Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / IR / ConstantRange.cpp
blobbab83fcddf736cda27cc79ef0d1424e62a8a03a3
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
16 // [F, F) = {} = Empty set
17 // [T, F) = {T}
18 // [F, T) = {F}
19 // [T, T) = {F, T} = Full set
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
39 using namespace llvm;
41 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
42 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
43 Upper(Lower) {}
45 ConstantRange::ConstantRange(APInt V)
46 : Lower(std::move(V)), Upper(Lower + 1) {}
48 ConstantRange::ConstantRange(APInt L, APInt U)
49 : Lower(std::move(L)), Upper(std::move(U)) {
50 assert(Lower.getBitWidth() == Upper.getBitWidth() &&
51 "ConstantRange with unequal bit widths");
52 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
53 "Lower == Upper, but they aren't min or max value!");
56 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
57 const ConstantRange &CR) {
58 if (CR.isEmptySet())
59 return CR;
61 uint32_t W = CR.getBitWidth();
62 switch (Pred) {
63 default:
64 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
65 case CmpInst::ICMP_EQ:
66 return CR;
67 case CmpInst::ICMP_NE:
68 if (CR.isSingleElement())
69 return ConstantRange(CR.getUpper(), CR.getLower());
70 return ConstantRange(W);
71 case CmpInst::ICMP_ULT: {
72 APInt UMax(CR.getUnsignedMax());
73 if (UMax.isMinValue())
74 return ConstantRange(W, /* empty */ false);
75 return ConstantRange(APInt::getMinValue(W), std::move(UMax));
77 case CmpInst::ICMP_SLT: {
78 APInt SMax(CR.getSignedMax());
79 if (SMax.isMinSignedValue())
80 return ConstantRange(W, /* empty */ false);
81 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
83 case CmpInst::ICMP_ULE: {
84 APInt UMax(CR.getUnsignedMax());
85 if (UMax.isMaxValue())
86 return ConstantRange(W);
87 return ConstantRange(APInt::getMinValue(W), std::move(UMax) + 1);
89 case CmpInst::ICMP_SLE: {
90 APInt SMax(CR.getSignedMax());
91 if (SMax.isMaxSignedValue())
92 return ConstantRange(W);
93 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax) + 1);
95 case CmpInst::ICMP_UGT: {
96 APInt UMin(CR.getUnsignedMin());
97 if (UMin.isMaxValue())
98 return ConstantRange(W, /* empty */ false);
99 return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
101 case CmpInst::ICMP_SGT: {
102 APInt SMin(CR.getSignedMin());
103 if (SMin.isMaxSignedValue())
104 return ConstantRange(W, /* empty */ false);
105 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
107 case CmpInst::ICMP_UGE: {
108 APInt UMin(CR.getUnsignedMin());
109 if (UMin.isMinValue())
110 return ConstantRange(W);
111 return ConstantRange(std::move(UMin), APInt::getNullValue(W));
113 case CmpInst::ICMP_SGE: {
114 APInt SMin(CR.getSignedMin());
115 if (SMin.isMinSignedValue())
116 return ConstantRange(W);
117 return ConstantRange(std::move(SMin), APInt::getSignedMinValue(W));
122 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
123 const ConstantRange &CR) {
124 // Follows from De-Morgan's laws:
126 // ~(~A union ~B) == A intersect B.
128 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
129 .inverse();
132 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
133 const APInt &C) {
134 // Computes the exact range that is equal to both the constant ranges returned
135 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
136 // when RHS is a singleton such as an APInt and so the assert is valid.
137 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
138 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
140 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
141 return makeAllowedICmpRegion(Pred, C);
144 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
145 APInt &RHS) const {
146 bool Success = false;
148 if (isFullSet() || isEmptySet()) {
149 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
150 RHS = APInt(getBitWidth(), 0);
151 Success = true;
152 } else if (auto *OnlyElt = getSingleElement()) {
153 Pred = CmpInst::ICMP_EQ;
154 RHS = *OnlyElt;
155 Success = true;
156 } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
157 Pred = CmpInst::ICMP_NE;
158 RHS = *OnlyMissingElt;
159 Success = true;
160 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
161 Pred =
162 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
163 RHS = getUpper();
164 Success = true;
165 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
166 Pred =
167 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
168 RHS = getLower();
169 Success = true;
172 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
173 "Bad result!");
175 return Success;
178 ConstantRange
179 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
180 const ConstantRange &Other,
181 unsigned NoWrapKind) {
182 using OBO = OverflowingBinaryOperator;
184 // Computes the intersection of CR0 and CR1. It is different from
185 // intersectWith in that the ConstantRange returned will only contain elements
186 // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
187 // not, of both X and Y).
188 auto SubsetIntersect =
189 [](const ConstantRange &CR0, const ConstantRange &CR1) {
190 return CR0.inverse().unionWith(CR1.inverse()).inverse();
193 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
195 assert((NoWrapKind == OBO::NoSignedWrap ||
196 NoWrapKind == OBO::NoUnsignedWrap ||
197 NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&
198 "NoWrapKind invalid!");
200 unsigned BitWidth = Other.getBitWidth();
201 ConstantRange Result(BitWidth);
203 switch (BinOp) {
204 default:
205 // Conservative answer: empty set
206 return ConstantRange(BitWidth, false);
208 case Instruction::Add:
209 if (auto *C = Other.getSingleElement())
210 if (C->isNullValue())
211 // Full set: nothing signed / unsigned wraps when added to 0.
212 return ConstantRange(BitWidth);
213 if (NoWrapKind & OBO::NoUnsignedWrap)
214 Result =
215 SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
216 -Other.getUnsignedMax()));
217 if (NoWrapKind & OBO::NoSignedWrap) {
218 const APInt &SignedMin = Other.getSignedMin();
219 const APInt &SignedMax = Other.getSignedMax();
220 if (SignedMax.isStrictlyPositive())
221 Result = SubsetIntersect(
222 Result,
223 ConstantRange(APInt::getSignedMinValue(BitWidth),
224 APInt::getSignedMinValue(BitWidth) - SignedMax));
225 if (SignedMin.isNegative())
226 Result = SubsetIntersect(
227 Result,
228 ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
229 APInt::getSignedMinValue(BitWidth)));
231 return Result;
233 case Instruction::Sub:
234 if (auto *C = Other.getSingleElement())
235 if (C->isNullValue())
236 // Full set: nothing signed / unsigned wraps when subtracting 0.
237 return ConstantRange(BitWidth);
238 if (NoWrapKind & OBO::NoUnsignedWrap)
239 Result =
240 SubsetIntersect(Result, ConstantRange(Other.getUnsignedMax(),
241 APInt::getMinValue(BitWidth)));
242 if (NoWrapKind & OBO::NoSignedWrap) {
243 const APInt &SignedMin = Other.getSignedMin();
244 const APInt &SignedMax = Other.getSignedMax();
245 if (SignedMax.isStrictlyPositive())
246 Result = SubsetIntersect(
247 Result,
248 ConstantRange(APInt::getSignedMinValue(BitWidth) + SignedMax,
249 APInt::getSignedMinValue(BitWidth)));
250 if (SignedMin.isNegative())
251 Result = SubsetIntersect(
252 Result,
253 ConstantRange(APInt::getSignedMinValue(BitWidth),
254 APInt::getSignedMinValue(BitWidth) + SignedMin));
256 return Result;
257 case Instruction::Mul: {
258 if (NoWrapKind == (OBO::NoSignedWrap | OBO::NoUnsignedWrap)) {
259 return SubsetIntersect(
260 makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoSignedWrap),
261 makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoUnsignedWrap));
264 // Equivalent to calling makeGuaranteedNoWrapRegion() on [V, V+1).
265 const bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
266 const auto makeSingleValueRegion = [Unsigned,
267 BitWidth](APInt V) -> ConstantRange {
268 // Handle special case for 0, -1 and 1. See the last for reason why we
269 // specialize -1 and 1.
270 if (V == 0 || V.isOneValue())
271 return ConstantRange(BitWidth, true);
273 APInt MinValue, MaxValue;
274 if (Unsigned) {
275 MinValue = APInt::getMinValue(BitWidth);
276 MaxValue = APInt::getMaxValue(BitWidth);
277 } else {
278 MinValue = APInt::getSignedMinValue(BitWidth);
279 MaxValue = APInt::getSignedMaxValue(BitWidth);
281 // e.g. Returning [-127, 127], represented as [-127, -128).
282 if (!Unsigned && V.isAllOnesValue())
283 return ConstantRange(-MaxValue, MinValue);
285 APInt Lower, Upper;
286 if (!Unsigned && V.isNegative()) {
287 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
288 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
289 } else if (Unsigned) {
290 Lower = APIntOps::RoundingUDiv(MinValue, V, APInt::Rounding::UP);
291 Upper = APIntOps::RoundingUDiv(MaxValue, V, APInt::Rounding::DOWN);
292 } else {
293 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
294 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
296 if (Unsigned) {
297 Lower = Lower.zextOrSelf(BitWidth);
298 Upper = Upper.zextOrSelf(BitWidth);
299 } else {
300 Lower = Lower.sextOrSelf(BitWidth);
301 Upper = Upper.sextOrSelf(BitWidth);
303 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
304 // Upper + 1 is guanranteed not to overflow, because |divisor| > 1. 0, -1,
305 // and 1 are already handled as special cases.
306 return ConstantRange(Lower, Upper + 1);
309 if (Unsigned)
310 return makeSingleValueRegion(Other.getUnsignedMax());
312 return SubsetIntersect(makeSingleValueRegion(Other.getSignedMin()),
313 makeSingleValueRegion(Other.getSignedMax()));
318 bool ConstantRange::isFullSet() const {
319 return Lower == Upper && Lower.isMaxValue();
322 bool ConstantRange::isEmptySet() const {
323 return Lower == Upper && Lower.isMinValue();
326 bool ConstantRange::isWrappedSet() const {
327 return Lower.ugt(Upper);
330 bool ConstantRange::isSignWrappedSet() const {
331 return contains(APInt::getSignedMaxValue(getBitWidth())) &&
332 contains(APInt::getSignedMinValue(getBitWidth()));
335 APInt ConstantRange::getSetSize() const {
336 if (isFullSet())
337 return APInt::getOneBitSet(getBitWidth()+1, getBitWidth());
339 // This is also correct for wrapped sets.
340 return (Upper - Lower).zext(getBitWidth()+1);
343 bool
344 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
345 assert(getBitWidth() == Other.getBitWidth());
346 if (isFullSet())
347 return false;
348 if (Other.isFullSet())
349 return true;
350 return (Upper - Lower).ult(Other.Upper - Other.Lower);
353 bool
354 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
355 assert(MaxSize && "MaxSize can't be 0.");
356 // If this a full set, we need special handling to avoid needing an extra bit
357 // to represent the size.
358 if (isFullSet())
359 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
361 return (Upper - Lower).ugt(MaxSize);
364 APInt ConstantRange::getUnsignedMax() const {
365 if (isFullSet() || isWrappedSet())
366 return APInt::getMaxValue(getBitWidth());
367 return getUpper() - 1;
370 APInt ConstantRange::getUnsignedMin() const {
371 if (isFullSet() || (isWrappedSet() && !getUpper().isNullValue()))
372 return APInt::getMinValue(getBitWidth());
373 return getLower();
376 APInt ConstantRange::getSignedMax() const {
377 if (isFullSet() || Lower.sgt(Upper))
378 return APInt::getSignedMaxValue(getBitWidth());
379 return getUpper() - 1;
382 APInt ConstantRange::getSignedMin() const {
383 if (isFullSet() || (Lower.sgt(Upper) && !getUpper().isMinSignedValue()))
384 return APInt::getSignedMinValue(getBitWidth());
385 return getLower();
388 bool ConstantRange::contains(const APInt &V) const {
389 if (Lower == Upper)
390 return isFullSet();
392 if (!isWrappedSet())
393 return Lower.ule(V) && V.ult(Upper);
394 return Lower.ule(V) || V.ult(Upper);
397 bool ConstantRange::contains(const ConstantRange &Other) const {
398 if (isFullSet() || Other.isEmptySet()) return true;
399 if (isEmptySet() || Other.isFullSet()) return false;
401 if (!isWrappedSet()) {
402 if (Other.isWrappedSet())
403 return false;
405 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
408 if (!Other.isWrappedSet())
409 return Other.getUpper().ule(Upper) ||
410 Lower.ule(Other.getLower());
412 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
415 ConstantRange ConstantRange::subtract(const APInt &Val) const {
416 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
417 // If the set is empty or full, don't modify the endpoints.
418 if (Lower == Upper)
419 return *this;
420 return ConstantRange(Lower - Val, Upper - Val);
423 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
424 return intersectWith(CR.inverse());
427 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
428 assert(getBitWidth() == CR.getBitWidth() &&
429 "ConstantRange types don't agree!");
431 // Handle common cases.
432 if ( isEmptySet() || CR.isFullSet()) return *this;
433 if (CR.isEmptySet() || isFullSet()) return CR;
435 if (!isWrappedSet() && CR.isWrappedSet())
436 return CR.intersectWith(*this);
438 if (!isWrappedSet() && !CR.isWrappedSet()) {
439 if (Lower.ult(CR.Lower)) {
440 if (Upper.ule(CR.Lower))
441 return ConstantRange(getBitWidth(), false);
443 if (Upper.ult(CR.Upper))
444 return ConstantRange(CR.Lower, Upper);
446 return CR;
448 if (Upper.ult(CR.Upper))
449 return *this;
451 if (Lower.ult(CR.Upper))
452 return ConstantRange(Lower, CR.Upper);
454 return ConstantRange(getBitWidth(), false);
457 if (isWrappedSet() && !CR.isWrappedSet()) {
458 if (CR.Lower.ult(Upper)) {
459 if (CR.Upper.ult(Upper))
460 return CR;
462 if (CR.Upper.ule(Lower))
463 return ConstantRange(CR.Lower, Upper);
465 if (isSizeStrictlySmallerThan(CR))
466 return *this;
467 return CR;
469 if (CR.Lower.ult(Lower)) {
470 if (CR.Upper.ule(Lower))
471 return ConstantRange(getBitWidth(), false);
473 return ConstantRange(Lower, CR.Upper);
475 return CR;
478 if (CR.Upper.ult(Upper)) {
479 if (CR.Lower.ult(Upper)) {
480 if (isSizeStrictlySmallerThan(CR))
481 return *this;
482 return CR;
485 if (CR.Lower.ult(Lower))
486 return ConstantRange(Lower, CR.Upper);
488 return CR;
490 if (CR.Upper.ule(Lower)) {
491 if (CR.Lower.ult(Lower))
492 return *this;
494 return ConstantRange(CR.Lower, Upper);
496 if (isSizeStrictlySmallerThan(CR))
497 return *this;
498 return CR;
501 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
502 assert(getBitWidth() == CR.getBitWidth() &&
503 "ConstantRange types don't agree!");
505 if ( isFullSet() || CR.isEmptySet()) return *this;
506 if (CR.isFullSet() || isEmptySet()) return CR;
508 if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
510 if (!isWrappedSet() && !CR.isWrappedSet()) {
511 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
512 // If the two ranges are disjoint, find the smaller gap and bridge it.
513 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
514 if (d1.ult(d2))
515 return ConstantRange(Lower, CR.Upper);
516 return ConstantRange(CR.Lower, Upper);
519 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
520 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
522 if (L.isNullValue() && U.isNullValue())
523 return ConstantRange(getBitWidth());
525 return ConstantRange(std::move(L), std::move(U));
528 if (!CR.isWrappedSet()) {
529 // ------U L----- and ------U L----- : this
530 // L--U L--U : CR
531 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
532 return *this;
534 // ------U L----- : this
535 // L---------U : CR
536 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
537 return ConstantRange(getBitWidth());
539 // ----U L---- : this
540 // L---U : CR
541 // <d1> <d2>
542 if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
543 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
544 if (d1.ult(d2))
545 return ConstantRange(Lower, CR.Upper);
546 return ConstantRange(CR.Lower, Upper);
549 // ----U L----- : this
550 // L----U : CR
551 if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
552 return ConstantRange(CR.Lower, Upper);
554 // ------U L---- : this
555 // L-----U : CR
556 assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
557 "ConstantRange::unionWith missed a case with one range wrapped");
558 return ConstantRange(Lower, CR.Upper);
561 // ------U L---- and ------U L---- : this
562 // -U L----------- and ------------U L : CR
563 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
564 return ConstantRange(getBitWidth());
566 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
567 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
569 return ConstantRange(std::move(L), std::move(U));
572 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
573 uint32_t ResultBitWidth) const {
574 switch (CastOp) {
575 default:
576 llvm_unreachable("unsupported cast type");
577 case Instruction::Trunc:
578 return truncate(ResultBitWidth);
579 case Instruction::SExt:
580 return signExtend(ResultBitWidth);
581 case Instruction::ZExt:
582 return zeroExtend(ResultBitWidth);
583 case Instruction::BitCast:
584 return *this;
585 case Instruction::FPToUI:
586 case Instruction::FPToSI:
587 if (getBitWidth() == ResultBitWidth)
588 return *this;
589 else
590 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
591 case Instruction::UIToFP: {
592 // TODO: use input range if available
593 auto BW = getBitWidth();
594 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
595 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
596 return ConstantRange(std::move(Min), std::move(Max));
598 case Instruction::SIToFP: {
599 // TODO: use input range if available
600 auto BW = getBitWidth();
601 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
602 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
603 return ConstantRange(std::move(SMin), std::move(SMax));
605 case Instruction::FPTrunc:
606 case Instruction::FPExt:
607 case Instruction::IntToPtr:
608 case Instruction::PtrToInt:
609 case Instruction::AddrSpaceCast:
610 // Conservatively return full set.
611 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
615 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
616 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
618 unsigned SrcTySize = getBitWidth();
619 assert(SrcTySize < DstTySize && "Not a value extension");
620 if (isFullSet() || isWrappedSet()) {
621 // Change into [0, 1 << src bit width)
622 APInt LowerExt(DstTySize, 0);
623 if (!Upper) // special case: [X, 0) -- not really wrapping around
624 LowerExt = Lower.zext(DstTySize);
625 return ConstantRange(std::move(LowerExt),
626 APInt::getOneBitSet(DstTySize, SrcTySize));
629 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
632 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
633 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
635 unsigned SrcTySize = getBitWidth();
636 assert(SrcTySize < DstTySize && "Not a value extension");
638 // special case: [X, INT_MIN) -- not really wrapping around
639 if (Upper.isMinSignedValue())
640 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
642 if (isFullSet() || isSignWrappedSet()) {
643 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
644 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
647 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
650 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
651 assert(getBitWidth() > DstTySize && "Not a value truncation");
652 if (isEmptySet())
653 return ConstantRange(DstTySize, /*isFullSet=*/false);
654 if (isFullSet())
655 return ConstantRange(DstTySize, /*isFullSet=*/true);
657 APInt LowerDiv(Lower), UpperDiv(Upper);
658 ConstantRange Union(DstTySize, /*isFullSet=*/false);
660 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
661 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
662 // then we do the union with [MaxValue, Upper)
663 if (isWrappedSet()) {
664 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
665 // truncated range.
666 if (Upper.getActiveBits() > DstTySize ||
667 Upper.countTrailingOnes() == DstTySize)
668 return ConstantRange(DstTySize, /*isFullSet=*/true);
670 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
671 UpperDiv.setAllBits();
673 // Union covers the MaxValue case, so return if the remaining range is just
674 // MaxValue(DstTy).
675 if (LowerDiv == UpperDiv)
676 return Union;
679 // Chop off the most significant bits that are past the destination bitwidth.
680 if (LowerDiv.getActiveBits() > DstTySize) {
681 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
682 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
683 LowerDiv -= Adjust;
684 UpperDiv -= Adjust;
687 unsigned UpperDivWidth = UpperDiv.getActiveBits();
688 if (UpperDivWidth <= DstTySize)
689 return ConstantRange(LowerDiv.trunc(DstTySize),
690 UpperDiv.trunc(DstTySize)).unionWith(Union);
692 // The truncated value wraps around. Check if we can do better than fullset.
693 if (UpperDivWidth == DstTySize + 1) {
694 // Clear the MSB so that UpperDiv wraps around.
695 UpperDiv.clearBit(DstTySize);
696 if (UpperDiv.ult(LowerDiv))
697 return ConstantRange(LowerDiv.trunc(DstTySize),
698 UpperDiv.trunc(DstTySize)).unionWith(Union);
701 return ConstantRange(DstTySize, /*isFullSet=*/true);
704 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
705 unsigned SrcTySize = getBitWidth();
706 if (SrcTySize > DstTySize)
707 return truncate(DstTySize);
708 if (SrcTySize < DstTySize)
709 return zeroExtend(DstTySize);
710 return *this;
713 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
714 unsigned SrcTySize = getBitWidth();
715 if (SrcTySize > DstTySize)
716 return truncate(DstTySize);
717 if (SrcTySize < DstTySize)
718 return signExtend(DstTySize);
719 return *this;
722 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
723 const ConstantRange &Other) const {
724 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
726 switch (BinOp) {
727 case Instruction::Add:
728 return add(Other);
729 case Instruction::Sub:
730 return sub(Other);
731 case Instruction::Mul:
732 return multiply(Other);
733 case Instruction::UDiv:
734 return udiv(Other);
735 case Instruction::Shl:
736 return shl(Other);
737 case Instruction::LShr:
738 return lshr(Other);
739 case Instruction::AShr:
740 return ashr(Other);
741 case Instruction::And:
742 return binaryAnd(Other);
743 case Instruction::Or:
744 return binaryOr(Other);
745 // Note: floating point operations applied to abstract ranges are just
746 // ideal integer operations with a lossy representation
747 case Instruction::FAdd:
748 return add(Other);
749 case Instruction::FSub:
750 return sub(Other);
751 case Instruction::FMul:
752 return multiply(Other);
753 default:
754 // Conservatively return full set.
755 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
759 ConstantRange
760 ConstantRange::add(const ConstantRange &Other) const {
761 if (isEmptySet() || Other.isEmptySet())
762 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
763 if (isFullSet() || Other.isFullSet())
764 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
766 APInt NewLower = getLower() + Other.getLower();
767 APInt NewUpper = getUpper() + Other.getUpper() - 1;
768 if (NewLower == NewUpper)
769 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
771 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
772 if (X.isSizeStrictlySmallerThan(*this) ||
773 X.isSizeStrictlySmallerThan(Other))
774 // We've wrapped, therefore, full set.
775 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
776 return X;
779 ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const {
780 // Calculate the subset of this range such that "X + Other" is
781 // guaranteed not to wrap (overflow) for all X in this subset.
782 // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are
783 // passing a single element range.
784 auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add,
785 ConstantRange(Other),
786 OverflowingBinaryOperator::NoSignedWrap);
787 auto NSWConstrainedRange = intersectWith(NSWRange);
789 return NSWConstrainedRange.add(ConstantRange(Other));
792 ConstantRange
793 ConstantRange::sub(const ConstantRange &Other) const {
794 if (isEmptySet() || Other.isEmptySet())
795 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
796 if (isFullSet() || Other.isFullSet())
797 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
799 APInt NewLower = getLower() - Other.getUpper() + 1;
800 APInt NewUpper = getUpper() - Other.getLower();
801 if (NewLower == NewUpper)
802 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
804 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
805 if (X.isSizeStrictlySmallerThan(*this) ||
806 X.isSizeStrictlySmallerThan(Other))
807 // We've wrapped, therefore, full set.
808 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
809 return X;
812 ConstantRange
813 ConstantRange::multiply(const ConstantRange &Other) const {
814 // TODO: If either operand is a single element and the multiply is known to
815 // be non-wrapping, round the result min and max value to the appropriate
816 // multiple of that element. If wrapping is possible, at least adjust the
817 // range according to the greatest power-of-two factor of the single element.
819 if (isEmptySet() || Other.isEmptySet())
820 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
822 // Multiplication is signedness-independent. However different ranges can be
823 // obtained depending on how the input ranges are treated. These different
824 // ranges are all conservatively correct, but one might be better than the
825 // other. We calculate two ranges; one treating the inputs as unsigned
826 // and the other signed, then return the smallest of these ranges.
828 // Unsigned range first.
829 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
830 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
831 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
832 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
834 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
835 this_max * Other_max + 1);
836 ConstantRange UR = Result_zext.truncate(getBitWidth());
838 // If the unsigned range doesn't wrap, and isn't negative then it's a range
839 // from one positive number to another which is as good as we can generate.
840 // In this case, skip the extra work of generating signed ranges which aren't
841 // going to be better than this range.
842 if (!UR.isWrappedSet() &&
843 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
844 return UR;
846 // Now the signed range. Because we could be dealing with negative numbers
847 // here, the lower bound is the smallest of the cartesian product of the
848 // lower and upper ranges; for example:
849 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
850 // Similarly for the upper bound, swapping min for max.
852 this_min = getSignedMin().sext(getBitWidth() * 2);
853 this_max = getSignedMax().sext(getBitWidth() * 2);
854 Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
855 Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
857 auto L = {this_min * Other_min, this_min * Other_max,
858 this_max * Other_min, this_max * Other_max};
859 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
860 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
861 ConstantRange SR = Result_sext.truncate(getBitWidth());
863 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
866 ConstantRange
867 ConstantRange::smax(const ConstantRange &Other) const {
868 // X smax Y is: range(smax(X_smin, Y_smin),
869 // smax(X_smax, Y_smax))
870 if (isEmptySet() || Other.isEmptySet())
871 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
872 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
873 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
874 if (NewU == NewL)
875 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
876 return ConstantRange(std::move(NewL), std::move(NewU));
879 ConstantRange
880 ConstantRange::umax(const ConstantRange &Other) const {
881 // X umax Y is: range(umax(X_umin, Y_umin),
882 // umax(X_umax, Y_umax))
883 if (isEmptySet() || Other.isEmptySet())
884 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
885 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
886 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
887 if (NewU == NewL)
888 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
889 return ConstantRange(std::move(NewL), std::move(NewU));
892 ConstantRange
893 ConstantRange::smin(const ConstantRange &Other) const {
894 // X smin Y is: range(smin(X_smin, Y_smin),
895 // smin(X_smax, Y_smax))
896 if (isEmptySet() || Other.isEmptySet())
897 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
898 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
899 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
900 if (NewU == NewL)
901 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
902 return ConstantRange(std::move(NewL), std::move(NewU));
905 ConstantRange
906 ConstantRange::umin(const ConstantRange &Other) const {
907 // X umin Y is: range(umin(X_umin, Y_umin),
908 // umin(X_umax, Y_umax))
909 if (isEmptySet() || Other.isEmptySet())
910 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
911 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
912 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
913 if (NewU == NewL)
914 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
915 return ConstantRange(std::move(NewL), std::move(NewU));
918 ConstantRange
919 ConstantRange::udiv(const ConstantRange &RHS) const {
920 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
921 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
922 if (RHS.isFullSet())
923 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
925 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
927 APInt RHS_umin = RHS.getUnsignedMin();
928 if (RHS_umin.isNullValue()) {
929 // We want the lowest value in RHS excluding zero. Usually that would be 1
930 // except for a range in the form of [X, 1) in which case it would be X.
931 if (RHS.getUpper() == 1)
932 RHS_umin = RHS.getLower();
933 else
934 RHS_umin = 1;
937 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
939 // If the LHS is Full and the RHS is a wrapped interval containing 1 then
940 // this could occur.
941 if (Lower == Upper)
942 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
944 return ConstantRange(std::move(Lower), std::move(Upper));
947 ConstantRange
948 ConstantRange::binaryAnd(const ConstantRange &Other) const {
949 if (isEmptySet() || Other.isEmptySet())
950 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
952 // TODO: replace this with something less conservative
954 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
955 if (umin.isAllOnesValue())
956 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
957 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
960 ConstantRange
961 ConstantRange::binaryOr(const ConstantRange &Other) const {
962 if (isEmptySet() || Other.isEmptySet())
963 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
965 // TODO: replace this with something less conservative
967 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
968 if (umax.isNullValue())
969 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
970 return ConstantRange(std::move(umax), APInt::getNullValue(getBitWidth()));
973 ConstantRange
974 ConstantRange::shl(const ConstantRange &Other) const {
975 if (isEmptySet() || Other.isEmptySet())
976 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
978 APInt max = getUnsignedMax();
979 APInt Other_umax = Other.getUnsignedMax();
981 // there's overflow!
982 if (Other_umax.uge(max.countLeadingZeros()))
983 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
985 // FIXME: implement the other tricky cases
987 APInt min = getUnsignedMin();
988 min <<= Other.getUnsignedMin();
989 max <<= Other_umax;
991 return ConstantRange(std::move(min), std::move(max) + 1);
994 ConstantRange
995 ConstantRange::lshr(const ConstantRange &Other) const {
996 if (isEmptySet() || Other.isEmptySet())
997 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
999 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1000 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1001 if (min == max)
1002 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
1004 return ConstantRange(std::move(min), std::move(max));
1007 ConstantRange
1008 ConstantRange::ashr(const ConstantRange &Other) const {
1009 if (isEmptySet() || Other.isEmptySet())
1010 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
1012 // May straddle zero, so handle both positive and negative cases.
1013 // 'PosMax' is the upper bound of the result of the ashr
1014 // operation, when Upper of the LHS of ashr is a non-negative.
1015 // number. Since ashr of a non-negative number will result in a
1016 // smaller number, the Upper value of LHS is shifted right with
1017 // the minimum value of 'Other' instead of the maximum value.
1018 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1020 // 'PosMin' is the lower bound of the result of the ashr
1021 // operation, when Lower of the LHS is a non-negative number.
1022 // Since ashr of a non-negative number will result in a smaller
1023 // number, the Lower value of LHS is shifted right with the
1024 // maximum value of 'Other'.
1025 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1027 // 'NegMax' is the upper bound of the result of the ashr
1028 // operation, when Upper of the LHS of ashr is a negative number.
1029 // Since 'ashr' of a negative number will result in a bigger
1030 // number, the Upper value of LHS is shifted right with the
1031 // maximum value of 'Other'.
1032 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1034 // 'NegMin' is the lower bound of the result of the ashr
1035 // operation, when Lower of the LHS of ashr is a negative number.
1036 // Since 'ashr' of a negative number will result in a bigger
1037 // number, the Lower value of LHS is shifted right with the
1038 // minimum value of 'Other'.
1039 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1041 APInt max, min;
1042 if (getSignedMin().isNonNegative()) {
1043 // Upper and Lower of LHS are non-negative.
1044 min = PosMin;
1045 max = PosMax;
1046 } else if (getSignedMax().isNegative()) {
1047 // Upper and Lower of LHS are negative.
1048 min = NegMin;
1049 max = NegMax;
1050 } else {
1051 // Upper is non-negative and Lower is negative.
1052 min = NegMin;
1053 max = PosMax;
1055 if (min == max)
1056 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
1058 return ConstantRange(std::move(min), std::move(max));
1061 ConstantRange ConstantRange::inverse() const {
1062 if (isFullSet())
1063 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
1064 if (isEmptySet())
1065 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
1066 return ConstantRange(Upper, Lower);
1069 void ConstantRange::print(raw_ostream &OS) const {
1070 if (isFullSet())
1071 OS << "full-set";
1072 else if (isEmptySet())
1073 OS << "empty-set";
1074 else
1075 OS << "[" << Lower << "," << Upper << ")";
1078 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1079 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1080 print(dbgs());
1082 #endif
1084 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1085 const unsigned NumRanges = Ranges.getNumOperands() / 2;
1086 assert(NumRanges >= 1 && "Must have at least one range!");
1087 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1089 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1090 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1092 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1094 for (unsigned i = 1; i < NumRanges; ++i) {
1095 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1096 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1098 // Note: unionWith will potentially create a range that contains values not
1099 // contained in any of the original N ranges.
1100 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1103 return CR;