Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / AArch64 / AArch64TargetMachine.cpp
blobd213f20755f8f5ae17dddc212ef2842458f323ab
1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
12 #include "AArch64TargetMachine.h"
13 #include "AArch64.h"
14 #include "AArch64MacroFusion.h"
15 #include "AArch64Subtarget.h"
16 #include "AArch64TargetObjectFile.h"
17 #include "AArch64TargetTransformInfo.h"
18 #include "MCTargetDesc/AArch64MCTargetDesc.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
24 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
25 #include "llvm/CodeGen/GlobalISel/Localizer.h"
26 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
27 #include "llvm/CodeGen/MachineScheduler.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCTargetOptions.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/CodeGen.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Target/TargetLoweringObjectFile.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include <memory>
42 #include <string>
44 using namespace llvm;
46 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp",
47 cl::desc("Enable the CCMP formation pass"),
48 cl::init(true), cl::Hidden);
50 static cl::opt<bool>
51 EnableCondBrTuning("aarch64-enable-cond-br-tune",
52 cl::desc("Enable the conditional branch tuning pass"),
53 cl::init(true), cl::Hidden);
55 static cl::opt<bool> EnableMCR("aarch64-enable-mcr",
56 cl::desc("Enable the machine combiner pass"),
57 cl::init(true), cl::Hidden);
59 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress",
60 cl::desc("Suppress STP for AArch64"),
61 cl::init(true), cl::Hidden);
63 static cl::opt<bool> EnableAdvSIMDScalar(
64 "aarch64-enable-simd-scalar",
65 cl::desc("Enable use of AdvSIMD scalar integer instructions"),
66 cl::init(false), cl::Hidden);
68 static cl::opt<bool>
69 EnablePromoteConstant("aarch64-enable-promote-const",
70 cl::desc("Enable the promote constant pass"),
71 cl::init(true), cl::Hidden);
73 static cl::opt<bool> EnableCollectLOH(
74 "aarch64-enable-collect-loh",
75 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"),
76 cl::init(true), cl::Hidden);
78 static cl::opt<bool>
79 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden,
80 cl::desc("Enable the pass that removes dead"
81 " definitons and replaces stores to"
82 " them with stores to the zero"
83 " register"),
84 cl::init(true));
86 static cl::opt<bool> EnableRedundantCopyElimination(
87 "aarch64-enable-copyelim",
88 cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
89 cl::Hidden);
91 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt",
92 cl::desc("Enable the load/store pair"
93 " optimization pass"),
94 cl::init(true), cl::Hidden);
96 static cl::opt<bool> EnableAtomicTidy(
97 "aarch64-enable-atomic-cfg-tidy", cl::Hidden,
98 cl::desc("Run SimplifyCFG after expanding atomic operations"
99 " to make use of cmpxchg flow-based information"),
100 cl::init(true));
102 static cl::opt<bool>
103 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden,
104 cl::desc("Run early if-conversion"),
105 cl::init(true));
107 static cl::opt<bool>
108 EnableCondOpt("aarch64-enable-condopt",
109 cl::desc("Enable the condition optimizer pass"),
110 cl::init(true), cl::Hidden);
112 static cl::opt<bool>
113 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden,
114 cl::desc("Work around Cortex-A53 erratum 835769"),
115 cl::init(false));
117 static cl::opt<bool>
118 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden,
119 cl::desc("Enable optimizations on complex GEPs"),
120 cl::init(false));
122 static cl::opt<bool>
123 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true),
124 cl::desc("Relax out of range conditional branches"));
126 static cl::opt<bool> EnableCompressJumpTables(
127 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true),
128 cl::desc("Use smallest entry possible for jump tables"));
130 // FIXME: Unify control over GlobalMerge.
131 static cl::opt<cl::boolOrDefault>
132 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden,
133 cl::desc("Enable the global merge pass"));
135 static cl::opt<bool>
136 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden,
137 cl::desc("Enable the loop data prefetch pass"),
138 cl::init(true));
140 static cl::opt<int> EnableGlobalISelAtO(
141 "aarch64-enable-global-isel-at-O", cl::Hidden,
142 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"),
143 cl::init(0));
145 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix",
146 cl::init(true), cl::Hidden);
148 static cl::opt<bool>
149 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden,
150 cl::desc("Enable the AAcrh64 branch target pass"),
151 cl::init(true));
153 extern "C" void LLVMInitializeAArch64Target() {
154 // Register the target.
155 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget());
156 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget());
157 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target());
158 auto PR = PassRegistry::getPassRegistry();
159 initializeGlobalISel(*PR);
160 initializeAArch64A53Fix835769Pass(*PR);
161 initializeAArch64A57FPLoadBalancingPass(*PR);
162 initializeAArch64AdvSIMDScalarPass(*PR);
163 initializeAArch64BranchTargetsPass(*PR);
164 initializeAArch64CollectLOHPass(*PR);
165 initializeAArch64CompressJumpTablesPass(*PR);
166 initializeAArch64ConditionalComparesPass(*PR);
167 initializeAArch64ConditionOptimizerPass(*PR);
168 initializeAArch64DeadRegisterDefinitionsPass(*PR);
169 initializeAArch64ExpandPseudoPass(*PR);
170 initializeAArch64LoadStoreOptPass(*PR);
171 initializeAArch64SIMDInstrOptPass(*PR);
172 initializeAArch64PreLegalizerCombinerPass(*PR);
173 initializeAArch64PromoteConstantPass(*PR);
174 initializeAArch64RedundantCopyEliminationPass(*PR);
175 initializeAArch64StorePairSuppressPass(*PR);
176 initializeFalkorHWPFFixPass(*PR);
177 initializeFalkorMarkStridedAccessesLegacyPass(*PR);
178 initializeLDTLSCleanupPass(*PR);
179 initializeAArch64SpeculationHardeningPass(*PR);
182 //===----------------------------------------------------------------------===//
183 // AArch64 Lowering public interface.
184 //===----------------------------------------------------------------------===//
185 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
186 if (TT.isOSBinFormatMachO())
187 return llvm::make_unique<AArch64_MachoTargetObjectFile>();
188 if (TT.isOSBinFormatCOFF())
189 return llvm::make_unique<AArch64_COFFTargetObjectFile>();
191 return llvm::make_unique<AArch64_ELFTargetObjectFile>();
194 // Helper function to build a DataLayout string
195 static std::string computeDataLayout(const Triple &TT,
196 const MCTargetOptions &Options,
197 bool LittleEndian) {
198 if (Options.getABIName() == "ilp32")
199 return "e-m:e-p:32:32-i8:8-i16:16-i64:64-S128";
200 if (TT.isOSBinFormatMachO())
201 return "e-m:o-i64:64-i128:128-n32:64-S128";
202 if (TT.isOSBinFormatCOFF())
203 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128";
204 if (LittleEndian)
205 return "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128";
206 return "E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128";
209 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
210 Optional<Reloc::Model> RM) {
211 // AArch64 Darwin and Windows are always PIC.
212 if (TT.isOSDarwin() || TT.isOSWindows())
213 return Reloc::PIC_;
214 // On ELF platforms the default static relocation model has a smart enough
215 // linker to cope with referencing external symbols defined in a shared
216 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC.
217 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
218 return Reloc::Static;
219 return *RM;
222 static CodeModel::Model
223 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM,
224 bool JIT) {
225 if (CM) {
226 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny &&
227 *CM != CodeModel::Large) {
228 if (!TT.isOSFuchsia())
229 report_fatal_error(
230 "Only small, tiny and large code models are allowed on AArch64");
231 else if (*CM != CodeModel::Kernel)
232 report_fatal_error("Only small, tiny, kernel, and large code models "
233 "are allowed on AArch64");
234 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF())
235 report_fatal_error("tiny code model is only supported on ELF");
236 return *CM;
238 // The default MCJIT memory managers make no guarantees about where they can
239 // find an executable page; JITed code needs to be able to refer to globals
240 // no matter how far away they are.
241 if (JIT)
242 return CodeModel::Large;
243 return CodeModel::Small;
246 /// Create an AArch64 architecture model.
248 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT,
249 StringRef CPU, StringRef FS,
250 const TargetOptions &Options,
251 Optional<Reloc::Model> RM,
252 Optional<CodeModel::Model> CM,
253 CodeGenOpt::Level OL, bool JIT,
254 bool LittleEndian)
255 : LLVMTargetMachine(T,
256 computeDataLayout(TT, Options.MCOptions, LittleEndian),
257 TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM),
258 getEffectiveAArch64CodeModel(TT, CM, JIT), OL),
259 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) {
260 initAsmInfo();
262 if (TT.isOSBinFormatMachO()) {
263 this->Options.TrapUnreachable = true;
264 this->Options.NoTrapAfterNoreturn = true;
267 if (getMCAsmInfo()->usesWindowsCFI()) {
268 // Unwinding can get confused if the last instruction in an
269 // exception-handling region (function, funclet, try block, etc.)
270 // is a call.
272 // FIXME: We could elide the trap if the next instruction would be in
273 // the same region anyway.
274 this->Options.TrapUnreachable = true;
277 // Enable GlobalISel at or below EnableGlobalISelAt0.
278 if (getOptLevel() <= EnableGlobalISelAtO) {
279 setGlobalISel(true);
280 setGlobalISelAbort(GlobalISelAbortMode::Disable);
283 // AArch64 supports the MachineOutliner.
284 setMachineOutliner(true);
286 // AArch64 supports default outlining behaviour.
287 setSupportsDefaultOutlining(true);
290 AArch64TargetMachine::~AArch64TargetMachine() = default;
292 const AArch64Subtarget *
293 AArch64TargetMachine::getSubtargetImpl(const Function &F) const {
294 Attribute CPUAttr = F.getFnAttribute("target-cpu");
295 Attribute FSAttr = F.getFnAttribute("target-features");
297 std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
298 ? CPUAttr.getValueAsString().str()
299 : TargetCPU;
300 std::string FS = !FSAttr.hasAttribute(Attribute::None)
301 ? FSAttr.getValueAsString().str()
302 : TargetFS;
304 auto &I = SubtargetMap[CPU + FS];
305 if (!I) {
306 // This needs to be done before we create a new subtarget since any
307 // creation will depend on the TM and the code generation flags on the
308 // function that reside in TargetOptions.
309 resetTargetOptions(F);
310 I = llvm::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this,
311 isLittle);
313 return I.get();
316 void AArch64leTargetMachine::anchor() { }
318 AArch64leTargetMachine::AArch64leTargetMachine(
319 const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
320 const TargetOptions &Options, Optional<Reloc::Model> RM,
321 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
322 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {}
324 void AArch64beTargetMachine::anchor() { }
326 AArch64beTargetMachine::AArch64beTargetMachine(
327 const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
328 const TargetOptions &Options, Optional<Reloc::Model> RM,
329 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
330 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {}
332 namespace {
334 /// AArch64 Code Generator Pass Configuration Options.
335 class AArch64PassConfig : public TargetPassConfig {
336 public:
337 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM)
338 : TargetPassConfig(TM, PM) {
339 if (TM.getOptLevel() != CodeGenOpt::None)
340 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
343 AArch64TargetMachine &getAArch64TargetMachine() const {
344 return getTM<AArch64TargetMachine>();
347 ScheduleDAGInstrs *
348 createMachineScheduler(MachineSchedContext *C) const override {
349 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
350 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
351 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
352 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
353 if (ST.hasFusion())
354 DAG->addMutation(createAArch64MacroFusionDAGMutation());
355 return DAG;
358 ScheduleDAGInstrs *
359 createPostMachineScheduler(MachineSchedContext *C) const override {
360 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
361 if (ST.hasFusion()) {
362 // Run the Macro Fusion after RA again since literals are expanded from
363 // pseudos then (v. addPreSched2()).
364 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
365 DAG->addMutation(createAArch64MacroFusionDAGMutation());
366 return DAG;
369 return nullptr;
372 void addIRPasses() override;
373 bool addPreISel() override;
374 bool addInstSelector() override;
375 bool addIRTranslator() override;
376 void addPreLegalizeMachineIR() override;
377 bool addLegalizeMachineIR() override;
378 bool addRegBankSelect() override;
379 void addPreGlobalInstructionSelect() override;
380 bool addGlobalInstructionSelect() override;
381 bool addILPOpts() override;
382 void addPreRegAlloc() override;
383 void addPostRegAlloc() override;
384 void addPreSched2() override;
385 void addPreEmitPass() override;
388 } // end anonymous namespace
390 TargetTransformInfo
391 AArch64TargetMachine::getTargetTransformInfo(const Function &F) {
392 return TargetTransformInfo(AArch64TTIImpl(this, F));
395 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) {
396 return new AArch64PassConfig(*this, PM);
399 void AArch64PassConfig::addIRPasses() {
400 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg
401 // ourselves.
402 addPass(createAtomicExpandPass());
404 // Cmpxchg instructions are often used with a subsequent comparison to
405 // determine whether it succeeded. We can exploit existing control-flow in
406 // ldrex/strex loops to simplify this, but it needs tidying up.
407 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
408 addPass(createCFGSimplificationPass(1, true, true, false, true));
410 // Run LoopDataPrefetch
412 // Run this before LSR to remove the multiplies involved in computing the
413 // pointer values N iterations ahead.
414 if (TM->getOptLevel() != CodeGenOpt::None) {
415 if (EnableLoopDataPrefetch)
416 addPass(createLoopDataPrefetchPass());
417 if (EnableFalkorHWPFFix)
418 addPass(createFalkorMarkStridedAccessesPass());
421 TargetPassConfig::addIRPasses();
423 // Match interleaved memory accesses to ldN/stN intrinsics.
424 if (TM->getOptLevel() != CodeGenOpt::None) {
425 addPass(createInterleavedLoadCombinePass());
426 addPass(createInterleavedAccessPass());
429 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) {
430 // Call SeparateConstOffsetFromGEP pass to extract constants within indices
431 // and lower a GEP with multiple indices to either arithmetic operations or
432 // multiple GEPs with single index.
433 addPass(createSeparateConstOffsetFromGEPPass(true));
434 // Call EarlyCSE pass to find and remove subexpressions in the lowered
435 // result.
436 addPass(createEarlyCSEPass());
437 // Do loop invariant code motion in case part of the lowered result is
438 // invariant.
439 addPass(createLICMPass());
443 // Pass Pipeline Configuration
444 bool AArch64PassConfig::addPreISel() {
445 // Run promote constant before global merge, so that the promoted constants
446 // get a chance to be merged
447 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant)
448 addPass(createAArch64PromoteConstantPass());
449 // FIXME: On AArch64, this depends on the type.
450 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
451 // and the offset has to be a multiple of the related size in bytes.
452 if ((TM->getOptLevel() != CodeGenOpt::None &&
453 EnableGlobalMerge == cl::BOU_UNSET) ||
454 EnableGlobalMerge == cl::BOU_TRUE) {
455 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
456 (EnableGlobalMerge == cl::BOU_UNSET);
457 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize));
460 return false;
463 bool AArch64PassConfig::addInstSelector() {
464 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel()));
466 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many
467 // references to _TLS_MODULE_BASE_ as possible.
468 if (TM->getTargetTriple().isOSBinFormatELF() &&
469 getOptLevel() != CodeGenOpt::None)
470 addPass(createAArch64CleanupLocalDynamicTLSPass());
472 return false;
475 bool AArch64PassConfig::addIRTranslator() {
476 addPass(new IRTranslator());
477 return false;
480 void AArch64PassConfig::addPreLegalizeMachineIR() {
481 addPass(createAArch64PreLegalizeCombiner());
484 bool AArch64PassConfig::addLegalizeMachineIR() {
485 addPass(new Legalizer());
486 return false;
489 bool AArch64PassConfig::addRegBankSelect() {
490 addPass(new RegBankSelect());
491 return false;
494 void AArch64PassConfig::addPreGlobalInstructionSelect() {
495 // Workaround the deficiency of the fast register allocator.
496 if (TM->getOptLevel() == CodeGenOpt::None)
497 addPass(new Localizer());
500 bool AArch64PassConfig::addGlobalInstructionSelect() {
501 addPass(new InstructionSelect());
502 return false;
505 bool AArch64PassConfig::addILPOpts() {
506 if (EnableCondOpt)
507 addPass(createAArch64ConditionOptimizerPass());
508 if (EnableCCMP)
509 addPass(createAArch64ConditionalCompares());
510 if (EnableMCR)
511 addPass(&MachineCombinerID);
512 if (EnableCondBrTuning)
513 addPass(createAArch64CondBrTuning());
514 if (EnableEarlyIfConversion)
515 addPass(&EarlyIfConverterID);
516 if (EnableStPairSuppress)
517 addPass(createAArch64StorePairSuppressPass());
518 addPass(createAArch64SIMDInstrOptPass());
519 return true;
522 void AArch64PassConfig::addPreRegAlloc() {
523 // Change dead register definitions to refer to the zero register.
524 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination)
525 addPass(createAArch64DeadRegisterDefinitions());
527 // Use AdvSIMD scalar instructions whenever profitable.
528 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) {
529 addPass(createAArch64AdvSIMDScalar());
530 // The AdvSIMD pass may produce copies that can be rewritten to
531 // be register coaleascer friendly.
532 addPass(&PeepholeOptimizerID);
536 void AArch64PassConfig::addPostRegAlloc() {
537 // Remove redundant copy instructions.
538 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination)
539 addPass(createAArch64RedundantCopyEliminationPass());
541 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc())
542 // Improve performance for some FP/SIMD code for A57.
543 addPass(createAArch64A57FPLoadBalancing());
546 void AArch64PassConfig::addPreSched2() {
547 // Expand some pseudo instructions to allow proper scheduling.
548 addPass(createAArch64ExpandPseudoPass());
549 // Use load/store pair instructions when possible.
550 if (TM->getOptLevel() != CodeGenOpt::None) {
551 if (EnableLoadStoreOpt)
552 addPass(createAArch64LoadStoreOptimizationPass());
555 // The AArch64SpeculationHardeningPass destroys dominator tree and natural
556 // loop info, which is needed for the FalkorHWPFFixPass and also later on.
557 // Therefore, run the AArch64SpeculationHardeningPass before the
558 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop
559 // info.
560 addPass(createAArch64SpeculationHardeningPass());
562 if (TM->getOptLevel() != CodeGenOpt::None) {
563 if (EnableFalkorHWPFFix)
564 addPass(createFalkorHWPFFixPass());
568 void AArch64PassConfig::addPreEmitPass() {
569 // Machine Block Placement might have created new opportunities when run
570 // at O3, where the Tail Duplication Threshold is set to 4 instructions.
571 // Run the load/store optimizer once more.
572 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt)
573 addPass(createAArch64LoadStoreOptimizationPass());
575 if (EnableA53Fix835769)
576 addPass(createAArch64A53Fix835769());
577 // Relax conditional branch instructions if they're otherwise out of
578 // range of their destination.
579 if (BranchRelaxation)
580 addPass(&BranchRelaxationPassID);
582 if (EnableBranchTargets)
583 addPass(createAArch64BranchTargetsPass());
585 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables)
586 addPass(createAArch64CompressJumpTablesPass());
588 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH &&
589 TM->getTargetTriple().isOSBinFormatMachO())
590 addPass(createAArch64CollectLOHPass());