Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUCodeGenPrepare.cpp
blob759820753255a077f19c66c91a1d32bc84eec36c
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include <cassert>
44 #include <iterator>
46 #define DEBUG_TYPE "amdgpu-codegenprepare"
48 using namespace llvm;
50 namespace {
52 static cl::opt<bool> WidenLoads(
53 "amdgpu-codegenprepare-widen-constant-loads",
54 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
55 cl::ReallyHidden,
56 cl::init(true));
58 class AMDGPUCodeGenPrepare : public FunctionPass,
59 public InstVisitor<AMDGPUCodeGenPrepare, bool> {
60 const GCNSubtarget *ST = nullptr;
61 AssumptionCache *AC = nullptr;
62 LegacyDivergenceAnalysis *DA = nullptr;
63 Module *Mod = nullptr;
64 bool HasUnsafeFPMath = false;
66 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
67 /// binary operation \p V.
68 ///
69 /// \returns Binary operation \p V.
70 /// \returns \p T's base element bit width.
71 unsigned getBaseElementBitWidth(const Type *T) const;
73 /// \returns Equivalent 32 bit integer type for given type \p T. For example,
74 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
75 /// is returned.
76 Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
78 /// \returns True if binary operation \p I is a signed binary operation, false
79 /// otherwise.
80 bool isSigned(const BinaryOperator &I) const;
82 /// \returns True if the condition of 'select' operation \p I comes from a
83 /// signed 'icmp' operation, false otherwise.
84 bool isSigned(const SelectInst &I) const;
86 /// \returns True if type \p T needs to be promoted to 32 bit integer type,
87 /// false otherwise.
88 bool needsPromotionToI32(const Type *T) const;
90 /// Promotes uniform binary operation \p I to equivalent 32 bit binary
91 /// operation.
92 ///
93 /// \details \p I's base element bit width must be greater than 1 and less
94 /// than or equal 16. Promotion is done by sign or zero extending operands to
95 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
96 /// truncating the result of 32 bit binary operation back to \p I's original
97 /// type. Division operation is not promoted.
98 ///
99 /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
100 /// false otherwise.
101 bool promoteUniformOpToI32(BinaryOperator &I) const;
103 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
105 /// \details \p I's base element bit width must be greater than 1 and less
106 /// than or equal 16. Promotion is done by sign or zero extending operands to
107 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
109 /// \returns True.
110 bool promoteUniformOpToI32(ICmpInst &I) const;
112 /// Promotes uniform 'select' operation \p I to 32 bit 'select'
113 /// operation.
115 /// \details \p I's base element bit width must be greater than 1 and less
116 /// than or equal 16. Promotion is done by sign or zero extending operands to
117 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
118 /// result of 32 bit 'select' operation back to \p I's original type.
120 /// \returns True.
121 bool promoteUniformOpToI32(SelectInst &I) const;
123 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
124 /// intrinsic.
126 /// \details \p I's base element bit width must be greater than 1 and less
127 /// than or equal 16. Promotion is done by zero extending the operand to 32
128 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
129 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
130 /// shift amount is 32 minus \p I's base element bit width), and truncating
131 /// the result of the shift operation back to \p I's original type.
133 /// \returns True.
134 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
136 /// Expands 24 bit div or rem.
137 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
138 Value *Num, Value *Den,
139 bool IsDiv, bool IsSigned) const;
141 /// Expands 32 bit div or rem.
142 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
143 Value *Num, Value *Den) const;
145 /// Widen a scalar load.
147 /// \details \p Widen scalar load for uniform, small type loads from constant
148 // memory / to a full 32-bits and then truncate the input to allow a scalar
149 // load instead of a vector load.
151 /// \returns True.
153 bool canWidenScalarExtLoad(LoadInst &I) const;
155 public:
156 static char ID;
158 AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
160 bool visitFDiv(BinaryOperator &I);
162 bool visitInstruction(Instruction &I) { return false; }
163 bool visitBinaryOperator(BinaryOperator &I);
164 bool visitLoadInst(LoadInst &I);
165 bool visitICmpInst(ICmpInst &I);
166 bool visitSelectInst(SelectInst &I);
168 bool visitIntrinsicInst(IntrinsicInst &I);
169 bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
171 bool doInitialization(Module &M) override;
172 bool runOnFunction(Function &F) override;
174 StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
176 void getAnalysisUsage(AnalysisUsage &AU) const override {
177 AU.addRequired<AssumptionCacheTracker>();
178 AU.addRequired<LegacyDivergenceAnalysis>();
179 AU.setPreservesAll();
183 } // end anonymous namespace
185 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
186 assert(needsPromotionToI32(T) && "T does not need promotion to i32");
188 if (T->isIntegerTy())
189 return T->getIntegerBitWidth();
190 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
193 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
194 assert(needsPromotionToI32(T) && "T does not need promotion to i32");
196 if (T->isIntegerTy())
197 return B.getInt32Ty();
198 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
201 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
202 return I.getOpcode() == Instruction::AShr ||
203 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
206 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
207 return isa<ICmpInst>(I.getOperand(0)) ?
208 cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
211 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
212 const IntegerType *IntTy = dyn_cast<IntegerType>(T);
213 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
214 return true;
216 if (const VectorType *VT = dyn_cast<VectorType>(T)) {
217 // TODO: The set of packed operations is more limited, so may want to
218 // promote some anyway.
219 if (ST->hasVOP3PInsts())
220 return false;
222 return needsPromotionToI32(VT->getElementType());
225 return false;
228 // Return true if the op promoted to i32 should have nsw set.
229 static bool promotedOpIsNSW(const Instruction &I) {
230 switch (I.getOpcode()) {
231 case Instruction::Shl:
232 case Instruction::Add:
233 case Instruction::Sub:
234 return true;
235 case Instruction::Mul:
236 return I.hasNoUnsignedWrap();
237 default:
238 return false;
242 // Return true if the op promoted to i32 should have nuw set.
243 static bool promotedOpIsNUW(const Instruction &I) {
244 switch (I.getOpcode()) {
245 case Instruction::Shl:
246 case Instruction::Add:
247 case Instruction::Mul:
248 return true;
249 case Instruction::Sub:
250 return I.hasNoUnsignedWrap();
251 default:
252 return false;
256 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
257 Type *Ty = I.getType();
258 const DataLayout &DL = Mod->getDataLayout();
259 int TySize = DL.getTypeSizeInBits(Ty);
260 unsigned Align = I.getAlignment() ?
261 I.getAlignment() : DL.getABITypeAlignment(Ty);
263 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
266 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
267 assert(needsPromotionToI32(I.getType()) &&
268 "I does not need promotion to i32");
270 if (I.getOpcode() == Instruction::SDiv ||
271 I.getOpcode() == Instruction::UDiv ||
272 I.getOpcode() == Instruction::SRem ||
273 I.getOpcode() == Instruction::URem)
274 return false;
276 IRBuilder<> Builder(&I);
277 Builder.SetCurrentDebugLocation(I.getDebugLoc());
279 Type *I32Ty = getI32Ty(Builder, I.getType());
280 Value *ExtOp0 = nullptr;
281 Value *ExtOp1 = nullptr;
282 Value *ExtRes = nullptr;
283 Value *TruncRes = nullptr;
285 if (isSigned(I)) {
286 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
287 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
288 } else {
289 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
290 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
293 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
294 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
295 if (promotedOpIsNSW(cast<Instruction>(I)))
296 Inst->setHasNoSignedWrap();
298 if (promotedOpIsNUW(cast<Instruction>(I)))
299 Inst->setHasNoUnsignedWrap();
301 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
302 Inst->setIsExact(ExactOp->isExact());
305 TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
307 I.replaceAllUsesWith(TruncRes);
308 I.eraseFromParent();
310 return true;
313 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
314 assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
315 "I does not need promotion to i32");
317 IRBuilder<> Builder(&I);
318 Builder.SetCurrentDebugLocation(I.getDebugLoc());
320 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
321 Value *ExtOp0 = nullptr;
322 Value *ExtOp1 = nullptr;
323 Value *NewICmp = nullptr;
325 if (I.isSigned()) {
326 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
327 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
328 } else {
329 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
330 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
332 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
334 I.replaceAllUsesWith(NewICmp);
335 I.eraseFromParent();
337 return true;
340 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
341 assert(needsPromotionToI32(I.getType()) &&
342 "I does not need promotion to i32");
344 IRBuilder<> Builder(&I);
345 Builder.SetCurrentDebugLocation(I.getDebugLoc());
347 Type *I32Ty = getI32Ty(Builder, I.getType());
348 Value *ExtOp1 = nullptr;
349 Value *ExtOp2 = nullptr;
350 Value *ExtRes = nullptr;
351 Value *TruncRes = nullptr;
353 if (isSigned(I)) {
354 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
355 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
356 } else {
357 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
358 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
360 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
361 TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
363 I.replaceAllUsesWith(TruncRes);
364 I.eraseFromParent();
366 return true;
369 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
370 IntrinsicInst &I) const {
371 assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
372 "I must be bitreverse intrinsic");
373 assert(needsPromotionToI32(I.getType()) &&
374 "I does not need promotion to i32");
376 IRBuilder<> Builder(&I);
377 Builder.SetCurrentDebugLocation(I.getDebugLoc());
379 Type *I32Ty = getI32Ty(Builder, I.getType());
380 Function *I32 =
381 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
382 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
383 Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
384 Value *LShrOp =
385 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
386 Value *TruncRes =
387 Builder.CreateTrunc(LShrOp, I.getType());
389 I.replaceAllUsesWith(TruncRes);
390 I.eraseFromParent();
392 return true;
395 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
396 const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
397 if (!CNum)
398 return HasDenormals;
400 if (UnsafeDiv)
401 return true;
403 bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
405 // Reciprocal f32 is handled separately without denormals.
406 return HasDenormals ^ IsOne;
409 // Insert an intrinsic for fast fdiv for safe math situations where we can
410 // reduce precision. Leave fdiv for situations where the generic node is
411 // expected to be optimized.
412 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
413 Type *Ty = FDiv.getType();
415 if (!Ty->getScalarType()->isFloatTy())
416 return false;
418 MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
419 if (!FPMath)
420 return false;
422 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
423 float ULP = FPOp->getFPAccuracy();
424 if (ULP < 2.5f)
425 return false;
427 FastMathFlags FMF = FPOp->getFastMathFlags();
428 bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
429 FMF.allowReciprocal();
431 // With UnsafeDiv node will be optimized to just rcp and mul.
432 if (UnsafeDiv)
433 return false;
435 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
436 Builder.setFastMathFlags(FMF);
437 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
439 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
441 Value *Num = FDiv.getOperand(0);
442 Value *Den = FDiv.getOperand(1);
444 Value *NewFDiv = nullptr;
446 bool HasDenormals = ST->hasFP32Denormals();
447 if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
448 NewFDiv = UndefValue::get(VT);
450 // FIXME: Doesn't do the right thing for cases where the vector is partially
451 // constant. This works when the scalarizer pass is run first.
452 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
453 Value *NumEltI = Builder.CreateExtractElement(Num, I);
454 Value *DenEltI = Builder.CreateExtractElement(Den, I);
455 Value *NewElt;
457 if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) {
458 NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
459 } else {
460 NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
463 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
465 } else {
466 if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals))
467 NewFDiv = Builder.CreateCall(Decl, { Num, Den });
470 if (NewFDiv) {
471 FDiv.replaceAllUsesWith(NewFDiv);
472 NewFDiv->takeName(&FDiv);
473 FDiv.eraseFromParent();
476 return !!NewFDiv;
479 static bool hasUnsafeFPMath(const Function &F) {
480 Attribute Attr = F.getFnAttribute("unsafe-fp-math");
481 return Attr.getValueAsString() == "true";
484 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
485 Value *LHS, Value *RHS) {
486 Type *I32Ty = Builder.getInt32Ty();
487 Type *I64Ty = Builder.getInt64Ty();
489 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
490 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
491 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
492 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
493 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
494 Hi = Builder.CreateTrunc(Hi, I32Ty);
495 return std::make_pair(Lo, Hi);
498 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
499 return getMul64(Builder, LHS, RHS).second;
502 // The fractional part of a float is enough to accurately represent up to
503 // a 24-bit signed integer.
504 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
505 BinaryOperator &I,
506 Value *Num, Value *Den,
507 bool IsDiv, bool IsSigned) const {
508 assert(Num->getType()->isIntegerTy(32));
510 const DataLayout &DL = Mod->getDataLayout();
511 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
512 if (LHSSignBits < 9)
513 return nullptr;
515 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
516 if (RHSSignBits < 9)
517 return nullptr;
520 unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
521 unsigned DivBits = 32 - SignBits;
522 if (IsSigned)
523 ++DivBits;
525 Type *Ty = Num->getType();
526 Type *I32Ty = Builder.getInt32Ty();
527 Type *F32Ty = Builder.getFloatTy();
528 ConstantInt *One = Builder.getInt32(1);
529 Value *JQ = One;
531 if (IsSigned) {
532 // char|short jq = ia ^ ib;
533 JQ = Builder.CreateXor(Num, Den);
535 // jq = jq >> (bitsize - 2)
536 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
538 // jq = jq | 0x1
539 JQ = Builder.CreateOr(JQ, One);
542 // int ia = (int)LHS;
543 Value *IA = Num;
545 // int ib, (int)RHS;
546 Value *IB = Den;
548 // float fa = (float)ia;
549 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
550 : Builder.CreateUIToFP(IA, F32Ty);
552 // float fb = (float)ib;
553 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
554 : Builder.CreateUIToFP(IB,F32Ty);
556 Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
557 Value *FQM = Builder.CreateFMul(FA, RCP);
559 // fq = trunc(fqm);
560 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
561 FQ->copyFastMathFlags(Builder.getFastMathFlags());
563 // float fqneg = -fq;
564 Value *FQNeg = Builder.CreateFNeg(FQ);
566 // float fr = mad(fqneg, fb, fa);
567 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
568 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
570 // int iq = (int)fq;
571 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
572 : Builder.CreateFPToUI(FQ, I32Ty);
574 // fr = fabs(fr);
575 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
577 // fb = fabs(fb);
578 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
580 // int cv = fr >= fb;
581 Value *CV = Builder.CreateFCmpOGE(FR, FB);
583 // jq = (cv ? jq : 0);
584 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
586 // dst = iq + jq;
587 Value *Div = Builder.CreateAdd(IQ, JQ);
589 Value *Res = Div;
590 if (!IsDiv) {
591 // Rem needs compensation, it's easier to recompute it
592 Value *Rem = Builder.CreateMul(Div, Den);
593 Res = Builder.CreateSub(Num, Rem);
596 // Truncate to number of bits this divide really is.
597 if (IsSigned) {
598 Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits));
599 Res = Builder.CreateSExt(Res, Ty);
600 } else {
601 ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
602 Res = Builder.CreateAnd(Res, TruncMask);
605 return Res;
608 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
609 BinaryOperator &I,
610 Value *Num, Value *Den) const {
611 Instruction::BinaryOps Opc = I.getOpcode();
612 assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
613 Opc == Instruction::SRem || Opc == Instruction::SDiv);
615 FastMathFlags FMF;
616 FMF.setFast();
617 Builder.setFastMathFlags(FMF);
619 if (isa<Constant>(Den))
620 return nullptr; // Keep it for optimization
622 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
623 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
625 Type *Ty = Num->getType();
626 Type *I32Ty = Builder.getInt32Ty();
627 Type *F32Ty = Builder.getFloatTy();
629 if (Ty->getScalarSizeInBits() < 32) {
630 if (IsSigned) {
631 Num = Builder.CreateSExt(Num, I32Ty);
632 Den = Builder.CreateSExt(Den, I32Ty);
633 } else {
634 Num = Builder.CreateZExt(Num, I32Ty);
635 Den = Builder.CreateZExt(Den, I32Ty);
639 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
640 Res = Builder.CreateTrunc(Res, Ty);
641 return Res;
644 ConstantInt *Zero = Builder.getInt32(0);
645 ConstantInt *One = Builder.getInt32(1);
646 ConstantInt *MinusOne = Builder.getInt32(~0);
648 Value *Sign = nullptr;
649 if (IsSigned) {
650 ConstantInt *K31 = Builder.getInt32(31);
651 Value *LHSign = Builder.CreateAShr(Num, K31);
652 Value *RHSign = Builder.CreateAShr(Den, K31);
653 // Remainder sign is the same as LHS
654 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
656 Num = Builder.CreateAdd(Num, LHSign);
657 Den = Builder.CreateAdd(Den, RHSign);
659 Num = Builder.CreateXor(Num, LHSign);
660 Den = Builder.CreateXor(Den, RHSign);
663 // RCP = URECIP(Den) = 2^32 / Den + e
664 // e is rounding error.
665 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
666 Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
667 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
668 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
669 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
671 // RCP_LO, RCP_HI = mul(RCP, Den) */
672 Value *RCP_LO, *RCP_HI;
673 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
675 // NEG_RCP_LO = -RCP_LO
676 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
678 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
679 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
680 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
682 // Calculate the rounding error from the URECIP instruction
683 // E = mulhu(ABS_RCP_LO, RCP)
684 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
686 // RCP_A_E = RCP + E
687 Value *RCP_A_E = Builder.CreateAdd(RCP, E);
689 // RCP_S_E = RCP - E
690 Value *RCP_S_E = Builder.CreateSub(RCP, E);
692 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
693 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
695 // Quotient = mulhu(Tmp0, Num)
696 Value *Quotient = getMulHu(Builder, Tmp0, Num);
698 // Num_S_Remainder = Quotient * Den
699 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
701 // Remainder = Num - Num_S_Remainder
702 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
704 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
705 Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
706 Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
708 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
709 Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
710 Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
711 MinusOne, Zero);
713 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
714 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
715 Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
717 Value *Res;
718 if (IsDiv) {
719 // Quotient_A_One = Quotient + 1
720 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
722 // Quotient_S_One = Quotient - 1
723 Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
725 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
726 Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
728 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
729 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
730 } else {
731 // Remainder_S_Den = Remainder - Den
732 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
734 // Remainder_A_Den = Remainder + Den
735 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
737 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
738 Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
740 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
741 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
744 if (IsSigned) {
745 Res = Builder.CreateXor(Res, Sign);
746 Res = Builder.CreateSub(Res, Sign);
749 Res = Builder.CreateTrunc(Res, Ty);
751 return Res;
754 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
755 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
756 DA->isUniform(&I) && promoteUniformOpToI32(I))
757 return true;
759 bool Changed = false;
760 Instruction::BinaryOps Opc = I.getOpcode();
761 Type *Ty = I.getType();
762 Value *NewDiv = nullptr;
763 if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
764 Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
765 Ty->getScalarSizeInBits() <= 32) {
766 Value *Num = I.getOperand(0);
767 Value *Den = I.getOperand(1);
768 IRBuilder<> Builder(&I);
769 Builder.SetCurrentDebugLocation(I.getDebugLoc());
771 if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
772 NewDiv = UndefValue::get(VT);
774 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
775 Value *NumEltN = Builder.CreateExtractElement(Num, N);
776 Value *DenEltN = Builder.CreateExtractElement(Den, N);
777 Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
778 if (!NewElt)
779 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
780 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
782 } else {
783 NewDiv = expandDivRem32(Builder, I, Num, Den);
786 if (NewDiv) {
787 I.replaceAllUsesWith(NewDiv);
788 I.eraseFromParent();
789 Changed = true;
793 return Changed;
796 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
797 if (!WidenLoads)
798 return false;
800 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
801 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
802 canWidenScalarExtLoad(I)) {
803 IRBuilder<> Builder(&I);
804 Builder.SetCurrentDebugLocation(I.getDebugLoc());
806 Type *I32Ty = Builder.getInt32Ty();
807 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
808 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
809 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
810 WidenLoad->copyMetadata(I);
812 // If we have range metadata, we need to convert the type, and not make
813 // assumptions about the high bits.
814 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
815 ConstantInt *Lower =
816 mdconst::extract<ConstantInt>(Range->getOperand(0));
818 if (Lower->getValue().isNullValue()) {
819 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
820 } else {
821 Metadata *LowAndHigh[] = {
822 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
823 // Don't make assumptions about the high bits.
824 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
827 WidenLoad->setMetadata(LLVMContext::MD_range,
828 MDNode::get(Mod->getContext(), LowAndHigh));
832 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
833 Type *IntNTy = Builder.getIntNTy(TySize);
834 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
835 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
836 I.replaceAllUsesWith(ValOrig);
837 I.eraseFromParent();
838 return true;
841 return false;
844 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
845 bool Changed = false;
847 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
848 DA->isUniform(&I))
849 Changed |= promoteUniformOpToI32(I);
851 return Changed;
854 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
855 bool Changed = false;
857 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
858 DA->isUniform(&I))
859 Changed |= promoteUniformOpToI32(I);
861 return Changed;
864 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
865 switch (I.getIntrinsicID()) {
866 case Intrinsic::bitreverse:
867 return visitBitreverseIntrinsicInst(I);
868 default:
869 return false;
873 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
874 bool Changed = false;
876 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
877 DA->isUniform(&I))
878 Changed |= promoteUniformBitreverseToI32(I);
880 return Changed;
883 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
884 Mod = &M;
885 return false;
888 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
889 if (skipFunction(F))
890 return false;
892 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
893 if (!TPC)
894 return false;
896 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
897 ST = &TM.getSubtarget<GCNSubtarget>(F);
898 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
899 DA = &getAnalysis<LegacyDivergenceAnalysis>();
900 HasUnsafeFPMath = hasUnsafeFPMath(F);
902 bool MadeChange = false;
904 for (BasicBlock &BB : F) {
905 BasicBlock::iterator Next;
906 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
907 Next = std::next(I);
908 MadeChange |= visit(*I);
912 return MadeChange;
915 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
916 "AMDGPU IR optimizations", false, false)
917 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
918 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
919 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
920 false, false)
922 char AMDGPUCodeGenPrepare::ID = 0;
924 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
925 return new AMDGPUCodeGenPrepare();