Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / IR / Instructions.cpp
blob766c41188ff8c82565d3e56830be374703106286
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstdint>
43 #include <vector>
45 using namespace llvm;
47 //===----------------------------------------------------------------------===//
48 // AllocaInst Class
49 //===----------------------------------------------------------------------===//
51 Optional<uint64_t>
52 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
53 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
54 if (isArrayAllocation()) {
55 auto C = dyn_cast<ConstantInt>(getArraySize());
56 if (!C)
57 return None;
58 Size *= C->getZExtValue();
60 return Size;
63 //===----------------------------------------------------------------------===//
64 // CallSite Class
65 //===----------------------------------------------------------------------===//
67 User::op_iterator CallSite::getCallee() const {
68 return cast<CallBase>(getInstruction())->op_end() - 1;
71 //===----------------------------------------------------------------------===//
72 // SelectInst Class
73 //===----------------------------------------------------------------------===//
75 /// areInvalidOperands - Return a string if the specified operands are invalid
76 /// for a select operation, otherwise return null.
77 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
78 if (Op1->getType() != Op2->getType())
79 return "both values to select must have same type";
81 if (Op1->getType()->isTokenTy())
82 return "select values cannot have token type";
84 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
85 // Vector select.
86 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
87 return "vector select condition element type must be i1";
88 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
89 if (!ET)
90 return "selected values for vector select must be vectors";
91 if (ET->getNumElements() != VT->getNumElements())
92 return "vector select requires selected vectors to have "
93 "the same vector length as select condition";
94 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
95 return "select condition must be i1 or <n x i1>";
97 return nullptr;
100 //===----------------------------------------------------------------------===//
101 // PHINode Class
102 //===----------------------------------------------------------------------===//
104 PHINode::PHINode(const PHINode &PN)
105 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
106 ReservedSpace(PN.getNumOperands()) {
107 allocHungoffUses(PN.getNumOperands());
108 std::copy(PN.op_begin(), PN.op_end(), op_begin());
109 std::copy(PN.block_begin(), PN.block_end(), block_begin());
110 SubclassOptionalData = PN.SubclassOptionalData;
113 // removeIncomingValue - Remove an incoming value. This is useful if a
114 // predecessor basic block is deleted.
115 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
116 Value *Removed = getIncomingValue(Idx);
118 // Move everything after this operand down.
120 // FIXME: we could just swap with the end of the list, then erase. However,
121 // clients might not expect this to happen. The code as it is thrashes the
122 // use/def lists, which is kinda lame.
123 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
124 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
126 // Nuke the last value.
127 Op<-1>().set(nullptr);
128 setNumHungOffUseOperands(getNumOperands() - 1);
130 // If the PHI node is dead, because it has zero entries, nuke it now.
131 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
132 // If anyone is using this PHI, make them use a dummy value instead...
133 replaceAllUsesWith(UndefValue::get(getType()));
134 eraseFromParent();
136 return Removed;
139 /// growOperands - grow operands - This grows the operand list in response
140 /// to a push_back style of operation. This grows the number of ops by 1.5
141 /// times.
143 void PHINode::growOperands() {
144 unsigned e = getNumOperands();
145 unsigned NumOps = e + e / 2;
146 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
148 ReservedSpace = NumOps;
149 growHungoffUses(ReservedSpace, /* IsPhi */ true);
152 /// hasConstantValue - If the specified PHI node always merges together the same
153 /// value, return the value, otherwise return null.
154 Value *PHINode::hasConstantValue() const {
155 // Exploit the fact that phi nodes always have at least one entry.
156 Value *ConstantValue = getIncomingValue(0);
157 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
158 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
159 if (ConstantValue != this)
160 return nullptr; // Incoming values not all the same.
161 // The case where the first value is this PHI.
162 ConstantValue = getIncomingValue(i);
164 if (ConstantValue == this)
165 return UndefValue::get(getType());
166 return ConstantValue;
169 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
170 /// together the same value, assuming that undefs result in the same value as
171 /// non-undefs.
172 /// Unlike \ref hasConstantValue, this does not return a value because the
173 /// unique non-undef incoming value need not dominate the PHI node.
174 bool PHINode::hasConstantOrUndefValue() const {
175 Value *ConstantValue = nullptr;
176 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
177 Value *Incoming = getIncomingValue(i);
178 if (Incoming != this && !isa<UndefValue>(Incoming)) {
179 if (ConstantValue && ConstantValue != Incoming)
180 return false;
181 ConstantValue = Incoming;
184 return true;
187 //===----------------------------------------------------------------------===//
188 // LandingPadInst Implementation
189 //===----------------------------------------------------------------------===//
191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
192 const Twine &NameStr, Instruction *InsertBefore)
193 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
194 init(NumReservedValues, NameStr);
197 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
198 const Twine &NameStr, BasicBlock *InsertAtEnd)
199 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
200 init(NumReservedValues, NameStr);
203 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
204 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
205 LP.getNumOperands()),
206 ReservedSpace(LP.getNumOperands()) {
207 allocHungoffUses(LP.getNumOperands());
208 Use *OL = getOperandList();
209 const Use *InOL = LP.getOperandList();
210 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
211 OL[I] = InOL[I];
213 setCleanup(LP.isCleanup());
216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
217 const Twine &NameStr,
218 Instruction *InsertBefore) {
219 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
222 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
223 const Twine &NameStr,
224 BasicBlock *InsertAtEnd) {
225 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
228 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
229 ReservedSpace = NumReservedValues;
230 setNumHungOffUseOperands(0);
231 allocHungoffUses(ReservedSpace);
232 setName(NameStr);
233 setCleanup(false);
236 /// growOperands - grow operands - This grows the operand list in response to a
237 /// push_back style of operation. This grows the number of ops by 2 times.
238 void LandingPadInst::growOperands(unsigned Size) {
239 unsigned e = getNumOperands();
240 if (ReservedSpace >= e + Size) return;
241 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
242 growHungoffUses(ReservedSpace);
245 void LandingPadInst::addClause(Constant *Val) {
246 unsigned OpNo = getNumOperands();
247 growOperands(1);
248 assert(OpNo < ReservedSpace && "Growing didn't work!");
249 setNumHungOffUseOperands(getNumOperands() + 1);
250 getOperandList()[OpNo] = Val;
253 //===----------------------------------------------------------------------===//
254 // CallBase Implementation
255 //===----------------------------------------------------------------------===//
257 Function *CallBase::getCaller() { return getParent()->getParent(); }
259 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
260 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
261 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
264 bool CallBase::isIndirectCall() const {
265 const Value *V = getCalledValue();
266 if (isa<Function>(V) || isa<Constant>(V))
267 return false;
268 if (const CallInst *CI = dyn_cast<CallInst>(this))
269 if (CI->isInlineAsm())
270 return false;
271 return true;
274 /// Tests if this call site must be tail call optimized. Only a CallInst can
275 /// be tail call optimized.
276 bool CallBase::isMustTailCall() const {
277 if (auto *CI = dyn_cast<CallInst>(this))
278 return CI->isMustTailCall();
279 return false;
282 /// Tests if this call site is marked as a tail call.
283 bool CallBase::isTailCall() const {
284 if (auto *CI = dyn_cast<CallInst>(this))
285 return CI->isTailCall();
286 return false;
289 Intrinsic::ID CallBase::getIntrinsicID() const {
290 if (auto *F = getCalledFunction())
291 return F->getIntrinsicID();
292 return Intrinsic::not_intrinsic;
295 bool CallBase::isReturnNonNull() const {
296 if (hasRetAttr(Attribute::NonNull))
297 return true;
299 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
300 !NullPointerIsDefined(getCaller(),
301 getType()->getPointerAddressSpace()))
302 return true;
304 return false;
307 Value *CallBase::getReturnedArgOperand() const {
308 unsigned Index;
310 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
311 return getArgOperand(Index - AttributeList::FirstArgIndex);
312 if (const Function *F = getCalledFunction())
313 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
314 Index)
315 return getArgOperand(Index - AttributeList::FirstArgIndex);
317 return nullptr;
320 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
321 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
322 return true;
324 // Look at the callee, if available.
325 if (const Function *F = getCalledFunction())
326 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
327 return false;
330 /// Determine whether the argument or parameter has the given attribute.
331 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
332 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
334 if (Attrs.hasParamAttribute(ArgNo, Kind))
335 return true;
336 if (const Function *F = getCalledFunction())
337 return F->getAttributes().hasParamAttribute(ArgNo, Kind);
338 return false;
341 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
342 if (const Function *F = getCalledFunction())
343 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
344 return false;
347 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
348 if (const Function *F = getCalledFunction())
349 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
350 return false;
353 CallBase::op_iterator
354 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
355 const unsigned BeginIndex) {
356 auto It = op_begin() + BeginIndex;
357 for (auto &B : Bundles)
358 It = std::copy(B.input_begin(), B.input_end(), It);
360 auto *ContextImpl = getContext().pImpl;
361 auto BI = Bundles.begin();
362 unsigned CurrentIndex = BeginIndex;
364 for (auto &BOI : bundle_op_infos()) {
365 assert(BI != Bundles.end() && "Incorrect allocation?");
367 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
368 BOI.Begin = CurrentIndex;
369 BOI.End = CurrentIndex + BI->input_size();
370 CurrentIndex = BOI.End;
371 BI++;
374 assert(BI == Bundles.end() && "Incorrect allocation?");
376 return It;
379 //===----------------------------------------------------------------------===//
380 // CallInst Implementation
381 //===----------------------------------------------------------------------===//
383 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
384 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
385 this->FTy = FTy;
386 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
387 "NumOperands not set up?");
388 setCalledOperand(Func);
390 #ifndef NDEBUG
391 assert((Args.size() == FTy->getNumParams() ||
392 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
393 "Calling a function with bad signature!");
395 for (unsigned i = 0; i != Args.size(); ++i)
396 assert((i >= FTy->getNumParams() ||
397 FTy->getParamType(i) == Args[i]->getType()) &&
398 "Calling a function with a bad signature!");
399 #endif
401 llvm::copy(Args, op_begin());
403 auto It = populateBundleOperandInfos(Bundles, Args.size());
404 (void)It;
405 assert(It + 1 == op_end() && "Should add up!");
407 setName(NameStr);
410 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
411 this->FTy = FTy;
412 assert(getNumOperands() == 1 && "NumOperands not set up?");
413 setCalledOperand(Func);
415 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
417 setName(NameStr);
420 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
421 Instruction *InsertBefore)
422 : CallBase(Ty->getReturnType(), Instruction::Call,
423 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
424 init(Ty, Func, Name);
427 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
428 BasicBlock *InsertAtEnd)
429 : CallBase(Ty->getReturnType(), Instruction::Call,
430 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
431 init(Ty, Func, Name);
434 CallInst::CallInst(const CallInst &CI)
435 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
436 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
437 CI.getNumOperands()) {
438 setTailCallKind(CI.getTailCallKind());
439 setCallingConv(CI.getCallingConv());
441 std::copy(CI.op_begin(), CI.op_end(), op_begin());
442 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
443 bundle_op_info_begin());
444 SubclassOptionalData = CI.SubclassOptionalData;
447 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
448 Instruction *InsertPt) {
449 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
451 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
452 Args, OpB, CI->getName(), InsertPt);
453 NewCI->setTailCallKind(CI->getTailCallKind());
454 NewCI->setCallingConv(CI->getCallingConv());
455 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
456 NewCI->setAttributes(CI->getAttributes());
457 NewCI->setDebugLoc(CI->getDebugLoc());
458 return NewCI;
470 /// IsConstantOne - Return true only if val is constant int 1
471 static bool IsConstantOne(Value *val) {
472 assert(val && "IsConstantOne does not work with nullptr val");
473 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
474 return CVal && CVal->isOne();
477 static Instruction *createMalloc(Instruction *InsertBefore,
478 BasicBlock *InsertAtEnd, Type *IntPtrTy,
479 Type *AllocTy, Value *AllocSize,
480 Value *ArraySize,
481 ArrayRef<OperandBundleDef> OpB,
482 Function *MallocF, const Twine &Name) {
483 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
484 "createMalloc needs either InsertBefore or InsertAtEnd");
486 // malloc(type) becomes:
487 // bitcast (i8* malloc(typeSize)) to type*
488 // malloc(type, arraySize) becomes:
489 // bitcast (i8* malloc(typeSize*arraySize)) to type*
490 if (!ArraySize)
491 ArraySize = ConstantInt::get(IntPtrTy, 1);
492 else if (ArraySize->getType() != IntPtrTy) {
493 if (InsertBefore)
494 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
495 "", InsertBefore);
496 else
497 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
498 "", InsertAtEnd);
501 if (!IsConstantOne(ArraySize)) {
502 if (IsConstantOne(AllocSize)) {
503 AllocSize = ArraySize; // Operand * 1 = Operand
504 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
505 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
506 false /*ZExt*/);
507 // Malloc arg is constant product of type size and array size
508 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
509 } else {
510 // Multiply type size by the array size...
511 if (InsertBefore)
512 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
513 "mallocsize", InsertBefore);
514 else
515 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
516 "mallocsize", InsertAtEnd);
520 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
521 // Create the call to Malloc.
522 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
523 Module *M = BB->getParent()->getParent();
524 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
525 FunctionCallee MallocFunc = MallocF;
526 if (!MallocFunc)
527 // prototype malloc as "void *malloc(size_t)"
528 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
529 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
530 CallInst *MCall = nullptr;
531 Instruction *Result = nullptr;
532 if (InsertBefore) {
533 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
534 InsertBefore);
535 Result = MCall;
536 if (Result->getType() != AllocPtrType)
537 // Create a cast instruction to convert to the right type...
538 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
539 } else {
540 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
541 Result = MCall;
542 if (Result->getType() != AllocPtrType) {
543 InsertAtEnd->getInstList().push_back(MCall);
544 // Create a cast instruction to convert to the right type...
545 Result = new BitCastInst(MCall, AllocPtrType, Name);
548 MCall->setTailCall();
549 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
550 MCall->setCallingConv(F->getCallingConv());
551 if (!F->returnDoesNotAlias())
552 F->setReturnDoesNotAlias();
554 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
556 return Result;
559 /// CreateMalloc - Generate the IR for a call to malloc:
560 /// 1. Compute the malloc call's argument as the specified type's size,
561 /// possibly multiplied by the array size if the array size is not
562 /// constant 1.
563 /// 2. Call malloc with that argument.
564 /// 3. Bitcast the result of the malloc call to the specified type.
565 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
566 Type *IntPtrTy, Type *AllocTy,
567 Value *AllocSize, Value *ArraySize,
568 Function *MallocF,
569 const Twine &Name) {
570 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
571 ArraySize, None, MallocF, Name);
573 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
574 Type *IntPtrTy, Type *AllocTy,
575 Value *AllocSize, Value *ArraySize,
576 ArrayRef<OperandBundleDef> OpB,
577 Function *MallocF,
578 const Twine &Name) {
579 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
580 ArraySize, OpB, MallocF, Name);
583 /// CreateMalloc - Generate the IR for a call to malloc:
584 /// 1. Compute the malloc call's argument as the specified type's size,
585 /// possibly multiplied by the array size if the array size is not
586 /// constant 1.
587 /// 2. Call malloc with that argument.
588 /// 3. Bitcast the result of the malloc call to the specified type.
589 /// Note: This function does not add the bitcast to the basic block, that is the
590 /// responsibility of the caller.
591 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
592 Type *IntPtrTy, Type *AllocTy,
593 Value *AllocSize, Value *ArraySize,
594 Function *MallocF, const Twine &Name) {
595 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
596 ArraySize, None, MallocF, Name);
598 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
599 Type *IntPtrTy, Type *AllocTy,
600 Value *AllocSize, Value *ArraySize,
601 ArrayRef<OperandBundleDef> OpB,
602 Function *MallocF, const Twine &Name) {
603 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
604 ArraySize, OpB, MallocF, Name);
607 static Instruction *createFree(Value *Source,
608 ArrayRef<OperandBundleDef> Bundles,
609 Instruction *InsertBefore,
610 BasicBlock *InsertAtEnd) {
611 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
612 "createFree needs either InsertBefore or InsertAtEnd");
613 assert(Source->getType()->isPointerTy() &&
614 "Can not free something of nonpointer type!");
616 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
617 Module *M = BB->getParent()->getParent();
619 Type *VoidTy = Type::getVoidTy(M->getContext());
620 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
621 // prototype free as "void free(void*)"
622 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
623 CallInst *Result = nullptr;
624 Value *PtrCast = Source;
625 if (InsertBefore) {
626 if (Source->getType() != IntPtrTy)
627 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
628 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
629 } else {
630 if (Source->getType() != IntPtrTy)
631 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
632 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
634 Result->setTailCall();
635 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
636 Result->setCallingConv(F->getCallingConv());
638 return Result;
641 /// CreateFree - Generate the IR for a call to the builtin free function.
642 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
643 return createFree(Source, None, InsertBefore, nullptr);
645 Instruction *CallInst::CreateFree(Value *Source,
646 ArrayRef<OperandBundleDef> Bundles,
647 Instruction *InsertBefore) {
648 return createFree(Source, Bundles, InsertBefore, nullptr);
651 /// CreateFree - Generate the IR for a call to the builtin free function.
652 /// Note: This function does not add the call to the basic block, that is the
653 /// responsibility of the caller.
654 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
655 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
656 assert(FreeCall && "CreateFree did not create a CallInst");
657 return FreeCall;
659 Instruction *CallInst::CreateFree(Value *Source,
660 ArrayRef<OperandBundleDef> Bundles,
661 BasicBlock *InsertAtEnd) {
662 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
663 assert(FreeCall && "CreateFree did not create a CallInst");
664 return FreeCall;
667 //===----------------------------------------------------------------------===//
668 // InvokeInst Implementation
669 //===----------------------------------------------------------------------===//
671 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
672 BasicBlock *IfException, ArrayRef<Value *> Args,
673 ArrayRef<OperandBundleDef> Bundles,
674 const Twine &NameStr) {
675 this->FTy = FTy;
677 assert((int)getNumOperands() ==
678 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
679 "NumOperands not set up?");
680 setNormalDest(IfNormal);
681 setUnwindDest(IfException);
682 setCalledOperand(Fn);
684 #ifndef NDEBUG
685 assert(((Args.size() == FTy->getNumParams()) ||
686 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
687 "Invoking a function with bad signature");
689 for (unsigned i = 0, e = Args.size(); i != e; i++)
690 assert((i >= FTy->getNumParams() ||
691 FTy->getParamType(i) == Args[i]->getType()) &&
692 "Invoking a function with a bad signature!");
693 #endif
695 llvm::copy(Args, op_begin());
697 auto It = populateBundleOperandInfos(Bundles, Args.size());
698 (void)It;
699 assert(It + 3 == op_end() && "Should add up!");
701 setName(NameStr);
704 InvokeInst::InvokeInst(const InvokeInst &II)
705 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
706 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
707 II.getNumOperands()) {
708 setCallingConv(II.getCallingConv());
709 std::copy(II.op_begin(), II.op_end(), op_begin());
710 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
711 bundle_op_info_begin());
712 SubclassOptionalData = II.SubclassOptionalData;
715 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
716 Instruction *InsertPt) {
717 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
719 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
720 II->getNormalDest(), II->getUnwindDest(),
721 Args, OpB, II->getName(), InsertPt);
722 NewII->setCallingConv(II->getCallingConv());
723 NewII->SubclassOptionalData = II->SubclassOptionalData;
724 NewII->setAttributes(II->getAttributes());
725 NewII->setDebugLoc(II->getDebugLoc());
726 return NewII;
730 LandingPadInst *InvokeInst::getLandingPadInst() const {
731 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
734 //===----------------------------------------------------------------------===//
735 // CallBrInst Implementation
736 //===----------------------------------------------------------------------===//
738 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
739 ArrayRef<BasicBlock *> IndirectDests,
740 ArrayRef<Value *> Args,
741 ArrayRef<OperandBundleDef> Bundles,
742 const Twine &NameStr) {
743 this->FTy = FTy;
745 assert((int)getNumOperands() ==
746 ComputeNumOperands(Args.size(), IndirectDests.size(),
747 CountBundleInputs(Bundles)) &&
748 "NumOperands not set up?");
749 NumIndirectDests = IndirectDests.size();
750 setDefaultDest(Fallthrough);
751 for (unsigned i = 0; i != NumIndirectDests; ++i)
752 setIndirectDest(i, IndirectDests[i]);
753 setCalledOperand(Fn);
755 #ifndef NDEBUG
756 assert(((Args.size() == FTy->getNumParams()) ||
757 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
758 "Calling a function with bad signature");
760 for (unsigned i = 0, e = Args.size(); i != e; i++)
761 assert((i >= FTy->getNumParams() ||
762 FTy->getParamType(i) == Args[i]->getType()) &&
763 "Calling a function with a bad signature!");
764 #endif
766 std::copy(Args.begin(), Args.end(), op_begin());
768 auto It = populateBundleOperandInfos(Bundles, Args.size());
769 (void)It;
770 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
772 setName(NameStr);
775 CallBrInst::CallBrInst(const CallBrInst &CBI)
776 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
777 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
778 CBI.getNumOperands()) {
779 setCallingConv(CBI.getCallingConv());
780 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
781 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
782 bundle_op_info_begin());
783 SubclassOptionalData = CBI.SubclassOptionalData;
784 NumIndirectDests = CBI.NumIndirectDests;
787 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
788 Instruction *InsertPt) {
789 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
791 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
792 CBI->getCalledValue(),
793 CBI->getDefaultDest(),
794 CBI->getIndirectDests(),
795 Args, OpB, CBI->getName(), InsertPt);
796 NewCBI->setCallingConv(CBI->getCallingConv());
797 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
798 NewCBI->setAttributes(CBI->getAttributes());
799 NewCBI->setDebugLoc(CBI->getDebugLoc());
800 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
801 return NewCBI;
804 //===----------------------------------------------------------------------===//
805 // ReturnInst Implementation
806 //===----------------------------------------------------------------------===//
808 ReturnInst::ReturnInst(const ReturnInst &RI)
809 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
810 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
811 RI.getNumOperands()) {
812 if (RI.getNumOperands())
813 Op<0>() = RI.Op<0>();
814 SubclassOptionalData = RI.SubclassOptionalData;
817 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
818 : Instruction(Type::getVoidTy(C), Instruction::Ret,
819 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
820 InsertBefore) {
821 if (retVal)
822 Op<0>() = retVal;
825 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
826 : Instruction(Type::getVoidTy(C), Instruction::Ret,
827 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
828 InsertAtEnd) {
829 if (retVal)
830 Op<0>() = retVal;
833 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
834 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
835 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
837 //===----------------------------------------------------------------------===//
838 // ResumeInst Implementation
839 //===----------------------------------------------------------------------===//
841 ResumeInst::ResumeInst(const ResumeInst &RI)
842 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
843 OperandTraits<ResumeInst>::op_begin(this), 1) {
844 Op<0>() = RI.Op<0>();
847 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
848 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
849 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
850 Op<0>() = Exn;
853 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
854 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
855 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
856 Op<0>() = Exn;
859 //===----------------------------------------------------------------------===//
860 // CleanupReturnInst Implementation
861 //===----------------------------------------------------------------------===//
863 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
864 : Instruction(CRI.getType(), Instruction::CleanupRet,
865 OperandTraits<CleanupReturnInst>::op_end(this) -
866 CRI.getNumOperands(),
867 CRI.getNumOperands()) {
868 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
869 Op<0>() = CRI.Op<0>();
870 if (CRI.hasUnwindDest())
871 Op<1>() = CRI.Op<1>();
874 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
875 if (UnwindBB)
876 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
878 Op<0>() = CleanupPad;
879 if (UnwindBB)
880 Op<1>() = UnwindBB;
883 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
884 unsigned Values, Instruction *InsertBefore)
885 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
886 Instruction::CleanupRet,
887 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
888 Values, InsertBefore) {
889 init(CleanupPad, UnwindBB);
892 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
893 unsigned Values, BasicBlock *InsertAtEnd)
894 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
895 Instruction::CleanupRet,
896 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
897 Values, InsertAtEnd) {
898 init(CleanupPad, UnwindBB);
901 //===----------------------------------------------------------------------===//
902 // CatchReturnInst Implementation
903 //===----------------------------------------------------------------------===//
904 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
905 Op<0>() = CatchPad;
906 Op<1>() = BB;
909 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
910 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
911 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
912 Op<0>() = CRI.Op<0>();
913 Op<1>() = CRI.Op<1>();
916 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
917 Instruction *InsertBefore)
918 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
919 OperandTraits<CatchReturnInst>::op_begin(this), 2,
920 InsertBefore) {
921 init(CatchPad, BB);
924 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
925 BasicBlock *InsertAtEnd)
926 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
927 OperandTraits<CatchReturnInst>::op_begin(this), 2,
928 InsertAtEnd) {
929 init(CatchPad, BB);
932 //===----------------------------------------------------------------------===//
933 // CatchSwitchInst Implementation
934 //===----------------------------------------------------------------------===//
936 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
937 unsigned NumReservedValues,
938 const Twine &NameStr,
939 Instruction *InsertBefore)
940 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
941 InsertBefore) {
942 if (UnwindDest)
943 ++NumReservedValues;
944 init(ParentPad, UnwindDest, NumReservedValues + 1);
945 setName(NameStr);
948 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
949 unsigned NumReservedValues,
950 const Twine &NameStr, BasicBlock *InsertAtEnd)
951 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
952 InsertAtEnd) {
953 if (UnwindDest)
954 ++NumReservedValues;
955 init(ParentPad, UnwindDest, NumReservedValues + 1);
956 setName(NameStr);
959 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
960 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
961 CSI.getNumOperands()) {
962 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
963 setNumHungOffUseOperands(ReservedSpace);
964 Use *OL = getOperandList();
965 const Use *InOL = CSI.getOperandList();
966 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
967 OL[I] = InOL[I];
970 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
971 unsigned NumReservedValues) {
972 assert(ParentPad && NumReservedValues);
974 ReservedSpace = NumReservedValues;
975 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
976 allocHungoffUses(ReservedSpace);
978 Op<0>() = ParentPad;
979 if (UnwindDest) {
980 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
981 setUnwindDest(UnwindDest);
985 /// growOperands - grow operands - This grows the operand list in response to a
986 /// push_back style of operation. This grows the number of ops by 2 times.
987 void CatchSwitchInst::growOperands(unsigned Size) {
988 unsigned NumOperands = getNumOperands();
989 assert(NumOperands >= 1);
990 if (ReservedSpace >= NumOperands + Size)
991 return;
992 ReservedSpace = (NumOperands + Size / 2) * 2;
993 growHungoffUses(ReservedSpace);
996 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
997 unsigned OpNo = getNumOperands();
998 growOperands(1);
999 assert(OpNo < ReservedSpace && "Growing didn't work!");
1000 setNumHungOffUseOperands(getNumOperands() + 1);
1001 getOperandList()[OpNo] = Handler;
1004 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1005 // Move all subsequent handlers up one.
1006 Use *EndDst = op_end() - 1;
1007 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1008 *CurDst = *(CurDst + 1);
1009 // Null out the last handler use.
1010 *EndDst = nullptr;
1012 setNumHungOffUseOperands(getNumOperands() - 1);
1015 //===----------------------------------------------------------------------===//
1016 // FuncletPadInst Implementation
1017 //===----------------------------------------------------------------------===//
1018 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1019 const Twine &NameStr) {
1020 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1021 llvm::copy(Args, op_begin());
1022 setParentPad(ParentPad);
1023 setName(NameStr);
1026 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1027 : Instruction(FPI.getType(), FPI.getOpcode(),
1028 OperandTraits<FuncletPadInst>::op_end(this) -
1029 FPI.getNumOperands(),
1030 FPI.getNumOperands()) {
1031 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1032 setParentPad(FPI.getParentPad());
1035 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1036 ArrayRef<Value *> Args, unsigned Values,
1037 const Twine &NameStr, Instruction *InsertBefore)
1038 : Instruction(ParentPad->getType(), Op,
1039 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1040 InsertBefore) {
1041 init(ParentPad, Args, NameStr);
1044 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1045 ArrayRef<Value *> Args, unsigned Values,
1046 const Twine &NameStr, BasicBlock *InsertAtEnd)
1047 : Instruction(ParentPad->getType(), Op,
1048 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1049 InsertAtEnd) {
1050 init(ParentPad, Args, NameStr);
1053 //===----------------------------------------------------------------------===//
1054 // UnreachableInst Implementation
1055 //===----------------------------------------------------------------------===//
1057 UnreachableInst::UnreachableInst(LLVMContext &Context,
1058 Instruction *InsertBefore)
1059 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1060 0, InsertBefore) {}
1061 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1062 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1063 0, InsertAtEnd) {}
1065 //===----------------------------------------------------------------------===//
1066 // BranchInst Implementation
1067 //===----------------------------------------------------------------------===//
1069 void BranchInst::AssertOK() {
1070 if (isConditional())
1071 assert(getCondition()->getType()->isIntegerTy(1) &&
1072 "May only branch on boolean predicates!");
1075 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1076 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1077 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1078 InsertBefore) {
1079 assert(IfTrue && "Branch destination may not be null!");
1080 Op<-1>() = IfTrue;
1083 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1084 Instruction *InsertBefore)
1085 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1086 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1087 InsertBefore) {
1088 Op<-1>() = IfTrue;
1089 Op<-2>() = IfFalse;
1090 Op<-3>() = Cond;
1091 #ifndef NDEBUG
1092 AssertOK();
1093 #endif
1096 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1097 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1098 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1099 assert(IfTrue && "Branch destination may not be null!");
1100 Op<-1>() = IfTrue;
1103 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1104 BasicBlock *InsertAtEnd)
1105 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1106 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1107 Op<-1>() = IfTrue;
1108 Op<-2>() = IfFalse;
1109 Op<-3>() = Cond;
1110 #ifndef NDEBUG
1111 AssertOK();
1112 #endif
1115 BranchInst::BranchInst(const BranchInst &BI)
1116 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1117 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1118 BI.getNumOperands()) {
1119 Op<-1>() = BI.Op<-1>();
1120 if (BI.getNumOperands() != 1) {
1121 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1122 Op<-3>() = BI.Op<-3>();
1123 Op<-2>() = BI.Op<-2>();
1125 SubclassOptionalData = BI.SubclassOptionalData;
1128 void BranchInst::swapSuccessors() {
1129 assert(isConditional() &&
1130 "Cannot swap successors of an unconditional branch");
1131 Op<-1>().swap(Op<-2>());
1133 // Update profile metadata if present and it matches our structural
1134 // expectations.
1135 swapProfMetadata();
1138 //===----------------------------------------------------------------------===//
1139 // AllocaInst Implementation
1140 //===----------------------------------------------------------------------===//
1142 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1143 if (!Amt)
1144 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1145 else {
1146 assert(!isa<BasicBlock>(Amt) &&
1147 "Passed basic block into allocation size parameter! Use other ctor");
1148 assert(Amt->getType()->isIntegerTy() &&
1149 "Allocation array size is not an integer!");
1151 return Amt;
1154 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1155 Instruction *InsertBefore)
1156 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1158 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1159 BasicBlock *InsertAtEnd)
1160 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1162 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1163 const Twine &Name, Instruction *InsertBefore)
1164 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1166 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1167 const Twine &Name, BasicBlock *InsertAtEnd)
1168 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1170 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1171 unsigned Align, const Twine &Name,
1172 Instruction *InsertBefore)
1173 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1174 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1175 AllocatedType(Ty) {
1176 setAlignment(Align);
1177 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1178 setName(Name);
1181 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1182 unsigned Align, const Twine &Name,
1183 BasicBlock *InsertAtEnd)
1184 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1185 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1186 AllocatedType(Ty) {
1187 setAlignment(Align);
1188 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1189 setName(Name);
1192 void AllocaInst::setAlignment(unsigned Align) {
1193 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1194 assert(Align <= MaximumAlignment &&
1195 "Alignment is greater than MaximumAlignment!");
1196 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1197 (Log2_32(Align) + 1));
1198 assert(getAlignment() == Align && "Alignment representation error!");
1201 bool AllocaInst::isArrayAllocation() const {
1202 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1203 return !CI->isOne();
1204 return true;
1207 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1208 /// function and is a constant size. If so, the code generator will fold it
1209 /// into the prolog/epilog code, so it is basically free.
1210 bool AllocaInst::isStaticAlloca() const {
1211 // Must be constant size.
1212 if (!isa<ConstantInt>(getArraySize())) return false;
1214 // Must be in the entry block.
1215 const BasicBlock *Parent = getParent();
1216 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1219 //===----------------------------------------------------------------------===//
1220 // LoadInst Implementation
1221 //===----------------------------------------------------------------------===//
1223 void LoadInst::AssertOK() {
1224 assert(getOperand(0)->getType()->isPointerTy() &&
1225 "Ptr must have pointer type.");
1226 assert(!(isAtomic() && getAlignment() == 0) &&
1227 "Alignment required for atomic load");
1230 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1231 Instruction *InsertBef)
1232 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1234 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1235 BasicBlock *InsertAE)
1236 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1238 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1239 Instruction *InsertBef)
1240 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1242 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1243 BasicBlock *InsertAE)
1244 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1246 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1247 unsigned Align, Instruction *InsertBef)
1248 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1249 SyncScope::System, InsertBef) {}
1251 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1252 unsigned Align, BasicBlock *InsertAE)
1253 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1254 SyncScope::System, InsertAE) {}
1256 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1257 unsigned Align, AtomicOrdering Order,
1258 SyncScope::ID SSID, Instruction *InsertBef)
1259 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1260 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1261 setVolatile(isVolatile);
1262 setAlignment(Align);
1263 setAtomic(Order, SSID);
1264 AssertOK();
1265 setName(Name);
1268 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1269 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1270 BasicBlock *InsertAE)
1271 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1272 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1273 setVolatile(isVolatile);
1274 setAlignment(Align);
1275 setAtomic(Order, SSID);
1276 AssertOK();
1277 setName(Name);
1280 void LoadInst::setAlignment(unsigned Align) {
1281 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1282 assert(Align <= MaximumAlignment &&
1283 "Alignment is greater than MaximumAlignment!");
1284 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1285 ((Log2_32(Align)+1)<<1));
1286 assert(getAlignment() == Align && "Alignment representation error!");
1289 //===----------------------------------------------------------------------===//
1290 // StoreInst Implementation
1291 //===----------------------------------------------------------------------===//
1293 void StoreInst::AssertOK() {
1294 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1295 assert(getOperand(1)->getType()->isPointerTy() &&
1296 "Ptr must have pointer type!");
1297 assert(getOperand(0)->getType() ==
1298 cast<PointerType>(getOperand(1)->getType())->getElementType()
1299 && "Ptr must be a pointer to Val type!");
1300 assert(!(isAtomic() && getAlignment() == 0) &&
1301 "Alignment required for atomic store");
1304 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1305 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1307 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1308 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1310 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1311 Instruction *InsertBefore)
1312 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1314 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1315 BasicBlock *InsertAtEnd)
1316 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1318 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1319 Instruction *InsertBefore)
1320 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1321 SyncScope::System, InsertBefore) {}
1323 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1324 BasicBlock *InsertAtEnd)
1325 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1326 SyncScope::System, InsertAtEnd) {}
1328 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1329 unsigned Align, AtomicOrdering Order,
1330 SyncScope::ID SSID,
1331 Instruction *InsertBefore)
1332 : Instruction(Type::getVoidTy(val->getContext()), Store,
1333 OperandTraits<StoreInst>::op_begin(this),
1334 OperandTraits<StoreInst>::operands(this),
1335 InsertBefore) {
1336 Op<0>() = val;
1337 Op<1>() = addr;
1338 setVolatile(isVolatile);
1339 setAlignment(Align);
1340 setAtomic(Order, SSID);
1341 AssertOK();
1344 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1345 unsigned Align, AtomicOrdering Order,
1346 SyncScope::ID SSID,
1347 BasicBlock *InsertAtEnd)
1348 : Instruction(Type::getVoidTy(val->getContext()), Store,
1349 OperandTraits<StoreInst>::op_begin(this),
1350 OperandTraits<StoreInst>::operands(this),
1351 InsertAtEnd) {
1352 Op<0>() = val;
1353 Op<1>() = addr;
1354 setVolatile(isVolatile);
1355 setAlignment(Align);
1356 setAtomic(Order, SSID);
1357 AssertOK();
1360 void StoreInst::setAlignment(unsigned Align) {
1361 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1362 assert(Align <= MaximumAlignment &&
1363 "Alignment is greater than MaximumAlignment!");
1364 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1365 ((Log2_32(Align)+1) << 1));
1366 assert(getAlignment() == Align && "Alignment representation error!");
1369 //===----------------------------------------------------------------------===//
1370 // AtomicCmpXchgInst Implementation
1371 //===----------------------------------------------------------------------===//
1373 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1374 AtomicOrdering SuccessOrdering,
1375 AtomicOrdering FailureOrdering,
1376 SyncScope::ID SSID) {
1377 Op<0>() = Ptr;
1378 Op<1>() = Cmp;
1379 Op<2>() = NewVal;
1380 setSuccessOrdering(SuccessOrdering);
1381 setFailureOrdering(FailureOrdering);
1382 setSyncScopeID(SSID);
1384 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1385 "All operands must be non-null!");
1386 assert(getOperand(0)->getType()->isPointerTy() &&
1387 "Ptr must have pointer type!");
1388 assert(getOperand(1)->getType() ==
1389 cast<PointerType>(getOperand(0)->getType())->getElementType()
1390 && "Ptr must be a pointer to Cmp type!");
1391 assert(getOperand(2)->getType() ==
1392 cast<PointerType>(getOperand(0)->getType())->getElementType()
1393 && "Ptr must be a pointer to NewVal type!");
1394 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1395 "AtomicCmpXchg instructions must be atomic!");
1396 assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1397 "AtomicCmpXchg instructions must be atomic!");
1398 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1399 "AtomicCmpXchg failure argument shall be no stronger than the success "
1400 "argument");
1401 assert(FailureOrdering != AtomicOrdering::Release &&
1402 FailureOrdering != AtomicOrdering::AcquireRelease &&
1403 "AtomicCmpXchg failure ordering cannot include release semantics");
1406 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1407 AtomicOrdering SuccessOrdering,
1408 AtomicOrdering FailureOrdering,
1409 SyncScope::ID SSID,
1410 Instruction *InsertBefore)
1411 : Instruction(
1412 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1413 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1414 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1415 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1418 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1419 AtomicOrdering SuccessOrdering,
1420 AtomicOrdering FailureOrdering,
1421 SyncScope::ID SSID,
1422 BasicBlock *InsertAtEnd)
1423 : Instruction(
1424 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1425 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1426 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1427 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1430 //===----------------------------------------------------------------------===//
1431 // AtomicRMWInst Implementation
1432 //===----------------------------------------------------------------------===//
1434 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1435 AtomicOrdering Ordering,
1436 SyncScope::ID SSID) {
1437 Op<0>() = Ptr;
1438 Op<1>() = Val;
1439 setOperation(Operation);
1440 setOrdering(Ordering);
1441 setSyncScopeID(SSID);
1443 assert(getOperand(0) && getOperand(1) &&
1444 "All operands must be non-null!");
1445 assert(getOperand(0)->getType()->isPointerTy() &&
1446 "Ptr must have pointer type!");
1447 assert(getOperand(1)->getType() ==
1448 cast<PointerType>(getOperand(0)->getType())->getElementType()
1449 && "Ptr must be a pointer to Val type!");
1450 assert(Ordering != AtomicOrdering::NotAtomic &&
1451 "AtomicRMW instructions must be atomic!");
1454 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1455 AtomicOrdering Ordering,
1456 SyncScope::ID SSID,
1457 Instruction *InsertBefore)
1458 : Instruction(Val->getType(), AtomicRMW,
1459 OperandTraits<AtomicRMWInst>::op_begin(this),
1460 OperandTraits<AtomicRMWInst>::operands(this),
1461 InsertBefore) {
1462 Init(Operation, Ptr, Val, Ordering, SSID);
1465 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1466 AtomicOrdering Ordering,
1467 SyncScope::ID SSID,
1468 BasicBlock *InsertAtEnd)
1469 : Instruction(Val->getType(), AtomicRMW,
1470 OperandTraits<AtomicRMWInst>::op_begin(this),
1471 OperandTraits<AtomicRMWInst>::operands(this),
1472 InsertAtEnd) {
1473 Init(Operation, Ptr, Val, Ordering, SSID);
1476 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1477 switch (Op) {
1478 case AtomicRMWInst::Xchg:
1479 return "xchg";
1480 case AtomicRMWInst::Add:
1481 return "add";
1482 case AtomicRMWInst::Sub:
1483 return "sub";
1484 case AtomicRMWInst::And:
1485 return "and";
1486 case AtomicRMWInst::Nand:
1487 return "nand";
1488 case AtomicRMWInst::Or:
1489 return "or";
1490 case AtomicRMWInst::Xor:
1491 return "xor";
1492 case AtomicRMWInst::Max:
1493 return "max";
1494 case AtomicRMWInst::Min:
1495 return "min";
1496 case AtomicRMWInst::UMax:
1497 return "umax";
1498 case AtomicRMWInst::UMin:
1499 return "umin";
1500 case AtomicRMWInst::FAdd:
1501 return "fadd";
1502 case AtomicRMWInst::FSub:
1503 return "fsub";
1504 case AtomicRMWInst::BAD_BINOP:
1505 return "<invalid operation>";
1508 llvm_unreachable("invalid atomicrmw operation");
1511 //===----------------------------------------------------------------------===//
1512 // FenceInst Implementation
1513 //===----------------------------------------------------------------------===//
1515 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1516 SyncScope::ID SSID,
1517 Instruction *InsertBefore)
1518 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1519 setOrdering(Ordering);
1520 setSyncScopeID(SSID);
1523 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1524 SyncScope::ID SSID,
1525 BasicBlock *InsertAtEnd)
1526 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1527 setOrdering(Ordering);
1528 setSyncScopeID(SSID);
1531 //===----------------------------------------------------------------------===//
1532 // GetElementPtrInst Implementation
1533 //===----------------------------------------------------------------------===//
1535 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1536 const Twine &Name) {
1537 assert(getNumOperands() == 1 + IdxList.size() &&
1538 "NumOperands not initialized?");
1539 Op<0>() = Ptr;
1540 llvm::copy(IdxList, op_begin() + 1);
1541 setName(Name);
1544 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1545 : Instruction(GEPI.getType(), GetElementPtr,
1546 OperandTraits<GetElementPtrInst>::op_end(this) -
1547 GEPI.getNumOperands(),
1548 GEPI.getNumOperands()),
1549 SourceElementType(GEPI.SourceElementType),
1550 ResultElementType(GEPI.ResultElementType) {
1551 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1552 SubclassOptionalData = GEPI.SubclassOptionalData;
1555 /// getIndexedType - Returns the type of the element that would be accessed with
1556 /// a gep instruction with the specified parameters.
1558 /// The Idxs pointer should point to a continuous piece of memory containing the
1559 /// indices, either as Value* or uint64_t.
1561 /// A null type is returned if the indices are invalid for the specified
1562 /// pointer type.
1564 template <typename IndexTy>
1565 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1566 // Handle the special case of the empty set index set, which is always valid.
1567 if (IdxList.empty())
1568 return Agg;
1570 // If there is at least one index, the top level type must be sized, otherwise
1571 // it cannot be 'stepped over'.
1572 if (!Agg->isSized())
1573 return nullptr;
1575 unsigned CurIdx = 1;
1576 for (; CurIdx != IdxList.size(); ++CurIdx) {
1577 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1578 if (!CT || CT->isPointerTy()) return nullptr;
1579 IndexTy Index = IdxList[CurIdx];
1580 if (!CT->indexValid(Index)) return nullptr;
1581 Agg = CT->getTypeAtIndex(Index);
1583 return CurIdx == IdxList.size() ? Agg : nullptr;
1586 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1587 return getIndexedTypeInternal(Ty, IdxList);
1590 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1591 ArrayRef<Constant *> IdxList) {
1592 return getIndexedTypeInternal(Ty, IdxList);
1595 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1596 return getIndexedTypeInternal(Ty, IdxList);
1599 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1600 /// zeros. If so, the result pointer and the first operand have the same
1601 /// value, just potentially different types.
1602 bool GetElementPtrInst::hasAllZeroIndices() const {
1603 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1604 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1605 if (!CI->isZero()) return false;
1606 } else {
1607 return false;
1610 return true;
1613 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1614 /// constant integers. If so, the result pointer and the first operand have
1615 /// a constant offset between them.
1616 bool GetElementPtrInst::hasAllConstantIndices() const {
1617 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1618 if (!isa<ConstantInt>(getOperand(i)))
1619 return false;
1621 return true;
1624 void GetElementPtrInst::setIsInBounds(bool B) {
1625 cast<GEPOperator>(this)->setIsInBounds(B);
1628 bool GetElementPtrInst::isInBounds() const {
1629 return cast<GEPOperator>(this)->isInBounds();
1632 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1633 APInt &Offset) const {
1634 // Delegate to the generic GEPOperator implementation.
1635 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1638 //===----------------------------------------------------------------------===//
1639 // ExtractElementInst Implementation
1640 //===----------------------------------------------------------------------===//
1642 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1643 const Twine &Name,
1644 Instruction *InsertBef)
1645 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1646 ExtractElement,
1647 OperandTraits<ExtractElementInst>::op_begin(this),
1648 2, InsertBef) {
1649 assert(isValidOperands(Val, Index) &&
1650 "Invalid extractelement instruction operands!");
1651 Op<0>() = Val;
1652 Op<1>() = Index;
1653 setName(Name);
1656 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1657 const Twine &Name,
1658 BasicBlock *InsertAE)
1659 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1660 ExtractElement,
1661 OperandTraits<ExtractElementInst>::op_begin(this),
1662 2, InsertAE) {
1663 assert(isValidOperands(Val, Index) &&
1664 "Invalid extractelement instruction operands!");
1666 Op<0>() = Val;
1667 Op<1>() = Index;
1668 setName(Name);
1671 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1672 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1673 return false;
1674 return true;
1677 //===----------------------------------------------------------------------===//
1678 // InsertElementInst Implementation
1679 //===----------------------------------------------------------------------===//
1681 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1682 const Twine &Name,
1683 Instruction *InsertBef)
1684 : Instruction(Vec->getType(), InsertElement,
1685 OperandTraits<InsertElementInst>::op_begin(this),
1686 3, InsertBef) {
1687 assert(isValidOperands(Vec, Elt, Index) &&
1688 "Invalid insertelement instruction operands!");
1689 Op<0>() = Vec;
1690 Op<1>() = Elt;
1691 Op<2>() = Index;
1692 setName(Name);
1695 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1696 const Twine &Name,
1697 BasicBlock *InsertAE)
1698 : Instruction(Vec->getType(), InsertElement,
1699 OperandTraits<InsertElementInst>::op_begin(this),
1700 3, InsertAE) {
1701 assert(isValidOperands(Vec, Elt, Index) &&
1702 "Invalid insertelement instruction operands!");
1704 Op<0>() = Vec;
1705 Op<1>() = Elt;
1706 Op<2>() = Index;
1707 setName(Name);
1710 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1711 const Value *Index) {
1712 if (!Vec->getType()->isVectorTy())
1713 return false; // First operand of insertelement must be vector type.
1715 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1716 return false;// Second operand of insertelement must be vector element type.
1718 if (!Index->getType()->isIntegerTy())
1719 return false; // Third operand of insertelement must be i32.
1720 return true;
1723 //===----------------------------------------------------------------------===//
1724 // ShuffleVectorInst Implementation
1725 //===----------------------------------------------------------------------===//
1727 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1728 const Twine &Name,
1729 Instruction *InsertBefore)
1730 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1731 cast<VectorType>(Mask->getType())->getNumElements()),
1732 ShuffleVector,
1733 OperandTraits<ShuffleVectorInst>::op_begin(this),
1734 OperandTraits<ShuffleVectorInst>::operands(this),
1735 InsertBefore) {
1736 assert(isValidOperands(V1, V2, Mask) &&
1737 "Invalid shuffle vector instruction operands!");
1738 Op<0>() = V1;
1739 Op<1>() = V2;
1740 Op<2>() = Mask;
1741 setName(Name);
1744 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1745 const Twine &Name,
1746 BasicBlock *InsertAtEnd)
1747 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1748 cast<VectorType>(Mask->getType())->getNumElements()),
1749 ShuffleVector,
1750 OperandTraits<ShuffleVectorInst>::op_begin(this),
1751 OperandTraits<ShuffleVectorInst>::operands(this),
1752 InsertAtEnd) {
1753 assert(isValidOperands(V1, V2, Mask) &&
1754 "Invalid shuffle vector instruction operands!");
1756 Op<0>() = V1;
1757 Op<1>() = V2;
1758 Op<2>() = Mask;
1759 setName(Name);
1762 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1763 const Value *Mask) {
1764 // V1 and V2 must be vectors of the same type.
1765 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1766 return false;
1768 // Mask must be vector of i32.
1769 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1770 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1771 return false;
1773 // Check to see if Mask is valid.
1774 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1775 return true;
1777 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1778 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1779 for (Value *Op : MV->operands()) {
1780 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1781 if (CI->uge(V1Size*2))
1782 return false;
1783 } else if (!isa<UndefValue>(Op)) {
1784 return false;
1787 return true;
1790 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1791 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1792 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1793 if (CDS->getElementAsInteger(i) >= V1Size*2)
1794 return false;
1795 return true;
1798 // The bitcode reader can create a place holder for a forward reference
1799 // used as the shuffle mask. When this occurs, the shuffle mask will
1800 // fall into this case and fail. To avoid this error, do this bit of
1801 // ugliness to allow such a mask pass.
1802 if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1803 if (CE->getOpcode() == Instruction::UserOp1)
1804 return true;
1806 return false;
1809 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1810 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1811 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1812 return CDS->getElementAsInteger(i);
1813 Constant *C = Mask->getAggregateElement(i);
1814 if (isa<UndefValue>(C))
1815 return -1;
1816 return cast<ConstantInt>(C)->getZExtValue();
1819 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1820 SmallVectorImpl<int> &Result) {
1821 unsigned NumElts = Mask->getType()->getVectorNumElements();
1823 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1824 for (unsigned i = 0; i != NumElts; ++i)
1825 Result.push_back(CDS->getElementAsInteger(i));
1826 return;
1828 for (unsigned i = 0; i != NumElts; ++i) {
1829 Constant *C = Mask->getAggregateElement(i);
1830 Result.push_back(isa<UndefValue>(C) ? -1 :
1831 cast<ConstantInt>(C)->getZExtValue());
1835 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1836 assert(!Mask.empty() && "Shuffle mask must contain elements");
1837 bool UsesLHS = false;
1838 bool UsesRHS = false;
1839 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1840 if (Mask[i] == -1)
1841 continue;
1842 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1843 "Out-of-bounds shuffle mask element");
1844 UsesLHS |= (Mask[i] < NumOpElts);
1845 UsesRHS |= (Mask[i] >= NumOpElts);
1846 if (UsesLHS && UsesRHS)
1847 return false;
1849 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1850 return true;
1853 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1854 // We don't have vector operand size information, so assume operands are the
1855 // same size as the mask.
1856 return isSingleSourceMaskImpl(Mask, Mask.size());
1859 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1860 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1861 return false;
1862 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1863 if (Mask[i] == -1)
1864 continue;
1865 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1866 return false;
1868 return true;
1871 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1872 // We don't have vector operand size information, so assume operands are the
1873 // same size as the mask.
1874 return isIdentityMaskImpl(Mask, Mask.size());
1877 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1878 if (!isSingleSourceMask(Mask))
1879 return false;
1880 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1881 if (Mask[i] == -1)
1882 continue;
1883 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1884 return false;
1886 return true;
1889 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1890 if (!isSingleSourceMask(Mask))
1891 return false;
1892 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1893 if (Mask[i] == -1)
1894 continue;
1895 if (Mask[i] != 0 && Mask[i] != NumElts)
1896 return false;
1898 return true;
1901 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1902 // Select is differentiated from identity. It requires using both sources.
1903 if (isSingleSourceMask(Mask))
1904 return false;
1905 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1906 if (Mask[i] == -1)
1907 continue;
1908 if (Mask[i] != i && Mask[i] != (NumElts + i))
1909 return false;
1911 return true;
1914 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1915 // Example masks that will return true:
1916 // v1 = <a, b, c, d>
1917 // v2 = <e, f, g, h>
1918 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1919 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1921 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1922 int NumElts = Mask.size();
1923 if (NumElts < 2 || !isPowerOf2_32(NumElts))
1924 return false;
1926 // 2. The first element of the mask must be either a 0 or a 1.
1927 if (Mask[0] != 0 && Mask[0] != 1)
1928 return false;
1930 // 3. The difference between the first 2 elements must be equal to the
1931 // number of elements in the mask.
1932 if ((Mask[1] - Mask[0]) != NumElts)
1933 return false;
1935 // 4. The difference between consecutive even-numbered and odd-numbered
1936 // elements must be equal to 2.
1937 for (int i = 2; i < NumElts; ++i) {
1938 int MaskEltVal = Mask[i];
1939 if (MaskEltVal == -1)
1940 return false;
1941 int MaskEltPrevVal = Mask[i - 2];
1942 if (MaskEltVal - MaskEltPrevVal != 2)
1943 return false;
1945 return true;
1948 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
1949 int NumSrcElts, int &Index) {
1950 // Must extract from a single source.
1951 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
1952 return false;
1954 // Must be smaller (else this is an Identity shuffle).
1955 if (NumSrcElts <= (int)Mask.size())
1956 return false;
1958 // Find start of extraction, accounting that we may start with an UNDEF.
1959 int SubIndex = -1;
1960 for (int i = 0, e = Mask.size(); i != e; ++i) {
1961 int M = Mask[i];
1962 if (M < 0)
1963 continue;
1964 int Offset = (M % NumSrcElts) - i;
1965 if (0 <= SubIndex && SubIndex != Offset)
1966 return false;
1967 SubIndex = Offset;
1970 if (0 <= SubIndex) {
1971 Index = SubIndex;
1972 return true;
1974 return false;
1977 bool ShuffleVectorInst::isIdentityWithPadding() const {
1978 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1979 int NumMaskElts = getType()->getVectorNumElements();
1980 if (NumMaskElts <= NumOpElts)
1981 return false;
1983 // The first part of the mask must choose elements from exactly 1 source op.
1984 SmallVector<int, 16> Mask = getShuffleMask();
1985 if (!isIdentityMaskImpl(Mask, NumOpElts))
1986 return false;
1988 // All extending must be with undef elements.
1989 for (int i = NumOpElts; i < NumMaskElts; ++i)
1990 if (Mask[i] != -1)
1991 return false;
1993 return true;
1996 bool ShuffleVectorInst::isIdentityWithExtract() const {
1997 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1998 int NumMaskElts = getType()->getVectorNumElements();
1999 if (NumMaskElts >= NumOpElts)
2000 return false;
2002 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2005 bool ShuffleVectorInst::isConcat() const {
2006 // Vector concatenation is differentiated from identity with padding.
2007 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2008 return false;
2010 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2011 int NumMaskElts = getType()->getVectorNumElements();
2012 if (NumMaskElts != NumOpElts * 2)
2013 return false;
2015 // Use the mask length rather than the operands' vector lengths here. We
2016 // already know that the shuffle returns a vector twice as long as the inputs,
2017 // and neither of the inputs are undef vectors. If the mask picks consecutive
2018 // elements from both inputs, then this is a concatenation of the inputs.
2019 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2022 //===----------------------------------------------------------------------===//
2023 // InsertValueInst Class
2024 //===----------------------------------------------------------------------===//
2026 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2027 const Twine &Name) {
2028 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2030 // There's no fundamental reason why we require at least one index
2031 // (other than weirdness with &*IdxBegin being invalid; see
2032 // getelementptr's init routine for example). But there's no
2033 // present need to support it.
2034 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2036 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2037 Val->getType() && "Inserted value must match indexed type!");
2038 Op<0>() = Agg;
2039 Op<1>() = Val;
2041 Indices.append(Idxs.begin(), Idxs.end());
2042 setName(Name);
2045 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2046 : Instruction(IVI.getType(), InsertValue,
2047 OperandTraits<InsertValueInst>::op_begin(this), 2),
2048 Indices(IVI.Indices) {
2049 Op<0>() = IVI.getOperand(0);
2050 Op<1>() = IVI.getOperand(1);
2051 SubclassOptionalData = IVI.SubclassOptionalData;
2054 //===----------------------------------------------------------------------===//
2055 // ExtractValueInst Class
2056 //===----------------------------------------------------------------------===//
2058 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2059 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2061 // There's no fundamental reason why we require at least one index.
2062 // But there's no present need to support it.
2063 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2065 Indices.append(Idxs.begin(), Idxs.end());
2066 setName(Name);
2069 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2070 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2071 Indices(EVI.Indices) {
2072 SubclassOptionalData = EVI.SubclassOptionalData;
2075 // getIndexedType - Returns the type of the element that would be extracted
2076 // with an extractvalue instruction with the specified parameters.
2078 // A null type is returned if the indices are invalid for the specified
2079 // pointer type.
2081 Type *ExtractValueInst::getIndexedType(Type *Agg,
2082 ArrayRef<unsigned> Idxs) {
2083 for (unsigned Index : Idxs) {
2084 // We can't use CompositeType::indexValid(Index) here.
2085 // indexValid() always returns true for arrays because getelementptr allows
2086 // out-of-bounds indices. Since we don't allow those for extractvalue and
2087 // insertvalue we need to check array indexing manually.
2088 // Since the only other types we can index into are struct types it's just
2089 // as easy to check those manually as well.
2090 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2091 if (Index >= AT->getNumElements())
2092 return nullptr;
2093 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2094 if (Index >= ST->getNumElements())
2095 return nullptr;
2096 } else {
2097 // Not a valid type to index into.
2098 return nullptr;
2101 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2103 return const_cast<Type*>(Agg);
2106 //===----------------------------------------------------------------------===//
2107 // UnaryOperator Class
2108 //===----------------------------------------------------------------------===//
2110 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2111 Type *Ty, const Twine &Name,
2112 Instruction *InsertBefore)
2113 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2114 Op<0>() = S;
2115 setName(Name);
2116 AssertOK();
2119 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2120 Type *Ty, const Twine &Name,
2121 BasicBlock *InsertAtEnd)
2122 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2123 Op<0>() = S;
2124 setName(Name);
2125 AssertOK();
2128 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2129 const Twine &Name,
2130 Instruction *InsertBefore) {
2131 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2134 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2135 const Twine &Name,
2136 BasicBlock *InsertAtEnd) {
2137 UnaryOperator *Res = Create(Op, S, Name);
2138 InsertAtEnd->getInstList().push_back(Res);
2139 return Res;
2142 void UnaryOperator::AssertOK() {
2143 Value *LHS = getOperand(0);
2144 (void)LHS; // Silence warnings.
2145 #ifndef NDEBUG
2146 switch (getOpcode()) {
2147 case FNeg:
2148 assert(getType() == LHS->getType() &&
2149 "Unary operation should return same type as operand!");
2150 assert(getType()->isFPOrFPVectorTy() &&
2151 "Tried to create a floating-point operation on a "
2152 "non-floating-point type!");
2153 break;
2154 default: llvm_unreachable("Invalid opcode provided");
2156 #endif
2159 //===----------------------------------------------------------------------===//
2160 // BinaryOperator Class
2161 //===----------------------------------------------------------------------===//
2163 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2164 Type *Ty, const Twine &Name,
2165 Instruction *InsertBefore)
2166 : Instruction(Ty, iType,
2167 OperandTraits<BinaryOperator>::op_begin(this),
2168 OperandTraits<BinaryOperator>::operands(this),
2169 InsertBefore) {
2170 Op<0>() = S1;
2171 Op<1>() = S2;
2172 setName(Name);
2173 AssertOK();
2176 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2177 Type *Ty, const Twine &Name,
2178 BasicBlock *InsertAtEnd)
2179 : Instruction(Ty, iType,
2180 OperandTraits<BinaryOperator>::op_begin(this),
2181 OperandTraits<BinaryOperator>::operands(this),
2182 InsertAtEnd) {
2183 Op<0>() = S1;
2184 Op<1>() = S2;
2185 setName(Name);
2186 AssertOK();
2189 void BinaryOperator::AssertOK() {
2190 Value *LHS = getOperand(0), *RHS = getOperand(1);
2191 (void)LHS; (void)RHS; // Silence warnings.
2192 assert(LHS->getType() == RHS->getType() &&
2193 "Binary operator operand types must match!");
2194 #ifndef NDEBUG
2195 switch (getOpcode()) {
2196 case Add: case Sub:
2197 case Mul:
2198 assert(getType() == LHS->getType() &&
2199 "Arithmetic operation should return same type as operands!");
2200 assert(getType()->isIntOrIntVectorTy() &&
2201 "Tried to create an integer operation on a non-integer type!");
2202 break;
2203 case FAdd: case FSub:
2204 case FMul:
2205 assert(getType() == LHS->getType() &&
2206 "Arithmetic operation should return same type as operands!");
2207 assert(getType()->isFPOrFPVectorTy() &&
2208 "Tried to create a floating-point operation on a "
2209 "non-floating-point type!");
2210 break;
2211 case UDiv:
2212 case SDiv:
2213 assert(getType() == LHS->getType() &&
2214 "Arithmetic operation should return same type as operands!");
2215 assert(getType()->isIntOrIntVectorTy() &&
2216 "Incorrect operand type (not integer) for S/UDIV");
2217 break;
2218 case FDiv:
2219 assert(getType() == LHS->getType() &&
2220 "Arithmetic operation should return same type as operands!");
2221 assert(getType()->isFPOrFPVectorTy() &&
2222 "Incorrect operand type (not floating point) for FDIV");
2223 break;
2224 case URem:
2225 case SRem:
2226 assert(getType() == LHS->getType() &&
2227 "Arithmetic operation should return same type as operands!");
2228 assert(getType()->isIntOrIntVectorTy() &&
2229 "Incorrect operand type (not integer) for S/UREM");
2230 break;
2231 case FRem:
2232 assert(getType() == LHS->getType() &&
2233 "Arithmetic operation should return same type as operands!");
2234 assert(getType()->isFPOrFPVectorTy() &&
2235 "Incorrect operand type (not floating point) for FREM");
2236 break;
2237 case Shl:
2238 case LShr:
2239 case AShr:
2240 assert(getType() == LHS->getType() &&
2241 "Shift operation should return same type as operands!");
2242 assert(getType()->isIntOrIntVectorTy() &&
2243 "Tried to create a shift operation on a non-integral type!");
2244 break;
2245 case And: case Or:
2246 case Xor:
2247 assert(getType() == LHS->getType() &&
2248 "Logical operation should return same type as operands!");
2249 assert(getType()->isIntOrIntVectorTy() &&
2250 "Tried to create a logical operation on a non-integral type!");
2251 break;
2252 default: llvm_unreachable("Invalid opcode provided");
2254 #endif
2257 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2258 const Twine &Name,
2259 Instruction *InsertBefore) {
2260 assert(S1->getType() == S2->getType() &&
2261 "Cannot create binary operator with two operands of differing type!");
2262 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2265 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2266 const Twine &Name,
2267 BasicBlock *InsertAtEnd) {
2268 BinaryOperator *Res = Create(Op, S1, S2, Name);
2269 InsertAtEnd->getInstList().push_back(Res);
2270 return Res;
2273 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2274 Instruction *InsertBefore) {
2275 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2276 return new BinaryOperator(Instruction::Sub,
2277 zero, Op,
2278 Op->getType(), Name, InsertBefore);
2281 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2282 BasicBlock *InsertAtEnd) {
2283 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2284 return new BinaryOperator(Instruction::Sub,
2285 zero, Op,
2286 Op->getType(), Name, InsertAtEnd);
2289 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2290 Instruction *InsertBefore) {
2291 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2292 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2295 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2296 BasicBlock *InsertAtEnd) {
2297 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2298 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2301 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2302 Instruction *InsertBefore) {
2303 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2304 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2307 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2308 BasicBlock *InsertAtEnd) {
2309 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2310 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2313 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2314 Instruction *InsertBefore) {
2315 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2316 return new BinaryOperator(Instruction::FSub, zero, Op,
2317 Op->getType(), Name, InsertBefore);
2320 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2321 BasicBlock *InsertAtEnd) {
2322 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2323 return new BinaryOperator(Instruction::FSub, zero, Op,
2324 Op->getType(), Name, InsertAtEnd);
2327 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2328 Instruction *InsertBefore) {
2329 Constant *C = Constant::getAllOnesValue(Op->getType());
2330 return new BinaryOperator(Instruction::Xor, Op, C,
2331 Op->getType(), Name, InsertBefore);
2334 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2335 BasicBlock *InsertAtEnd) {
2336 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2337 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2338 Op->getType(), Name, InsertAtEnd);
2341 // Exchange the two operands to this instruction. This instruction is safe to
2342 // use on any binary instruction and does not modify the semantics of the
2343 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2344 // is changed.
2345 bool BinaryOperator::swapOperands() {
2346 if (!isCommutative())
2347 return true; // Can't commute operands
2348 Op<0>().swap(Op<1>());
2349 return false;
2352 //===----------------------------------------------------------------------===//
2353 // FPMathOperator Class
2354 //===----------------------------------------------------------------------===//
2356 float FPMathOperator::getFPAccuracy() const {
2357 const MDNode *MD =
2358 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2359 if (!MD)
2360 return 0.0;
2361 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2362 return Accuracy->getValueAPF().convertToFloat();
2365 //===----------------------------------------------------------------------===//
2366 // CastInst Class
2367 //===----------------------------------------------------------------------===//
2369 // Just determine if this cast only deals with integral->integral conversion.
2370 bool CastInst::isIntegerCast() const {
2371 switch (getOpcode()) {
2372 default: return false;
2373 case Instruction::ZExt:
2374 case Instruction::SExt:
2375 case Instruction::Trunc:
2376 return true;
2377 case Instruction::BitCast:
2378 return getOperand(0)->getType()->isIntegerTy() &&
2379 getType()->isIntegerTy();
2383 bool CastInst::isLosslessCast() const {
2384 // Only BitCast can be lossless, exit fast if we're not BitCast
2385 if (getOpcode() != Instruction::BitCast)
2386 return false;
2388 // Identity cast is always lossless
2389 Type *SrcTy = getOperand(0)->getType();
2390 Type *DstTy = getType();
2391 if (SrcTy == DstTy)
2392 return true;
2394 // Pointer to pointer is always lossless.
2395 if (SrcTy->isPointerTy())
2396 return DstTy->isPointerTy();
2397 return false; // Other types have no identity values
2400 /// This function determines if the CastInst does not require any bits to be
2401 /// changed in order to effect the cast. Essentially, it identifies cases where
2402 /// no code gen is necessary for the cast, hence the name no-op cast. For
2403 /// example, the following are all no-op casts:
2404 /// # bitcast i32* %x to i8*
2405 /// # bitcast <2 x i32> %x to <4 x i16>
2406 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2407 /// Determine if the described cast is a no-op.
2408 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2409 Type *SrcTy,
2410 Type *DestTy,
2411 const DataLayout &DL) {
2412 switch (Opcode) {
2413 default: llvm_unreachable("Invalid CastOp");
2414 case Instruction::Trunc:
2415 case Instruction::ZExt:
2416 case Instruction::SExt:
2417 case Instruction::FPTrunc:
2418 case Instruction::FPExt:
2419 case Instruction::UIToFP:
2420 case Instruction::SIToFP:
2421 case Instruction::FPToUI:
2422 case Instruction::FPToSI:
2423 case Instruction::AddrSpaceCast:
2424 // TODO: Target informations may give a more accurate answer here.
2425 return false;
2426 case Instruction::BitCast:
2427 return true; // BitCast never modifies bits.
2428 case Instruction::PtrToInt:
2429 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2430 DestTy->getScalarSizeInBits();
2431 case Instruction::IntToPtr:
2432 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2433 SrcTy->getScalarSizeInBits();
2437 bool CastInst::isNoopCast(const DataLayout &DL) const {
2438 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2441 /// This function determines if a pair of casts can be eliminated and what
2442 /// opcode should be used in the elimination. This assumes that there are two
2443 /// instructions like this:
2444 /// * %F = firstOpcode SrcTy %x to MidTy
2445 /// * %S = secondOpcode MidTy %F to DstTy
2446 /// The function returns a resultOpcode so these two casts can be replaced with:
2447 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2448 /// If no such cast is permitted, the function returns 0.
2449 unsigned CastInst::isEliminableCastPair(
2450 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2451 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2452 Type *DstIntPtrTy) {
2453 // Define the 144 possibilities for these two cast instructions. The values
2454 // in this matrix determine what to do in a given situation and select the
2455 // case in the switch below. The rows correspond to firstOp, the columns
2456 // correspond to secondOp. In looking at the table below, keep in mind
2457 // the following cast properties:
2459 // Size Compare Source Destination
2460 // Operator Src ? Size Type Sign Type Sign
2461 // -------- ------------ ------------------- ---------------------
2462 // TRUNC > Integer Any Integral Any
2463 // ZEXT < Integral Unsigned Integer Any
2464 // SEXT < Integral Signed Integer Any
2465 // FPTOUI n/a FloatPt n/a Integral Unsigned
2466 // FPTOSI n/a FloatPt n/a Integral Signed
2467 // UITOFP n/a Integral Unsigned FloatPt n/a
2468 // SITOFP n/a Integral Signed FloatPt n/a
2469 // FPTRUNC > FloatPt n/a FloatPt n/a
2470 // FPEXT < FloatPt n/a FloatPt n/a
2471 // PTRTOINT n/a Pointer n/a Integral Unsigned
2472 // INTTOPTR n/a Integral Unsigned Pointer n/a
2473 // BITCAST = FirstClass n/a FirstClass n/a
2474 // ADDRSPCST n/a Pointer n/a Pointer n/a
2476 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2477 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2478 // into "fptoui double to i64", but this loses information about the range
2479 // of the produced value (we no longer know the top-part is all zeros).
2480 // Further this conversion is often much more expensive for typical hardware,
2481 // and causes issues when building libgcc. We disallow fptosi+sext for the
2482 // same reason.
2483 const unsigned numCastOps =
2484 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2485 static const uint8_t CastResults[numCastOps][numCastOps] = {
2486 // T F F U S F F P I B A -+
2487 // R Z S P P I I T P 2 N T S |
2488 // U E E 2 2 2 2 R E I T C C +- secondOp
2489 // N X X U S F F N X N 2 V V |
2490 // C T T I I P P C T T P T T -+
2491 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2492 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2493 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2494 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2495 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2496 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2497 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2498 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2499 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2500 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2501 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2502 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2503 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2506 // TODO: This logic could be encoded into the table above and handled in the
2507 // switch below.
2508 // If either of the casts are a bitcast from scalar to vector, disallow the
2509 // merging. However, any pair of bitcasts are allowed.
2510 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2511 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2512 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2514 // Check if any of the casts convert scalars <-> vectors.
2515 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2516 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2517 if (!AreBothBitcasts)
2518 return 0;
2520 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2521 [secondOp-Instruction::CastOpsBegin];
2522 switch (ElimCase) {
2523 case 0:
2524 // Categorically disallowed.
2525 return 0;
2526 case 1:
2527 // Allowed, use first cast's opcode.
2528 return firstOp;
2529 case 2:
2530 // Allowed, use second cast's opcode.
2531 return secondOp;
2532 case 3:
2533 // No-op cast in second op implies firstOp as long as the DestTy
2534 // is integer and we are not converting between a vector and a
2535 // non-vector type.
2536 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2537 return firstOp;
2538 return 0;
2539 case 4:
2540 // No-op cast in second op implies firstOp as long as the DestTy
2541 // is floating point.
2542 if (DstTy->isFloatingPointTy())
2543 return firstOp;
2544 return 0;
2545 case 5:
2546 // No-op cast in first op implies secondOp as long as the SrcTy
2547 // is an integer.
2548 if (SrcTy->isIntegerTy())
2549 return secondOp;
2550 return 0;
2551 case 6:
2552 // No-op cast in first op implies secondOp as long as the SrcTy
2553 // is a floating point.
2554 if (SrcTy->isFloatingPointTy())
2555 return secondOp;
2556 return 0;
2557 case 7: {
2558 // Cannot simplify if address spaces are different!
2559 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2560 return 0;
2562 unsigned MidSize = MidTy->getScalarSizeInBits();
2563 // We can still fold this without knowing the actual sizes as long we
2564 // know that the intermediate pointer is the largest possible
2565 // pointer size.
2566 // FIXME: Is this always true?
2567 if (MidSize == 64)
2568 return Instruction::BitCast;
2570 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2571 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2572 return 0;
2573 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2574 if (MidSize >= PtrSize)
2575 return Instruction::BitCast;
2576 return 0;
2578 case 8: {
2579 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2580 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2581 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2582 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2583 unsigned DstSize = DstTy->getScalarSizeInBits();
2584 if (SrcSize == DstSize)
2585 return Instruction::BitCast;
2586 else if (SrcSize < DstSize)
2587 return firstOp;
2588 return secondOp;
2590 case 9:
2591 // zext, sext -> zext, because sext can't sign extend after zext
2592 return Instruction::ZExt;
2593 case 11: {
2594 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2595 if (!MidIntPtrTy)
2596 return 0;
2597 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2598 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2599 unsigned DstSize = DstTy->getScalarSizeInBits();
2600 if (SrcSize <= PtrSize && SrcSize == DstSize)
2601 return Instruction::BitCast;
2602 return 0;
2604 case 12:
2605 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2606 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2607 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2608 return Instruction::AddrSpaceCast;
2609 return Instruction::BitCast;
2610 case 13:
2611 // FIXME: this state can be merged with (1), but the following assert
2612 // is useful to check the correcteness of the sequence due to semantic
2613 // change of bitcast.
2614 assert(
2615 SrcTy->isPtrOrPtrVectorTy() &&
2616 MidTy->isPtrOrPtrVectorTy() &&
2617 DstTy->isPtrOrPtrVectorTy() &&
2618 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2619 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2620 "Illegal addrspacecast, bitcast sequence!");
2621 // Allowed, use first cast's opcode
2622 return firstOp;
2623 case 14:
2624 // bitcast, addrspacecast -> addrspacecast if the element type of
2625 // bitcast's source is the same as that of addrspacecast's destination.
2626 if (SrcTy->getScalarType()->getPointerElementType() ==
2627 DstTy->getScalarType()->getPointerElementType())
2628 return Instruction::AddrSpaceCast;
2629 return 0;
2630 case 15:
2631 // FIXME: this state can be merged with (1), but the following assert
2632 // is useful to check the correcteness of the sequence due to semantic
2633 // change of bitcast.
2634 assert(
2635 SrcTy->isIntOrIntVectorTy() &&
2636 MidTy->isPtrOrPtrVectorTy() &&
2637 DstTy->isPtrOrPtrVectorTy() &&
2638 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2639 "Illegal inttoptr, bitcast sequence!");
2640 // Allowed, use first cast's opcode
2641 return firstOp;
2642 case 16:
2643 // FIXME: this state can be merged with (2), but the following assert
2644 // is useful to check the correcteness of the sequence due to semantic
2645 // change of bitcast.
2646 assert(
2647 SrcTy->isPtrOrPtrVectorTy() &&
2648 MidTy->isPtrOrPtrVectorTy() &&
2649 DstTy->isIntOrIntVectorTy() &&
2650 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2651 "Illegal bitcast, ptrtoint sequence!");
2652 // Allowed, use second cast's opcode
2653 return secondOp;
2654 case 17:
2655 // (sitofp (zext x)) -> (uitofp x)
2656 return Instruction::UIToFP;
2657 case 99:
2658 // Cast combination can't happen (error in input). This is for all cases
2659 // where the MidTy is not the same for the two cast instructions.
2660 llvm_unreachable("Invalid Cast Combination");
2661 default:
2662 llvm_unreachable("Error in CastResults table!!!");
2666 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2667 const Twine &Name, Instruction *InsertBefore) {
2668 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2669 // Construct and return the appropriate CastInst subclass
2670 switch (op) {
2671 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2672 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2673 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2674 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2675 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2676 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2677 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2678 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2679 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2680 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2681 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2682 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2683 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2684 default: llvm_unreachable("Invalid opcode provided");
2688 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2689 const Twine &Name, BasicBlock *InsertAtEnd) {
2690 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2691 // Construct and return the appropriate CastInst subclass
2692 switch (op) {
2693 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2694 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2695 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2696 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2697 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2698 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2699 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2700 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2701 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2702 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2703 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2704 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2705 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2706 default: llvm_unreachable("Invalid opcode provided");
2710 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2711 const Twine &Name,
2712 Instruction *InsertBefore) {
2713 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2714 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2715 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2718 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2719 const Twine &Name,
2720 BasicBlock *InsertAtEnd) {
2721 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2722 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2723 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2726 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2727 const Twine &Name,
2728 Instruction *InsertBefore) {
2729 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2730 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2731 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2734 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2735 const Twine &Name,
2736 BasicBlock *InsertAtEnd) {
2737 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2738 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2739 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2742 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2743 const Twine &Name,
2744 Instruction *InsertBefore) {
2745 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2746 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2747 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2750 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2751 const Twine &Name,
2752 BasicBlock *InsertAtEnd) {
2753 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2754 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2755 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2758 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2759 const Twine &Name,
2760 BasicBlock *InsertAtEnd) {
2761 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2762 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2763 "Invalid cast");
2764 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2765 assert((!Ty->isVectorTy() ||
2766 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2767 "Invalid cast");
2769 if (Ty->isIntOrIntVectorTy())
2770 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2772 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2775 /// Create a BitCast or a PtrToInt cast instruction
2776 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2777 const Twine &Name,
2778 Instruction *InsertBefore) {
2779 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2780 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2781 "Invalid cast");
2782 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2783 assert((!Ty->isVectorTy() ||
2784 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2785 "Invalid cast");
2787 if (Ty->isIntOrIntVectorTy())
2788 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2790 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2793 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2794 Value *S, Type *Ty,
2795 const Twine &Name,
2796 BasicBlock *InsertAtEnd) {
2797 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2798 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2800 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2801 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2803 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2806 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2807 Value *S, Type *Ty,
2808 const Twine &Name,
2809 Instruction *InsertBefore) {
2810 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2811 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2813 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2814 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2816 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2819 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2820 const Twine &Name,
2821 Instruction *InsertBefore) {
2822 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2823 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2824 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2825 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2827 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2830 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2831 bool isSigned, const Twine &Name,
2832 Instruction *InsertBefore) {
2833 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2834 "Invalid integer cast");
2835 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2836 unsigned DstBits = Ty->getScalarSizeInBits();
2837 Instruction::CastOps opcode =
2838 (SrcBits == DstBits ? Instruction::BitCast :
2839 (SrcBits > DstBits ? Instruction::Trunc :
2840 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2841 return Create(opcode, C, Ty, Name, InsertBefore);
2844 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2845 bool isSigned, const Twine &Name,
2846 BasicBlock *InsertAtEnd) {
2847 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2848 "Invalid cast");
2849 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2850 unsigned DstBits = Ty->getScalarSizeInBits();
2851 Instruction::CastOps opcode =
2852 (SrcBits == DstBits ? Instruction::BitCast :
2853 (SrcBits > DstBits ? Instruction::Trunc :
2854 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2855 return Create(opcode, C, Ty, Name, InsertAtEnd);
2858 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2859 const Twine &Name,
2860 Instruction *InsertBefore) {
2861 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2862 "Invalid cast");
2863 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2864 unsigned DstBits = Ty->getScalarSizeInBits();
2865 Instruction::CastOps opcode =
2866 (SrcBits == DstBits ? Instruction::BitCast :
2867 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2868 return Create(opcode, C, Ty, Name, InsertBefore);
2871 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2872 const Twine &Name,
2873 BasicBlock *InsertAtEnd) {
2874 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2875 "Invalid cast");
2876 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2877 unsigned DstBits = Ty->getScalarSizeInBits();
2878 Instruction::CastOps opcode =
2879 (SrcBits == DstBits ? Instruction::BitCast :
2880 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2881 return Create(opcode, C, Ty, Name, InsertAtEnd);
2884 // Check whether it is valid to call getCastOpcode for these types.
2885 // This routine must be kept in sync with getCastOpcode.
2886 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2887 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2888 return false;
2890 if (SrcTy == DestTy)
2891 return true;
2893 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2894 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2895 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2896 // An element by element cast. Valid if casting the elements is valid.
2897 SrcTy = SrcVecTy->getElementType();
2898 DestTy = DestVecTy->getElementType();
2901 // Get the bit sizes, we'll need these
2902 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2903 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2905 // Run through the possibilities ...
2906 if (DestTy->isIntegerTy()) { // Casting to integral
2907 if (SrcTy->isIntegerTy()) // Casting from integral
2908 return true;
2909 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2910 return true;
2911 if (SrcTy->isVectorTy()) // Casting from vector
2912 return DestBits == SrcBits;
2913 // Casting from something else
2914 return SrcTy->isPointerTy();
2916 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2917 if (SrcTy->isIntegerTy()) // Casting from integral
2918 return true;
2919 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2920 return true;
2921 if (SrcTy->isVectorTy()) // Casting from vector
2922 return DestBits == SrcBits;
2923 // Casting from something else
2924 return false;
2926 if (DestTy->isVectorTy()) // Casting to vector
2927 return DestBits == SrcBits;
2928 if (DestTy->isPointerTy()) { // Casting to pointer
2929 if (SrcTy->isPointerTy()) // Casting from pointer
2930 return true;
2931 return SrcTy->isIntegerTy(); // Casting from integral
2933 if (DestTy->isX86_MMXTy()) {
2934 if (SrcTy->isVectorTy())
2935 return DestBits == SrcBits; // 64-bit vector to MMX
2936 return false;
2937 } // Casting to something else
2938 return false;
2941 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2942 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2943 return false;
2945 if (SrcTy == DestTy)
2946 return true;
2948 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2949 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2950 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2951 // An element by element cast. Valid if casting the elements is valid.
2952 SrcTy = SrcVecTy->getElementType();
2953 DestTy = DestVecTy->getElementType();
2958 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2959 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2960 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2964 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2965 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2967 // Could still have vectors of pointers if the number of elements doesn't
2968 // match
2969 if (SrcBits == 0 || DestBits == 0)
2970 return false;
2972 if (SrcBits != DestBits)
2973 return false;
2975 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2976 return false;
2978 return true;
2981 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2982 const DataLayout &DL) {
2983 // ptrtoint and inttoptr are not allowed on non-integral pointers
2984 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2985 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2986 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2987 !DL.isNonIntegralPointerType(PtrTy));
2988 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2989 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2990 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2991 !DL.isNonIntegralPointerType(PtrTy));
2993 return isBitCastable(SrcTy, DestTy);
2996 // Provide a way to get a "cast" where the cast opcode is inferred from the
2997 // types and size of the operand. This, basically, is a parallel of the
2998 // logic in the castIsValid function below. This axiom should hold:
2999 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3000 // should not assert in castIsValid. In other words, this produces a "correct"
3001 // casting opcode for the arguments passed to it.
3002 // This routine must be kept in sync with isCastable.
3003 Instruction::CastOps
3004 CastInst::getCastOpcode(
3005 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3006 Type *SrcTy = Src->getType();
3008 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3009 "Only first class types are castable!");
3011 if (SrcTy == DestTy)
3012 return BitCast;
3014 // FIXME: Check address space sizes here
3015 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3016 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3017 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3018 // An element by element cast. Find the appropriate opcode based on the
3019 // element types.
3020 SrcTy = SrcVecTy->getElementType();
3021 DestTy = DestVecTy->getElementType();
3024 // Get the bit sizes, we'll need these
3025 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3026 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3028 // Run through the possibilities ...
3029 if (DestTy->isIntegerTy()) { // Casting to integral
3030 if (SrcTy->isIntegerTy()) { // Casting from integral
3031 if (DestBits < SrcBits)
3032 return Trunc; // int -> smaller int
3033 else if (DestBits > SrcBits) { // its an extension
3034 if (SrcIsSigned)
3035 return SExt; // signed -> SEXT
3036 else
3037 return ZExt; // unsigned -> ZEXT
3038 } else {
3039 return BitCast; // Same size, No-op cast
3041 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3042 if (DestIsSigned)
3043 return FPToSI; // FP -> sint
3044 else
3045 return FPToUI; // FP -> uint
3046 } else if (SrcTy->isVectorTy()) {
3047 assert(DestBits == SrcBits &&
3048 "Casting vector to integer of different width");
3049 return BitCast; // Same size, no-op cast
3050 } else {
3051 assert(SrcTy->isPointerTy() &&
3052 "Casting from a value that is not first-class type");
3053 return PtrToInt; // ptr -> int
3055 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3056 if (SrcTy->isIntegerTy()) { // Casting from integral
3057 if (SrcIsSigned)
3058 return SIToFP; // sint -> FP
3059 else
3060 return UIToFP; // uint -> FP
3061 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3062 if (DestBits < SrcBits) {
3063 return FPTrunc; // FP -> smaller FP
3064 } else if (DestBits > SrcBits) {
3065 return FPExt; // FP -> larger FP
3066 } else {
3067 return BitCast; // same size, no-op cast
3069 } else if (SrcTy->isVectorTy()) {
3070 assert(DestBits == SrcBits &&
3071 "Casting vector to floating point of different width");
3072 return BitCast; // same size, no-op cast
3074 llvm_unreachable("Casting pointer or non-first class to float");
3075 } else if (DestTy->isVectorTy()) {
3076 assert(DestBits == SrcBits &&
3077 "Illegal cast to vector (wrong type or size)");
3078 return BitCast;
3079 } else if (DestTy->isPointerTy()) {
3080 if (SrcTy->isPointerTy()) {
3081 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3082 return AddrSpaceCast;
3083 return BitCast; // ptr -> ptr
3084 } else if (SrcTy->isIntegerTy()) {
3085 return IntToPtr; // int -> ptr
3087 llvm_unreachable("Casting pointer to other than pointer or int");
3088 } else if (DestTy->isX86_MMXTy()) {
3089 if (SrcTy->isVectorTy()) {
3090 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3091 return BitCast; // 64-bit vector to MMX
3093 llvm_unreachable("Illegal cast to X86_MMX");
3095 llvm_unreachable("Casting to type that is not first-class");
3098 //===----------------------------------------------------------------------===//
3099 // CastInst SubClass Constructors
3100 //===----------------------------------------------------------------------===//
3102 /// Check that the construction parameters for a CastInst are correct. This
3103 /// could be broken out into the separate constructors but it is useful to have
3104 /// it in one place and to eliminate the redundant code for getting the sizes
3105 /// of the types involved.
3106 bool
3107 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3108 // Check for type sanity on the arguments
3109 Type *SrcTy = S->getType();
3111 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3112 SrcTy->isAggregateType() || DstTy->isAggregateType())
3113 return false;
3115 // Get the size of the types in bits, we'll need this later
3116 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3117 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3119 // If these are vector types, get the lengths of the vectors (using zero for
3120 // scalar types means that checking that vector lengths match also checks that
3121 // scalars are not being converted to vectors or vectors to scalars).
3122 unsigned SrcLength = SrcTy->isVectorTy() ?
3123 cast<VectorType>(SrcTy)->getNumElements() : 0;
3124 unsigned DstLength = DstTy->isVectorTy() ?
3125 cast<VectorType>(DstTy)->getNumElements() : 0;
3127 // Switch on the opcode provided
3128 switch (op) {
3129 default: return false; // This is an input error
3130 case Instruction::Trunc:
3131 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3132 SrcLength == DstLength && SrcBitSize > DstBitSize;
3133 case Instruction::ZExt:
3134 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3135 SrcLength == DstLength && SrcBitSize < DstBitSize;
3136 case Instruction::SExt:
3137 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3138 SrcLength == DstLength && SrcBitSize < DstBitSize;
3139 case Instruction::FPTrunc:
3140 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3141 SrcLength == DstLength && SrcBitSize > DstBitSize;
3142 case Instruction::FPExt:
3143 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3144 SrcLength == DstLength && SrcBitSize < DstBitSize;
3145 case Instruction::UIToFP:
3146 case Instruction::SIToFP:
3147 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3148 SrcLength == DstLength;
3149 case Instruction::FPToUI:
3150 case Instruction::FPToSI:
3151 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3152 SrcLength == DstLength;
3153 case Instruction::PtrToInt:
3154 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3155 return false;
3156 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3157 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3158 return false;
3159 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3160 case Instruction::IntToPtr:
3161 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3162 return false;
3163 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3164 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3165 return false;
3166 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3167 case Instruction::BitCast: {
3168 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3169 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3171 // BitCast implies a no-op cast of type only. No bits change.
3172 // However, you can't cast pointers to anything but pointers.
3173 if (!SrcPtrTy != !DstPtrTy)
3174 return false;
3176 // For non-pointer cases, the cast is okay if the source and destination bit
3177 // widths are identical.
3178 if (!SrcPtrTy)
3179 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3181 // If both are pointers then the address spaces must match.
3182 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3183 return false;
3185 // A vector of pointers must have the same number of elements.
3186 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3187 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3188 if (SrcVecTy && DstVecTy)
3189 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3190 if (SrcVecTy)
3191 return SrcVecTy->getNumElements() == 1;
3192 if (DstVecTy)
3193 return DstVecTy->getNumElements() == 1;
3195 return true;
3197 case Instruction::AddrSpaceCast: {
3198 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3199 if (!SrcPtrTy)
3200 return false;
3202 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3203 if (!DstPtrTy)
3204 return false;
3206 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3207 return false;
3209 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3210 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3211 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3213 return false;
3216 return true;
3221 TruncInst::TruncInst(
3222 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3223 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3224 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3227 TruncInst::TruncInst(
3228 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3229 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3230 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3233 ZExtInst::ZExtInst(
3234 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3235 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3236 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3239 ZExtInst::ZExtInst(
3240 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3241 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3242 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3244 SExtInst::SExtInst(
3245 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3246 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3247 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3250 SExtInst::SExtInst(
3251 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3252 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3253 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3256 FPTruncInst::FPTruncInst(
3257 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3258 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3259 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3262 FPTruncInst::FPTruncInst(
3263 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3264 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3265 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3268 FPExtInst::FPExtInst(
3269 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3270 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3271 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3274 FPExtInst::FPExtInst(
3275 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3276 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3277 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3280 UIToFPInst::UIToFPInst(
3281 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3282 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3283 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3286 UIToFPInst::UIToFPInst(
3287 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3288 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3289 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3292 SIToFPInst::SIToFPInst(
3293 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3294 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3295 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3298 SIToFPInst::SIToFPInst(
3299 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3300 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3301 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3304 FPToUIInst::FPToUIInst(
3305 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3306 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3307 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3310 FPToUIInst::FPToUIInst(
3311 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3312 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3313 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3316 FPToSIInst::FPToSIInst(
3317 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3318 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3319 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3322 FPToSIInst::FPToSIInst(
3323 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3324 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3325 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3328 PtrToIntInst::PtrToIntInst(
3329 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3330 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3331 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3334 PtrToIntInst::PtrToIntInst(
3335 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3336 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3337 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3340 IntToPtrInst::IntToPtrInst(
3341 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3342 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3343 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3346 IntToPtrInst::IntToPtrInst(
3347 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3348 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3349 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3352 BitCastInst::BitCastInst(
3353 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3354 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3355 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3358 BitCastInst::BitCastInst(
3359 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3360 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3361 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3364 AddrSpaceCastInst::AddrSpaceCastInst(
3365 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3366 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3367 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3370 AddrSpaceCastInst::AddrSpaceCastInst(
3371 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3372 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3373 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3376 //===----------------------------------------------------------------------===//
3377 // CmpInst Classes
3378 //===----------------------------------------------------------------------===//
3380 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3381 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3382 Instruction *FlagsSource)
3383 : Instruction(ty, op,
3384 OperandTraits<CmpInst>::op_begin(this),
3385 OperandTraits<CmpInst>::operands(this),
3386 InsertBefore) {
3387 Op<0>() = LHS;
3388 Op<1>() = RHS;
3389 setPredicate((Predicate)predicate);
3390 setName(Name);
3391 if (FlagsSource)
3392 copyIRFlags(FlagsSource);
3395 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3396 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3397 : Instruction(ty, op,
3398 OperandTraits<CmpInst>::op_begin(this),
3399 OperandTraits<CmpInst>::operands(this),
3400 InsertAtEnd) {
3401 Op<0>() = LHS;
3402 Op<1>() = RHS;
3403 setPredicate((Predicate)predicate);
3404 setName(Name);
3407 CmpInst *
3408 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3409 const Twine &Name, Instruction *InsertBefore) {
3410 if (Op == Instruction::ICmp) {
3411 if (InsertBefore)
3412 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3413 S1, S2, Name);
3414 else
3415 return new ICmpInst(CmpInst::Predicate(predicate),
3416 S1, S2, Name);
3419 if (InsertBefore)
3420 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3421 S1, S2, Name);
3422 else
3423 return new FCmpInst(CmpInst::Predicate(predicate),
3424 S1, S2, Name);
3427 CmpInst *
3428 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3429 const Twine &Name, BasicBlock *InsertAtEnd) {
3430 if (Op == Instruction::ICmp) {
3431 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3432 S1, S2, Name);
3434 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3435 S1, S2, Name);
3438 void CmpInst::swapOperands() {
3439 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3440 IC->swapOperands();
3441 else
3442 cast<FCmpInst>(this)->swapOperands();
3445 bool CmpInst::isCommutative() const {
3446 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3447 return IC->isCommutative();
3448 return cast<FCmpInst>(this)->isCommutative();
3451 bool CmpInst::isEquality() const {
3452 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3453 return IC->isEquality();
3454 return cast<FCmpInst>(this)->isEquality();
3457 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3458 switch (pred) {
3459 default: llvm_unreachable("Unknown cmp predicate!");
3460 case ICMP_EQ: return ICMP_NE;
3461 case ICMP_NE: return ICMP_EQ;
3462 case ICMP_UGT: return ICMP_ULE;
3463 case ICMP_ULT: return ICMP_UGE;
3464 case ICMP_UGE: return ICMP_ULT;
3465 case ICMP_ULE: return ICMP_UGT;
3466 case ICMP_SGT: return ICMP_SLE;
3467 case ICMP_SLT: return ICMP_SGE;
3468 case ICMP_SGE: return ICMP_SLT;
3469 case ICMP_SLE: return ICMP_SGT;
3471 case FCMP_OEQ: return FCMP_UNE;
3472 case FCMP_ONE: return FCMP_UEQ;
3473 case FCMP_OGT: return FCMP_ULE;
3474 case FCMP_OLT: return FCMP_UGE;
3475 case FCMP_OGE: return FCMP_ULT;
3476 case FCMP_OLE: return FCMP_UGT;
3477 case FCMP_UEQ: return FCMP_ONE;
3478 case FCMP_UNE: return FCMP_OEQ;
3479 case FCMP_UGT: return FCMP_OLE;
3480 case FCMP_ULT: return FCMP_OGE;
3481 case FCMP_UGE: return FCMP_OLT;
3482 case FCMP_ULE: return FCMP_OGT;
3483 case FCMP_ORD: return FCMP_UNO;
3484 case FCMP_UNO: return FCMP_ORD;
3485 case FCMP_TRUE: return FCMP_FALSE;
3486 case FCMP_FALSE: return FCMP_TRUE;
3490 StringRef CmpInst::getPredicateName(Predicate Pred) {
3491 switch (Pred) {
3492 default: return "unknown";
3493 case FCmpInst::FCMP_FALSE: return "false";
3494 case FCmpInst::FCMP_OEQ: return "oeq";
3495 case FCmpInst::FCMP_OGT: return "ogt";
3496 case FCmpInst::FCMP_OGE: return "oge";
3497 case FCmpInst::FCMP_OLT: return "olt";
3498 case FCmpInst::FCMP_OLE: return "ole";
3499 case FCmpInst::FCMP_ONE: return "one";
3500 case FCmpInst::FCMP_ORD: return "ord";
3501 case FCmpInst::FCMP_UNO: return "uno";
3502 case FCmpInst::FCMP_UEQ: return "ueq";
3503 case FCmpInst::FCMP_UGT: return "ugt";
3504 case FCmpInst::FCMP_UGE: return "uge";
3505 case FCmpInst::FCMP_ULT: return "ult";
3506 case FCmpInst::FCMP_ULE: return "ule";
3507 case FCmpInst::FCMP_UNE: return "une";
3508 case FCmpInst::FCMP_TRUE: return "true";
3509 case ICmpInst::ICMP_EQ: return "eq";
3510 case ICmpInst::ICMP_NE: return "ne";
3511 case ICmpInst::ICMP_SGT: return "sgt";
3512 case ICmpInst::ICMP_SGE: return "sge";
3513 case ICmpInst::ICMP_SLT: return "slt";
3514 case ICmpInst::ICMP_SLE: return "sle";
3515 case ICmpInst::ICMP_UGT: return "ugt";
3516 case ICmpInst::ICMP_UGE: return "uge";
3517 case ICmpInst::ICMP_ULT: return "ult";
3518 case ICmpInst::ICMP_ULE: return "ule";
3522 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3523 switch (pred) {
3524 default: llvm_unreachable("Unknown icmp predicate!");
3525 case ICMP_EQ: case ICMP_NE:
3526 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3527 return pred;
3528 case ICMP_UGT: return ICMP_SGT;
3529 case ICMP_ULT: return ICMP_SLT;
3530 case ICMP_UGE: return ICMP_SGE;
3531 case ICMP_ULE: return ICMP_SLE;
3535 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3536 switch (pred) {
3537 default: llvm_unreachable("Unknown icmp predicate!");
3538 case ICMP_EQ: case ICMP_NE:
3539 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3540 return pred;
3541 case ICMP_SGT: return ICMP_UGT;
3542 case ICMP_SLT: return ICMP_ULT;
3543 case ICMP_SGE: return ICMP_UGE;
3544 case ICMP_SLE: return ICMP_ULE;
3548 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3549 switch (pred) {
3550 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3551 case ICMP_SGT: return ICMP_SGE;
3552 case ICMP_SLT: return ICMP_SLE;
3553 case ICMP_SGE: return ICMP_SGT;
3554 case ICMP_SLE: return ICMP_SLT;
3555 case ICMP_UGT: return ICMP_UGE;
3556 case ICMP_ULT: return ICMP_ULE;
3557 case ICMP_UGE: return ICMP_UGT;
3558 case ICMP_ULE: return ICMP_ULT;
3560 case FCMP_OGT: return FCMP_OGE;
3561 case FCMP_OLT: return FCMP_OLE;
3562 case FCMP_OGE: return FCMP_OGT;
3563 case FCMP_OLE: return FCMP_OLT;
3564 case FCMP_UGT: return FCMP_UGE;
3565 case FCMP_ULT: return FCMP_ULE;
3566 case FCMP_UGE: return FCMP_UGT;
3567 case FCMP_ULE: return FCMP_ULT;
3571 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3572 switch (pred) {
3573 default: llvm_unreachable("Unknown cmp predicate!");
3574 case ICMP_EQ: case ICMP_NE:
3575 return pred;
3576 case ICMP_SGT: return ICMP_SLT;
3577 case ICMP_SLT: return ICMP_SGT;
3578 case ICMP_SGE: return ICMP_SLE;
3579 case ICMP_SLE: return ICMP_SGE;
3580 case ICMP_UGT: return ICMP_ULT;
3581 case ICMP_ULT: return ICMP_UGT;
3582 case ICMP_UGE: return ICMP_ULE;
3583 case ICMP_ULE: return ICMP_UGE;
3585 case FCMP_FALSE: case FCMP_TRUE:
3586 case FCMP_OEQ: case FCMP_ONE:
3587 case FCMP_UEQ: case FCMP_UNE:
3588 case FCMP_ORD: case FCMP_UNO:
3589 return pred;
3590 case FCMP_OGT: return FCMP_OLT;
3591 case FCMP_OLT: return FCMP_OGT;
3592 case FCMP_OGE: return FCMP_OLE;
3593 case FCMP_OLE: return FCMP_OGE;
3594 case FCMP_UGT: return FCMP_ULT;
3595 case FCMP_ULT: return FCMP_UGT;
3596 case FCMP_UGE: return FCMP_ULE;
3597 case FCMP_ULE: return FCMP_UGE;
3601 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3602 switch (pred) {
3603 case ICMP_SGT: return ICMP_SGE;
3604 case ICMP_SLT: return ICMP_SLE;
3605 case ICMP_UGT: return ICMP_UGE;
3606 case ICMP_ULT: return ICMP_ULE;
3607 case FCMP_OGT: return FCMP_OGE;
3608 case FCMP_OLT: return FCMP_OLE;
3609 case FCMP_UGT: return FCMP_UGE;
3610 case FCMP_ULT: return FCMP_ULE;
3611 default: return pred;
3615 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3616 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3618 switch (pred) {
3619 default:
3620 llvm_unreachable("Unknown predicate!");
3621 case CmpInst::ICMP_ULT:
3622 return CmpInst::ICMP_SLT;
3623 case CmpInst::ICMP_ULE:
3624 return CmpInst::ICMP_SLE;
3625 case CmpInst::ICMP_UGT:
3626 return CmpInst::ICMP_SGT;
3627 case CmpInst::ICMP_UGE:
3628 return CmpInst::ICMP_SGE;
3632 bool CmpInst::isUnsigned(Predicate predicate) {
3633 switch (predicate) {
3634 default: return false;
3635 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3636 case ICmpInst::ICMP_UGE: return true;
3640 bool CmpInst::isSigned(Predicate predicate) {
3641 switch (predicate) {
3642 default: return false;
3643 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3644 case ICmpInst::ICMP_SGE: return true;
3648 bool CmpInst::isOrdered(Predicate predicate) {
3649 switch (predicate) {
3650 default: return false;
3651 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3652 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3653 case FCmpInst::FCMP_ORD: return true;
3657 bool CmpInst::isUnordered(Predicate predicate) {
3658 switch (predicate) {
3659 default: return false;
3660 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3661 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3662 case FCmpInst::FCMP_UNO: return true;
3666 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3667 switch(predicate) {
3668 default: return false;
3669 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3670 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3674 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3675 switch(predicate) {
3676 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3677 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3678 default: return false;
3682 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3683 // If the predicates match, then we know the first condition implies the
3684 // second is true.
3685 if (Pred1 == Pred2)
3686 return true;
3688 switch (Pred1) {
3689 default:
3690 break;
3691 case ICMP_EQ:
3692 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3693 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3694 Pred2 == ICMP_SLE;
3695 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3696 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3697 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3698 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3699 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3700 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3701 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3702 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3704 return false;
3707 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3708 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3711 //===----------------------------------------------------------------------===//
3712 // SwitchInst Implementation
3713 //===----------------------------------------------------------------------===//
3715 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3716 assert(Value && Default && NumReserved);
3717 ReservedSpace = NumReserved;
3718 setNumHungOffUseOperands(2);
3719 allocHungoffUses(ReservedSpace);
3721 Op<0>() = Value;
3722 Op<1>() = Default;
3725 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3726 /// switch on and a default destination. The number of additional cases can
3727 /// be specified here to make memory allocation more efficient. This
3728 /// constructor can also autoinsert before another instruction.
3729 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3730 Instruction *InsertBefore)
3731 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3732 nullptr, 0, InsertBefore) {
3733 init(Value, Default, 2+NumCases*2);
3736 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3737 /// switch on and a default destination. The number of additional cases can
3738 /// be specified here to make memory allocation more efficient. This
3739 /// constructor also autoinserts at the end of the specified BasicBlock.
3740 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3741 BasicBlock *InsertAtEnd)
3742 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3743 nullptr, 0, InsertAtEnd) {
3744 init(Value, Default, 2+NumCases*2);
3747 SwitchInst::SwitchInst(const SwitchInst &SI)
3748 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3749 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3750 setNumHungOffUseOperands(SI.getNumOperands());
3751 Use *OL = getOperandList();
3752 const Use *InOL = SI.getOperandList();
3753 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3754 OL[i] = InOL[i];
3755 OL[i+1] = InOL[i+1];
3757 SubclassOptionalData = SI.SubclassOptionalData;
3760 /// addCase - Add an entry to the switch instruction...
3762 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3763 unsigned NewCaseIdx = getNumCases();
3764 unsigned OpNo = getNumOperands();
3765 if (OpNo+2 > ReservedSpace)
3766 growOperands(); // Get more space!
3767 // Initialize some new operands.
3768 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3769 setNumHungOffUseOperands(OpNo+2);
3770 CaseHandle Case(this, NewCaseIdx);
3771 Case.setValue(OnVal);
3772 Case.setSuccessor(Dest);
3775 /// removeCase - This method removes the specified case and its successor
3776 /// from the switch instruction.
3777 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3778 unsigned idx = I->getCaseIndex();
3780 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3782 unsigned NumOps = getNumOperands();
3783 Use *OL = getOperandList();
3785 // Overwrite this case with the end of the list.
3786 if (2 + (idx + 1) * 2 != NumOps) {
3787 OL[2 + idx * 2] = OL[NumOps - 2];
3788 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3791 // Nuke the last value.
3792 OL[NumOps-2].set(nullptr);
3793 OL[NumOps-2+1].set(nullptr);
3794 setNumHungOffUseOperands(NumOps-2);
3796 return CaseIt(this, idx);
3799 /// growOperands - grow operands - This grows the operand list in response
3800 /// to a push_back style of operation. This grows the number of ops by 3 times.
3802 void SwitchInst::growOperands() {
3803 unsigned e = getNumOperands();
3804 unsigned NumOps = e*3;
3806 ReservedSpace = NumOps;
3807 growHungoffUses(ReservedSpace);
3810 //===----------------------------------------------------------------------===//
3811 // IndirectBrInst Implementation
3812 //===----------------------------------------------------------------------===//
3814 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3815 assert(Address && Address->getType()->isPointerTy() &&
3816 "Address of indirectbr must be a pointer");
3817 ReservedSpace = 1+NumDests;
3818 setNumHungOffUseOperands(1);
3819 allocHungoffUses(ReservedSpace);
3821 Op<0>() = Address;
3825 /// growOperands - grow operands - This grows the operand list in response
3826 /// to a push_back style of operation. This grows the number of ops by 2 times.
3828 void IndirectBrInst::growOperands() {
3829 unsigned e = getNumOperands();
3830 unsigned NumOps = e*2;
3832 ReservedSpace = NumOps;
3833 growHungoffUses(ReservedSpace);
3836 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3837 Instruction *InsertBefore)
3838 : Instruction(Type::getVoidTy(Address->getContext()),
3839 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
3840 init(Address, NumCases);
3843 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3844 BasicBlock *InsertAtEnd)
3845 : Instruction(Type::getVoidTy(Address->getContext()),
3846 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
3847 init(Address, NumCases);
3850 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3851 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3852 nullptr, IBI.getNumOperands()) {
3853 allocHungoffUses(IBI.getNumOperands());
3854 Use *OL = getOperandList();
3855 const Use *InOL = IBI.getOperandList();
3856 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3857 OL[i] = InOL[i];
3858 SubclassOptionalData = IBI.SubclassOptionalData;
3861 /// addDestination - Add a destination.
3863 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3864 unsigned OpNo = getNumOperands();
3865 if (OpNo+1 > ReservedSpace)
3866 growOperands(); // Get more space!
3867 // Initialize some new operands.
3868 assert(OpNo < ReservedSpace && "Growing didn't work!");
3869 setNumHungOffUseOperands(OpNo+1);
3870 getOperandList()[OpNo] = DestBB;
3873 /// removeDestination - This method removes the specified successor from the
3874 /// indirectbr instruction.
3875 void IndirectBrInst::removeDestination(unsigned idx) {
3876 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3878 unsigned NumOps = getNumOperands();
3879 Use *OL = getOperandList();
3881 // Replace this value with the last one.
3882 OL[idx+1] = OL[NumOps-1];
3884 // Nuke the last value.
3885 OL[NumOps-1].set(nullptr);
3886 setNumHungOffUseOperands(NumOps-1);
3889 //===----------------------------------------------------------------------===//
3890 // cloneImpl() implementations
3891 //===----------------------------------------------------------------------===//
3893 // Define these methods here so vtables don't get emitted into every translation
3894 // unit that uses these classes.
3896 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3897 return new (getNumOperands()) GetElementPtrInst(*this);
3900 UnaryOperator *UnaryOperator::cloneImpl() const {
3901 return Create(getOpcode(), Op<0>());
3904 BinaryOperator *BinaryOperator::cloneImpl() const {
3905 return Create(getOpcode(), Op<0>(), Op<1>());
3908 FCmpInst *FCmpInst::cloneImpl() const {
3909 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3912 ICmpInst *ICmpInst::cloneImpl() const {
3913 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3916 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3917 return new ExtractValueInst(*this);
3920 InsertValueInst *InsertValueInst::cloneImpl() const {
3921 return new InsertValueInst(*this);
3924 AllocaInst *AllocaInst::cloneImpl() const {
3925 AllocaInst *Result = new AllocaInst(getAllocatedType(),
3926 getType()->getAddressSpace(),
3927 (Value *)getOperand(0), getAlignment());
3928 Result->setUsedWithInAlloca(isUsedWithInAlloca());
3929 Result->setSwiftError(isSwiftError());
3930 return Result;
3933 LoadInst *LoadInst::cloneImpl() const {
3934 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
3935 getAlignment(), getOrdering(), getSyncScopeID());
3938 StoreInst *StoreInst::cloneImpl() const {
3939 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3940 getAlignment(), getOrdering(), getSyncScopeID());
3944 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3945 AtomicCmpXchgInst *Result =
3946 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3947 getSuccessOrdering(), getFailureOrdering(),
3948 getSyncScopeID());
3949 Result->setVolatile(isVolatile());
3950 Result->setWeak(isWeak());
3951 return Result;
3954 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3955 AtomicRMWInst *Result =
3956 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3957 getOrdering(), getSyncScopeID());
3958 Result->setVolatile(isVolatile());
3959 return Result;
3962 FenceInst *FenceInst::cloneImpl() const {
3963 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3966 TruncInst *TruncInst::cloneImpl() const {
3967 return new TruncInst(getOperand(0), getType());
3970 ZExtInst *ZExtInst::cloneImpl() const {
3971 return new ZExtInst(getOperand(0), getType());
3974 SExtInst *SExtInst::cloneImpl() const {
3975 return new SExtInst(getOperand(0), getType());
3978 FPTruncInst *FPTruncInst::cloneImpl() const {
3979 return new FPTruncInst(getOperand(0), getType());
3982 FPExtInst *FPExtInst::cloneImpl() const {
3983 return new FPExtInst(getOperand(0), getType());
3986 UIToFPInst *UIToFPInst::cloneImpl() const {
3987 return new UIToFPInst(getOperand(0), getType());
3990 SIToFPInst *SIToFPInst::cloneImpl() const {
3991 return new SIToFPInst(getOperand(0), getType());
3994 FPToUIInst *FPToUIInst::cloneImpl() const {
3995 return new FPToUIInst(getOperand(0), getType());
3998 FPToSIInst *FPToSIInst::cloneImpl() const {
3999 return new FPToSIInst(getOperand(0), getType());
4002 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4003 return new PtrToIntInst(getOperand(0), getType());
4006 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4007 return new IntToPtrInst(getOperand(0), getType());
4010 BitCastInst *BitCastInst::cloneImpl() const {
4011 return new BitCastInst(getOperand(0), getType());
4014 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4015 return new AddrSpaceCastInst(getOperand(0), getType());
4018 CallInst *CallInst::cloneImpl() const {
4019 if (hasOperandBundles()) {
4020 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4021 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4023 return new(getNumOperands()) CallInst(*this);
4026 SelectInst *SelectInst::cloneImpl() const {
4027 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4030 VAArgInst *VAArgInst::cloneImpl() const {
4031 return new VAArgInst(getOperand(0), getType());
4034 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4035 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4038 InsertElementInst *InsertElementInst::cloneImpl() const {
4039 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4042 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4043 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4046 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4048 LandingPadInst *LandingPadInst::cloneImpl() const {
4049 return new LandingPadInst(*this);
4052 ReturnInst *ReturnInst::cloneImpl() const {
4053 return new(getNumOperands()) ReturnInst(*this);
4056 BranchInst *BranchInst::cloneImpl() const {
4057 return new(getNumOperands()) BranchInst(*this);
4060 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4062 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4063 return new IndirectBrInst(*this);
4066 InvokeInst *InvokeInst::cloneImpl() const {
4067 if (hasOperandBundles()) {
4068 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4069 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4071 return new(getNumOperands()) InvokeInst(*this);
4074 CallBrInst *CallBrInst::cloneImpl() const {
4075 if (hasOperandBundles()) {
4076 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4077 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4079 return new (getNumOperands()) CallBrInst(*this);
4082 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4084 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4085 return new (getNumOperands()) CleanupReturnInst(*this);
4088 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4089 return new (getNumOperands()) CatchReturnInst(*this);
4092 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4093 return new CatchSwitchInst(*this);
4096 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4097 return new (getNumOperands()) FuncletPadInst(*this);
4100 UnreachableInst *UnreachableInst::cloneImpl() const {
4101 LLVMContext &Context = getContext();
4102 return new UnreachableInst(Context);