1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines an instruction selector for the AArch64 target.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64TargetMachine.h"
14 #include "MCTargetDesc/AArch64AddressingModes.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/IR/Function.h" // To access function attributes.
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/KnownBits.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/raw_ostream.h"
28 #define DEBUG_TYPE "aarch64-isel"
30 //===--------------------------------------------------------------------===//
31 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
32 /// instructions for SelectionDAG operations.
36 class AArch64DAGToDAGISel
: public SelectionDAGISel
{
38 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
39 /// make the right decision when generating code for different targets.
40 const AArch64Subtarget
*Subtarget
;
45 explicit AArch64DAGToDAGISel(AArch64TargetMachine
&tm
,
46 CodeGenOpt::Level OptLevel
)
47 : SelectionDAGISel(tm
, OptLevel
), Subtarget(nullptr),
50 StringRef
getPassName() const override
{
51 return "AArch64 Instruction Selection";
54 bool runOnMachineFunction(MachineFunction
&MF
) override
{
55 ForCodeSize
= MF
.getFunction().optForSize();
56 Subtarget
= &MF
.getSubtarget
<AArch64Subtarget
>();
57 return SelectionDAGISel::runOnMachineFunction(MF
);
60 void Select(SDNode
*Node
) override
;
62 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
63 /// inline asm expressions.
64 bool SelectInlineAsmMemoryOperand(const SDValue
&Op
,
65 unsigned ConstraintID
,
66 std::vector
<SDValue
> &OutOps
) override
;
68 bool tryMLAV64LaneV128(SDNode
*N
);
69 bool tryMULLV64LaneV128(unsigned IntNo
, SDNode
*N
);
70 bool SelectArithExtendedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
);
71 bool SelectArithImmed(SDValue N
, SDValue
&Val
, SDValue
&Shift
);
72 bool SelectNegArithImmed(SDValue N
, SDValue
&Val
, SDValue
&Shift
);
73 bool SelectArithShiftedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
) {
74 return SelectShiftedRegister(N
, false, Reg
, Shift
);
76 bool SelectLogicalShiftedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
) {
77 return SelectShiftedRegister(N
, true, Reg
, Shift
);
79 bool SelectAddrModeIndexed7S8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
80 return SelectAddrModeIndexed7S(N
, 1, Base
, OffImm
);
82 bool SelectAddrModeIndexed7S16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
83 return SelectAddrModeIndexed7S(N
, 2, Base
, OffImm
);
85 bool SelectAddrModeIndexed7S32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
86 return SelectAddrModeIndexed7S(N
, 4, Base
, OffImm
);
88 bool SelectAddrModeIndexed7S64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
89 return SelectAddrModeIndexed7S(N
, 8, Base
, OffImm
);
91 bool SelectAddrModeIndexed7S128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
92 return SelectAddrModeIndexed7S(N
, 16, Base
, OffImm
);
94 bool SelectAddrModeIndexed8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
95 return SelectAddrModeIndexed(N
, 1, Base
, OffImm
);
97 bool SelectAddrModeIndexed16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
98 return SelectAddrModeIndexed(N
, 2, Base
, OffImm
);
100 bool SelectAddrModeIndexed32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
101 return SelectAddrModeIndexed(N
, 4, Base
, OffImm
);
103 bool SelectAddrModeIndexed64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
104 return SelectAddrModeIndexed(N
, 8, Base
, OffImm
);
106 bool SelectAddrModeIndexed128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
107 return SelectAddrModeIndexed(N
, 16, Base
, OffImm
);
109 bool SelectAddrModeUnscaled8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
110 return SelectAddrModeUnscaled(N
, 1, Base
, OffImm
);
112 bool SelectAddrModeUnscaled16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
113 return SelectAddrModeUnscaled(N
, 2, Base
, OffImm
);
115 bool SelectAddrModeUnscaled32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
116 return SelectAddrModeUnscaled(N
, 4, Base
, OffImm
);
118 bool SelectAddrModeUnscaled64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
119 return SelectAddrModeUnscaled(N
, 8, Base
, OffImm
);
121 bool SelectAddrModeUnscaled128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
122 return SelectAddrModeUnscaled(N
, 16, Base
, OffImm
);
126 bool SelectAddrModeWRO(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
127 SDValue
&SignExtend
, SDValue
&DoShift
) {
128 return SelectAddrModeWRO(N
, Width
/ 8, Base
, Offset
, SignExtend
, DoShift
);
132 bool SelectAddrModeXRO(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
133 SDValue
&SignExtend
, SDValue
&DoShift
) {
134 return SelectAddrModeXRO(N
, Width
/ 8, Base
, Offset
, SignExtend
, DoShift
);
138 /// Form sequences of consecutive 64/128-bit registers for use in NEON
139 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
140 /// between 1 and 4 elements. If it contains a single element that is returned
141 /// unchanged; otherwise a REG_SEQUENCE value is returned.
142 SDValue
createDTuple(ArrayRef
<SDValue
> Vecs
);
143 SDValue
createQTuple(ArrayRef
<SDValue
> Vecs
);
145 /// Generic helper for the createDTuple/createQTuple
146 /// functions. Those should almost always be called instead.
147 SDValue
createTuple(ArrayRef
<SDValue
> Vecs
, const unsigned RegClassIDs
[],
148 const unsigned SubRegs
[]);
150 void SelectTable(SDNode
*N
, unsigned NumVecs
, unsigned Opc
, bool isExt
);
152 bool tryIndexedLoad(SDNode
*N
);
154 void SelectLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
156 void SelectPostLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
158 void SelectLoadLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
159 void SelectPostLoadLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
161 void SelectStore(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
162 void SelectPostStore(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
163 void SelectStoreLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
164 void SelectPostStoreLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
166 bool tryBitfieldExtractOp(SDNode
*N
);
167 bool tryBitfieldExtractOpFromSExt(SDNode
*N
);
168 bool tryBitfieldInsertOp(SDNode
*N
);
169 bool tryBitfieldInsertInZeroOp(SDNode
*N
);
170 bool tryShiftAmountMod(SDNode
*N
);
172 bool tryReadRegister(SDNode
*N
);
173 bool tryWriteRegister(SDNode
*N
);
175 // Include the pieces autogenerated from the target description.
176 #include "AArch64GenDAGISel.inc"
179 bool SelectShiftedRegister(SDValue N
, bool AllowROR
, SDValue
&Reg
,
181 bool SelectAddrModeIndexed7S(SDValue N
, unsigned Size
, SDValue
&Base
,
183 bool SelectAddrModeIndexed(SDValue N
, unsigned Size
, SDValue
&Base
,
185 bool SelectAddrModeUnscaled(SDValue N
, unsigned Size
, SDValue
&Base
,
187 bool SelectAddrModeWRO(SDValue N
, unsigned Size
, SDValue
&Base
,
188 SDValue
&Offset
, SDValue
&SignExtend
,
190 bool SelectAddrModeXRO(SDValue N
, unsigned Size
, SDValue
&Base
,
191 SDValue
&Offset
, SDValue
&SignExtend
,
193 bool isWorthFolding(SDValue V
) const;
194 bool SelectExtendedSHL(SDValue N
, unsigned Size
, bool WantExtend
,
195 SDValue
&Offset
, SDValue
&SignExtend
);
197 template<unsigned RegWidth
>
198 bool SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
) {
199 return SelectCVTFixedPosOperand(N
, FixedPos
, RegWidth
);
202 bool SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
, unsigned Width
);
204 bool SelectCMP_SWAP(SDNode
*N
);
207 } // end anonymous namespace
209 /// isIntImmediate - This method tests to see if the node is a constant
210 /// operand. If so Imm will receive the 32-bit value.
211 static bool isIntImmediate(const SDNode
*N
, uint64_t &Imm
) {
212 if (const ConstantSDNode
*C
= dyn_cast
<const ConstantSDNode
>(N
)) {
213 Imm
= C
->getZExtValue();
219 // isIntImmediate - This method tests to see if a constant operand.
220 // If so Imm will receive the value.
221 static bool isIntImmediate(SDValue N
, uint64_t &Imm
) {
222 return isIntImmediate(N
.getNode(), Imm
);
225 // isOpcWithIntImmediate - This method tests to see if the node is a specific
226 // opcode and that it has a immediate integer right operand.
227 // If so Imm will receive the 32 bit value.
228 static bool isOpcWithIntImmediate(const SDNode
*N
, unsigned Opc
,
230 return N
->getOpcode() == Opc
&&
231 isIntImmediate(N
->getOperand(1).getNode(), Imm
);
234 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
235 const SDValue
&Op
, unsigned ConstraintID
, std::vector
<SDValue
> &OutOps
) {
236 switch(ConstraintID
) {
238 llvm_unreachable("Unexpected asm memory constraint");
239 case InlineAsm::Constraint_i
:
240 case InlineAsm::Constraint_m
:
241 case InlineAsm::Constraint_Q
:
242 // We need to make sure that this one operand does not end up in XZR, thus
243 // require the address to be in a PointerRegClass register.
244 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
245 const TargetRegisterClass
*TRC
= TRI
->getPointerRegClass(*MF
);
247 SDValue RC
= CurDAG
->getTargetConstant(TRC
->getID(), dl
, MVT::i64
);
249 SDValue(CurDAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
,
250 dl
, Op
.getValueType(),
252 OutOps
.push_back(NewOp
);
258 /// SelectArithImmed - Select an immediate value that can be represented as
259 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
260 /// Val set to the 12-bit value and Shift set to the shifter operand.
261 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N
, SDValue
&Val
,
263 // This function is called from the addsub_shifted_imm ComplexPattern,
264 // which lists [imm] as the list of opcode it's interested in, however
265 // we still need to check whether the operand is actually an immediate
266 // here because the ComplexPattern opcode list is only used in
267 // root-level opcode matching.
268 if (!isa
<ConstantSDNode
>(N
.getNode()))
271 uint64_t Immed
= cast
<ConstantSDNode
>(N
.getNode())->getZExtValue();
274 if (Immed
>> 12 == 0) {
276 } else if ((Immed
& 0xfff) == 0 && Immed
>> 24 == 0) {
282 unsigned ShVal
= AArch64_AM::getShifterImm(AArch64_AM::LSL
, ShiftAmt
);
284 Val
= CurDAG
->getTargetConstant(Immed
, dl
, MVT::i32
);
285 Shift
= CurDAG
->getTargetConstant(ShVal
, dl
, MVT::i32
);
289 /// SelectNegArithImmed - As above, but negates the value before trying to
291 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N
, SDValue
&Val
,
293 // This function is called from the addsub_shifted_imm ComplexPattern,
294 // which lists [imm] as the list of opcode it's interested in, however
295 // we still need to check whether the operand is actually an immediate
296 // here because the ComplexPattern opcode list is only used in
297 // root-level opcode matching.
298 if (!isa
<ConstantSDNode
>(N
.getNode()))
301 // The immediate operand must be a 24-bit zero-extended immediate.
302 uint64_t Immed
= cast
<ConstantSDNode
>(N
.getNode())->getZExtValue();
304 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
305 // have the opposite effect on the C flag, so this pattern mustn't match under
306 // those circumstances.
310 if (N
.getValueType() == MVT::i32
)
311 Immed
= ~((uint32_t)Immed
) + 1;
313 Immed
= ~Immed
+ 1ULL;
314 if (Immed
& 0xFFFFFFFFFF000000ULL
)
317 Immed
&= 0xFFFFFFULL
;
318 return SelectArithImmed(CurDAG
->getConstant(Immed
, SDLoc(N
), MVT::i32
), Val
,
322 /// getShiftTypeForNode - Translate a shift node to the corresponding
324 static AArch64_AM::ShiftExtendType
getShiftTypeForNode(SDValue N
) {
325 switch (N
.getOpcode()) {
327 return AArch64_AM::InvalidShiftExtend
;
329 return AArch64_AM::LSL
;
331 return AArch64_AM::LSR
;
333 return AArch64_AM::ASR
;
335 return AArch64_AM::ROR
;
339 /// Determine whether it is worth it to fold SHL into the addressing
341 static bool isWorthFoldingSHL(SDValue V
) {
342 assert(V
.getOpcode() == ISD::SHL
&& "invalid opcode");
343 // It is worth folding logical shift of up to three places.
344 auto *CSD
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1));
347 unsigned ShiftVal
= CSD
->getZExtValue();
351 // Check if this particular node is reused in any non-memory related
352 // operation. If yes, do not try to fold this node into the address
353 // computation, since the computation will be kept.
354 const SDNode
*Node
= V
.getNode();
355 for (SDNode
*UI
: Node
->uses())
356 if (!isa
<MemSDNode
>(*UI
))
357 for (SDNode
*UII
: UI
->uses())
358 if (!isa
<MemSDNode
>(*UII
))
363 /// Determine whether it is worth to fold V into an extended register.
364 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V
) const {
365 // Trivial if we are optimizing for code size or if there is only
366 // one use of the value.
367 if (ForCodeSize
|| V
.hasOneUse())
369 // If a subtarget has a fastpath LSL we can fold a logical shift into
370 // the addressing mode and save a cycle.
371 if (Subtarget
->hasLSLFast() && V
.getOpcode() == ISD::SHL
&&
372 isWorthFoldingSHL(V
))
374 if (Subtarget
->hasLSLFast() && V
.getOpcode() == ISD::ADD
) {
375 const SDValue LHS
= V
.getOperand(0);
376 const SDValue RHS
= V
.getOperand(1);
377 if (LHS
.getOpcode() == ISD::SHL
&& isWorthFoldingSHL(LHS
))
379 if (RHS
.getOpcode() == ISD::SHL
&& isWorthFoldingSHL(RHS
))
383 // It hurts otherwise, since the value will be reused.
387 /// SelectShiftedRegister - Select a "shifted register" operand. If the value
388 /// is not shifted, set the Shift operand to default of "LSL 0". The logical
389 /// instructions allow the shifted register to be rotated, but the arithmetic
390 /// instructions do not. The AllowROR parameter specifies whether ROR is
392 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N
, bool AllowROR
,
393 SDValue
&Reg
, SDValue
&Shift
) {
394 AArch64_AM::ShiftExtendType ShType
= getShiftTypeForNode(N
);
395 if (ShType
== AArch64_AM::InvalidShiftExtend
)
397 if (!AllowROR
&& ShType
== AArch64_AM::ROR
)
400 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
401 unsigned BitSize
= N
.getValueSizeInBits();
402 unsigned Val
= RHS
->getZExtValue() & (BitSize
- 1);
403 unsigned ShVal
= AArch64_AM::getShifterImm(ShType
, Val
);
405 Reg
= N
.getOperand(0);
406 Shift
= CurDAG
->getTargetConstant(ShVal
, SDLoc(N
), MVT::i32
);
407 return isWorthFolding(N
);
413 /// getExtendTypeForNode - Translate an extend node to the corresponding
414 /// ExtendType value.
415 static AArch64_AM::ShiftExtendType
416 getExtendTypeForNode(SDValue N
, bool IsLoadStore
= false) {
417 if (N
.getOpcode() == ISD::SIGN_EXTEND
||
418 N
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
420 if (N
.getOpcode() == ISD::SIGN_EXTEND_INREG
)
421 SrcVT
= cast
<VTSDNode
>(N
.getOperand(1))->getVT();
423 SrcVT
= N
.getOperand(0).getValueType();
425 if (!IsLoadStore
&& SrcVT
== MVT::i8
)
426 return AArch64_AM::SXTB
;
427 else if (!IsLoadStore
&& SrcVT
== MVT::i16
)
428 return AArch64_AM::SXTH
;
429 else if (SrcVT
== MVT::i32
)
430 return AArch64_AM::SXTW
;
431 assert(SrcVT
!= MVT::i64
&& "extend from 64-bits?");
433 return AArch64_AM::InvalidShiftExtend
;
434 } else if (N
.getOpcode() == ISD::ZERO_EXTEND
||
435 N
.getOpcode() == ISD::ANY_EXTEND
) {
436 EVT SrcVT
= N
.getOperand(0).getValueType();
437 if (!IsLoadStore
&& SrcVT
== MVT::i8
)
438 return AArch64_AM::UXTB
;
439 else if (!IsLoadStore
&& SrcVT
== MVT::i16
)
440 return AArch64_AM::UXTH
;
441 else if (SrcVT
== MVT::i32
)
442 return AArch64_AM::UXTW
;
443 assert(SrcVT
!= MVT::i64
&& "extend from 64-bits?");
445 return AArch64_AM::InvalidShiftExtend
;
446 } else if (N
.getOpcode() == ISD::AND
) {
447 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
449 return AArch64_AM::InvalidShiftExtend
;
450 uint64_t AndMask
= CSD
->getZExtValue();
454 return AArch64_AM::InvalidShiftExtend
;
456 return !IsLoadStore
? AArch64_AM::UXTB
: AArch64_AM::InvalidShiftExtend
;
458 return !IsLoadStore
? AArch64_AM::UXTH
: AArch64_AM::InvalidShiftExtend
;
460 return AArch64_AM::UXTW
;
464 return AArch64_AM::InvalidShiftExtend
;
467 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
468 static bool checkHighLaneIndex(SDNode
*DL
, SDValue
&LaneOp
, int &LaneIdx
) {
469 if (DL
->getOpcode() != AArch64ISD::DUPLANE16
&&
470 DL
->getOpcode() != AArch64ISD::DUPLANE32
)
473 SDValue SV
= DL
->getOperand(0);
474 if (SV
.getOpcode() != ISD::INSERT_SUBVECTOR
)
477 SDValue EV
= SV
.getOperand(1);
478 if (EV
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
481 ConstantSDNode
*DLidx
= cast
<ConstantSDNode
>(DL
->getOperand(1).getNode());
482 ConstantSDNode
*EVidx
= cast
<ConstantSDNode
>(EV
.getOperand(1).getNode());
483 LaneIdx
= DLidx
->getSExtValue() + EVidx
->getSExtValue();
484 LaneOp
= EV
.getOperand(0);
489 // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
490 // high lane extract.
491 static bool checkV64LaneV128(SDValue Op0
, SDValue Op1
, SDValue
&StdOp
,
492 SDValue
&LaneOp
, int &LaneIdx
) {
494 if (!checkHighLaneIndex(Op0
.getNode(), LaneOp
, LaneIdx
)) {
496 if (!checkHighLaneIndex(Op0
.getNode(), LaneOp
, LaneIdx
))
503 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
504 /// is a lane in the upper half of a 128-bit vector. Recognize and select this
505 /// so that we don't emit unnecessary lane extracts.
506 bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode
*N
) {
508 SDValue Op0
= N
->getOperand(0);
509 SDValue Op1
= N
->getOperand(1);
510 SDValue MLAOp1
; // Will hold ordinary multiplicand for MLA.
511 SDValue MLAOp2
; // Will hold lane-accessed multiplicand for MLA.
512 int LaneIdx
= -1; // Will hold the lane index.
514 if (Op1
.getOpcode() != ISD::MUL
||
515 !checkV64LaneV128(Op1
.getOperand(0), Op1
.getOperand(1), MLAOp1
, MLAOp2
,
518 if (Op1
.getOpcode() != ISD::MUL
||
519 !checkV64LaneV128(Op1
.getOperand(0), Op1
.getOperand(1), MLAOp1
, MLAOp2
,
524 SDValue LaneIdxVal
= CurDAG
->getTargetConstant(LaneIdx
, dl
, MVT::i64
);
526 SDValue Ops
[] = { Op0
, MLAOp1
, MLAOp2
, LaneIdxVal
};
528 unsigned MLAOpc
= ~0U;
530 switch (N
->getSimpleValueType(0).SimpleTy
) {
532 llvm_unreachable("Unrecognized MLA.");
534 MLAOpc
= AArch64::MLAv4i16_indexed
;
537 MLAOpc
= AArch64::MLAv8i16_indexed
;
540 MLAOpc
= AArch64::MLAv2i32_indexed
;
543 MLAOpc
= AArch64::MLAv4i32_indexed
;
547 ReplaceNode(N
, CurDAG
->getMachineNode(MLAOpc
, dl
, N
->getValueType(0), Ops
));
551 bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo
, SDNode
*N
) {
557 if (!checkV64LaneV128(N
->getOperand(1), N
->getOperand(2), SMULLOp0
, SMULLOp1
,
561 SDValue LaneIdxVal
= CurDAG
->getTargetConstant(LaneIdx
, dl
, MVT::i64
);
563 SDValue Ops
[] = { SMULLOp0
, SMULLOp1
, LaneIdxVal
};
565 unsigned SMULLOpc
= ~0U;
567 if (IntNo
== Intrinsic::aarch64_neon_smull
) {
568 switch (N
->getSimpleValueType(0).SimpleTy
) {
570 llvm_unreachable("Unrecognized SMULL.");
572 SMULLOpc
= AArch64::SMULLv4i16_indexed
;
575 SMULLOpc
= AArch64::SMULLv2i32_indexed
;
578 } else if (IntNo
== Intrinsic::aarch64_neon_umull
) {
579 switch (N
->getSimpleValueType(0).SimpleTy
) {
581 llvm_unreachable("Unrecognized SMULL.");
583 SMULLOpc
= AArch64::UMULLv4i16_indexed
;
586 SMULLOpc
= AArch64::UMULLv2i32_indexed
;
590 llvm_unreachable("Unrecognized intrinsic.");
592 ReplaceNode(N
, CurDAG
->getMachineNode(SMULLOpc
, dl
, N
->getValueType(0), Ops
));
596 /// Instructions that accept extend modifiers like UXTW expect the register
597 /// being extended to be a GPR32, but the incoming DAG might be acting on a
598 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
599 /// this is the case.
600 static SDValue
narrowIfNeeded(SelectionDAG
*CurDAG
, SDValue N
) {
601 if (N
.getValueType() == MVT::i32
)
605 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
606 MachineSDNode
*Node
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
607 dl
, MVT::i32
, N
, SubReg
);
608 return SDValue(Node
, 0);
612 /// SelectArithExtendedRegister - Select a "extended register" operand. This
613 /// operand folds in an extend followed by an optional left shift.
614 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N
, SDValue
&Reg
,
616 unsigned ShiftVal
= 0;
617 AArch64_AM::ShiftExtendType Ext
;
619 if (N
.getOpcode() == ISD::SHL
) {
620 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
623 ShiftVal
= CSD
->getZExtValue();
627 Ext
= getExtendTypeForNode(N
.getOperand(0));
628 if (Ext
== AArch64_AM::InvalidShiftExtend
)
631 Reg
= N
.getOperand(0).getOperand(0);
633 Ext
= getExtendTypeForNode(N
);
634 if (Ext
== AArch64_AM::InvalidShiftExtend
)
637 Reg
= N
.getOperand(0);
639 // Don't match if free 32-bit -> 64-bit zext can be used instead.
640 if (Ext
== AArch64_AM::UXTW
&&
641 Reg
->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg
.getNode()))
645 // AArch64 mandates that the RHS of the operation must use the smallest
646 // register class that could contain the size being extended from. Thus,
647 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
648 // there might not be an actual 32-bit value in the program. We can
649 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
650 assert(Ext
!= AArch64_AM::UXTX
&& Ext
!= AArch64_AM::SXTX
);
651 Reg
= narrowIfNeeded(CurDAG
, Reg
);
652 Shift
= CurDAG
->getTargetConstant(getArithExtendImm(Ext
, ShiftVal
), SDLoc(N
),
654 return isWorthFolding(N
);
657 /// If there's a use of this ADDlow that's not itself a load/store then we'll
658 /// need to create a real ADD instruction from it anyway and there's no point in
659 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
660 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
661 /// leads to duplicated ADRP instructions.
662 static bool isWorthFoldingADDlow(SDValue N
) {
663 for (auto Use
: N
->uses()) {
664 if (Use
->getOpcode() != ISD::LOAD
&& Use
->getOpcode() != ISD::STORE
&&
665 Use
->getOpcode() != ISD::ATOMIC_LOAD
&&
666 Use
->getOpcode() != ISD::ATOMIC_STORE
)
669 // ldar and stlr have much more restrictive addressing modes (just a
671 if (isStrongerThanMonotonic(cast
<MemSDNode
>(Use
)->getOrdering()))
678 /// SelectAddrModeIndexed7S - Select a "register plus scaled signed 7-bit
679 /// immediate" address. The "Size" argument is the size in bytes of the memory
680 /// reference, which determines the scale.
681 bool AArch64DAGToDAGISel::SelectAddrModeIndexed7S(SDValue N
, unsigned Size
,
685 const DataLayout
&DL
= CurDAG
->getDataLayout();
686 const TargetLowering
*TLI
= getTargetLowering();
687 if (N
.getOpcode() == ISD::FrameIndex
) {
688 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
689 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
690 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
694 // As opposed to the (12-bit) Indexed addressing mode below, the 7-bit signed
695 // selected here doesn't support labels/immediates, only base+offset.
697 if (CurDAG
->isBaseWithConstantOffset(N
)) {
698 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
699 int64_t RHSC
= RHS
->getSExtValue();
700 unsigned Scale
= Log2_32(Size
);
701 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= -(0x40 << Scale
) &&
702 RHSC
< (0x40 << Scale
)) {
703 Base
= N
.getOperand(0);
704 if (Base
.getOpcode() == ISD::FrameIndex
) {
705 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
706 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
708 OffImm
= CurDAG
->getTargetConstant(RHSC
>> Scale
, dl
, MVT::i64
);
714 // Base only. The address will be materialized into a register before
715 // the memory is accessed.
716 // add x0, Xbase, #offset
719 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
723 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
724 /// immediate" address. The "Size" argument is the size in bytes of the memory
725 /// reference, which determines the scale.
726 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N
, unsigned Size
,
727 SDValue
&Base
, SDValue
&OffImm
) {
729 const DataLayout
&DL
= CurDAG
->getDataLayout();
730 const TargetLowering
*TLI
= getTargetLowering();
731 if (N
.getOpcode() == ISD::FrameIndex
) {
732 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
733 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
734 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
738 if (N
.getOpcode() == AArch64ISD::ADDlow
&& isWorthFoldingADDlow(N
)) {
739 GlobalAddressSDNode
*GAN
=
740 dyn_cast
<GlobalAddressSDNode
>(N
.getOperand(1).getNode());
741 Base
= N
.getOperand(0);
742 OffImm
= N
.getOperand(1);
746 if (GAN
->getOffset() % Size
== 0) {
747 const GlobalValue
*GV
= GAN
->getGlobal();
748 unsigned Alignment
= GV
->getAlignment();
749 Type
*Ty
= GV
->getValueType();
750 if (Alignment
== 0 && Ty
->isSized())
751 Alignment
= DL
.getABITypeAlignment(Ty
);
753 if (Alignment
>= Size
)
758 if (CurDAG
->isBaseWithConstantOffset(N
)) {
759 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
760 int64_t RHSC
= (int64_t)RHS
->getZExtValue();
761 unsigned Scale
= Log2_32(Size
);
762 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= 0 && RHSC
< (0x1000 << Scale
)) {
763 Base
= N
.getOperand(0);
764 if (Base
.getOpcode() == ISD::FrameIndex
) {
765 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
766 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
768 OffImm
= CurDAG
->getTargetConstant(RHSC
>> Scale
, dl
, MVT::i64
);
774 // Before falling back to our general case, check if the unscaled
775 // instructions can handle this. If so, that's preferable.
776 if (SelectAddrModeUnscaled(N
, Size
, Base
, OffImm
))
779 // Base only. The address will be materialized into a register before
780 // the memory is accessed.
781 // add x0, Xbase, #offset
784 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
788 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
789 /// immediate" address. This should only match when there is an offset that
790 /// is not valid for a scaled immediate addressing mode. The "Size" argument
791 /// is the size in bytes of the memory reference, which is needed here to know
792 /// what is valid for a scaled immediate.
793 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N
, unsigned Size
,
796 if (!CurDAG
->isBaseWithConstantOffset(N
))
798 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
799 int64_t RHSC
= RHS
->getSExtValue();
800 // If the offset is valid as a scaled immediate, don't match here.
801 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= 0 &&
802 RHSC
< (0x1000 << Log2_32(Size
)))
804 if (RHSC
>= -256 && RHSC
< 256) {
805 Base
= N
.getOperand(0);
806 if (Base
.getOpcode() == ISD::FrameIndex
) {
807 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
808 const TargetLowering
*TLI
= getTargetLowering();
809 Base
= CurDAG
->getTargetFrameIndex(
810 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
812 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i64
);
819 static SDValue
Widen(SelectionDAG
*CurDAG
, SDValue N
) {
821 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
822 SDValue ImpDef
= SDValue(
823 CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, MVT::i64
), 0);
824 MachineSDNode
*Node
= CurDAG
->getMachineNode(
825 TargetOpcode::INSERT_SUBREG
, dl
, MVT::i64
, ImpDef
, N
, SubReg
);
826 return SDValue(Node
, 0);
829 /// Check if the given SHL node (\p N), can be used to form an
830 /// extended register for an addressing mode.
831 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N
, unsigned Size
,
832 bool WantExtend
, SDValue
&Offset
,
833 SDValue
&SignExtend
) {
834 assert(N
.getOpcode() == ISD::SHL
&& "Invalid opcode.");
835 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
836 if (!CSD
|| (CSD
->getZExtValue() & 0x7) != CSD
->getZExtValue())
841 AArch64_AM::ShiftExtendType Ext
=
842 getExtendTypeForNode(N
.getOperand(0), true);
843 if (Ext
== AArch64_AM::InvalidShiftExtend
)
846 Offset
= narrowIfNeeded(CurDAG
, N
.getOperand(0).getOperand(0));
847 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
850 Offset
= N
.getOperand(0);
851 SignExtend
= CurDAG
->getTargetConstant(0, dl
, MVT::i32
);
854 unsigned LegalShiftVal
= Log2_32(Size
);
855 unsigned ShiftVal
= CSD
->getZExtValue();
857 if (ShiftVal
!= 0 && ShiftVal
!= LegalShiftVal
)
860 return isWorthFolding(N
);
863 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N
, unsigned Size
,
864 SDValue
&Base
, SDValue
&Offset
,
867 if (N
.getOpcode() != ISD::ADD
)
869 SDValue LHS
= N
.getOperand(0);
870 SDValue RHS
= N
.getOperand(1);
873 // We don't want to match immediate adds here, because they are better lowered
874 // to the register-immediate addressing modes.
875 if (isa
<ConstantSDNode
>(LHS
) || isa
<ConstantSDNode
>(RHS
))
878 // Check if this particular node is reused in any non-memory related
879 // operation. If yes, do not try to fold this node into the address
880 // computation, since the computation will be kept.
881 const SDNode
*Node
= N
.getNode();
882 for (SDNode
*UI
: Node
->uses()) {
883 if (!isa
<MemSDNode
>(*UI
))
887 // Remember if it is worth folding N when it produces extended register.
888 bool IsExtendedRegisterWorthFolding
= isWorthFolding(N
);
890 // Try to match a shifted extend on the RHS.
891 if (IsExtendedRegisterWorthFolding
&& RHS
.getOpcode() == ISD::SHL
&&
892 SelectExtendedSHL(RHS
, Size
, true, Offset
, SignExtend
)) {
894 DoShift
= CurDAG
->getTargetConstant(true, dl
, MVT::i32
);
898 // Try to match a shifted extend on the LHS.
899 if (IsExtendedRegisterWorthFolding
&& LHS
.getOpcode() == ISD::SHL
&&
900 SelectExtendedSHL(LHS
, Size
, true, Offset
, SignExtend
)) {
902 DoShift
= CurDAG
->getTargetConstant(true, dl
, MVT::i32
);
906 // There was no shift, whatever else we find.
907 DoShift
= CurDAG
->getTargetConstant(false, dl
, MVT::i32
);
909 AArch64_AM::ShiftExtendType Ext
= AArch64_AM::InvalidShiftExtend
;
910 // Try to match an unshifted extend on the LHS.
911 if (IsExtendedRegisterWorthFolding
&&
912 (Ext
= getExtendTypeForNode(LHS
, true)) !=
913 AArch64_AM::InvalidShiftExtend
) {
915 Offset
= narrowIfNeeded(CurDAG
, LHS
.getOperand(0));
916 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
918 if (isWorthFolding(LHS
))
922 // Try to match an unshifted extend on the RHS.
923 if (IsExtendedRegisterWorthFolding
&&
924 (Ext
= getExtendTypeForNode(RHS
, true)) !=
925 AArch64_AM::InvalidShiftExtend
) {
927 Offset
= narrowIfNeeded(CurDAG
, RHS
.getOperand(0));
928 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
930 if (isWorthFolding(RHS
))
937 // Check if the given immediate is preferred by ADD. If an immediate can be
938 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
939 // encoded by one MOVZ, return true.
940 static bool isPreferredADD(int64_t ImmOff
) {
941 // Constant in [0x0, 0xfff] can be encoded in ADD.
942 if ((ImmOff
& 0xfffffffffffff000LL
) == 0x0LL
)
944 // Check if it can be encoded in an "ADD LSL #12".
945 if ((ImmOff
& 0xffffffffff000fffLL
) == 0x0LL
)
946 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
947 return (ImmOff
& 0xffffffffff00ffffLL
) != 0x0LL
&&
948 (ImmOff
& 0xffffffffffff0fffLL
) != 0x0LL
;
952 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N
, unsigned Size
,
953 SDValue
&Base
, SDValue
&Offset
,
956 if (N
.getOpcode() != ISD::ADD
)
958 SDValue LHS
= N
.getOperand(0);
959 SDValue RHS
= N
.getOperand(1);
962 // Check if this particular node is reused in any non-memory related
963 // operation. If yes, do not try to fold this node into the address
964 // computation, since the computation will be kept.
965 const SDNode
*Node
= N
.getNode();
966 for (SDNode
*UI
: Node
->uses()) {
967 if (!isa
<MemSDNode
>(*UI
))
971 // Watch out if RHS is a wide immediate, it can not be selected into
972 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
973 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
974 // instructions like:
975 // MOV X0, WideImmediate
976 // ADD X1, BaseReg, X0
978 // For such situation, using [BaseReg, XReg] addressing mode can save one
980 // MOV X0, WideImmediate
981 // LDR X2, [BaseReg, X0]
982 if (isa
<ConstantSDNode
>(RHS
)) {
983 int64_t ImmOff
= (int64_t)cast
<ConstantSDNode
>(RHS
)->getZExtValue();
984 unsigned Scale
= Log2_32(Size
);
985 // Skip the immediate can be selected by load/store addressing mode.
986 // Also skip the immediate can be encoded by a single ADD (SUB is also
987 // checked by using -ImmOff).
988 if ((ImmOff
% Size
== 0 && ImmOff
>= 0 && ImmOff
< (0x1000 << Scale
)) ||
989 isPreferredADD(ImmOff
) || isPreferredADD(-ImmOff
))
992 SDValue Ops
[] = { RHS
};
994 CurDAG
->getMachineNode(AArch64::MOVi64imm
, DL
, MVT::i64
, Ops
);
995 SDValue MOVIV
= SDValue(MOVI
, 0);
996 // This ADD of two X register will be selected into [Reg+Reg] mode.
997 N
= CurDAG
->getNode(ISD::ADD
, DL
, MVT::i64
, LHS
, MOVIV
);
1000 // Remember if it is worth folding N when it produces extended register.
1001 bool IsExtendedRegisterWorthFolding
= isWorthFolding(N
);
1003 // Try to match a shifted extend on the RHS.
1004 if (IsExtendedRegisterWorthFolding
&& RHS
.getOpcode() == ISD::SHL
&&
1005 SelectExtendedSHL(RHS
, Size
, false, Offset
, SignExtend
)) {
1007 DoShift
= CurDAG
->getTargetConstant(true, DL
, MVT::i32
);
1011 // Try to match a shifted extend on the LHS.
1012 if (IsExtendedRegisterWorthFolding
&& LHS
.getOpcode() == ISD::SHL
&&
1013 SelectExtendedSHL(LHS
, Size
, false, Offset
, SignExtend
)) {
1015 DoShift
= CurDAG
->getTargetConstant(true, DL
, MVT::i32
);
1019 // Match any non-shifted, non-extend, non-immediate add expression.
1022 SignExtend
= CurDAG
->getTargetConstant(false, DL
, MVT::i32
);
1023 DoShift
= CurDAG
->getTargetConstant(false, DL
, MVT::i32
);
1024 // Reg1 + Reg2 is free: no check needed.
1028 SDValue
AArch64DAGToDAGISel::createDTuple(ArrayRef
<SDValue
> Regs
) {
1029 static const unsigned RegClassIDs
[] = {
1030 AArch64::DDRegClassID
, AArch64::DDDRegClassID
, AArch64::DDDDRegClassID
};
1031 static const unsigned SubRegs
[] = {AArch64::dsub0
, AArch64::dsub1
,
1032 AArch64::dsub2
, AArch64::dsub3
};
1034 return createTuple(Regs
, RegClassIDs
, SubRegs
);
1037 SDValue
AArch64DAGToDAGISel::createQTuple(ArrayRef
<SDValue
> Regs
) {
1038 static const unsigned RegClassIDs
[] = {
1039 AArch64::QQRegClassID
, AArch64::QQQRegClassID
, AArch64::QQQQRegClassID
};
1040 static const unsigned SubRegs
[] = {AArch64::qsub0
, AArch64::qsub1
,
1041 AArch64::qsub2
, AArch64::qsub3
};
1043 return createTuple(Regs
, RegClassIDs
, SubRegs
);
1046 SDValue
AArch64DAGToDAGISel::createTuple(ArrayRef
<SDValue
> Regs
,
1047 const unsigned RegClassIDs
[],
1048 const unsigned SubRegs
[]) {
1049 // There's no special register-class for a vector-list of 1 element: it's just
1051 if (Regs
.size() == 1)
1054 assert(Regs
.size() >= 2 && Regs
.size() <= 4);
1058 SmallVector
<SDValue
, 4> Ops
;
1060 // First operand of REG_SEQUENCE is the desired RegClass.
1062 CurDAG
->getTargetConstant(RegClassIDs
[Regs
.size() - 2], DL
, MVT::i32
));
1064 // Then we get pairs of source & subregister-position for the components.
1065 for (unsigned i
= 0; i
< Regs
.size(); ++i
) {
1066 Ops
.push_back(Regs
[i
]);
1067 Ops
.push_back(CurDAG
->getTargetConstant(SubRegs
[i
], DL
, MVT::i32
));
1071 CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, DL
, MVT::Untyped
, Ops
);
1072 return SDValue(N
, 0);
1075 void AArch64DAGToDAGISel::SelectTable(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
1078 EVT VT
= N
->getValueType(0);
1080 unsigned ExtOff
= isExt
;
1082 // Form a REG_SEQUENCE to force register allocation.
1083 unsigned Vec0Off
= ExtOff
+ 1;
1084 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + Vec0Off
,
1085 N
->op_begin() + Vec0Off
+ NumVecs
);
1086 SDValue RegSeq
= createQTuple(Regs
);
1088 SmallVector
<SDValue
, 6> Ops
;
1090 Ops
.push_back(N
->getOperand(1));
1091 Ops
.push_back(RegSeq
);
1092 Ops
.push_back(N
->getOperand(NumVecs
+ ExtOff
+ 1));
1093 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, Ops
));
1096 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode
*N
) {
1097 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1098 if (LD
->isUnindexed())
1100 EVT VT
= LD
->getMemoryVT();
1101 EVT DstVT
= N
->getValueType(0);
1102 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1103 bool IsPre
= AM
== ISD::PRE_INC
|| AM
== ISD::PRE_DEC
;
1105 // We're not doing validity checking here. That was done when checking
1106 // if we should mark the load as indexed or not. We're just selecting
1107 // the right instruction.
1108 unsigned Opcode
= 0;
1110 ISD::LoadExtType ExtType
= LD
->getExtensionType();
1111 bool InsertTo64
= false;
1113 Opcode
= IsPre
? AArch64::LDRXpre
: AArch64::LDRXpost
;
1114 else if (VT
== MVT::i32
) {
1115 if (ExtType
== ISD::NON_EXTLOAD
)
1116 Opcode
= IsPre
? AArch64::LDRWpre
: AArch64::LDRWpost
;
1117 else if (ExtType
== ISD::SEXTLOAD
)
1118 Opcode
= IsPre
? AArch64::LDRSWpre
: AArch64::LDRSWpost
;
1120 Opcode
= IsPre
? AArch64::LDRWpre
: AArch64::LDRWpost
;
1122 // The result of the load is only i32. It's the subreg_to_reg that makes
1126 } else if (VT
== MVT::i16
) {
1127 if (ExtType
== ISD::SEXTLOAD
) {
1128 if (DstVT
== MVT::i64
)
1129 Opcode
= IsPre
? AArch64::LDRSHXpre
: AArch64::LDRSHXpost
;
1131 Opcode
= IsPre
? AArch64::LDRSHWpre
: AArch64::LDRSHWpost
;
1133 Opcode
= IsPre
? AArch64::LDRHHpre
: AArch64::LDRHHpost
;
1134 InsertTo64
= DstVT
== MVT::i64
;
1135 // The result of the load is only i32. It's the subreg_to_reg that makes
1139 } else if (VT
== MVT::i8
) {
1140 if (ExtType
== ISD::SEXTLOAD
) {
1141 if (DstVT
== MVT::i64
)
1142 Opcode
= IsPre
? AArch64::LDRSBXpre
: AArch64::LDRSBXpost
;
1144 Opcode
= IsPre
? AArch64::LDRSBWpre
: AArch64::LDRSBWpost
;
1146 Opcode
= IsPre
? AArch64::LDRBBpre
: AArch64::LDRBBpost
;
1147 InsertTo64
= DstVT
== MVT::i64
;
1148 // The result of the load is only i32. It's the subreg_to_reg that makes
1152 } else if (VT
== MVT::f16
) {
1153 Opcode
= IsPre
? AArch64::LDRHpre
: AArch64::LDRHpost
;
1154 } else if (VT
== MVT::f32
) {
1155 Opcode
= IsPre
? AArch64::LDRSpre
: AArch64::LDRSpost
;
1156 } else if (VT
== MVT::f64
|| VT
.is64BitVector()) {
1157 Opcode
= IsPre
? AArch64::LDRDpre
: AArch64::LDRDpost
;
1158 } else if (VT
.is128BitVector()) {
1159 Opcode
= IsPre
? AArch64::LDRQpre
: AArch64::LDRQpost
;
1162 SDValue Chain
= LD
->getChain();
1163 SDValue Base
= LD
->getBasePtr();
1164 ConstantSDNode
*OffsetOp
= cast
<ConstantSDNode
>(LD
->getOffset());
1165 int OffsetVal
= (int)OffsetOp
->getZExtValue();
1167 SDValue Offset
= CurDAG
->getTargetConstant(OffsetVal
, dl
, MVT::i64
);
1168 SDValue Ops
[] = { Base
, Offset
, Chain
};
1169 SDNode
*Res
= CurDAG
->getMachineNode(Opcode
, dl
, MVT::i64
, DstVT
,
1171 // Either way, we're replacing the node, so tell the caller that.
1172 SDValue LoadedVal
= SDValue(Res
, 1);
1174 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
1176 SDValue(CurDAG
->getMachineNode(
1177 AArch64::SUBREG_TO_REG
, dl
, MVT::i64
,
1178 CurDAG
->getTargetConstant(0, dl
, MVT::i64
), LoadedVal
,
1183 ReplaceUses(SDValue(N
, 0), LoadedVal
);
1184 ReplaceUses(SDValue(N
, 1), SDValue(Res
, 0));
1185 ReplaceUses(SDValue(N
, 2), SDValue(Res
, 2));
1186 CurDAG
->RemoveDeadNode(N
);
1190 void AArch64DAGToDAGISel::SelectLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
1191 unsigned SubRegIdx
) {
1193 EVT VT
= N
->getValueType(0);
1194 SDValue Chain
= N
->getOperand(0);
1196 SDValue Ops
[] = {N
->getOperand(2), // Mem operand;
1199 const EVT ResTys
[] = {MVT::Untyped
, MVT::Other
};
1201 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1202 SDValue SuperReg
= SDValue(Ld
, 0);
1203 for (unsigned i
= 0; i
< NumVecs
; ++i
)
1204 ReplaceUses(SDValue(N
, i
),
1205 CurDAG
->getTargetExtractSubreg(SubRegIdx
+ i
, dl
, VT
, SuperReg
));
1207 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 1));
1209 // Transfer memoperands.
1210 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1211 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Ld
), {MemOp
});
1213 CurDAG
->RemoveDeadNode(N
);
1216 void AArch64DAGToDAGISel::SelectPostLoad(SDNode
*N
, unsigned NumVecs
,
1217 unsigned Opc
, unsigned SubRegIdx
) {
1219 EVT VT
= N
->getValueType(0);
1220 SDValue Chain
= N
->getOperand(0);
1222 SDValue Ops
[] = {N
->getOperand(1), // Mem operand
1223 N
->getOperand(2), // Incremental
1226 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1227 MVT::Untyped
, MVT::Other
};
1229 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1231 // Update uses of write back register
1232 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 0));
1234 // Update uses of vector list
1235 SDValue SuperReg
= SDValue(Ld
, 1);
1237 ReplaceUses(SDValue(N
, 0), SuperReg
);
1239 for (unsigned i
= 0; i
< NumVecs
; ++i
)
1240 ReplaceUses(SDValue(N
, i
),
1241 CurDAG
->getTargetExtractSubreg(SubRegIdx
+ i
, dl
, VT
, SuperReg
));
1244 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(Ld
, 2));
1245 CurDAG
->RemoveDeadNode(N
);
1248 void AArch64DAGToDAGISel::SelectStore(SDNode
*N
, unsigned NumVecs
,
1251 EVT VT
= N
->getOperand(2)->getValueType(0);
1253 // Form a REG_SEQUENCE to force register allocation.
1254 bool Is128Bit
= VT
.getSizeInBits() == 128;
1255 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1256 SDValue RegSeq
= Is128Bit
? createQTuple(Regs
) : createDTuple(Regs
);
1258 SDValue Ops
[] = {RegSeq
, N
->getOperand(NumVecs
+ 2), N
->getOperand(0)};
1259 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, N
->getValueType(0), Ops
);
1261 // Transfer memoperands.
1262 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1263 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1268 void AArch64DAGToDAGISel::SelectPostStore(SDNode
*N
, unsigned NumVecs
,
1271 EVT VT
= N
->getOperand(2)->getValueType(0);
1272 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1273 MVT::Other
}; // Type for the Chain
1275 // Form a REG_SEQUENCE to force register allocation.
1276 bool Is128Bit
= VT
.getSizeInBits() == 128;
1277 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1278 SDValue RegSeq
= Is128Bit
? createQTuple(Regs
) : createDTuple(Regs
);
1280 SDValue Ops
[] = {RegSeq
,
1281 N
->getOperand(NumVecs
+ 1), // base register
1282 N
->getOperand(NumVecs
+ 2), // Incremental
1283 N
->getOperand(0)}; // Chain
1284 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1290 /// WidenVector - Given a value in the V64 register class, produce the
1291 /// equivalent value in the V128 register class.
1296 WidenVector(SelectionDAG
&DAG
) : DAG(DAG
) {}
1298 SDValue
operator()(SDValue V64Reg
) {
1299 EVT VT
= V64Reg
.getValueType();
1300 unsigned NarrowSize
= VT
.getVectorNumElements();
1301 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
1302 MVT WideTy
= MVT::getVectorVT(EltTy
, 2 * NarrowSize
);
1306 SDValue(DAG
.getMachineNode(TargetOpcode::IMPLICIT_DEF
, DL
, WideTy
), 0);
1307 return DAG
.getTargetInsertSubreg(AArch64::dsub
, DL
, WideTy
, Undef
, V64Reg
);
1312 /// NarrowVector - Given a value in the V128 register class, produce the
1313 /// equivalent value in the V64 register class.
1314 static SDValue
NarrowVector(SDValue V128Reg
, SelectionDAG
&DAG
) {
1315 EVT VT
= V128Reg
.getValueType();
1316 unsigned WideSize
= VT
.getVectorNumElements();
1317 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
1318 MVT NarrowTy
= MVT::getVectorVT(EltTy
, WideSize
/ 2);
1320 return DAG
.getTargetExtractSubreg(AArch64::dsub
, SDLoc(V128Reg
), NarrowTy
,
1324 void AArch64DAGToDAGISel::SelectLoadLane(SDNode
*N
, unsigned NumVecs
,
1327 EVT VT
= N
->getValueType(0);
1328 bool Narrow
= VT
.getSizeInBits() == 64;
1330 // Form a REG_SEQUENCE to force register allocation.
1331 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1334 transform(Regs
, Regs
.begin(),
1335 WidenVector(*CurDAG
));
1337 SDValue RegSeq
= createQTuple(Regs
);
1339 const EVT ResTys
[] = {MVT::Untyped
, MVT::Other
};
1342 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 2))->getZExtValue();
1344 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1345 N
->getOperand(NumVecs
+ 3), N
->getOperand(0)};
1346 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1347 SDValue SuperReg
= SDValue(Ld
, 0);
1349 EVT WideVT
= RegSeq
.getOperand(1)->getValueType(0);
1350 static const unsigned QSubs
[] = { AArch64::qsub0
, AArch64::qsub1
,
1351 AArch64::qsub2
, AArch64::qsub3
};
1352 for (unsigned i
= 0; i
< NumVecs
; ++i
) {
1353 SDValue NV
= CurDAG
->getTargetExtractSubreg(QSubs
[i
], dl
, WideVT
, SuperReg
);
1355 NV
= NarrowVector(NV
, *CurDAG
);
1356 ReplaceUses(SDValue(N
, i
), NV
);
1359 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 1));
1360 CurDAG
->RemoveDeadNode(N
);
1363 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode
*N
, unsigned NumVecs
,
1366 EVT VT
= N
->getValueType(0);
1367 bool Narrow
= VT
.getSizeInBits() == 64;
1369 // Form a REG_SEQUENCE to force register allocation.
1370 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1373 transform(Regs
, Regs
.begin(),
1374 WidenVector(*CurDAG
));
1376 SDValue RegSeq
= createQTuple(Regs
);
1378 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1379 RegSeq
->getValueType(0), MVT::Other
};
1382 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 1))->getZExtValue();
1384 SDValue Ops
[] = {RegSeq
,
1385 CurDAG
->getTargetConstant(LaneNo
, dl
,
1386 MVT::i64
), // Lane Number
1387 N
->getOperand(NumVecs
+ 2), // Base register
1388 N
->getOperand(NumVecs
+ 3), // Incremental
1390 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1392 // Update uses of the write back register
1393 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 0));
1395 // Update uses of the vector list
1396 SDValue SuperReg
= SDValue(Ld
, 1);
1398 ReplaceUses(SDValue(N
, 0),
1399 Narrow
? NarrowVector(SuperReg
, *CurDAG
) : SuperReg
);
1401 EVT WideVT
= RegSeq
.getOperand(1)->getValueType(0);
1402 static const unsigned QSubs
[] = { AArch64::qsub0
, AArch64::qsub1
,
1403 AArch64::qsub2
, AArch64::qsub3
};
1404 for (unsigned i
= 0; i
< NumVecs
; ++i
) {
1405 SDValue NV
= CurDAG
->getTargetExtractSubreg(QSubs
[i
], dl
, WideVT
,
1408 NV
= NarrowVector(NV
, *CurDAG
);
1409 ReplaceUses(SDValue(N
, i
), NV
);
1414 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(Ld
, 2));
1415 CurDAG
->RemoveDeadNode(N
);
1418 void AArch64DAGToDAGISel::SelectStoreLane(SDNode
*N
, unsigned NumVecs
,
1421 EVT VT
= N
->getOperand(2)->getValueType(0);
1422 bool Narrow
= VT
.getSizeInBits() == 64;
1424 // Form a REG_SEQUENCE to force register allocation.
1425 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1428 transform(Regs
, Regs
.begin(),
1429 WidenVector(*CurDAG
));
1431 SDValue RegSeq
= createQTuple(Regs
);
1434 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 2))->getZExtValue();
1436 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1437 N
->getOperand(NumVecs
+ 3), N
->getOperand(0)};
1438 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, MVT::Other
, Ops
);
1440 // Transfer memoperands.
1441 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1442 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1447 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode
*N
, unsigned NumVecs
,
1450 EVT VT
= N
->getOperand(2)->getValueType(0);
1451 bool Narrow
= VT
.getSizeInBits() == 64;
1453 // Form a REG_SEQUENCE to force register allocation.
1454 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1457 transform(Regs
, Regs
.begin(),
1458 WidenVector(*CurDAG
));
1460 SDValue RegSeq
= createQTuple(Regs
);
1462 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1466 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 1))->getZExtValue();
1468 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1469 N
->getOperand(NumVecs
+ 2), // Base Register
1470 N
->getOperand(NumVecs
+ 3), // Incremental
1472 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1474 // Transfer memoperands.
1475 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1476 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1481 static bool isBitfieldExtractOpFromAnd(SelectionDAG
*CurDAG
, SDNode
*N
,
1482 unsigned &Opc
, SDValue
&Opd0
,
1483 unsigned &LSB
, unsigned &MSB
,
1484 unsigned NumberOfIgnoredLowBits
,
1485 bool BiggerPattern
) {
1486 assert(N
->getOpcode() == ISD::AND
&&
1487 "N must be a AND operation to call this function");
1489 EVT VT
= N
->getValueType(0);
1491 // Here we can test the type of VT and return false when the type does not
1492 // match, but since it is done prior to that call in the current context
1493 // we turned that into an assert to avoid redundant code.
1494 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1495 "Type checking must have been done before calling this function");
1497 // FIXME: simplify-demanded-bits in DAGCombine will probably have
1498 // changed the AND node to a 32-bit mask operation. We'll have to
1499 // undo that as part of the transform here if we want to catch all
1500 // the opportunities.
1501 // Currently the NumberOfIgnoredLowBits argument helps to recover
1502 // form these situations when matching bigger pattern (bitfield insert).
1504 // For unsigned extracts, check for a shift right and mask
1505 uint64_t AndImm
= 0;
1506 if (!isOpcWithIntImmediate(N
, ISD::AND
, AndImm
))
1509 const SDNode
*Op0
= N
->getOperand(0).getNode();
1511 // Because of simplify-demanded-bits in DAGCombine, the mask may have been
1512 // simplified. Try to undo that
1513 AndImm
|= maskTrailingOnes
<uint64_t>(NumberOfIgnoredLowBits
);
1515 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1516 if (AndImm
& (AndImm
+ 1))
1519 bool ClampMSB
= false;
1520 uint64_t SrlImm
= 0;
1521 // Handle the SRL + ANY_EXTEND case.
1522 if (VT
== MVT::i64
&& Op0
->getOpcode() == ISD::ANY_EXTEND
&&
1523 isOpcWithIntImmediate(Op0
->getOperand(0).getNode(), ISD::SRL
, SrlImm
)) {
1524 // Extend the incoming operand of the SRL to 64-bit.
1525 Opd0
= Widen(CurDAG
, Op0
->getOperand(0).getOperand(0));
1526 // Make sure to clamp the MSB so that we preserve the semantics of the
1527 // original operations.
1529 } else if (VT
== MVT::i32
&& Op0
->getOpcode() == ISD::TRUNCATE
&&
1530 isOpcWithIntImmediate(Op0
->getOperand(0).getNode(), ISD::SRL
,
1532 // If the shift result was truncated, we can still combine them.
1533 Opd0
= Op0
->getOperand(0).getOperand(0);
1535 // Use the type of SRL node.
1536 VT
= Opd0
->getValueType(0);
1537 } else if (isOpcWithIntImmediate(Op0
, ISD::SRL
, SrlImm
)) {
1538 Opd0
= Op0
->getOperand(0);
1539 } else if (BiggerPattern
) {
1540 // Let's pretend a 0 shift right has been performed.
1541 // The resulting code will be at least as good as the original one
1542 // plus it may expose more opportunities for bitfield insert pattern.
1543 // FIXME: Currently we limit this to the bigger pattern, because
1544 // some optimizations expect AND and not UBFM.
1545 Opd0
= N
->getOperand(0);
1549 // Bail out on large immediates. This happens when no proper
1550 // combining/constant folding was performed.
1551 if (!BiggerPattern
&& (SrlImm
<= 0 || SrlImm
>= VT
.getSizeInBits())) {
1554 << ": Found large shift immediate, this should not happen\n"));
1559 MSB
= SrlImm
+ (VT
== MVT::i32
? countTrailingOnes
<uint32_t>(AndImm
)
1560 : countTrailingOnes
<uint64_t>(AndImm
)) -
1563 // Since we're moving the extend before the right shift operation, we need
1564 // to clamp the MSB to make sure we don't shift in undefined bits instead of
1565 // the zeros which would get shifted in with the original right shift
1567 MSB
= MSB
> 31 ? 31 : MSB
;
1569 Opc
= VT
== MVT::i32
? AArch64::UBFMWri
: AArch64::UBFMXri
;
1573 static bool isBitfieldExtractOpFromSExtInReg(SDNode
*N
, unsigned &Opc
,
1574 SDValue
&Opd0
, unsigned &Immr
,
1576 assert(N
->getOpcode() == ISD::SIGN_EXTEND_INREG
);
1578 EVT VT
= N
->getValueType(0);
1579 unsigned BitWidth
= VT
.getSizeInBits();
1580 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1581 "Type checking must have been done before calling this function");
1583 SDValue Op
= N
->getOperand(0);
1584 if (Op
->getOpcode() == ISD::TRUNCATE
) {
1585 Op
= Op
->getOperand(0);
1586 VT
= Op
->getValueType(0);
1587 BitWidth
= VT
.getSizeInBits();
1591 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SRL
, ShiftImm
) &&
1592 !isOpcWithIntImmediate(Op
.getNode(), ISD::SRA
, ShiftImm
))
1595 unsigned Width
= cast
<VTSDNode
>(N
->getOperand(1))->getVT().getSizeInBits();
1596 if (ShiftImm
+ Width
> BitWidth
)
1599 Opc
= (VT
== MVT::i32
) ? AArch64::SBFMWri
: AArch64::SBFMXri
;
1600 Opd0
= Op
.getOperand(0);
1602 Imms
= ShiftImm
+ Width
- 1;
1606 static bool isSeveralBitsExtractOpFromShr(SDNode
*N
, unsigned &Opc
,
1607 SDValue
&Opd0
, unsigned &LSB
,
1609 // We are looking for the following pattern which basically extracts several
1610 // continuous bits from the source value and places it from the LSB of the
1611 // destination value, all other bits of the destination value or set to zero:
1613 // Value2 = AND Value, MaskImm
1614 // SRL Value2, ShiftImm
1616 // with MaskImm >> ShiftImm to search for the bit width.
1618 // This gets selected into a single UBFM:
1620 // UBFM Value, ShiftImm, BitWide + SrlImm -1
1623 if (N
->getOpcode() != ISD::SRL
)
1626 uint64_t AndMask
= 0;
1627 if (!isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::AND
, AndMask
))
1630 Opd0
= N
->getOperand(0).getOperand(0);
1632 uint64_t SrlImm
= 0;
1633 if (!isIntImmediate(N
->getOperand(1), SrlImm
))
1636 // Check whether we really have several bits extract here.
1637 unsigned BitWide
= 64 - countLeadingOnes(~(AndMask
>> SrlImm
));
1638 if (BitWide
&& isMask_64(AndMask
>> SrlImm
)) {
1639 if (N
->getValueType(0) == MVT::i32
)
1640 Opc
= AArch64::UBFMWri
;
1642 Opc
= AArch64::UBFMXri
;
1645 MSB
= BitWide
+ SrlImm
- 1;
1652 static bool isBitfieldExtractOpFromShr(SDNode
*N
, unsigned &Opc
, SDValue
&Opd0
,
1653 unsigned &Immr
, unsigned &Imms
,
1654 bool BiggerPattern
) {
1655 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
1656 "N must be a SHR/SRA operation to call this function");
1658 EVT VT
= N
->getValueType(0);
1660 // Here we can test the type of VT and return false when the type does not
1661 // match, but since it is done prior to that call in the current context
1662 // we turned that into an assert to avoid redundant code.
1663 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1664 "Type checking must have been done before calling this function");
1666 // Check for AND + SRL doing several bits extract.
1667 if (isSeveralBitsExtractOpFromShr(N
, Opc
, Opd0
, Immr
, Imms
))
1670 // We're looking for a shift of a shift.
1671 uint64_t ShlImm
= 0;
1672 uint64_t TruncBits
= 0;
1673 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SHL
, ShlImm
)) {
1674 Opd0
= N
->getOperand(0).getOperand(0);
1675 } else if (VT
== MVT::i32
&& N
->getOpcode() == ISD::SRL
&&
1676 N
->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE
) {
1677 // We are looking for a shift of truncate. Truncate from i64 to i32 could
1678 // be considered as setting high 32 bits as zero. Our strategy here is to
1679 // always generate 64bit UBFM. This consistency will help the CSE pass
1680 // later find more redundancy.
1681 Opd0
= N
->getOperand(0).getOperand(0);
1682 TruncBits
= Opd0
->getValueType(0).getSizeInBits() - VT
.getSizeInBits();
1683 VT
= Opd0
.getValueType();
1684 assert(VT
== MVT::i64
&& "the promoted type should be i64");
1685 } else if (BiggerPattern
) {
1686 // Let's pretend a 0 shift left has been performed.
1687 // FIXME: Currently we limit this to the bigger pattern case,
1688 // because some optimizations expect AND and not UBFM
1689 Opd0
= N
->getOperand(0);
1693 // Missing combines/constant folding may have left us with strange
1695 if (ShlImm
>= VT
.getSizeInBits()) {
1698 << ": Found large shift immediate, this should not happen\n"));
1702 uint64_t SrlImm
= 0;
1703 if (!isIntImmediate(N
->getOperand(1), SrlImm
))
1706 assert(SrlImm
> 0 && SrlImm
< VT
.getSizeInBits() &&
1707 "bad amount in shift node!");
1708 int immr
= SrlImm
- ShlImm
;
1709 Immr
= immr
< 0 ? immr
+ VT
.getSizeInBits() : immr
;
1710 Imms
= VT
.getSizeInBits() - ShlImm
- TruncBits
- 1;
1711 // SRA requires a signed extraction
1713 Opc
= N
->getOpcode() == ISD::SRA
? AArch64::SBFMWri
: AArch64::UBFMWri
;
1715 Opc
= N
->getOpcode() == ISD::SRA
? AArch64::SBFMXri
: AArch64::UBFMXri
;
1719 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode
*N
) {
1720 assert(N
->getOpcode() == ISD::SIGN_EXTEND
);
1722 EVT VT
= N
->getValueType(0);
1723 EVT NarrowVT
= N
->getOperand(0)->getValueType(0);
1724 if (VT
!= MVT::i64
|| NarrowVT
!= MVT::i32
)
1728 SDValue Op
= N
->getOperand(0);
1729 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SRA
, ShiftImm
))
1733 // Extend the incoming operand of the shift to 64-bits.
1734 SDValue Opd0
= Widen(CurDAG
, Op
.getOperand(0));
1735 unsigned Immr
= ShiftImm
;
1736 unsigned Imms
= NarrowVT
.getSizeInBits() - 1;
1737 SDValue Ops
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, VT
),
1738 CurDAG
->getTargetConstant(Imms
, dl
, VT
)};
1739 CurDAG
->SelectNodeTo(N
, AArch64::SBFMXri
, VT
, Ops
);
1743 static bool isBitfieldExtractOp(SelectionDAG
*CurDAG
, SDNode
*N
, unsigned &Opc
,
1744 SDValue
&Opd0
, unsigned &Immr
, unsigned &Imms
,
1745 unsigned NumberOfIgnoredLowBits
= 0,
1746 bool BiggerPattern
= false) {
1747 if (N
->getValueType(0) != MVT::i32
&& N
->getValueType(0) != MVT::i64
)
1750 switch (N
->getOpcode()) {
1752 if (!N
->isMachineOpcode())
1756 return isBitfieldExtractOpFromAnd(CurDAG
, N
, Opc
, Opd0
, Immr
, Imms
,
1757 NumberOfIgnoredLowBits
, BiggerPattern
);
1760 return isBitfieldExtractOpFromShr(N
, Opc
, Opd0
, Immr
, Imms
, BiggerPattern
);
1762 case ISD::SIGN_EXTEND_INREG
:
1763 return isBitfieldExtractOpFromSExtInReg(N
, Opc
, Opd0
, Immr
, Imms
);
1766 unsigned NOpc
= N
->getMachineOpcode();
1770 case AArch64::SBFMWri
:
1771 case AArch64::UBFMWri
:
1772 case AArch64::SBFMXri
:
1773 case AArch64::UBFMXri
:
1775 Opd0
= N
->getOperand(0);
1776 Immr
= cast
<ConstantSDNode
>(N
->getOperand(1).getNode())->getZExtValue();
1777 Imms
= cast
<ConstantSDNode
>(N
->getOperand(2).getNode())->getZExtValue();
1784 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode
*N
) {
1785 unsigned Opc
, Immr
, Imms
;
1787 if (!isBitfieldExtractOp(CurDAG
, N
, Opc
, Opd0
, Immr
, Imms
))
1790 EVT VT
= N
->getValueType(0);
1793 // If the bit extract operation is 64bit but the original type is 32bit, we
1794 // need to add one EXTRACT_SUBREG.
1795 if ((Opc
== AArch64::SBFMXri
|| Opc
== AArch64::UBFMXri
) && VT
== MVT::i32
) {
1796 SDValue Ops64
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, MVT::i64
),
1797 CurDAG
->getTargetConstant(Imms
, dl
, MVT::i64
)};
1799 SDNode
*BFM
= CurDAG
->getMachineNode(Opc
, dl
, MVT::i64
, Ops64
);
1800 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
1801 ReplaceNode(N
, CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
, dl
,
1802 MVT::i32
, SDValue(BFM
, 0), SubReg
));
1806 SDValue Ops
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, VT
),
1807 CurDAG
->getTargetConstant(Imms
, dl
, VT
)};
1808 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
1812 /// Does DstMask form a complementary pair with the mask provided by
1813 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
1814 /// this asks whether DstMask zeroes precisely those bits that will be set by
1816 static bool isBitfieldDstMask(uint64_t DstMask
, const APInt
&BitsToBeInserted
,
1817 unsigned NumberOfIgnoredHighBits
, EVT VT
) {
1818 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1819 "i32 or i64 mask type expected!");
1820 unsigned BitWidth
= VT
.getSizeInBits() - NumberOfIgnoredHighBits
;
1822 APInt SignificantDstMask
= APInt(BitWidth
, DstMask
);
1823 APInt SignificantBitsToBeInserted
= BitsToBeInserted
.zextOrTrunc(BitWidth
);
1825 return (SignificantDstMask
& SignificantBitsToBeInserted
) == 0 &&
1826 (SignificantDstMask
| SignificantBitsToBeInserted
).isAllOnesValue();
1829 // Look for bits that will be useful for later uses.
1830 // A bit is consider useless as soon as it is dropped and never used
1831 // before it as been dropped.
1832 // E.g., looking for useful bit of x
1835 // After #1, x useful bits are 0x7, then the useful bits of x, live through
1837 // After #2, the useful bits of x are 0x4.
1838 // However, if x is used on an unpredicatable instruction, then all its bits
1844 static void getUsefulBits(SDValue Op
, APInt
&UsefulBits
, unsigned Depth
= 0);
1846 static void getUsefulBitsFromAndWithImmediate(SDValue Op
, APInt
&UsefulBits
,
1849 cast
<const ConstantSDNode
>(Op
.getOperand(1).getNode())->getZExtValue();
1850 Imm
= AArch64_AM::decodeLogicalImmediate(Imm
, UsefulBits
.getBitWidth());
1851 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), Imm
);
1852 getUsefulBits(Op
, UsefulBits
, Depth
+ 1);
1855 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op
, APInt
&UsefulBits
,
1856 uint64_t Imm
, uint64_t MSB
,
1858 // inherit the bitwidth value
1859 APInt
OpUsefulBits(UsefulBits
);
1863 OpUsefulBits
<<= MSB
- Imm
+ 1;
1865 // The interesting part will be in the lower part of the result
1866 getUsefulBits(Op
, OpUsefulBits
, Depth
+ 1);
1867 // The interesting part was starting at Imm in the argument
1868 OpUsefulBits
<<= Imm
;
1870 OpUsefulBits
<<= MSB
+ 1;
1872 // The interesting part will be shifted in the result
1873 OpUsefulBits
<<= OpUsefulBits
.getBitWidth() - Imm
;
1874 getUsefulBits(Op
, OpUsefulBits
, Depth
+ 1);
1875 // The interesting part was at zero in the argument
1876 OpUsefulBits
.lshrInPlace(OpUsefulBits
.getBitWidth() - Imm
);
1879 UsefulBits
&= OpUsefulBits
;
1882 static void getUsefulBitsFromUBFM(SDValue Op
, APInt
&UsefulBits
,
1885 cast
<const ConstantSDNode
>(Op
.getOperand(1).getNode())->getZExtValue();
1887 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
1889 getUsefulBitsFromBitfieldMoveOpd(Op
, UsefulBits
, Imm
, MSB
, Depth
);
1892 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op
, APInt
&UsefulBits
,
1894 uint64_t ShiftTypeAndValue
=
1895 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
1896 APInt
Mask(UsefulBits
);
1897 Mask
.clearAllBits();
1900 if (AArch64_AM::getShiftType(ShiftTypeAndValue
) == AArch64_AM::LSL
) {
1902 uint64_t ShiftAmt
= AArch64_AM::getShiftValue(ShiftTypeAndValue
);
1904 getUsefulBits(Op
, Mask
, Depth
+ 1);
1905 Mask
.lshrInPlace(ShiftAmt
);
1906 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue
) == AArch64_AM::LSR
) {
1908 // We do not handle AArch64_AM::ASR, because the sign will change the
1909 // number of useful bits
1910 uint64_t ShiftAmt
= AArch64_AM::getShiftValue(ShiftTypeAndValue
);
1911 Mask
.lshrInPlace(ShiftAmt
);
1912 getUsefulBits(Op
, Mask
, Depth
+ 1);
1920 static void getUsefulBitsFromBFM(SDValue Op
, SDValue Orig
, APInt
&UsefulBits
,
1923 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
1925 cast
<const ConstantSDNode
>(Op
.getOperand(3).getNode())->getZExtValue();
1927 APInt
OpUsefulBits(UsefulBits
);
1930 APInt
ResultUsefulBits(UsefulBits
.getBitWidth(), 0);
1931 ResultUsefulBits
.flipAllBits();
1932 APInt
Mask(UsefulBits
.getBitWidth(), 0);
1934 getUsefulBits(Op
, ResultUsefulBits
, Depth
+ 1);
1937 // The instruction is a BFXIL.
1938 uint64_t Width
= MSB
- Imm
+ 1;
1941 OpUsefulBits
<<= Width
;
1944 if (Op
.getOperand(1) == Orig
) {
1945 // Copy the low bits from the result to bits starting from LSB.
1946 Mask
= ResultUsefulBits
& OpUsefulBits
;
1950 if (Op
.getOperand(0) == Orig
)
1951 // Bits starting from LSB in the input contribute to the result.
1952 Mask
|= (ResultUsefulBits
& ~OpUsefulBits
);
1954 // The instruction is a BFI.
1955 uint64_t Width
= MSB
+ 1;
1956 uint64_t LSB
= UsefulBits
.getBitWidth() - Imm
;
1958 OpUsefulBits
<<= Width
;
1960 OpUsefulBits
<<= LSB
;
1962 if (Op
.getOperand(1) == Orig
) {
1963 // Copy the bits from the result to the zero bits.
1964 Mask
= ResultUsefulBits
& OpUsefulBits
;
1965 Mask
.lshrInPlace(LSB
);
1968 if (Op
.getOperand(0) == Orig
)
1969 Mask
|= (ResultUsefulBits
& ~OpUsefulBits
);
1975 static void getUsefulBitsForUse(SDNode
*UserNode
, APInt
&UsefulBits
,
1976 SDValue Orig
, unsigned Depth
) {
1978 // Users of this node should have already been instruction selected
1979 // FIXME: Can we turn that into an assert?
1980 if (!UserNode
->isMachineOpcode())
1983 switch (UserNode
->getMachineOpcode()) {
1986 case AArch64::ANDSWri
:
1987 case AArch64::ANDSXri
:
1988 case AArch64::ANDWri
:
1989 case AArch64::ANDXri
:
1990 // We increment Depth only when we call the getUsefulBits
1991 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode
, 0), UsefulBits
,
1993 case AArch64::UBFMWri
:
1994 case AArch64::UBFMXri
:
1995 return getUsefulBitsFromUBFM(SDValue(UserNode
, 0), UsefulBits
, Depth
);
1997 case AArch64::ORRWrs
:
1998 case AArch64::ORRXrs
:
1999 if (UserNode
->getOperand(1) != Orig
)
2001 return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode
, 0), UsefulBits
,
2003 case AArch64::BFMWri
:
2004 case AArch64::BFMXri
:
2005 return getUsefulBitsFromBFM(SDValue(UserNode
, 0), Orig
, UsefulBits
, Depth
);
2007 case AArch64::STRBBui
:
2008 case AArch64::STURBBi
:
2009 if (UserNode
->getOperand(0) != Orig
)
2011 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), 0xff);
2014 case AArch64::STRHHui
:
2015 case AArch64::STURHHi
:
2016 if (UserNode
->getOperand(0) != Orig
)
2018 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), 0xffff);
2023 static void getUsefulBits(SDValue Op
, APInt
&UsefulBits
, unsigned Depth
) {
2026 // Initialize UsefulBits
2028 unsigned Bitwidth
= Op
.getScalarValueSizeInBits();
2029 // At the beginning, assume every produced bits is useful
2030 UsefulBits
= APInt(Bitwidth
, 0);
2031 UsefulBits
.flipAllBits();
2033 APInt
UsersUsefulBits(UsefulBits
.getBitWidth(), 0);
2035 for (SDNode
*Node
: Op
.getNode()->uses()) {
2036 // A use cannot produce useful bits
2037 APInt UsefulBitsForUse
= APInt(UsefulBits
);
2038 getUsefulBitsForUse(Node
, UsefulBitsForUse
, Op
, Depth
);
2039 UsersUsefulBits
|= UsefulBitsForUse
;
2041 // UsefulBits contains the produced bits that are meaningful for the
2042 // current definition, thus a user cannot make a bit meaningful at
2044 UsefulBits
&= UsersUsefulBits
;
2047 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
2048 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
2049 /// 0, return Op unchanged.
2050 static SDValue
getLeftShift(SelectionDAG
*CurDAG
, SDValue Op
, int ShlAmount
) {
2054 EVT VT
= Op
.getValueType();
2056 unsigned BitWidth
= VT
.getSizeInBits();
2057 unsigned UBFMOpc
= BitWidth
== 32 ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2060 if (ShlAmount
> 0) {
2061 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
2062 ShiftNode
= CurDAG
->getMachineNode(
2063 UBFMOpc
, dl
, VT
, Op
,
2064 CurDAG
->getTargetConstant(BitWidth
- ShlAmount
, dl
, VT
),
2065 CurDAG
->getTargetConstant(BitWidth
- 1 - ShlAmount
, dl
, VT
));
2067 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
2068 assert(ShlAmount
< 0 && "expected right shift");
2069 int ShrAmount
= -ShlAmount
;
2070 ShiftNode
= CurDAG
->getMachineNode(
2071 UBFMOpc
, dl
, VT
, Op
, CurDAG
->getTargetConstant(ShrAmount
, dl
, VT
),
2072 CurDAG
->getTargetConstant(BitWidth
- 1, dl
, VT
));
2075 return SDValue(ShiftNode
, 0);
2078 /// Does this tree qualify as an attempt to move a bitfield into position,
2079 /// essentially "(and (shl VAL, N), Mask)".
2080 static bool isBitfieldPositioningOp(SelectionDAG
*CurDAG
, SDValue Op
,
2082 SDValue
&Src
, int &ShiftAmount
,
2084 EVT VT
= Op
.getValueType();
2085 unsigned BitWidth
= VT
.getSizeInBits();
2087 assert(BitWidth
== 32 || BitWidth
== 64);
2089 KnownBits Known
= CurDAG
->computeKnownBits(Op
);
2091 // Non-zero in the sense that they're not provably zero, which is the key
2092 // point if we want to use this value
2093 uint64_t NonZeroBits
= (~Known
.Zero
).getZExtValue();
2095 // Discard a constant AND mask if present. It's safe because the node will
2096 // already have been factored into the computeKnownBits calculation above.
2098 if (isOpcWithIntImmediate(Op
.getNode(), ISD::AND
, AndImm
)) {
2099 assert((~APInt(BitWidth
, AndImm
) & ~Known
.Zero
) == 0);
2100 Op
= Op
.getOperand(0);
2103 // Don't match if the SHL has more than one use, since then we'll end up
2104 // generating SHL+UBFIZ instead of just keeping SHL+AND.
2105 if (!BiggerPattern
&& !Op
.hasOneUse())
2109 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SHL
, ShlImm
))
2111 Op
= Op
.getOperand(0);
2113 if (!isShiftedMask_64(NonZeroBits
))
2116 ShiftAmount
= countTrailingZeros(NonZeroBits
);
2117 MaskWidth
= countTrailingOnes(NonZeroBits
>> ShiftAmount
);
2119 // BFI encompasses sufficiently many nodes that it's worth inserting an extra
2120 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
2121 // amount. BiggerPattern is true when this pattern is being matched for BFI,
2122 // BiggerPattern is false when this pattern is being matched for UBFIZ, in
2123 // which case it is not profitable to insert an extra shift.
2124 if (ShlImm
- ShiftAmount
!= 0 && !BiggerPattern
)
2126 Src
= getLeftShift(CurDAG
, Op
, ShlImm
- ShiftAmount
);
2131 static bool isShiftedMask(uint64_t Mask
, EVT VT
) {
2132 assert(VT
== MVT::i32
|| VT
== MVT::i64
);
2134 return isShiftedMask_32(Mask
);
2135 return isShiftedMask_64(Mask
);
2138 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
2139 // inserted only sets known zero bits.
2140 static bool tryBitfieldInsertOpFromOrAndImm(SDNode
*N
, SelectionDAG
*CurDAG
) {
2141 assert(N
->getOpcode() == ISD::OR
&& "Expect a OR operation");
2143 EVT VT
= N
->getValueType(0);
2144 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2147 unsigned BitWidth
= VT
.getSizeInBits();
2150 if (!isOpcWithIntImmediate(N
, ISD::OR
, OrImm
))
2153 // Skip this transformation if the ORR immediate can be encoded in the ORR.
2154 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
2155 // performance neutral.
2156 if (AArch64_AM::isLogicalImmediate(OrImm
, BitWidth
))
2160 SDValue And
= N
->getOperand(0);
2161 // Must be a single use AND with an immediate operand.
2162 if (!And
.hasOneUse() ||
2163 !isOpcWithIntImmediate(And
.getNode(), ISD::AND
, MaskImm
))
2166 // Compute the Known Zero for the AND as this allows us to catch more general
2167 // cases than just looking for AND with imm.
2168 KnownBits Known
= CurDAG
->computeKnownBits(And
);
2170 // Non-zero in the sense that they're not provably zero, which is the key
2171 // point if we want to use this value.
2172 uint64_t NotKnownZero
= (~Known
.Zero
).getZExtValue();
2174 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
2175 if (!isShiftedMask(Known
.Zero
.getZExtValue(), VT
))
2178 // The bits being inserted must only set those bits that are known to be zero.
2179 if ((OrImm
& NotKnownZero
) != 0) {
2180 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
2181 // currently handle this case.
2185 // BFI/BFXIL dst, src, #lsb, #width.
2186 int LSB
= countTrailingOnes(NotKnownZero
);
2187 int Width
= BitWidth
- APInt(BitWidth
, NotKnownZero
).countPopulation();
2189 // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
2190 unsigned ImmR
= (BitWidth
- LSB
) % BitWidth
;
2191 unsigned ImmS
= Width
- 1;
2193 // If we're creating a BFI instruction avoid cases where we need more
2194 // instructions to materialize the BFI constant as compared to the original
2195 // ORR. A BFXIL will use the same constant as the original ORR, so the code
2196 // should be no worse in this case.
2197 bool IsBFI
= LSB
!= 0;
2198 uint64_t BFIImm
= OrImm
>> LSB
;
2199 if (IsBFI
&& !AArch64_AM::isLogicalImmediate(BFIImm
, BitWidth
)) {
2200 // We have a BFI instruction and we know the constant can't be materialized
2201 // with a ORR-immediate with the zero register.
2202 unsigned OrChunks
= 0, BFIChunks
= 0;
2203 for (unsigned Shift
= 0; Shift
< BitWidth
; Shift
+= 16) {
2204 if (((OrImm
>> Shift
) & 0xFFFF) != 0)
2206 if (((BFIImm
>> Shift
) & 0xFFFF) != 0)
2209 if (BFIChunks
> OrChunks
)
2213 // Materialize the constant to be inserted.
2215 unsigned MOVIOpc
= VT
== MVT::i32
? AArch64::MOVi32imm
: AArch64::MOVi64imm
;
2216 SDNode
*MOVI
= CurDAG
->getMachineNode(
2217 MOVIOpc
, DL
, VT
, CurDAG
->getTargetConstant(BFIImm
, DL
, VT
));
2219 // Create the BFI/BFXIL instruction.
2220 SDValue Ops
[] = {And
.getOperand(0), SDValue(MOVI
, 0),
2221 CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2222 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2223 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2224 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2228 static bool tryBitfieldInsertOpFromOr(SDNode
*N
, const APInt
&UsefulBits
,
2229 SelectionDAG
*CurDAG
) {
2230 assert(N
->getOpcode() == ISD::OR
&& "Expect a OR operation");
2232 EVT VT
= N
->getValueType(0);
2233 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2236 unsigned BitWidth
= VT
.getSizeInBits();
2238 // Because of simplify-demanded-bits in DAGCombine, involved masks may not
2239 // have the expected shape. Try to undo that.
2241 unsigned NumberOfIgnoredLowBits
= UsefulBits
.countTrailingZeros();
2242 unsigned NumberOfIgnoredHighBits
= UsefulBits
.countLeadingZeros();
2244 // Given a OR operation, check if we have the following pattern
2245 // ubfm c, b, imm, imm2 (or something that does the same jobs, see
2246 // isBitfieldExtractOp)
2247 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
2248 // countTrailingZeros(mask2) == imm2 - imm + 1
2250 // if yes, replace the OR instruction with:
2251 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
2253 // OR is commutative, check all combinations of operand order and values of
2254 // BiggerPattern, i.e.
2255 // Opd0, Opd1, BiggerPattern=false
2256 // Opd1, Opd0, BiggerPattern=false
2257 // Opd0, Opd1, BiggerPattern=true
2258 // Opd1, Opd0, BiggerPattern=true
2259 // Several of these combinations may match, so check with BiggerPattern=false
2260 // first since that will produce better results by matching more instructions
2261 // and/or inserting fewer extra instructions.
2262 for (int I
= 0; I
< 4; ++I
) {
2265 unsigned ImmR
, ImmS
;
2266 bool BiggerPattern
= I
/ 2;
2267 SDValue OrOpd0Val
= N
->getOperand(I
% 2);
2268 SDNode
*OrOpd0
= OrOpd0Val
.getNode();
2269 SDValue OrOpd1Val
= N
->getOperand((I
+ 1) % 2);
2270 SDNode
*OrOpd1
= OrOpd1Val
.getNode();
2274 if (isBitfieldExtractOp(CurDAG
, OrOpd0
, BFXOpc
, Src
, ImmR
, ImmS
,
2275 NumberOfIgnoredLowBits
, BiggerPattern
)) {
2276 // Check that the returned opcode is compatible with the pattern,
2277 // i.e., same type and zero extended (U and not S)
2278 if ((BFXOpc
!= AArch64::UBFMXri
&& VT
== MVT::i64
) ||
2279 (BFXOpc
!= AArch64::UBFMWri
&& VT
== MVT::i32
))
2282 // Compute the width of the bitfield insertion
2284 Width
= ImmS
- ImmR
+ 1;
2285 // FIXME: This constraint is to catch bitfield insertion we may
2286 // want to widen the pattern if we want to grab general bitfied
2291 // If the mask on the insertee is correct, we have a BFXIL operation. We
2292 // can share the ImmR and ImmS values from the already-computed UBFM.
2293 } else if (isBitfieldPositioningOp(CurDAG
, OrOpd0Val
,
2295 Src
, DstLSB
, Width
)) {
2296 ImmR
= (BitWidth
- DstLSB
) % BitWidth
;
2301 // Check the second part of the pattern
2302 EVT VT
= OrOpd1Val
.getValueType();
2303 assert((VT
== MVT::i32
|| VT
== MVT::i64
) && "unexpected OR operand");
2305 // Compute the Known Zero for the candidate of the first operand.
2306 // This allows to catch more general case than just looking for
2307 // AND with imm. Indeed, simplify-demanded-bits may have removed
2308 // the AND instruction because it proves it was useless.
2309 KnownBits Known
= CurDAG
->computeKnownBits(OrOpd1Val
);
2311 // Check if there is enough room for the second operand to appear
2313 APInt BitsToBeInserted
=
2314 APInt::getBitsSet(Known
.getBitWidth(), DstLSB
, DstLSB
+ Width
);
2316 if ((BitsToBeInserted
& ~Known
.Zero
) != 0)
2319 // Set the first operand
2321 if (isOpcWithIntImmediate(OrOpd1
, ISD::AND
, Imm
) &&
2322 isBitfieldDstMask(Imm
, BitsToBeInserted
, NumberOfIgnoredHighBits
, VT
))
2323 // In that case, we can eliminate the AND
2324 Dst
= OrOpd1
->getOperand(0);
2326 // Maybe the AND has been removed by simplify-demanded-bits
2327 // or is useful because it discards more bits
2332 SDValue Ops
[] = {Dst
, Src
, CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2333 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2334 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2335 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2339 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
2340 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
2341 // mask (e.g., 0x000ffff0).
2342 uint64_t Mask0Imm
, Mask1Imm
;
2343 SDValue And0
= N
->getOperand(0);
2344 SDValue And1
= N
->getOperand(1);
2345 if (And0
.hasOneUse() && And1
.hasOneUse() &&
2346 isOpcWithIntImmediate(And0
.getNode(), ISD::AND
, Mask0Imm
) &&
2347 isOpcWithIntImmediate(And1
.getNode(), ISD::AND
, Mask1Imm
) &&
2348 APInt(BitWidth
, Mask0Imm
) == ~APInt(BitWidth
, Mask1Imm
) &&
2349 (isShiftedMask(Mask0Imm
, VT
) || isShiftedMask(Mask1Imm
, VT
))) {
2351 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
2352 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
2353 // bits to be inserted.
2354 if (isShiftedMask(Mask0Imm
, VT
)) {
2355 std::swap(And0
, And1
);
2356 std::swap(Mask0Imm
, Mask1Imm
);
2359 SDValue Src
= And1
->getOperand(0);
2360 SDValue Dst
= And0
->getOperand(0);
2361 unsigned LSB
= countTrailingZeros(Mask1Imm
);
2362 int Width
= BitWidth
- APInt(BitWidth
, Mask0Imm
).countPopulation();
2364 // The BFXIL inserts the low-order bits from a source register, so right
2365 // shift the needed bits into place.
2367 unsigned ShiftOpc
= (VT
== MVT::i32
) ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2368 SDNode
*LSR
= CurDAG
->getMachineNode(
2369 ShiftOpc
, DL
, VT
, Src
, CurDAG
->getTargetConstant(LSB
, DL
, VT
),
2370 CurDAG
->getTargetConstant(BitWidth
- 1, DL
, VT
));
2372 // BFXIL is an alias of BFM, so translate to BFM operands.
2373 unsigned ImmR
= (BitWidth
- LSB
) % BitWidth
;
2374 unsigned ImmS
= Width
- 1;
2376 // Create the BFXIL instruction.
2377 SDValue Ops
[] = {Dst
, SDValue(LSR
, 0),
2378 CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2379 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2380 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2381 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2388 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode
*N
) {
2389 if (N
->getOpcode() != ISD::OR
)
2393 getUsefulBits(SDValue(N
, 0), NUsefulBits
);
2395 // If all bits are not useful, just return UNDEF.
2397 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2401 if (tryBitfieldInsertOpFromOr(N
, NUsefulBits
, CurDAG
))
2404 return tryBitfieldInsertOpFromOrAndImm(N
, CurDAG
);
2407 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
2408 /// equivalent of a left shift by a constant amount followed by an and masking
2409 /// out a contiguous set of bits.
2410 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode
*N
) {
2411 if (N
->getOpcode() != ISD::AND
)
2414 EVT VT
= N
->getValueType(0);
2415 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2420 if (!isBitfieldPositioningOp(CurDAG
, SDValue(N
, 0), /*BiggerPattern=*/false,
2421 Op0
, DstLSB
, Width
))
2424 // ImmR is the rotate right amount.
2425 unsigned ImmR
= (VT
.getSizeInBits() - DstLSB
) % VT
.getSizeInBits();
2426 // ImmS is the most significant bit of the source to be moved.
2427 unsigned ImmS
= Width
- 1;
2430 SDValue Ops
[] = {Op0
, CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2431 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2432 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2433 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2437 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
2438 /// variable shift/rotate instructions.
2439 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode
*N
) {
2440 EVT VT
= N
->getValueType(0);
2443 switch (N
->getOpcode()) {
2445 Opc
= (VT
== MVT::i32
) ? AArch64::RORVWr
: AArch64::RORVXr
;
2448 Opc
= (VT
== MVT::i32
) ? AArch64::LSLVWr
: AArch64::LSLVXr
;
2451 Opc
= (VT
== MVT::i32
) ? AArch64::LSRVWr
: AArch64::LSRVXr
;
2454 Opc
= (VT
== MVT::i32
) ? AArch64::ASRVWr
: AArch64::ASRVXr
;
2462 if (VT
== MVT::i32
) {
2465 } else if (VT
== MVT::i64
) {
2471 SDValue ShiftAmt
= N
->getOperand(1);
2473 SDValue NewShiftAmt
;
2475 // Skip over an extend of the shift amount.
2476 if (ShiftAmt
->getOpcode() == ISD::ZERO_EXTEND
||
2477 ShiftAmt
->getOpcode() == ISD::ANY_EXTEND
)
2478 ShiftAmt
= ShiftAmt
->getOperand(0);
2480 if (ShiftAmt
->getOpcode() == ISD::ADD
|| ShiftAmt
->getOpcode() == ISD::SUB
) {
2481 SDValue Add0
= ShiftAmt
->getOperand(0);
2482 SDValue Add1
= ShiftAmt
->getOperand(1);
2485 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
2486 // to avoid the ADD/SUB.
2487 if (isIntImmediate(Add1
, Add1Imm
) && (Add1Imm
% Size
== 0))
2489 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
2490 // generate a NEG instead of a SUB of a constant.
2491 else if (ShiftAmt
->getOpcode() == ISD::SUB
&&
2492 isIntImmediate(Add0
, Add0Imm
) && Add0Imm
!= 0 &&
2493 (Add0Imm
% Size
== 0)) {
2496 EVT SubVT
= ShiftAmt
->getValueType(0);
2497 if (SubVT
== MVT::i32
) {
2498 NegOpc
= AArch64::SUBWrr
;
2499 ZeroReg
= AArch64::WZR
;
2501 assert(SubVT
== MVT::i64
);
2502 NegOpc
= AArch64::SUBXrr
;
2503 ZeroReg
= AArch64::XZR
;
2506 CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
, ZeroReg
, SubVT
);
2507 MachineSDNode
*Neg
=
2508 CurDAG
->getMachineNode(NegOpc
, DL
, SubVT
, Zero
, Add1
);
2509 NewShiftAmt
= SDValue(Neg
, 0);
2513 // If the shift amount is masked with an AND, check that the mask covers the
2514 // bits that are implicitly ANDed off by the above opcodes and if so, skip
2517 if (!isOpcWithIntImmediate(ShiftAmt
.getNode(), ISD::AND
, MaskImm
))
2520 if (countTrailingOnes(MaskImm
) < Bits
)
2523 NewShiftAmt
= ShiftAmt
->getOperand(0);
2526 // Narrow/widen the shift amount to match the size of the shift operation.
2528 NewShiftAmt
= narrowIfNeeded(CurDAG
, NewShiftAmt
);
2529 else if (VT
== MVT::i64
&& NewShiftAmt
->getValueType(0) == MVT::i32
) {
2530 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, DL
, MVT::i32
);
2531 MachineSDNode
*Ext
= CurDAG
->getMachineNode(
2532 AArch64::SUBREG_TO_REG
, DL
, VT
,
2533 CurDAG
->getTargetConstant(0, DL
, MVT::i64
), NewShiftAmt
, SubReg
);
2534 NewShiftAmt
= SDValue(Ext
, 0);
2537 SDValue Ops
[] = {N
->getOperand(0), NewShiftAmt
};
2538 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2543 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
,
2544 unsigned RegWidth
) {
2546 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
))
2547 FVal
= CN
->getValueAPF();
2548 else if (LoadSDNode
*LN
= dyn_cast
<LoadSDNode
>(N
)) {
2549 // Some otherwise illegal constants are allowed in this case.
2550 if (LN
->getOperand(1).getOpcode() != AArch64ISD::ADDlow
||
2551 !isa
<ConstantPoolSDNode
>(LN
->getOperand(1)->getOperand(1)))
2554 ConstantPoolSDNode
*CN
=
2555 dyn_cast
<ConstantPoolSDNode
>(LN
->getOperand(1)->getOperand(1));
2556 FVal
= cast
<ConstantFP
>(CN
->getConstVal())->getValueAPF();
2560 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
2561 // is between 1 and 32 for a destination w-register, or 1 and 64 for an
2564 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
2565 // want THIS_NODE to be 2^fbits. This is much easier to deal with using
2569 // fbits is between 1 and 64 in the worst-case, which means the fmul
2570 // could have 2^64 as an actual operand. Need 65 bits of precision.
2571 APSInt
IntVal(65, true);
2572 FVal
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &IsExact
);
2574 // N.b. isPowerOf2 also checks for > 0.
2575 if (!IsExact
|| !IntVal
.isPowerOf2()) return false;
2576 unsigned FBits
= IntVal
.logBase2();
2578 // Checks above should have guaranteed that we haven't lost information in
2579 // finding FBits, but it must still be in range.
2580 if (FBits
== 0 || FBits
> RegWidth
) return false;
2582 FixedPos
= CurDAG
->getTargetConstant(FBits
, SDLoc(N
), MVT::i32
);
2586 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
2587 // of the string and obtains the integer values from them and combines these
2588 // into a single value to be used in the MRS/MSR instruction.
2589 static int getIntOperandFromRegisterString(StringRef RegString
) {
2590 SmallVector
<StringRef
, 5> Fields
;
2591 RegString
.split(Fields
, ':');
2593 if (Fields
.size() == 1)
2596 assert(Fields
.size() == 5
2597 && "Invalid number of fields in read register string");
2599 SmallVector
<int, 5> Ops
;
2600 bool AllIntFields
= true;
2602 for (StringRef Field
: Fields
) {
2604 AllIntFields
&= !Field
.getAsInteger(10, IntField
);
2605 Ops
.push_back(IntField
);
2608 assert(AllIntFields
&&
2609 "Unexpected non-integer value in special register string.");
2611 // Need to combine the integer fields of the string into a single value
2612 // based on the bit encoding of MRS/MSR instruction.
2613 return (Ops
[0] << 14) | (Ops
[1] << 11) | (Ops
[2] << 7) |
2614 (Ops
[3] << 3) | (Ops
[4]);
2617 // Lower the read_register intrinsic to an MRS instruction node if the special
2618 // register string argument is either of the form detailed in the ALCE (the
2619 // form described in getIntOperandsFromRegsterString) or is a named register
2620 // known by the MRS SysReg mapper.
2621 bool AArch64DAGToDAGISel::tryReadRegister(SDNode
*N
) {
2622 const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(N
->getOperand(1));
2623 const MDString
*RegString
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2626 int Reg
= getIntOperandFromRegisterString(RegString
->getString());
2628 ReplaceNode(N
, CurDAG
->getMachineNode(
2629 AArch64::MRS
, DL
, N
->getSimpleValueType(0), MVT::Other
,
2630 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2635 // Use the sysreg mapper to map the remaining possible strings to the
2636 // value for the register to be used for the instruction operand.
2637 auto TheReg
= AArch64SysReg::lookupSysRegByName(RegString
->getString());
2638 if (TheReg
&& TheReg
->Readable
&&
2639 TheReg
->haveFeatures(Subtarget
->getFeatureBits()))
2640 Reg
= TheReg
->Encoding
;
2642 Reg
= AArch64SysReg::parseGenericRegister(RegString
->getString());
2645 ReplaceNode(N
, CurDAG
->getMachineNode(
2646 AArch64::MRS
, DL
, N
->getSimpleValueType(0), MVT::Other
,
2647 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2655 // Lower the write_register intrinsic to an MSR instruction node if the special
2656 // register string argument is either of the form detailed in the ALCE (the
2657 // form described in getIntOperandsFromRegsterString) or is a named register
2658 // known by the MSR SysReg mapper.
2659 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode
*N
) {
2660 const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(N
->getOperand(1));
2661 const MDString
*RegString
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2664 int Reg
= getIntOperandFromRegisterString(RegString
->getString());
2667 N
, CurDAG
->getMachineNode(AArch64::MSR
, DL
, MVT::Other
,
2668 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2669 N
->getOperand(2), N
->getOperand(0)));
2673 // Check if the register was one of those allowed as the pstatefield value in
2674 // the MSR (immediate) instruction. To accept the values allowed in the
2675 // pstatefield for the MSR (immediate) instruction, we also require that an
2676 // immediate value has been provided as an argument, we know that this is
2677 // the case as it has been ensured by semantic checking.
2678 auto PMapper
= AArch64PState::lookupPStateByName(RegString
->getString());
2680 assert (isa
<ConstantSDNode
>(N
->getOperand(2))
2681 && "Expected a constant integer expression.");
2682 unsigned Reg
= PMapper
->Encoding
;
2683 uint64_t Immed
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
2685 if (Reg
== AArch64PState::PAN
|| Reg
== AArch64PState::UAO
|| Reg
== AArch64PState::SSBS
) {
2686 assert(Immed
< 2 && "Bad imm");
2687 State
= AArch64::MSRpstateImm1
;
2689 assert(Immed
< 16 && "Bad imm");
2690 State
= AArch64::MSRpstateImm4
;
2692 ReplaceNode(N
, CurDAG
->getMachineNode(
2693 State
, DL
, MVT::Other
,
2694 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2695 CurDAG
->getTargetConstant(Immed
, DL
, MVT::i16
),
2700 // Use the sysreg mapper to attempt to map the remaining possible strings
2701 // to the value for the register to be used for the MSR (register)
2702 // instruction operand.
2703 auto TheReg
= AArch64SysReg::lookupSysRegByName(RegString
->getString());
2704 if (TheReg
&& TheReg
->Writeable
&&
2705 TheReg
->haveFeatures(Subtarget
->getFeatureBits()))
2706 Reg
= TheReg
->Encoding
;
2708 Reg
= AArch64SysReg::parseGenericRegister(RegString
->getString());
2710 ReplaceNode(N
, CurDAG
->getMachineNode(
2711 AArch64::MSR
, DL
, MVT::Other
,
2712 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2713 N
->getOperand(2), N
->getOperand(0)));
2720 /// We've got special pseudo-instructions for these
2721 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode
*N
) {
2723 EVT MemTy
= cast
<MemSDNode
>(N
)->getMemoryVT();
2725 // Leave IR for LSE if subtarget supports it.
2726 if (Subtarget
->hasLSE()) return false;
2728 if (MemTy
== MVT::i8
)
2729 Opcode
= AArch64::CMP_SWAP_8
;
2730 else if (MemTy
== MVT::i16
)
2731 Opcode
= AArch64::CMP_SWAP_16
;
2732 else if (MemTy
== MVT::i32
)
2733 Opcode
= AArch64::CMP_SWAP_32
;
2734 else if (MemTy
== MVT::i64
)
2735 Opcode
= AArch64::CMP_SWAP_64
;
2737 llvm_unreachable("Unknown AtomicCmpSwap type");
2739 MVT RegTy
= MemTy
== MVT::i64
? MVT::i64
: MVT::i32
;
2740 SDValue Ops
[] = {N
->getOperand(1), N
->getOperand(2), N
->getOperand(3),
2742 SDNode
*CmpSwap
= CurDAG
->getMachineNode(
2744 CurDAG
->getVTList(RegTy
, MVT::i32
, MVT::Other
), Ops
);
2746 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
2747 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
2749 ReplaceUses(SDValue(N
, 0), SDValue(CmpSwap
, 0));
2750 ReplaceUses(SDValue(N
, 1), SDValue(CmpSwap
, 2));
2751 CurDAG
->RemoveDeadNode(N
);
2756 void AArch64DAGToDAGISel::Select(SDNode
*Node
) {
2757 // If we have a custom node, we already have selected!
2758 if (Node
->isMachineOpcode()) {
2759 LLVM_DEBUG(errs() << "== "; Node
->dump(CurDAG
); errs() << "\n");
2760 Node
->setNodeId(-1);
2764 // Few custom selection stuff.
2765 EVT VT
= Node
->getValueType(0);
2767 switch (Node
->getOpcode()) {
2771 case ISD::ATOMIC_CMP_SWAP
:
2772 if (SelectCMP_SWAP(Node
))
2776 case ISD::READ_REGISTER
:
2777 if (tryReadRegister(Node
))
2781 case ISD::WRITE_REGISTER
:
2782 if (tryWriteRegister(Node
))
2787 if (tryMLAV64LaneV128(Node
))
2792 // Try to select as an indexed load. Fall through to normal processing
2794 if (tryIndexedLoad(Node
))
2802 case ISD::SIGN_EXTEND_INREG
:
2803 if (tryBitfieldExtractOp(Node
))
2805 if (tryBitfieldInsertInZeroOp(Node
))
2810 if (tryShiftAmountMod(Node
))
2814 case ISD::SIGN_EXTEND
:
2815 if (tryBitfieldExtractOpFromSExt(Node
))
2820 if (tryBitfieldInsertOp(Node
))
2824 case ISD::EXTRACT_VECTOR_ELT
: {
2825 // Extracting lane zero is a special case where we can just use a plain
2826 // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
2827 // the rest of the compiler, especially the register allocator and copyi
2828 // propagation, to reason about, so is preferred when it's possible to
2830 ConstantSDNode
*LaneNode
= cast
<ConstantSDNode
>(Node
->getOperand(1));
2831 // Bail and use the default Select() for non-zero lanes.
2832 if (LaneNode
->getZExtValue() != 0)
2834 // If the element type is not the same as the result type, likewise
2835 // bail and use the default Select(), as there's more to do than just
2836 // a cross-class COPY. This catches extracts of i8 and i16 elements
2837 // since they will need an explicit zext.
2838 if (VT
!= Node
->getOperand(0).getValueType().getVectorElementType())
2841 switch (Node
->getOperand(0)
2843 .getVectorElementType()
2846 llvm_unreachable("Unexpected vector element type!");
2848 SubReg
= AArch64::dsub
;
2851 SubReg
= AArch64::ssub
;
2854 SubReg
= AArch64::hsub
;
2857 llvm_unreachable("unexpected zext-requiring extract element!");
2859 SDValue Extract
= CurDAG
->getTargetExtractSubreg(SubReg
, SDLoc(Node
), VT
,
2860 Node
->getOperand(0));
2861 LLVM_DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
2862 LLVM_DEBUG(Extract
->dumpr(CurDAG
));
2863 LLVM_DEBUG(dbgs() << "\n");
2864 ReplaceNode(Node
, Extract
.getNode());
2867 case ISD::Constant
: {
2868 // Materialize zero constants as copies from WZR/XZR. This allows
2869 // the coalescer to propagate these into other instructions.
2870 ConstantSDNode
*ConstNode
= cast
<ConstantSDNode
>(Node
);
2871 if (ConstNode
->isNullValue()) {
2872 if (VT
== MVT::i32
) {
2873 SDValue New
= CurDAG
->getCopyFromReg(
2874 CurDAG
->getEntryNode(), SDLoc(Node
), AArch64::WZR
, MVT::i32
);
2875 ReplaceNode(Node
, New
.getNode());
2877 } else if (VT
== MVT::i64
) {
2878 SDValue New
= CurDAG
->getCopyFromReg(
2879 CurDAG
->getEntryNode(), SDLoc(Node
), AArch64::XZR
, MVT::i64
);
2880 ReplaceNode(Node
, New
.getNode());
2887 case ISD::FrameIndex
: {
2888 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
2889 int FI
= cast
<FrameIndexSDNode
>(Node
)->getIndex();
2890 unsigned Shifter
= AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0);
2891 const TargetLowering
*TLI
= getTargetLowering();
2892 SDValue TFI
= CurDAG
->getTargetFrameIndex(
2893 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
2895 SDValue Ops
[] = { TFI
, CurDAG
->getTargetConstant(0, DL
, MVT::i32
),
2896 CurDAG
->getTargetConstant(Shifter
, DL
, MVT::i32
) };
2897 CurDAG
->SelectNodeTo(Node
, AArch64::ADDXri
, MVT::i64
, Ops
);
2900 case ISD::INTRINSIC_W_CHAIN
: {
2901 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
2905 case Intrinsic::aarch64_ldaxp
:
2906 case Intrinsic::aarch64_ldxp
: {
2908 IntNo
== Intrinsic::aarch64_ldaxp
? AArch64::LDAXPX
: AArch64::LDXPX
;
2909 SDValue MemAddr
= Node
->getOperand(2);
2911 SDValue Chain
= Node
->getOperand(0);
2913 SDNode
*Ld
= CurDAG
->getMachineNode(Op
, DL
, MVT::i64
, MVT::i64
,
2914 MVT::Other
, MemAddr
, Chain
);
2916 // Transfer memoperands.
2917 MachineMemOperand
*MemOp
=
2918 cast
<MemIntrinsicSDNode
>(Node
)->getMemOperand();
2919 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Ld
), {MemOp
});
2920 ReplaceNode(Node
, Ld
);
2923 case Intrinsic::aarch64_stlxp
:
2924 case Intrinsic::aarch64_stxp
: {
2926 IntNo
== Intrinsic::aarch64_stlxp
? AArch64::STLXPX
: AArch64::STXPX
;
2928 SDValue Chain
= Node
->getOperand(0);
2929 SDValue ValLo
= Node
->getOperand(2);
2930 SDValue ValHi
= Node
->getOperand(3);
2931 SDValue MemAddr
= Node
->getOperand(4);
2933 // Place arguments in the right order.
2934 SDValue Ops
[] = {ValLo
, ValHi
, MemAddr
, Chain
};
2936 SDNode
*St
= CurDAG
->getMachineNode(Op
, DL
, MVT::i32
, MVT::Other
, Ops
);
2937 // Transfer memoperands.
2938 MachineMemOperand
*MemOp
=
2939 cast
<MemIntrinsicSDNode
>(Node
)->getMemOperand();
2940 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
2942 ReplaceNode(Node
, St
);
2945 case Intrinsic::aarch64_neon_ld1x2
:
2946 if (VT
== MVT::v8i8
) {
2947 SelectLoad(Node
, 2, AArch64::LD1Twov8b
, AArch64::dsub0
);
2949 } else if (VT
== MVT::v16i8
) {
2950 SelectLoad(Node
, 2, AArch64::LD1Twov16b
, AArch64::qsub0
);
2952 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
2953 SelectLoad(Node
, 2, AArch64::LD1Twov4h
, AArch64::dsub0
);
2955 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
2956 SelectLoad(Node
, 2, AArch64::LD1Twov8h
, AArch64::qsub0
);
2958 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
2959 SelectLoad(Node
, 2, AArch64::LD1Twov2s
, AArch64::dsub0
);
2961 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
2962 SelectLoad(Node
, 2, AArch64::LD1Twov4s
, AArch64::qsub0
);
2964 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
2965 SelectLoad(Node
, 2, AArch64::LD1Twov1d
, AArch64::dsub0
);
2967 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
2968 SelectLoad(Node
, 2, AArch64::LD1Twov2d
, AArch64::qsub0
);
2972 case Intrinsic::aarch64_neon_ld1x3
:
2973 if (VT
== MVT::v8i8
) {
2974 SelectLoad(Node
, 3, AArch64::LD1Threev8b
, AArch64::dsub0
);
2976 } else if (VT
== MVT::v16i8
) {
2977 SelectLoad(Node
, 3, AArch64::LD1Threev16b
, AArch64::qsub0
);
2979 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
2980 SelectLoad(Node
, 3, AArch64::LD1Threev4h
, AArch64::dsub0
);
2982 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
2983 SelectLoad(Node
, 3, AArch64::LD1Threev8h
, AArch64::qsub0
);
2985 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
2986 SelectLoad(Node
, 3, AArch64::LD1Threev2s
, AArch64::dsub0
);
2988 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
2989 SelectLoad(Node
, 3, AArch64::LD1Threev4s
, AArch64::qsub0
);
2991 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
2992 SelectLoad(Node
, 3, AArch64::LD1Threev1d
, AArch64::dsub0
);
2994 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
2995 SelectLoad(Node
, 3, AArch64::LD1Threev2d
, AArch64::qsub0
);
2999 case Intrinsic::aarch64_neon_ld1x4
:
3000 if (VT
== MVT::v8i8
) {
3001 SelectLoad(Node
, 4, AArch64::LD1Fourv8b
, AArch64::dsub0
);
3003 } else if (VT
== MVT::v16i8
) {
3004 SelectLoad(Node
, 4, AArch64::LD1Fourv16b
, AArch64::qsub0
);
3006 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3007 SelectLoad(Node
, 4, AArch64::LD1Fourv4h
, AArch64::dsub0
);
3009 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3010 SelectLoad(Node
, 4, AArch64::LD1Fourv8h
, AArch64::qsub0
);
3012 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3013 SelectLoad(Node
, 4, AArch64::LD1Fourv2s
, AArch64::dsub0
);
3015 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3016 SelectLoad(Node
, 4, AArch64::LD1Fourv4s
, AArch64::qsub0
);
3018 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3019 SelectLoad(Node
, 4, AArch64::LD1Fourv1d
, AArch64::dsub0
);
3021 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3022 SelectLoad(Node
, 4, AArch64::LD1Fourv2d
, AArch64::qsub0
);
3026 case Intrinsic::aarch64_neon_ld2
:
3027 if (VT
== MVT::v8i8
) {
3028 SelectLoad(Node
, 2, AArch64::LD2Twov8b
, AArch64::dsub0
);
3030 } else if (VT
== MVT::v16i8
) {
3031 SelectLoad(Node
, 2, AArch64::LD2Twov16b
, AArch64::qsub0
);
3033 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3034 SelectLoad(Node
, 2, AArch64::LD2Twov4h
, AArch64::dsub0
);
3036 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3037 SelectLoad(Node
, 2, AArch64::LD2Twov8h
, AArch64::qsub0
);
3039 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3040 SelectLoad(Node
, 2, AArch64::LD2Twov2s
, AArch64::dsub0
);
3042 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3043 SelectLoad(Node
, 2, AArch64::LD2Twov4s
, AArch64::qsub0
);
3045 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3046 SelectLoad(Node
, 2, AArch64::LD1Twov1d
, AArch64::dsub0
);
3048 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3049 SelectLoad(Node
, 2, AArch64::LD2Twov2d
, AArch64::qsub0
);
3053 case Intrinsic::aarch64_neon_ld3
:
3054 if (VT
== MVT::v8i8
) {
3055 SelectLoad(Node
, 3, AArch64::LD3Threev8b
, AArch64::dsub0
);
3057 } else if (VT
== MVT::v16i8
) {
3058 SelectLoad(Node
, 3, AArch64::LD3Threev16b
, AArch64::qsub0
);
3060 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3061 SelectLoad(Node
, 3, AArch64::LD3Threev4h
, AArch64::dsub0
);
3063 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3064 SelectLoad(Node
, 3, AArch64::LD3Threev8h
, AArch64::qsub0
);
3066 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3067 SelectLoad(Node
, 3, AArch64::LD3Threev2s
, AArch64::dsub0
);
3069 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3070 SelectLoad(Node
, 3, AArch64::LD3Threev4s
, AArch64::qsub0
);
3072 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3073 SelectLoad(Node
, 3, AArch64::LD1Threev1d
, AArch64::dsub0
);
3075 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3076 SelectLoad(Node
, 3, AArch64::LD3Threev2d
, AArch64::qsub0
);
3080 case Intrinsic::aarch64_neon_ld4
:
3081 if (VT
== MVT::v8i8
) {
3082 SelectLoad(Node
, 4, AArch64::LD4Fourv8b
, AArch64::dsub0
);
3084 } else if (VT
== MVT::v16i8
) {
3085 SelectLoad(Node
, 4, AArch64::LD4Fourv16b
, AArch64::qsub0
);
3087 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3088 SelectLoad(Node
, 4, AArch64::LD4Fourv4h
, AArch64::dsub0
);
3090 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3091 SelectLoad(Node
, 4, AArch64::LD4Fourv8h
, AArch64::qsub0
);
3093 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3094 SelectLoad(Node
, 4, AArch64::LD4Fourv2s
, AArch64::dsub0
);
3096 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3097 SelectLoad(Node
, 4, AArch64::LD4Fourv4s
, AArch64::qsub0
);
3099 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3100 SelectLoad(Node
, 4, AArch64::LD1Fourv1d
, AArch64::dsub0
);
3102 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3103 SelectLoad(Node
, 4, AArch64::LD4Fourv2d
, AArch64::qsub0
);
3107 case Intrinsic::aarch64_neon_ld2r
:
3108 if (VT
== MVT::v8i8
) {
3109 SelectLoad(Node
, 2, AArch64::LD2Rv8b
, AArch64::dsub0
);
3111 } else if (VT
== MVT::v16i8
) {
3112 SelectLoad(Node
, 2, AArch64::LD2Rv16b
, AArch64::qsub0
);
3114 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3115 SelectLoad(Node
, 2, AArch64::LD2Rv4h
, AArch64::dsub0
);
3117 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3118 SelectLoad(Node
, 2, AArch64::LD2Rv8h
, AArch64::qsub0
);
3120 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3121 SelectLoad(Node
, 2, AArch64::LD2Rv2s
, AArch64::dsub0
);
3123 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3124 SelectLoad(Node
, 2, AArch64::LD2Rv4s
, AArch64::qsub0
);
3126 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3127 SelectLoad(Node
, 2, AArch64::LD2Rv1d
, AArch64::dsub0
);
3129 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3130 SelectLoad(Node
, 2, AArch64::LD2Rv2d
, AArch64::qsub0
);
3134 case Intrinsic::aarch64_neon_ld3r
:
3135 if (VT
== MVT::v8i8
) {
3136 SelectLoad(Node
, 3, AArch64::LD3Rv8b
, AArch64::dsub0
);
3138 } else if (VT
== MVT::v16i8
) {
3139 SelectLoad(Node
, 3, AArch64::LD3Rv16b
, AArch64::qsub0
);
3141 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3142 SelectLoad(Node
, 3, AArch64::LD3Rv4h
, AArch64::dsub0
);
3144 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3145 SelectLoad(Node
, 3, AArch64::LD3Rv8h
, AArch64::qsub0
);
3147 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3148 SelectLoad(Node
, 3, AArch64::LD3Rv2s
, AArch64::dsub0
);
3150 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3151 SelectLoad(Node
, 3, AArch64::LD3Rv4s
, AArch64::qsub0
);
3153 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3154 SelectLoad(Node
, 3, AArch64::LD3Rv1d
, AArch64::dsub0
);
3156 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3157 SelectLoad(Node
, 3, AArch64::LD3Rv2d
, AArch64::qsub0
);
3161 case Intrinsic::aarch64_neon_ld4r
:
3162 if (VT
== MVT::v8i8
) {
3163 SelectLoad(Node
, 4, AArch64::LD4Rv8b
, AArch64::dsub0
);
3165 } else if (VT
== MVT::v16i8
) {
3166 SelectLoad(Node
, 4, AArch64::LD4Rv16b
, AArch64::qsub0
);
3168 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3169 SelectLoad(Node
, 4, AArch64::LD4Rv4h
, AArch64::dsub0
);
3171 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3172 SelectLoad(Node
, 4, AArch64::LD4Rv8h
, AArch64::qsub0
);
3174 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3175 SelectLoad(Node
, 4, AArch64::LD4Rv2s
, AArch64::dsub0
);
3177 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3178 SelectLoad(Node
, 4, AArch64::LD4Rv4s
, AArch64::qsub0
);
3180 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3181 SelectLoad(Node
, 4, AArch64::LD4Rv1d
, AArch64::dsub0
);
3183 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3184 SelectLoad(Node
, 4, AArch64::LD4Rv2d
, AArch64::qsub0
);
3188 case Intrinsic::aarch64_neon_ld2lane
:
3189 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3190 SelectLoadLane(Node
, 2, AArch64::LD2i8
);
3192 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3194 SelectLoadLane(Node
, 2, AArch64::LD2i16
);
3196 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3198 SelectLoadLane(Node
, 2, AArch64::LD2i32
);
3200 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3202 SelectLoadLane(Node
, 2, AArch64::LD2i64
);
3206 case Intrinsic::aarch64_neon_ld3lane
:
3207 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3208 SelectLoadLane(Node
, 3, AArch64::LD3i8
);
3210 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3212 SelectLoadLane(Node
, 3, AArch64::LD3i16
);
3214 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3216 SelectLoadLane(Node
, 3, AArch64::LD3i32
);
3218 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3220 SelectLoadLane(Node
, 3, AArch64::LD3i64
);
3224 case Intrinsic::aarch64_neon_ld4lane
:
3225 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3226 SelectLoadLane(Node
, 4, AArch64::LD4i8
);
3228 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3230 SelectLoadLane(Node
, 4, AArch64::LD4i16
);
3232 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3234 SelectLoadLane(Node
, 4, AArch64::LD4i32
);
3236 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3238 SelectLoadLane(Node
, 4, AArch64::LD4i64
);
3244 case ISD::INTRINSIC_WO_CHAIN
: {
3245 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue();
3249 case Intrinsic::aarch64_neon_tbl2
:
3250 SelectTable(Node
, 2,
3251 VT
== MVT::v8i8
? AArch64::TBLv8i8Two
: AArch64::TBLv16i8Two
,
3254 case Intrinsic::aarch64_neon_tbl3
:
3255 SelectTable(Node
, 3, VT
== MVT::v8i8
? AArch64::TBLv8i8Three
3256 : AArch64::TBLv16i8Three
,
3259 case Intrinsic::aarch64_neon_tbl4
:
3260 SelectTable(Node
, 4, VT
== MVT::v8i8
? AArch64::TBLv8i8Four
3261 : AArch64::TBLv16i8Four
,
3264 case Intrinsic::aarch64_neon_tbx2
:
3265 SelectTable(Node
, 2,
3266 VT
== MVT::v8i8
? AArch64::TBXv8i8Two
: AArch64::TBXv16i8Two
,
3269 case Intrinsic::aarch64_neon_tbx3
:
3270 SelectTable(Node
, 3, VT
== MVT::v8i8
? AArch64::TBXv8i8Three
3271 : AArch64::TBXv16i8Three
,
3274 case Intrinsic::aarch64_neon_tbx4
:
3275 SelectTable(Node
, 4, VT
== MVT::v8i8
? AArch64::TBXv8i8Four
3276 : AArch64::TBXv16i8Four
,
3279 case Intrinsic::aarch64_neon_smull
:
3280 case Intrinsic::aarch64_neon_umull
:
3281 if (tryMULLV64LaneV128(IntNo
, Node
))
3287 case ISD::INTRINSIC_VOID
: {
3288 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
3289 if (Node
->getNumOperands() >= 3)
3290 VT
= Node
->getOperand(2)->getValueType(0);
3294 case Intrinsic::aarch64_neon_st1x2
: {
3295 if (VT
== MVT::v8i8
) {
3296 SelectStore(Node
, 2, AArch64::ST1Twov8b
);
3298 } else if (VT
== MVT::v16i8
) {
3299 SelectStore(Node
, 2, AArch64::ST1Twov16b
);
3301 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3302 SelectStore(Node
, 2, AArch64::ST1Twov4h
);
3304 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3305 SelectStore(Node
, 2, AArch64::ST1Twov8h
);
3307 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3308 SelectStore(Node
, 2, AArch64::ST1Twov2s
);
3310 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3311 SelectStore(Node
, 2, AArch64::ST1Twov4s
);
3313 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3314 SelectStore(Node
, 2, AArch64::ST1Twov2d
);
3316 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3317 SelectStore(Node
, 2, AArch64::ST1Twov1d
);
3322 case Intrinsic::aarch64_neon_st1x3
: {
3323 if (VT
== MVT::v8i8
) {
3324 SelectStore(Node
, 3, AArch64::ST1Threev8b
);
3326 } else if (VT
== MVT::v16i8
) {
3327 SelectStore(Node
, 3, AArch64::ST1Threev16b
);
3329 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3330 SelectStore(Node
, 3, AArch64::ST1Threev4h
);
3332 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3333 SelectStore(Node
, 3, AArch64::ST1Threev8h
);
3335 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3336 SelectStore(Node
, 3, AArch64::ST1Threev2s
);
3338 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3339 SelectStore(Node
, 3, AArch64::ST1Threev4s
);
3341 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3342 SelectStore(Node
, 3, AArch64::ST1Threev2d
);
3344 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3345 SelectStore(Node
, 3, AArch64::ST1Threev1d
);
3350 case Intrinsic::aarch64_neon_st1x4
: {
3351 if (VT
== MVT::v8i8
) {
3352 SelectStore(Node
, 4, AArch64::ST1Fourv8b
);
3354 } else if (VT
== MVT::v16i8
) {
3355 SelectStore(Node
, 4, AArch64::ST1Fourv16b
);
3357 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3358 SelectStore(Node
, 4, AArch64::ST1Fourv4h
);
3360 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3361 SelectStore(Node
, 4, AArch64::ST1Fourv8h
);
3363 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3364 SelectStore(Node
, 4, AArch64::ST1Fourv2s
);
3366 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3367 SelectStore(Node
, 4, AArch64::ST1Fourv4s
);
3369 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3370 SelectStore(Node
, 4, AArch64::ST1Fourv2d
);
3372 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3373 SelectStore(Node
, 4, AArch64::ST1Fourv1d
);
3378 case Intrinsic::aarch64_neon_st2
: {
3379 if (VT
== MVT::v8i8
) {
3380 SelectStore(Node
, 2, AArch64::ST2Twov8b
);
3382 } else if (VT
== MVT::v16i8
) {
3383 SelectStore(Node
, 2, AArch64::ST2Twov16b
);
3385 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3386 SelectStore(Node
, 2, AArch64::ST2Twov4h
);
3388 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3389 SelectStore(Node
, 2, AArch64::ST2Twov8h
);
3391 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3392 SelectStore(Node
, 2, AArch64::ST2Twov2s
);
3394 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3395 SelectStore(Node
, 2, AArch64::ST2Twov4s
);
3397 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3398 SelectStore(Node
, 2, AArch64::ST2Twov2d
);
3400 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3401 SelectStore(Node
, 2, AArch64::ST1Twov1d
);
3406 case Intrinsic::aarch64_neon_st3
: {
3407 if (VT
== MVT::v8i8
) {
3408 SelectStore(Node
, 3, AArch64::ST3Threev8b
);
3410 } else if (VT
== MVT::v16i8
) {
3411 SelectStore(Node
, 3, AArch64::ST3Threev16b
);
3413 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3414 SelectStore(Node
, 3, AArch64::ST3Threev4h
);
3416 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3417 SelectStore(Node
, 3, AArch64::ST3Threev8h
);
3419 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3420 SelectStore(Node
, 3, AArch64::ST3Threev2s
);
3422 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3423 SelectStore(Node
, 3, AArch64::ST3Threev4s
);
3425 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3426 SelectStore(Node
, 3, AArch64::ST3Threev2d
);
3428 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3429 SelectStore(Node
, 3, AArch64::ST1Threev1d
);
3434 case Intrinsic::aarch64_neon_st4
: {
3435 if (VT
== MVT::v8i8
) {
3436 SelectStore(Node
, 4, AArch64::ST4Fourv8b
);
3438 } else if (VT
== MVT::v16i8
) {
3439 SelectStore(Node
, 4, AArch64::ST4Fourv16b
);
3441 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3442 SelectStore(Node
, 4, AArch64::ST4Fourv4h
);
3444 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3445 SelectStore(Node
, 4, AArch64::ST4Fourv8h
);
3447 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3448 SelectStore(Node
, 4, AArch64::ST4Fourv2s
);
3450 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3451 SelectStore(Node
, 4, AArch64::ST4Fourv4s
);
3453 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3454 SelectStore(Node
, 4, AArch64::ST4Fourv2d
);
3456 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3457 SelectStore(Node
, 4, AArch64::ST1Fourv1d
);
3462 case Intrinsic::aarch64_neon_st2lane
: {
3463 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3464 SelectStoreLane(Node
, 2, AArch64::ST2i8
);
3466 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3468 SelectStoreLane(Node
, 2, AArch64::ST2i16
);
3470 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3472 SelectStoreLane(Node
, 2, AArch64::ST2i32
);
3474 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3476 SelectStoreLane(Node
, 2, AArch64::ST2i64
);
3481 case Intrinsic::aarch64_neon_st3lane
: {
3482 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3483 SelectStoreLane(Node
, 3, AArch64::ST3i8
);
3485 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3487 SelectStoreLane(Node
, 3, AArch64::ST3i16
);
3489 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3491 SelectStoreLane(Node
, 3, AArch64::ST3i32
);
3493 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3495 SelectStoreLane(Node
, 3, AArch64::ST3i64
);
3500 case Intrinsic::aarch64_neon_st4lane
: {
3501 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3502 SelectStoreLane(Node
, 4, AArch64::ST4i8
);
3504 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3506 SelectStoreLane(Node
, 4, AArch64::ST4i16
);
3508 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3510 SelectStoreLane(Node
, 4, AArch64::ST4i32
);
3512 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3514 SelectStoreLane(Node
, 4, AArch64::ST4i64
);
3522 case AArch64ISD::LD2post
: {
3523 if (VT
== MVT::v8i8
) {
3524 SelectPostLoad(Node
, 2, AArch64::LD2Twov8b_POST
, AArch64::dsub0
);
3526 } else if (VT
== MVT::v16i8
) {
3527 SelectPostLoad(Node
, 2, AArch64::LD2Twov16b_POST
, AArch64::qsub0
);
3529 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3530 SelectPostLoad(Node
, 2, AArch64::LD2Twov4h_POST
, AArch64::dsub0
);
3532 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3533 SelectPostLoad(Node
, 2, AArch64::LD2Twov8h_POST
, AArch64::qsub0
);
3535 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3536 SelectPostLoad(Node
, 2, AArch64::LD2Twov2s_POST
, AArch64::dsub0
);
3538 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3539 SelectPostLoad(Node
, 2, AArch64::LD2Twov4s_POST
, AArch64::qsub0
);
3541 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3542 SelectPostLoad(Node
, 2, AArch64::LD1Twov1d_POST
, AArch64::dsub0
);
3544 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3545 SelectPostLoad(Node
, 2, AArch64::LD2Twov2d_POST
, AArch64::qsub0
);
3550 case AArch64ISD::LD3post
: {
3551 if (VT
== MVT::v8i8
) {
3552 SelectPostLoad(Node
, 3, AArch64::LD3Threev8b_POST
, AArch64::dsub0
);
3554 } else if (VT
== MVT::v16i8
) {
3555 SelectPostLoad(Node
, 3, AArch64::LD3Threev16b_POST
, AArch64::qsub0
);
3557 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3558 SelectPostLoad(Node
, 3, AArch64::LD3Threev4h_POST
, AArch64::dsub0
);
3560 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3561 SelectPostLoad(Node
, 3, AArch64::LD3Threev8h_POST
, AArch64::qsub0
);
3563 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3564 SelectPostLoad(Node
, 3, AArch64::LD3Threev2s_POST
, AArch64::dsub0
);
3566 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3567 SelectPostLoad(Node
, 3, AArch64::LD3Threev4s_POST
, AArch64::qsub0
);
3569 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3570 SelectPostLoad(Node
, 3, AArch64::LD1Threev1d_POST
, AArch64::dsub0
);
3572 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3573 SelectPostLoad(Node
, 3, AArch64::LD3Threev2d_POST
, AArch64::qsub0
);
3578 case AArch64ISD::LD4post
: {
3579 if (VT
== MVT::v8i8
) {
3580 SelectPostLoad(Node
, 4, AArch64::LD4Fourv8b_POST
, AArch64::dsub0
);
3582 } else if (VT
== MVT::v16i8
) {
3583 SelectPostLoad(Node
, 4, AArch64::LD4Fourv16b_POST
, AArch64::qsub0
);
3585 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3586 SelectPostLoad(Node
, 4, AArch64::LD4Fourv4h_POST
, AArch64::dsub0
);
3588 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3589 SelectPostLoad(Node
, 4, AArch64::LD4Fourv8h_POST
, AArch64::qsub0
);
3591 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3592 SelectPostLoad(Node
, 4, AArch64::LD4Fourv2s_POST
, AArch64::dsub0
);
3594 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3595 SelectPostLoad(Node
, 4, AArch64::LD4Fourv4s_POST
, AArch64::qsub0
);
3597 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3598 SelectPostLoad(Node
, 4, AArch64::LD1Fourv1d_POST
, AArch64::dsub0
);
3600 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3601 SelectPostLoad(Node
, 4, AArch64::LD4Fourv2d_POST
, AArch64::qsub0
);
3606 case AArch64ISD::LD1x2post
: {
3607 if (VT
== MVT::v8i8
) {
3608 SelectPostLoad(Node
, 2, AArch64::LD1Twov8b_POST
, AArch64::dsub0
);
3610 } else if (VT
== MVT::v16i8
) {
3611 SelectPostLoad(Node
, 2, AArch64::LD1Twov16b_POST
, AArch64::qsub0
);
3613 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3614 SelectPostLoad(Node
, 2, AArch64::LD1Twov4h_POST
, AArch64::dsub0
);
3616 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3617 SelectPostLoad(Node
, 2, AArch64::LD1Twov8h_POST
, AArch64::qsub0
);
3619 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3620 SelectPostLoad(Node
, 2, AArch64::LD1Twov2s_POST
, AArch64::dsub0
);
3622 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3623 SelectPostLoad(Node
, 2, AArch64::LD1Twov4s_POST
, AArch64::qsub0
);
3625 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3626 SelectPostLoad(Node
, 2, AArch64::LD1Twov1d_POST
, AArch64::dsub0
);
3628 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3629 SelectPostLoad(Node
, 2, AArch64::LD1Twov2d_POST
, AArch64::qsub0
);
3634 case AArch64ISD::LD1x3post
: {
3635 if (VT
== MVT::v8i8
) {
3636 SelectPostLoad(Node
, 3, AArch64::LD1Threev8b_POST
, AArch64::dsub0
);
3638 } else if (VT
== MVT::v16i8
) {
3639 SelectPostLoad(Node
, 3, AArch64::LD1Threev16b_POST
, AArch64::qsub0
);
3641 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3642 SelectPostLoad(Node
, 3, AArch64::LD1Threev4h_POST
, AArch64::dsub0
);
3644 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3645 SelectPostLoad(Node
, 3, AArch64::LD1Threev8h_POST
, AArch64::qsub0
);
3647 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3648 SelectPostLoad(Node
, 3, AArch64::LD1Threev2s_POST
, AArch64::dsub0
);
3650 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3651 SelectPostLoad(Node
, 3, AArch64::LD1Threev4s_POST
, AArch64::qsub0
);
3653 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3654 SelectPostLoad(Node
, 3, AArch64::LD1Threev1d_POST
, AArch64::dsub0
);
3656 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3657 SelectPostLoad(Node
, 3, AArch64::LD1Threev2d_POST
, AArch64::qsub0
);
3662 case AArch64ISD::LD1x4post
: {
3663 if (VT
== MVT::v8i8
) {
3664 SelectPostLoad(Node
, 4, AArch64::LD1Fourv8b_POST
, AArch64::dsub0
);
3666 } else if (VT
== MVT::v16i8
) {
3667 SelectPostLoad(Node
, 4, AArch64::LD1Fourv16b_POST
, AArch64::qsub0
);
3669 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3670 SelectPostLoad(Node
, 4, AArch64::LD1Fourv4h_POST
, AArch64::dsub0
);
3672 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3673 SelectPostLoad(Node
, 4, AArch64::LD1Fourv8h_POST
, AArch64::qsub0
);
3675 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3676 SelectPostLoad(Node
, 4, AArch64::LD1Fourv2s_POST
, AArch64::dsub0
);
3678 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3679 SelectPostLoad(Node
, 4, AArch64::LD1Fourv4s_POST
, AArch64::qsub0
);
3681 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3682 SelectPostLoad(Node
, 4, AArch64::LD1Fourv1d_POST
, AArch64::dsub0
);
3684 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3685 SelectPostLoad(Node
, 4, AArch64::LD1Fourv2d_POST
, AArch64::qsub0
);
3690 case AArch64ISD::LD1DUPpost
: {
3691 if (VT
== MVT::v8i8
) {
3692 SelectPostLoad(Node
, 1, AArch64::LD1Rv8b_POST
, AArch64::dsub0
);
3694 } else if (VT
== MVT::v16i8
) {
3695 SelectPostLoad(Node
, 1, AArch64::LD1Rv16b_POST
, AArch64::qsub0
);
3697 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3698 SelectPostLoad(Node
, 1, AArch64::LD1Rv4h_POST
, AArch64::dsub0
);
3700 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3701 SelectPostLoad(Node
, 1, AArch64::LD1Rv8h_POST
, AArch64::qsub0
);
3703 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3704 SelectPostLoad(Node
, 1, AArch64::LD1Rv2s_POST
, AArch64::dsub0
);
3706 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3707 SelectPostLoad(Node
, 1, AArch64::LD1Rv4s_POST
, AArch64::qsub0
);
3709 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3710 SelectPostLoad(Node
, 1, AArch64::LD1Rv1d_POST
, AArch64::dsub0
);
3712 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3713 SelectPostLoad(Node
, 1, AArch64::LD1Rv2d_POST
, AArch64::qsub0
);
3718 case AArch64ISD::LD2DUPpost
: {
3719 if (VT
== MVT::v8i8
) {
3720 SelectPostLoad(Node
, 2, AArch64::LD2Rv8b_POST
, AArch64::dsub0
);
3722 } else if (VT
== MVT::v16i8
) {
3723 SelectPostLoad(Node
, 2, AArch64::LD2Rv16b_POST
, AArch64::qsub0
);
3725 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3726 SelectPostLoad(Node
, 2, AArch64::LD2Rv4h_POST
, AArch64::dsub0
);
3728 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3729 SelectPostLoad(Node
, 2, AArch64::LD2Rv8h_POST
, AArch64::qsub0
);
3731 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3732 SelectPostLoad(Node
, 2, AArch64::LD2Rv2s_POST
, AArch64::dsub0
);
3734 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3735 SelectPostLoad(Node
, 2, AArch64::LD2Rv4s_POST
, AArch64::qsub0
);
3737 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3738 SelectPostLoad(Node
, 2, AArch64::LD2Rv1d_POST
, AArch64::dsub0
);
3740 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3741 SelectPostLoad(Node
, 2, AArch64::LD2Rv2d_POST
, AArch64::qsub0
);
3746 case AArch64ISD::LD3DUPpost
: {
3747 if (VT
== MVT::v8i8
) {
3748 SelectPostLoad(Node
, 3, AArch64::LD3Rv8b_POST
, AArch64::dsub0
);
3750 } else if (VT
== MVT::v16i8
) {
3751 SelectPostLoad(Node
, 3, AArch64::LD3Rv16b_POST
, AArch64::qsub0
);
3753 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3754 SelectPostLoad(Node
, 3, AArch64::LD3Rv4h_POST
, AArch64::dsub0
);
3756 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3757 SelectPostLoad(Node
, 3, AArch64::LD3Rv8h_POST
, AArch64::qsub0
);
3759 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3760 SelectPostLoad(Node
, 3, AArch64::LD3Rv2s_POST
, AArch64::dsub0
);
3762 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3763 SelectPostLoad(Node
, 3, AArch64::LD3Rv4s_POST
, AArch64::qsub0
);
3765 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3766 SelectPostLoad(Node
, 3, AArch64::LD3Rv1d_POST
, AArch64::dsub0
);
3768 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3769 SelectPostLoad(Node
, 3, AArch64::LD3Rv2d_POST
, AArch64::qsub0
);
3774 case AArch64ISD::LD4DUPpost
: {
3775 if (VT
== MVT::v8i8
) {
3776 SelectPostLoad(Node
, 4, AArch64::LD4Rv8b_POST
, AArch64::dsub0
);
3778 } else if (VT
== MVT::v16i8
) {
3779 SelectPostLoad(Node
, 4, AArch64::LD4Rv16b_POST
, AArch64::qsub0
);
3781 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3782 SelectPostLoad(Node
, 4, AArch64::LD4Rv4h_POST
, AArch64::dsub0
);
3784 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3785 SelectPostLoad(Node
, 4, AArch64::LD4Rv8h_POST
, AArch64::qsub0
);
3787 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3788 SelectPostLoad(Node
, 4, AArch64::LD4Rv2s_POST
, AArch64::dsub0
);
3790 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3791 SelectPostLoad(Node
, 4, AArch64::LD4Rv4s_POST
, AArch64::qsub0
);
3793 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3794 SelectPostLoad(Node
, 4, AArch64::LD4Rv1d_POST
, AArch64::dsub0
);
3796 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3797 SelectPostLoad(Node
, 4, AArch64::LD4Rv2d_POST
, AArch64::qsub0
);
3802 case AArch64ISD::LD1LANEpost
: {
3803 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3804 SelectPostLoadLane(Node
, 1, AArch64::LD1i8_POST
);
3806 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3808 SelectPostLoadLane(Node
, 1, AArch64::LD1i16_POST
);
3810 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3812 SelectPostLoadLane(Node
, 1, AArch64::LD1i32_POST
);
3814 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3816 SelectPostLoadLane(Node
, 1, AArch64::LD1i64_POST
);
3821 case AArch64ISD::LD2LANEpost
: {
3822 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3823 SelectPostLoadLane(Node
, 2, AArch64::LD2i8_POST
);
3825 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3827 SelectPostLoadLane(Node
, 2, AArch64::LD2i16_POST
);
3829 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3831 SelectPostLoadLane(Node
, 2, AArch64::LD2i32_POST
);
3833 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3835 SelectPostLoadLane(Node
, 2, AArch64::LD2i64_POST
);
3840 case AArch64ISD::LD3LANEpost
: {
3841 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3842 SelectPostLoadLane(Node
, 3, AArch64::LD3i8_POST
);
3844 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3846 SelectPostLoadLane(Node
, 3, AArch64::LD3i16_POST
);
3848 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3850 SelectPostLoadLane(Node
, 3, AArch64::LD3i32_POST
);
3852 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3854 SelectPostLoadLane(Node
, 3, AArch64::LD3i64_POST
);
3859 case AArch64ISD::LD4LANEpost
: {
3860 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3861 SelectPostLoadLane(Node
, 4, AArch64::LD4i8_POST
);
3863 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3865 SelectPostLoadLane(Node
, 4, AArch64::LD4i16_POST
);
3867 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3869 SelectPostLoadLane(Node
, 4, AArch64::LD4i32_POST
);
3871 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3873 SelectPostLoadLane(Node
, 4, AArch64::LD4i64_POST
);
3878 case AArch64ISD::ST2post
: {
3879 VT
= Node
->getOperand(1).getValueType();
3880 if (VT
== MVT::v8i8
) {
3881 SelectPostStore(Node
, 2, AArch64::ST2Twov8b_POST
);
3883 } else if (VT
== MVT::v16i8
) {
3884 SelectPostStore(Node
, 2, AArch64::ST2Twov16b_POST
);
3886 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3887 SelectPostStore(Node
, 2, AArch64::ST2Twov4h_POST
);
3889 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3890 SelectPostStore(Node
, 2, AArch64::ST2Twov8h_POST
);
3892 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3893 SelectPostStore(Node
, 2, AArch64::ST2Twov2s_POST
);
3895 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3896 SelectPostStore(Node
, 2, AArch64::ST2Twov4s_POST
);
3898 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3899 SelectPostStore(Node
, 2, AArch64::ST2Twov2d_POST
);
3901 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3902 SelectPostStore(Node
, 2, AArch64::ST1Twov1d_POST
);
3907 case AArch64ISD::ST3post
: {
3908 VT
= Node
->getOperand(1).getValueType();
3909 if (VT
== MVT::v8i8
) {
3910 SelectPostStore(Node
, 3, AArch64::ST3Threev8b_POST
);
3912 } else if (VT
== MVT::v16i8
) {
3913 SelectPostStore(Node
, 3, AArch64::ST3Threev16b_POST
);
3915 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3916 SelectPostStore(Node
, 3, AArch64::ST3Threev4h_POST
);
3918 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3919 SelectPostStore(Node
, 3, AArch64::ST3Threev8h_POST
);
3921 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3922 SelectPostStore(Node
, 3, AArch64::ST3Threev2s_POST
);
3924 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3925 SelectPostStore(Node
, 3, AArch64::ST3Threev4s_POST
);
3927 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3928 SelectPostStore(Node
, 3, AArch64::ST3Threev2d_POST
);
3930 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3931 SelectPostStore(Node
, 3, AArch64::ST1Threev1d_POST
);
3936 case AArch64ISD::ST4post
: {
3937 VT
= Node
->getOperand(1).getValueType();
3938 if (VT
== MVT::v8i8
) {
3939 SelectPostStore(Node
, 4, AArch64::ST4Fourv8b_POST
);
3941 } else if (VT
== MVT::v16i8
) {
3942 SelectPostStore(Node
, 4, AArch64::ST4Fourv16b_POST
);
3944 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3945 SelectPostStore(Node
, 4, AArch64::ST4Fourv4h_POST
);
3947 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3948 SelectPostStore(Node
, 4, AArch64::ST4Fourv8h_POST
);
3950 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3951 SelectPostStore(Node
, 4, AArch64::ST4Fourv2s_POST
);
3953 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3954 SelectPostStore(Node
, 4, AArch64::ST4Fourv4s_POST
);
3956 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3957 SelectPostStore(Node
, 4, AArch64::ST4Fourv2d_POST
);
3959 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3960 SelectPostStore(Node
, 4, AArch64::ST1Fourv1d_POST
);
3965 case AArch64ISD::ST1x2post
: {
3966 VT
= Node
->getOperand(1).getValueType();
3967 if (VT
== MVT::v8i8
) {
3968 SelectPostStore(Node
, 2, AArch64::ST1Twov8b_POST
);
3970 } else if (VT
== MVT::v16i8
) {
3971 SelectPostStore(Node
, 2, AArch64::ST1Twov16b_POST
);
3973 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3974 SelectPostStore(Node
, 2, AArch64::ST1Twov4h_POST
);
3976 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3977 SelectPostStore(Node
, 2, AArch64::ST1Twov8h_POST
);
3979 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3980 SelectPostStore(Node
, 2, AArch64::ST1Twov2s_POST
);
3982 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3983 SelectPostStore(Node
, 2, AArch64::ST1Twov4s_POST
);
3985 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3986 SelectPostStore(Node
, 2, AArch64::ST1Twov1d_POST
);
3988 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3989 SelectPostStore(Node
, 2, AArch64::ST1Twov2d_POST
);
3994 case AArch64ISD::ST1x3post
: {
3995 VT
= Node
->getOperand(1).getValueType();
3996 if (VT
== MVT::v8i8
) {
3997 SelectPostStore(Node
, 3, AArch64::ST1Threev8b_POST
);
3999 } else if (VT
== MVT::v16i8
) {
4000 SelectPostStore(Node
, 3, AArch64::ST1Threev16b_POST
);
4002 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
4003 SelectPostStore(Node
, 3, AArch64::ST1Threev4h_POST
);
4005 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
4006 SelectPostStore(Node
, 3, AArch64::ST1Threev8h_POST
);
4008 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4009 SelectPostStore(Node
, 3, AArch64::ST1Threev2s_POST
);
4011 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4012 SelectPostStore(Node
, 3, AArch64::ST1Threev4s_POST
);
4014 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4015 SelectPostStore(Node
, 3, AArch64::ST1Threev1d_POST
);
4017 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4018 SelectPostStore(Node
, 3, AArch64::ST1Threev2d_POST
);
4023 case AArch64ISD::ST1x4post
: {
4024 VT
= Node
->getOperand(1).getValueType();
4025 if (VT
== MVT::v8i8
) {
4026 SelectPostStore(Node
, 4, AArch64::ST1Fourv8b_POST
);
4028 } else if (VT
== MVT::v16i8
) {
4029 SelectPostStore(Node
, 4, AArch64::ST1Fourv16b_POST
);
4031 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
4032 SelectPostStore(Node
, 4, AArch64::ST1Fourv4h_POST
);
4034 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
4035 SelectPostStore(Node
, 4, AArch64::ST1Fourv8h_POST
);
4037 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4038 SelectPostStore(Node
, 4, AArch64::ST1Fourv2s_POST
);
4040 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4041 SelectPostStore(Node
, 4, AArch64::ST1Fourv4s_POST
);
4043 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4044 SelectPostStore(Node
, 4, AArch64::ST1Fourv1d_POST
);
4046 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4047 SelectPostStore(Node
, 4, AArch64::ST1Fourv2d_POST
);
4052 case AArch64ISD::ST2LANEpost
: {
4053 VT
= Node
->getOperand(1).getValueType();
4054 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4055 SelectPostStoreLane(Node
, 2, AArch64::ST2i8_POST
);
4057 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4059 SelectPostStoreLane(Node
, 2, AArch64::ST2i16_POST
);
4061 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4063 SelectPostStoreLane(Node
, 2, AArch64::ST2i32_POST
);
4065 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4067 SelectPostStoreLane(Node
, 2, AArch64::ST2i64_POST
);
4072 case AArch64ISD::ST3LANEpost
: {
4073 VT
= Node
->getOperand(1).getValueType();
4074 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4075 SelectPostStoreLane(Node
, 3, AArch64::ST3i8_POST
);
4077 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4079 SelectPostStoreLane(Node
, 3, AArch64::ST3i16_POST
);
4081 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4083 SelectPostStoreLane(Node
, 3, AArch64::ST3i32_POST
);
4085 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4087 SelectPostStoreLane(Node
, 3, AArch64::ST3i64_POST
);
4092 case AArch64ISD::ST4LANEpost
: {
4093 VT
= Node
->getOperand(1).getValueType();
4094 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4095 SelectPostStoreLane(Node
, 4, AArch64::ST4i8_POST
);
4097 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4099 SelectPostStoreLane(Node
, 4, AArch64::ST4i16_POST
);
4101 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4103 SelectPostStoreLane(Node
, 4, AArch64::ST4i32_POST
);
4105 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4107 SelectPostStoreLane(Node
, 4, AArch64::ST4i64_POST
);
4114 // Select the default instruction
4118 /// createAArch64ISelDag - This pass converts a legalized DAG into a
4119 /// AArch64-specific DAG, ready for instruction scheduling.
4120 FunctionPass
*llvm::createAArch64ISelDag(AArch64TargetMachine
&TM
,
4121 CodeGenOpt::Level OptLevel
) {
4122 return new AArch64DAGToDAGISel(TM
, OptLevel
);