1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements all of the non-inline methods for the LLVM instruction
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
47 //===----------------------------------------------------------------------===//
49 //===----------------------------------------------------------------------===//
52 AllocaInst::getAllocationSizeInBits(const DataLayout
&DL
) const {
53 uint64_t Size
= DL
.getTypeAllocSizeInBits(getAllocatedType());
54 if (isArrayAllocation()) {
55 auto C
= dyn_cast
<ConstantInt
>(getArraySize());
58 Size
*= C
->getZExtValue();
63 //===----------------------------------------------------------------------===//
65 //===----------------------------------------------------------------------===//
67 User::op_iterator
CallSite::getCallee() const {
68 return cast
<CallBase
>(getInstruction())->op_end() - 1;
71 //===----------------------------------------------------------------------===//
73 //===----------------------------------------------------------------------===//
75 /// areInvalidOperands - Return a string if the specified operands are invalid
76 /// for a select operation, otherwise return null.
77 const char *SelectInst::areInvalidOperands(Value
*Op0
, Value
*Op1
, Value
*Op2
) {
78 if (Op1
->getType() != Op2
->getType())
79 return "both values to select must have same type";
81 if (Op1
->getType()->isTokenTy())
82 return "select values cannot have token type";
84 if (VectorType
*VT
= dyn_cast
<VectorType
>(Op0
->getType())) {
86 if (VT
->getElementType() != Type::getInt1Ty(Op0
->getContext()))
87 return "vector select condition element type must be i1";
88 VectorType
*ET
= dyn_cast
<VectorType
>(Op1
->getType());
90 return "selected values for vector select must be vectors";
91 if (ET
->getNumElements() != VT
->getNumElements())
92 return "vector select requires selected vectors to have "
93 "the same vector length as select condition";
94 } else if (Op0
->getType() != Type::getInt1Ty(Op0
->getContext())) {
95 return "select condition must be i1 or <n x i1>";
100 //===----------------------------------------------------------------------===//
102 //===----------------------------------------------------------------------===//
104 PHINode::PHINode(const PHINode
&PN
)
105 : Instruction(PN
.getType(), Instruction::PHI
, nullptr, PN
.getNumOperands()),
106 ReservedSpace(PN
.getNumOperands()) {
107 allocHungoffUses(PN
.getNumOperands());
108 std::copy(PN
.op_begin(), PN
.op_end(), op_begin());
109 std::copy(PN
.block_begin(), PN
.block_end(), block_begin());
110 SubclassOptionalData
= PN
.SubclassOptionalData
;
113 // removeIncomingValue - Remove an incoming value. This is useful if a
114 // predecessor basic block is deleted.
115 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
116 Value
*Removed
= getIncomingValue(Idx
);
118 // Move everything after this operand down.
120 // FIXME: we could just swap with the end of the list, then erase. However,
121 // clients might not expect this to happen. The code as it is thrashes the
122 // use/def lists, which is kinda lame.
123 std::copy(op_begin() + Idx
+ 1, op_end(), op_begin() + Idx
);
124 std::copy(block_begin() + Idx
+ 1, block_end(), block_begin() + Idx
);
126 // Nuke the last value.
127 Op
<-1>().set(nullptr);
128 setNumHungOffUseOperands(getNumOperands() - 1);
130 // If the PHI node is dead, because it has zero entries, nuke it now.
131 if (getNumOperands() == 0 && DeletePHIIfEmpty
) {
132 // If anyone is using this PHI, make them use a dummy value instead...
133 replaceAllUsesWith(UndefValue::get(getType()));
139 /// growOperands - grow operands - This grows the operand list in response
140 /// to a push_back style of operation. This grows the number of ops by 1.5
143 void PHINode::growOperands() {
144 unsigned e
= getNumOperands();
145 unsigned NumOps
= e
+ e
/ 2;
146 if (NumOps
< 2) NumOps
= 2; // 2 op PHI nodes are VERY common.
148 ReservedSpace
= NumOps
;
149 growHungoffUses(ReservedSpace
, /* IsPhi */ true);
152 /// hasConstantValue - If the specified PHI node always merges together the same
153 /// value, return the value, otherwise return null.
154 Value
*PHINode::hasConstantValue() const {
155 // Exploit the fact that phi nodes always have at least one entry.
156 Value
*ConstantValue
= getIncomingValue(0);
157 for (unsigned i
= 1, e
= getNumIncomingValues(); i
!= e
; ++i
)
158 if (getIncomingValue(i
) != ConstantValue
&& getIncomingValue(i
) != this) {
159 if (ConstantValue
!= this)
160 return nullptr; // Incoming values not all the same.
161 // The case where the first value is this PHI.
162 ConstantValue
= getIncomingValue(i
);
164 if (ConstantValue
== this)
165 return UndefValue::get(getType());
166 return ConstantValue
;
169 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
170 /// together the same value, assuming that undefs result in the same value as
172 /// Unlike \ref hasConstantValue, this does not return a value because the
173 /// unique non-undef incoming value need not dominate the PHI node.
174 bool PHINode::hasConstantOrUndefValue() const {
175 Value
*ConstantValue
= nullptr;
176 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
) {
177 Value
*Incoming
= getIncomingValue(i
);
178 if (Incoming
!= this && !isa
<UndefValue
>(Incoming
)) {
179 if (ConstantValue
&& ConstantValue
!= Incoming
)
181 ConstantValue
= Incoming
;
187 //===----------------------------------------------------------------------===//
188 // LandingPadInst Implementation
189 //===----------------------------------------------------------------------===//
191 LandingPadInst::LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
192 const Twine
&NameStr
, Instruction
*InsertBefore
)
193 : Instruction(RetTy
, Instruction::LandingPad
, nullptr, 0, InsertBefore
) {
194 init(NumReservedValues
, NameStr
);
197 LandingPadInst::LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
198 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
199 : Instruction(RetTy
, Instruction::LandingPad
, nullptr, 0, InsertAtEnd
) {
200 init(NumReservedValues
, NameStr
);
203 LandingPadInst::LandingPadInst(const LandingPadInst
&LP
)
204 : Instruction(LP
.getType(), Instruction::LandingPad
, nullptr,
205 LP
.getNumOperands()),
206 ReservedSpace(LP
.getNumOperands()) {
207 allocHungoffUses(LP
.getNumOperands());
208 Use
*OL
= getOperandList();
209 const Use
*InOL
= LP
.getOperandList();
210 for (unsigned I
= 0, E
= ReservedSpace
; I
!= E
; ++I
)
213 setCleanup(LP
.isCleanup());
216 LandingPadInst
*LandingPadInst::Create(Type
*RetTy
, unsigned NumReservedClauses
,
217 const Twine
&NameStr
,
218 Instruction
*InsertBefore
) {
219 return new LandingPadInst(RetTy
, NumReservedClauses
, NameStr
, InsertBefore
);
222 LandingPadInst
*LandingPadInst::Create(Type
*RetTy
, unsigned NumReservedClauses
,
223 const Twine
&NameStr
,
224 BasicBlock
*InsertAtEnd
) {
225 return new LandingPadInst(RetTy
, NumReservedClauses
, NameStr
, InsertAtEnd
);
228 void LandingPadInst::init(unsigned NumReservedValues
, const Twine
&NameStr
) {
229 ReservedSpace
= NumReservedValues
;
230 setNumHungOffUseOperands(0);
231 allocHungoffUses(ReservedSpace
);
236 /// growOperands - grow operands - This grows the operand list in response to a
237 /// push_back style of operation. This grows the number of ops by 2 times.
238 void LandingPadInst::growOperands(unsigned Size
) {
239 unsigned e
= getNumOperands();
240 if (ReservedSpace
>= e
+ Size
) return;
241 ReservedSpace
= (std::max(e
, 1U) + Size
/ 2) * 2;
242 growHungoffUses(ReservedSpace
);
245 void LandingPadInst::addClause(Constant
*Val
) {
246 unsigned OpNo
= getNumOperands();
248 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
249 setNumHungOffUseOperands(getNumOperands() + 1);
250 getOperandList()[OpNo
] = Val
;
253 //===----------------------------------------------------------------------===//
254 // CallBase Implementation
255 //===----------------------------------------------------------------------===//
257 Function
*CallBase::getCaller() { return getParent()->getParent(); }
259 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
260 assert(getOpcode() == Instruction::CallBr
&& "Unexpected opcode!");
261 return cast
<CallBrInst
>(this)->getNumIndirectDests() + 1;
264 bool CallBase::isIndirectCall() const {
265 const Value
*V
= getCalledValue();
266 if (isa
<Function
>(V
) || isa
<Constant
>(V
))
268 if (const CallInst
*CI
= dyn_cast
<CallInst
>(this))
269 if (CI
->isInlineAsm())
274 /// Tests if this call site must be tail call optimized. Only a CallInst can
275 /// be tail call optimized.
276 bool CallBase::isMustTailCall() const {
277 if (auto *CI
= dyn_cast
<CallInst
>(this))
278 return CI
->isMustTailCall();
282 /// Tests if this call site is marked as a tail call.
283 bool CallBase::isTailCall() const {
284 if (auto *CI
= dyn_cast
<CallInst
>(this))
285 return CI
->isTailCall();
289 Intrinsic::ID
CallBase::getIntrinsicID() const {
290 if (auto *F
= getCalledFunction())
291 return F
->getIntrinsicID();
292 return Intrinsic::not_intrinsic
;
295 bool CallBase::isReturnNonNull() const {
296 if (hasRetAttr(Attribute::NonNull
))
299 if (getDereferenceableBytes(AttributeList::ReturnIndex
) > 0 &&
300 !NullPointerIsDefined(getCaller(),
301 getType()->getPointerAddressSpace()))
307 Value
*CallBase::getReturnedArgOperand() const {
310 if (Attrs
.hasAttrSomewhere(Attribute::Returned
, &Index
) && Index
)
311 return getArgOperand(Index
- AttributeList::FirstArgIndex
);
312 if (const Function
*F
= getCalledFunction())
313 if (F
->getAttributes().hasAttrSomewhere(Attribute::Returned
, &Index
) &&
315 return getArgOperand(Index
- AttributeList::FirstArgIndex
);
320 bool CallBase::hasRetAttr(Attribute::AttrKind Kind
) const {
321 if (Attrs
.hasAttribute(AttributeList::ReturnIndex
, Kind
))
324 // Look at the callee, if available.
325 if (const Function
*F
= getCalledFunction())
326 return F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
, Kind
);
330 /// Determine whether the argument or parameter has the given attribute.
331 bool CallBase::paramHasAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) const {
332 assert(ArgNo
< getNumArgOperands() && "Param index out of bounds!");
334 if (Attrs
.hasParamAttribute(ArgNo
, Kind
))
336 if (const Function
*F
= getCalledFunction())
337 return F
->getAttributes().hasParamAttribute(ArgNo
, Kind
);
341 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind
) const {
342 if (const Function
*F
= getCalledFunction())
343 return F
->getAttributes().hasAttribute(AttributeList::FunctionIndex
, Kind
);
347 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind
) const {
348 if (const Function
*F
= getCalledFunction())
349 return F
->getAttributes().hasAttribute(AttributeList::FunctionIndex
, Kind
);
353 CallBase::op_iterator
354 CallBase::populateBundleOperandInfos(ArrayRef
<OperandBundleDef
> Bundles
,
355 const unsigned BeginIndex
) {
356 auto It
= op_begin() + BeginIndex
;
357 for (auto &B
: Bundles
)
358 It
= std::copy(B
.input_begin(), B
.input_end(), It
);
360 auto *ContextImpl
= getContext().pImpl
;
361 auto BI
= Bundles
.begin();
362 unsigned CurrentIndex
= BeginIndex
;
364 for (auto &BOI
: bundle_op_infos()) {
365 assert(BI
!= Bundles
.end() && "Incorrect allocation?");
367 BOI
.Tag
= ContextImpl
->getOrInsertBundleTag(BI
->getTag());
368 BOI
.Begin
= CurrentIndex
;
369 BOI
.End
= CurrentIndex
+ BI
->input_size();
370 CurrentIndex
= BOI
.End
;
374 assert(BI
== Bundles
.end() && "Incorrect allocation?");
379 //===----------------------------------------------------------------------===//
380 // CallInst Implementation
381 //===----------------------------------------------------------------------===//
383 void CallInst::init(FunctionType
*FTy
, Value
*Func
, ArrayRef
<Value
*> Args
,
384 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
) {
386 assert(getNumOperands() == Args
.size() + CountBundleInputs(Bundles
) + 1 &&
387 "NumOperands not set up?");
388 setCalledOperand(Func
);
391 assert((Args
.size() == FTy
->getNumParams() ||
392 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
393 "Calling a function with bad signature!");
395 for (unsigned i
= 0; i
!= Args
.size(); ++i
)
396 assert((i
>= FTy
->getNumParams() ||
397 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
398 "Calling a function with a bad signature!");
401 llvm::copy(Args
, op_begin());
403 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
405 assert(It
+ 1 == op_end() && "Should add up!");
410 void CallInst::init(FunctionType
*FTy
, Value
*Func
, const Twine
&NameStr
) {
412 assert(getNumOperands() == 1 && "NumOperands not set up?");
413 setCalledOperand(Func
);
415 assert(FTy
->getNumParams() == 0 && "Calling a function with bad signature");
420 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, const Twine
&Name
,
421 Instruction
*InsertBefore
)
422 : CallBase(Ty
->getReturnType(), Instruction::Call
,
423 OperandTraits
<CallBase
>::op_end(this) - 1, 1, InsertBefore
) {
424 init(Ty
, Func
, Name
);
427 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, const Twine
&Name
,
428 BasicBlock
*InsertAtEnd
)
429 : CallBase(Ty
->getReturnType(), Instruction::Call
,
430 OperandTraits
<CallBase
>::op_end(this) - 1, 1, InsertAtEnd
) {
431 init(Ty
, Func
, Name
);
434 CallInst::CallInst(const CallInst
&CI
)
435 : CallBase(CI
.Attrs
, CI
.FTy
, CI
.getType(), Instruction::Call
,
436 OperandTraits
<CallBase
>::op_end(this) - CI
.getNumOperands(),
437 CI
.getNumOperands()) {
438 setTailCallKind(CI
.getTailCallKind());
439 setCallingConv(CI
.getCallingConv());
441 std::copy(CI
.op_begin(), CI
.op_end(), op_begin());
442 std::copy(CI
.bundle_op_info_begin(), CI
.bundle_op_info_end(),
443 bundle_op_info_begin());
444 SubclassOptionalData
= CI
.SubclassOptionalData
;
447 CallInst
*CallInst::Create(CallInst
*CI
, ArrayRef
<OperandBundleDef
> OpB
,
448 Instruction
*InsertPt
) {
449 std::vector
<Value
*> Args(CI
->arg_begin(), CI
->arg_end());
451 auto *NewCI
= CallInst::Create(CI
->getFunctionType(), CI
->getCalledValue(),
452 Args
, OpB
, CI
->getName(), InsertPt
);
453 NewCI
->setTailCallKind(CI
->getTailCallKind());
454 NewCI
->setCallingConv(CI
->getCallingConv());
455 NewCI
->SubclassOptionalData
= CI
->SubclassOptionalData
;
456 NewCI
->setAttributes(CI
->getAttributes());
457 NewCI
->setDebugLoc(CI
->getDebugLoc());
470 /// IsConstantOne - Return true only if val is constant int 1
471 static bool IsConstantOne(Value
*val
) {
472 assert(val
&& "IsConstantOne does not work with nullptr val");
473 const ConstantInt
*CVal
= dyn_cast
<ConstantInt
>(val
);
474 return CVal
&& CVal
->isOne();
477 static Instruction
*createMalloc(Instruction
*InsertBefore
,
478 BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
479 Type
*AllocTy
, Value
*AllocSize
,
481 ArrayRef
<OperandBundleDef
> OpB
,
482 Function
*MallocF
, const Twine
&Name
) {
483 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
484 "createMalloc needs either InsertBefore or InsertAtEnd");
486 // malloc(type) becomes:
487 // bitcast (i8* malloc(typeSize)) to type*
488 // malloc(type, arraySize) becomes:
489 // bitcast (i8* malloc(typeSize*arraySize)) to type*
491 ArraySize
= ConstantInt::get(IntPtrTy
, 1);
492 else if (ArraySize
->getType() != IntPtrTy
) {
494 ArraySize
= CastInst::CreateIntegerCast(ArraySize
, IntPtrTy
, false,
497 ArraySize
= CastInst::CreateIntegerCast(ArraySize
, IntPtrTy
, false,
501 if (!IsConstantOne(ArraySize
)) {
502 if (IsConstantOne(AllocSize
)) {
503 AllocSize
= ArraySize
; // Operand * 1 = Operand
504 } else if (Constant
*CO
= dyn_cast
<Constant
>(ArraySize
)) {
505 Constant
*Scale
= ConstantExpr::getIntegerCast(CO
, IntPtrTy
,
507 // Malloc arg is constant product of type size and array size
508 AllocSize
= ConstantExpr::getMul(Scale
, cast
<Constant
>(AllocSize
));
510 // Multiply type size by the array size...
512 AllocSize
= BinaryOperator::CreateMul(ArraySize
, AllocSize
,
513 "mallocsize", InsertBefore
);
515 AllocSize
= BinaryOperator::CreateMul(ArraySize
, AllocSize
,
516 "mallocsize", InsertAtEnd
);
520 assert(AllocSize
->getType() == IntPtrTy
&& "malloc arg is wrong size");
521 // Create the call to Malloc.
522 BasicBlock
*BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
523 Module
*M
= BB
->getParent()->getParent();
524 Type
*BPTy
= Type::getInt8PtrTy(BB
->getContext());
525 FunctionCallee MallocFunc
= MallocF
;
527 // prototype malloc as "void *malloc(size_t)"
528 MallocFunc
= M
->getOrInsertFunction("malloc", BPTy
, IntPtrTy
);
529 PointerType
*AllocPtrType
= PointerType::getUnqual(AllocTy
);
530 CallInst
*MCall
= nullptr;
531 Instruction
*Result
= nullptr;
533 MCall
= CallInst::Create(MallocFunc
, AllocSize
, OpB
, "malloccall",
536 if (Result
->getType() != AllocPtrType
)
537 // Create a cast instruction to convert to the right type...
538 Result
= new BitCastInst(MCall
, AllocPtrType
, Name
, InsertBefore
);
540 MCall
= CallInst::Create(MallocFunc
, AllocSize
, OpB
, "malloccall");
542 if (Result
->getType() != AllocPtrType
) {
543 InsertAtEnd
->getInstList().push_back(MCall
);
544 // Create a cast instruction to convert to the right type...
545 Result
= new BitCastInst(MCall
, AllocPtrType
, Name
);
548 MCall
->setTailCall();
549 if (Function
*F
= dyn_cast
<Function
>(MallocFunc
.getCallee())) {
550 MCall
->setCallingConv(F
->getCallingConv());
551 if (!F
->returnDoesNotAlias())
552 F
->setReturnDoesNotAlias();
554 assert(!MCall
->getType()->isVoidTy() && "Malloc has void return type");
559 /// CreateMalloc - Generate the IR for a call to malloc:
560 /// 1. Compute the malloc call's argument as the specified type's size,
561 /// possibly multiplied by the array size if the array size is not
563 /// 2. Call malloc with that argument.
564 /// 3. Bitcast the result of the malloc call to the specified type.
565 Instruction
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
566 Type
*IntPtrTy
, Type
*AllocTy
,
567 Value
*AllocSize
, Value
*ArraySize
,
570 return createMalloc(InsertBefore
, nullptr, IntPtrTy
, AllocTy
, AllocSize
,
571 ArraySize
, None
, MallocF
, Name
);
573 Instruction
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
574 Type
*IntPtrTy
, Type
*AllocTy
,
575 Value
*AllocSize
, Value
*ArraySize
,
576 ArrayRef
<OperandBundleDef
> OpB
,
579 return createMalloc(InsertBefore
, nullptr, IntPtrTy
, AllocTy
, AllocSize
,
580 ArraySize
, OpB
, MallocF
, Name
);
583 /// CreateMalloc - Generate the IR for a call to malloc:
584 /// 1. Compute the malloc call's argument as the specified type's size,
585 /// possibly multiplied by the array size if the array size is not
587 /// 2. Call malloc with that argument.
588 /// 3. Bitcast the result of the malloc call to the specified type.
589 /// Note: This function does not add the bitcast to the basic block, that is the
590 /// responsibility of the caller.
591 Instruction
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
592 Type
*IntPtrTy
, Type
*AllocTy
,
593 Value
*AllocSize
, Value
*ArraySize
,
594 Function
*MallocF
, const Twine
&Name
) {
595 return createMalloc(nullptr, InsertAtEnd
, IntPtrTy
, AllocTy
, AllocSize
,
596 ArraySize
, None
, MallocF
, Name
);
598 Instruction
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
599 Type
*IntPtrTy
, Type
*AllocTy
,
600 Value
*AllocSize
, Value
*ArraySize
,
601 ArrayRef
<OperandBundleDef
> OpB
,
602 Function
*MallocF
, const Twine
&Name
) {
603 return createMalloc(nullptr, InsertAtEnd
, IntPtrTy
, AllocTy
, AllocSize
,
604 ArraySize
, OpB
, MallocF
, Name
);
607 static Instruction
*createFree(Value
*Source
,
608 ArrayRef
<OperandBundleDef
> Bundles
,
609 Instruction
*InsertBefore
,
610 BasicBlock
*InsertAtEnd
) {
611 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
612 "createFree needs either InsertBefore or InsertAtEnd");
613 assert(Source
->getType()->isPointerTy() &&
614 "Can not free something of nonpointer type!");
616 BasicBlock
*BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
617 Module
*M
= BB
->getParent()->getParent();
619 Type
*VoidTy
= Type::getVoidTy(M
->getContext());
620 Type
*IntPtrTy
= Type::getInt8PtrTy(M
->getContext());
621 // prototype free as "void free(void*)"
622 FunctionCallee FreeFunc
= M
->getOrInsertFunction("free", VoidTy
, IntPtrTy
);
623 CallInst
*Result
= nullptr;
624 Value
*PtrCast
= Source
;
626 if (Source
->getType() != IntPtrTy
)
627 PtrCast
= new BitCastInst(Source
, IntPtrTy
, "", InsertBefore
);
628 Result
= CallInst::Create(FreeFunc
, PtrCast
, Bundles
, "", InsertBefore
);
630 if (Source
->getType() != IntPtrTy
)
631 PtrCast
= new BitCastInst(Source
, IntPtrTy
, "", InsertAtEnd
);
632 Result
= CallInst::Create(FreeFunc
, PtrCast
, Bundles
, "");
634 Result
->setTailCall();
635 if (Function
*F
= dyn_cast
<Function
>(FreeFunc
.getCallee()))
636 Result
->setCallingConv(F
->getCallingConv());
641 /// CreateFree - Generate the IR for a call to the builtin free function.
642 Instruction
*CallInst::CreateFree(Value
*Source
, Instruction
*InsertBefore
) {
643 return createFree(Source
, None
, InsertBefore
, nullptr);
645 Instruction
*CallInst::CreateFree(Value
*Source
,
646 ArrayRef
<OperandBundleDef
> Bundles
,
647 Instruction
*InsertBefore
) {
648 return createFree(Source
, Bundles
, InsertBefore
, nullptr);
651 /// CreateFree - Generate the IR for a call to the builtin free function.
652 /// Note: This function does not add the call to the basic block, that is the
653 /// responsibility of the caller.
654 Instruction
*CallInst::CreateFree(Value
*Source
, BasicBlock
*InsertAtEnd
) {
655 Instruction
*FreeCall
= createFree(Source
, None
, nullptr, InsertAtEnd
);
656 assert(FreeCall
&& "CreateFree did not create a CallInst");
659 Instruction
*CallInst::CreateFree(Value
*Source
,
660 ArrayRef
<OperandBundleDef
> Bundles
,
661 BasicBlock
*InsertAtEnd
) {
662 Instruction
*FreeCall
= createFree(Source
, Bundles
, nullptr, InsertAtEnd
);
663 assert(FreeCall
&& "CreateFree did not create a CallInst");
667 //===----------------------------------------------------------------------===//
668 // InvokeInst Implementation
669 //===----------------------------------------------------------------------===//
671 void InvokeInst::init(FunctionType
*FTy
, Value
*Fn
, BasicBlock
*IfNormal
,
672 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
673 ArrayRef
<OperandBundleDef
> Bundles
,
674 const Twine
&NameStr
) {
677 assert((int)getNumOperands() ==
678 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
)) &&
679 "NumOperands not set up?");
680 setNormalDest(IfNormal
);
681 setUnwindDest(IfException
);
682 setCalledOperand(Fn
);
685 assert(((Args
.size() == FTy
->getNumParams()) ||
686 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
687 "Invoking a function with bad signature");
689 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++)
690 assert((i
>= FTy
->getNumParams() ||
691 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
692 "Invoking a function with a bad signature!");
695 llvm::copy(Args
, op_begin());
697 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
699 assert(It
+ 3 == op_end() && "Should add up!");
704 InvokeInst::InvokeInst(const InvokeInst
&II
)
705 : CallBase(II
.Attrs
, II
.FTy
, II
.getType(), Instruction::Invoke
,
706 OperandTraits
<CallBase
>::op_end(this) - II
.getNumOperands(),
707 II
.getNumOperands()) {
708 setCallingConv(II
.getCallingConv());
709 std::copy(II
.op_begin(), II
.op_end(), op_begin());
710 std::copy(II
.bundle_op_info_begin(), II
.bundle_op_info_end(),
711 bundle_op_info_begin());
712 SubclassOptionalData
= II
.SubclassOptionalData
;
715 InvokeInst
*InvokeInst::Create(InvokeInst
*II
, ArrayRef
<OperandBundleDef
> OpB
,
716 Instruction
*InsertPt
) {
717 std::vector
<Value
*> Args(II
->arg_begin(), II
->arg_end());
719 auto *NewII
= InvokeInst::Create(II
->getFunctionType(), II
->getCalledValue(),
720 II
->getNormalDest(), II
->getUnwindDest(),
721 Args
, OpB
, II
->getName(), InsertPt
);
722 NewII
->setCallingConv(II
->getCallingConv());
723 NewII
->SubclassOptionalData
= II
->SubclassOptionalData
;
724 NewII
->setAttributes(II
->getAttributes());
725 NewII
->setDebugLoc(II
->getDebugLoc());
730 LandingPadInst
*InvokeInst::getLandingPadInst() const {
731 return cast
<LandingPadInst
>(getUnwindDest()->getFirstNonPHI());
734 //===----------------------------------------------------------------------===//
735 // CallBrInst Implementation
736 //===----------------------------------------------------------------------===//
738 void CallBrInst::init(FunctionType
*FTy
, Value
*Fn
, BasicBlock
*Fallthrough
,
739 ArrayRef
<BasicBlock
*> IndirectDests
,
740 ArrayRef
<Value
*> Args
,
741 ArrayRef
<OperandBundleDef
> Bundles
,
742 const Twine
&NameStr
) {
745 assert((int)getNumOperands() ==
746 ComputeNumOperands(Args
.size(), IndirectDests
.size(),
747 CountBundleInputs(Bundles
)) &&
748 "NumOperands not set up?");
749 NumIndirectDests
= IndirectDests
.size();
750 setDefaultDest(Fallthrough
);
751 for (unsigned i
= 0; i
!= NumIndirectDests
; ++i
)
752 setIndirectDest(i
, IndirectDests
[i
]);
753 setCalledOperand(Fn
);
756 assert(((Args
.size() == FTy
->getNumParams()) ||
757 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
758 "Calling a function with bad signature");
760 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++)
761 assert((i
>= FTy
->getNumParams() ||
762 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
763 "Calling a function with a bad signature!");
766 std::copy(Args
.begin(), Args
.end(), op_begin());
768 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
770 assert(It
+ 2 + IndirectDests
.size() == op_end() && "Should add up!");
775 CallBrInst::CallBrInst(const CallBrInst
&CBI
)
776 : CallBase(CBI
.Attrs
, CBI
.FTy
, CBI
.getType(), Instruction::CallBr
,
777 OperandTraits
<CallBase
>::op_end(this) - CBI
.getNumOperands(),
778 CBI
.getNumOperands()) {
779 setCallingConv(CBI
.getCallingConv());
780 std::copy(CBI
.op_begin(), CBI
.op_end(), op_begin());
781 std::copy(CBI
.bundle_op_info_begin(), CBI
.bundle_op_info_end(),
782 bundle_op_info_begin());
783 SubclassOptionalData
= CBI
.SubclassOptionalData
;
784 NumIndirectDests
= CBI
.NumIndirectDests
;
787 CallBrInst
*CallBrInst::Create(CallBrInst
*CBI
, ArrayRef
<OperandBundleDef
> OpB
,
788 Instruction
*InsertPt
) {
789 std::vector
<Value
*> Args(CBI
->arg_begin(), CBI
->arg_end());
791 auto *NewCBI
= CallBrInst::Create(CBI
->getFunctionType(),
792 CBI
->getCalledValue(),
793 CBI
->getDefaultDest(),
794 CBI
->getIndirectDests(),
795 Args
, OpB
, CBI
->getName(), InsertPt
);
796 NewCBI
->setCallingConv(CBI
->getCallingConv());
797 NewCBI
->SubclassOptionalData
= CBI
->SubclassOptionalData
;
798 NewCBI
->setAttributes(CBI
->getAttributes());
799 NewCBI
->setDebugLoc(CBI
->getDebugLoc());
800 NewCBI
->NumIndirectDests
= CBI
->NumIndirectDests
;
804 //===----------------------------------------------------------------------===//
805 // ReturnInst Implementation
806 //===----------------------------------------------------------------------===//
808 ReturnInst::ReturnInst(const ReturnInst
&RI
)
809 : Instruction(Type::getVoidTy(RI
.getContext()), Instruction::Ret
,
810 OperandTraits
<ReturnInst
>::op_end(this) - RI
.getNumOperands(),
811 RI
.getNumOperands()) {
812 if (RI
.getNumOperands())
813 Op
<0>() = RI
.Op
<0>();
814 SubclassOptionalData
= RI
.SubclassOptionalData
;
817 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, Instruction
*InsertBefore
)
818 : Instruction(Type::getVoidTy(C
), Instruction::Ret
,
819 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
825 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
)
826 : Instruction(Type::getVoidTy(C
), Instruction::Ret
,
827 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
833 ReturnInst::ReturnInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
834 : Instruction(Type::getVoidTy(Context
), Instruction::Ret
,
835 OperandTraits
<ReturnInst
>::op_end(this), 0, InsertAtEnd
) {}
837 //===----------------------------------------------------------------------===//
838 // ResumeInst Implementation
839 //===----------------------------------------------------------------------===//
841 ResumeInst::ResumeInst(const ResumeInst
&RI
)
842 : Instruction(Type::getVoidTy(RI
.getContext()), Instruction::Resume
,
843 OperandTraits
<ResumeInst
>::op_begin(this), 1) {
844 Op
<0>() = RI
.Op
<0>();
847 ResumeInst::ResumeInst(Value
*Exn
, Instruction
*InsertBefore
)
848 : Instruction(Type::getVoidTy(Exn
->getContext()), Instruction::Resume
,
849 OperandTraits
<ResumeInst
>::op_begin(this), 1, InsertBefore
) {
853 ResumeInst::ResumeInst(Value
*Exn
, BasicBlock
*InsertAtEnd
)
854 : Instruction(Type::getVoidTy(Exn
->getContext()), Instruction::Resume
,
855 OperandTraits
<ResumeInst
>::op_begin(this), 1, InsertAtEnd
) {
859 //===----------------------------------------------------------------------===//
860 // CleanupReturnInst Implementation
861 //===----------------------------------------------------------------------===//
863 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst
&CRI
)
864 : Instruction(CRI
.getType(), Instruction::CleanupRet
,
865 OperandTraits
<CleanupReturnInst
>::op_end(this) -
866 CRI
.getNumOperands(),
867 CRI
.getNumOperands()) {
868 setInstructionSubclassData(CRI
.getSubclassDataFromInstruction());
869 Op
<0>() = CRI
.Op
<0>();
870 if (CRI
.hasUnwindDest())
871 Op
<1>() = CRI
.Op
<1>();
874 void CleanupReturnInst::init(Value
*CleanupPad
, BasicBlock
*UnwindBB
) {
876 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
878 Op
<0>() = CleanupPad
;
883 CleanupReturnInst::CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
884 unsigned Values
, Instruction
*InsertBefore
)
885 : Instruction(Type::getVoidTy(CleanupPad
->getContext()),
886 Instruction::CleanupRet
,
887 OperandTraits
<CleanupReturnInst
>::op_end(this) - Values
,
888 Values
, InsertBefore
) {
889 init(CleanupPad
, UnwindBB
);
892 CleanupReturnInst::CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
893 unsigned Values
, BasicBlock
*InsertAtEnd
)
894 : Instruction(Type::getVoidTy(CleanupPad
->getContext()),
895 Instruction::CleanupRet
,
896 OperandTraits
<CleanupReturnInst
>::op_end(this) - Values
,
897 Values
, InsertAtEnd
) {
898 init(CleanupPad
, UnwindBB
);
901 //===----------------------------------------------------------------------===//
902 // CatchReturnInst Implementation
903 //===----------------------------------------------------------------------===//
904 void CatchReturnInst::init(Value
*CatchPad
, BasicBlock
*BB
) {
909 CatchReturnInst::CatchReturnInst(const CatchReturnInst
&CRI
)
910 : Instruction(Type::getVoidTy(CRI
.getContext()), Instruction::CatchRet
,
911 OperandTraits
<CatchReturnInst
>::op_begin(this), 2) {
912 Op
<0>() = CRI
.Op
<0>();
913 Op
<1>() = CRI
.Op
<1>();
916 CatchReturnInst::CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
,
917 Instruction
*InsertBefore
)
918 : Instruction(Type::getVoidTy(BB
->getContext()), Instruction::CatchRet
,
919 OperandTraits
<CatchReturnInst
>::op_begin(this), 2,
924 CatchReturnInst::CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
,
925 BasicBlock
*InsertAtEnd
)
926 : Instruction(Type::getVoidTy(BB
->getContext()), Instruction::CatchRet
,
927 OperandTraits
<CatchReturnInst
>::op_begin(this), 2,
932 //===----------------------------------------------------------------------===//
933 // CatchSwitchInst Implementation
934 //===----------------------------------------------------------------------===//
936 CatchSwitchInst::CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
937 unsigned NumReservedValues
,
938 const Twine
&NameStr
,
939 Instruction
*InsertBefore
)
940 : Instruction(ParentPad
->getType(), Instruction::CatchSwitch
, nullptr, 0,
944 init(ParentPad
, UnwindDest
, NumReservedValues
+ 1);
948 CatchSwitchInst::CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
949 unsigned NumReservedValues
,
950 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
951 : Instruction(ParentPad
->getType(), Instruction::CatchSwitch
, nullptr, 0,
955 init(ParentPad
, UnwindDest
, NumReservedValues
+ 1);
959 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst
&CSI
)
960 : Instruction(CSI
.getType(), Instruction::CatchSwitch
, nullptr,
961 CSI
.getNumOperands()) {
962 init(CSI
.getParentPad(), CSI
.getUnwindDest(), CSI
.getNumOperands());
963 setNumHungOffUseOperands(ReservedSpace
);
964 Use
*OL
= getOperandList();
965 const Use
*InOL
= CSI
.getOperandList();
966 for (unsigned I
= 1, E
= ReservedSpace
; I
!= E
; ++I
)
970 void CatchSwitchInst::init(Value
*ParentPad
, BasicBlock
*UnwindDest
,
971 unsigned NumReservedValues
) {
972 assert(ParentPad
&& NumReservedValues
);
974 ReservedSpace
= NumReservedValues
;
975 setNumHungOffUseOperands(UnwindDest
? 2 : 1);
976 allocHungoffUses(ReservedSpace
);
980 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
981 setUnwindDest(UnwindDest
);
985 /// growOperands - grow operands - This grows the operand list in response to a
986 /// push_back style of operation. This grows the number of ops by 2 times.
987 void CatchSwitchInst::growOperands(unsigned Size
) {
988 unsigned NumOperands
= getNumOperands();
989 assert(NumOperands
>= 1);
990 if (ReservedSpace
>= NumOperands
+ Size
)
992 ReservedSpace
= (NumOperands
+ Size
/ 2) * 2;
993 growHungoffUses(ReservedSpace
);
996 void CatchSwitchInst::addHandler(BasicBlock
*Handler
) {
997 unsigned OpNo
= getNumOperands();
999 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
1000 setNumHungOffUseOperands(getNumOperands() + 1);
1001 getOperandList()[OpNo
] = Handler
;
1004 void CatchSwitchInst::removeHandler(handler_iterator HI
) {
1005 // Move all subsequent handlers up one.
1006 Use
*EndDst
= op_end() - 1;
1007 for (Use
*CurDst
= HI
.getCurrent(); CurDst
!= EndDst
; ++CurDst
)
1008 *CurDst
= *(CurDst
+ 1);
1009 // Null out the last handler use.
1012 setNumHungOffUseOperands(getNumOperands() - 1);
1015 //===----------------------------------------------------------------------===//
1016 // FuncletPadInst Implementation
1017 //===----------------------------------------------------------------------===//
1018 void FuncletPadInst::init(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
1019 const Twine
&NameStr
) {
1020 assert(getNumOperands() == 1 + Args
.size() && "NumOperands not set up?");
1021 llvm::copy(Args
, op_begin());
1022 setParentPad(ParentPad
);
1026 FuncletPadInst::FuncletPadInst(const FuncletPadInst
&FPI
)
1027 : Instruction(FPI
.getType(), FPI
.getOpcode(),
1028 OperandTraits
<FuncletPadInst
>::op_end(this) -
1029 FPI
.getNumOperands(),
1030 FPI
.getNumOperands()) {
1031 std::copy(FPI
.op_begin(), FPI
.op_end(), op_begin());
1032 setParentPad(FPI
.getParentPad());
1035 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op
, Value
*ParentPad
,
1036 ArrayRef
<Value
*> Args
, unsigned Values
,
1037 const Twine
&NameStr
, Instruction
*InsertBefore
)
1038 : Instruction(ParentPad
->getType(), Op
,
1039 OperandTraits
<FuncletPadInst
>::op_end(this) - Values
, Values
,
1041 init(ParentPad
, Args
, NameStr
);
1044 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op
, Value
*ParentPad
,
1045 ArrayRef
<Value
*> Args
, unsigned Values
,
1046 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
1047 : Instruction(ParentPad
->getType(), Op
,
1048 OperandTraits
<FuncletPadInst
>::op_end(this) - Values
, Values
,
1050 init(ParentPad
, Args
, NameStr
);
1053 //===----------------------------------------------------------------------===//
1054 // UnreachableInst Implementation
1055 //===----------------------------------------------------------------------===//
1057 UnreachableInst::UnreachableInst(LLVMContext
&Context
,
1058 Instruction
*InsertBefore
)
1059 : Instruction(Type::getVoidTy(Context
), Instruction::Unreachable
, nullptr,
1061 UnreachableInst::UnreachableInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
1062 : Instruction(Type::getVoidTy(Context
), Instruction::Unreachable
, nullptr,
1065 //===----------------------------------------------------------------------===//
1066 // BranchInst Implementation
1067 //===----------------------------------------------------------------------===//
1069 void BranchInst::AssertOK() {
1070 if (isConditional())
1071 assert(getCondition()->getType()->isIntegerTy(1) &&
1072 "May only branch on boolean predicates!");
1075 BranchInst::BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
)
1076 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1077 OperandTraits
<BranchInst
>::op_end(this) - 1, 1,
1079 assert(IfTrue
&& "Branch destination may not be null!");
1083 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
1084 Instruction
*InsertBefore
)
1085 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1086 OperandTraits
<BranchInst
>::op_end(this) - 3, 3,
1096 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
)
1097 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1098 OperandTraits
<BranchInst
>::op_end(this) - 1, 1, InsertAtEnd
) {
1099 assert(IfTrue
&& "Branch destination may not be null!");
1103 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
1104 BasicBlock
*InsertAtEnd
)
1105 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1106 OperandTraits
<BranchInst
>::op_end(this) - 3, 3, InsertAtEnd
) {
1115 BranchInst::BranchInst(const BranchInst
&BI
)
1116 : Instruction(Type::getVoidTy(BI
.getContext()), Instruction::Br
,
1117 OperandTraits
<BranchInst
>::op_end(this) - BI
.getNumOperands(),
1118 BI
.getNumOperands()) {
1119 Op
<-1>() = BI
.Op
<-1>();
1120 if (BI
.getNumOperands() != 1) {
1121 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1122 Op
<-3>() = BI
.Op
<-3>();
1123 Op
<-2>() = BI
.Op
<-2>();
1125 SubclassOptionalData
= BI
.SubclassOptionalData
;
1128 void BranchInst::swapSuccessors() {
1129 assert(isConditional() &&
1130 "Cannot swap successors of an unconditional branch");
1131 Op
<-1>().swap(Op
<-2>());
1133 // Update profile metadata if present and it matches our structural
1138 //===----------------------------------------------------------------------===//
1139 // AllocaInst Implementation
1140 //===----------------------------------------------------------------------===//
1142 static Value
*getAISize(LLVMContext
&Context
, Value
*Amt
) {
1144 Amt
= ConstantInt::get(Type::getInt32Ty(Context
), 1);
1146 assert(!isa
<BasicBlock
>(Amt
) &&
1147 "Passed basic block into allocation size parameter! Use other ctor");
1148 assert(Amt
->getType()->isIntegerTy() &&
1149 "Allocation array size is not an integer!");
1154 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, const Twine
&Name
,
1155 Instruction
*InsertBefore
)
1156 : AllocaInst(Ty
, AddrSpace
, /*ArraySize=*/nullptr, Name
, InsertBefore
) {}
1158 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, const Twine
&Name
,
1159 BasicBlock
*InsertAtEnd
)
1160 : AllocaInst(Ty
, AddrSpace
, /*ArraySize=*/nullptr, Name
, InsertAtEnd
) {}
1162 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1163 const Twine
&Name
, Instruction
*InsertBefore
)
1164 : AllocaInst(Ty
, AddrSpace
, ArraySize
, /*Align=*/0, Name
, InsertBefore
) {}
1166 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1167 const Twine
&Name
, BasicBlock
*InsertAtEnd
)
1168 : AllocaInst(Ty
, AddrSpace
, ArraySize
, /*Align=*/0, Name
, InsertAtEnd
) {}
1170 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1171 unsigned Align
, const Twine
&Name
,
1172 Instruction
*InsertBefore
)
1173 : UnaryInstruction(PointerType::get(Ty
, AddrSpace
), Alloca
,
1174 getAISize(Ty
->getContext(), ArraySize
), InsertBefore
),
1176 setAlignment(Align
);
1177 assert(!Ty
->isVoidTy() && "Cannot allocate void!");
1181 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1182 unsigned Align
, const Twine
&Name
,
1183 BasicBlock
*InsertAtEnd
)
1184 : UnaryInstruction(PointerType::get(Ty
, AddrSpace
), Alloca
,
1185 getAISize(Ty
->getContext(), ArraySize
), InsertAtEnd
),
1187 setAlignment(Align
);
1188 assert(!Ty
->isVoidTy() && "Cannot allocate void!");
1192 void AllocaInst::setAlignment(unsigned Align
) {
1193 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1194 assert(Align
<= MaximumAlignment
&&
1195 "Alignment is greater than MaximumAlignment!");
1196 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1197 (Log2_32(Align
) + 1));
1198 assert(getAlignment() == Align
&& "Alignment representation error!");
1201 bool AllocaInst::isArrayAllocation() const {
1202 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(0)))
1203 return !CI
->isOne();
1207 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1208 /// function and is a constant size. If so, the code generator will fold it
1209 /// into the prolog/epilog code, so it is basically free.
1210 bool AllocaInst::isStaticAlloca() const {
1211 // Must be constant size.
1212 if (!isa
<ConstantInt
>(getArraySize())) return false;
1214 // Must be in the entry block.
1215 const BasicBlock
*Parent
= getParent();
1216 return Parent
== &Parent
->getParent()->front() && !isUsedWithInAlloca();
1219 //===----------------------------------------------------------------------===//
1220 // LoadInst Implementation
1221 //===----------------------------------------------------------------------===//
1223 void LoadInst::AssertOK() {
1224 assert(getOperand(0)->getType()->isPointerTy() &&
1225 "Ptr must have pointer type.");
1226 assert(!(isAtomic() && getAlignment() == 0) &&
1227 "Alignment required for atomic load");
1230 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
,
1231 Instruction
*InsertBef
)
1232 : LoadInst(Ty
, Ptr
, Name
, /*isVolatile=*/false, InsertBef
) {}
1234 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
,
1235 BasicBlock
*InsertAE
)
1236 : LoadInst(Ty
, Ptr
, Name
, /*isVolatile=*/false, InsertAE
) {}
1238 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1239 Instruction
*InsertBef
)
1240 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, /*Align=*/0, InsertBef
) {}
1242 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1243 BasicBlock
*InsertAE
)
1244 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, /*Align=*/0, InsertAE
) {}
1246 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1247 unsigned Align
, Instruction
*InsertBef
)
1248 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1249 SyncScope::System
, InsertBef
) {}
1251 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1252 unsigned Align
, BasicBlock
*InsertAE
)
1253 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1254 SyncScope::System
, InsertAE
) {}
1256 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1257 unsigned Align
, AtomicOrdering Order
,
1258 SyncScope::ID SSID
, Instruction
*InsertBef
)
1259 : UnaryInstruction(Ty
, Load
, Ptr
, InsertBef
) {
1260 assert(Ty
== cast
<PointerType
>(Ptr
->getType())->getElementType());
1261 setVolatile(isVolatile
);
1262 setAlignment(Align
);
1263 setAtomic(Order
, SSID
);
1268 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1269 unsigned Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
1270 BasicBlock
*InsertAE
)
1271 : UnaryInstruction(Ty
, Load
, Ptr
, InsertAE
) {
1272 assert(Ty
== cast
<PointerType
>(Ptr
->getType())->getElementType());
1273 setVolatile(isVolatile
);
1274 setAlignment(Align
);
1275 setAtomic(Order
, SSID
);
1280 void LoadInst::setAlignment(unsigned Align
) {
1281 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1282 assert(Align
<= MaximumAlignment
&&
1283 "Alignment is greater than MaximumAlignment!");
1284 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1285 ((Log2_32(Align
)+1)<<1));
1286 assert(getAlignment() == Align
&& "Alignment representation error!");
1289 //===----------------------------------------------------------------------===//
1290 // StoreInst Implementation
1291 //===----------------------------------------------------------------------===//
1293 void StoreInst::AssertOK() {
1294 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1295 assert(getOperand(1)->getType()->isPointerTy() &&
1296 "Ptr must have pointer type!");
1297 assert(getOperand(0)->getType() ==
1298 cast
<PointerType
>(getOperand(1)->getType())->getElementType()
1299 && "Ptr must be a pointer to Val type!");
1300 assert(!(isAtomic() && getAlignment() == 0) &&
1301 "Alignment required for atomic store");
1304 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
1305 : StoreInst(val
, addr
, /*isVolatile=*/false, InsertBefore
) {}
1307 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
1308 : StoreInst(val
, addr
, /*isVolatile=*/false, InsertAtEnd
) {}
1310 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1311 Instruction
*InsertBefore
)
1312 : StoreInst(val
, addr
, isVolatile
, /*Align=*/0, InsertBefore
) {}
1314 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1315 BasicBlock
*InsertAtEnd
)
1316 : StoreInst(val
, addr
, isVolatile
, /*Align=*/0, InsertAtEnd
) {}
1318 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, unsigned Align
,
1319 Instruction
*InsertBefore
)
1320 : StoreInst(val
, addr
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1321 SyncScope::System
, InsertBefore
) {}
1323 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, unsigned Align
,
1324 BasicBlock
*InsertAtEnd
)
1325 : StoreInst(val
, addr
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1326 SyncScope::System
, InsertAtEnd
) {}
1328 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1329 unsigned Align
, AtomicOrdering Order
,
1331 Instruction
*InsertBefore
)
1332 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1333 OperandTraits
<StoreInst
>::op_begin(this),
1334 OperandTraits
<StoreInst
>::operands(this),
1338 setVolatile(isVolatile
);
1339 setAlignment(Align
);
1340 setAtomic(Order
, SSID
);
1344 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1345 unsigned Align
, AtomicOrdering Order
,
1347 BasicBlock
*InsertAtEnd
)
1348 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1349 OperandTraits
<StoreInst
>::op_begin(this),
1350 OperandTraits
<StoreInst
>::operands(this),
1354 setVolatile(isVolatile
);
1355 setAlignment(Align
);
1356 setAtomic(Order
, SSID
);
1360 void StoreInst::setAlignment(unsigned Align
) {
1361 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1362 assert(Align
<= MaximumAlignment
&&
1363 "Alignment is greater than MaximumAlignment!");
1364 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1365 ((Log2_32(Align
)+1) << 1));
1366 assert(getAlignment() == Align
&& "Alignment representation error!");
1369 //===----------------------------------------------------------------------===//
1370 // AtomicCmpXchgInst Implementation
1371 //===----------------------------------------------------------------------===//
1373 void AtomicCmpXchgInst::Init(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1374 AtomicOrdering SuccessOrdering
,
1375 AtomicOrdering FailureOrdering
,
1376 SyncScope::ID SSID
) {
1380 setSuccessOrdering(SuccessOrdering
);
1381 setFailureOrdering(FailureOrdering
);
1382 setSyncScopeID(SSID
);
1384 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1385 "All operands must be non-null!");
1386 assert(getOperand(0)->getType()->isPointerTy() &&
1387 "Ptr must have pointer type!");
1388 assert(getOperand(1)->getType() ==
1389 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1390 && "Ptr must be a pointer to Cmp type!");
1391 assert(getOperand(2)->getType() ==
1392 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1393 && "Ptr must be a pointer to NewVal type!");
1394 assert(SuccessOrdering
!= AtomicOrdering::NotAtomic
&&
1395 "AtomicCmpXchg instructions must be atomic!");
1396 assert(FailureOrdering
!= AtomicOrdering::NotAtomic
&&
1397 "AtomicCmpXchg instructions must be atomic!");
1398 assert(!isStrongerThan(FailureOrdering
, SuccessOrdering
) &&
1399 "AtomicCmpXchg failure argument shall be no stronger than the success "
1401 assert(FailureOrdering
!= AtomicOrdering::Release
&&
1402 FailureOrdering
!= AtomicOrdering::AcquireRelease
&&
1403 "AtomicCmpXchg failure ordering cannot include release semantics");
1406 AtomicCmpXchgInst::AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1407 AtomicOrdering SuccessOrdering
,
1408 AtomicOrdering FailureOrdering
,
1410 Instruction
*InsertBefore
)
1412 StructType::get(Cmp
->getType(), Type::getInt1Ty(Cmp
->getContext())),
1413 AtomicCmpXchg
, OperandTraits
<AtomicCmpXchgInst
>::op_begin(this),
1414 OperandTraits
<AtomicCmpXchgInst
>::operands(this), InsertBefore
) {
1415 Init(Ptr
, Cmp
, NewVal
, SuccessOrdering
, FailureOrdering
, SSID
);
1418 AtomicCmpXchgInst::AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1419 AtomicOrdering SuccessOrdering
,
1420 AtomicOrdering FailureOrdering
,
1422 BasicBlock
*InsertAtEnd
)
1424 StructType::get(Cmp
->getType(), Type::getInt1Ty(Cmp
->getContext())),
1425 AtomicCmpXchg
, OperandTraits
<AtomicCmpXchgInst
>::op_begin(this),
1426 OperandTraits
<AtomicCmpXchgInst
>::operands(this), InsertAtEnd
) {
1427 Init(Ptr
, Cmp
, NewVal
, SuccessOrdering
, FailureOrdering
, SSID
);
1430 //===----------------------------------------------------------------------===//
1431 // AtomicRMWInst Implementation
1432 //===----------------------------------------------------------------------===//
1434 void AtomicRMWInst::Init(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1435 AtomicOrdering Ordering
,
1436 SyncScope::ID SSID
) {
1439 setOperation(Operation
);
1440 setOrdering(Ordering
);
1441 setSyncScopeID(SSID
);
1443 assert(getOperand(0) && getOperand(1) &&
1444 "All operands must be non-null!");
1445 assert(getOperand(0)->getType()->isPointerTy() &&
1446 "Ptr must have pointer type!");
1447 assert(getOperand(1)->getType() ==
1448 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1449 && "Ptr must be a pointer to Val type!");
1450 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
1451 "AtomicRMW instructions must be atomic!");
1454 AtomicRMWInst::AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1455 AtomicOrdering Ordering
,
1457 Instruction
*InsertBefore
)
1458 : Instruction(Val
->getType(), AtomicRMW
,
1459 OperandTraits
<AtomicRMWInst
>::op_begin(this),
1460 OperandTraits
<AtomicRMWInst
>::operands(this),
1462 Init(Operation
, Ptr
, Val
, Ordering
, SSID
);
1465 AtomicRMWInst::AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1466 AtomicOrdering Ordering
,
1468 BasicBlock
*InsertAtEnd
)
1469 : Instruction(Val
->getType(), AtomicRMW
,
1470 OperandTraits
<AtomicRMWInst
>::op_begin(this),
1471 OperandTraits
<AtomicRMWInst
>::operands(this),
1473 Init(Operation
, Ptr
, Val
, Ordering
, SSID
);
1476 StringRef
AtomicRMWInst::getOperationName(BinOp Op
) {
1478 case AtomicRMWInst::Xchg
:
1480 case AtomicRMWInst::Add
:
1482 case AtomicRMWInst::Sub
:
1484 case AtomicRMWInst::And
:
1486 case AtomicRMWInst::Nand
:
1488 case AtomicRMWInst::Or
:
1490 case AtomicRMWInst::Xor
:
1492 case AtomicRMWInst::Max
:
1494 case AtomicRMWInst::Min
:
1496 case AtomicRMWInst::UMax
:
1498 case AtomicRMWInst::UMin
:
1500 case AtomicRMWInst::FAdd
:
1502 case AtomicRMWInst::FSub
:
1504 case AtomicRMWInst::BAD_BINOP
:
1505 return "<invalid operation>";
1508 llvm_unreachable("invalid atomicrmw operation");
1511 //===----------------------------------------------------------------------===//
1512 // FenceInst Implementation
1513 //===----------------------------------------------------------------------===//
1515 FenceInst::FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
1517 Instruction
*InsertBefore
)
1518 : Instruction(Type::getVoidTy(C
), Fence
, nullptr, 0, InsertBefore
) {
1519 setOrdering(Ordering
);
1520 setSyncScopeID(SSID
);
1523 FenceInst::FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
1525 BasicBlock
*InsertAtEnd
)
1526 : Instruction(Type::getVoidTy(C
), Fence
, nullptr, 0, InsertAtEnd
) {
1527 setOrdering(Ordering
);
1528 setSyncScopeID(SSID
);
1531 //===----------------------------------------------------------------------===//
1532 // GetElementPtrInst Implementation
1533 //===----------------------------------------------------------------------===//
1535 void GetElementPtrInst::init(Value
*Ptr
, ArrayRef
<Value
*> IdxList
,
1536 const Twine
&Name
) {
1537 assert(getNumOperands() == 1 + IdxList
.size() &&
1538 "NumOperands not initialized?");
1540 llvm::copy(IdxList
, op_begin() + 1);
1544 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst
&GEPI
)
1545 : Instruction(GEPI
.getType(), GetElementPtr
,
1546 OperandTraits
<GetElementPtrInst
>::op_end(this) -
1547 GEPI
.getNumOperands(),
1548 GEPI
.getNumOperands()),
1549 SourceElementType(GEPI
.SourceElementType
),
1550 ResultElementType(GEPI
.ResultElementType
) {
1551 std::copy(GEPI
.op_begin(), GEPI
.op_end(), op_begin());
1552 SubclassOptionalData
= GEPI
.SubclassOptionalData
;
1555 /// getIndexedType - Returns the type of the element that would be accessed with
1556 /// a gep instruction with the specified parameters.
1558 /// The Idxs pointer should point to a continuous piece of memory containing the
1559 /// indices, either as Value* or uint64_t.
1561 /// A null type is returned if the indices are invalid for the specified
1564 template <typename IndexTy
>
1565 static Type
*getIndexedTypeInternal(Type
*Agg
, ArrayRef
<IndexTy
> IdxList
) {
1566 // Handle the special case of the empty set index set, which is always valid.
1567 if (IdxList
.empty())
1570 // If there is at least one index, the top level type must be sized, otherwise
1571 // it cannot be 'stepped over'.
1572 if (!Agg
->isSized())
1575 unsigned CurIdx
= 1;
1576 for (; CurIdx
!= IdxList
.size(); ++CurIdx
) {
1577 CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1578 if (!CT
|| CT
->isPointerTy()) return nullptr;
1579 IndexTy Index
= IdxList
[CurIdx
];
1580 if (!CT
->indexValid(Index
)) return nullptr;
1581 Agg
= CT
->getTypeAtIndex(Index
);
1583 return CurIdx
== IdxList
.size() ? Agg
: nullptr;
1586 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
, ArrayRef
<Value
*> IdxList
) {
1587 return getIndexedTypeInternal(Ty
, IdxList
);
1590 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
,
1591 ArrayRef
<Constant
*> IdxList
) {
1592 return getIndexedTypeInternal(Ty
, IdxList
);
1595 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
, ArrayRef
<uint64_t> IdxList
) {
1596 return getIndexedTypeInternal(Ty
, IdxList
);
1599 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1600 /// zeros. If so, the result pointer and the first operand have the same
1601 /// value, just potentially different types.
1602 bool GetElementPtrInst::hasAllZeroIndices() const {
1603 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1604 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(i
))) {
1605 if (!CI
->isZero()) return false;
1613 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1614 /// constant integers. If so, the result pointer and the first operand have
1615 /// a constant offset between them.
1616 bool GetElementPtrInst::hasAllConstantIndices() const {
1617 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1618 if (!isa
<ConstantInt
>(getOperand(i
)))
1624 void GetElementPtrInst::setIsInBounds(bool B
) {
1625 cast
<GEPOperator
>(this)->setIsInBounds(B
);
1628 bool GetElementPtrInst::isInBounds() const {
1629 return cast
<GEPOperator
>(this)->isInBounds();
1632 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout
&DL
,
1633 APInt
&Offset
) const {
1634 // Delegate to the generic GEPOperator implementation.
1635 return cast
<GEPOperator
>(this)->accumulateConstantOffset(DL
, Offset
);
1638 //===----------------------------------------------------------------------===//
1639 // ExtractElementInst Implementation
1640 //===----------------------------------------------------------------------===//
1642 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1644 Instruction
*InsertBef
)
1645 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1647 OperandTraits
<ExtractElementInst
>::op_begin(this),
1649 assert(isValidOperands(Val
, Index
) &&
1650 "Invalid extractelement instruction operands!");
1656 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1658 BasicBlock
*InsertAE
)
1659 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1661 OperandTraits
<ExtractElementInst
>::op_begin(this),
1663 assert(isValidOperands(Val
, Index
) &&
1664 "Invalid extractelement instruction operands!");
1671 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
1672 if (!Val
->getType()->isVectorTy() || !Index
->getType()->isIntegerTy())
1677 //===----------------------------------------------------------------------===//
1678 // InsertElementInst Implementation
1679 //===----------------------------------------------------------------------===//
1681 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1683 Instruction
*InsertBef
)
1684 : Instruction(Vec
->getType(), InsertElement
,
1685 OperandTraits
<InsertElementInst
>::op_begin(this),
1687 assert(isValidOperands(Vec
, Elt
, Index
) &&
1688 "Invalid insertelement instruction operands!");
1695 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1697 BasicBlock
*InsertAE
)
1698 : Instruction(Vec
->getType(), InsertElement
,
1699 OperandTraits
<InsertElementInst
>::op_begin(this),
1701 assert(isValidOperands(Vec
, Elt
, Index
) &&
1702 "Invalid insertelement instruction operands!");
1710 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
1711 const Value
*Index
) {
1712 if (!Vec
->getType()->isVectorTy())
1713 return false; // First operand of insertelement must be vector type.
1715 if (Elt
->getType() != cast
<VectorType
>(Vec
->getType())->getElementType())
1716 return false;// Second operand of insertelement must be vector element type.
1718 if (!Index
->getType()->isIntegerTy())
1719 return false; // Third operand of insertelement must be i32.
1723 //===----------------------------------------------------------------------===//
1724 // ShuffleVectorInst Implementation
1725 //===----------------------------------------------------------------------===//
1727 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1729 Instruction
*InsertBefore
)
1730 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1731 cast
<VectorType
>(Mask
->getType())->getNumElements()),
1733 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1734 OperandTraits
<ShuffleVectorInst
>::operands(this),
1736 assert(isValidOperands(V1
, V2
, Mask
) &&
1737 "Invalid shuffle vector instruction operands!");
1744 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1746 BasicBlock
*InsertAtEnd
)
1747 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1748 cast
<VectorType
>(Mask
->getType())->getNumElements()),
1750 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1751 OperandTraits
<ShuffleVectorInst
>::operands(this),
1753 assert(isValidOperands(V1
, V2
, Mask
) &&
1754 "Invalid shuffle vector instruction operands!");
1762 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
1763 const Value
*Mask
) {
1764 // V1 and V2 must be vectors of the same type.
1765 if (!V1
->getType()->isVectorTy() || V1
->getType() != V2
->getType())
1768 // Mask must be vector of i32.
1769 auto *MaskTy
= dyn_cast
<VectorType
>(Mask
->getType());
1770 if (!MaskTy
|| !MaskTy
->getElementType()->isIntegerTy(32))
1773 // Check to see if Mask is valid.
1774 if (isa
<UndefValue
>(Mask
) || isa
<ConstantAggregateZero
>(Mask
))
1777 if (const auto *MV
= dyn_cast
<ConstantVector
>(Mask
)) {
1778 unsigned V1Size
= cast
<VectorType
>(V1
->getType())->getNumElements();
1779 for (Value
*Op
: MV
->operands()) {
1780 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
1781 if (CI
->uge(V1Size
*2))
1783 } else if (!isa
<UndefValue
>(Op
)) {
1790 if (const auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
)) {
1791 unsigned V1Size
= cast
<VectorType
>(V1
->getType())->getNumElements();
1792 for (unsigned i
= 0, e
= MaskTy
->getNumElements(); i
!= e
; ++i
)
1793 if (CDS
->getElementAsInteger(i
) >= V1Size
*2)
1798 // The bitcode reader can create a place holder for a forward reference
1799 // used as the shuffle mask. When this occurs, the shuffle mask will
1800 // fall into this case and fail. To avoid this error, do this bit of
1801 // ugliness to allow such a mask pass.
1802 if (const auto *CE
= dyn_cast
<ConstantExpr
>(Mask
))
1803 if (CE
->getOpcode() == Instruction::UserOp1
)
1809 int ShuffleVectorInst::getMaskValue(const Constant
*Mask
, unsigned i
) {
1810 assert(i
< Mask
->getType()->getVectorNumElements() && "Index out of range");
1811 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
))
1812 return CDS
->getElementAsInteger(i
);
1813 Constant
*C
= Mask
->getAggregateElement(i
);
1814 if (isa
<UndefValue
>(C
))
1816 return cast
<ConstantInt
>(C
)->getZExtValue();
1819 void ShuffleVectorInst::getShuffleMask(const Constant
*Mask
,
1820 SmallVectorImpl
<int> &Result
) {
1821 unsigned NumElts
= Mask
->getType()->getVectorNumElements();
1823 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
)) {
1824 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1825 Result
.push_back(CDS
->getElementAsInteger(i
));
1828 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1829 Constant
*C
= Mask
->getAggregateElement(i
);
1830 Result
.push_back(isa
<UndefValue
>(C
) ? -1 :
1831 cast
<ConstantInt
>(C
)->getZExtValue());
1835 static bool isSingleSourceMaskImpl(ArrayRef
<int> Mask
, int NumOpElts
) {
1836 assert(!Mask
.empty() && "Shuffle mask must contain elements");
1837 bool UsesLHS
= false;
1838 bool UsesRHS
= false;
1839 for (int i
= 0, NumMaskElts
= Mask
.size(); i
< NumMaskElts
; ++i
) {
1842 assert(Mask
[i
] >= 0 && Mask
[i
] < (NumOpElts
* 2) &&
1843 "Out-of-bounds shuffle mask element");
1844 UsesLHS
|= (Mask
[i
] < NumOpElts
);
1845 UsesRHS
|= (Mask
[i
] >= NumOpElts
);
1846 if (UsesLHS
&& UsesRHS
)
1849 assert((UsesLHS
^ UsesRHS
) && "Should have selected from exactly 1 source");
1853 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef
<int> Mask
) {
1854 // We don't have vector operand size information, so assume operands are the
1855 // same size as the mask.
1856 return isSingleSourceMaskImpl(Mask
, Mask
.size());
1859 static bool isIdentityMaskImpl(ArrayRef
<int> Mask
, int NumOpElts
) {
1860 if (!isSingleSourceMaskImpl(Mask
, NumOpElts
))
1862 for (int i
= 0, NumMaskElts
= Mask
.size(); i
< NumMaskElts
; ++i
) {
1865 if (Mask
[i
] != i
&& Mask
[i
] != (NumOpElts
+ i
))
1871 bool ShuffleVectorInst::isIdentityMask(ArrayRef
<int> Mask
) {
1872 // We don't have vector operand size information, so assume operands are the
1873 // same size as the mask.
1874 return isIdentityMaskImpl(Mask
, Mask
.size());
1877 bool ShuffleVectorInst::isReverseMask(ArrayRef
<int> Mask
) {
1878 if (!isSingleSourceMask(Mask
))
1880 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1883 if (Mask
[i
] != (NumElts
- 1 - i
) && Mask
[i
] != (NumElts
+ NumElts
- 1 - i
))
1889 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef
<int> Mask
) {
1890 if (!isSingleSourceMask(Mask
))
1892 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1895 if (Mask
[i
] != 0 && Mask
[i
] != NumElts
)
1901 bool ShuffleVectorInst::isSelectMask(ArrayRef
<int> Mask
) {
1902 // Select is differentiated from identity. It requires using both sources.
1903 if (isSingleSourceMask(Mask
))
1905 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1908 if (Mask
[i
] != i
&& Mask
[i
] != (NumElts
+ i
))
1914 bool ShuffleVectorInst::isTransposeMask(ArrayRef
<int> Mask
) {
1915 // Example masks that will return true:
1916 // v1 = <a, b, c, d>
1917 // v2 = <e, f, g, h>
1918 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1919 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1921 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1922 int NumElts
= Mask
.size();
1923 if (NumElts
< 2 || !isPowerOf2_32(NumElts
))
1926 // 2. The first element of the mask must be either a 0 or a 1.
1927 if (Mask
[0] != 0 && Mask
[0] != 1)
1930 // 3. The difference between the first 2 elements must be equal to the
1931 // number of elements in the mask.
1932 if ((Mask
[1] - Mask
[0]) != NumElts
)
1935 // 4. The difference between consecutive even-numbered and odd-numbered
1936 // elements must be equal to 2.
1937 for (int i
= 2; i
< NumElts
; ++i
) {
1938 int MaskEltVal
= Mask
[i
];
1939 if (MaskEltVal
== -1)
1941 int MaskEltPrevVal
= Mask
[i
- 2];
1942 if (MaskEltVal
- MaskEltPrevVal
!= 2)
1948 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef
<int> Mask
,
1949 int NumSrcElts
, int &Index
) {
1950 // Must extract from a single source.
1951 if (!isSingleSourceMaskImpl(Mask
, NumSrcElts
))
1954 // Must be smaller (else this is an Identity shuffle).
1955 if (NumSrcElts
<= (int)Mask
.size())
1958 // Find start of extraction, accounting that we may start with an UNDEF.
1960 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1964 int Offset
= (M
% NumSrcElts
) - i
;
1965 if (0 <= SubIndex
&& SubIndex
!= Offset
)
1970 if (0 <= SubIndex
) {
1977 bool ShuffleVectorInst::isIdentityWithPadding() const {
1978 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
1979 int NumMaskElts
= getType()->getVectorNumElements();
1980 if (NumMaskElts
<= NumOpElts
)
1983 // The first part of the mask must choose elements from exactly 1 source op.
1984 SmallVector
<int, 16> Mask
= getShuffleMask();
1985 if (!isIdentityMaskImpl(Mask
, NumOpElts
))
1988 // All extending must be with undef elements.
1989 for (int i
= NumOpElts
; i
< NumMaskElts
; ++i
)
1996 bool ShuffleVectorInst::isIdentityWithExtract() const {
1997 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
1998 int NumMaskElts
= getType()->getVectorNumElements();
1999 if (NumMaskElts
>= NumOpElts
)
2002 return isIdentityMaskImpl(getShuffleMask(), NumOpElts
);
2005 bool ShuffleVectorInst::isConcat() const {
2006 // Vector concatenation is differentiated from identity with padding.
2007 if (isa
<UndefValue
>(Op
<0>()) || isa
<UndefValue
>(Op
<1>()))
2010 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
2011 int NumMaskElts
= getType()->getVectorNumElements();
2012 if (NumMaskElts
!= NumOpElts
* 2)
2015 // Use the mask length rather than the operands' vector lengths here. We
2016 // already know that the shuffle returns a vector twice as long as the inputs,
2017 // and neither of the inputs are undef vectors. If the mask picks consecutive
2018 // elements from both inputs, then this is a concatenation of the inputs.
2019 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts
);
2022 //===----------------------------------------------------------------------===//
2023 // InsertValueInst Class
2024 //===----------------------------------------------------------------------===//
2026 void InsertValueInst::init(Value
*Agg
, Value
*Val
, ArrayRef
<unsigned> Idxs
,
2027 const Twine
&Name
) {
2028 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2030 // There's no fundamental reason why we require at least one index
2031 // (other than weirdness with &*IdxBegin being invalid; see
2032 // getelementptr's init routine for example). But there's no
2033 // present need to support it.
2034 assert(!Idxs
.empty() && "InsertValueInst must have at least one index");
2036 assert(ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
) ==
2037 Val
->getType() && "Inserted value must match indexed type!");
2041 Indices
.append(Idxs
.begin(), Idxs
.end());
2045 InsertValueInst::InsertValueInst(const InsertValueInst
&IVI
)
2046 : Instruction(IVI
.getType(), InsertValue
,
2047 OperandTraits
<InsertValueInst
>::op_begin(this), 2),
2048 Indices(IVI
.Indices
) {
2049 Op
<0>() = IVI
.getOperand(0);
2050 Op
<1>() = IVI
.getOperand(1);
2051 SubclassOptionalData
= IVI
.SubclassOptionalData
;
2054 //===----------------------------------------------------------------------===//
2055 // ExtractValueInst Class
2056 //===----------------------------------------------------------------------===//
2058 void ExtractValueInst::init(ArrayRef
<unsigned> Idxs
, const Twine
&Name
) {
2059 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2061 // There's no fundamental reason why we require at least one index.
2062 // But there's no present need to support it.
2063 assert(!Idxs
.empty() && "ExtractValueInst must have at least one index");
2065 Indices
.append(Idxs
.begin(), Idxs
.end());
2069 ExtractValueInst::ExtractValueInst(const ExtractValueInst
&EVI
)
2070 : UnaryInstruction(EVI
.getType(), ExtractValue
, EVI
.getOperand(0)),
2071 Indices(EVI
.Indices
) {
2072 SubclassOptionalData
= EVI
.SubclassOptionalData
;
2075 // getIndexedType - Returns the type of the element that would be extracted
2076 // with an extractvalue instruction with the specified parameters.
2078 // A null type is returned if the indices are invalid for the specified
2081 Type
*ExtractValueInst::getIndexedType(Type
*Agg
,
2082 ArrayRef
<unsigned> Idxs
) {
2083 for (unsigned Index
: Idxs
) {
2084 // We can't use CompositeType::indexValid(Index) here.
2085 // indexValid() always returns true for arrays because getelementptr allows
2086 // out-of-bounds indices. Since we don't allow those for extractvalue and
2087 // insertvalue we need to check array indexing manually.
2088 // Since the only other types we can index into are struct types it's just
2089 // as easy to check those manually as well.
2090 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
)) {
2091 if (Index
>= AT
->getNumElements())
2093 } else if (StructType
*ST
= dyn_cast
<StructType
>(Agg
)) {
2094 if (Index
>= ST
->getNumElements())
2097 // Not a valid type to index into.
2101 Agg
= cast
<CompositeType
>(Agg
)->getTypeAtIndex(Index
);
2103 return const_cast<Type
*>(Agg
);
2106 //===----------------------------------------------------------------------===//
2107 // UnaryOperator Class
2108 //===----------------------------------------------------------------------===//
2110 UnaryOperator::UnaryOperator(UnaryOps iType
, Value
*S
,
2111 Type
*Ty
, const Twine
&Name
,
2112 Instruction
*InsertBefore
)
2113 : UnaryInstruction(Ty
, iType
, S
, InsertBefore
) {
2119 UnaryOperator::UnaryOperator(UnaryOps iType
, Value
*S
,
2120 Type
*Ty
, const Twine
&Name
,
2121 BasicBlock
*InsertAtEnd
)
2122 : UnaryInstruction(Ty
, iType
, S
, InsertAtEnd
) {
2128 UnaryOperator
*UnaryOperator::Create(UnaryOps Op
, Value
*S
,
2130 Instruction
*InsertBefore
) {
2131 return new UnaryOperator(Op
, S
, S
->getType(), Name
, InsertBefore
);
2134 UnaryOperator
*UnaryOperator::Create(UnaryOps Op
, Value
*S
,
2136 BasicBlock
*InsertAtEnd
) {
2137 UnaryOperator
*Res
= Create(Op
, S
, Name
);
2138 InsertAtEnd
->getInstList().push_back(Res
);
2142 void UnaryOperator::AssertOK() {
2143 Value
*LHS
= getOperand(0);
2144 (void)LHS
; // Silence warnings.
2146 switch (getOpcode()) {
2148 assert(getType() == LHS
->getType() &&
2149 "Unary operation should return same type as operand!");
2150 assert(getType()->isFPOrFPVectorTy() &&
2151 "Tried to create a floating-point operation on a "
2152 "non-floating-point type!");
2154 default: llvm_unreachable("Invalid opcode provided");
2159 //===----------------------------------------------------------------------===//
2160 // BinaryOperator Class
2161 //===----------------------------------------------------------------------===//
2163 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
2164 Type
*Ty
, const Twine
&Name
,
2165 Instruction
*InsertBefore
)
2166 : Instruction(Ty
, iType
,
2167 OperandTraits
<BinaryOperator
>::op_begin(this),
2168 OperandTraits
<BinaryOperator
>::operands(this),
2176 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
2177 Type
*Ty
, const Twine
&Name
,
2178 BasicBlock
*InsertAtEnd
)
2179 : Instruction(Ty
, iType
,
2180 OperandTraits
<BinaryOperator
>::op_begin(this),
2181 OperandTraits
<BinaryOperator
>::operands(this),
2189 void BinaryOperator::AssertOK() {
2190 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
2191 (void)LHS
; (void)RHS
; // Silence warnings.
2192 assert(LHS
->getType() == RHS
->getType() &&
2193 "Binary operator operand types must match!");
2195 switch (getOpcode()) {
2198 assert(getType() == LHS
->getType() &&
2199 "Arithmetic operation should return same type as operands!");
2200 assert(getType()->isIntOrIntVectorTy() &&
2201 "Tried to create an integer operation on a non-integer type!");
2203 case FAdd
: case FSub
:
2205 assert(getType() == LHS
->getType() &&
2206 "Arithmetic operation should return same type as operands!");
2207 assert(getType()->isFPOrFPVectorTy() &&
2208 "Tried to create a floating-point operation on a "
2209 "non-floating-point type!");
2213 assert(getType() == LHS
->getType() &&
2214 "Arithmetic operation should return same type as operands!");
2215 assert(getType()->isIntOrIntVectorTy() &&
2216 "Incorrect operand type (not integer) for S/UDIV");
2219 assert(getType() == LHS
->getType() &&
2220 "Arithmetic operation should return same type as operands!");
2221 assert(getType()->isFPOrFPVectorTy() &&
2222 "Incorrect operand type (not floating point) for FDIV");
2226 assert(getType() == LHS
->getType() &&
2227 "Arithmetic operation should return same type as operands!");
2228 assert(getType()->isIntOrIntVectorTy() &&
2229 "Incorrect operand type (not integer) for S/UREM");
2232 assert(getType() == LHS
->getType() &&
2233 "Arithmetic operation should return same type as operands!");
2234 assert(getType()->isFPOrFPVectorTy() &&
2235 "Incorrect operand type (not floating point) for FREM");
2240 assert(getType() == LHS
->getType() &&
2241 "Shift operation should return same type as operands!");
2242 assert(getType()->isIntOrIntVectorTy() &&
2243 "Tried to create a shift operation on a non-integral type!");
2247 assert(getType() == LHS
->getType() &&
2248 "Logical operation should return same type as operands!");
2249 assert(getType()->isIntOrIntVectorTy() &&
2250 "Tried to create a logical operation on a non-integral type!");
2252 default: llvm_unreachable("Invalid opcode provided");
2257 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
2259 Instruction
*InsertBefore
) {
2260 assert(S1
->getType() == S2
->getType() &&
2261 "Cannot create binary operator with two operands of differing type!");
2262 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
2265 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
2267 BasicBlock
*InsertAtEnd
) {
2268 BinaryOperator
*Res
= Create(Op
, S1
, S2
, Name
);
2269 InsertAtEnd
->getInstList().push_back(Res
);
2273 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
2274 Instruction
*InsertBefore
) {
2275 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2276 return new BinaryOperator(Instruction::Sub
,
2278 Op
->getType(), Name
, InsertBefore
);
2281 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
2282 BasicBlock
*InsertAtEnd
) {
2283 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2284 return new BinaryOperator(Instruction::Sub
,
2286 Op
->getType(), Name
, InsertAtEnd
);
2289 BinaryOperator
*BinaryOperator::CreateNSWNeg(Value
*Op
, const Twine
&Name
,
2290 Instruction
*InsertBefore
) {
2291 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2292 return BinaryOperator::CreateNSWSub(zero
, Op
, Name
, InsertBefore
);
2295 BinaryOperator
*BinaryOperator::CreateNSWNeg(Value
*Op
, const Twine
&Name
,
2296 BasicBlock
*InsertAtEnd
) {
2297 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2298 return BinaryOperator::CreateNSWSub(zero
, Op
, Name
, InsertAtEnd
);
2301 BinaryOperator
*BinaryOperator::CreateNUWNeg(Value
*Op
, const Twine
&Name
,
2302 Instruction
*InsertBefore
) {
2303 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2304 return BinaryOperator::CreateNUWSub(zero
, Op
, Name
, InsertBefore
);
2307 BinaryOperator
*BinaryOperator::CreateNUWNeg(Value
*Op
, const Twine
&Name
,
2308 BasicBlock
*InsertAtEnd
) {
2309 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2310 return BinaryOperator::CreateNUWSub(zero
, Op
, Name
, InsertAtEnd
);
2313 BinaryOperator
*BinaryOperator::CreateFNeg(Value
*Op
, const Twine
&Name
,
2314 Instruction
*InsertBefore
) {
2315 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2316 return new BinaryOperator(Instruction::FSub
, zero
, Op
,
2317 Op
->getType(), Name
, InsertBefore
);
2320 BinaryOperator
*BinaryOperator::CreateFNeg(Value
*Op
, const Twine
&Name
,
2321 BasicBlock
*InsertAtEnd
) {
2322 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2323 return new BinaryOperator(Instruction::FSub
, zero
, Op
,
2324 Op
->getType(), Name
, InsertAtEnd
);
2327 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
2328 Instruction
*InsertBefore
) {
2329 Constant
*C
= Constant::getAllOnesValue(Op
->getType());
2330 return new BinaryOperator(Instruction::Xor
, Op
, C
,
2331 Op
->getType(), Name
, InsertBefore
);
2334 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
2335 BasicBlock
*InsertAtEnd
) {
2336 Constant
*AllOnes
= Constant::getAllOnesValue(Op
->getType());
2337 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
2338 Op
->getType(), Name
, InsertAtEnd
);
2341 // Exchange the two operands to this instruction. This instruction is safe to
2342 // use on any binary instruction and does not modify the semantics of the
2343 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2345 bool BinaryOperator::swapOperands() {
2346 if (!isCommutative())
2347 return true; // Can't commute operands
2348 Op
<0>().swap(Op
<1>());
2352 //===----------------------------------------------------------------------===//
2353 // FPMathOperator Class
2354 //===----------------------------------------------------------------------===//
2356 float FPMathOperator::getFPAccuracy() const {
2358 cast
<Instruction
>(this)->getMetadata(LLVMContext::MD_fpmath
);
2361 ConstantFP
*Accuracy
= mdconst::extract
<ConstantFP
>(MD
->getOperand(0));
2362 return Accuracy
->getValueAPF().convertToFloat();
2365 //===----------------------------------------------------------------------===//
2367 //===----------------------------------------------------------------------===//
2369 // Just determine if this cast only deals with integral->integral conversion.
2370 bool CastInst::isIntegerCast() const {
2371 switch (getOpcode()) {
2372 default: return false;
2373 case Instruction::ZExt
:
2374 case Instruction::SExt
:
2375 case Instruction::Trunc
:
2377 case Instruction::BitCast
:
2378 return getOperand(0)->getType()->isIntegerTy() &&
2379 getType()->isIntegerTy();
2383 bool CastInst::isLosslessCast() const {
2384 // Only BitCast can be lossless, exit fast if we're not BitCast
2385 if (getOpcode() != Instruction::BitCast
)
2388 // Identity cast is always lossless
2389 Type
*SrcTy
= getOperand(0)->getType();
2390 Type
*DstTy
= getType();
2394 // Pointer to pointer is always lossless.
2395 if (SrcTy
->isPointerTy())
2396 return DstTy
->isPointerTy();
2397 return false; // Other types have no identity values
2400 /// This function determines if the CastInst does not require any bits to be
2401 /// changed in order to effect the cast. Essentially, it identifies cases where
2402 /// no code gen is necessary for the cast, hence the name no-op cast. For
2403 /// example, the following are all no-op casts:
2404 /// # bitcast i32* %x to i8*
2405 /// # bitcast <2 x i32> %x to <4 x i16>
2406 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2407 /// Determine if the described cast is a no-op.
2408 bool CastInst::isNoopCast(Instruction::CastOps Opcode
,
2411 const DataLayout
&DL
) {
2413 default: llvm_unreachable("Invalid CastOp");
2414 case Instruction::Trunc
:
2415 case Instruction::ZExt
:
2416 case Instruction::SExt
:
2417 case Instruction::FPTrunc
:
2418 case Instruction::FPExt
:
2419 case Instruction::UIToFP
:
2420 case Instruction::SIToFP
:
2421 case Instruction::FPToUI
:
2422 case Instruction::FPToSI
:
2423 case Instruction::AddrSpaceCast
:
2424 // TODO: Target informations may give a more accurate answer here.
2426 case Instruction::BitCast
:
2427 return true; // BitCast never modifies bits.
2428 case Instruction::PtrToInt
:
2429 return DL
.getIntPtrType(SrcTy
)->getScalarSizeInBits() ==
2430 DestTy
->getScalarSizeInBits();
2431 case Instruction::IntToPtr
:
2432 return DL
.getIntPtrType(DestTy
)->getScalarSizeInBits() ==
2433 SrcTy
->getScalarSizeInBits();
2437 bool CastInst::isNoopCast(const DataLayout
&DL
) const {
2438 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL
);
2441 /// This function determines if a pair of casts can be eliminated and what
2442 /// opcode should be used in the elimination. This assumes that there are two
2443 /// instructions like this:
2444 /// * %F = firstOpcode SrcTy %x to MidTy
2445 /// * %S = secondOpcode MidTy %F to DstTy
2446 /// The function returns a resultOpcode so these two casts can be replaced with:
2447 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2448 /// If no such cast is permitted, the function returns 0.
2449 unsigned CastInst::isEliminableCastPair(
2450 Instruction::CastOps firstOp
, Instruction::CastOps secondOp
,
2451 Type
*SrcTy
, Type
*MidTy
, Type
*DstTy
, Type
*SrcIntPtrTy
, Type
*MidIntPtrTy
,
2452 Type
*DstIntPtrTy
) {
2453 // Define the 144 possibilities for these two cast instructions. The values
2454 // in this matrix determine what to do in a given situation and select the
2455 // case in the switch below. The rows correspond to firstOp, the columns
2456 // correspond to secondOp. In looking at the table below, keep in mind
2457 // the following cast properties:
2459 // Size Compare Source Destination
2460 // Operator Src ? Size Type Sign Type Sign
2461 // -------- ------------ ------------------- ---------------------
2462 // TRUNC > Integer Any Integral Any
2463 // ZEXT < Integral Unsigned Integer Any
2464 // SEXT < Integral Signed Integer Any
2465 // FPTOUI n/a FloatPt n/a Integral Unsigned
2466 // FPTOSI n/a FloatPt n/a Integral Signed
2467 // UITOFP n/a Integral Unsigned FloatPt n/a
2468 // SITOFP n/a Integral Signed FloatPt n/a
2469 // FPTRUNC > FloatPt n/a FloatPt n/a
2470 // FPEXT < FloatPt n/a FloatPt n/a
2471 // PTRTOINT n/a Pointer n/a Integral Unsigned
2472 // INTTOPTR n/a Integral Unsigned Pointer n/a
2473 // BITCAST = FirstClass n/a FirstClass n/a
2474 // ADDRSPCST n/a Pointer n/a Pointer n/a
2476 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2477 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2478 // into "fptoui double to i64", but this loses information about the range
2479 // of the produced value (we no longer know the top-part is all zeros).
2480 // Further this conversion is often much more expensive for typical hardware,
2481 // and causes issues when building libgcc. We disallow fptosi+sext for the
2483 const unsigned numCastOps
=
2484 Instruction::CastOpsEnd
- Instruction::CastOpsBegin
;
2485 static const uint8_t CastResults
[numCastOps
][numCastOps
] = {
2486 // T F F U S F F P I B A -+
2487 // R Z S P P I I T P 2 N T S |
2488 // U E E 2 2 2 2 R E I T C C +- secondOp
2489 // N X X U S F F N X N 2 V V |
2490 // C T T I I P P C T T P T T -+
2491 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2492 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2493 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2494 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2495 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2496 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2497 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2498 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2499 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2500 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2501 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2502 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2503 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2506 // TODO: This logic could be encoded into the table above and handled in the
2508 // If either of the casts are a bitcast from scalar to vector, disallow the
2509 // merging. However, any pair of bitcasts are allowed.
2510 bool IsFirstBitcast
= (firstOp
== Instruction::BitCast
);
2511 bool IsSecondBitcast
= (secondOp
== Instruction::BitCast
);
2512 bool AreBothBitcasts
= IsFirstBitcast
&& IsSecondBitcast
;
2514 // Check if any of the casts convert scalars <-> vectors.
2515 if ((IsFirstBitcast
&& isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(MidTy
)) ||
2516 (IsSecondBitcast
&& isa
<VectorType
>(MidTy
) != isa
<VectorType
>(DstTy
)))
2517 if (!AreBothBitcasts
)
2520 int ElimCase
= CastResults
[firstOp
-Instruction::CastOpsBegin
]
2521 [secondOp
-Instruction::CastOpsBegin
];
2524 // Categorically disallowed.
2527 // Allowed, use first cast's opcode.
2530 // Allowed, use second cast's opcode.
2533 // No-op cast in second op implies firstOp as long as the DestTy
2534 // is integer and we are not converting between a vector and a
2536 if (!SrcTy
->isVectorTy() && DstTy
->isIntegerTy())
2540 // No-op cast in second op implies firstOp as long as the DestTy
2541 // is floating point.
2542 if (DstTy
->isFloatingPointTy())
2546 // No-op cast in first op implies secondOp as long as the SrcTy
2548 if (SrcTy
->isIntegerTy())
2552 // No-op cast in first op implies secondOp as long as the SrcTy
2553 // is a floating point.
2554 if (SrcTy
->isFloatingPointTy())
2558 // Cannot simplify if address spaces are different!
2559 if (SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace())
2562 unsigned MidSize
= MidTy
->getScalarSizeInBits();
2563 // We can still fold this without knowing the actual sizes as long we
2564 // know that the intermediate pointer is the largest possible
2566 // FIXME: Is this always true?
2568 return Instruction::BitCast
;
2570 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2571 if (!SrcIntPtrTy
|| DstIntPtrTy
!= SrcIntPtrTy
)
2573 unsigned PtrSize
= SrcIntPtrTy
->getScalarSizeInBits();
2574 if (MidSize
>= PtrSize
)
2575 return Instruction::BitCast
;
2579 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2580 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2581 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2582 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2583 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2584 if (SrcSize
== DstSize
)
2585 return Instruction::BitCast
;
2586 else if (SrcSize
< DstSize
)
2591 // zext, sext -> zext, because sext can't sign extend after zext
2592 return Instruction::ZExt
;
2594 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2597 unsigned PtrSize
= MidIntPtrTy
->getScalarSizeInBits();
2598 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2599 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2600 if (SrcSize
<= PtrSize
&& SrcSize
== DstSize
)
2601 return Instruction::BitCast
;
2605 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2606 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2607 if (SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace())
2608 return Instruction::AddrSpaceCast
;
2609 return Instruction::BitCast
;
2611 // FIXME: this state can be merged with (1), but the following assert
2612 // is useful to check the correcteness of the sequence due to semantic
2613 // change of bitcast.
2615 SrcTy
->isPtrOrPtrVectorTy() &&
2616 MidTy
->isPtrOrPtrVectorTy() &&
2617 DstTy
->isPtrOrPtrVectorTy() &&
2618 SrcTy
->getPointerAddressSpace() != MidTy
->getPointerAddressSpace() &&
2619 MidTy
->getPointerAddressSpace() == DstTy
->getPointerAddressSpace() &&
2620 "Illegal addrspacecast, bitcast sequence!");
2621 // Allowed, use first cast's opcode
2624 // bitcast, addrspacecast -> addrspacecast if the element type of
2625 // bitcast's source is the same as that of addrspacecast's destination.
2626 if (SrcTy
->getScalarType()->getPointerElementType() ==
2627 DstTy
->getScalarType()->getPointerElementType())
2628 return Instruction::AddrSpaceCast
;
2631 // FIXME: this state can be merged with (1), but the following assert
2632 // is useful to check the correcteness of the sequence due to semantic
2633 // change of bitcast.
2635 SrcTy
->isIntOrIntVectorTy() &&
2636 MidTy
->isPtrOrPtrVectorTy() &&
2637 DstTy
->isPtrOrPtrVectorTy() &&
2638 MidTy
->getPointerAddressSpace() == DstTy
->getPointerAddressSpace() &&
2639 "Illegal inttoptr, bitcast sequence!");
2640 // Allowed, use first cast's opcode
2643 // FIXME: this state can be merged with (2), but the following assert
2644 // is useful to check the correcteness of the sequence due to semantic
2645 // change of bitcast.
2647 SrcTy
->isPtrOrPtrVectorTy() &&
2648 MidTy
->isPtrOrPtrVectorTy() &&
2649 DstTy
->isIntOrIntVectorTy() &&
2650 SrcTy
->getPointerAddressSpace() == MidTy
->getPointerAddressSpace() &&
2651 "Illegal bitcast, ptrtoint sequence!");
2652 // Allowed, use second cast's opcode
2655 // (sitofp (zext x)) -> (uitofp x)
2656 return Instruction::UIToFP
;
2658 // Cast combination can't happen (error in input). This is for all cases
2659 // where the MidTy is not the same for the two cast instructions.
2660 llvm_unreachable("Invalid Cast Combination");
2662 llvm_unreachable("Error in CastResults table!!!");
2666 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, Type
*Ty
,
2667 const Twine
&Name
, Instruction
*InsertBefore
) {
2668 assert(castIsValid(op
, S
, Ty
) && "Invalid cast!");
2669 // Construct and return the appropriate CastInst subclass
2671 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertBefore
);
2672 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertBefore
);
2673 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertBefore
);
2674 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertBefore
);
2675 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertBefore
);
2676 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertBefore
);
2677 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertBefore
);
2678 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertBefore
);
2679 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertBefore
);
2680 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertBefore
);
2681 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertBefore
);
2682 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertBefore
);
2683 case AddrSpaceCast
: return new AddrSpaceCastInst (S
, Ty
, Name
, InsertBefore
);
2684 default: llvm_unreachable("Invalid opcode provided");
2688 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, Type
*Ty
,
2689 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
2690 assert(castIsValid(op
, S
, Ty
) && "Invalid cast!");
2691 // Construct and return the appropriate CastInst subclass
2693 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertAtEnd
);
2694 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertAtEnd
);
2695 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertAtEnd
);
2696 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertAtEnd
);
2697 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertAtEnd
);
2698 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
2699 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
2700 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertAtEnd
);
2701 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertAtEnd
);
2702 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertAtEnd
);
2703 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertAtEnd
);
2704 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertAtEnd
);
2705 case AddrSpaceCast
: return new AddrSpaceCastInst (S
, Ty
, Name
, InsertAtEnd
);
2706 default: llvm_unreachable("Invalid opcode provided");
2710 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, Type
*Ty
,
2712 Instruction
*InsertBefore
) {
2713 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2714 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2715 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertBefore
);
2718 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, Type
*Ty
,
2720 BasicBlock
*InsertAtEnd
) {
2721 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2722 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2723 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertAtEnd
);
2726 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, Type
*Ty
,
2728 Instruction
*InsertBefore
) {
2729 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2730 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2731 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertBefore
);
2734 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, Type
*Ty
,
2736 BasicBlock
*InsertAtEnd
) {
2737 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2738 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2739 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertAtEnd
);
2742 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, Type
*Ty
,
2744 Instruction
*InsertBefore
) {
2745 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2746 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2747 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertBefore
);
2750 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, Type
*Ty
,
2752 BasicBlock
*InsertAtEnd
) {
2753 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2754 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2755 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertAtEnd
);
2758 CastInst
*CastInst::CreatePointerCast(Value
*S
, Type
*Ty
,
2760 BasicBlock
*InsertAtEnd
) {
2761 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2762 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
2764 assert(Ty
->isVectorTy() == S
->getType()->isVectorTy() && "Invalid cast");
2765 assert((!Ty
->isVectorTy() ||
2766 Ty
->getVectorNumElements() == S
->getType()->getVectorNumElements()) &&
2769 if (Ty
->isIntOrIntVectorTy())
2770 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertAtEnd
);
2772 return CreatePointerBitCastOrAddrSpaceCast(S
, Ty
, Name
, InsertAtEnd
);
2775 /// Create a BitCast or a PtrToInt cast instruction
2776 CastInst
*CastInst::CreatePointerCast(Value
*S
, Type
*Ty
,
2778 Instruction
*InsertBefore
) {
2779 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2780 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
2782 assert(Ty
->isVectorTy() == S
->getType()->isVectorTy() && "Invalid cast");
2783 assert((!Ty
->isVectorTy() ||
2784 Ty
->getVectorNumElements() == S
->getType()->getVectorNumElements()) &&
2787 if (Ty
->isIntOrIntVectorTy())
2788 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2790 return CreatePointerBitCastOrAddrSpaceCast(S
, Ty
, Name
, InsertBefore
);
2793 CastInst
*CastInst::CreatePointerBitCastOrAddrSpaceCast(
2796 BasicBlock
*InsertAtEnd
) {
2797 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2798 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
2800 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
2801 return Create(Instruction::AddrSpaceCast
, S
, Ty
, Name
, InsertAtEnd
);
2803 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2806 CastInst
*CastInst::CreatePointerBitCastOrAddrSpaceCast(
2809 Instruction
*InsertBefore
) {
2810 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2811 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
2813 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
2814 return Create(Instruction::AddrSpaceCast
, S
, Ty
, Name
, InsertBefore
);
2816 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2819 CastInst
*CastInst::CreateBitOrPointerCast(Value
*S
, Type
*Ty
,
2821 Instruction
*InsertBefore
) {
2822 if (S
->getType()->isPointerTy() && Ty
->isIntegerTy())
2823 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2824 if (S
->getType()->isIntegerTy() && Ty
->isPointerTy())
2825 return Create(Instruction::IntToPtr
, S
, Ty
, Name
, InsertBefore
);
2827 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2830 CastInst
*CastInst::CreateIntegerCast(Value
*C
, Type
*Ty
,
2831 bool isSigned
, const Twine
&Name
,
2832 Instruction
*InsertBefore
) {
2833 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isIntOrIntVectorTy() &&
2834 "Invalid integer cast");
2835 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2836 unsigned DstBits
= Ty
->getScalarSizeInBits();
2837 Instruction::CastOps opcode
=
2838 (SrcBits
== DstBits
? Instruction::BitCast
:
2839 (SrcBits
> DstBits
? Instruction::Trunc
:
2840 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2841 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2844 CastInst
*CastInst::CreateIntegerCast(Value
*C
, Type
*Ty
,
2845 bool isSigned
, const Twine
&Name
,
2846 BasicBlock
*InsertAtEnd
) {
2847 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isIntOrIntVectorTy() &&
2849 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2850 unsigned DstBits
= Ty
->getScalarSizeInBits();
2851 Instruction::CastOps opcode
=
2852 (SrcBits
== DstBits
? Instruction::BitCast
:
2853 (SrcBits
> DstBits
? Instruction::Trunc
:
2854 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2855 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2858 CastInst
*CastInst::CreateFPCast(Value
*C
, Type
*Ty
,
2860 Instruction
*InsertBefore
) {
2861 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
2863 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2864 unsigned DstBits
= Ty
->getScalarSizeInBits();
2865 Instruction::CastOps opcode
=
2866 (SrcBits
== DstBits
? Instruction::BitCast
:
2867 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2868 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2871 CastInst
*CastInst::CreateFPCast(Value
*C
, Type
*Ty
,
2873 BasicBlock
*InsertAtEnd
) {
2874 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
2876 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2877 unsigned DstBits
= Ty
->getScalarSizeInBits();
2878 Instruction::CastOps opcode
=
2879 (SrcBits
== DstBits
? Instruction::BitCast
:
2880 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2881 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2884 // Check whether it is valid to call getCastOpcode for these types.
2885 // This routine must be kept in sync with getCastOpcode.
2886 bool CastInst::isCastable(Type
*SrcTy
, Type
*DestTy
) {
2887 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
2890 if (SrcTy
== DestTy
)
2893 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
))
2894 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
))
2895 if (SrcVecTy
->getNumElements() == DestVecTy
->getNumElements()) {
2896 // An element by element cast. Valid if casting the elements is valid.
2897 SrcTy
= SrcVecTy
->getElementType();
2898 DestTy
= DestVecTy
->getElementType();
2901 // Get the bit sizes, we'll need these
2902 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
2903 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
2905 // Run through the possibilities ...
2906 if (DestTy
->isIntegerTy()) { // Casting to integral
2907 if (SrcTy
->isIntegerTy()) // Casting from integral
2909 if (SrcTy
->isFloatingPointTy()) // Casting from floating pt
2911 if (SrcTy
->isVectorTy()) // Casting from vector
2912 return DestBits
== SrcBits
;
2913 // Casting from something else
2914 return SrcTy
->isPointerTy();
2916 if (DestTy
->isFloatingPointTy()) { // Casting to floating pt
2917 if (SrcTy
->isIntegerTy()) // Casting from integral
2919 if (SrcTy
->isFloatingPointTy()) // Casting from floating pt
2921 if (SrcTy
->isVectorTy()) // Casting from vector
2922 return DestBits
== SrcBits
;
2923 // Casting from something else
2926 if (DestTy
->isVectorTy()) // Casting to vector
2927 return DestBits
== SrcBits
;
2928 if (DestTy
->isPointerTy()) { // Casting to pointer
2929 if (SrcTy
->isPointerTy()) // Casting from pointer
2931 return SrcTy
->isIntegerTy(); // Casting from integral
2933 if (DestTy
->isX86_MMXTy()) {
2934 if (SrcTy
->isVectorTy())
2935 return DestBits
== SrcBits
; // 64-bit vector to MMX
2937 } // Casting to something else
2941 bool CastInst::isBitCastable(Type
*SrcTy
, Type
*DestTy
) {
2942 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
2945 if (SrcTy
== DestTy
)
2948 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2949 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
)) {
2950 if (SrcVecTy
->getNumElements() == DestVecTy
->getNumElements()) {
2951 // An element by element cast. Valid if casting the elements is valid.
2952 SrcTy
= SrcVecTy
->getElementType();
2953 DestTy
= DestVecTy
->getElementType();
2958 if (PointerType
*DestPtrTy
= dyn_cast
<PointerType
>(DestTy
)) {
2959 if (PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
)) {
2960 return SrcPtrTy
->getAddressSpace() == DestPtrTy
->getAddressSpace();
2964 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
2965 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
2967 // Could still have vectors of pointers if the number of elements doesn't
2969 if (SrcBits
== 0 || DestBits
== 0)
2972 if (SrcBits
!= DestBits
)
2975 if (DestTy
->isX86_MMXTy() || SrcTy
->isX86_MMXTy())
2981 bool CastInst::isBitOrNoopPointerCastable(Type
*SrcTy
, Type
*DestTy
,
2982 const DataLayout
&DL
) {
2983 // ptrtoint and inttoptr are not allowed on non-integral pointers
2984 if (auto *PtrTy
= dyn_cast
<PointerType
>(SrcTy
))
2985 if (auto *IntTy
= dyn_cast
<IntegerType
>(DestTy
))
2986 return (IntTy
->getBitWidth() == DL
.getPointerTypeSizeInBits(PtrTy
) &&
2987 !DL
.isNonIntegralPointerType(PtrTy
));
2988 if (auto *PtrTy
= dyn_cast
<PointerType
>(DestTy
))
2989 if (auto *IntTy
= dyn_cast
<IntegerType
>(SrcTy
))
2990 return (IntTy
->getBitWidth() == DL
.getPointerTypeSizeInBits(PtrTy
) &&
2991 !DL
.isNonIntegralPointerType(PtrTy
));
2993 return isBitCastable(SrcTy
, DestTy
);
2996 // Provide a way to get a "cast" where the cast opcode is inferred from the
2997 // types and size of the operand. This, basically, is a parallel of the
2998 // logic in the castIsValid function below. This axiom should hold:
2999 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3000 // should not assert in castIsValid. In other words, this produces a "correct"
3001 // casting opcode for the arguments passed to it.
3002 // This routine must be kept in sync with isCastable.
3003 Instruction::CastOps
3004 CastInst::getCastOpcode(
3005 const Value
*Src
, bool SrcIsSigned
, Type
*DestTy
, bool DestIsSigned
) {
3006 Type
*SrcTy
= Src
->getType();
3008 assert(SrcTy
->isFirstClassType() && DestTy
->isFirstClassType() &&
3009 "Only first class types are castable!");
3011 if (SrcTy
== DestTy
)
3014 // FIXME: Check address space sizes here
3015 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
))
3016 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
))
3017 if (SrcVecTy
->getNumElements() == DestVecTy
->getNumElements()) {
3018 // An element by element cast. Find the appropriate opcode based on the
3020 SrcTy
= SrcVecTy
->getElementType();
3021 DestTy
= DestVecTy
->getElementType();
3024 // Get the bit sizes, we'll need these
3025 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
3026 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
3028 // Run through the possibilities ...
3029 if (DestTy
->isIntegerTy()) { // Casting to integral
3030 if (SrcTy
->isIntegerTy()) { // Casting from integral
3031 if (DestBits
< SrcBits
)
3032 return Trunc
; // int -> smaller int
3033 else if (DestBits
> SrcBits
) { // its an extension
3035 return SExt
; // signed -> SEXT
3037 return ZExt
; // unsigned -> ZEXT
3039 return BitCast
; // Same size, No-op cast
3041 } else if (SrcTy
->isFloatingPointTy()) { // Casting from floating pt
3043 return FPToSI
; // FP -> sint
3045 return FPToUI
; // FP -> uint
3046 } else if (SrcTy
->isVectorTy()) {
3047 assert(DestBits
== SrcBits
&&
3048 "Casting vector to integer of different width");
3049 return BitCast
; // Same size, no-op cast
3051 assert(SrcTy
->isPointerTy() &&
3052 "Casting from a value that is not first-class type");
3053 return PtrToInt
; // ptr -> int
3055 } else if (DestTy
->isFloatingPointTy()) { // Casting to floating pt
3056 if (SrcTy
->isIntegerTy()) { // Casting from integral
3058 return SIToFP
; // sint -> FP
3060 return UIToFP
; // uint -> FP
3061 } else if (SrcTy
->isFloatingPointTy()) { // Casting from floating pt
3062 if (DestBits
< SrcBits
) {
3063 return FPTrunc
; // FP -> smaller FP
3064 } else if (DestBits
> SrcBits
) {
3065 return FPExt
; // FP -> larger FP
3067 return BitCast
; // same size, no-op cast
3069 } else if (SrcTy
->isVectorTy()) {
3070 assert(DestBits
== SrcBits
&&
3071 "Casting vector to floating point of different width");
3072 return BitCast
; // same size, no-op cast
3074 llvm_unreachable("Casting pointer or non-first class to float");
3075 } else if (DestTy
->isVectorTy()) {
3076 assert(DestBits
== SrcBits
&&
3077 "Illegal cast to vector (wrong type or size)");
3079 } else if (DestTy
->isPointerTy()) {
3080 if (SrcTy
->isPointerTy()) {
3081 if (DestTy
->getPointerAddressSpace() != SrcTy
->getPointerAddressSpace())
3082 return AddrSpaceCast
;
3083 return BitCast
; // ptr -> ptr
3084 } else if (SrcTy
->isIntegerTy()) {
3085 return IntToPtr
; // int -> ptr
3087 llvm_unreachable("Casting pointer to other than pointer or int");
3088 } else if (DestTy
->isX86_MMXTy()) {
3089 if (SrcTy
->isVectorTy()) {
3090 assert(DestBits
== SrcBits
&& "Casting vector of wrong width to X86_MMX");
3091 return BitCast
; // 64-bit vector to MMX
3093 llvm_unreachable("Illegal cast to X86_MMX");
3095 llvm_unreachable("Casting to type that is not first-class");
3098 //===----------------------------------------------------------------------===//
3099 // CastInst SubClass Constructors
3100 //===----------------------------------------------------------------------===//
3102 /// Check that the construction parameters for a CastInst are correct. This
3103 /// could be broken out into the separate constructors but it is useful to have
3104 /// it in one place and to eliminate the redundant code for getting the sizes
3105 /// of the types involved.
3107 CastInst::castIsValid(Instruction::CastOps op
, Value
*S
, Type
*DstTy
) {
3108 // Check for type sanity on the arguments
3109 Type
*SrcTy
= S
->getType();
3111 if (!SrcTy
->isFirstClassType() || !DstTy
->isFirstClassType() ||
3112 SrcTy
->isAggregateType() || DstTy
->isAggregateType())
3115 // Get the size of the types in bits, we'll need this later
3116 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
3117 unsigned DstBitSize
= DstTy
->getScalarSizeInBits();
3119 // If these are vector types, get the lengths of the vectors (using zero for
3120 // scalar types means that checking that vector lengths match also checks that
3121 // scalars are not being converted to vectors or vectors to scalars).
3122 unsigned SrcLength
= SrcTy
->isVectorTy() ?
3123 cast
<VectorType
>(SrcTy
)->getNumElements() : 0;
3124 unsigned DstLength
= DstTy
->isVectorTy() ?
3125 cast
<VectorType
>(DstTy
)->getNumElements() : 0;
3127 // Switch on the opcode provided
3129 default: return false; // This is an input error
3130 case Instruction::Trunc
:
3131 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3132 SrcLength
== DstLength
&& SrcBitSize
> DstBitSize
;
3133 case Instruction::ZExt
:
3134 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3135 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
3136 case Instruction::SExt
:
3137 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3138 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
3139 case Instruction::FPTrunc
:
3140 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3141 SrcLength
== DstLength
&& SrcBitSize
> DstBitSize
;
3142 case Instruction::FPExt
:
3143 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3144 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
3145 case Instruction::UIToFP
:
3146 case Instruction::SIToFP
:
3147 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3148 SrcLength
== DstLength
;
3149 case Instruction::FPToUI
:
3150 case Instruction::FPToSI
:
3151 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3152 SrcLength
== DstLength
;
3153 case Instruction::PtrToInt
:
3154 if (isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(DstTy
))
3156 if (VectorType
*VT
= dyn_cast
<VectorType
>(SrcTy
))
3157 if (VT
->getNumElements() != cast
<VectorType
>(DstTy
)->getNumElements())
3159 return SrcTy
->isPtrOrPtrVectorTy() && DstTy
->isIntOrIntVectorTy();
3160 case Instruction::IntToPtr
:
3161 if (isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(DstTy
))
3163 if (VectorType
*VT
= dyn_cast
<VectorType
>(SrcTy
))
3164 if (VT
->getNumElements() != cast
<VectorType
>(DstTy
)->getNumElements())
3166 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isPtrOrPtrVectorTy();
3167 case Instruction::BitCast
: {
3168 PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType());
3169 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(DstTy
->getScalarType());
3171 // BitCast implies a no-op cast of type only. No bits change.
3172 // However, you can't cast pointers to anything but pointers.
3173 if (!SrcPtrTy
!= !DstPtrTy
)
3176 // For non-pointer cases, the cast is okay if the source and destination bit
3177 // widths are identical.
3179 return SrcTy
->getPrimitiveSizeInBits() == DstTy
->getPrimitiveSizeInBits();
3181 // If both are pointers then the address spaces must match.
3182 if (SrcPtrTy
->getAddressSpace() != DstPtrTy
->getAddressSpace())
3185 // A vector of pointers must have the same number of elements.
3186 VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
);
3187 VectorType
*DstVecTy
= dyn_cast
<VectorType
>(DstTy
);
3188 if (SrcVecTy
&& DstVecTy
)
3189 return (SrcVecTy
->getNumElements() == DstVecTy
->getNumElements());
3191 return SrcVecTy
->getNumElements() == 1;
3193 return DstVecTy
->getNumElements() == 1;
3197 case Instruction::AddrSpaceCast
: {
3198 PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType());
3202 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(DstTy
->getScalarType());
3206 if (SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
3209 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
)) {
3210 if (VectorType
*DstVecTy
= dyn_cast
<VectorType
>(DstTy
))
3211 return (SrcVecTy
->getNumElements() == DstVecTy
->getNumElements());
3221 TruncInst::TruncInst(
3222 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3223 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertBefore
) {
3224 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
3227 TruncInst::TruncInst(
3228 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3229 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertAtEnd
) {
3230 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
3234 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3235 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertBefore
) {
3236 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
3240 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3241 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertAtEnd
) {
3242 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
3245 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3246 ) : CastInst(Ty
, SExt
, S
, Name
, InsertBefore
) {
3247 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
3251 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3252 ) : CastInst(Ty
, SExt
, S
, Name
, InsertAtEnd
) {
3253 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
3256 FPTruncInst::FPTruncInst(
3257 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3258 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertBefore
) {
3259 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
3262 FPTruncInst::FPTruncInst(
3263 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3264 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertAtEnd
) {
3265 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
3268 FPExtInst::FPExtInst(
3269 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3270 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertBefore
) {
3271 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
3274 FPExtInst::FPExtInst(
3275 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3276 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertAtEnd
) {
3277 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
3280 UIToFPInst::UIToFPInst(
3281 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3282 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertBefore
) {
3283 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
3286 UIToFPInst::UIToFPInst(
3287 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3288 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertAtEnd
) {
3289 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
3292 SIToFPInst::SIToFPInst(
3293 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3294 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertBefore
) {
3295 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
3298 SIToFPInst::SIToFPInst(
3299 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3300 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertAtEnd
) {
3301 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
3304 FPToUIInst::FPToUIInst(
3305 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3306 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertBefore
) {
3307 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
3310 FPToUIInst::FPToUIInst(
3311 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3312 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertAtEnd
) {
3313 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
3316 FPToSIInst::FPToSIInst(
3317 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3318 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertBefore
) {
3319 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
3322 FPToSIInst::FPToSIInst(
3323 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3324 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertAtEnd
) {
3325 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
3328 PtrToIntInst::PtrToIntInst(
3329 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3330 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertBefore
) {
3331 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
3334 PtrToIntInst::PtrToIntInst(
3335 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3336 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertAtEnd
) {
3337 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
3340 IntToPtrInst::IntToPtrInst(
3341 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3342 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertBefore
) {
3343 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
3346 IntToPtrInst::IntToPtrInst(
3347 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3348 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertAtEnd
) {
3349 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
3352 BitCastInst::BitCastInst(
3353 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3354 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertBefore
) {
3355 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
3358 BitCastInst::BitCastInst(
3359 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3360 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertAtEnd
) {
3361 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
3364 AddrSpaceCastInst::AddrSpaceCastInst(
3365 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3366 ) : CastInst(Ty
, AddrSpaceCast
, S
, Name
, InsertBefore
) {
3367 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal AddrSpaceCast");
3370 AddrSpaceCastInst::AddrSpaceCastInst(
3371 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3372 ) : CastInst(Ty
, AddrSpaceCast
, S
, Name
, InsertAtEnd
) {
3373 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal AddrSpaceCast");
3376 //===----------------------------------------------------------------------===//
3378 //===----------------------------------------------------------------------===//
3380 CmpInst::CmpInst(Type
*ty
, OtherOps op
, Predicate predicate
, Value
*LHS
,
3381 Value
*RHS
, const Twine
&Name
, Instruction
*InsertBefore
,
3382 Instruction
*FlagsSource
)
3383 : Instruction(ty
, op
,
3384 OperandTraits
<CmpInst
>::op_begin(this),
3385 OperandTraits
<CmpInst
>::operands(this),
3389 setPredicate((Predicate
)predicate
);
3392 copyIRFlags(FlagsSource
);
3395 CmpInst::CmpInst(Type
*ty
, OtherOps op
, Predicate predicate
, Value
*LHS
,
3396 Value
*RHS
, const Twine
&Name
, BasicBlock
*InsertAtEnd
)
3397 : Instruction(ty
, op
,
3398 OperandTraits
<CmpInst
>::op_begin(this),
3399 OperandTraits
<CmpInst
>::operands(this),
3403 setPredicate((Predicate
)predicate
);
3408 CmpInst::Create(OtherOps Op
, Predicate predicate
, Value
*S1
, Value
*S2
,
3409 const Twine
&Name
, Instruction
*InsertBefore
) {
3410 if (Op
== Instruction::ICmp
) {
3412 return new ICmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
3415 return new ICmpInst(CmpInst::Predicate(predicate
),
3420 return new FCmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
3423 return new FCmpInst(CmpInst::Predicate(predicate
),
3428 CmpInst::Create(OtherOps Op
, Predicate predicate
, Value
*S1
, Value
*S2
,
3429 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
3430 if (Op
== Instruction::ICmp
) {
3431 return new ICmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
3434 return new FCmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
3438 void CmpInst::swapOperands() {
3439 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3442 cast
<FCmpInst
>(this)->swapOperands();
3445 bool CmpInst::isCommutative() const {
3446 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3447 return IC
->isCommutative();
3448 return cast
<FCmpInst
>(this)->isCommutative();
3451 bool CmpInst::isEquality() const {
3452 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3453 return IC
->isEquality();
3454 return cast
<FCmpInst
>(this)->isEquality();
3457 CmpInst::Predicate
CmpInst::getInversePredicate(Predicate pred
) {
3459 default: llvm_unreachable("Unknown cmp predicate!");
3460 case ICMP_EQ
: return ICMP_NE
;
3461 case ICMP_NE
: return ICMP_EQ
;
3462 case ICMP_UGT
: return ICMP_ULE
;
3463 case ICMP_ULT
: return ICMP_UGE
;
3464 case ICMP_UGE
: return ICMP_ULT
;
3465 case ICMP_ULE
: return ICMP_UGT
;
3466 case ICMP_SGT
: return ICMP_SLE
;
3467 case ICMP_SLT
: return ICMP_SGE
;
3468 case ICMP_SGE
: return ICMP_SLT
;
3469 case ICMP_SLE
: return ICMP_SGT
;
3471 case FCMP_OEQ
: return FCMP_UNE
;
3472 case FCMP_ONE
: return FCMP_UEQ
;
3473 case FCMP_OGT
: return FCMP_ULE
;
3474 case FCMP_OLT
: return FCMP_UGE
;
3475 case FCMP_OGE
: return FCMP_ULT
;
3476 case FCMP_OLE
: return FCMP_UGT
;
3477 case FCMP_UEQ
: return FCMP_ONE
;
3478 case FCMP_UNE
: return FCMP_OEQ
;
3479 case FCMP_UGT
: return FCMP_OLE
;
3480 case FCMP_ULT
: return FCMP_OGE
;
3481 case FCMP_UGE
: return FCMP_OLT
;
3482 case FCMP_ULE
: return FCMP_OGT
;
3483 case FCMP_ORD
: return FCMP_UNO
;
3484 case FCMP_UNO
: return FCMP_ORD
;
3485 case FCMP_TRUE
: return FCMP_FALSE
;
3486 case FCMP_FALSE
: return FCMP_TRUE
;
3490 StringRef
CmpInst::getPredicateName(Predicate Pred
) {
3492 default: return "unknown";
3493 case FCmpInst::FCMP_FALSE
: return "false";
3494 case FCmpInst::FCMP_OEQ
: return "oeq";
3495 case FCmpInst::FCMP_OGT
: return "ogt";
3496 case FCmpInst::FCMP_OGE
: return "oge";
3497 case FCmpInst::FCMP_OLT
: return "olt";
3498 case FCmpInst::FCMP_OLE
: return "ole";
3499 case FCmpInst::FCMP_ONE
: return "one";
3500 case FCmpInst::FCMP_ORD
: return "ord";
3501 case FCmpInst::FCMP_UNO
: return "uno";
3502 case FCmpInst::FCMP_UEQ
: return "ueq";
3503 case FCmpInst::FCMP_UGT
: return "ugt";
3504 case FCmpInst::FCMP_UGE
: return "uge";
3505 case FCmpInst::FCMP_ULT
: return "ult";
3506 case FCmpInst::FCMP_ULE
: return "ule";
3507 case FCmpInst::FCMP_UNE
: return "une";
3508 case FCmpInst::FCMP_TRUE
: return "true";
3509 case ICmpInst::ICMP_EQ
: return "eq";
3510 case ICmpInst::ICMP_NE
: return "ne";
3511 case ICmpInst::ICMP_SGT
: return "sgt";
3512 case ICmpInst::ICMP_SGE
: return "sge";
3513 case ICmpInst::ICMP_SLT
: return "slt";
3514 case ICmpInst::ICMP_SLE
: return "sle";
3515 case ICmpInst::ICMP_UGT
: return "ugt";
3516 case ICmpInst::ICMP_UGE
: return "uge";
3517 case ICmpInst::ICMP_ULT
: return "ult";
3518 case ICmpInst::ICMP_ULE
: return "ule";
3522 ICmpInst::Predicate
ICmpInst::getSignedPredicate(Predicate pred
) {
3524 default: llvm_unreachable("Unknown icmp predicate!");
3525 case ICMP_EQ
: case ICMP_NE
:
3526 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
3528 case ICMP_UGT
: return ICMP_SGT
;
3529 case ICMP_ULT
: return ICMP_SLT
;
3530 case ICMP_UGE
: return ICMP_SGE
;
3531 case ICMP_ULE
: return ICMP_SLE
;
3535 ICmpInst::Predicate
ICmpInst::getUnsignedPredicate(Predicate pred
) {
3537 default: llvm_unreachable("Unknown icmp predicate!");
3538 case ICMP_EQ
: case ICMP_NE
:
3539 case ICMP_UGT
: case ICMP_ULT
: case ICMP_UGE
: case ICMP_ULE
:
3541 case ICMP_SGT
: return ICMP_UGT
;
3542 case ICMP_SLT
: return ICMP_ULT
;
3543 case ICMP_SGE
: return ICMP_UGE
;
3544 case ICMP_SLE
: return ICMP_ULE
;
3548 CmpInst::Predicate
CmpInst::getFlippedStrictnessPredicate(Predicate pred
) {
3550 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3551 case ICMP_SGT
: return ICMP_SGE
;
3552 case ICMP_SLT
: return ICMP_SLE
;
3553 case ICMP_SGE
: return ICMP_SGT
;
3554 case ICMP_SLE
: return ICMP_SLT
;
3555 case ICMP_UGT
: return ICMP_UGE
;
3556 case ICMP_ULT
: return ICMP_ULE
;
3557 case ICMP_UGE
: return ICMP_UGT
;
3558 case ICMP_ULE
: return ICMP_ULT
;
3560 case FCMP_OGT
: return FCMP_OGE
;
3561 case FCMP_OLT
: return FCMP_OLE
;
3562 case FCMP_OGE
: return FCMP_OGT
;
3563 case FCMP_OLE
: return FCMP_OLT
;
3564 case FCMP_UGT
: return FCMP_UGE
;
3565 case FCMP_ULT
: return FCMP_ULE
;
3566 case FCMP_UGE
: return FCMP_UGT
;
3567 case FCMP_ULE
: return FCMP_ULT
;
3571 CmpInst::Predicate
CmpInst::getSwappedPredicate(Predicate pred
) {
3573 default: llvm_unreachable("Unknown cmp predicate!");
3574 case ICMP_EQ
: case ICMP_NE
:
3576 case ICMP_SGT
: return ICMP_SLT
;
3577 case ICMP_SLT
: return ICMP_SGT
;
3578 case ICMP_SGE
: return ICMP_SLE
;
3579 case ICMP_SLE
: return ICMP_SGE
;
3580 case ICMP_UGT
: return ICMP_ULT
;
3581 case ICMP_ULT
: return ICMP_UGT
;
3582 case ICMP_UGE
: return ICMP_ULE
;
3583 case ICMP_ULE
: return ICMP_UGE
;
3585 case FCMP_FALSE
: case FCMP_TRUE
:
3586 case FCMP_OEQ
: case FCMP_ONE
:
3587 case FCMP_UEQ
: case FCMP_UNE
:
3588 case FCMP_ORD
: case FCMP_UNO
:
3590 case FCMP_OGT
: return FCMP_OLT
;
3591 case FCMP_OLT
: return FCMP_OGT
;
3592 case FCMP_OGE
: return FCMP_OLE
;
3593 case FCMP_OLE
: return FCMP_OGE
;
3594 case FCMP_UGT
: return FCMP_ULT
;
3595 case FCMP_ULT
: return FCMP_UGT
;
3596 case FCMP_UGE
: return FCMP_ULE
;
3597 case FCMP_ULE
: return FCMP_UGE
;
3601 CmpInst::Predicate
CmpInst::getNonStrictPredicate(Predicate pred
) {
3603 case ICMP_SGT
: return ICMP_SGE
;
3604 case ICMP_SLT
: return ICMP_SLE
;
3605 case ICMP_UGT
: return ICMP_UGE
;
3606 case ICMP_ULT
: return ICMP_ULE
;
3607 case FCMP_OGT
: return FCMP_OGE
;
3608 case FCMP_OLT
: return FCMP_OLE
;
3609 case FCMP_UGT
: return FCMP_UGE
;
3610 case FCMP_ULT
: return FCMP_ULE
;
3611 default: return pred
;
3615 CmpInst::Predicate
CmpInst::getSignedPredicate(Predicate pred
) {
3616 assert(CmpInst::isUnsigned(pred
) && "Call only with signed predicates!");
3620 llvm_unreachable("Unknown predicate!");
3621 case CmpInst::ICMP_ULT
:
3622 return CmpInst::ICMP_SLT
;
3623 case CmpInst::ICMP_ULE
:
3624 return CmpInst::ICMP_SLE
;
3625 case CmpInst::ICMP_UGT
:
3626 return CmpInst::ICMP_SGT
;
3627 case CmpInst::ICMP_UGE
:
3628 return CmpInst::ICMP_SGE
;
3632 bool CmpInst::isUnsigned(Predicate predicate
) {
3633 switch (predicate
) {
3634 default: return false;
3635 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
: case ICmpInst::ICMP_UGT
:
3636 case ICmpInst::ICMP_UGE
: return true;
3640 bool CmpInst::isSigned(Predicate predicate
) {
3641 switch (predicate
) {
3642 default: return false;
3643 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_SLE
: case ICmpInst::ICMP_SGT
:
3644 case ICmpInst::ICMP_SGE
: return true;
3648 bool CmpInst::isOrdered(Predicate predicate
) {
3649 switch (predicate
) {
3650 default: return false;
3651 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_OGT
:
3652 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLE
:
3653 case FCmpInst::FCMP_ORD
: return true;
3657 bool CmpInst::isUnordered(Predicate predicate
) {
3658 switch (predicate
) {
3659 default: return false;
3660 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UNE
: case FCmpInst::FCMP_UGT
:
3661 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_UGE
: case FCmpInst::FCMP_ULE
:
3662 case FCmpInst::FCMP_UNO
: return true;
3666 bool CmpInst::isTrueWhenEqual(Predicate predicate
) {
3668 default: return false;
3669 case ICMP_EQ
: case ICMP_UGE
: case ICMP_ULE
: case ICMP_SGE
: case ICMP_SLE
:
3670 case FCMP_TRUE
: case FCMP_UEQ
: case FCMP_UGE
: case FCMP_ULE
: return true;
3674 bool CmpInst::isFalseWhenEqual(Predicate predicate
) {
3676 case ICMP_NE
: case ICMP_UGT
: case ICMP_ULT
: case ICMP_SGT
: case ICMP_SLT
:
3677 case FCMP_FALSE
: case FCMP_ONE
: case FCMP_OGT
: case FCMP_OLT
: return true;
3678 default: return false;
3682 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1
, Predicate Pred2
) {
3683 // If the predicates match, then we know the first condition implies the
3692 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3693 return Pred2
== ICMP_UGE
|| Pred2
== ICMP_ULE
|| Pred2
== ICMP_SGE
||
3695 case ICMP_UGT
: // A >u B implies A != B and A >=u B are true.
3696 return Pred2
== ICMP_NE
|| Pred2
== ICMP_UGE
;
3697 case ICMP_ULT
: // A <u B implies A != B and A <=u B are true.
3698 return Pred2
== ICMP_NE
|| Pred2
== ICMP_ULE
;
3699 case ICMP_SGT
: // A >s B implies A != B and A >=s B are true.
3700 return Pred2
== ICMP_NE
|| Pred2
== ICMP_SGE
;
3701 case ICMP_SLT
: // A <s B implies A != B and A <=s B are true.
3702 return Pred2
== ICMP_NE
|| Pred2
== ICMP_SLE
;
3707 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1
, Predicate Pred2
) {
3708 return isImpliedTrueByMatchingCmp(Pred1
, getInversePredicate(Pred2
));
3711 //===----------------------------------------------------------------------===//
3712 // SwitchInst Implementation
3713 //===----------------------------------------------------------------------===//
3715 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumReserved
) {
3716 assert(Value
&& Default
&& NumReserved
);
3717 ReservedSpace
= NumReserved
;
3718 setNumHungOffUseOperands(2);
3719 allocHungoffUses(ReservedSpace
);
3725 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3726 /// switch on and a default destination. The number of additional cases can
3727 /// be specified here to make memory allocation more efficient. This
3728 /// constructor can also autoinsert before another instruction.
3729 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3730 Instruction
*InsertBefore
)
3731 : Instruction(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
3732 nullptr, 0, InsertBefore
) {
3733 init(Value
, Default
, 2+NumCases
*2);
3736 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3737 /// switch on and a default destination. The number of additional cases can
3738 /// be specified here to make memory allocation more efficient. This
3739 /// constructor also autoinserts at the end of the specified BasicBlock.
3740 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3741 BasicBlock
*InsertAtEnd
)
3742 : Instruction(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
3743 nullptr, 0, InsertAtEnd
) {
3744 init(Value
, Default
, 2+NumCases
*2);
3747 SwitchInst::SwitchInst(const SwitchInst
&SI
)
3748 : Instruction(SI
.getType(), Instruction::Switch
, nullptr, 0) {
3749 init(SI
.getCondition(), SI
.getDefaultDest(), SI
.getNumOperands());
3750 setNumHungOffUseOperands(SI
.getNumOperands());
3751 Use
*OL
= getOperandList();
3752 const Use
*InOL
= SI
.getOperandList();
3753 for (unsigned i
= 2, E
= SI
.getNumOperands(); i
!= E
; i
+= 2) {
3755 OL
[i
+1] = InOL
[i
+1];
3757 SubclassOptionalData
= SI
.SubclassOptionalData
;
3760 /// addCase - Add an entry to the switch instruction...
3762 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
3763 unsigned NewCaseIdx
= getNumCases();
3764 unsigned OpNo
= getNumOperands();
3765 if (OpNo
+2 > ReservedSpace
)
3766 growOperands(); // Get more space!
3767 // Initialize some new operands.
3768 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
3769 setNumHungOffUseOperands(OpNo
+2);
3770 CaseHandle
Case(this, NewCaseIdx
);
3771 Case
.setValue(OnVal
);
3772 Case
.setSuccessor(Dest
);
3775 /// removeCase - This method removes the specified case and its successor
3776 /// from the switch instruction.
3777 SwitchInst::CaseIt
SwitchInst::removeCase(CaseIt I
) {
3778 unsigned idx
= I
->getCaseIndex();
3780 assert(2 + idx
*2 < getNumOperands() && "Case index out of range!!!");
3782 unsigned NumOps
= getNumOperands();
3783 Use
*OL
= getOperandList();
3785 // Overwrite this case with the end of the list.
3786 if (2 + (idx
+ 1) * 2 != NumOps
) {
3787 OL
[2 + idx
* 2] = OL
[NumOps
- 2];
3788 OL
[2 + idx
* 2 + 1] = OL
[NumOps
- 1];
3791 // Nuke the last value.
3792 OL
[NumOps
-2].set(nullptr);
3793 OL
[NumOps
-2+1].set(nullptr);
3794 setNumHungOffUseOperands(NumOps
-2);
3796 return CaseIt(this, idx
);
3799 /// growOperands - grow operands - This grows the operand list in response
3800 /// to a push_back style of operation. This grows the number of ops by 3 times.
3802 void SwitchInst::growOperands() {
3803 unsigned e
= getNumOperands();
3804 unsigned NumOps
= e
*3;
3806 ReservedSpace
= NumOps
;
3807 growHungoffUses(ReservedSpace
);
3810 //===----------------------------------------------------------------------===//
3811 // IndirectBrInst Implementation
3812 //===----------------------------------------------------------------------===//
3814 void IndirectBrInst::init(Value
*Address
, unsigned NumDests
) {
3815 assert(Address
&& Address
->getType()->isPointerTy() &&
3816 "Address of indirectbr must be a pointer");
3817 ReservedSpace
= 1+NumDests
;
3818 setNumHungOffUseOperands(1);
3819 allocHungoffUses(ReservedSpace
);
3825 /// growOperands - grow operands - This grows the operand list in response
3826 /// to a push_back style of operation. This grows the number of ops by 2 times.
3828 void IndirectBrInst::growOperands() {
3829 unsigned e
= getNumOperands();
3830 unsigned NumOps
= e
*2;
3832 ReservedSpace
= NumOps
;
3833 growHungoffUses(ReservedSpace
);
3836 IndirectBrInst::IndirectBrInst(Value
*Address
, unsigned NumCases
,
3837 Instruction
*InsertBefore
)
3838 : Instruction(Type::getVoidTy(Address
->getContext()),
3839 Instruction::IndirectBr
, nullptr, 0, InsertBefore
) {
3840 init(Address
, NumCases
);
3843 IndirectBrInst::IndirectBrInst(Value
*Address
, unsigned NumCases
,
3844 BasicBlock
*InsertAtEnd
)
3845 : Instruction(Type::getVoidTy(Address
->getContext()),
3846 Instruction::IndirectBr
, nullptr, 0, InsertAtEnd
) {
3847 init(Address
, NumCases
);
3850 IndirectBrInst::IndirectBrInst(const IndirectBrInst
&IBI
)
3851 : Instruction(Type::getVoidTy(IBI
.getContext()), Instruction::IndirectBr
,
3852 nullptr, IBI
.getNumOperands()) {
3853 allocHungoffUses(IBI
.getNumOperands());
3854 Use
*OL
= getOperandList();
3855 const Use
*InOL
= IBI
.getOperandList();
3856 for (unsigned i
= 0, E
= IBI
.getNumOperands(); i
!= E
; ++i
)
3858 SubclassOptionalData
= IBI
.SubclassOptionalData
;
3861 /// addDestination - Add a destination.
3863 void IndirectBrInst::addDestination(BasicBlock
*DestBB
) {
3864 unsigned OpNo
= getNumOperands();
3865 if (OpNo
+1 > ReservedSpace
)
3866 growOperands(); // Get more space!
3867 // Initialize some new operands.
3868 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
3869 setNumHungOffUseOperands(OpNo
+1);
3870 getOperandList()[OpNo
] = DestBB
;
3873 /// removeDestination - This method removes the specified successor from the
3874 /// indirectbr instruction.
3875 void IndirectBrInst::removeDestination(unsigned idx
) {
3876 assert(idx
< getNumOperands()-1 && "Successor index out of range!");
3878 unsigned NumOps
= getNumOperands();
3879 Use
*OL
= getOperandList();
3881 // Replace this value with the last one.
3882 OL
[idx
+1] = OL
[NumOps
-1];
3884 // Nuke the last value.
3885 OL
[NumOps
-1].set(nullptr);
3886 setNumHungOffUseOperands(NumOps
-1);
3889 //===----------------------------------------------------------------------===//
3890 // cloneImpl() implementations
3891 //===----------------------------------------------------------------------===//
3893 // Define these methods here so vtables don't get emitted into every translation
3894 // unit that uses these classes.
3896 GetElementPtrInst
*GetElementPtrInst::cloneImpl() const {
3897 return new (getNumOperands()) GetElementPtrInst(*this);
3900 UnaryOperator
*UnaryOperator::cloneImpl() const {
3901 return Create(getOpcode(), Op
<0>());
3904 BinaryOperator
*BinaryOperator::cloneImpl() const {
3905 return Create(getOpcode(), Op
<0>(), Op
<1>());
3908 FCmpInst
*FCmpInst::cloneImpl() const {
3909 return new FCmpInst(getPredicate(), Op
<0>(), Op
<1>());
3912 ICmpInst
*ICmpInst::cloneImpl() const {
3913 return new ICmpInst(getPredicate(), Op
<0>(), Op
<1>());
3916 ExtractValueInst
*ExtractValueInst::cloneImpl() const {
3917 return new ExtractValueInst(*this);
3920 InsertValueInst
*InsertValueInst::cloneImpl() const {
3921 return new InsertValueInst(*this);
3924 AllocaInst
*AllocaInst::cloneImpl() const {
3925 AllocaInst
*Result
= new AllocaInst(getAllocatedType(),
3926 getType()->getAddressSpace(),
3927 (Value
*)getOperand(0), getAlignment());
3928 Result
->setUsedWithInAlloca(isUsedWithInAlloca());
3929 Result
->setSwiftError(isSwiftError());
3933 LoadInst
*LoadInst::cloneImpl() const {
3934 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
3935 getAlignment(), getOrdering(), getSyncScopeID());
3938 StoreInst
*StoreInst::cloneImpl() const {
3939 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3940 getAlignment(), getOrdering(), getSyncScopeID());
3944 AtomicCmpXchgInst
*AtomicCmpXchgInst::cloneImpl() const {
3945 AtomicCmpXchgInst
*Result
=
3946 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3947 getSuccessOrdering(), getFailureOrdering(),
3949 Result
->setVolatile(isVolatile());
3950 Result
->setWeak(isWeak());
3954 AtomicRMWInst
*AtomicRMWInst::cloneImpl() const {
3955 AtomicRMWInst
*Result
=
3956 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3957 getOrdering(), getSyncScopeID());
3958 Result
->setVolatile(isVolatile());
3962 FenceInst
*FenceInst::cloneImpl() const {
3963 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3966 TruncInst
*TruncInst::cloneImpl() const {
3967 return new TruncInst(getOperand(0), getType());
3970 ZExtInst
*ZExtInst::cloneImpl() const {
3971 return new ZExtInst(getOperand(0), getType());
3974 SExtInst
*SExtInst::cloneImpl() const {
3975 return new SExtInst(getOperand(0), getType());
3978 FPTruncInst
*FPTruncInst::cloneImpl() const {
3979 return new FPTruncInst(getOperand(0), getType());
3982 FPExtInst
*FPExtInst::cloneImpl() const {
3983 return new FPExtInst(getOperand(0), getType());
3986 UIToFPInst
*UIToFPInst::cloneImpl() const {
3987 return new UIToFPInst(getOperand(0), getType());
3990 SIToFPInst
*SIToFPInst::cloneImpl() const {
3991 return new SIToFPInst(getOperand(0), getType());
3994 FPToUIInst
*FPToUIInst::cloneImpl() const {
3995 return new FPToUIInst(getOperand(0), getType());
3998 FPToSIInst
*FPToSIInst::cloneImpl() const {
3999 return new FPToSIInst(getOperand(0), getType());
4002 PtrToIntInst
*PtrToIntInst::cloneImpl() const {
4003 return new PtrToIntInst(getOperand(0), getType());
4006 IntToPtrInst
*IntToPtrInst::cloneImpl() const {
4007 return new IntToPtrInst(getOperand(0), getType());
4010 BitCastInst
*BitCastInst::cloneImpl() const {
4011 return new BitCastInst(getOperand(0), getType());
4014 AddrSpaceCastInst
*AddrSpaceCastInst::cloneImpl() const {
4015 return new AddrSpaceCastInst(getOperand(0), getType());
4018 CallInst
*CallInst::cloneImpl() const {
4019 if (hasOperandBundles()) {
4020 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4021 return new(getNumOperands(), DescriptorBytes
) CallInst(*this);
4023 return new(getNumOperands()) CallInst(*this);
4026 SelectInst
*SelectInst::cloneImpl() const {
4027 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4030 VAArgInst
*VAArgInst::cloneImpl() const {
4031 return new VAArgInst(getOperand(0), getType());
4034 ExtractElementInst
*ExtractElementInst::cloneImpl() const {
4035 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4038 InsertElementInst
*InsertElementInst::cloneImpl() const {
4039 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4042 ShuffleVectorInst
*ShuffleVectorInst::cloneImpl() const {
4043 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4046 PHINode
*PHINode::cloneImpl() const { return new PHINode(*this); }
4048 LandingPadInst
*LandingPadInst::cloneImpl() const {
4049 return new LandingPadInst(*this);
4052 ReturnInst
*ReturnInst::cloneImpl() const {
4053 return new(getNumOperands()) ReturnInst(*this);
4056 BranchInst
*BranchInst::cloneImpl() const {
4057 return new(getNumOperands()) BranchInst(*this);
4060 SwitchInst
*SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4062 IndirectBrInst
*IndirectBrInst::cloneImpl() const {
4063 return new IndirectBrInst(*this);
4066 InvokeInst
*InvokeInst::cloneImpl() const {
4067 if (hasOperandBundles()) {
4068 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4069 return new(getNumOperands(), DescriptorBytes
) InvokeInst(*this);
4071 return new(getNumOperands()) InvokeInst(*this);
4074 CallBrInst
*CallBrInst::cloneImpl() const {
4075 if (hasOperandBundles()) {
4076 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4077 return new (getNumOperands(), DescriptorBytes
) CallBrInst(*this);
4079 return new (getNumOperands()) CallBrInst(*this);
4082 ResumeInst
*ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4084 CleanupReturnInst
*CleanupReturnInst::cloneImpl() const {
4085 return new (getNumOperands()) CleanupReturnInst(*this);
4088 CatchReturnInst
*CatchReturnInst::cloneImpl() const {
4089 return new (getNumOperands()) CatchReturnInst(*this);
4092 CatchSwitchInst
*CatchSwitchInst::cloneImpl() const {
4093 return new CatchSwitchInst(*this);
4096 FuncletPadInst
*FuncletPadInst::cloneImpl() const {
4097 return new (getNumOperands()) FuncletPadInst(*this);
4100 UnreachableInst
*UnreachableInst::cloneImpl() const {
4101 LLVMContext
&Context
= getContext();
4102 return new UnreachableInst(Context
);