1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "AArch64TargetTransformInfo.h"
10 #include "MCTargetDesc/AArch64AddressingModes.h"
11 #include "llvm/Analysis/LoopInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/Support/Debug.h"
21 #define DEBUG_TYPE "aarch64tti"
23 static cl::opt
<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
24 cl::init(true), cl::Hidden
);
26 bool AArch64TTIImpl::areInlineCompatible(const Function
*Caller
,
27 const Function
*Callee
) const {
28 const TargetMachine
&TM
= getTLI()->getTargetMachine();
30 const FeatureBitset
&CallerBits
=
31 TM
.getSubtargetImpl(*Caller
)->getFeatureBits();
32 const FeatureBitset
&CalleeBits
=
33 TM
.getSubtargetImpl(*Callee
)->getFeatureBits();
35 // Inline a callee if its target-features are a subset of the callers
37 return (CallerBits
& CalleeBits
) == CalleeBits
;
40 /// Calculate the cost of materializing a 64-bit value. This helper
41 /// method might only calculate a fraction of a larger immediate. Therefore it
42 /// is valid to return a cost of ZERO.
43 int AArch64TTIImpl::getIntImmCost(int64_t Val
) {
44 // Check if the immediate can be encoded within an instruction.
45 if (Val
== 0 || AArch64_AM::isLogicalImmediate(Val
, 64))
51 // Calculate how many moves we will need to materialize this constant.
52 unsigned LZ
= countLeadingZeros((uint64_t)Val
);
53 return (64 - LZ
+ 15) / 16;
56 /// Calculate the cost of materializing the given constant.
57 int AArch64TTIImpl::getIntImmCost(const APInt
&Imm
, Type
*Ty
) {
58 assert(Ty
->isIntegerTy());
60 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
64 // Sign-extend all constants to a multiple of 64-bit.
67 ImmVal
= Imm
.sext((BitSize
+ 63) & ~0x3fU
);
69 // Split the constant into 64-bit chunks and calculate the cost for each
72 for (unsigned ShiftVal
= 0; ShiftVal
< BitSize
; ShiftVal
+= 64) {
73 APInt Tmp
= ImmVal
.ashr(ShiftVal
).sextOrTrunc(64);
74 int64_t Val
= Tmp
.getSExtValue();
75 Cost
+= getIntImmCost(Val
);
77 // We need at least one instruction to materialze the constant.
78 return std::max(1, Cost
);
81 int AArch64TTIImpl::getIntImmCost(unsigned Opcode
, unsigned Idx
,
82 const APInt
&Imm
, Type
*Ty
) {
83 assert(Ty
->isIntegerTy());
85 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
86 // There is no cost model for constants with a bit size of 0. Return TCC_Free
87 // here, so that constant hoisting will ignore this constant.
91 unsigned ImmIdx
= ~0U;
95 case Instruction::GetElementPtr
:
96 // Always hoist the base address of a GetElementPtr.
98 return 2 * TTI::TCC_Basic
;
100 case Instruction::Store
:
103 case Instruction::Add
:
104 case Instruction::Sub
:
105 case Instruction::Mul
:
106 case Instruction::UDiv
:
107 case Instruction::SDiv
:
108 case Instruction::URem
:
109 case Instruction::SRem
:
110 case Instruction::And
:
111 case Instruction::Or
:
112 case Instruction::Xor
:
113 case Instruction::ICmp
:
116 // Always return TCC_Free for the shift value of a shift instruction.
117 case Instruction::Shl
:
118 case Instruction::LShr
:
119 case Instruction::AShr
:
121 return TTI::TCC_Free
;
123 case Instruction::Trunc
:
124 case Instruction::ZExt
:
125 case Instruction::SExt
:
126 case Instruction::IntToPtr
:
127 case Instruction::PtrToInt
:
128 case Instruction::BitCast
:
129 case Instruction::PHI
:
130 case Instruction::Call
:
131 case Instruction::Select
:
132 case Instruction::Ret
:
133 case Instruction::Load
:
138 int NumConstants
= (BitSize
+ 63) / 64;
139 int Cost
= AArch64TTIImpl::getIntImmCost(Imm
, Ty
);
140 return (Cost
<= NumConstants
* TTI::TCC_Basic
)
141 ? static_cast<int>(TTI::TCC_Free
)
144 return AArch64TTIImpl::getIntImmCost(Imm
, Ty
);
147 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID
, unsigned Idx
,
148 const APInt
&Imm
, Type
*Ty
) {
149 assert(Ty
->isIntegerTy());
151 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
152 // There is no cost model for constants with a bit size of 0. Return TCC_Free
153 // here, so that constant hoisting will ignore this constant.
155 return TTI::TCC_Free
;
159 return TTI::TCC_Free
;
160 case Intrinsic::sadd_with_overflow
:
161 case Intrinsic::uadd_with_overflow
:
162 case Intrinsic::ssub_with_overflow
:
163 case Intrinsic::usub_with_overflow
:
164 case Intrinsic::smul_with_overflow
:
165 case Intrinsic::umul_with_overflow
:
167 int NumConstants
= (BitSize
+ 63) / 64;
168 int Cost
= AArch64TTIImpl::getIntImmCost(Imm
, Ty
);
169 return (Cost
<= NumConstants
* TTI::TCC_Basic
)
170 ? static_cast<int>(TTI::TCC_Free
)
174 case Intrinsic::experimental_stackmap
:
175 if ((Idx
< 2) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
176 return TTI::TCC_Free
;
178 case Intrinsic::experimental_patchpoint_void
:
179 case Intrinsic::experimental_patchpoint_i64
:
180 if ((Idx
< 4) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
181 return TTI::TCC_Free
;
184 return AArch64TTIImpl::getIntImmCost(Imm
, Ty
);
187 TargetTransformInfo::PopcntSupportKind
188 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth
) {
189 assert(isPowerOf2_32(TyWidth
) && "Ty width must be power of 2");
190 if (TyWidth
== 32 || TyWidth
== 64)
191 return TTI::PSK_FastHardware
;
192 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
193 return TTI::PSK_Software
;
196 bool AArch64TTIImpl::isWideningInstruction(Type
*DstTy
, unsigned Opcode
,
197 ArrayRef
<const Value
*> Args
) {
199 // A helper that returns a vector type from the given type. The number of
200 // elements in type Ty determine the vector width.
201 auto toVectorTy
= [&](Type
*ArgTy
) {
202 return VectorType::get(ArgTy
->getScalarType(),
203 DstTy
->getVectorNumElements());
206 // Exit early if DstTy is not a vector type whose elements are at least
208 if (!DstTy
->isVectorTy() || DstTy
->getScalarSizeInBits() < 16)
211 // Determine if the operation has a widening variant. We consider both the
212 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
215 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
216 // verify that their extending operands are eliminated during code
219 case Instruction::Add
: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
220 case Instruction::Sub
: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
226 // To be a widening instruction (either the "wide" or "long" versions), the
227 // second operand must be a sign- or zero extend having a single user. We
228 // only consider extends having a single user because they may otherwise not
230 if (Args
.size() != 2 ||
231 (!isa
<SExtInst
>(Args
[1]) && !isa
<ZExtInst
>(Args
[1])) ||
232 !Args
[1]->hasOneUse())
234 auto *Extend
= cast
<CastInst
>(Args
[1]);
236 // Legalize the destination type and ensure it can be used in a widening
238 auto DstTyL
= TLI
->getTypeLegalizationCost(DL
, DstTy
);
239 unsigned DstElTySize
= DstTyL
.second
.getScalarSizeInBits();
240 if (!DstTyL
.second
.isVector() || DstElTySize
!= DstTy
->getScalarSizeInBits())
243 // Legalize the source type and ensure it can be used in a widening
245 Type
*SrcTy
= toVectorTy(Extend
->getSrcTy());
246 auto SrcTyL
= TLI
->getTypeLegalizationCost(DL
, SrcTy
);
247 unsigned SrcElTySize
= SrcTyL
.second
.getScalarSizeInBits();
248 if (!SrcTyL
.second
.isVector() || SrcElTySize
!= SrcTy
->getScalarSizeInBits())
251 // Get the total number of vector elements in the legalized types.
252 unsigned NumDstEls
= DstTyL
.first
* DstTyL
.second
.getVectorNumElements();
253 unsigned NumSrcEls
= SrcTyL
.first
* SrcTyL
.second
.getVectorNumElements();
255 // Return true if the legalized types have the same number of vector elements
256 // and the destination element type size is twice that of the source type.
257 return NumDstEls
== NumSrcEls
&& 2 * SrcElTySize
== DstElTySize
;
260 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
261 const Instruction
*I
) {
262 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
263 assert(ISD
&& "Invalid opcode");
265 // If the cast is observable, and it is used by a widening instruction (e.g.,
266 // uaddl, saddw, etc.), it may be free.
267 if (I
&& I
->hasOneUse()) {
268 auto *SingleUser
= cast
<Instruction
>(*I
->user_begin());
269 SmallVector
<const Value
*, 4> Operands(SingleUser
->operand_values());
270 if (isWideningInstruction(Dst
, SingleUser
->getOpcode(), Operands
)) {
271 // If the cast is the second operand, it is free. We will generate either
272 // a "wide" or "long" version of the widening instruction.
273 if (I
== SingleUser
->getOperand(1))
275 // If the cast is not the second operand, it will be free if it looks the
276 // same as the second operand. In this case, we will generate a "long"
277 // version of the widening instruction.
278 if (auto *Cast
= dyn_cast
<CastInst
>(SingleUser
->getOperand(1)))
279 if (I
->getOpcode() == unsigned(Cast
->getOpcode()) &&
280 cast
<CastInst
>(I
)->getSrcTy() == Cast
->getSrcTy())
285 EVT SrcTy
= TLI
->getValueType(DL
, Src
);
286 EVT DstTy
= TLI
->getValueType(DL
, Dst
);
288 if (!SrcTy
.isSimple() || !DstTy
.isSimple())
289 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
);
291 static const TypeConversionCostTblEntry
293 { ISD::TRUNCATE
, MVT::v4i16
, MVT::v4i32
, 1 },
294 { ISD::TRUNCATE
, MVT::v4i32
, MVT::v4i64
, 0 },
295 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i32
, 3 },
296 { ISD::TRUNCATE
, MVT::v16i8
, MVT::v16i32
, 6 },
298 // The number of shll instructions for the extension.
299 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
300 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
301 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i32
, 2 },
302 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i32
, 2 },
303 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
304 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
305 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i16
, 2 },
306 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i16
, 2 },
307 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i8
, 7 },
308 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i8
, 7 },
309 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i16
, 6 },
310 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i16
, 6 },
311 { ISD::SIGN_EXTEND
, MVT::v16i16
, MVT::v16i8
, 2 },
312 { ISD::ZERO_EXTEND
, MVT::v16i16
, MVT::v16i8
, 2 },
313 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i8
, 6 },
314 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i8
, 6 },
316 // LowerVectorINT_TO_FP:
317 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 1 },
318 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
319 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 1 },
320 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 1 },
321 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
322 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 1 },
325 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i8
, 3 },
326 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i16
, 3 },
327 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i64
, 2 },
328 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i8
, 3 },
329 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i16
, 3 },
330 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i64
, 2 },
333 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 4 },
334 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
335 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 3 },
336 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
339 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i8
, 10 },
340 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 4 },
341 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i8
, 10 },
342 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 4 },
344 // Complex: to v16f32
345 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i8
, 21 },
346 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i8
, 21 },
349 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 4 },
350 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 4 },
351 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
352 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 4 },
353 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 4 },
354 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
357 // LowerVectorFP_TO_INT
358 { ISD::FP_TO_SINT
, MVT::v2i32
, MVT::v2f32
, 1 },
359 { ISD::FP_TO_SINT
, MVT::v4i32
, MVT::v4f32
, 1 },
360 { ISD::FP_TO_SINT
, MVT::v2i64
, MVT::v2f64
, 1 },
361 { ISD::FP_TO_UINT
, MVT::v2i32
, MVT::v2f32
, 1 },
362 { ISD::FP_TO_UINT
, MVT::v4i32
, MVT::v4f32
, 1 },
363 { ISD::FP_TO_UINT
, MVT::v2i64
, MVT::v2f64
, 1 },
365 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
366 { ISD::FP_TO_SINT
, MVT::v2i64
, MVT::v2f32
, 2 },
367 { ISD::FP_TO_SINT
, MVT::v2i16
, MVT::v2f32
, 1 },
368 { ISD::FP_TO_SINT
, MVT::v2i8
, MVT::v2f32
, 1 },
369 { ISD::FP_TO_UINT
, MVT::v2i64
, MVT::v2f32
, 2 },
370 { ISD::FP_TO_UINT
, MVT::v2i16
, MVT::v2f32
, 1 },
371 { ISD::FP_TO_UINT
, MVT::v2i8
, MVT::v2f32
, 1 },
373 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
374 { ISD::FP_TO_SINT
, MVT::v4i16
, MVT::v4f32
, 2 },
375 { ISD::FP_TO_SINT
, MVT::v4i8
, MVT::v4f32
, 2 },
376 { ISD::FP_TO_UINT
, MVT::v4i16
, MVT::v4f32
, 2 },
377 { ISD::FP_TO_UINT
, MVT::v4i8
, MVT::v4f32
, 2 },
379 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
380 { ISD::FP_TO_SINT
, MVT::v2i32
, MVT::v2f64
, 2 },
381 { ISD::FP_TO_SINT
, MVT::v2i16
, MVT::v2f64
, 2 },
382 { ISD::FP_TO_SINT
, MVT::v2i8
, MVT::v2f64
, 2 },
383 { ISD::FP_TO_UINT
, MVT::v2i32
, MVT::v2f64
, 2 },
384 { ISD::FP_TO_UINT
, MVT::v2i16
, MVT::v2f64
, 2 },
385 { ISD::FP_TO_UINT
, MVT::v2i8
, MVT::v2f64
, 2 },
388 if (const auto *Entry
= ConvertCostTableLookup(ConversionTbl
, ISD
,
390 SrcTy
.getSimpleVT()))
393 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
);
396 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
,
400 // Make sure we were given a valid extend opcode.
401 assert((Opcode
== Instruction::SExt
|| Opcode
== Instruction::ZExt
) &&
404 // We are extending an element we extract from a vector, so the source type
405 // of the extend is the element type of the vector.
406 auto *Src
= VecTy
->getElementType();
408 // Sign- and zero-extends are for integer types only.
409 assert(isa
<IntegerType
>(Dst
) && isa
<IntegerType
>(Src
) && "Invalid type");
411 // Get the cost for the extract. We compute the cost (if any) for the extend
413 auto Cost
= getVectorInstrCost(Instruction::ExtractElement
, VecTy
, Index
);
415 // Legalize the types.
416 auto VecLT
= TLI
->getTypeLegalizationCost(DL
, VecTy
);
417 auto DstVT
= TLI
->getValueType(DL
, Dst
);
418 auto SrcVT
= TLI
->getValueType(DL
, Src
);
420 // If the resulting type is still a vector and the destination type is legal,
421 // we may get the extension for free. If not, get the default cost for the
423 if (!VecLT
.second
.isVector() || !TLI
->isTypeLegal(DstVT
))
424 return Cost
+ getCastInstrCost(Opcode
, Dst
, Src
);
426 // The destination type should be larger than the element type. If not, get
427 // the default cost for the extend.
428 if (DstVT
.getSizeInBits() < SrcVT
.getSizeInBits())
429 return Cost
+ getCastInstrCost(Opcode
, Dst
, Src
);
433 llvm_unreachable("Opcode should be either SExt or ZExt");
435 // For sign-extends, we only need a smov, which performs the extension
437 case Instruction::SExt
:
440 // For zero-extends, the extend is performed automatically by a umov unless
441 // the destination type is i64 and the element type is i8 or i16.
442 case Instruction::ZExt
:
443 if (DstVT
.getSizeInBits() != 64u || SrcVT
.getSizeInBits() == 32u)
447 // If we are unable to perform the extend for free, get the default cost.
448 return Cost
+ getCastInstrCost(Opcode
, Dst
, Src
);
451 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*Val
,
453 assert(Val
->isVectorTy() && "This must be a vector type");
456 // Legalize the type.
457 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Val
);
459 // This type is legalized to a scalar type.
460 if (!LT
.second
.isVector())
463 // The type may be split. Normalize the index to the new type.
464 unsigned Width
= LT
.second
.getVectorNumElements();
465 Index
= Index
% Width
;
467 // The element at index zero is already inside the vector.
472 // All other insert/extracts cost this much.
473 return ST
->getVectorInsertExtractBaseCost();
476 int AArch64TTIImpl::getArithmeticInstrCost(
477 unsigned Opcode
, Type
*Ty
, TTI::OperandValueKind Opd1Info
,
478 TTI::OperandValueKind Opd2Info
, TTI::OperandValueProperties Opd1PropInfo
,
479 TTI::OperandValueProperties Opd2PropInfo
, ArrayRef
<const Value
*> Args
) {
480 // Legalize the type.
481 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
483 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
484 // add in the widening overhead specified by the sub-target. Since the
485 // extends feeding widening instructions are performed automatically, they
486 // aren't present in the generated code and have a zero cost. By adding a
487 // widening overhead here, we attach the total cost of the combined operation
488 // to the widening instruction.
490 if (isWideningInstruction(Ty
, Opcode
, Args
))
491 Cost
+= ST
->getWideningBaseCost();
493 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
497 return Cost
+ BaseT::getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
498 Opd1PropInfo
, Opd2PropInfo
);
500 if (Opd2Info
== TargetTransformInfo::OK_UniformConstantValue
&&
501 Opd2PropInfo
== TargetTransformInfo::OP_PowerOf2
) {
502 // On AArch64, scalar signed division by constants power-of-two are
503 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
504 // The OperandValue properties many not be same as that of previous
505 // operation; conservatively assume OP_None.
506 Cost
+= getArithmeticInstrCost(Instruction::Add
, Ty
, Opd1Info
, Opd2Info
,
507 TargetTransformInfo::OP_None
,
508 TargetTransformInfo::OP_None
);
509 Cost
+= getArithmeticInstrCost(Instruction::Sub
, Ty
, Opd1Info
, Opd2Info
,
510 TargetTransformInfo::OP_None
,
511 TargetTransformInfo::OP_None
);
512 Cost
+= getArithmeticInstrCost(Instruction::Select
, Ty
, Opd1Info
, Opd2Info
,
513 TargetTransformInfo::OP_None
,
514 TargetTransformInfo::OP_None
);
515 Cost
+= getArithmeticInstrCost(Instruction::AShr
, Ty
, Opd1Info
, Opd2Info
,
516 TargetTransformInfo::OP_None
,
517 TargetTransformInfo::OP_None
);
522 if (Opd2Info
== TargetTransformInfo::OK_UniformConstantValue
) {
523 auto VT
= TLI
->getValueType(DL
, Ty
);
524 if (TLI
->isOperationLegalOrCustom(ISD::MULHU
, VT
)) {
525 // Vector signed division by constant are expanded to the
526 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
527 // to MULHS + SUB + SRL + ADD + SRL.
528 int MulCost
= getArithmeticInstrCost(Instruction::Mul
, Ty
, Opd1Info
,
530 TargetTransformInfo::OP_None
,
531 TargetTransformInfo::OP_None
);
532 int AddCost
= getArithmeticInstrCost(Instruction::Add
, Ty
, Opd1Info
,
534 TargetTransformInfo::OP_None
,
535 TargetTransformInfo::OP_None
);
536 int ShrCost
= getArithmeticInstrCost(Instruction::AShr
, Ty
, Opd1Info
,
538 TargetTransformInfo::OP_None
,
539 TargetTransformInfo::OP_None
);
540 return MulCost
* 2 + AddCost
* 2 + ShrCost
* 2 + 1;
544 Cost
+= BaseT::getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
545 Opd1PropInfo
, Opd2PropInfo
);
546 if (Ty
->isVectorTy()) {
547 // On AArch64, vector divisions are not supported natively and are
548 // expanded into scalar divisions of each pair of elements.
549 Cost
+= getArithmeticInstrCost(Instruction::ExtractElement
, Ty
, Opd1Info
,
550 Opd2Info
, Opd1PropInfo
, Opd2PropInfo
);
551 Cost
+= getArithmeticInstrCost(Instruction::InsertElement
, Ty
, Opd1Info
,
552 Opd2Info
, Opd1PropInfo
, Opd2PropInfo
);
553 // TODO: if one of the arguments is scalar, then it's not necessary to
554 // double the cost of handling the vector elements.
564 // These nodes are marked as 'custom' for combining purposes only.
565 // We know that they are legal. See LowerAdd in ISelLowering.
566 return (Cost
+ 1) * LT
.first
;
570 int AArch64TTIImpl::getAddressComputationCost(Type
*Ty
, ScalarEvolution
*SE
,
572 // Address computations in vectorized code with non-consecutive addresses will
573 // likely result in more instructions compared to scalar code where the
574 // computation can more often be merged into the index mode. The resulting
575 // extra micro-ops can significantly decrease throughput.
576 unsigned NumVectorInstToHideOverhead
= 10;
577 int MaxMergeDistance
= 64;
579 if (Ty
->isVectorTy() && SE
&&
580 !BaseT::isConstantStridedAccessLessThan(SE
, Ptr
, MaxMergeDistance
+ 1))
581 return NumVectorInstToHideOverhead
;
583 // In many cases the address computation is not merged into the instruction
588 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
,
589 Type
*CondTy
, const Instruction
*I
) {
591 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
592 // We don't lower some vector selects well that are wider than the register
594 if (ValTy
->isVectorTy() && ISD
== ISD::SELECT
) {
595 // We would need this many instructions to hide the scalarization happening.
596 const int AmortizationCost
= 20;
597 static const TypeConversionCostTblEntry
598 VectorSelectTbl
[] = {
599 { ISD::SELECT
, MVT::v16i1
, MVT::v16i16
, 16 },
600 { ISD::SELECT
, MVT::v8i1
, MVT::v8i32
, 8 },
601 { ISD::SELECT
, MVT::v16i1
, MVT::v16i32
, 16 },
602 { ISD::SELECT
, MVT::v4i1
, MVT::v4i64
, 4 * AmortizationCost
},
603 { ISD::SELECT
, MVT::v8i1
, MVT::v8i64
, 8 * AmortizationCost
},
604 { ISD::SELECT
, MVT::v16i1
, MVT::v16i64
, 16 * AmortizationCost
}
607 EVT SelCondTy
= TLI
->getValueType(DL
, CondTy
);
608 EVT SelValTy
= TLI
->getValueType(DL
, ValTy
);
609 if (SelCondTy
.isSimple() && SelValTy
.isSimple()) {
610 if (const auto *Entry
= ConvertCostTableLookup(VectorSelectTbl
, ISD
,
611 SelCondTy
.getSimpleVT(),
612 SelValTy
.getSimpleVT()))
616 return BaseT::getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, I
);
619 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode
, Type
*Ty
,
620 unsigned Alignment
, unsigned AddressSpace
,
621 const Instruction
*I
) {
622 auto LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
624 if (ST
->isMisaligned128StoreSlow() && Opcode
== Instruction::Store
&&
625 LT
.second
.is128BitVector() && Alignment
< 16) {
626 // Unaligned stores are extremely inefficient. We don't split all
627 // unaligned 128-bit stores because the negative impact that has shown in
628 // practice on inlined block copy code.
629 // We make such stores expensive so that we will only vectorize if there
630 // are 6 other instructions getting vectorized.
631 const int AmortizationCost
= 6;
633 return LT
.first
* 2 * AmortizationCost
;
636 if (Ty
->isVectorTy() && Ty
->getVectorElementType()->isIntegerTy(8)) {
637 unsigned ProfitableNumElements
;
638 if (Opcode
== Instruction::Store
)
639 // We use a custom trunc store lowering so v.4b should be profitable.
640 ProfitableNumElements
= 4;
642 // We scalarize the loads because there is not v.4b register and we
643 // have to promote the elements to v.2.
644 ProfitableNumElements
= 8;
646 if (Ty
->getVectorNumElements() < ProfitableNumElements
) {
647 unsigned NumVecElts
= Ty
->getVectorNumElements();
648 unsigned NumVectorizableInstsToAmortize
= NumVecElts
* 2;
649 // We generate 2 instructions per vector element.
650 return NumVectorizableInstsToAmortize
* NumVecElts
* 2;
657 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
,
659 ArrayRef
<unsigned> Indices
,
661 unsigned AddressSpace
,
663 bool UseMaskForGaps
) {
664 assert(Factor
>= 2 && "Invalid interleave factor");
665 assert(isa
<VectorType
>(VecTy
) && "Expect a vector type");
667 if (!UseMaskForCond
&& !UseMaskForGaps
&&
668 Factor
<= TLI
->getMaxSupportedInterleaveFactor()) {
669 unsigned NumElts
= VecTy
->getVectorNumElements();
670 auto *SubVecTy
= VectorType::get(VecTy
->getScalarType(), NumElts
/ Factor
);
672 // ldN/stN only support legal vector types of size 64 or 128 in bits.
673 // Accesses having vector types that are a multiple of 128 bits can be
674 // matched to more than one ldN/stN instruction.
675 if (NumElts
% Factor
== 0 &&
676 TLI
->isLegalInterleavedAccessType(SubVecTy
, DL
))
677 return Factor
* TLI
->getNumInterleavedAccesses(SubVecTy
, DL
);
680 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
681 Alignment
, AddressSpace
,
682 UseMaskForCond
, UseMaskForGaps
);
685 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef
<Type
*> Tys
) {
687 for (auto *I
: Tys
) {
688 if (!I
->isVectorTy())
690 if (I
->getScalarSizeInBits() * I
->getVectorNumElements() == 128)
691 Cost
+= getMemoryOpCost(Instruction::Store
, I
, 128, 0) +
692 getMemoryOpCost(Instruction::Load
, I
, 128, 0);
697 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF
) {
698 return ST
->getMaxInterleaveFactor();
701 // For Falkor, we want to avoid having too many strided loads in a loop since
702 // that can exhaust the HW prefetcher resources. We adjust the unroller
703 // MaxCount preference below to attempt to ensure unrolling doesn't create too
704 // many strided loads.
706 getFalkorUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
707 TargetTransformInfo::UnrollingPreferences
&UP
) {
708 enum { MaxStridedLoads
= 7 };
709 auto countStridedLoads
= [](Loop
*L
, ScalarEvolution
&SE
) {
710 int StridedLoads
= 0;
711 // FIXME? We could make this more precise by looking at the CFG and
712 // e.g. not counting loads in each side of an if-then-else diamond.
713 for (const auto BB
: L
->blocks()) {
714 for (auto &I
: *BB
) {
715 LoadInst
*LMemI
= dyn_cast
<LoadInst
>(&I
);
719 Value
*PtrValue
= LMemI
->getPointerOperand();
720 if (L
->isLoopInvariant(PtrValue
))
723 const SCEV
*LSCEV
= SE
.getSCEV(PtrValue
);
724 const SCEVAddRecExpr
*LSCEVAddRec
= dyn_cast
<SCEVAddRecExpr
>(LSCEV
);
725 if (!LSCEVAddRec
|| !LSCEVAddRec
->isAffine())
728 // FIXME? We could take pairing of unrolled load copies into account
729 // by looking at the AddRec, but we would probably have to limit this
730 // to loops with no stores or other memory optimization barriers.
732 // We've seen enough strided loads that seeing more won't make a
734 if (StridedLoads
> MaxStridedLoads
/ 2)
741 int StridedLoads
= countStridedLoads(L
, SE
);
742 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
743 << " strided loads\n");
744 // Pick the largest power of 2 unroll count that won't result in too many
747 UP
.MaxCount
= 1 << Log2_32(MaxStridedLoads
/ StridedLoads
);
748 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
749 << UP
.MaxCount
<< '\n');
753 void AArch64TTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
754 TTI::UnrollingPreferences
&UP
) {
755 // Enable partial unrolling and runtime unrolling.
756 BaseT::getUnrollingPreferences(L
, SE
, UP
);
758 // For inner loop, it is more likely to be a hot one, and the runtime check
759 // can be promoted out from LICM pass, so the overhead is less, let's try
760 // a larger threshold to unroll more loops.
761 if (L
->getLoopDepth() > 1)
762 UP
.PartialThreshold
*= 2;
764 // Disable partial & runtime unrolling on -Os.
765 UP
.PartialOptSizeThreshold
= 0;
767 if (ST
->getProcFamily() == AArch64Subtarget::Falkor
&&
768 EnableFalkorHWPFUnrollFix
)
769 getFalkorUnrollingPreferences(L
, SE
, UP
);
772 Value
*AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst
*Inst
,
773 Type
*ExpectedType
) {
774 switch (Inst
->getIntrinsicID()) {
777 case Intrinsic::aarch64_neon_st2
:
778 case Intrinsic::aarch64_neon_st3
:
779 case Intrinsic::aarch64_neon_st4
: {
780 // Create a struct type
781 StructType
*ST
= dyn_cast
<StructType
>(ExpectedType
);
784 unsigned NumElts
= Inst
->getNumArgOperands() - 1;
785 if (ST
->getNumElements() != NumElts
)
787 for (unsigned i
= 0, e
= NumElts
; i
!= e
; ++i
) {
788 if (Inst
->getArgOperand(i
)->getType() != ST
->getElementType(i
))
791 Value
*Res
= UndefValue::get(ExpectedType
);
792 IRBuilder
<> Builder(Inst
);
793 for (unsigned i
= 0, e
= NumElts
; i
!= e
; ++i
) {
794 Value
*L
= Inst
->getArgOperand(i
);
795 Res
= Builder
.CreateInsertValue(Res
, L
, i
);
799 case Intrinsic::aarch64_neon_ld2
:
800 case Intrinsic::aarch64_neon_ld3
:
801 case Intrinsic::aarch64_neon_ld4
:
802 if (Inst
->getType() == ExpectedType
)
808 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst
*Inst
,
809 MemIntrinsicInfo
&Info
) {
810 switch (Inst
->getIntrinsicID()) {
813 case Intrinsic::aarch64_neon_ld2
:
814 case Intrinsic::aarch64_neon_ld3
:
815 case Intrinsic::aarch64_neon_ld4
:
817 Info
.WriteMem
= false;
818 Info
.PtrVal
= Inst
->getArgOperand(0);
820 case Intrinsic::aarch64_neon_st2
:
821 case Intrinsic::aarch64_neon_st3
:
822 case Intrinsic::aarch64_neon_st4
:
823 Info
.ReadMem
= false;
824 Info
.WriteMem
= true;
825 Info
.PtrVal
= Inst
->getArgOperand(Inst
->getNumArgOperands() - 1);
829 switch (Inst
->getIntrinsicID()) {
832 case Intrinsic::aarch64_neon_ld2
:
833 case Intrinsic::aarch64_neon_st2
:
834 Info
.MatchingId
= VECTOR_LDST_TWO_ELEMENTS
;
836 case Intrinsic::aarch64_neon_ld3
:
837 case Intrinsic::aarch64_neon_st3
:
838 Info
.MatchingId
= VECTOR_LDST_THREE_ELEMENTS
;
840 case Intrinsic::aarch64_neon_ld4
:
841 case Intrinsic::aarch64_neon_st4
:
842 Info
.MatchingId
= VECTOR_LDST_FOUR_ELEMENTS
;
848 /// See if \p I should be considered for address type promotion. We check if \p
849 /// I is a sext with right type and used in memory accesses. If it used in a
850 /// "complex" getelementptr, we allow it to be promoted without finding other
851 /// sext instructions that sign extended the same initial value. A getelementptr
852 /// is considered as "complex" if it has more than 2 operands.
853 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
854 const Instruction
&I
, bool &AllowPromotionWithoutCommonHeader
) {
855 bool Considerable
= false;
856 AllowPromotionWithoutCommonHeader
= false;
857 if (!isa
<SExtInst
>(&I
))
859 Type
*ConsideredSExtType
=
860 Type::getInt64Ty(I
.getParent()->getParent()->getContext());
861 if (I
.getType() != ConsideredSExtType
)
863 // See if the sext is the one with the right type and used in at least one
864 // GetElementPtrInst.
865 for (const User
*U
: I
.users()) {
866 if (const GetElementPtrInst
*GEPInst
= dyn_cast
<GetElementPtrInst
>(U
)) {
868 // A getelementptr is considered as "complex" if it has more than 2
869 // operands. We will promote a SExt used in such complex GEP as we
870 // expect some computation to be merged if they are done on 64 bits.
871 if (GEPInst
->getNumOperands() > 2) {
872 AllowPromotionWithoutCommonHeader
= true;
880 unsigned AArch64TTIImpl::getCacheLineSize() {
881 return ST
->getCacheLineSize();
884 unsigned AArch64TTIImpl::getPrefetchDistance() {
885 return ST
->getPrefetchDistance();
888 unsigned AArch64TTIImpl::getMinPrefetchStride() {
889 return ST
->getMinPrefetchStride();
892 unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
893 return ST
->getMaxPrefetchIterationsAhead();
896 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode
, Type
*Ty
,
897 TTI::ReductionFlags Flags
) const {
898 assert(isa
<VectorType
>(Ty
) && "Expected Ty to be a vector type");
899 unsigned ScalarBits
= Ty
->getScalarSizeInBits();
901 case Instruction::FAdd
:
902 case Instruction::FMul
:
903 case Instruction::And
:
904 case Instruction::Or
:
905 case Instruction::Xor
:
906 case Instruction::Mul
:
908 case Instruction::Add
:
909 return ScalarBits
* Ty
->getVectorNumElements() >= 128;
910 case Instruction::ICmp
:
911 return (ScalarBits
< 64) &&
912 (ScalarBits
* Ty
->getVectorNumElements() >= 128);
913 case Instruction::FCmp
:
916 llvm_unreachable("Unhandled reduction opcode");
921 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode
, Type
*ValTy
,
922 bool IsPairwiseForm
) {
925 return BaseT::getArithmeticReductionCost(Opcode
, ValTy
, IsPairwiseForm
);
927 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
929 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
930 assert(ISD
&& "Invalid opcode");
932 // Horizontal adds can use the 'addv' instruction. We model the cost of these
933 // instructions as normal vector adds. This is the only arithmetic vector
934 // reduction operation for which we have an instruction.
935 static const CostTblEntry CostTblNoPairwise
[]{
936 {ISD::ADD
, MVT::v8i8
, 1},
937 {ISD::ADD
, MVT::v16i8
, 1},
938 {ISD::ADD
, MVT::v4i16
, 1},
939 {ISD::ADD
, MVT::v8i16
, 1},
940 {ISD::ADD
, MVT::v4i32
, 1},
943 if (const auto *Entry
= CostTableLookup(CostTblNoPairwise
, ISD
, MTy
))
944 return LT
.first
* Entry
->Cost
;
946 return BaseT::getArithmeticReductionCost(Opcode
, ValTy
, IsPairwiseForm
);
949 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind
, Type
*Tp
, int Index
,
951 if (Kind
== TTI::SK_Broadcast
|| Kind
== TTI::SK_Transpose
||
952 Kind
== TTI::SK_Select
|| Kind
== TTI::SK_PermuteSingleSrc
) {
953 static const CostTblEntry ShuffleTbl
[] = {
954 // Broadcast shuffle kinds can be performed with 'dup'.
955 { TTI::SK_Broadcast
, MVT::v8i8
, 1 },
956 { TTI::SK_Broadcast
, MVT::v16i8
, 1 },
957 { TTI::SK_Broadcast
, MVT::v4i16
, 1 },
958 { TTI::SK_Broadcast
, MVT::v8i16
, 1 },
959 { TTI::SK_Broadcast
, MVT::v2i32
, 1 },
960 { TTI::SK_Broadcast
, MVT::v4i32
, 1 },
961 { TTI::SK_Broadcast
, MVT::v2i64
, 1 },
962 { TTI::SK_Broadcast
, MVT::v2f32
, 1 },
963 { TTI::SK_Broadcast
, MVT::v4f32
, 1 },
964 { TTI::SK_Broadcast
, MVT::v2f64
, 1 },
965 // Transpose shuffle kinds can be performed with 'trn1/trn2' and
966 // 'zip1/zip2' instructions.
967 { TTI::SK_Transpose
, MVT::v8i8
, 1 },
968 { TTI::SK_Transpose
, MVT::v16i8
, 1 },
969 { TTI::SK_Transpose
, MVT::v4i16
, 1 },
970 { TTI::SK_Transpose
, MVT::v8i16
, 1 },
971 { TTI::SK_Transpose
, MVT::v2i32
, 1 },
972 { TTI::SK_Transpose
, MVT::v4i32
, 1 },
973 { TTI::SK_Transpose
, MVT::v2i64
, 1 },
974 { TTI::SK_Transpose
, MVT::v2f32
, 1 },
975 { TTI::SK_Transpose
, MVT::v4f32
, 1 },
976 { TTI::SK_Transpose
, MVT::v2f64
, 1 },
977 // Select shuffle kinds.
978 // TODO: handle vXi8/vXi16.
979 { TTI::SK_Select
, MVT::v2i32
, 1 }, // mov.
980 { TTI::SK_Select
, MVT::v4i32
, 2 }, // rev+trn (or similar).
981 { TTI::SK_Select
, MVT::v2i64
, 1 }, // mov.
982 { TTI::SK_Select
, MVT::v2f32
, 1 }, // mov.
983 { TTI::SK_Select
, MVT::v4f32
, 2 }, // rev+trn (or similar).
984 { TTI::SK_Select
, MVT::v2f64
, 1 }, // mov.
985 // PermuteSingleSrc shuffle kinds.
986 // TODO: handle vXi8/vXi16.
987 { TTI::SK_PermuteSingleSrc
, MVT::v2i32
, 1 }, // mov.
988 { TTI::SK_PermuteSingleSrc
, MVT::v4i32
, 3 }, // perfectshuffle worst case.
989 { TTI::SK_PermuteSingleSrc
, MVT::v2i64
, 1 }, // mov.
990 { TTI::SK_PermuteSingleSrc
, MVT::v2f32
, 1 }, // mov.
991 { TTI::SK_PermuteSingleSrc
, MVT::v4f32
, 3 }, // perfectshuffle worst case.
992 { TTI::SK_PermuteSingleSrc
, MVT::v2f64
, 1 }, // mov.
994 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
995 if (const auto *Entry
= CostTableLookup(ShuffleTbl
, Kind
, LT
.second
))
996 return LT
.first
* Entry
->Cost
;
999 return BaseT::getShuffleCost(Kind
, Tp
, Index
, SubTp
);