlobalValue::LinkageTypes LT
) {
2882 if (LT
== GlobalValue::ExternalLinkage
)
2884 return getLinkageName(LT
) + " ";
2887 void AssemblyWriter::printFunctionSummary(const FunctionSummary
*FS
) {
2888 Out
<< ", insts: " << FS
->instCount();
2890 FunctionSummary::FFlags FFlags
= FS
->fflags();
2891 if (FFlags
.ReadNone
| FFlags
.ReadOnly
| FFlags
.NoRecurse
|
2892 FFlags
.ReturnDoesNotAlias
) {
2893 Out
<< ", funcFlags: (";
2894 Out
<< "readNone: " << FFlags
.ReadNone
;
2895 Out
<< ", readOnly: " << FFlags
.ReadOnly
;
2896 Out
<< ", noRecurse: " << FFlags
.NoRecurse
;
2897 Out
<< ", returnDoesNotAlias: " << FFlags
.ReturnDoesNotAlias
;
2898 Out
<< ", noInline: " << FFlags
.NoInline
;
2901 if (!FS
->calls().empty()) {
2902 Out
<< ", calls: (";
2904 for (auto &Call
: FS
->calls()) {
2906 Out
<< "(callee: ^" << Machine
.getGUIDSlot(Call
.first
.getGUID());
2907 if (Call
.second
.getHotness() != CalleeInfo::HotnessType::Unknown
)
2908 Out
<< ", hotness: " << getHotnessName(Call
.second
.getHotness());
2909 else if (Call
.second
.RelBlockFreq
)
2910 Out
<< ", relbf: " << Call
.second
.RelBlockFreq
;
2916 if (const auto *TIdInfo
= FS
->getTypeIdInfo())
2917 printTypeIdInfo(*TIdInfo
);
2920 void AssemblyWriter::printTypeIdInfo(
2921 const FunctionSummary::TypeIdInfo
&TIDInfo
) {
2922 Out
<< ", typeIdInfo: (";
2923 FieldSeparator TIDFS
;
2924 if (!TIDInfo
.TypeTests
.empty()) {
2926 Out
<< "typeTests: (";
2928 for (auto &GUID
: TIDInfo
.TypeTests
) {
2929 auto TidIter
= TheIndex
->typeIds().equal_range(GUID
);
2930 if (TidIter
.first
== TidIter
.second
) {
2935 // Print all type id that correspond to this GUID.
2936 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
) {
2938 auto Slot
= Machine
.getTypeIdSlot(It
->second
.first
);
2945 if (!TIDInfo
.TypeTestAssumeVCalls
.empty()) {
2947 printNonConstVCalls(TIDInfo
.TypeTestAssumeVCalls
, "typeTestAssumeVCalls");
2949 if (!TIDInfo
.TypeCheckedLoadVCalls
.empty()) {
2951 printNonConstVCalls(TIDInfo
.TypeCheckedLoadVCalls
, "typeCheckedLoadVCalls");
2953 if (!TIDInfo
.TypeTestAssumeConstVCalls
.empty()) {
2955 printConstVCalls(TIDInfo
.TypeTestAssumeConstVCalls
,
2956 "typeTestAssumeConstVCalls");
2958 if (!TIDInfo
.TypeCheckedLoadConstVCalls
.empty()) {
2960 printConstVCalls(TIDInfo
.TypeCheckedLoadConstVCalls
,
2961 "typeCheckedLoadConstVCalls");
2966 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId
) {
2967 auto TidIter
= TheIndex
->typeIds().equal_range(VFId
.GUID
);
2968 if (TidIter
.first
== TidIter
.second
) {
2969 Out
<< "vFuncId: (";
2970 Out
<< "guid: " << VFId
.GUID
;
2971 Out
<< ", offset: " << VFId
.Offset
;
2975 // Print all type id that correspond to this GUID.
2977 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
) {
2979 Out
<< "vFuncId: (";
2980 auto Slot
= Machine
.getTypeIdSlot(It
->second
.first
);
2983 Out
<< ", offset: " << VFId
.Offset
;
2988 void AssemblyWriter::printNonConstVCalls(
2989 const std::vector
<FunctionSummary::VFuncId
> VCallList
, const char *Tag
) {
2990 Out
<< Tag
<< ": (";
2992 for (auto &VFuncId
: VCallList
) {
2994 printVFuncId(VFuncId
);
2999 void AssemblyWriter::printConstVCalls(
3000 const std::vector
<FunctionSummary::ConstVCall
> VCallList
, const char *Tag
) {
3001 Out
<< Tag
<< ": (";
3003 for (auto &ConstVCall
: VCallList
) {
3006 printVFuncId(ConstVCall
.VFunc
);
3007 if (!ConstVCall
.Args
.empty()) {
3009 printArgs(ConstVCall
.Args
);
3016 void AssemblyWriter::printSummary(const GlobalValueSummary
&Summary
) {
3017 GlobalValueSummary::GVFlags GVFlags
= Summary
.flags();
3018 GlobalValue::LinkageTypes LT
= (GlobalValue::LinkageTypes
)GVFlags
.Linkage
;
3019 Out
<< getSummaryKindName(Summary
.getSummaryKind()) << ": ";
3020 Out
<< "(module: ^" << Machine
.getModulePathSlot(Summary
.modulePath())
3022 Out
<< "linkage: " << getLinkageName(LT
);
3023 Out
<< ", notEligibleToImport: " << GVFlags
.NotEligibleToImport
;
3024 Out
<< ", live: " << GVFlags
.Live
;
3025 Out
<< ", dsoLocal: " << GVFlags
.DSOLocal
;
3028 if (Summary
.getSummaryKind() == GlobalValueSummary::AliasKind
)
3029 printAliasSummary(cast
<AliasSummary
>(&Summary
));
3030 else if (Summary
.getSummaryKind() == GlobalValueSummary::FunctionKind
)
3031 printFunctionSummary(cast
<FunctionSummary
>(&Summary
));
3033 printGlobalVarSummary(cast
<GlobalVarSummary
>(&Summary
));
3035 auto RefList
= Summary
.refs();
3036 if (!RefList
.empty()) {
3039 for (auto &Ref
: RefList
) {
3041 if (Ref
.isReadOnly())
3043 Out
<< "^" << Machine
.getGUIDSlot(Ref
.getGUID());
3051 void AssemblyWriter::printSummaryInfo(unsigned Slot
, const ValueInfo
&VI
) {
3052 Out
<< "^" << Slot
<< " = gv: (";
3053 if (!VI
.name().empty())
3054 Out
<< "name: \"" << VI
.name() << "\"";
3056 Out
<< "guid: " << VI
.getGUID();
3057 if (!VI
.getSummaryList().empty()) {
3058 Out
<< ", summaries: (";
3060 for (auto &Summary
: VI
.getSummaryList()) {
3062 printSummary(*Summary
);
3067 if (!VI
.name().empty())
3068 Out
<< " ; guid = " << VI
.getGUID();
3072 static void printMetadataIdentifier(StringRef Name
,
3073 formatted_raw_ostream
&Out
) {
3075 Out
<< "<empty name> ";
3077 if (isalpha(static_cast<unsigned char>(Name
[0])) || Name
[0] == '-' ||
3078 Name
[0] == '$' || Name
[0] == '.' || Name
[0] == '_')
3081 Out
<< '\\' << hexdigit(Name
[0] >> 4) << hexdigit(Name
[0] & 0x0F);
3082 for (unsigned i
= 1, e
= Name
.size(); i
!= e
; ++i
) {
3083 unsigned char C
= Name
[i
];
3084 if (isalnum(static_cast<unsigned char>(C
)) || C
== '-' || C
== '$' ||
3085 C
== '.' || C
== '_')
3088 Out
<< '\\' << hexdigit(C
>> 4) << hexdigit(C
& 0x0F);
3093 void AssemblyWriter::printNamedMDNode(const NamedMDNode
*NMD
) {
3095 printMetadataIdentifier(NMD
->getName(), Out
);
3097 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
3101 // Write DIExpressions inline.
3102 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3103 MDNode
*Op
= NMD
->getOperand(i
);
3104 if (auto *Expr
= dyn_cast
<DIExpression
>(Op
)) {
3105 writeDIExpression(Out
, Expr
, nullptr, nullptr, nullptr);
3109 int Slot
= Machine
.getMetadataSlot(Op
);
3118 static void PrintVisibility(GlobalValue::VisibilityTypes Vis
,
3119 formatted_raw_ostream
&Out
) {
3121 case GlobalValue::DefaultVisibility
: break;
3122 case GlobalValue::HiddenVisibility
: Out
<< "hidden "; break;
3123 case GlobalValue::ProtectedVisibility
: Out
<< "protected "; break;
3127 static void PrintDSOLocation(const GlobalValue
&GV
,
3128 formatted_raw_ostream
&Out
) {
3129 // GVs with local linkage or non default visibility are implicitly dso_local,
3130 // so we don't print it.
3131 bool Implicit
= GV
.hasLocalLinkage() ||
3132 (!GV
.hasExternalWeakLinkage() && !GV
.hasDefaultVisibility());
3133 if (GV
.isDSOLocal() && !Implicit
)
3134 Out
<< "dso_local ";
3137 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT
,
3138 formatted_raw_ostream
&Out
) {
3140 case GlobalValue::DefaultStorageClass
: break;
3141 case GlobalValue::DLLImportStorageClass
: Out
<< "dllimport "; break;
3142 case GlobalValue::DLLExportStorageClass
: Out
<< "dllexport "; break;
3146 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM
,
3147 formatted_raw_ostream
&Out
) {
3149 case GlobalVariable::NotThreadLocal
:
3151 case GlobalVariable::GeneralDynamicTLSModel
:
3152 Out
<< "thread_local ";
3154 case GlobalVariable::LocalDynamicTLSModel
:
3155 Out
<< "thread_local(localdynamic) ";
3157 case GlobalVariable::InitialExecTLSModel
:
3158 Out
<< "thread_local(initialexec) ";
3160 case GlobalVariable::LocalExecTLSModel
:
3161 Out
<< "thread_local(localexec) ";
3166 static StringRef
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA
) {
3168 case GlobalVariable::UnnamedAddr::None
:
3170 case GlobalVariable::UnnamedAddr::Local
:
3171 return "local_unnamed_addr";
3172 case GlobalVariable::UnnamedAddr::Global
:
3173 return "unnamed_addr";
3175 llvm_unreachable("Unknown UnnamedAddr");
3178 static void maybePrintComdat(formatted_raw_ostream
&Out
,
3179 const GlobalObject
&GO
) {
3180 const Comdat
*C
= GO
.getComdat();
3184 if (isa
<GlobalVariable
>(GO
))
3188 if (GO
.getName() == C
->getName())
3192 PrintLLVMName(Out
, C
->getName(), ComdatPrefix
);
3196 void AssemblyWriter::printGlobal(const GlobalVariable
*GV
) {
3197 if (GV
->isMaterializable())
3198 Out
<< "; Materializable\n";
3200 WriteAsOperandInternal(Out
, GV
, &TypePrinter
, &Machine
, GV
->getParent());
3203 if (!GV
->hasInitializer() && GV
->hasExternalLinkage())
3206 Out
<< getLinkageNameWithSpace(GV
->getLinkage());
3207 PrintDSOLocation(*GV
, Out
);
3208 PrintVisibility(GV
->getVisibility(), Out
);
3209 PrintDLLStorageClass(GV
->getDLLStorageClass(), Out
);
3210 PrintThreadLocalModel(GV
->getThreadLocalMode(), Out
);
3211 StringRef UA
= getUnnamedAddrEncoding(GV
->getUnnamedAddr());
3215 if (unsigned AddressSpace
= GV
->getType()->getAddressSpace())
3216 Out
<< "addrspace(" << AddressSpace
<< ") ";
3217 if (GV
->isExternallyInitialized()) Out
<< "externally_initialized ";
3218 Out
<< (GV
->isConstant() ? "constant " : "global ");
3219 TypePrinter
.print(GV
->getValueType(), Out
);
3221 if (GV
->hasInitializer()) {
3223 writeOperand(GV
->getInitializer(), false);
3226 if (GV
->hasSection()) {
3227 Out
<< ", section \"";
3228 printEscapedString(GV
->getSection(), Out
);
3231 maybePrintComdat(Out
, *GV
);
3232 if (GV
->getAlignment())
3233 Out
<< ", align " << GV
->getAlignment();
3235 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3236 GV
->getAllMetadata(MDs
);
3237 printMetadataAttachments(MDs
, ", ");
3239 auto Attrs
= GV
->getAttributes();
3240 if (Attrs
.hasAttributes())
3241 Out
<< " #" << Machine
.getAttributeGroupSlot(Attrs
);
3243 printInfoComment(*GV
);
3246 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol
*GIS
) {
3247 if (GIS
->isMaterializable())
3248 Out
<< "; Materializable\n";
3250 WriteAsOperandInternal(Out
, GIS
, &TypePrinter
, &Machine
, GIS
->getParent());
3253 Out
<< getLinkageNameWithSpace(GIS
->getLinkage());
3254 PrintDSOLocation(*GIS
, Out
);
3255 PrintVisibility(GIS
->getVisibility(), Out
);
3256 PrintDLLStorageClass(GIS
->getDLLStorageClass(), Out
);
3257 PrintThreadLocalModel(GIS
->getThreadLocalMode(), Out
);
3258 StringRef UA
= getUnnamedAddrEncoding(GIS
->getUnnamedAddr());
3262 if (isa
<GlobalAlias
>(GIS
))
3264 else if (isa
<GlobalIFunc
>(GIS
))
3267 llvm_unreachable("Not an alias or ifunc!");
3269 TypePrinter
.print(GIS
->getValueType(), Out
);
3273 const Constant
*IS
= GIS
->getIndirectSymbol();
3276 TypePrinter
.print(GIS
->getType(), Out
);
3277 Out
<< " <<NULL ALIASEE>>";
3279 writeOperand(IS
, !isa
<ConstantExpr
>(IS
));
3282 printInfoComment(*GIS
);
3286 void AssemblyWriter::printComdat(const Comdat
*C
) {
3290 void AssemblyWriter::printTypeIdentities() {
3291 if (TypePrinter
.empty())
3296 // Emit all numbered types.
3297 auto &NumberedTypes
= TypePrinter
.getNumberedTypes();
3298 for (unsigned I
= 0, E
= NumberedTypes
.size(); I
!= E
; ++I
) {
3299 Out
<< '%' << I
<< " = type ";
3301 // Make sure we print out at least one level of the type structure, so
3302 // that we do not get %2 = type %2
3303 TypePrinter
.printStructBody(NumberedTypes
[I
], Out
);
3307 auto &NamedTypes
= TypePrinter
.getNamedTypes();
3308 for (unsigned I
= 0, E
= NamedTypes
.size(); I
!= E
; ++I
) {
3309 PrintLLVMName(Out
, NamedTypes
[I
]->getName(), LocalPrefix
);
3312 // Make sure we print out at least one level of the type structure, so
3313 // that we do not get %FILE = type %FILE
3314 TypePrinter
.printStructBody(NamedTypes
[I
], Out
);
3319 /// printFunction - Print all aspects of a function.
3320 void AssemblyWriter::printFunction(const Function
*F
) {
3321 // Print out the return type and name.
3324 if (AnnotationWriter
) AnnotationWriter
->emitFunctionAnnot(F
, Out
);
3326 if (F
->isMaterializable())
3327 Out
<< "; Materializable\n";
3329 const AttributeList
&Attrs
= F
->getAttributes();
3330 if (Attrs
.hasAttributes(AttributeList::FunctionIndex
)) {
3331 AttributeSet AS
= Attrs
.getFnAttributes();
3332 std::string AttrStr
;
3334 for (const Attribute
&Attr
: AS
) {
3335 if (!Attr
.isStringAttribute()) {
3336 if (!AttrStr
.empty()) AttrStr
+= ' ';
3337 AttrStr
+= Attr
.getAsString();
3341 if (!AttrStr
.empty())
3342 Out
<< "; Function Attrs: " << AttrStr
<< '\n';
3345 Machine
.incorporateFunction(F
);
3347 if (F
->isDeclaration()) {
3349 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3350 F
->getAllMetadata(MDs
);
3351 printMetadataAttachments(MDs
, " ");
3356 Out
<< getLinkageNameWithSpace(F
->getLinkage());
3357 PrintDSOLocation(*F
, Out
);
3358 PrintVisibility(F
->getVisibility(), Out
);
3359 PrintDLLStorageClass(F
->getDLLStorageClass(), Out
);
3361 // Print the calling convention.
3362 if (F
->getCallingConv() != CallingConv::C
) {
3363 PrintCallingConv(F
->getCallingConv(), Out
);
3367 FunctionType
*FT
= F
->getFunctionType();
3368 if (Attrs
.hasAttributes(AttributeList::ReturnIndex
))
3369 Out
<< Attrs
.getAsString(AttributeList::ReturnIndex
) << ' ';
3370 TypePrinter
.print(F
->getReturnType(), Out
);
3372 WriteAsOperandInternal(Out
, F
, &TypePrinter
, &Machine
, F
->getParent());
3375 // Loop over the arguments, printing them...
3376 if (F
->isDeclaration() && !IsForDebug
) {
3377 // We're only interested in the type here - don't print argument names.
3378 for (unsigned I
= 0, E
= FT
->getNumParams(); I
!= E
; ++I
) {
3379 // Insert commas as we go... the first arg doesn't get a comma
3383 TypePrinter
.print(FT
->getParamType(I
), Out
);
3385 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(I
);
3386 if (ArgAttrs
.hasAttributes())
3387 Out
<< ' ' << ArgAttrs
.getAsString();
3390 // The arguments are meaningful here, print them in detail.
3391 for (const Argument
&Arg
: F
->args()) {
3392 // Insert commas as we go... the first arg doesn't get a comma
3393 if (Arg
.getArgNo() != 0)
3395 printArgument(&Arg
, Attrs
.getParamAttributes(Arg
.getArgNo()));
3399 // Finish printing arguments...
3400 if (FT
->isVarArg()) {
3401 if (FT
->getNumParams()) Out
<< ", ";
3402 Out
<< "..."; // Output varargs portion of signature!
3405 StringRef UA
= getUnnamedAddrEncoding(F
->getUnnamedAddr());
3408 // We print the function address space if it is non-zero or if we are writing
3409 // a module with a non-zero program address space or if there is no valid
3410 // Module* so that the file can be parsed without the datalayout string.
3411 const Module
*Mod
= F
->getParent();
3412 if (F
->getAddressSpace() != 0 || !Mod
||
3413 Mod
->getDataLayout().getProgramAddressSpace() != 0)
3414 Out
<< " addrspace(" << F
->getAddressSpace() << ")";
3415 if (Attrs
.hasAttributes(AttributeList::FunctionIndex
))
3416 Out
<< " #" << Machine
.getAttributeGroupSlot(Attrs
.getFnAttributes());
3417 if (F
->hasSection()) {
3418 Out
<< " section \"";
3419 printEscapedString(F
->getSection(), Out
);
3422 maybePrintComdat(Out
, *F
);
3423 if (F
->getAlignment())
3424 Out
<< " align " << F
->getAlignment();
3426 Out
<< " gc \"" << F
->getGC() << '"';
3427 if (F
->hasPrefixData()) {
3429 writeOperand(F
->getPrefixData(), true);
3431 if (F
->hasPrologueData()) {
3432 Out
<< " prologue ";
3433 writeOperand(F
->getPrologueData(), true);
3435 if (F
->hasPersonalityFn()) {
3436 Out
<< " personality ";
3437 writeOperand(F
->getPersonalityFn(), /*PrintType=*/true);
3440 if (F
->isDeclaration()) {
3443 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3444 F
->getAllMetadata(MDs
);
3445 printMetadataAttachments(MDs
, " ");
3448 // Output all of the function's basic blocks.
3449 for (const BasicBlock
&BB
: *F
)
3450 printBasicBlock(&BB
);
3452 // Output the function's use-lists.
3458 Machine
.purgeFunction();
3461 /// printArgument - This member is called for every argument that is passed into
3462 /// the function. Simply print it out
3463 void AssemblyWriter::printArgument(const Argument
*Arg
, AttributeSet Attrs
) {
3465 TypePrinter
.print(Arg
->getType(), Out
);
3467 // Output parameter attributes list
3468 if (Attrs
.hasAttributes())
3469 Out
<< ' ' << Attrs
.getAsString();
3471 // Output name, if available...
3472 if (Arg
->hasName()) {
3474 PrintLLVMName(Out
, Arg
);
3478 /// printBasicBlock - This member is called for each basic block in a method.
3479 void AssemblyWriter::printBasicBlock(const BasicBlock
*BB
) {
3480 if (BB
->hasName()) { // Print out the label if it exists...
3482 PrintLLVMName(Out
, BB
->getName(), LabelPrefix
);
3484 } else if (!BB
->use_empty()) { // Don't print block # of no uses...
3485 Out
<< "\n; <label>:";
3486 int Slot
= Machine
.getLocalSlot(BB
);
3493 if (!BB
->getParent()) {
3494 Out
.PadToColumn(50);
3495 Out
<< "; Error: Block without parent!";
3496 } else if (BB
!= &BB
->getParent()->getEntryBlock()) { // Not the entry block?
3497 // Output predecessors for the block.
3498 Out
.PadToColumn(50);
3500 const_pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
3503 Out
<< " No predecessors!";
3506 writeOperand(*PI
, false);
3507 for (++PI
; PI
!= PE
; ++PI
) {
3509 writeOperand(*PI
, false);
3516 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockStartAnnot(BB
, Out
);
3518 // Output all of the instructions in the basic block...
3519 for (const Instruction
&I
: *BB
) {
3520 printInstructionLine(I
);
3523 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockEndAnnot(BB
, Out
);
3526 /// printInstructionLine - Print an instruction and a newline character.
3527 void AssemblyWriter::printInstructionLine(const Instruction
&I
) {
3528 printInstruction(I
);
3532 /// printGCRelocateComment - print comment after call to the gc.relocate
3533 /// intrinsic indicating base and derived pointer names.
3534 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst
&Relocate
) {
3536 writeOperand(Relocate
.getBasePtr(), false);
3538 writeOperand(Relocate
.getDerivedPtr(), false);
3542 /// printInfoComment - Print a little comment after the instruction indicating
3543 /// which slot it occupies.
3544 void AssemblyWriter::printInfoComment(const Value
&V
) {
3545 if (const auto *Relocate
= dyn_cast
<GCRelocateInst
>(&V
))
3546 printGCRelocateComment(*Relocate
);
3548 if (AnnotationWriter
)
3549 AnnotationWriter
->printInfoComment(V
, Out
);
3552 static void maybePrintCallAddrSpace(const Value
*Operand
, const Instruction
*I
,
3554 // We print the address space of the call if it is non-zero.
3555 unsigned CallAddrSpace
= Operand
->getType()->getPointerAddressSpace();
3556 bool PrintAddrSpace
= CallAddrSpace
!= 0;
3557 if (!PrintAddrSpace
) {
3558 const Module
*Mod
= getModuleFromVal(I
);
3559 // We also print it if it is zero but not equal to the program address space
3560 // or if we can't find a valid Module* to make it possible to parse
3561 // the resulting file even without a datalayout string.
3562 if (!Mod
|| Mod
->getDataLayout().getProgramAddressSpace() != 0)
3563 PrintAddrSpace
= true;
3566 Out
<< " addrspace(" << CallAddrSpace
<< ")";
3569 // This member is called for each Instruction in a function..
3570 void AssemblyWriter::printInstruction(const Instruction
&I
) {
3571 if (AnnotationWriter
) AnnotationWriter
->emitInstructionAnnot(&I
, Out
);
3573 // Print out indentation for an instruction.
3576 // Print out name if it exists...
3578 PrintLLVMName(Out
, &I
);
3580 } else if (!I
.getType()->isVoidTy()) {
3581 // Print out the def slot taken.
3582 int SlotNum
= Machine
.getLocalSlot(&I
);
3584 Out
<< "<badref> = ";
3586 Out
<< '%' << SlotNum
<< " = ";
3589 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
3590 if (CI
->isMustTailCall())
3592 else if (CI
->isTailCall())
3594 else if (CI
->isNoTailCall())
3598 // Print out the opcode...
3599 Out
<< I
.getOpcodeName();
3601 // If this is an atomic load or store, print out the atomic marker.
3602 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isAtomic()) ||
3603 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isAtomic()))
3606 if (isa
<AtomicCmpXchgInst
>(I
) && cast
<AtomicCmpXchgInst
>(I
).isWeak())
3609 // If this is a volatile operation, print out the volatile marker.
3610 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isVolatile()) ||
3611 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isVolatile()) ||
3612 (isa
<AtomicCmpXchgInst
>(I
) && cast
<AtomicCmpXchgInst
>(I
).isVolatile()) ||
3613 (isa
<AtomicRMWInst
>(I
) && cast
<AtomicRMWInst
>(I
).isVolatile()))
3616 // Print out optimization information.
3617 WriteOptimizationInfo(Out
, &I
);
3619 // Print out the compare instruction predicates
3620 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
3621 Out
<< ' ' << CmpInst::getPredicateName(CI
->getPredicate());
3623 // Print out the atomicrmw operation
3624 if (const AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(&I
))
3625 Out
<< ' ' << AtomicRMWInst::getOperationName(RMWI
->getOperation());
3627 // Print out the type of the operands...
3628 const Value
*Operand
= I
.getNumOperands() ? I
.getOperand(0) : nullptr;
3630 // Special case conditional branches to swizzle the condition out to the front
3631 if (isa
<BranchInst
>(I
) && cast
<BranchInst
>(I
).isConditional()) {
3632 const BranchInst
&BI(cast
<BranchInst
>(I
));
3634 writeOperand(BI
.getCondition(), true);
3636 writeOperand(BI
.getSuccessor(0), true);
3638 writeOperand(BI
.getSuccessor(1), true);
3640 } else if (isa
<SwitchInst
>(I
)) {
3641 const SwitchInst
& SI(cast
<SwitchInst
>(I
));
3642 // Special case switch instruction to get formatting nice and correct.
3644 writeOperand(SI
.getCondition(), true);
3646 writeOperand(SI
.getDefaultDest(), true);
3648 for (auto Case
: SI
.cases()) {
3650 writeOperand(Case
.getCaseValue(), true);
3652 writeOperand(Case
.getCaseSuccessor(), true);
3655 } else if (isa
<IndirectBrInst
>(I
)) {
3656 // Special case indirectbr instruction to get formatting nice and correct.
3658 writeOperand(Operand
, true);
3661 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
) {
3664 writeOperand(I
.getOperand(i
), true);
3667 } else if (const PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
3669 TypePrinter
.print(I
.getType(), Out
);
3672 for (unsigned op
= 0, Eop
= PN
->getNumIncomingValues(); op
< Eop
; ++op
) {
3673 if (op
) Out
<< ", ";
3675 writeOperand(PN
->getIncomingValue(op
), false); Out
<< ", ";
3676 writeOperand(PN
->getIncomingBlock(op
), false); Out
<< " ]";
3678 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(&I
)) {
3680 writeOperand(I
.getOperand(0), true);
3681 for (const unsigned *i
= EVI
->idx_begin(), *e
= EVI
->idx_end(); i
!= e
; ++i
)
3683 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(&I
)) {
3685 writeOperand(I
.getOperand(0), true); Out
<< ", ";
3686 writeOperand(I
.getOperand(1), true);
3687 for (const unsigned *i
= IVI
->idx_begin(), *e
= IVI
->idx_end(); i
!= e
; ++i
)
3689 } else if (const LandingPadInst
*LPI
= dyn_cast
<LandingPadInst
>(&I
)) {
3691 TypePrinter
.print(I
.getType(), Out
);
3692 if (LPI
->isCleanup() || LPI
->getNumClauses() != 0)
3695 if (LPI
->isCleanup())
3698 for (unsigned i
= 0, e
= LPI
->getNumClauses(); i
!= e
; ++i
) {
3699 if (i
!= 0 || LPI
->isCleanup()) Out
<< "\n";
3700 if (LPI
->isCatch(i
))
3705 writeOperand(LPI
->getClause(i
), true);
3707 } else if (const auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(&I
)) {
3709 writeOperand(CatchSwitch
->getParentPad(), /*PrintType=*/false);
3712 for (const BasicBlock
*PadBB
: CatchSwitch
->handlers()) {
3715 writeOperand(PadBB
, /*PrintType=*/true);
3719 if (const BasicBlock
*UnwindDest
= CatchSwitch
->getUnwindDest())
3720 writeOperand(UnwindDest
, /*PrintType=*/true);
3723 } else if (const auto *FPI
= dyn_cast
<FuncletPadInst
>(&I
)) {
3725 writeOperand(FPI
->getParentPad(), /*PrintType=*/false);
3727 for (unsigned Op
= 0, NumOps
= FPI
->getNumArgOperands(); Op
< NumOps
;
3731 writeOperand(FPI
->getArgOperand(Op
), /*PrintType=*/true);
3734 } else if (isa
<ReturnInst
>(I
) && !Operand
) {
3736 } else if (const auto *CRI
= dyn_cast
<CatchReturnInst
>(&I
)) {
3738 writeOperand(CRI
->getOperand(0), /*PrintType=*/false);
3741 writeOperand(CRI
->getOperand(1), /*PrintType=*/true);
3742 } else if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(&I
)) {
3744 writeOperand(CRI
->getOperand(0), /*PrintType=*/false);
3747 if (CRI
->hasUnwindDest())
3748 writeOperand(CRI
->getOperand(1), /*PrintType=*/true);
3751 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
3752 // Print the calling convention being used.
3753 if (CI
->getCallingConv() != CallingConv::C
) {
3755 PrintCallingConv(CI
->getCallingConv(), Out
);
3758 Operand
= CI
->getCalledValue();
3759 FunctionType
*FTy
= CI
->getFunctionType();
3760 Type
*RetTy
= FTy
->getReturnType();
3761 const AttributeList
&PAL
= CI
->getAttributes();
3763 if (PAL
.hasAttributes(AttributeList::ReturnIndex
))
3764 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
3766 // Only print addrspace(N) if necessary:
3767 maybePrintCallAddrSpace(Operand
, &I
, Out
);
3769 // If possible, print out the short form of the call instruction. We can
3770 // only do this if the first argument is a pointer to a nonvararg function,
3771 // and if the return type is not a pointer to a function.
3774 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
3776 writeOperand(Operand
, false);
3778 for (unsigned op
= 0, Eop
= CI
->getNumArgOperands(); op
< Eop
; ++op
) {
3781 writeParamOperand(CI
->getArgOperand(op
), PAL
.getParamAttributes(op
));
3784 // Emit an ellipsis if this is a musttail call in a vararg function. This
3785 // is only to aid readability, musttail calls forward varargs by default.
3786 if (CI
->isMustTailCall() && CI
->getParent() &&
3787 CI
->getParent()->getParent() &&
3788 CI
->getParent()->getParent()->isVarArg())
3792 if (PAL
.hasAttributes(AttributeList::FunctionIndex
))
3793 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttributes());
3795 writeOperandBundles(CI
);
3796 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
3797 Operand
= II
->getCalledValue();
3798 FunctionType
*FTy
= II
->getFunctionType();
3799 Type
*RetTy
= FTy
->getReturnType();
3800 const AttributeList
&PAL
= II
->getAttributes();
3802 // Print the calling convention being used.
3803 if (II
->getCallingConv() != CallingConv::C
) {
3805 PrintCallingConv(II
->getCallingConv(), Out
);
3808 if (PAL
.hasAttributes(AttributeList::ReturnIndex
))
3809 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
3811 // Only print addrspace(N) if necessary:
3812 maybePrintCallAddrSpace(Operand
, &I
, Out
);
3814 // If possible, print out the short form of the invoke instruction. We can
3815 // only do this if the first argument is a pointer to a nonvararg function,
3816 // and if the return type is not a pointer to a function.
3819 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
3821 writeOperand(Operand
, false);
3823 for (unsigned op
= 0, Eop
= II
->getNumArgOperands(); op
< Eop
; ++op
) {
3826 writeParamOperand(II
->getArgOperand(op
), PAL
.getParamAttributes(op
));
3830 if (PAL
.hasAttributes(AttributeList::FunctionIndex
))
3831 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttributes());
3833 writeOperandBundles(II
);
3836 writeOperand(II
->getNormalDest(), true);
3838 writeOperand(II
->getUnwindDest(), true);
3839 } else if (const CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(&I
)) {
3840 Operand
= CBI
->getCalledValue();
3841 FunctionType
*FTy
= CBI
->getFunctionType();
3842 Type
*RetTy
= FTy
->getReturnType();
3843 const AttributeList
&PAL
= CBI
->getAttributes();
3845 // Print the calling convention being used.
3846 if (CBI
->getCallingConv() != CallingConv::C
) {
3848 PrintCallingConv(CBI
->getCallingConv(), Out
);
3851 if (PAL
.hasAttributes(AttributeList::ReturnIndex
))
3852 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
3854 // If possible, print out the short form of the callbr instruction. We can
3855 // only do this if the first argument is a pointer to a nonvararg function,
3856 // and if the return type is not a pointer to a function.
3859 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
3861 writeOperand(Operand
, false);
3863 for (unsigned op
= 0, Eop
= CBI
->getNumArgOperands(); op
< Eop
; ++op
) {
3866 writeParamOperand(CBI
->getArgOperand(op
), PAL
.getParamAttributes(op
));
3870 if (PAL
.hasAttributes(AttributeList::FunctionIndex
))
3871 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttributes());
3873 writeOperandBundles(CBI
);
3876 writeOperand(CBI
->getDefaultDest(), true);
3878 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
) {
3881 writeOperand(CBI
->getIndirectDest(i
), true);
3884 } else if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(&I
)) {
3886 if (AI
->isUsedWithInAlloca())
3888 if (AI
->isSwiftError())
3889 Out
<< "swifterror ";
3890 TypePrinter
.print(AI
->getAllocatedType(), Out
);
3892 // Explicitly write the array size if the code is broken, if it's an array
3893 // allocation, or if the type is not canonical for scalar allocations. The
3894 // latter case prevents the type from mutating when round-tripping through
3896 if (!AI
->getArraySize() || AI
->isArrayAllocation() ||
3897 !AI
->getArraySize()->getType()->isIntegerTy(32)) {
3899 writeOperand(AI
->getArraySize(), true);
3901 if (AI
->getAlignment()) {
3902 Out
<< ", align " << AI
->getAlignment();
3905 unsigned AddrSpace
= AI
->getType()->getAddressSpace();
3906 if (AddrSpace
!= 0) {
3907 Out
<< ", addrspace(" << AddrSpace
<< ')';
3909 } else if (isa
<CastInst
>(I
)) {
3912 writeOperand(Operand
, true); // Work with broken code
3915 TypePrinter
.print(I
.getType(), Out
);
3916 } else if (isa
<VAArgInst
>(I
)) {
3919 writeOperand(Operand
, true); // Work with broken code
3922 TypePrinter
.print(I
.getType(), Out
);
3923 } else if (Operand
) { // Print the normal way.
3924 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
3926 TypePrinter
.print(GEP
->getSourceElementType(), Out
);
3928 } else if (const auto *LI
= dyn_cast
<LoadInst
>(&I
)) {
3930 TypePrinter
.print(LI
->getType(), Out
);
3934 // PrintAllTypes - Instructions who have operands of all the same type
3935 // omit the type from all but the first operand. If the instruction has
3936 // different type operands (for example br), then they are all printed.
3937 bool PrintAllTypes
= false;
3938 Type
*TheType
= Operand
->getType();
3940 // Select, Store and ShuffleVector always print all types.
3941 if (isa
<SelectInst
>(I
) || isa
<StoreInst
>(I
) || isa
<ShuffleVectorInst
>(I
)
3942 || isa
<ReturnInst
>(I
)) {
3943 PrintAllTypes
= true;
3945 for (unsigned i
= 1, E
= I
.getNumOperands(); i
!= E
; ++i
) {
3946 Operand
= I
.getOperand(i
);
3947 // note that Operand shouldn't be null, but the test helps make dump()
3948 // more tolerant of malformed IR
3949 if (Operand
&& Operand
->getType() != TheType
) {
3950 PrintAllTypes
= true; // We have differing types! Print them all!
3956 if (!PrintAllTypes
) {
3958 TypePrinter
.print(TheType
, Out
);
3962 for (unsigned i
= 0, E
= I
.getNumOperands(); i
!= E
; ++i
) {
3964 writeOperand(I
.getOperand(i
), PrintAllTypes
);
3968 // Print atomic ordering/alignment for memory operations
3969 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
3971 writeAtomic(LI
->getContext(), LI
->getOrdering(), LI
->getSyncScopeID());
3972 if (LI
->getAlignment())
3973 Out
<< ", align " << LI
->getAlignment();
3974 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
3976 writeAtomic(SI
->getContext(), SI
->getOrdering(), SI
->getSyncScopeID());
3977 if (SI
->getAlignment())
3978 Out
<< ", align " << SI
->getAlignment();
3979 } else if (const AtomicCmpXchgInst
*CXI
= dyn_cast
<AtomicCmpXchgInst
>(&I
)) {
3980 writeAtomicCmpXchg(CXI
->getContext(), CXI
->getSuccessOrdering(),
3981 CXI
->getFailureOrdering(), CXI
->getSyncScopeID());
3982 } else if (const AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(&I
)) {
3983 writeAtomic(RMWI
->getContext(), RMWI
->getOrdering(),
3984 RMWI
->getSyncScopeID());
3985 } else if (const FenceInst
*FI
= dyn_cast
<FenceInst
>(&I
)) {
3986 writeAtomic(FI
->getContext(), FI
->getOrdering(), FI
->getSyncScopeID());
3989 // Print Metadata info.
3990 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> InstMD
;
3991 I
.getAllMetadata(InstMD
);
3992 printMetadataAttachments(InstMD
, ", ");
3994 // Print a nice comment.
3995 printInfoComment(I
);
3998 void AssemblyWriter::printMetadataAttachments(
3999 const SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
,
4000 StringRef Separator
) {
4004 if (MDNames
.empty())
4005 MDs
[0].second
->getContext().getMDKindNames(MDNames
);
4007 for (const auto &I
: MDs
) {
4008 unsigned Kind
= I
.first
;
4010 if (Kind
< MDNames
.size()) {
4012 printMetadataIdentifier(MDNames
[Kind
], Out
);
4014 Out
<< "!<unknown kind #" << Kind
<< ">";
4016 WriteAsOperandInternal(Out
, I
.second
, &TypePrinter
, &Machine
, TheModule
);
4020 void AssemblyWriter::writeMDNode(unsigned Slot
, const MDNode
*Node
) {
4021 Out
<< '!' << Slot
<< " = ";
4022 printMDNodeBody(Node
);
4026 void AssemblyWriter::writeAllMDNodes() {
4027 SmallVector
<const MDNode
*, 16> Nodes
;
4028 Nodes
.resize(Machine
.mdn_size());
4029 for (SlotTracker::mdn_iterator I
= Machine
.mdn_begin(), E
= Machine
.mdn_end();
4031 Nodes
[I
->second
] = cast
<MDNode
>(I
->first
);
4033 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
4034 writeMDNode(i
, Nodes
[i
]);
4038 void AssemblyWriter::printMDNodeBody(const MDNode
*Node
) {
4039 WriteMDNodeBodyInternal(Out
, Node
, &TypePrinter
, &Machine
, TheModule
);
4042 void AssemblyWriter::writeAllAttributeGroups() {
4043 std::vector
<std::pair
<AttributeSet
, unsigned>> asVec
;
4044 asVec
.resize(Machine
.as_size());
4046 for (SlotTracker::as_iterator I
= Machine
.as_begin(), E
= Machine
.as_end();
4048 asVec
[I
->second
] = *I
;
4050 for (const auto &I
: asVec
)
4051 Out
<< "attributes #" << I
.second
<< " = { "
4052 << I
.first
.getAsString(true) << " }\n";
4055 void AssemblyWriter::printUseListOrder(const UseListOrder
&Order
) {
4056 bool IsInFunction
= Machine
.getFunction();
4060 Out
<< "uselistorder";
4061 if (const BasicBlock
*BB
=
4062 IsInFunction
? nullptr : dyn_cast
<BasicBlock
>(Order
.V
)) {
4064 writeOperand(BB
->getParent(), false);
4066 writeOperand(BB
, false);
4069 writeOperand(Order
.V
, true);
4073 assert(Order
.Shuffle
.size() >= 2 && "Shuffle too small");
4074 Out
<< Order
.Shuffle
[0];
4075 for (unsigned I
= 1, E
= Order
.Shuffle
.size(); I
!= E
; ++I
)
4076 Out
<< ", " << Order
.Shuffle
[I
];
4080 void AssemblyWriter::printUseLists(const Function
*F
) {
4082 [&]() { return !UseListOrders
.empty() && UseListOrders
.back().F
== F
; };
4087 Out
<< "\n; uselistorder directives\n";
4089 printUseListOrder(UseListOrders
.back());
4090 UseListOrders
.pop_back();
4094 //===----------------------------------------------------------------------===//
4095 // External Interface declarations
4096 //===----------------------------------------------------------------------===//
4098 void Function::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
,
4099 bool ShouldPreserveUseListOrder
,
4100 bool IsForDebug
) const {
4101 SlotTracker
SlotTable(this->getParent());
4102 formatted_raw_ostream
OS(ROS
);
4103 AssemblyWriter
W(OS
, SlotTable
, this->getParent(), AAW
,
4105 ShouldPreserveUseListOrder
);
4106 W
.printFunction(this);
4109 void Module::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
,
4110 bool ShouldPreserveUseListOrder
, bool IsForDebug
) const {
4111 SlotTracker
SlotTable(this);
4112 formatted_raw_ostream
OS(ROS
);
4113 AssemblyWriter
W(OS
, SlotTable
, this, AAW
, IsForDebug
,
4114 ShouldPreserveUseListOrder
);
4115 W
.printModule(this);
4118 void NamedMDNode::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4119 SlotTracker
SlotTable(getParent());
4120 formatted_raw_ostream
OS(ROS
);
4121 AssemblyWriter
W(OS
, SlotTable
, getParent(), nullptr, IsForDebug
);
4122 W
.printNamedMDNode(this);
4125 void NamedMDNode::print(raw_ostream
&ROS
, ModuleSlotTracker
&MST
,
4126 bool IsForDebug
) const {
4127 Optional
<SlotTracker
> LocalST
;
4128 SlotTracker
*SlotTable
;
4129 if (auto *ST
= MST
.getMachine())
4132 LocalST
.emplace(getParent());
4133 SlotTable
= &*LocalST
;
4136 formatted_raw_ostream
OS(ROS
);
4137 AssemblyWriter
W(OS
, *SlotTable
, getParent(), nullptr, IsForDebug
);
4138 W
.printNamedMDNode(this);
4141 void Comdat::print(raw_ostream
&ROS
, bool /*IsForDebug*/) const {
4142 PrintLLVMName(ROS
, getName(), ComdatPrefix
);
4143 ROS
<< " = comdat ";
4145 switch (getSelectionKind()) {
4149 case Comdat::ExactMatch
:
4150 ROS
<< "exactmatch";
4152 case Comdat::Largest
:
4155 case Comdat::NoDuplicates
:
4156 ROS
<< "noduplicates";
4158 case Comdat::SameSize
:
4166 void Type::print(raw_ostream
&OS
, bool /*IsForDebug*/, bool NoDetails
) const {
4168 TP
.print(const_cast<Type
*>(this), OS
);
4173 // If the type is a named struct type, print the body as well.
4174 if (StructType
*STy
= dyn_cast
<StructType
>(const_cast<Type
*>(this)))
4175 if (!STy
->isLiteral()) {
4177 TP
.printStructBody(STy
, OS
);
4181 static bool isReferencingMDNode(const Instruction
&I
) {
4182 if (const auto *CI
= dyn_cast
<CallInst
>(&I
))
4183 if (Function
*F
= CI
->getCalledFunction())
4184 if (F
->isIntrinsic())
4185 for (auto &Op
: I
.operands())
4186 if (auto *V
= dyn_cast_or_null
<MetadataAsValue
>(Op
))
4187 if (isa
<MDNode
>(V
->getMetadata()))
4192 void Value::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4193 bool ShouldInitializeAllMetadata
= false;
4194 if (auto *I
= dyn_cast
<Instruction
>(this))
4195 ShouldInitializeAllMetadata
= isReferencingMDNode(*I
);
4196 else if (isa
<Function
>(this) || isa
<MetadataAsValue
>(this))
4197 ShouldInitializeAllMetadata
= true;
4199 ModuleSlotTracker
MST(getModuleFromVal(this), ShouldInitializeAllMetadata
);
4200 print(ROS
, MST
, IsForDebug
);
4203 void Value::print(raw_ostream
&ROS
, ModuleSlotTracker
&MST
,
4204 bool IsForDebug
) const {
4205 formatted_raw_ostream
OS(ROS
);
4206 SlotTracker
EmptySlotTable(static_cast<const Module
*>(nullptr));
4207 SlotTracker
&SlotTable
=
4208 MST
.getMachine() ? *MST
.getMachine() : EmptySlotTable
;
4209 auto incorporateFunction
= [&](const Function
*F
) {
4211 MST
.incorporateFunction(*F
);
4214 if (const Instruction
*I
= dyn_cast
<Instruction
>(this)) {
4215 incorporateFunction(I
->getParent() ? I
->getParent()->getParent() : nullptr);
4216 AssemblyWriter
W(OS
, SlotTable
, getModuleFromVal(I
), nullptr, IsForDebug
);
4217 W
.printInstruction(*I
);
4218 } else if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this)) {
4219 incorporateFunction(BB
->getParent());
4220 AssemblyWriter
W(OS
, SlotTable
, getModuleFromVal(BB
), nullptr, IsForDebug
);
4221 W
.printBasicBlock(BB
);
4222 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
4223 AssemblyWriter
W(OS
, SlotTable
, GV
->getParent(), nullptr, IsForDebug
);
4224 if (const GlobalVariable
*V
= dyn_cast
<GlobalVariable
>(GV
))
4226 else if (const Function
*F
= dyn_cast
<Function
>(GV
))
4229 W
.printIndirectSymbol(cast
<GlobalIndirectSymbol
>(GV
));
4230 } else if (const MetadataAsValue
*V
= dyn_cast
<MetadataAsValue
>(this)) {
4231 V
->getMetadata()->print(ROS
, MST
, getModuleFromVal(V
));
4232 } else if (const Constant
*C
= dyn_cast
<Constant
>(this)) {
4233 TypePrinting TypePrinter
;
4234 TypePrinter
.print(C
->getType(), OS
);
4236 WriteConstantInternal(OS
, C
, TypePrinter
, MST
.getMachine(), nullptr);
4237 } else if (isa
<InlineAsm
>(this) || isa
<Argument
>(this)) {
4238 this->printAsOperand(OS
, /* PrintType */ true, MST
);
4240 llvm_unreachable("Unknown value to print out!");
4244 /// Print without a type, skipping the TypePrinting object.
4246 /// \return \c true iff printing was successful.
4247 static bool printWithoutType(const Value
&V
, raw_ostream
&O
,
4248 SlotTracker
*Machine
, const Module
*M
) {
4249 if (V
.hasName() || isa
<GlobalValue
>(V
) ||
4250 (!isa
<Constant
>(V
) && !isa
<MetadataAsValue
>(V
))) {
4251 WriteAsOperandInternal(O
, &V
, nullptr, Machine
, M
);
4257 static void printAsOperandImpl(const Value
&V
, raw_ostream
&O
, bool PrintType
,
4258 ModuleSlotTracker
&MST
) {
4259 TypePrinting
TypePrinter(MST
.getModule());
4261 TypePrinter
.print(V
.getType(), O
);
4265 WriteAsOperandInternal(O
, &V
, &TypePrinter
, MST
.getMachine(),
4269 void Value::printAsOperand(raw_ostream
&O
, bool PrintType
,
4270 const Module
*M
) const {
4272 M
= getModuleFromVal(this);
4275 if (printWithoutType(*this, O
, nullptr, M
))
4278 SlotTracker
Machine(
4279 M
, /* ShouldInitializeAllMetadata */ isa
<MetadataAsValue
>(this));
4280 ModuleSlotTracker
MST(Machine
, M
);
4281 printAsOperandImpl(*this, O
, PrintType
, MST
);
4284 void Value::printAsOperand(raw_ostream
&O
, bool PrintType
,
4285 ModuleSlotTracker
&MST
) const {
4287 if (printWithoutType(*this, O
, MST
.getMachine(), MST
.getModule()))
4290 printAsOperandImpl(*this, O
, PrintType
, MST
);
4293 static void printMetadataImpl(raw_ostream
&ROS
, const Metadata
&MD
,
4294 ModuleSlotTracker
&MST
, const Module
*M
,
4295 bool OnlyAsOperand
) {
4296 formatted_raw_ostream
OS(ROS
);
4298 TypePrinting
TypePrinter(M
);
4300 WriteAsOperandInternal(OS
, &MD
, &TypePrinter
, MST
.getMachine(), M
,
4301 /* FromValue */ true);
4303 auto *N
= dyn_cast
<MDNode
>(&MD
);
4304 if (OnlyAsOperand
|| !N
|| isa
<DIExpression
>(MD
))
4308 WriteMDNodeBodyInternal(OS
, N
, &TypePrinter
, MST
.getMachine(), M
);
4311 void Metadata::printAsOperand(raw_ostream
&OS
, const Module
*M
) const {
4312 ModuleSlotTracker
MST(M
, isa
<MDNode
>(this));
4313 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ true);
4316 void Metadata::printAsOperand(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
4317 const Module
*M
) const {
4318 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ true);
4321 void Metadata::print(raw_ostream
&OS
, const Module
*M
,
4322 bool /*IsForDebug*/) const {
4323 ModuleSlotTracker
MST(M
, isa
<MDNode
>(this));
4324 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ false);
4327 void Metadata::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
4328 const Module
*M
, bool /*IsForDebug*/) const {
4329 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ false);
4332 void ModuleSummaryIndex::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4333 SlotTracker
SlotTable(this);
4334 formatted_raw_ostream
OS(ROS
);
4335 AssemblyWriter
W(OS
, SlotTable
, this, IsForDebug
);
4336 W
.printModuleSummaryIndex();
4339 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4340 // Value::dump - allow easy printing of Values from the debugger.
4342 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4344 // Type::dump - allow easy printing of Types from the debugger.
4346 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4348 // Module::dump() - Allow printing of Modules from the debugger.
4350 void Module::dump() const {
4351 print(dbgs(), nullptr,
4352 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4355 // Allow printing of Comdats from the debugger.
4357 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4359 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4361 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4364 void Metadata::dump() const { dump(nullptr); }
4367 void Metadata::dump(const Module
*M
) const {
4368 print(dbgs(), M
, /*IsForDebug=*/true);
4372 // Allow printing of ModuleSummaryIndex from the debugger.
4374 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }