Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / AArch64 / AArch64TargetTransformInfo.cpp
blob50624a82def93302cb047e60c3b5af63ae6c903b
1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "AArch64TargetTransformInfo.h"
10 #include "MCTargetDesc/AArch64AddressingModes.h"
11 #include "llvm/Analysis/LoopInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/Support/Debug.h"
18 #include <algorithm>
19 using namespace llvm;
21 #define DEBUG_TYPE "aarch64tti"
23 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
24 cl::init(true), cl::Hidden);
26 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
27 const Function *Callee) const {
28 const TargetMachine &TM = getTLI()->getTargetMachine();
30 const FeatureBitset &CallerBits =
31 TM.getSubtargetImpl(*Caller)->getFeatureBits();
32 const FeatureBitset &CalleeBits =
33 TM.getSubtargetImpl(*Callee)->getFeatureBits();
35 // Inline a callee if its target-features are a subset of the callers
36 // target-features.
37 return (CallerBits & CalleeBits) == CalleeBits;
40 /// Calculate the cost of materializing a 64-bit value. This helper
41 /// method might only calculate a fraction of a larger immediate. Therefore it
42 /// is valid to return a cost of ZERO.
43 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
44 // Check if the immediate can be encoded within an instruction.
45 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
46 return 0;
48 if (Val < 0)
49 Val = ~Val;
51 // Calculate how many moves we will need to materialize this constant.
52 unsigned LZ = countLeadingZeros((uint64_t)Val);
53 return (64 - LZ + 15) / 16;
56 /// Calculate the cost of materializing the given constant.
57 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
58 assert(Ty->isIntegerTy());
60 unsigned BitSize = Ty->getPrimitiveSizeInBits();
61 if (BitSize == 0)
62 return ~0U;
64 // Sign-extend all constants to a multiple of 64-bit.
65 APInt ImmVal = Imm;
66 if (BitSize & 0x3f)
67 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
69 // Split the constant into 64-bit chunks and calculate the cost for each
70 // chunk.
71 int Cost = 0;
72 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
73 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
74 int64_t Val = Tmp.getSExtValue();
75 Cost += getIntImmCost(Val);
77 // We need at least one instruction to materialze the constant.
78 return std::max(1, Cost);
81 int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
82 const APInt &Imm, Type *Ty) {
83 assert(Ty->isIntegerTy());
85 unsigned BitSize = Ty->getPrimitiveSizeInBits();
86 // There is no cost model for constants with a bit size of 0. Return TCC_Free
87 // here, so that constant hoisting will ignore this constant.
88 if (BitSize == 0)
89 return TTI::TCC_Free;
91 unsigned ImmIdx = ~0U;
92 switch (Opcode) {
93 default:
94 return TTI::TCC_Free;
95 case Instruction::GetElementPtr:
96 // Always hoist the base address of a GetElementPtr.
97 if (Idx == 0)
98 return 2 * TTI::TCC_Basic;
99 return TTI::TCC_Free;
100 case Instruction::Store:
101 ImmIdx = 0;
102 break;
103 case Instruction::Add:
104 case Instruction::Sub:
105 case Instruction::Mul:
106 case Instruction::UDiv:
107 case Instruction::SDiv:
108 case Instruction::URem:
109 case Instruction::SRem:
110 case Instruction::And:
111 case Instruction::Or:
112 case Instruction::Xor:
113 case Instruction::ICmp:
114 ImmIdx = 1;
115 break;
116 // Always return TCC_Free for the shift value of a shift instruction.
117 case Instruction::Shl:
118 case Instruction::LShr:
119 case Instruction::AShr:
120 if (Idx == 1)
121 return TTI::TCC_Free;
122 break;
123 case Instruction::Trunc:
124 case Instruction::ZExt:
125 case Instruction::SExt:
126 case Instruction::IntToPtr:
127 case Instruction::PtrToInt:
128 case Instruction::BitCast:
129 case Instruction::PHI:
130 case Instruction::Call:
131 case Instruction::Select:
132 case Instruction::Ret:
133 case Instruction::Load:
134 break;
137 if (Idx == ImmIdx) {
138 int NumConstants = (BitSize + 63) / 64;
139 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
140 return (Cost <= NumConstants * TTI::TCC_Basic)
141 ? static_cast<int>(TTI::TCC_Free)
142 : Cost;
144 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
147 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
148 const APInt &Imm, Type *Ty) {
149 assert(Ty->isIntegerTy());
151 unsigned BitSize = Ty->getPrimitiveSizeInBits();
152 // There is no cost model for constants with a bit size of 0. Return TCC_Free
153 // here, so that constant hoisting will ignore this constant.
154 if (BitSize == 0)
155 return TTI::TCC_Free;
157 switch (IID) {
158 default:
159 return TTI::TCC_Free;
160 case Intrinsic::sadd_with_overflow:
161 case Intrinsic::uadd_with_overflow:
162 case Intrinsic::ssub_with_overflow:
163 case Intrinsic::usub_with_overflow:
164 case Intrinsic::smul_with_overflow:
165 case Intrinsic::umul_with_overflow:
166 if (Idx == 1) {
167 int NumConstants = (BitSize + 63) / 64;
168 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
169 return (Cost <= NumConstants * TTI::TCC_Basic)
170 ? static_cast<int>(TTI::TCC_Free)
171 : Cost;
173 break;
174 case Intrinsic::experimental_stackmap:
175 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
176 return TTI::TCC_Free;
177 break;
178 case Intrinsic::experimental_patchpoint_void:
179 case Intrinsic::experimental_patchpoint_i64:
180 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
181 return TTI::TCC_Free;
182 break;
184 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
187 TargetTransformInfo::PopcntSupportKind
188 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
189 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
190 if (TyWidth == 32 || TyWidth == 64)
191 return TTI::PSK_FastHardware;
192 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
193 return TTI::PSK_Software;
196 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
197 ArrayRef<const Value *> Args) {
199 // A helper that returns a vector type from the given type. The number of
200 // elements in type Ty determine the vector width.
201 auto toVectorTy = [&](Type *ArgTy) {
202 return VectorType::get(ArgTy->getScalarType(),
203 DstTy->getVectorNumElements());
206 // Exit early if DstTy is not a vector type whose elements are at least
207 // 16-bits wide.
208 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
209 return false;
211 // Determine if the operation has a widening variant. We consider both the
212 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
213 // instructions.
215 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
216 // verify that their extending operands are eliminated during code
217 // generation.
218 switch (Opcode) {
219 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
220 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
221 break;
222 default:
223 return false;
226 // To be a widening instruction (either the "wide" or "long" versions), the
227 // second operand must be a sign- or zero extend having a single user. We
228 // only consider extends having a single user because they may otherwise not
229 // be eliminated.
230 if (Args.size() != 2 ||
231 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
232 !Args[1]->hasOneUse())
233 return false;
234 auto *Extend = cast<CastInst>(Args[1]);
236 // Legalize the destination type and ensure it can be used in a widening
237 // operation.
238 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
239 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
240 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
241 return false;
243 // Legalize the source type and ensure it can be used in a widening
244 // operation.
245 Type *SrcTy = toVectorTy(Extend->getSrcTy());
246 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
247 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
248 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
249 return false;
251 // Get the total number of vector elements in the legalized types.
252 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
253 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();
255 // Return true if the legalized types have the same number of vector elements
256 // and the destination element type size is twice that of the source type.
257 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
260 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
261 const Instruction *I) {
262 int ISD = TLI->InstructionOpcodeToISD(Opcode);
263 assert(ISD && "Invalid opcode");
265 // If the cast is observable, and it is used by a widening instruction (e.g.,
266 // uaddl, saddw, etc.), it may be free.
267 if (I && I->hasOneUse()) {
268 auto *SingleUser = cast<Instruction>(*I->user_begin());
269 SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
270 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
271 // If the cast is the second operand, it is free. We will generate either
272 // a "wide" or "long" version of the widening instruction.
273 if (I == SingleUser->getOperand(1))
274 return 0;
275 // If the cast is not the second operand, it will be free if it looks the
276 // same as the second operand. In this case, we will generate a "long"
277 // version of the widening instruction.
278 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
279 if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
280 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
281 return 0;
285 EVT SrcTy = TLI->getValueType(DL, Src);
286 EVT DstTy = TLI->getValueType(DL, Dst);
288 if (!SrcTy.isSimple() || !DstTy.isSimple())
289 return BaseT::getCastInstrCost(Opcode, Dst, Src);
291 static const TypeConversionCostTblEntry
292 ConversionTbl[] = {
293 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
294 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
295 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
296 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
298 // The number of shll instructions for the extension.
299 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
300 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
301 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
302 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
303 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
304 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
305 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
306 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
307 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
308 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
309 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
310 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
311 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
312 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
313 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
314 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
316 // LowerVectorINT_TO_FP:
317 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
318 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
319 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
320 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
321 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
322 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
324 // Complex: to v2f32
325 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
326 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
327 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
328 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
329 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
330 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
332 // Complex: to v4f32
333 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
334 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
335 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
336 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
338 // Complex: to v8f32
339 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
340 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
341 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
342 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
344 // Complex: to v16f32
345 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
346 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
348 // Complex: to v2f64
349 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
350 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
351 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
352 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
353 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
354 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
357 // LowerVectorFP_TO_INT
358 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
359 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
360 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
361 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
362 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
363 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
365 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
366 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
367 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
368 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
369 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
370 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
371 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
373 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
374 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
375 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
376 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
377 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
379 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
380 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
381 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
382 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
383 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
384 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
385 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
388 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
389 DstTy.getSimpleVT(),
390 SrcTy.getSimpleVT()))
391 return Entry->Cost;
393 return BaseT::getCastInstrCost(Opcode, Dst, Src);
396 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
397 VectorType *VecTy,
398 unsigned Index) {
400 // Make sure we were given a valid extend opcode.
401 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
402 "Invalid opcode");
404 // We are extending an element we extract from a vector, so the source type
405 // of the extend is the element type of the vector.
406 auto *Src = VecTy->getElementType();
408 // Sign- and zero-extends are for integer types only.
409 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
411 // Get the cost for the extract. We compute the cost (if any) for the extend
412 // below.
413 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
415 // Legalize the types.
416 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
417 auto DstVT = TLI->getValueType(DL, Dst);
418 auto SrcVT = TLI->getValueType(DL, Src);
420 // If the resulting type is still a vector and the destination type is legal,
421 // we may get the extension for free. If not, get the default cost for the
422 // extend.
423 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
424 return Cost + getCastInstrCost(Opcode, Dst, Src);
426 // The destination type should be larger than the element type. If not, get
427 // the default cost for the extend.
428 if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
429 return Cost + getCastInstrCost(Opcode, Dst, Src);
431 switch (Opcode) {
432 default:
433 llvm_unreachable("Opcode should be either SExt or ZExt");
435 // For sign-extends, we only need a smov, which performs the extension
436 // automatically.
437 case Instruction::SExt:
438 return Cost;
440 // For zero-extends, the extend is performed automatically by a umov unless
441 // the destination type is i64 and the element type is i8 or i16.
442 case Instruction::ZExt:
443 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
444 return Cost;
447 // If we are unable to perform the extend for free, get the default cost.
448 return Cost + getCastInstrCost(Opcode, Dst, Src);
451 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
452 unsigned Index) {
453 assert(Val->isVectorTy() && "This must be a vector type");
455 if (Index != -1U) {
456 // Legalize the type.
457 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
459 // This type is legalized to a scalar type.
460 if (!LT.second.isVector())
461 return 0;
463 // The type may be split. Normalize the index to the new type.
464 unsigned Width = LT.second.getVectorNumElements();
465 Index = Index % Width;
467 // The element at index zero is already inside the vector.
468 if (Index == 0)
469 return 0;
472 // All other insert/extracts cost this much.
473 return ST->getVectorInsertExtractBaseCost();
476 int AArch64TTIImpl::getArithmeticInstrCost(
477 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
478 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
479 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
480 // Legalize the type.
481 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
483 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
484 // add in the widening overhead specified by the sub-target. Since the
485 // extends feeding widening instructions are performed automatically, they
486 // aren't present in the generated code and have a zero cost. By adding a
487 // widening overhead here, we attach the total cost of the combined operation
488 // to the widening instruction.
489 int Cost = 0;
490 if (isWideningInstruction(Ty, Opcode, Args))
491 Cost += ST->getWideningBaseCost();
493 int ISD = TLI->InstructionOpcodeToISD(Opcode);
495 switch (ISD) {
496 default:
497 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
498 Opd1PropInfo, Opd2PropInfo);
499 case ISD::SDIV:
500 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
501 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
502 // On AArch64, scalar signed division by constants power-of-two are
503 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
504 // The OperandValue properties many not be same as that of previous
505 // operation; conservatively assume OP_None.
506 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
507 TargetTransformInfo::OP_None,
508 TargetTransformInfo::OP_None);
509 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
510 TargetTransformInfo::OP_None,
511 TargetTransformInfo::OP_None);
512 Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
513 TargetTransformInfo::OP_None,
514 TargetTransformInfo::OP_None);
515 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
516 TargetTransformInfo::OP_None,
517 TargetTransformInfo::OP_None);
518 return Cost;
520 LLVM_FALLTHROUGH;
521 case ISD::UDIV:
522 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
523 auto VT = TLI->getValueType(DL, Ty);
524 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
525 // Vector signed division by constant are expanded to the
526 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
527 // to MULHS + SUB + SRL + ADD + SRL.
528 int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
529 Opd2Info,
530 TargetTransformInfo::OP_None,
531 TargetTransformInfo::OP_None);
532 int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
533 Opd2Info,
534 TargetTransformInfo::OP_None,
535 TargetTransformInfo::OP_None);
536 int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
537 Opd2Info,
538 TargetTransformInfo::OP_None,
539 TargetTransformInfo::OP_None);
540 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
544 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
545 Opd1PropInfo, Opd2PropInfo);
546 if (Ty->isVectorTy()) {
547 // On AArch64, vector divisions are not supported natively and are
548 // expanded into scalar divisions of each pair of elements.
549 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
550 Opd2Info, Opd1PropInfo, Opd2PropInfo);
551 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
552 Opd2Info, Opd1PropInfo, Opd2PropInfo);
553 // TODO: if one of the arguments is scalar, then it's not necessary to
554 // double the cost of handling the vector elements.
555 Cost += Cost;
557 return Cost;
559 case ISD::ADD:
560 case ISD::MUL:
561 case ISD::XOR:
562 case ISD::OR:
563 case ISD::AND:
564 // These nodes are marked as 'custom' for combining purposes only.
565 // We know that they are legal. See LowerAdd in ISelLowering.
566 return (Cost + 1) * LT.first;
570 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
571 const SCEV *Ptr) {
572 // Address computations in vectorized code with non-consecutive addresses will
573 // likely result in more instructions compared to scalar code where the
574 // computation can more often be merged into the index mode. The resulting
575 // extra micro-ops can significantly decrease throughput.
576 unsigned NumVectorInstToHideOverhead = 10;
577 int MaxMergeDistance = 64;
579 if (Ty->isVectorTy() && SE &&
580 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
581 return NumVectorInstToHideOverhead;
583 // In many cases the address computation is not merged into the instruction
584 // addressing mode.
585 return 1;
588 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
589 Type *CondTy, const Instruction *I) {
591 int ISD = TLI->InstructionOpcodeToISD(Opcode);
592 // We don't lower some vector selects well that are wider than the register
593 // width.
594 if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
595 // We would need this many instructions to hide the scalarization happening.
596 const int AmortizationCost = 20;
597 static const TypeConversionCostTblEntry
598 VectorSelectTbl[] = {
599 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
600 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
601 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
602 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
603 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
604 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
607 EVT SelCondTy = TLI->getValueType(DL, CondTy);
608 EVT SelValTy = TLI->getValueType(DL, ValTy);
609 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
610 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
611 SelCondTy.getSimpleVT(),
612 SelValTy.getSimpleVT()))
613 return Entry->Cost;
616 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
619 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
620 unsigned Alignment, unsigned AddressSpace,
621 const Instruction *I) {
622 auto LT = TLI->getTypeLegalizationCost(DL, Ty);
624 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
625 LT.second.is128BitVector() && Alignment < 16) {
626 // Unaligned stores are extremely inefficient. We don't split all
627 // unaligned 128-bit stores because the negative impact that has shown in
628 // practice on inlined block copy code.
629 // We make such stores expensive so that we will only vectorize if there
630 // are 6 other instructions getting vectorized.
631 const int AmortizationCost = 6;
633 return LT.first * 2 * AmortizationCost;
636 if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
637 unsigned ProfitableNumElements;
638 if (Opcode == Instruction::Store)
639 // We use a custom trunc store lowering so v.4b should be profitable.
640 ProfitableNumElements = 4;
641 else
642 // We scalarize the loads because there is not v.4b register and we
643 // have to promote the elements to v.2.
644 ProfitableNumElements = 8;
646 if (Ty->getVectorNumElements() < ProfitableNumElements) {
647 unsigned NumVecElts = Ty->getVectorNumElements();
648 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
649 // We generate 2 instructions per vector element.
650 return NumVectorizableInstsToAmortize * NumVecElts * 2;
654 return LT.first;
657 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
658 unsigned Factor,
659 ArrayRef<unsigned> Indices,
660 unsigned Alignment,
661 unsigned AddressSpace,
662 bool UseMaskForCond,
663 bool UseMaskForGaps) {
664 assert(Factor >= 2 && "Invalid interleave factor");
665 assert(isa<VectorType>(VecTy) && "Expect a vector type");
667 if (!UseMaskForCond && !UseMaskForGaps &&
668 Factor <= TLI->getMaxSupportedInterleaveFactor()) {
669 unsigned NumElts = VecTy->getVectorNumElements();
670 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
672 // ldN/stN only support legal vector types of size 64 or 128 in bits.
673 // Accesses having vector types that are a multiple of 128 bits can be
674 // matched to more than one ldN/stN instruction.
675 if (NumElts % Factor == 0 &&
676 TLI->isLegalInterleavedAccessType(SubVecTy, DL))
677 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
680 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
681 Alignment, AddressSpace,
682 UseMaskForCond, UseMaskForGaps);
685 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
686 int Cost = 0;
687 for (auto *I : Tys) {
688 if (!I->isVectorTy())
689 continue;
690 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
691 Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
692 getMemoryOpCost(Instruction::Load, I, 128, 0);
694 return Cost;
697 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
698 return ST->getMaxInterleaveFactor();
701 // For Falkor, we want to avoid having too many strided loads in a loop since
702 // that can exhaust the HW prefetcher resources. We adjust the unroller
703 // MaxCount preference below to attempt to ensure unrolling doesn't create too
704 // many strided loads.
705 static void
706 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
707 TargetTransformInfo::UnrollingPreferences &UP) {
708 enum { MaxStridedLoads = 7 };
709 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
710 int StridedLoads = 0;
711 // FIXME? We could make this more precise by looking at the CFG and
712 // e.g. not counting loads in each side of an if-then-else diamond.
713 for (const auto BB : L->blocks()) {
714 for (auto &I : *BB) {
715 LoadInst *LMemI = dyn_cast<LoadInst>(&I);
716 if (!LMemI)
717 continue;
719 Value *PtrValue = LMemI->getPointerOperand();
720 if (L->isLoopInvariant(PtrValue))
721 continue;
723 const SCEV *LSCEV = SE.getSCEV(PtrValue);
724 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
725 if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
726 continue;
728 // FIXME? We could take pairing of unrolled load copies into account
729 // by looking at the AddRec, but we would probably have to limit this
730 // to loops with no stores or other memory optimization barriers.
731 ++StridedLoads;
732 // We've seen enough strided loads that seeing more won't make a
733 // difference.
734 if (StridedLoads > MaxStridedLoads / 2)
735 return StridedLoads;
738 return StridedLoads;
741 int StridedLoads = countStridedLoads(L, SE);
742 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
743 << " strided loads\n");
744 // Pick the largest power of 2 unroll count that won't result in too many
745 // strided loads.
746 if (StridedLoads) {
747 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
748 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
749 << UP.MaxCount << '\n');
753 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
754 TTI::UnrollingPreferences &UP) {
755 // Enable partial unrolling and runtime unrolling.
756 BaseT::getUnrollingPreferences(L, SE, UP);
758 // For inner loop, it is more likely to be a hot one, and the runtime check
759 // can be promoted out from LICM pass, so the overhead is less, let's try
760 // a larger threshold to unroll more loops.
761 if (L->getLoopDepth() > 1)
762 UP.PartialThreshold *= 2;
764 // Disable partial & runtime unrolling on -Os.
765 UP.PartialOptSizeThreshold = 0;
767 if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
768 EnableFalkorHWPFUnrollFix)
769 getFalkorUnrollingPreferences(L, SE, UP);
772 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
773 Type *ExpectedType) {
774 switch (Inst->getIntrinsicID()) {
775 default:
776 return nullptr;
777 case Intrinsic::aarch64_neon_st2:
778 case Intrinsic::aarch64_neon_st3:
779 case Intrinsic::aarch64_neon_st4: {
780 // Create a struct type
781 StructType *ST = dyn_cast<StructType>(ExpectedType);
782 if (!ST)
783 return nullptr;
784 unsigned NumElts = Inst->getNumArgOperands() - 1;
785 if (ST->getNumElements() != NumElts)
786 return nullptr;
787 for (unsigned i = 0, e = NumElts; i != e; ++i) {
788 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
789 return nullptr;
791 Value *Res = UndefValue::get(ExpectedType);
792 IRBuilder<> Builder(Inst);
793 for (unsigned i = 0, e = NumElts; i != e; ++i) {
794 Value *L = Inst->getArgOperand(i);
795 Res = Builder.CreateInsertValue(Res, L, i);
797 return Res;
799 case Intrinsic::aarch64_neon_ld2:
800 case Intrinsic::aarch64_neon_ld3:
801 case Intrinsic::aarch64_neon_ld4:
802 if (Inst->getType() == ExpectedType)
803 return Inst;
804 return nullptr;
808 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
809 MemIntrinsicInfo &Info) {
810 switch (Inst->getIntrinsicID()) {
811 default:
812 break;
813 case Intrinsic::aarch64_neon_ld2:
814 case Intrinsic::aarch64_neon_ld3:
815 case Intrinsic::aarch64_neon_ld4:
816 Info.ReadMem = true;
817 Info.WriteMem = false;
818 Info.PtrVal = Inst->getArgOperand(0);
819 break;
820 case Intrinsic::aarch64_neon_st2:
821 case Intrinsic::aarch64_neon_st3:
822 case Intrinsic::aarch64_neon_st4:
823 Info.ReadMem = false;
824 Info.WriteMem = true;
825 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
826 break;
829 switch (Inst->getIntrinsicID()) {
830 default:
831 return false;
832 case Intrinsic::aarch64_neon_ld2:
833 case Intrinsic::aarch64_neon_st2:
834 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
835 break;
836 case Intrinsic::aarch64_neon_ld3:
837 case Intrinsic::aarch64_neon_st3:
838 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
839 break;
840 case Intrinsic::aarch64_neon_ld4:
841 case Intrinsic::aarch64_neon_st4:
842 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
843 break;
845 return true;
848 /// See if \p I should be considered for address type promotion. We check if \p
849 /// I is a sext with right type and used in memory accesses. If it used in a
850 /// "complex" getelementptr, we allow it to be promoted without finding other
851 /// sext instructions that sign extended the same initial value. A getelementptr
852 /// is considered as "complex" if it has more than 2 operands.
853 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
854 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
855 bool Considerable = false;
856 AllowPromotionWithoutCommonHeader = false;
857 if (!isa<SExtInst>(&I))
858 return false;
859 Type *ConsideredSExtType =
860 Type::getInt64Ty(I.getParent()->getParent()->getContext());
861 if (I.getType() != ConsideredSExtType)
862 return false;
863 // See if the sext is the one with the right type and used in at least one
864 // GetElementPtrInst.
865 for (const User *U : I.users()) {
866 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
867 Considerable = true;
868 // A getelementptr is considered as "complex" if it has more than 2
869 // operands. We will promote a SExt used in such complex GEP as we
870 // expect some computation to be merged if they are done on 64 bits.
871 if (GEPInst->getNumOperands() > 2) {
872 AllowPromotionWithoutCommonHeader = true;
873 break;
877 return Considerable;
880 unsigned AArch64TTIImpl::getCacheLineSize() {
881 return ST->getCacheLineSize();
884 unsigned AArch64TTIImpl::getPrefetchDistance() {
885 return ST->getPrefetchDistance();
888 unsigned AArch64TTIImpl::getMinPrefetchStride() {
889 return ST->getMinPrefetchStride();
892 unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
893 return ST->getMaxPrefetchIterationsAhead();
896 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
897 TTI::ReductionFlags Flags) const {
898 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
899 unsigned ScalarBits = Ty->getScalarSizeInBits();
900 switch (Opcode) {
901 case Instruction::FAdd:
902 case Instruction::FMul:
903 case Instruction::And:
904 case Instruction::Or:
905 case Instruction::Xor:
906 case Instruction::Mul:
907 return false;
908 case Instruction::Add:
909 return ScalarBits * Ty->getVectorNumElements() >= 128;
910 case Instruction::ICmp:
911 return (ScalarBits < 64) &&
912 (ScalarBits * Ty->getVectorNumElements() >= 128);
913 case Instruction::FCmp:
914 return Flags.NoNaN;
915 default:
916 llvm_unreachable("Unhandled reduction opcode");
918 return false;
921 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
922 bool IsPairwiseForm) {
924 if (IsPairwiseForm)
925 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
927 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
928 MVT MTy = LT.second;
929 int ISD = TLI->InstructionOpcodeToISD(Opcode);
930 assert(ISD && "Invalid opcode");
932 // Horizontal adds can use the 'addv' instruction. We model the cost of these
933 // instructions as normal vector adds. This is the only arithmetic vector
934 // reduction operation for which we have an instruction.
935 static const CostTblEntry CostTblNoPairwise[]{
936 {ISD::ADD, MVT::v8i8, 1},
937 {ISD::ADD, MVT::v16i8, 1},
938 {ISD::ADD, MVT::v4i16, 1},
939 {ISD::ADD, MVT::v8i16, 1},
940 {ISD::ADD, MVT::v4i32, 1},
943 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
944 return LT.first * Entry->Cost;
946 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
949 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
950 Type *SubTp) {
951 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
952 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) {
953 static const CostTblEntry ShuffleTbl[] = {
954 // Broadcast shuffle kinds can be performed with 'dup'.
955 { TTI::SK_Broadcast, MVT::v8i8, 1 },
956 { TTI::SK_Broadcast, MVT::v16i8, 1 },
957 { TTI::SK_Broadcast, MVT::v4i16, 1 },
958 { TTI::SK_Broadcast, MVT::v8i16, 1 },
959 { TTI::SK_Broadcast, MVT::v2i32, 1 },
960 { TTI::SK_Broadcast, MVT::v4i32, 1 },
961 { TTI::SK_Broadcast, MVT::v2i64, 1 },
962 { TTI::SK_Broadcast, MVT::v2f32, 1 },
963 { TTI::SK_Broadcast, MVT::v4f32, 1 },
964 { TTI::SK_Broadcast, MVT::v2f64, 1 },
965 // Transpose shuffle kinds can be performed with 'trn1/trn2' and
966 // 'zip1/zip2' instructions.
967 { TTI::SK_Transpose, MVT::v8i8, 1 },
968 { TTI::SK_Transpose, MVT::v16i8, 1 },
969 { TTI::SK_Transpose, MVT::v4i16, 1 },
970 { TTI::SK_Transpose, MVT::v8i16, 1 },
971 { TTI::SK_Transpose, MVT::v2i32, 1 },
972 { TTI::SK_Transpose, MVT::v4i32, 1 },
973 { TTI::SK_Transpose, MVT::v2i64, 1 },
974 { TTI::SK_Transpose, MVT::v2f32, 1 },
975 { TTI::SK_Transpose, MVT::v4f32, 1 },
976 { TTI::SK_Transpose, MVT::v2f64, 1 },
977 // Select shuffle kinds.
978 // TODO: handle vXi8/vXi16.
979 { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
980 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
981 { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
982 { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
983 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
984 { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
985 // PermuteSingleSrc shuffle kinds.
986 // TODO: handle vXi8/vXi16.
987 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
988 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
989 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
990 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
991 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
992 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
994 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
995 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
996 return LT.first * Entry->Cost;
999 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);