Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Linker / IRMover.cpp
blob70d5262fd618ef4eee7cfe2b17bcb0f2dc037319
1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/IR/DiagnosticPrinter.h"
17 #include "llvm/IR/GVMaterializer.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/TypeFinder.h"
20 #include "llvm/Support/Error.h"
21 #include "llvm/Transforms/Utils/Cloning.h"
22 #include <utility>
23 using namespace llvm;
25 //===----------------------------------------------------------------------===//
26 // TypeMap implementation.
27 //===----------------------------------------------------------------------===//
29 namespace {
30 class TypeMapTy : public ValueMapTypeRemapper {
31 /// This is a mapping from a source type to a destination type to use.
32 DenseMap<Type *, Type *> MappedTypes;
34 /// When checking to see if two subgraphs are isomorphic, we speculatively
35 /// add types to MappedTypes, but keep track of them here in case we need to
36 /// roll back.
37 SmallVector<Type *, 16> SpeculativeTypes;
39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
41 /// This is a list of non-opaque structs in the source module that are mapped
42 /// to an opaque struct in the destination module.
43 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
45 /// This is the set of opaque types in the destination modules who are
46 /// getting a body from the source module.
47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
49 public:
50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
51 : DstStructTypesSet(DstStructTypesSet) {}
53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
54 /// Indicate that the specified type in the destination module is conceptually
55 /// equivalent to the specified type in the source module.
56 void addTypeMapping(Type *DstTy, Type *SrcTy);
58 /// Produce a body for an opaque type in the dest module from a type
59 /// definition in the source module.
60 void linkDefinedTypeBodies();
62 /// Return the mapped type to use for the specified input type from the
63 /// source module.
64 Type *get(Type *SrcTy);
65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
69 FunctionType *get(FunctionType *T) {
70 return cast<FunctionType>(get((Type *)T));
73 private:
74 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
81 assert(SpeculativeTypes.empty());
82 assert(SpeculativeDstOpaqueTypes.empty());
84 // Check to see if these types are recursively isomorphic and establish a
85 // mapping between them if so.
86 if (!areTypesIsomorphic(DstTy, SrcTy)) {
87 // Oops, they aren't isomorphic. Just discard this request by rolling out
88 // any speculative mappings we've established.
89 for (Type *Ty : SpeculativeTypes)
90 MappedTypes.erase(Ty);
92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
93 SpeculativeDstOpaqueTypes.size());
94 for (StructType *Ty : SpeculativeDstOpaqueTypes)
95 DstResolvedOpaqueTypes.erase(Ty);
96 } else {
97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
98 // and all its descendants to lower amount of renaming in LLVM context
99 // Renaming occurs because we load all source modules to the same context
100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
101 // As a result we may get several different types in the destination
102 // module, which are in fact the same.
103 for (Type *Ty : SpeculativeTypes)
104 if (auto *STy = dyn_cast<StructType>(Ty))
105 if (STy->hasName())
106 STy->setName("");
108 SpeculativeTypes.clear();
109 SpeculativeDstOpaqueTypes.clear();
112 /// Recursively walk this pair of types, returning true if they are isomorphic,
113 /// false if they are not.
114 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
115 // Two types with differing kinds are clearly not isomorphic.
116 if (DstTy->getTypeID() != SrcTy->getTypeID())
117 return false;
119 // If we have an entry in the MappedTypes table, then we have our answer.
120 Type *&Entry = MappedTypes[SrcTy];
121 if (Entry)
122 return Entry == DstTy;
124 // Two identical types are clearly isomorphic. Remember this
125 // non-speculatively.
126 if (DstTy == SrcTy) {
127 Entry = DstTy;
128 return true;
131 // Okay, we have two types with identical kinds that we haven't seen before.
133 // If this is an opaque struct type, special case it.
134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
135 // Mapping an opaque type to any struct, just keep the dest struct.
136 if (SSTy->isOpaque()) {
137 Entry = DstTy;
138 SpeculativeTypes.push_back(SrcTy);
139 return true;
142 // Mapping a non-opaque source type to an opaque dest. If this is the first
143 // type that we're mapping onto this destination type then we succeed. Keep
144 // the dest, but fill it in later. If this is the second (different) type
145 // that we're trying to map onto the same opaque type then we fail.
146 if (cast<StructType>(DstTy)->isOpaque()) {
147 // We can only map one source type onto the opaque destination type.
148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
149 return false;
150 SrcDefinitionsToResolve.push_back(SSTy);
151 SpeculativeTypes.push_back(SrcTy);
152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
153 Entry = DstTy;
154 return true;
158 // If the number of subtypes disagree between the two types, then we fail.
159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
160 return false;
162 // Fail if any of the extra properties (e.g. array size) of the type disagree.
163 if (isa<IntegerType>(DstTy))
164 return false; // bitwidth disagrees.
165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
167 return false;
168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
170 return false;
171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
172 StructType *SSTy = cast<StructType>(SrcTy);
173 if (DSTy->isLiteral() != SSTy->isLiteral() ||
174 DSTy->isPacked() != SSTy->isPacked())
175 return false;
176 } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
177 if (DSeqTy->getNumElements() !=
178 cast<SequentialType>(SrcTy)->getNumElements())
179 return false;
182 // Otherwise, we speculate that these two types will line up and recursively
183 // check the subelements.
184 Entry = DstTy;
185 SpeculativeTypes.push_back(SrcTy);
187 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
188 if (!areTypesIsomorphic(DstTy->getContainedType(I),
189 SrcTy->getContainedType(I)))
190 return false;
192 // If everything seems to have lined up, then everything is great.
193 return true;
196 void TypeMapTy::linkDefinedTypeBodies() {
197 SmallVector<Type *, 16> Elements;
198 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
199 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
200 assert(DstSTy->isOpaque());
202 // Map the body of the source type over to a new body for the dest type.
203 Elements.resize(SrcSTy->getNumElements());
204 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
205 Elements[I] = get(SrcSTy->getElementType(I));
207 DstSTy->setBody(Elements, SrcSTy->isPacked());
208 DstStructTypesSet.switchToNonOpaque(DstSTy);
210 SrcDefinitionsToResolve.clear();
211 DstResolvedOpaqueTypes.clear();
214 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
215 ArrayRef<Type *> ETypes) {
216 DTy->setBody(ETypes, STy->isPacked());
218 // Steal STy's name.
219 if (STy->hasName()) {
220 SmallString<16> TmpName = STy->getName();
221 STy->setName("");
222 DTy->setName(TmpName);
225 DstStructTypesSet.addNonOpaque(DTy);
228 Type *TypeMapTy::get(Type *Ty) {
229 SmallPtrSet<StructType *, 8> Visited;
230 return get(Ty, Visited);
233 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
234 // If we already have an entry for this type, return it.
235 Type **Entry = &MappedTypes[Ty];
236 if (*Entry)
237 return *Entry;
239 // These are types that LLVM itself will unique.
240 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
242 if (!IsUniqued) {
243 StructType *STy = cast<StructType>(Ty);
244 // This is actually a type from the destination module, this can be reached
245 // when this type is loaded in another module, added to DstStructTypesSet,
246 // and then we reach the same type in another module where it has not been
247 // added to MappedTypes. (PR37684)
248 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
249 DstStructTypesSet.hasType(STy))
250 return *Entry = STy;
252 #ifndef NDEBUG
253 for (auto &Pair : MappedTypes) {
254 assert(!(Pair.first != Ty && Pair.second == Ty) &&
255 "mapping to a source type");
257 #endif
259 if (!Visited.insert(STy).second) {
260 StructType *DTy = StructType::create(Ty->getContext());
261 return *Entry = DTy;
265 // If this is not a recursive type, then just map all of the elements and
266 // then rebuild the type from inside out.
267 SmallVector<Type *, 4> ElementTypes;
269 // If there are no element types to map, then the type is itself. This is
270 // true for the anonymous {} struct, things like 'float', integers, etc.
271 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
272 return *Entry = Ty;
274 // Remap all of the elements, keeping track of whether any of them change.
275 bool AnyChange = false;
276 ElementTypes.resize(Ty->getNumContainedTypes());
277 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
278 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
279 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
282 // If we found our type while recursively processing stuff, just use it.
283 Entry = &MappedTypes[Ty];
284 if (*Entry) {
285 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
286 if (DTy->isOpaque()) {
287 auto *STy = cast<StructType>(Ty);
288 finishType(DTy, STy, ElementTypes);
291 return *Entry;
294 // If all of the element types mapped directly over and the type is not
295 // a named struct, then the type is usable as-is.
296 if (!AnyChange && IsUniqued)
297 return *Entry = Ty;
299 // Otherwise, rebuild a modified type.
300 switch (Ty->getTypeID()) {
301 default:
302 llvm_unreachable("unknown derived type to remap");
303 case Type::ArrayTyID:
304 return *Entry = ArrayType::get(ElementTypes[0],
305 cast<ArrayType>(Ty)->getNumElements());
306 case Type::VectorTyID:
307 return *Entry = VectorType::get(ElementTypes[0],
308 cast<VectorType>(Ty)->getNumElements());
309 case Type::PointerTyID:
310 return *Entry = PointerType::get(ElementTypes[0],
311 cast<PointerType>(Ty)->getAddressSpace());
312 case Type::FunctionTyID:
313 return *Entry = FunctionType::get(ElementTypes[0],
314 makeArrayRef(ElementTypes).slice(1),
315 cast<FunctionType>(Ty)->isVarArg());
316 case Type::StructTyID: {
317 auto *STy = cast<StructType>(Ty);
318 bool IsPacked = STy->isPacked();
319 if (IsUniqued)
320 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
322 // If the type is opaque, we can just use it directly.
323 if (STy->isOpaque()) {
324 DstStructTypesSet.addOpaque(STy);
325 return *Entry = Ty;
328 if (StructType *OldT =
329 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
330 STy->setName("");
331 return *Entry = OldT;
334 if (!AnyChange) {
335 DstStructTypesSet.addNonOpaque(STy);
336 return *Entry = Ty;
339 StructType *DTy = StructType::create(Ty->getContext());
340 finishType(DTy, STy, ElementTypes);
341 return *Entry = DTy;
346 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
347 const Twine &Msg)
348 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
349 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
351 //===----------------------------------------------------------------------===//
352 // IRLinker implementation.
353 //===----------------------------------------------------------------------===//
355 namespace {
356 class IRLinker;
358 /// Creates prototypes for functions that are lazily linked on the fly. This
359 /// speeds up linking for modules with many/ lazily linked functions of which
360 /// few get used.
361 class GlobalValueMaterializer final : public ValueMaterializer {
362 IRLinker &TheIRLinker;
364 public:
365 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
366 Value *materialize(Value *V) override;
369 class LocalValueMaterializer final : public ValueMaterializer {
370 IRLinker &TheIRLinker;
372 public:
373 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
374 Value *materialize(Value *V) override;
377 /// Type of the Metadata map in \a ValueToValueMapTy.
378 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
380 /// This is responsible for keeping track of the state used for moving data
381 /// from SrcM to DstM.
382 class IRLinker {
383 Module &DstM;
384 std::unique_ptr<Module> SrcM;
386 /// See IRMover::move().
387 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
389 TypeMapTy TypeMap;
390 GlobalValueMaterializer GValMaterializer;
391 LocalValueMaterializer LValMaterializer;
393 /// A metadata map that's shared between IRLinker instances.
394 MDMapT &SharedMDs;
396 /// Mapping of values from what they used to be in Src, to what they are now
397 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
398 /// due to the use of Value handles which the Linker doesn't actually need,
399 /// but this allows us to reuse the ValueMapper code.
400 ValueToValueMapTy ValueMap;
401 ValueToValueMapTy AliasValueMap;
403 DenseSet<GlobalValue *> ValuesToLink;
404 std::vector<GlobalValue *> Worklist;
406 void maybeAdd(GlobalValue *GV) {
407 if (ValuesToLink.insert(GV).second)
408 Worklist.push_back(GV);
411 /// Whether we are importing globals for ThinLTO, as opposed to linking the
412 /// source module. If this flag is set, it means that we can rely on some
413 /// other object file to define any non-GlobalValue entities defined by the
414 /// source module. This currently causes us to not link retained types in
415 /// debug info metadata and module inline asm.
416 bool IsPerformingImport;
418 /// Set to true when all global value body linking is complete (including
419 /// lazy linking). Used to prevent metadata linking from creating new
420 /// references.
421 bool DoneLinkingBodies = false;
423 /// The Error encountered during materialization. We use an Optional here to
424 /// avoid needing to manage an unconsumed success value.
425 Optional<Error> FoundError;
426 void setError(Error E) {
427 if (E)
428 FoundError = std::move(E);
431 /// Most of the errors produced by this module are inconvertible StringErrors.
432 /// This convenience function lets us return one of those more easily.
433 Error stringErr(const Twine &T) {
434 return make_error<StringError>(T, inconvertibleErrorCode());
437 /// Entry point for mapping values and alternate context for mapping aliases.
438 ValueMapper Mapper;
439 unsigned AliasMCID;
441 /// Handles cloning of a global values from the source module into
442 /// the destination module, including setting the attributes and visibility.
443 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
445 void emitWarning(const Twine &Message) {
446 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
449 /// Given a global in the source module, return the global in the
450 /// destination module that is being linked to, if any.
451 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
452 // If the source has no name it can't link. If it has local linkage,
453 // there is no name match-up going on.
454 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
455 return nullptr;
457 // Otherwise see if we have a match in the destination module's symtab.
458 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
459 if (!DGV)
460 return nullptr;
462 // If we found a global with the same name in the dest module, but it has
463 // internal linkage, we are really not doing any linkage here.
464 if (DGV->hasLocalLinkage())
465 return nullptr;
467 // Otherwise, we do in fact link to the destination global.
468 return DGV;
471 void computeTypeMapping();
473 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
474 const GlobalVariable *SrcGV);
476 /// Given the GlobaValue \p SGV in the source module, and the matching
477 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
478 /// into the destination module.
480 /// Note this code may call the client-provided \p AddLazyFor.
481 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
482 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
484 Error linkModuleFlagsMetadata();
486 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
487 Error linkFunctionBody(Function &Dst, Function &Src);
488 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
489 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
491 /// Functions that take care of cloning a specific global value type
492 /// into the destination module.
493 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
494 Function *copyFunctionProto(const Function *SF);
495 GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
497 /// When importing for ThinLTO, prevent importing of types listed on
498 /// the DICompileUnit that we don't need a copy of in the importing
499 /// module.
500 void prepareCompileUnitsForImport();
501 void linkNamedMDNodes();
503 public:
504 IRLinker(Module &DstM, MDMapT &SharedMDs,
505 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
506 ArrayRef<GlobalValue *> ValuesToLink,
507 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
508 bool IsPerformingImport)
509 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
510 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
511 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
512 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
513 &GValMaterializer),
514 AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
515 &LValMaterializer)) {
516 ValueMap.getMDMap() = std::move(SharedMDs);
517 for (GlobalValue *GV : ValuesToLink)
518 maybeAdd(GV);
519 if (IsPerformingImport)
520 prepareCompileUnitsForImport();
522 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
524 Error run();
525 Value *materialize(Value *V, bool ForAlias);
529 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
530 /// table. This is good for all clients except for us. Go through the trouble
531 /// to force this back.
532 static void forceRenaming(GlobalValue *GV, StringRef Name) {
533 // If the global doesn't force its name or if it already has the right name,
534 // there is nothing for us to do.
535 if (GV->hasLocalLinkage() || GV->getName() == Name)
536 return;
538 Module *M = GV->getParent();
540 // If there is a conflict, rename the conflict.
541 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
542 GV->takeName(ConflictGV);
543 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
544 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
545 } else {
546 GV->setName(Name); // Force the name back
550 Value *GlobalValueMaterializer::materialize(Value *SGV) {
551 return TheIRLinker.materialize(SGV, false);
554 Value *LocalValueMaterializer::materialize(Value *SGV) {
555 return TheIRLinker.materialize(SGV, true);
558 Value *IRLinker::materialize(Value *V, bool ForAlias) {
559 auto *SGV = dyn_cast<GlobalValue>(V);
560 if (!SGV)
561 return nullptr;
563 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
564 if (!NewProto) {
565 setError(NewProto.takeError());
566 return nullptr;
568 if (!*NewProto)
569 return nullptr;
571 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
572 if (!New)
573 return *NewProto;
575 // If we already created the body, just return.
576 if (auto *F = dyn_cast<Function>(New)) {
577 if (!F->isDeclaration())
578 return New;
579 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
580 if (V->hasInitializer() || V->hasAppendingLinkage())
581 return New;
582 } else {
583 auto *A = cast<GlobalAlias>(New);
584 if (A->getAliasee())
585 return New;
588 // When linking a global for an alias, it will always be linked. However we
589 // need to check if it was not already scheduled to satisfy a reference from a
590 // regular global value initializer. We know if it has been schedule if the
591 // "New" GlobalValue that is mapped here for the alias is the same as the one
592 // already mapped. If there is an entry in the ValueMap but the value is
593 // different, it means that the value already had a definition in the
594 // destination module (linkonce for instance), but we need a new definition
595 // for the alias ("New" will be different.
596 if (ForAlias && ValueMap.lookup(SGV) == New)
597 return New;
599 if (ForAlias || shouldLink(New, *SGV))
600 setError(linkGlobalValueBody(*New, *SGV));
602 return New;
605 /// Loop through the global variables in the src module and merge them into the
606 /// dest module.
607 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
608 // No linking to be performed or linking from the source: simply create an
609 // identical version of the symbol over in the dest module... the
610 // initializer will be filled in later by LinkGlobalInits.
611 GlobalVariable *NewDGV =
612 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
613 SGVar->isConstant(), GlobalValue::ExternalLinkage,
614 /*init*/ nullptr, SGVar->getName(),
615 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
616 SGVar->getType()->getAddressSpace());
617 NewDGV->setAlignment(SGVar->getAlignment());
618 NewDGV->copyAttributesFrom(SGVar);
619 return NewDGV;
622 /// Link the function in the source module into the destination module if
623 /// needed, setting up mapping information.
624 Function *IRLinker::copyFunctionProto(const Function *SF) {
625 // If there is no linkage to be performed or we are linking from the source,
626 // bring SF over.
627 auto *F =
628 Function::Create(TypeMap.get(SF->getFunctionType()),
629 GlobalValue::ExternalLinkage, SF->getName(), &DstM);
630 F->copyAttributesFrom(SF);
631 return F;
634 /// Set up prototypes for any aliases that come over from the source module.
635 GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
636 // If there is no linkage to be performed or we're linking from the source,
637 // bring over SGA.
638 auto *Ty = TypeMap.get(SGA->getValueType());
639 auto *GA =
640 GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
641 GlobalValue::ExternalLinkage, SGA->getName(), &DstM);
642 GA->copyAttributesFrom(SGA);
643 return GA;
646 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
647 bool ForDefinition) {
648 GlobalValue *NewGV;
649 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
650 NewGV = copyGlobalVariableProto(SGVar);
651 } else if (auto *SF = dyn_cast<Function>(SGV)) {
652 NewGV = copyFunctionProto(SF);
653 } else {
654 if (ForDefinition)
655 NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
656 else if (SGV->getValueType()->isFunctionTy())
657 NewGV =
658 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
659 GlobalValue::ExternalLinkage, SGV->getName(), &DstM);
660 else
661 NewGV = new GlobalVariable(
662 DstM, TypeMap.get(SGV->getValueType()),
663 /*isConstant*/ false, GlobalValue::ExternalLinkage,
664 /*init*/ nullptr, SGV->getName(),
665 /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
666 SGV->getType()->getAddressSpace());
669 if (ForDefinition)
670 NewGV->setLinkage(SGV->getLinkage());
671 else if (SGV->hasExternalWeakLinkage())
672 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
674 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
675 // Metadata for global variables and function declarations is copied eagerly.
676 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
677 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
680 // Remove these copied constants in case this stays a declaration, since
681 // they point to the source module. If the def is linked the values will
682 // be mapped in during linkFunctionBody.
683 if (auto *NewF = dyn_cast<Function>(NewGV)) {
684 NewF->setPersonalityFn(nullptr);
685 NewF->setPrefixData(nullptr);
686 NewF->setPrologueData(nullptr);
689 return NewGV;
692 static StringRef getTypeNamePrefix(StringRef Name) {
693 size_t DotPos = Name.rfind('.');
694 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
695 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
696 ? Name
697 : Name.substr(0, DotPos);
700 /// Loop over all of the linked values to compute type mappings. For example,
701 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
702 /// types 'Foo' but one got renamed when the module was loaded into the same
703 /// LLVMContext.
704 void IRLinker::computeTypeMapping() {
705 for (GlobalValue &SGV : SrcM->globals()) {
706 GlobalValue *DGV = getLinkedToGlobal(&SGV);
707 if (!DGV)
708 continue;
710 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
711 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
712 continue;
715 // Unify the element type of appending arrays.
716 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
717 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
718 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
721 for (GlobalValue &SGV : *SrcM)
722 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
723 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
725 for (GlobalValue &SGV : SrcM->aliases())
726 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
727 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
729 // Incorporate types by name, scanning all the types in the source module.
730 // At this point, the destination module may have a type "%foo = { i32 }" for
731 // example. When the source module got loaded into the same LLVMContext, if
732 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
733 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
734 for (StructType *ST : Types) {
735 if (!ST->hasName())
736 continue;
738 if (TypeMap.DstStructTypesSet.hasType(ST)) {
739 // This is actually a type from the destination module.
740 // getIdentifiedStructTypes() can have found it by walking debug info
741 // metadata nodes, some of which get linked by name when ODR Type Uniquing
742 // is enabled on the Context, from the source to the destination module.
743 continue;
746 auto STTypePrefix = getTypeNamePrefix(ST->getName());
747 if (STTypePrefix.size()== ST->getName().size())
748 continue;
750 // Check to see if the destination module has a struct with the prefix name.
751 StructType *DST = DstM.getTypeByName(STTypePrefix);
752 if (!DST)
753 continue;
755 // Don't use it if this actually came from the source module. They're in
756 // the same LLVMContext after all. Also don't use it unless the type is
757 // actually used in the destination module. This can happen in situations
758 // like this:
760 // Module A Module B
761 // -------- --------
762 // %Z = type { %A } %B = type { %C.1 }
763 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
764 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
765 // %C = type { i8* } %B.3 = type { %C.1 }
767 // When we link Module B with Module A, the '%B' in Module B is
768 // used. However, that would then use '%C.1'. But when we process '%C.1',
769 // we prefer to take the '%C' version. So we are then left with both
770 // '%C.1' and '%C' being used for the same types. This leads to some
771 // variables using one type and some using the other.
772 if (TypeMap.DstStructTypesSet.hasType(DST))
773 TypeMap.addTypeMapping(DST, ST);
776 // Now that we have discovered all of the type equivalences, get a body for
777 // any 'opaque' types in the dest module that are now resolved.
778 TypeMap.linkDefinedTypeBodies();
781 static void getArrayElements(const Constant *C,
782 SmallVectorImpl<Constant *> &Dest) {
783 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
785 for (unsigned i = 0; i != NumElements; ++i)
786 Dest.push_back(C->getAggregateElement(i));
789 /// If there were any appending global variables, link them together now.
790 Expected<Constant *>
791 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
792 const GlobalVariable *SrcGV) {
793 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
794 ->getElementType();
796 // FIXME: This upgrade is done during linking to support the C API. Once the
797 // old form is deprecated, we should move this upgrade to
798 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
799 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
800 StringRef Name = SrcGV->getName();
801 bool IsNewStructor = false;
802 bool IsOldStructor = false;
803 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
804 if (cast<StructType>(EltTy)->getNumElements() == 3)
805 IsNewStructor = true;
806 else
807 IsOldStructor = true;
810 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
811 if (IsOldStructor) {
812 auto &ST = *cast<StructType>(EltTy);
813 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
814 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
817 uint64_t DstNumElements = 0;
818 if (DstGV) {
819 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
820 DstNumElements = DstTy->getNumElements();
822 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
823 return stringErr(
824 "Linking globals named '" + SrcGV->getName() +
825 "': can only link appending global with another appending "
826 "global!");
828 // Check to see that they two arrays agree on type.
829 if (EltTy != DstTy->getElementType())
830 return stringErr("Appending variables with different element types!");
831 if (DstGV->isConstant() != SrcGV->isConstant())
832 return stringErr("Appending variables linked with different const'ness!");
834 if (DstGV->getAlignment() != SrcGV->getAlignment())
835 return stringErr(
836 "Appending variables with different alignment need to be linked!");
838 if (DstGV->getVisibility() != SrcGV->getVisibility())
839 return stringErr(
840 "Appending variables with different visibility need to be linked!");
842 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
843 return stringErr(
844 "Appending variables with different unnamed_addr need to be linked!");
846 if (DstGV->getSection() != SrcGV->getSection())
847 return stringErr(
848 "Appending variables with different section name need to be linked!");
851 SmallVector<Constant *, 16> SrcElements;
852 getArrayElements(SrcGV->getInitializer(), SrcElements);
854 if (IsNewStructor) {
855 auto It = remove_if(SrcElements, [this](Constant *E) {
856 auto *Key =
857 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
858 if (!Key)
859 return false;
860 GlobalValue *DGV = getLinkedToGlobal(Key);
861 return !shouldLink(DGV, *Key);
863 SrcElements.erase(It, SrcElements.end());
865 uint64_t NewSize = DstNumElements + SrcElements.size();
866 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
868 // Create the new global variable.
869 GlobalVariable *NG = new GlobalVariable(
870 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
871 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
872 SrcGV->getType()->getAddressSpace());
874 NG->copyAttributesFrom(SrcGV);
875 forceRenaming(NG, SrcGV->getName());
877 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
879 Mapper.scheduleMapAppendingVariable(*NG,
880 DstGV ? DstGV->getInitializer() : nullptr,
881 IsOldStructor, SrcElements);
883 // Replace any uses of the two global variables with uses of the new
884 // global.
885 if (DstGV) {
886 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
887 DstGV->eraseFromParent();
890 return Ret;
893 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
894 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
895 return true;
897 if (DGV && !DGV->isDeclarationForLinker())
898 return false;
900 if (SGV.isDeclaration() || DoneLinkingBodies)
901 return false;
903 // Callback to the client to give a chance to lazily add the Global to the
904 // list of value to link.
905 bool LazilyAdded = false;
906 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
907 maybeAdd(&GV);
908 LazilyAdded = true;
910 return LazilyAdded;
913 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
914 bool ForAlias) {
915 GlobalValue *DGV = getLinkedToGlobal(SGV);
917 bool ShouldLink = shouldLink(DGV, *SGV);
919 // just missing from map
920 if (ShouldLink) {
921 auto I = ValueMap.find(SGV);
922 if (I != ValueMap.end())
923 return cast<Constant>(I->second);
925 I = AliasValueMap.find(SGV);
926 if (I != AliasValueMap.end())
927 return cast<Constant>(I->second);
930 if (!ShouldLink && ForAlias)
931 DGV = nullptr;
933 // Handle the ultra special appending linkage case first.
934 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
935 if (SGV->hasAppendingLinkage())
936 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
937 cast<GlobalVariable>(SGV));
939 GlobalValue *NewGV;
940 if (DGV && !ShouldLink) {
941 NewGV = DGV;
942 } else {
943 // If we are done linking global value bodies (i.e. we are performing
944 // metadata linking), don't link in the global value due to this
945 // reference, simply map it to null.
946 if (DoneLinkingBodies)
947 return nullptr;
949 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForAlias);
950 if (ShouldLink || !ForAlias)
951 forceRenaming(NewGV, SGV->getName());
954 // Overloaded intrinsics have overloaded types names as part of their
955 // names. If we renamed overloaded types we should rename the intrinsic
956 // as well.
957 if (Function *F = dyn_cast<Function>(NewGV))
958 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
959 NewGV = Remangled.getValue();
961 if (ShouldLink || ForAlias) {
962 if (const Comdat *SC = SGV->getComdat()) {
963 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
964 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
965 DC->setSelectionKind(SC->getSelectionKind());
966 GO->setComdat(DC);
971 if (!ShouldLink && ForAlias)
972 NewGV->setLinkage(GlobalValue::InternalLinkage);
974 Constant *C = NewGV;
975 // Only create a bitcast if necessary. In particular, with
976 // DebugTypeODRUniquing we may reach metadata in the destination module
977 // containing a GV from the source module, in which case SGV will be
978 // the same as DGV and NewGV, and TypeMap.get() will assert since it
979 // assumes it is being invoked on a type in the source module.
980 if (DGV && NewGV != SGV) {
981 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
982 NewGV, TypeMap.get(SGV->getType()));
985 if (DGV && NewGV != DGV) {
986 DGV->replaceAllUsesWith(
987 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()));
988 DGV->eraseFromParent();
991 return C;
994 /// Update the initializers in the Dest module now that all globals that may be
995 /// referenced are in Dest.
996 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
997 // Figure out what the initializer looks like in the dest module.
998 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1001 /// Copy the source function over into the dest function and fix up references
1002 /// to values. At this point we know that Dest is an external function, and
1003 /// that Src is not.
1004 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1005 assert(Dst.isDeclaration() && !Src.isDeclaration());
1007 // Materialize if needed.
1008 if (Error Err = Src.materialize())
1009 return Err;
1011 // Link in the operands without remapping.
1012 if (Src.hasPrefixData())
1013 Dst.setPrefixData(Src.getPrefixData());
1014 if (Src.hasPrologueData())
1015 Dst.setPrologueData(Src.getPrologueData());
1016 if (Src.hasPersonalityFn())
1017 Dst.setPersonalityFn(Src.getPersonalityFn());
1019 // Copy over the metadata attachments without remapping.
1020 Dst.copyMetadata(&Src, 0);
1022 // Steal arguments and splice the body of Src into Dst.
1023 Dst.stealArgumentListFrom(Src);
1024 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1026 // Everything has been moved over. Remap it.
1027 Mapper.scheduleRemapFunction(Dst);
1028 return Error::success();
1031 void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
1032 Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
1035 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1036 if (auto *F = dyn_cast<Function>(&Src))
1037 return linkFunctionBody(cast<Function>(Dst), *F);
1038 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1039 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1040 return Error::success();
1042 linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
1043 return Error::success();
1046 void IRLinker::prepareCompileUnitsForImport() {
1047 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1048 if (!SrcCompileUnits)
1049 return;
1050 // When importing for ThinLTO, prevent importing of types listed on
1051 // the DICompileUnit that we don't need a copy of in the importing
1052 // module. They will be emitted by the originating module.
1053 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1054 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1055 assert(CU && "Expected valid compile unit");
1056 // Enums, macros, and retained types don't need to be listed on the
1057 // imported DICompileUnit. This means they will only be imported
1058 // if reached from the mapped IR. Do this by setting their value map
1059 // entries to nullptr, which will automatically prevent their importing
1060 // when reached from the DICompileUnit during metadata mapping.
1061 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
1062 ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
1063 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
1064 // The original definition (or at least its debug info - if the variable is
1065 // internalized an optimized away) will remain in the source module, so
1066 // there's no need to import them.
1067 // If LLVM ever does more advanced optimizations on global variables
1068 // (removing/localizing write operations, for instance) that can track
1069 // through debug info, this decision may need to be revisited - but do so
1070 // with care when it comes to debug info size. Emitting small CUs containing
1071 // only a few imported entities into every destination module may be very
1072 // size inefficient.
1073 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
1075 // Imported entities only need to be mapped in if they have local
1076 // scope, as those might correspond to an imported entity inside a
1077 // function being imported (any locally scoped imported entities that
1078 // don't end up referenced by an imported function will not be emitted
1079 // into the object). Imported entities not in a local scope
1080 // (e.g. on the namespace) only need to be emitted by the originating
1081 // module. Create a list of the locally scoped imported entities, and
1082 // replace the source CUs imported entity list with the new list, so
1083 // only those are mapped in.
1084 // FIXME: Locally-scoped imported entities could be moved to the
1085 // functions they are local to instead of listing them on the CU, and
1086 // we would naturally only link in those needed by function importing.
1087 SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1088 bool ReplaceImportedEntities = false;
1089 for (auto *IE : CU->getImportedEntities()) {
1090 DIScope *Scope = IE->getScope();
1091 assert(Scope && "Invalid Scope encoding!");
1092 if (isa<DILocalScope>(Scope))
1093 AllImportedModules.emplace_back(IE);
1094 else
1095 ReplaceImportedEntities = true;
1097 if (ReplaceImportedEntities) {
1098 if (!AllImportedModules.empty())
1099 CU->replaceImportedEntities(MDTuple::get(
1100 CU->getContext(),
1101 SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1102 AllImportedModules.end())));
1103 else
1104 // If there were no local scope imported entities, we can map
1105 // the whole list to nullptr.
1106 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
1111 /// Insert all of the named MDNodes in Src into the Dest module.
1112 void IRLinker::linkNamedMDNodes() {
1113 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1114 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1115 // Don't link module flags here. Do them separately.
1116 if (&NMD == SrcModFlags)
1117 continue;
1118 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1119 // Add Src elements into Dest node.
1120 for (const MDNode *Op : NMD.operands())
1121 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1125 /// Merge the linker flags in Src into the Dest module.
1126 Error IRLinker::linkModuleFlagsMetadata() {
1127 // If the source module has no module flags, we are done.
1128 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1129 if (!SrcModFlags)
1130 return Error::success();
1132 // If the destination module doesn't have module flags yet, then just copy
1133 // over the source module's flags.
1134 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1135 if (DstModFlags->getNumOperands() == 0) {
1136 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1137 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1139 return Error::success();
1142 // First build a map of the existing module flags and requirements.
1143 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1144 SmallSetVector<MDNode *, 16> Requirements;
1145 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1146 MDNode *Op = DstModFlags->getOperand(I);
1147 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1148 MDString *ID = cast<MDString>(Op->getOperand(1));
1150 if (Behavior->getZExtValue() == Module::Require) {
1151 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1152 } else {
1153 Flags[ID] = std::make_pair(Op, I);
1157 // Merge in the flags from the source module, and also collect its set of
1158 // requirements.
1159 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1160 MDNode *SrcOp = SrcModFlags->getOperand(I);
1161 ConstantInt *SrcBehavior =
1162 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1163 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1164 MDNode *DstOp;
1165 unsigned DstIndex;
1166 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1167 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1169 // If this is a requirement, add it and continue.
1170 if (SrcBehaviorValue == Module::Require) {
1171 // If the destination module does not already have this requirement, add
1172 // it.
1173 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1174 DstModFlags->addOperand(SrcOp);
1176 continue;
1179 // If there is no existing flag with this ID, just add it.
1180 if (!DstOp) {
1181 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1182 DstModFlags->addOperand(SrcOp);
1183 continue;
1186 // Otherwise, perform a merge.
1187 ConstantInt *DstBehavior =
1188 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1189 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1191 auto overrideDstValue = [&]() {
1192 DstModFlags->setOperand(DstIndex, SrcOp);
1193 Flags[ID].first = SrcOp;
1196 // If either flag has override behavior, handle it first.
1197 if (DstBehaviorValue == Module::Override) {
1198 // Diagnose inconsistent flags which both have override behavior.
1199 if (SrcBehaviorValue == Module::Override &&
1200 SrcOp->getOperand(2) != DstOp->getOperand(2))
1201 return stringErr("linking module flags '" + ID->getString() +
1202 "': IDs have conflicting override values");
1203 continue;
1204 } else if (SrcBehaviorValue == Module::Override) {
1205 // Update the destination flag to that of the source.
1206 overrideDstValue();
1207 continue;
1210 // Diagnose inconsistent merge behavior types.
1211 if (SrcBehaviorValue != DstBehaviorValue)
1212 return stringErr("linking module flags '" + ID->getString() +
1213 "': IDs have conflicting behaviors");
1215 auto replaceDstValue = [&](MDNode *New) {
1216 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1217 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1218 DstModFlags->setOperand(DstIndex, Flag);
1219 Flags[ID].first = Flag;
1222 // Perform the merge for standard behavior types.
1223 switch (SrcBehaviorValue) {
1224 case Module::Require:
1225 case Module::Override:
1226 llvm_unreachable("not possible");
1227 case Module::Error: {
1228 // Emit an error if the values differ.
1229 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1230 return stringErr("linking module flags '" + ID->getString() +
1231 "': IDs have conflicting values");
1232 continue;
1234 case Module::Warning: {
1235 // Emit a warning if the values differ.
1236 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1237 std::string str;
1238 raw_string_ostream(str)
1239 << "linking module flags '" << ID->getString()
1240 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1241 << "' from " << SrcM->getModuleIdentifier() << " with '"
1242 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1243 << ')';
1244 emitWarning(str);
1246 continue;
1248 case Module::Max: {
1249 ConstantInt *DstValue =
1250 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1251 ConstantInt *SrcValue =
1252 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1253 if (SrcValue->getZExtValue() > DstValue->getZExtValue())
1254 overrideDstValue();
1255 break;
1257 case Module::Append: {
1258 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1259 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1260 SmallVector<Metadata *, 8> MDs;
1261 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1262 MDs.append(DstValue->op_begin(), DstValue->op_end());
1263 MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1265 replaceDstValue(MDNode::get(DstM.getContext(), MDs));
1266 break;
1268 case Module::AppendUnique: {
1269 SmallSetVector<Metadata *, 16> Elts;
1270 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1271 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1272 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1273 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1275 replaceDstValue(MDNode::get(DstM.getContext(),
1276 makeArrayRef(Elts.begin(), Elts.end())));
1277 break;
1282 // Check all of the requirements.
1283 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1284 MDNode *Requirement = Requirements[I];
1285 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1286 Metadata *ReqValue = Requirement->getOperand(1);
1288 MDNode *Op = Flags[Flag].first;
1289 if (!Op || Op->getOperand(2) != ReqValue)
1290 return stringErr("linking module flags '" + Flag->getString() +
1291 "': does not have the required value");
1293 return Error::success();
1296 /// Return InlineAsm adjusted with target-specific directives if required.
1297 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1298 /// to support mixing module-level inline assembly from ARM and Thumb modules.
1299 static std::string adjustInlineAsm(const std::string &InlineAsm,
1300 const Triple &Triple) {
1301 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1302 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1303 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1304 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1305 return InlineAsm;
1308 Error IRLinker::run() {
1309 // Ensure metadata materialized before value mapping.
1310 if (SrcM->getMaterializer())
1311 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1312 return Err;
1314 // Inherit the target data from the source module if the destination module
1315 // doesn't have one already.
1316 if (DstM.getDataLayout().isDefault())
1317 DstM.setDataLayout(SrcM->getDataLayout());
1319 if (SrcM->getDataLayout() != DstM.getDataLayout()) {
1320 emitWarning("Linking two modules of different data layouts: '" +
1321 SrcM->getModuleIdentifier() + "' is '" +
1322 SrcM->getDataLayoutStr() + "' whereas '" +
1323 DstM.getModuleIdentifier() + "' is '" +
1324 DstM.getDataLayoutStr() + "'\n");
1327 // Copy the target triple from the source to dest if the dest's is empty.
1328 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1329 DstM.setTargetTriple(SrcM->getTargetTriple());
1331 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1333 if (!SrcM->getTargetTriple().empty()&&
1334 !SrcTriple.isCompatibleWith(DstTriple))
1335 emitWarning("Linking two modules of different target triples: " +
1336 SrcM->getModuleIdentifier() + "' is '" +
1337 SrcM->getTargetTriple() + "' whereas '" +
1338 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1339 "'\n");
1341 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1343 // Append the module inline asm string.
1344 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1345 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
1346 SrcTriple);
1347 if (DstM.getModuleInlineAsm().empty())
1348 DstM.setModuleInlineAsm(SrcModuleInlineAsm);
1349 else
1350 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
1351 SrcModuleInlineAsm);
1354 // Loop over all of the linked values to compute type mappings.
1355 computeTypeMapping();
1357 std::reverse(Worklist.begin(), Worklist.end());
1358 while (!Worklist.empty()) {
1359 GlobalValue *GV = Worklist.back();
1360 Worklist.pop_back();
1362 // Already mapped.
1363 if (ValueMap.find(GV) != ValueMap.end() ||
1364 AliasValueMap.find(GV) != AliasValueMap.end())
1365 continue;
1367 assert(!GV->isDeclaration());
1368 Mapper.mapValue(*GV);
1369 if (FoundError)
1370 return std::move(*FoundError);
1373 // Note that we are done linking global value bodies. This prevents
1374 // metadata linking from creating new references.
1375 DoneLinkingBodies = true;
1376 Mapper.addFlags(RF_NullMapMissingGlobalValues);
1378 // Remap all of the named MDNodes in Src into the DstM module. We do this
1379 // after linking GlobalValues so that MDNodes that reference GlobalValues
1380 // are properly remapped.
1381 linkNamedMDNodes();
1383 // Merge the module flags into the DstM module.
1384 return linkModuleFlagsMetadata();
1387 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1388 : ETypes(E), IsPacked(P) {}
1390 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1391 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1393 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1394 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1397 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1398 return !this->operator==(That);
1401 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1402 return DenseMapInfo<StructType *>::getEmptyKey();
1405 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1406 return DenseMapInfo<StructType *>::getTombstoneKey();
1409 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1410 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1411 Key.IsPacked);
1414 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1415 return getHashValue(KeyTy(ST));
1418 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1419 const StructType *RHS) {
1420 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1421 return false;
1422 return LHS == KeyTy(RHS);
1425 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1426 const StructType *RHS) {
1427 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1428 return LHS == RHS;
1429 return KeyTy(LHS) == KeyTy(RHS);
1432 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1433 assert(!Ty->isOpaque());
1434 NonOpaqueStructTypes.insert(Ty);
1437 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1438 assert(!Ty->isOpaque());
1439 NonOpaqueStructTypes.insert(Ty);
1440 bool Removed = OpaqueStructTypes.erase(Ty);
1441 (void)Removed;
1442 assert(Removed);
1445 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1446 assert(Ty->isOpaque());
1447 OpaqueStructTypes.insert(Ty);
1450 StructType *
1451 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1452 bool IsPacked) {
1453 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1454 auto I = NonOpaqueStructTypes.find_as(Key);
1455 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1458 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1459 if (Ty->isOpaque())
1460 return OpaqueStructTypes.count(Ty);
1461 auto I = NonOpaqueStructTypes.find(Ty);
1462 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1465 IRMover::IRMover(Module &M) : Composite(M) {
1466 TypeFinder StructTypes;
1467 StructTypes.run(M, /* OnlyNamed */ false);
1468 for (StructType *Ty : StructTypes) {
1469 if (Ty->isOpaque())
1470 IdentifiedStructTypes.addOpaque(Ty);
1471 else
1472 IdentifiedStructTypes.addNonOpaque(Ty);
1474 // Self-map metadatas in the destination module. This is needed when
1475 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1476 // destination module may be reached from the source module.
1477 for (auto *MD : StructTypes.getVisitedMetadata()) {
1478 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1482 Error IRMover::move(
1483 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
1484 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
1485 bool IsPerformingImport) {
1486 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1487 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1488 IsPerformingImport);
1489 Error E = TheIRLinker.run();
1490 Composite.dropTriviallyDeadConstantArrays();
1491 return E;