Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUAtomicOptimizer.cpp
blob3210df461f568be9916c803a1775450314eefc13
1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
14 //===----------------------------------------------------------------------===//
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
26 using namespace llvm;
28 namespace {
30 enum DPP_CTRL {
31 DPP_ROW_SR1 = 0x111,
32 DPP_ROW_SR2 = 0x112,
33 DPP_ROW_SR3 = 0x113,
34 DPP_ROW_SR4 = 0x114,
35 DPP_ROW_SR8 = 0x118,
36 DPP_WF_SR1 = 0x138,
37 DPP_ROW_BCAST15 = 0x142,
38 DPP_ROW_BCAST31 = 0x143
41 struct ReplacementInfo {
42 Instruction *I;
43 Instruction::BinaryOps Op;
44 unsigned ValIdx;
45 bool ValDivergent;
48 class AMDGPUAtomicOptimizer : public FunctionPass,
49 public InstVisitor<AMDGPUAtomicOptimizer> {
50 private:
51 SmallVector<ReplacementInfo, 8> ToReplace;
52 const LegacyDivergenceAnalysis *DA;
53 const DataLayout *DL;
54 DominatorTree *DT;
55 bool HasDPP;
56 bool IsPixelShader;
58 void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
59 unsigned ValIdx, bool ValDivergent) const;
61 void setConvergent(CallInst *const CI) const;
63 public:
64 static char ID;
66 AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
68 bool runOnFunction(Function &F) override;
70 void getAnalysisUsage(AnalysisUsage &AU) const override {
71 AU.addPreserved<DominatorTreeWrapperPass>();
72 AU.addRequired<LegacyDivergenceAnalysis>();
73 AU.addRequired<TargetPassConfig>();
76 void visitAtomicRMWInst(AtomicRMWInst &I);
77 void visitIntrinsicInst(IntrinsicInst &I);
80 } // namespace
82 char AMDGPUAtomicOptimizer::ID = 0;
84 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
86 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
87 if (skipFunction(F)) {
88 return false;
91 DA = &getAnalysis<LegacyDivergenceAnalysis>();
92 DL = &F.getParent()->getDataLayout();
93 DominatorTreeWrapperPass *const DTW =
94 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
95 DT = DTW ? &DTW->getDomTree() : nullptr;
96 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
97 const TargetMachine &TM = TPC.getTM<TargetMachine>();
98 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
99 HasDPP = ST.hasDPP();
100 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
102 visit(F);
104 const bool Changed = !ToReplace.empty();
106 for (ReplacementInfo &Info : ToReplace) {
107 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
110 ToReplace.clear();
112 return Changed;
115 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
116 // Early exit for unhandled address space atomic instructions.
117 switch (I.getPointerAddressSpace()) {
118 default:
119 return;
120 case AMDGPUAS::GLOBAL_ADDRESS:
121 case AMDGPUAS::LOCAL_ADDRESS:
122 break;
125 Instruction::BinaryOps Op;
127 switch (I.getOperation()) {
128 default:
129 return;
130 case AtomicRMWInst::Add:
131 Op = Instruction::Add;
132 break;
133 case AtomicRMWInst::Sub:
134 Op = Instruction::Sub;
135 break;
138 const unsigned PtrIdx = 0;
139 const unsigned ValIdx = 1;
141 // If the pointer operand is divergent, then each lane is doing an atomic
142 // operation on a different address, and we cannot optimize that.
143 if (DA->isDivergent(I.getOperand(PtrIdx))) {
144 return;
147 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
149 // If the value operand is divergent, each lane is contributing a different
150 // value to the atomic calculation. We can only optimize divergent values if
151 // we have DPP available on our subtarget, and the atomic operation is 32
152 // bits.
153 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
154 return;
157 // If we get here, we can optimize the atomic using a single wavefront-wide
158 // atomic operation to do the calculation for the entire wavefront, so
159 // remember the instruction so we can come back to it.
160 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
162 ToReplace.push_back(Info);
165 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
166 Instruction::BinaryOps Op;
168 switch (I.getIntrinsicID()) {
169 default:
170 return;
171 case Intrinsic::amdgcn_buffer_atomic_add:
172 case Intrinsic::amdgcn_struct_buffer_atomic_add:
173 case Intrinsic::amdgcn_raw_buffer_atomic_add:
174 Op = Instruction::Add;
175 break;
176 case Intrinsic::amdgcn_buffer_atomic_sub:
177 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
178 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
179 Op = Instruction::Sub;
180 break;
183 const unsigned ValIdx = 0;
185 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
187 // If the value operand is divergent, each lane is contributing a different
188 // value to the atomic calculation. We can only optimize divergent values if
189 // we have DPP available on our subtarget, and the atomic operation is 32
190 // bits.
191 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
192 return;
195 // If any of the other arguments to the intrinsic are divergent, we can't
196 // optimize the operation.
197 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
198 if (DA->isDivergent(I.getOperand(Idx))) {
199 return;
203 // If we get here, we can optimize the atomic using a single wavefront-wide
204 // atomic operation to do the calculation for the entire wavefront, so
205 // remember the instruction so we can come back to it.
206 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
208 ToReplace.push_back(Info);
211 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
212 Instruction::BinaryOps Op,
213 unsigned ValIdx,
214 bool ValDivergent) const {
215 // Start building just before the instruction.
216 IRBuilder<> B(&I);
218 // If we are in a pixel shader, because of how we have to mask out helper
219 // lane invocations, we need to record the entry and exit BB's.
220 BasicBlock *PixelEntryBB = nullptr;
221 BasicBlock *PixelExitBB = nullptr;
223 // If we're optimizing an atomic within a pixel shader, we need to wrap the
224 // entire atomic operation in a helper-lane check. We do not want any helper
225 // lanes that are around only for the purposes of derivatives to take part
226 // in any cross-lane communication, and we use a branch on whether the lane is
227 // live to do this.
228 if (IsPixelShader) {
229 // Record I's original position as the entry block.
230 PixelEntryBB = I.getParent();
232 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
233 Instruction *const NonHelperTerminator =
234 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
236 // Record I's new position as the exit block.
237 PixelExitBB = I.getParent();
239 I.moveBefore(NonHelperTerminator);
240 B.SetInsertPoint(&I);
243 Type *const Ty = I.getType();
244 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
245 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
247 // This is the value in the atomic operation we need to combine in order to
248 // reduce the number of atomic operations.
249 Value *const V = I.getOperand(ValIdx);
251 // We need to know how many lanes are active within the wavefront, and we do
252 // this by doing a ballot of active lanes.
253 CallInst *const Ballot =
254 B.CreateIntrinsic(Intrinsic::amdgcn_icmp, {B.getInt32Ty()},
255 {B.getInt32(1), B.getInt32(0), B.getInt32(33)});
256 setConvergent(Ballot);
258 // We need to know how many lanes are active within the wavefront that are
259 // below us. If we counted each lane linearly starting from 0, a lane is
260 // below us only if its associated index was less than ours. We do this by
261 // using the mbcnt intrinsic.
262 Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
263 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
264 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
265 CallInst *const PartialMbcnt = B.CreateIntrinsic(
266 Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
267 CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
268 {ExtractHi, PartialMbcnt});
270 Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
272 Value *LaneOffset = nullptr;
273 Value *NewV = nullptr;
275 // If we have a divergent value in each lane, we need to combine the value
276 // using DPP.
277 if (ValDivergent) {
278 Value *const Identity = B.getIntN(TyBitWidth, 0);
280 // First we need to set all inactive invocations to 0, so that they can
281 // correctly contribute to the final result.
282 CallInst *const SetInactive =
283 B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
284 setConvergent(SetInactive);
286 CallInst *const FirstDPP =
287 B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
288 {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
289 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
290 setConvergent(FirstDPP);
291 NewV = FirstDPP;
293 const unsigned Iters = 7;
294 const unsigned DPPCtrl[Iters] = {
295 DPP_ROW_SR1, DPP_ROW_SR2, DPP_ROW_SR3, DPP_ROW_SR4,
296 DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
297 const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
298 const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
300 // This loop performs an exclusive scan across the wavefront, with all lanes
301 // active (by using the WWM intrinsic).
302 for (unsigned Idx = 0; Idx < Iters; Idx++) {
303 Value *const UpdateValue = Idx < 3 ? FirstDPP : NewV;
304 CallInst *const DPP = B.CreateIntrinsic(
305 Intrinsic::amdgcn_update_dpp, Ty,
306 {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
307 B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
308 setConvergent(DPP);
310 NewV = B.CreateBinOp(Op, NewV, DPP);
313 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
314 NewV = B.CreateBinOp(Op, NewV, SetInactive);
316 // Read the value from the last lane, which has accumlated the values of
317 // each active lane in the wavefront. This will be our new value with which
318 // we will provide to the atomic operation.
319 if (TyBitWidth == 64) {
320 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
321 Value *const ExtractHi =
322 B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
323 CallInst *const ReadLaneLo = B.CreateIntrinsic(
324 Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
325 setConvergent(ReadLaneLo);
326 CallInst *const ReadLaneHi = B.CreateIntrinsic(
327 Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
328 setConvergent(ReadLaneHi);
329 Value *const PartialInsert = B.CreateInsertElement(
330 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
331 Value *const Insert =
332 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
333 NewV = B.CreateBitCast(Insert, Ty);
334 } else if (TyBitWidth == 32) {
335 CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
336 {}, {NewV, B.getInt32(63)});
337 setConvergent(ReadLane);
338 NewV = ReadLane;
339 } else {
340 llvm_unreachable("Unhandled atomic bit width");
343 // Finally mark the readlanes in the WWM section.
344 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
345 } else {
346 // Get the total number of active lanes we have by using popcount.
347 Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot);
348 Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
350 // Calculate the new value we will be contributing to the atomic operation
351 // for the entire wavefront.
352 NewV = B.CreateMul(V, CtpopCast);
353 LaneOffset = B.CreateMul(V, MbcntCast);
356 // We only want a single lane to enter our new control flow, and we do this
357 // by checking if there are any active lanes below us. Only one lane will
358 // have 0 active lanes below us, so that will be the only one to progress.
359 Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
361 // Store I's original basic block before we split the block.
362 BasicBlock *const EntryBB = I.getParent();
364 // We need to introduce some new control flow to force a single lane to be
365 // active. We do this by splitting I's basic block at I, and introducing the
366 // new block such that:
367 // entry --> single_lane -\
368 // \------------------> exit
369 Instruction *const SingleLaneTerminator =
370 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
372 // Move the IR builder into single_lane next.
373 B.SetInsertPoint(SingleLaneTerminator);
375 // Clone the original atomic operation into single lane, replacing the
376 // original value with our newly created one.
377 Instruction *const NewI = I.clone();
378 B.Insert(NewI);
379 NewI->setOperand(ValIdx, NewV);
381 // Move the IR builder into exit next, and start inserting just before the
382 // original instruction.
383 B.SetInsertPoint(&I);
385 // Create a PHI node to get our new atomic result into the exit block.
386 PHINode *const PHI = B.CreatePHI(Ty, 2);
387 PHI->addIncoming(UndefValue::get(Ty), EntryBB);
388 PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
390 // We need to broadcast the value who was the lowest active lane (the first
391 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
392 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
393 Value *BroadcastI = nullptr;
395 if (TyBitWidth == 64) {
396 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
397 Value *const ExtractHi =
398 B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
399 CallInst *const ReadFirstLaneLo =
400 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
401 setConvergent(ReadFirstLaneLo);
402 CallInst *const ReadFirstLaneHi =
403 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
404 setConvergent(ReadFirstLaneHi);
405 Value *const PartialInsert = B.CreateInsertElement(
406 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
407 Value *const Insert =
408 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
409 BroadcastI = B.CreateBitCast(Insert, Ty);
410 } else if (TyBitWidth == 32) {
411 CallInst *const ReadFirstLane =
412 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
413 setConvergent(ReadFirstLane);
414 BroadcastI = ReadFirstLane;
415 } else {
416 llvm_unreachable("Unhandled atomic bit width");
419 // Now that we have the result of our single atomic operation, we need to
420 // get our individual lane's slice into the result. We use the lane offset we
421 // previously calculated combined with the atomic result value we got from the
422 // first lane, to get our lane's index into the atomic result.
423 Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
425 if (IsPixelShader) {
426 // Need a final PHI to reconverge to above the helper lane branch mask.
427 B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
429 PHINode *const PHI = B.CreatePHI(Ty, 2);
430 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
431 PHI->addIncoming(Result, I.getParent());
432 I.replaceAllUsesWith(PHI);
433 } else {
434 // Replace the original atomic instruction with the new one.
435 I.replaceAllUsesWith(Result);
438 // And delete the original.
439 I.eraseFromParent();
442 void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
443 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
446 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
447 "AMDGPU atomic optimizations", false, false)
448 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
449 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
450 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
451 "AMDGPU atomic optimizations", false, false)
453 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
454 return new AMDGPUAtomicOptimizer();