Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Object / IRSymtab.cpp
blobe80eaf1db328fd31f74e8672532d405d9c5e7a2a
1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Object/IRSymtab.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Comdat.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalObject.h"
22 #include "llvm/IR/Mangler.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Bitcode/BitcodeReader.h"
26 #include "llvm/MC/StringTableBuilder.h"
27 #include "llvm/Object/IRObjectFile.h"
28 #include "llvm/Object/ModuleSymbolTable.h"
29 #include "llvm/Object/SymbolicFile.h"
30 #include "llvm/Support/Allocator.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/StringSaver.h"
34 #include "llvm/Support/VCSRevision.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cassert>
37 #include <string>
38 #include <utility>
39 #include <vector>
41 using namespace llvm;
42 using namespace irsymtab;
44 static const char *LibcallRoutineNames[] = {
45 #define HANDLE_LIBCALL(code, name) name,
46 #include "llvm/IR/RuntimeLibcalls.def"
47 #undef HANDLE_LIBCALL
50 namespace {
52 const char *getExpectedProducerName() {
53 static char DefaultName[] = LLVM_VERSION_STRING
54 #ifdef LLVM_REVISION
55 " " LLVM_REVISION
56 #endif
58 // Allows for testing of the irsymtab writer and upgrade mechanism. This
59 // environment variable should not be set by users.
60 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
61 return OverrideName;
62 return DefaultName;
65 const char *kExpectedProducerName = getExpectedProducerName();
67 /// Stores the temporary state that is required to build an IR symbol table.
68 struct Builder {
69 SmallVector<char, 0> &Symtab;
70 StringTableBuilder &StrtabBuilder;
71 StringSaver Saver;
73 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
74 // The StringTableBuilder does not create a copy of any strings added to it,
75 // so this provides somewhere to store any strings that we create.
76 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
77 BumpPtrAllocator &Alloc)
78 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
80 DenseMap<const Comdat *, int> ComdatMap;
81 Mangler Mang;
82 Triple TT;
84 std::vector<storage::Comdat> Comdats;
85 std::vector<storage::Module> Mods;
86 std::vector<storage::Symbol> Syms;
87 std::vector<storage::Uncommon> Uncommons;
89 std::string COFFLinkerOpts;
90 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
92 void setStr(storage::Str &S, StringRef Value) {
93 S.Offset = StrtabBuilder.add(Value);
94 S.Size = Value.size();
97 template <typename T>
98 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
99 R.Offset = Symtab.size();
100 R.Size = Objs.size();
101 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
102 reinterpret_cast<const char *>(Objs.data() + Objs.size()));
105 Expected<int> getComdatIndex(const Comdat *C, const Module *M);
107 Error addModule(Module *M);
108 Error addSymbol(const ModuleSymbolTable &Msymtab,
109 const SmallPtrSet<GlobalValue *, 8> &Used,
110 ModuleSymbolTable::Symbol Sym);
112 Error build(ArrayRef<Module *> Mods);
115 Error Builder::addModule(Module *M) {
116 if (M->getDataLayoutStr().empty())
117 return make_error<StringError>("input module has no datalayout",
118 inconvertibleErrorCode());
120 SmallPtrSet<GlobalValue *, 8> Used;
121 collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false);
123 ModuleSymbolTable Msymtab;
124 Msymtab.addModule(M);
126 storage::Module Mod;
127 Mod.Begin = Syms.size();
128 Mod.End = Syms.size() + Msymtab.symbols().size();
129 Mod.UncBegin = Uncommons.size();
130 Mods.push_back(Mod);
132 if (TT.isOSBinFormatCOFF()) {
133 if (auto E = M->materializeMetadata())
134 return E;
135 if (NamedMDNode *LinkerOptions =
136 M->getNamedMetadata("llvm.linker.options")) {
137 for (MDNode *MDOptions : LinkerOptions->operands())
138 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
139 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
143 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
144 if (Error Err = addSymbol(Msymtab, Used, Msym))
145 return Err;
147 return Error::success();
150 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
151 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
152 if (P.second) {
153 std::string Name;
154 if (TT.isOSBinFormatCOFF()) {
155 const GlobalValue *GV = M->getNamedValue(C->getName());
156 if (!GV)
157 return make_error<StringError>("Could not find leader",
158 inconvertibleErrorCode());
159 // Internal leaders do not affect symbol resolution, therefore they do not
160 // appear in the symbol table.
161 if (GV->hasLocalLinkage()) {
162 P.first->second = -1;
163 return -1;
165 llvm::raw_string_ostream OS(Name);
166 Mang.getNameWithPrefix(OS, GV, false);
167 } else {
168 Name = C->getName();
171 storage::Comdat Comdat;
172 setStr(Comdat.Name, Saver.save(Name));
173 Comdats.push_back(Comdat);
176 return P.first->second;
179 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
180 const SmallPtrSet<GlobalValue *, 8> &Used,
181 ModuleSymbolTable::Symbol Msym) {
182 Syms.emplace_back();
183 storage::Symbol &Sym = Syms.back();
184 Sym = {};
186 storage::Uncommon *Unc = nullptr;
187 auto Uncommon = [&]() -> storage::Uncommon & {
188 if (Unc)
189 return *Unc;
190 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
191 Uncommons.emplace_back();
192 Unc = &Uncommons.back();
193 *Unc = {};
194 setStr(Unc->COFFWeakExternFallbackName, "");
195 setStr(Unc->SectionName, "");
196 return *Unc;
199 SmallString<64> Name;
201 raw_svector_ostream OS(Name);
202 Msymtab.printSymbolName(OS, Msym);
204 setStr(Sym.Name, Saver.save(StringRef(Name)));
206 auto Flags = Msymtab.getSymbolFlags(Msym);
207 if (Flags & object::BasicSymbolRef::SF_Undefined)
208 Sym.Flags |= 1 << storage::Symbol::FB_undefined;
209 if (Flags & object::BasicSymbolRef::SF_Weak)
210 Sym.Flags |= 1 << storage::Symbol::FB_weak;
211 if (Flags & object::BasicSymbolRef::SF_Common)
212 Sym.Flags |= 1 << storage::Symbol::FB_common;
213 if (Flags & object::BasicSymbolRef::SF_Indirect)
214 Sym.Flags |= 1 << storage::Symbol::FB_indirect;
215 if (Flags & object::BasicSymbolRef::SF_Global)
216 Sym.Flags |= 1 << storage::Symbol::FB_global;
217 if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
218 Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
219 if (Flags & object::BasicSymbolRef::SF_Executable)
220 Sym.Flags |= 1 << storage::Symbol::FB_executable;
222 Sym.ComdatIndex = -1;
223 auto *GV = Msym.dyn_cast<GlobalValue *>();
224 if (!GV) {
225 // Undefined module asm symbols act as GC roots and are implicitly used.
226 if (Flags & object::BasicSymbolRef::SF_Undefined)
227 Sym.Flags |= 1 << storage::Symbol::FB_used;
228 setStr(Sym.IRName, "");
229 return Error::success();
232 setStr(Sym.IRName, GV->getName());
234 bool IsBuiltinFunc = false;
236 for (const char *LibcallName : LibcallRoutineNames)
237 if (GV->getName() == LibcallName)
238 IsBuiltinFunc = true;
240 if (Used.count(GV) || IsBuiltinFunc)
241 Sym.Flags |= 1 << storage::Symbol::FB_used;
242 if (GV->isThreadLocal())
243 Sym.Flags |= 1 << storage::Symbol::FB_tls;
244 if (GV->hasGlobalUnnamedAddr())
245 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
246 if (GV->canBeOmittedFromSymbolTable())
247 Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
248 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
250 if (Flags & object::BasicSymbolRef::SF_Common) {
251 Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize(
252 GV->getType()->getElementType());
253 Uncommon().CommonAlign = GV->getAlignment();
256 const GlobalObject *Base = GV->getBaseObject();
257 if (!Base)
258 return make_error<StringError>("Unable to determine comdat of alias!",
259 inconvertibleErrorCode());
260 if (const Comdat *C = Base->getComdat()) {
261 Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
262 if (!ComdatIndexOrErr)
263 return ComdatIndexOrErr.takeError();
264 Sym.ComdatIndex = *ComdatIndexOrErr;
267 if (TT.isOSBinFormatCOFF()) {
268 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
270 if ((Flags & object::BasicSymbolRef::SF_Weak) &&
271 (Flags & object::BasicSymbolRef::SF_Indirect)) {
272 auto *Fallback = dyn_cast<GlobalValue>(
273 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
274 if (!Fallback)
275 return make_error<StringError>("Invalid weak external",
276 inconvertibleErrorCode());
277 std::string FallbackName;
278 raw_string_ostream OS(FallbackName);
279 Msymtab.printSymbolName(OS, Fallback);
280 OS.flush();
281 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
285 if (!Base->getSection().empty())
286 setStr(Uncommon().SectionName, Saver.save(Base->getSection()));
288 return Error::success();
291 Error Builder::build(ArrayRef<Module *> IRMods) {
292 storage::Header Hdr;
294 assert(!IRMods.empty());
295 Hdr.Version = storage::Header::kCurrentVersion;
296 setStr(Hdr.Producer, kExpectedProducerName);
297 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
298 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
299 TT = Triple(IRMods[0]->getTargetTriple());
301 for (auto *M : IRMods)
302 if (Error Err = addModule(M))
303 return Err;
305 COFFLinkerOptsOS.flush();
306 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
308 // We are about to fill in the header's range fields, so reserve space for it
309 // and copy it in afterwards.
310 Symtab.resize(sizeof(storage::Header));
311 writeRange(Hdr.Modules, Mods);
312 writeRange(Hdr.Comdats, Comdats);
313 writeRange(Hdr.Symbols, Syms);
314 writeRange(Hdr.Uncommons, Uncommons);
316 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
317 return Error::success();
320 } // end anonymous namespace
322 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
323 StringTableBuilder &StrtabBuilder,
324 BumpPtrAllocator &Alloc) {
325 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
328 // Upgrade a vector of bitcode modules created by an old version of LLVM by
329 // creating an irsymtab for them in the current format.
330 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
331 FileContents FC;
333 LLVMContext Ctx;
334 std::vector<Module *> Mods;
335 std::vector<std::unique_ptr<Module>> OwnedMods;
336 for (auto BM : BMs) {
337 Expected<std::unique_ptr<Module>> MOrErr =
338 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
339 /*IsImporting*/ false);
340 if (!MOrErr)
341 return MOrErr.takeError();
343 Mods.push_back(MOrErr->get());
344 OwnedMods.push_back(std::move(*MOrErr));
347 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
348 BumpPtrAllocator Alloc;
349 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
350 return std::move(E);
352 StrtabBuilder.finalizeInOrder();
353 FC.Strtab.resize(StrtabBuilder.getSize());
354 StrtabBuilder.write((uint8_t *)FC.Strtab.data());
356 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
357 {FC.Strtab.data(), FC.Strtab.size()}};
358 return std::move(FC);
361 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
362 if (BFC.Mods.empty())
363 return make_error<StringError>("Bitcode file does not contain any modules",
364 inconvertibleErrorCode());
366 if (BFC.StrtabForSymtab.empty() ||
367 BFC.Symtab.size() < sizeof(storage::Header))
368 return upgrade(BFC.Mods);
370 // We cannot use the regular reader to read the version and producer, because
371 // it will expect the header to be in the current format. The only thing we
372 // can rely on is that the version and producer will be present as the first
373 // struct elements.
374 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
375 unsigned Version = Hdr->Version;
376 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
377 if (Version != storage::Header::kCurrentVersion ||
378 Producer != kExpectedProducerName)
379 return upgrade(BFC.Mods);
381 FileContents FC;
382 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
383 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
385 // Finally, make sure that the number of modules in the symbol table matches
386 // the number of modules in the bitcode file. If they differ, it may mean that
387 // the bitcode file was created by binary concatenation, so we need to create
388 // a new symbol table from scratch.
389 if (FC.TheReader.getNumModules() != BFC.Mods.size())
390 return upgrade(std::move(BFC.Mods));
392 return std::move(FC);