1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This is the parent TargetLowering class for hardware code gen
13 //===----------------------------------------------------------------------===//
15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
19 #include "AMDGPUISelLowering.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
42 static bool allocateCCRegs(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
43 CCValAssign::LocInfo LocInfo
,
44 ISD::ArgFlagsTy ArgFlags
, CCState
&State
,
45 const TargetRegisterClass
*RC
,
47 ArrayRef
<MCPhysReg
> RegList
= makeArrayRef(RC
->begin(), NumRegs
);
48 unsigned RegResult
= State
.AllocateReg(RegList
);
49 if (RegResult
== AMDGPU::NoRegister
)
52 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, RegResult
, LocVT
, LocInfo
));
56 static bool allocateSGPRTuple(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
57 CCValAssign::LocInfo LocInfo
,
58 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
59 switch (LocVT
.SimpleTy
) {
67 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
68 &AMDGPU::SGPR_64RegClass
, 20);
75 // Allocate up to VGPR31.
77 // TODO: Since there are no VGPR alignent requirements would it be better to
78 // split into individual scalar registers?
79 static bool allocateVGPRTuple(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
80 CCValAssign::LocInfo LocInfo
,
81 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
82 switch (LocVT
.SimpleTy
) {
89 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
90 &AMDGPU::VReg_64RegClass
, 31);
96 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
97 &AMDGPU::VReg_128RegClass
, 29);
101 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
102 &AMDGPU::VReg_256RegClass
, 25);
107 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
108 &AMDGPU::VReg_512RegClass
, 17);
116 #include "AMDGPUGenCallingConv.inc"
118 // Find a larger type to do a load / store of a vector with.
119 EVT
AMDGPUTargetLowering::getEquivalentMemType(LLVMContext
&Ctx
, EVT VT
) {
120 unsigned StoreSize
= VT
.getStoreSizeInBits();
122 return EVT::getIntegerVT(Ctx
, StoreSize
);
124 assert(StoreSize
% 32 == 0 && "Store size not a multiple of 32");
125 return EVT::getVectorVT(Ctx
, MVT::i32
, StoreSize
/ 32);
128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op
, SelectionDAG
&DAG
) {
129 EVT VT
= Op
.getValueType();
130 KnownBits Known
= DAG
.computeKnownBits(Op
);
131 return VT
.getSizeInBits() - Known
.countMinLeadingZeros();
134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op
, SelectionDAG
&DAG
) {
135 EVT VT
= Op
.getValueType();
137 // In order for this to be a signed 24-bit value, bit 23, must
139 return VT
.getSizeInBits() - DAG
.ComputeNumSignBits(Op
);
142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine
&TM
,
143 const AMDGPUSubtarget
&STI
)
144 : TargetLowering(TM
), Subtarget(&STI
) {
145 // Lower floating point store/load to integer store/load to reduce the number
146 // of patterns in tablegen.
147 setOperationAction(ISD::LOAD
, MVT::f32
, Promote
);
148 AddPromotedToType(ISD::LOAD
, MVT::f32
, MVT::i32
);
150 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
151 AddPromotedToType(ISD::LOAD
, MVT::v2f32
, MVT::v2i32
);
153 setOperationAction(ISD::LOAD
, MVT::v4f32
, Promote
);
154 AddPromotedToType(ISD::LOAD
, MVT::v4f32
, MVT::v4i32
);
156 setOperationAction(ISD::LOAD
, MVT::v8f32
, Promote
);
157 AddPromotedToType(ISD::LOAD
, MVT::v8f32
, MVT::v8i32
);
159 setOperationAction(ISD::LOAD
, MVT::v16f32
, Promote
);
160 AddPromotedToType(ISD::LOAD
, MVT::v16f32
, MVT::v16i32
);
162 setOperationAction(ISD::LOAD
, MVT::i64
, Promote
);
163 AddPromotedToType(ISD::LOAD
, MVT::i64
, MVT::v2i32
);
165 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
166 AddPromotedToType(ISD::LOAD
, MVT::v2i64
, MVT::v4i32
);
168 setOperationAction(ISD::LOAD
, MVT::f64
, Promote
);
169 AddPromotedToType(ISD::LOAD
, MVT::f64
, MVT::v2i32
);
171 setOperationAction(ISD::LOAD
, MVT::v2f64
, Promote
);
172 AddPromotedToType(ISD::LOAD
, MVT::v2f64
, MVT::v4i32
);
174 // There are no 64-bit extloads. These should be done as a 32-bit extload and
175 // an extension to 64-bit.
176 for (MVT VT
: MVT::integer_valuetypes()) {
177 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, VT
, Expand
);
178 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, VT
, Expand
);
179 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, VT
, Expand
);
182 for (MVT VT
: MVT::integer_valuetypes()) {
186 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
187 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Legal
);
188 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i16
, Legal
);
189 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i32
, Expand
);
191 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
192 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i8
, Legal
);
193 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Legal
);
194 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i32
, Expand
);
196 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
197 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i8
, Legal
);
198 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i16
, Legal
);
199 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i32
, Expand
);
202 for (MVT VT
: MVT::integer_vector_valuetypes()) {
203 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i8
, Expand
);
204 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i8
, Expand
);
205 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i8
, Expand
);
206 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i8
, Expand
);
207 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i8
, Expand
);
208 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i8
, Expand
);
209 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i16
, Expand
);
210 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i16
, Expand
);
211 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i16
, Expand
);
212 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i16
, Expand
);
213 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i16
, Expand
);
214 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i16
, Expand
);
217 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
218 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f32
, MVT::v2f16
, Expand
);
219 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f32
, MVT::v4f16
, Expand
);
220 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f32
, MVT::v8f16
, Expand
);
222 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
223 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f32
, Expand
);
224 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f32
, Expand
);
225 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f32
, Expand
);
227 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
228 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f16
, Expand
);
229 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f16
, Expand
);
230 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f16
, Expand
);
232 setOperationAction(ISD::STORE
, MVT::f32
, Promote
);
233 AddPromotedToType(ISD::STORE
, MVT::f32
, MVT::i32
);
235 setOperationAction(ISD::STORE
, MVT::v2f32
, Promote
);
236 AddPromotedToType(ISD::STORE
, MVT::v2f32
, MVT::v2i32
);
238 setOperationAction(ISD::STORE
, MVT::v4f32
, Promote
);
239 AddPromotedToType(ISD::STORE
, MVT::v4f32
, MVT::v4i32
);
241 setOperationAction(ISD::STORE
, MVT::v8f32
, Promote
);
242 AddPromotedToType(ISD::STORE
, MVT::v8f32
, MVT::v8i32
);
244 setOperationAction(ISD::STORE
, MVT::v16f32
, Promote
);
245 AddPromotedToType(ISD::STORE
, MVT::v16f32
, MVT::v16i32
);
247 setOperationAction(ISD::STORE
, MVT::i64
, Promote
);
248 AddPromotedToType(ISD::STORE
, MVT::i64
, MVT::v2i32
);
250 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
251 AddPromotedToType(ISD::STORE
, MVT::v2i64
, MVT::v4i32
);
253 setOperationAction(ISD::STORE
, MVT::f64
, Promote
);
254 AddPromotedToType(ISD::STORE
, MVT::f64
, MVT::v2i32
);
256 setOperationAction(ISD::STORE
, MVT::v2f64
, Promote
);
257 AddPromotedToType(ISD::STORE
, MVT::v2f64
, MVT::v4i32
);
259 setTruncStoreAction(MVT::i64
, MVT::i1
, Expand
);
260 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
261 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
262 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
264 setTruncStoreAction(MVT::v2i64
, MVT::v2i1
, Expand
);
265 setTruncStoreAction(MVT::v2i64
, MVT::v2i8
, Expand
);
266 setTruncStoreAction(MVT::v2i64
, MVT::v2i16
, Expand
);
267 setTruncStoreAction(MVT::v2i64
, MVT::v2i32
, Expand
);
269 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
270 setTruncStoreAction(MVT::v2f32
, MVT::v2f16
, Expand
);
271 setTruncStoreAction(MVT::v4f32
, MVT::v4f16
, Expand
);
272 setTruncStoreAction(MVT::v8f32
, MVT::v8f16
, Expand
);
274 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
275 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
277 setTruncStoreAction(MVT::v2f64
, MVT::v2f32
, Expand
);
278 setTruncStoreAction(MVT::v2f64
, MVT::v2f16
, Expand
);
280 setTruncStoreAction(MVT::v4f64
, MVT::v4f32
, Expand
);
281 setTruncStoreAction(MVT::v4f64
, MVT::v4f16
, Expand
);
283 setTruncStoreAction(MVT::v8f64
, MVT::v8f32
, Expand
);
284 setTruncStoreAction(MVT::v8f64
, MVT::v8f16
, Expand
);
287 setOperationAction(ISD::Constant
, MVT::i32
, Legal
);
288 setOperationAction(ISD::Constant
, MVT::i64
, Legal
);
289 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
290 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
292 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
293 setOperationAction(ISD::BRIND
, MVT::Other
, Expand
);
295 // This is totally unsupported, just custom lower to produce an error.
296 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
298 // Library functions. These default to Expand, but we have instructions
300 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
301 setOperationAction(ISD::FEXP2
, MVT::f32
, Legal
);
302 setOperationAction(ISD::FPOW
, MVT::f32
, Legal
);
303 setOperationAction(ISD::FLOG2
, MVT::f32
, Legal
);
304 setOperationAction(ISD::FABS
, MVT::f32
, Legal
);
305 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
306 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
307 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
308 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
309 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
311 setOperationAction(ISD::FROUND
, MVT::f32
, Custom
);
312 setOperationAction(ISD::FROUND
, MVT::f64
, Custom
);
314 setOperationAction(ISD::FLOG
, MVT::f32
, Custom
);
315 setOperationAction(ISD::FLOG10
, MVT::f32
, Custom
);
316 setOperationAction(ISD::FEXP
, MVT::f32
, Custom
);
319 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Custom
);
320 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Custom
);
322 setOperationAction(ISD::FREM
, MVT::f32
, Custom
);
323 setOperationAction(ISD::FREM
, MVT::f64
, Custom
);
325 // Expand to fneg + fadd.
326 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
328 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4i32
, Custom
);
329 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4f32
, Custom
);
330 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8i32
, Custom
);
331 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8f32
, Custom
);
332 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2f32
, Custom
);
333 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2i32
, Custom
);
334 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4f32
, Custom
);
335 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4i32
, Custom
);
336 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8f32
, Custom
);
337 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8i32
, Custom
);
339 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
340 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Custom
);
341 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Custom
);
343 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
344 for (MVT VT
: ScalarIntVTs
) {
345 // These should use [SU]DIVREM, so set them to expand
346 setOperationAction(ISD::SDIV
, VT
, Expand
);
347 setOperationAction(ISD::UDIV
, VT
, Expand
);
348 setOperationAction(ISD::SREM
, VT
, Expand
);
349 setOperationAction(ISD::UREM
, VT
, Expand
);
351 // GPU does not have divrem function for signed or unsigned.
352 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
353 setOperationAction(ISD::UDIVREM
, VT
, Custom
);
355 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
356 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
357 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
359 setOperationAction(ISD::BSWAP
, VT
, Expand
);
360 setOperationAction(ISD::CTTZ
, VT
, Expand
);
361 setOperationAction(ISD::CTLZ
, VT
, Expand
);
363 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
364 setOperationAction(ISD::ADDC
, VT
, Legal
);
365 setOperationAction(ISD::SUBC
, VT
, Legal
);
366 setOperationAction(ISD::ADDE
, VT
, Legal
);
367 setOperationAction(ISD::SUBE
, VT
, Legal
);
370 // The hardware supports 32-bit ROTR, but not ROTL.
371 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
372 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
373 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
375 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
376 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
377 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
378 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
379 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
380 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
381 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
382 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
384 setOperationAction(ISD::SMIN
, MVT::i32
, Legal
);
385 setOperationAction(ISD::UMIN
, MVT::i32
, Legal
);
386 setOperationAction(ISD::SMAX
, MVT::i32
, Legal
);
387 setOperationAction(ISD::UMAX
, MVT::i32
, Legal
);
389 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
390 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i64
, Custom
);
391 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
392 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i64
, Custom
);
394 static const MVT::SimpleValueType VectorIntTypes
[] = {
395 MVT::v2i32
, MVT::v4i32
398 for (MVT VT
: VectorIntTypes
) {
399 // Expand the following operations for the current type by default.
400 setOperationAction(ISD::ADD
, VT
, Expand
);
401 setOperationAction(ISD::AND
, VT
, Expand
);
402 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
403 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
404 setOperationAction(ISD::MUL
, VT
, Expand
);
405 setOperationAction(ISD::MULHU
, VT
, Expand
);
406 setOperationAction(ISD::MULHS
, VT
, Expand
);
407 setOperationAction(ISD::OR
, VT
, Expand
);
408 setOperationAction(ISD::SHL
, VT
, Expand
);
409 setOperationAction(ISD::SRA
, VT
, Expand
);
410 setOperationAction(ISD::SRL
, VT
, Expand
);
411 setOperationAction(ISD::ROTL
, VT
, Expand
);
412 setOperationAction(ISD::ROTR
, VT
, Expand
);
413 setOperationAction(ISD::SUB
, VT
, Expand
);
414 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
415 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
416 setOperationAction(ISD::SDIV
, VT
, Expand
);
417 setOperationAction(ISD::UDIV
, VT
, Expand
);
418 setOperationAction(ISD::SREM
, VT
, Expand
);
419 setOperationAction(ISD::UREM
, VT
, Expand
);
420 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
421 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
422 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
423 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
424 setOperationAction(ISD::SELECT
, VT
, Expand
);
425 setOperationAction(ISD::VSELECT
, VT
, Expand
);
426 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
427 setOperationAction(ISD::XOR
, VT
, Expand
);
428 setOperationAction(ISD::BSWAP
, VT
, Expand
);
429 setOperationAction(ISD::CTPOP
, VT
, Expand
);
430 setOperationAction(ISD::CTTZ
, VT
, Expand
);
431 setOperationAction(ISD::CTLZ
, VT
, Expand
);
432 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
433 setOperationAction(ISD::SETCC
, VT
, Expand
);
436 static const MVT::SimpleValueType FloatVectorTypes
[] = {
437 MVT::v2f32
, MVT::v4f32
440 for (MVT VT
: FloatVectorTypes
) {
441 setOperationAction(ISD::FABS
, VT
, Expand
);
442 setOperationAction(ISD::FMINNUM
, VT
, Expand
);
443 setOperationAction(ISD::FMAXNUM
, VT
, Expand
);
444 setOperationAction(ISD::FADD
, VT
, Expand
);
445 setOperationAction(ISD::FCEIL
, VT
, Expand
);
446 setOperationAction(ISD::FCOS
, VT
, Expand
);
447 setOperationAction(ISD::FDIV
, VT
, Expand
);
448 setOperationAction(ISD::FEXP2
, VT
, Expand
);
449 setOperationAction(ISD::FEXP
, VT
, Expand
);
450 setOperationAction(ISD::FLOG2
, VT
, Expand
);
451 setOperationAction(ISD::FREM
, VT
, Expand
);
452 setOperationAction(ISD::FLOG
, VT
, Expand
);
453 setOperationAction(ISD::FLOG10
, VT
, Expand
);
454 setOperationAction(ISD::FPOW
, VT
, Expand
);
455 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
456 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
457 setOperationAction(ISD::FMUL
, VT
, Expand
);
458 setOperationAction(ISD::FMA
, VT
, Expand
);
459 setOperationAction(ISD::FRINT
, VT
, Expand
);
460 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
461 setOperationAction(ISD::FSQRT
, VT
, Expand
);
462 setOperationAction(ISD::FSIN
, VT
, Expand
);
463 setOperationAction(ISD::FSUB
, VT
, Expand
);
464 setOperationAction(ISD::FNEG
, VT
, Expand
);
465 setOperationAction(ISD::VSELECT
, VT
, Expand
);
466 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
467 setOperationAction(ISD::FCOPYSIGN
, VT
, Expand
);
468 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
469 setOperationAction(ISD::SETCC
, VT
, Expand
);
470 setOperationAction(ISD::FCANONICALIZE
, VT
, Expand
);
473 // This causes using an unrolled select operation rather than expansion with
474 // bit operations. This is in general better, but the alternative using BFI
475 // instructions may be better if the select sources are SGPRs.
476 setOperationAction(ISD::SELECT
, MVT::v2f32
, Promote
);
477 AddPromotedToType(ISD::SELECT
, MVT::v2f32
, MVT::v2i32
);
479 setOperationAction(ISD::SELECT
, MVT::v4f32
, Promote
);
480 AddPromotedToType(ISD::SELECT
, MVT::v4f32
, MVT::v4i32
);
482 // There are no libcalls of any kind.
483 for (int I
= 0; I
< RTLIB::UNKNOWN_LIBCALL
; ++I
)
484 setLibcallName(static_cast<RTLIB::Libcall
>(I
), nullptr);
486 setBooleanContents(ZeroOrNegativeOneBooleanContent
);
487 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
489 setSchedulingPreference(Sched::RegPressure
);
490 setJumpIsExpensive(true);
492 // FIXME: This is only partially true. If we have to do vector compares, any
493 // SGPR pair can be a condition register. If we have a uniform condition, we
494 // are better off doing SALU operations, where there is only one SCC. For now,
495 // we don't have a way of knowing during instruction selection if a condition
496 // will be uniform and we always use vector compares. Assume we are using
497 // vector compares until that is fixed.
498 setHasMultipleConditionRegisters(true);
500 PredictableSelectIsExpensive
= false;
502 // We want to find all load dependencies for long chains of stores to enable
503 // merging into very wide vectors. The problem is with vectors with > 4
504 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
505 // vectors are a legal type, even though we have to split the loads
506 // usually. When we can more precisely specify load legality per address
507 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
508 // smarter so that they can figure out what to do in 2 iterations without all
509 // N > 4 stores on the same chain.
510 GatherAllAliasesMaxDepth
= 16;
512 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
513 // about these during lowering.
514 MaxStoresPerMemcpy
= 0xffffffff;
515 MaxStoresPerMemmove
= 0xffffffff;
516 MaxStoresPerMemset
= 0xffffffff;
518 setTargetDAGCombine(ISD::BITCAST
);
519 setTargetDAGCombine(ISD::SHL
);
520 setTargetDAGCombine(ISD::SRA
);
521 setTargetDAGCombine(ISD::SRL
);
522 setTargetDAGCombine(ISD::TRUNCATE
);
523 setTargetDAGCombine(ISD::MUL
);
524 setTargetDAGCombine(ISD::MULHU
);
525 setTargetDAGCombine(ISD::MULHS
);
526 setTargetDAGCombine(ISD::SELECT
);
527 setTargetDAGCombine(ISD::SELECT_CC
);
528 setTargetDAGCombine(ISD::STORE
);
529 setTargetDAGCombine(ISD::FADD
);
530 setTargetDAGCombine(ISD::FSUB
);
531 setTargetDAGCombine(ISD::FNEG
);
532 setTargetDAGCombine(ISD::FABS
);
533 setTargetDAGCombine(ISD::AssertZext
);
534 setTargetDAGCombine(ISD::AssertSext
);
537 //===----------------------------------------------------------------------===//
538 // Target Information
539 //===----------------------------------------------------------------------===//
542 static bool fnegFoldsIntoOp(unsigned Opc
) {
551 case ISD::FMINNUM_IEEE
:
552 case ISD::FMAXNUM_IEEE
:
556 case ISD::FNEARBYINT
:
557 case ISD::FCANONICALIZE
:
559 case AMDGPUISD::RCP_LEGACY
:
560 case AMDGPUISD::RCP_IFLAG
:
561 case AMDGPUISD::SIN_HW
:
562 case AMDGPUISD::FMUL_LEGACY
:
563 case AMDGPUISD::FMIN_LEGACY
:
564 case AMDGPUISD::FMAX_LEGACY
:
565 case AMDGPUISD::FMED3
:
572 /// \p returns true if the operation will definitely need to use a 64-bit
573 /// encoding, and thus will use a VOP3 encoding regardless of the source
576 static bool opMustUseVOP3Encoding(const SDNode
*N
, MVT VT
) {
577 return N
->getNumOperands() > 2 || VT
== MVT::f64
;
580 // Most FP instructions support source modifiers, but this could be refined
583 static bool hasSourceMods(const SDNode
*N
) {
584 if (isa
<MemSDNode
>(N
))
587 switch (N
->getOpcode()) {
593 case ISD::INLINEASM_BR
:
594 case AMDGPUISD::INTERP_P1
:
595 case AMDGPUISD::INTERP_P2
:
596 case AMDGPUISD::DIV_SCALE
:
598 // TODO: Should really be looking at the users of the bitcast. These are
599 // problematic because bitcasts are used to legalize all stores to integer
608 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode
*N
,
609 unsigned CostThreshold
) {
610 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
611 // it is truly free to use a source modifier in all cases. If there are
612 // multiple users but for each one will necessitate using VOP3, there will be
613 // a code size increase. Try to avoid increasing code size unless we know it
614 // will save on the instruction count.
615 unsigned NumMayIncreaseSize
= 0;
616 MVT VT
= N
->getValueType(0).getScalarType().getSimpleVT();
618 // XXX - Should this limit number of uses to check?
619 for (const SDNode
*U
: N
->uses()) {
620 if (!hasSourceMods(U
))
623 if (!opMustUseVOP3Encoding(U
, VT
)) {
624 if (++NumMayIncreaseSize
> CostThreshold
)
632 MVT
AMDGPUTargetLowering::getVectorIdxTy(const DataLayout
&) const {
636 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType
) const {
640 // The backend supports 32 and 64 bit floating point immediates.
641 // FIXME: Why are we reporting vectors of FP immediates as legal?
642 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
) const {
643 EVT ScalarVT
= VT
.getScalarType();
644 return (ScalarVT
== MVT::f32
|| ScalarVT
== MVT::f64
||
645 (ScalarVT
== MVT::f16
&& Subtarget
->has16BitInsts()));
648 // We don't want to shrink f64 / f32 constants.
649 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT
) const {
650 EVT ScalarVT
= VT
.getScalarType();
651 return (ScalarVT
!= MVT::f32
&& ScalarVT
!= MVT::f64
);
654 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode
*N
,
655 ISD::LoadExtType ExtTy
,
657 // TODO: This may be worth removing. Check regression tests for diffs.
658 if (!TargetLoweringBase::shouldReduceLoadWidth(N
, ExtTy
, NewVT
))
661 unsigned NewSize
= NewVT
.getStoreSizeInBits();
663 // If we are reducing to a 32-bit load, this is always better.
667 EVT OldVT
= N
->getValueType(0);
668 unsigned OldSize
= OldVT
.getStoreSizeInBits();
670 MemSDNode
*MN
= cast
<MemSDNode
>(N
);
671 unsigned AS
= MN
->getAddressSpace();
672 // Do not shrink an aligned scalar load to sub-dword.
673 // Scalar engine cannot do sub-dword loads.
674 if (OldSize
>= 32 && NewSize
< 32 && MN
->getAlignment() >= 4 &&
675 (AS
== AMDGPUAS::CONSTANT_ADDRESS
||
676 AS
== AMDGPUAS::CONSTANT_ADDRESS_32BIT
||
677 (isa
<LoadSDNode
>(N
) &&
678 AS
== AMDGPUAS::GLOBAL_ADDRESS
&& MN
->isInvariant())) &&
679 AMDGPUInstrInfo::isUniformMMO(MN
->getMemOperand()))
682 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
683 // extloads, so doing one requires using a buffer_load. In cases where we
684 // still couldn't use a scalar load, using the wider load shouldn't really
687 // If the old size already had to be an extload, there's no harm in continuing
688 // to reduce the width.
689 return (OldSize
< 32);
692 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy
,
695 assert(LoadTy
.getSizeInBits() == CastTy
.getSizeInBits());
697 if (LoadTy
.getScalarType() == MVT::i32
)
700 unsigned LScalarSize
= LoadTy
.getScalarSizeInBits();
701 unsigned CastScalarSize
= CastTy
.getScalarSizeInBits();
703 return (LScalarSize
< CastScalarSize
) ||
704 (CastScalarSize
>= 32);
707 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
708 // profitable with the expansion for 64-bit since it's generally good to
710 // FIXME: These should really have the size as a parameter.
711 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
715 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
719 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode
* N
) const {
720 switch (N
->getOpcode()) {
723 case ISD::EntryToken
:
724 case ISD::TokenFactor
:
726 case ISD::INTRINSIC_WO_CHAIN
:
728 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
732 case Intrinsic::amdgcn_readfirstlane
:
733 case Intrinsic::amdgcn_readlane
:
740 const LoadSDNode
* L
= dyn_cast
<LoadSDNode
>(N
);
741 if (L
->getMemOperand()->getAddrSpace()
742 == AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
750 //===---------------------------------------------------------------------===//
752 //===---------------------------------------------------------------------===//
754 bool AMDGPUTargetLowering::isFAbsFree(EVT VT
) const {
755 assert(VT
.isFloatingPoint());
757 // Packed operations do not have a fabs modifier.
758 return VT
== MVT::f32
|| VT
== MVT::f64
||
759 (Subtarget
->has16BitInsts() && VT
== MVT::f16
);
762 bool AMDGPUTargetLowering::isFNegFree(EVT VT
) const {
763 assert(VT
.isFloatingPoint());
764 return VT
== MVT::f32
|| VT
== MVT::f64
||
765 (Subtarget
->has16BitInsts() && VT
== MVT::f16
) ||
766 (Subtarget
->hasVOP3PInsts() && VT
== MVT::v2f16
);
769 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT
,
775 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT
) const {
776 // There are few operations which truly have vector input operands. Any vector
777 // operation is going to involve operations on each component, and a
778 // build_vector will be a copy per element, so it always makes sense to use a
779 // build_vector input in place of the extracted element to avoid a copy into a
782 // We should probably only do this if all users are extracts only, but this
783 // should be the common case.
787 bool AMDGPUTargetLowering::isTruncateFree(EVT Source
, EVT Dest
) const {
788 // Truncate is just accessing a subregister.
790 unsigned SrcSize
= Source
.getSizeInBits();
791 unsigned DestSize
= Dest
.getSizeInBits();
793 return DestSize
< SrcSize
&& DestSize
% 32 == 0 ;
796 bool AMDGPUTargetLowering::isTruncateFree(Type
*Source
, Type
*Dest
) const {
797 // Truncate is just accessing a subregister.
799 unsigned SrcSize
= Source
->getScalarSizeInBits();
800 unsigned DestSize
= Dest
->getScalarSizeInBits();
802 if (DestSize
== 16 && Subtarget
->has16BitInsts())
803 return SrcSize
>= 32;
805 return DestSize
< SrcSize
&& DestSize
% 32 == 0;
808 bool AMDGPUTargetLowering::isZExtFree(Type
*Src
, Type
*Dest
) const {
809 unsigned SrcSize
= Src
->getScalarSizeInBits();
810 unsigned DestSize
= Dest
->getScalarSizeInBits();
812 if (SrcSize
== 16 && Subtarget
->has16BitInsts())
813 return DestSize
>= 32;
815 return SrcSize
== 32 && DestSize
== 64;
818 bool AMDGPUTargetLowering::isZExtFree(EVT Src
, EVT Dest
) const {
819 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
820 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
821 // this will enable reducing 64-bit operations the 32-bit, which is always
825 return Dest
== MVT::i32
||Dest
== MVT::i64
;
827 return Src
== MVT::i32
&& Dest
== MVT::i64
;
830 bool AMDGPUTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
831 return isZExtFree(Val
.getValueType(), VT2
);
834 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT
, EVT DestVT
) const {
835 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
836 // limited number of native 64-bit operations. Shrinking an operation to fit
837 // in a single 32-bit register should always be helpful. As currently used,
838 // this is much less general than the name suggests, and is only used in
839 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
840 // not profitable, and may actually be harmful.
841 return SrcVT
.getSizeInBits() > 32 && DestVT
.getSizeInBits() == 32;
844 //===---------------------------------------------------------------------===//
845 // TargetLowering Callbacks
846 //===---------------------------------------------------------------------===//
848 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC
,
851 case CallingConv::AMDGPU_KERNEL
:
852 case CallingConv::SPIR_KERNEL
:
853 llvm_unreachable("kernels should not be handled here");
854 case CallingConv::AMDGPU_VS
:
855 case CallingConv::AMDGPU_GS
:
856 case CallingConv::AMDGPU_PS
:
857 case CallingConv::AMDGPU_CS
:
858 case CallingConv::AMDGPU_HS
:
859 case CallingConv::AMDGPU_ES
:
860 case CallingConv::AMDGPU_LS
:
863 case CallingConv::Fast
:
864 case CallingConv::Cold
:
865 return CC_AMDGPU_Func
;
867 report_fatal_error("Unsupported calling convention.");
871 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC
,
874 case CallingConv::AMDGPU_KERNEL
:
875 case CallingConv::SPIR_KERNEL
:
876 llvm_unreachable("kernels should not be handled here");
877 case CallingConv::AMDGPU_VS
:
878 case CallingConv::AMDGPU_GS
:
879 case CallingConv::AMDGPU_PS
:
880 case CallingConv::AMDGPU_CS
:
881 case CallingConv::AMDGPU_HS
:
882 case CallingConv::AMDGPU_ES
:
883 case CallingConv::AMDGPU_LS
:
884 return RetCC_SI_Shader
;
886 case CallingConv::Fast
:
887 case CallingConv::Cold
:
888 return RetCC_AMDGPU_Func
;
890 report_fatal_error("Unsupported calling convention.");
894 /// The SelectionDAGBuilder will automatically promote function arguments
895 /// with illegal types. However, this does not work for the AMDGPU targets
896 /// since the function arguments are stored in memory as these illegal types.
897 /// In order to handle this properly we need to get the original types sizes
898 /// from the LLVM IR Function and fixup the ISD:InputArg values before
899 /// passing them to AnalyzeFormalArguments()
901 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
902 /// input values across multiple registers. Each item in the Ins array
903 /// represents a single value that will be stored in registers. Ins[x].VT is
904 /// the value type of the value that will be stored in the register, so
905 /// whatever SDNode we lower the argument to needs to be this type.
907 /// In order to correctly lower the arguments we need to know the size of each
908 /// argument. Since Ins[x].VT gives us the size of the register that will
909 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
910 /// for the orignal function argument so that we can deduce the correct memory
911 /// type to use for Ins[x]. In most cases the correct memory type will be
912 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
913 /// we have a kernel argument of type v8i8, this argument will be split into
914 /// 8 parts and each part will be represented by its own item in the Ins array.
915 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
916 /// the argument before it was split. From this, we deduce that the memory type
917 /// for each individual part is i8. We pass the memory type as LocVT to the
918 /// calling convention analysis function and the register type (Ins[x].VT) as
920 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
922 const SmallVectorImpl
<ISD::InputArg
> &Ins
) const {
923 const MachineFunction
&MF
= State
.getMachineFunction();
924 const Function
&Fn
= MF
.getFunction();
925 LLVMContext
&Ctx
= Fn
.getParent()->getContext();
926 const AMDGPUSubtarget
&ST
= AMDGPUSubtarget::get(MF
);
927 const unsigned ExplicitOffset
= ST
.getExplicitKernelArgOffset(Fn
);
928 CallingConv::ID CC
= Fn
.getCallingConv();
930 unsigned MaxAlign
= 1;
931 uint64_t ExplicitArgOffset
= 0;
932 const DataLayout
&DL
= Fn
.getParent()->getDataLayout();
934 unsigned InIndex
= 0;
936 for (const Argument
&Arg
: Fn
.args()) {
937 Type
*BaseArgTy
= Arg
.getType();
938 unsigned Align
= DL
.getABITypeAlignment(BaseArgTy
);
939 MaxAlign
= std::max(Align
, MaxAlign
);
940 unsigned AllocSize
= DL
.getTypeAllocSize(BaseArgTy
);
942 uint64_t ArgOffset
= alignTo(ExplicitArgOffset
, Align
) + ExplicitOffset
;
943 ExplicitArgOffset
= alignTo(ExplicitArgOffset
, Align
) + AllocSize
;
945 // We're basically throwing away everything passed into us and starting over
946 // to get accurate in-memory offsets. The "PartOffset" is completely useless
947 // to us as computed in Ins.
949 // We also need to figure out what type legalization is trying to do to get
950 // the correct memory offsets.
952 SmallVector
<EVT
, 16> ValueVTs
;
953 SmallVector
<uint64_t, 16> Offsets
;
954 ComputeValueVTs(*this, DL
, BaseArgTy
, ValueVTs
, &Offsets
, ArgOffset
);
956 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
957 Value
!= NumValues
; ++Value
) {
958 uint64_t BasePartOffset
= Offsets
[Value
];
960 EVT ArgVT
= ValueVTs
[Value
];
962 MVT RegisterVT
= getRegisterTypeForCallingConv(Ctx
, CC
, ArgVT
);
963 unsigned NumRegs
= getNumRegistersForCallingConv(Ctx
, CC
, ArgVT
);
966 // This argument is not split, so the IR type is the memory type.
967 if (ArgVT
.isExtended()) {
968 // We have an extended type, like i24, so we should just use the
974 } else if (ArgVT
.isVector() && RegisterVT
.isVector() &&
975 ArgVT
.getScalarType() == RegisterVT
.getScalarType()) {
976 assert(ArgVT
.getVectorNumElements() > RegisterVT
.getVectorNumElements());
977 // We have a vector value which has been split into a vector with
978 // the same scalar type, but fewer elements. This should handle
979 // all the floating-point vector types.
981 } else if (ArgVT
.isVector() &&
982 ArgVT
.getVectorNumElements() == NumRegs
) {
983 // This arg has been split so that each element is stored in a separate
985 MemVT
= ArgVT
.getScalarType();
986 } else if (ArgVT
.isExtended()) {
987 // We have an extended type, like i65.
990 unsigned MemoryBits
= ArgVT
.getStoreSizeInBits() / NumRegs
;
991 assert(ArgVT
.getStoreSizeInBits() % NumRegs
== 0);
992 if (RegisterVT
.isInteger()) {
993 MemVT
= EVT::getIntegerVT(State
.getContext(), MemoryBits
);
994 } else if (RegisterVT
.isVector()) {
995 assert(!RegisterVT
.getScalarType().isFloatingPoint());
996 unsigned NumElements
= RegisterVT
.getVectorNumElements();
997 assert(MemoryBits
% NumElements
== 0);
998 // This vector type has been split into another vector type with
999 // a different elements size.
1000 EVT ScalarVT
= EVT::getIntegerVT(State
.getContext(),
1001 MemoryBits
/ NumElements
);
1002 MemVT
= EVT::getVectorVT(State
.getContext(), ScalarVT
, NumElements
);
1004 llvm_unreachable("cannot deduce memory type.");
1008 // Convert one element vectors to scalar.
1009 if (MemVT
.isVector() && MemVT
.getVectorNumElements() == 1)
1010 MemVT
= MemVT
.getScalarType();
1012 if (MemVT
.isExtended()) {
1013 // This should really only happen if we have vec3 arguments
1014 assert(MemVT
.isVector() && MemVT
.getVectorNumElements() == 3);
1015 MemVT
= MemVT
.getPow2VectorType(State
.getContext());
1018 unsigned PartOffset
= 0;
1019 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
1020 State
.addLoc(CCValAssign::getCustomMem(InIndex
++, RegisterVT
,
1021 BasePartOffset
+ PartOffset
,
1022 MemVT
.getSimpleVT(),
1023 CCValAssign::Full
));
1024 PartOffset
+= MemVT
.getStoreSize();
1030 SDValue
AMDGPUTargetLowering::LowerReturn(
1031 SDValue Chain
, CallingConv::ID CallConv
,
1033 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1034 const SmallVectorImpl
<SDValue
> &OutVals
,
1035 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1036 // FIXME: Fails for r600 tests
1037 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1038 // "wave terminate should not have return values");
1039 return DAG
.getNode(AMDGPUISD::ENDPGM
, DL
, MVT::Other
, Chain
);
1042 //===---------------------------------------------------------------------===//
1043 // Target specific lowering
1044 //===---------------------------------------------------------------------===//
1046 /// Selects the correct CCAssignFn for a given CallingConvention value.
1047 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1049 return AMDGPUCallLowering::CCAssignFnForCall(CC
, IsVarArg
);
1052 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1054 return AMDGPUCallLowering::CCAssignFnForReturn(CC
, IsVarArg
);
1057 SDValue
AMDGPUTargetLowering::addTokenForArgument(SDValue Chain
,
1059 MachineFrameInfo
&MFI
,
1060 int ClobberedFI
) const {
1061 SmallVector
<SDValue
, 8> ArgChains
;
1062 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
1063 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
1065 // Include the original chain at the beginning of the list. When this is
1066 // used by target LowerCall hooks, this helps legalize find the
1067 // CALLSEQ_BEGIN node.
1068 ArgChains
.push_back(Chain
);
1070 // Add a chain value for each stack argument corresponding
1071 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
1072 UE
= DAG
.getEntryNode().getNode()->use_end();
1074 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
)) {
1075 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr())) {
1076 if (FI
->getIndex() < 0) {
1077 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
1078 int64_t InLastByte
= InFirstByte
;
1079 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
1081 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
1082 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
1083 ArgChains
.push_back(SDValue(L
, 1));
1089 // Build a tokenfactor for all the chains.
1090 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
1093 SDValue
AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo
&CLI
,
1094 SmallVectorImpl
<SDValue
> &InVals
,
1095 StringRef Reason
) const {
1096 SDValue Callee
= CLI
.Callee
;
1097 SelectionDAG
&DAG
= CLI
.DAG
;
1099 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1101 StringRef
FuncName("<unknown>");
1103 if (const ExternalSymbolSDNode
*G
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1104 FuncName
= G
->getSymbol();
1105 else if (const GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1106 FuncName
= G
->getGlobal()->getName();
1108 DiagnosticInfoUnsupported
NoCalls(
1109 Fn
, Reason
+ FuncName
, CLI
.DL
.getDebugLoc());
1110 DAG
.getContext()->diagnose(NoCalls
);
1112 if (!CLI
.IsTailCall
) {
1113 for (unsigned I
= 0, E
= CLI
.Ins
.size(); I
!= E
; ++I
)
1114 InVals
.push_back(DAG
.getUNDEF(CLI
.Ins
[I
].VT
));
1117 return DAG
.getEntryNode();
1120 SDValue
AMDGPUTargetLowering::LowerCall(CallLoweringInfo
&CLI
,
1121 SmallVectorImpl
<SDValue
> &InVals
) const {
1122 return lowerUnhandledCall(CLI
, InVals
, "unsupported call to function ");
1125 SDValue
AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
1126 SelectionDAG
&DAG
) const {
1127 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1129 DiagnosticInfoUnsupported
NoDynamicAlloca(Fn
, "unsupported dynamic alloca",
1130 SDLoc(Op
).getDebugLoc());
1131 DAG
.getContext()->diagnose(NoDynamicAlloca
);
1132 auto Ops
= {DAG
.getConstant(0, SDLoc(), Op
.getValueType()), Op
.getOperand(0)};
1133 return DAG
.getMergeValues(Ops
, SDLoc());
1136 SDValue
AMDGPUTargetLowering::LowerOperation(SDValue Op
,
1137 SelectionDAG
&DAG
) const {
1138 switch (Op
.getOpcode()) {
1140 Op
->print(errs(), &DAG
);
1141 llvm_unreachable("Custom lowering code for this"
1142 "instruction is not implemented yet!");
1144 case ISD::SIGN_EXTEND_INREG
: return LowerSIGN_EXTEND_INREG(Op
, DAG
);
1145 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
1146 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
1147 case ISD::UDIVREM
: return LowerUDIVREM(Op
, DAG
);
1148 case ISD::SDIVREM
: return LowerSDIVREM(Op
, DAG
);
1149 case ISD::FREM
: return LowerFREM(Op
, DAG
);
1150 case ISD::FCEIL
: return LowerFCEIL(Op
, DAG
);
1151 case ISD::FTRUNC
: return LowerFTRUNC(Op
, DAG
);
1152 case ISD::FRINT
: return LowerFRINT(Op
, DAG
);
1153 case ISD::FNEARBYINT
: return LowerFNEARBYINT(Op
, DAG
);
1154 case ISD::FROUND
: return LowerFROUND(Op
, DAG
);
1155 case ISD::FFLOOR
: return LowerFFLOOR(Op
, DAG
);
1157 return LowerFLOG(Op
, DAG
, 1 / AMDGPU_LOG2E_F
);
1159 return LowerFLOG(Op
, DAG
, AMDGPU_LN2_F
/ AMDGPU_LN10_F
);
1161 return lowerFEXP(Op
, DAG
);
1162 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
1163 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
1164 case ISD::FP_TO_FP16
: return LowerFP_TO_FP16(Op
, DAG
);
1165 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
1166 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
1168 case ISD::CTTZ_ZERO_UNDEF
:
1170 case ISD::CTLZ_ZERO_UNDEF
:
1171 return LowerCTLZ_CTTZ(Op
, DAG
);
1172 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
1177 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode
*N
,
1178 SmallVectorImpl
<SDValue
> &Results
,
1179 SelectionDAG
&DAG
) const {
1180 switch (N
->getOpcode()) {
1181 case ISD::SIGN_EXTEND_INREG
:
1182 // Different parts of legalization seem to interpret which type of
1183 // sign_extend_inreg is the one to check for custom lowering. The extended
1184 // from type is what really matters, but some places check for custom
1185 // lowering of the result type. This results in trying to use
1186 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1187 // nothing here and let the illegal result integer be handled normally.
1194 static bool hasDefinedInitializer(const GlobalValue
*GV
) {
1195 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
1196 if (!GVar
|| !GVar
->hasInitializer())
1199 return !isa
<UndefValue
>(GVar
->getInitializer());
1202 SDValue
AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
* MFI
,
1204 SelectionDAG
&DAG
) const {
1206 const DataLayout
&DL
= DAG
.getDataLayout();
1207 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Op
);
1208 const GlobalValue
*GV
= G
->getGlobal();
1210 if (G
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1211 G
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
) {
1212 if (!MFI
->isEntryFunction()) {
1213 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1214 DiagnosticInfoUnsupported
BadLDSDecl(
1215 Fn
, "local memory global used by non-kernel function", SDLoc(Op
).getDebugLoc());
1216 DAG
.getContext()->diagnose(BadLDSDecl
);
1219 // XXX: What does the value of G->getOffset() mean?
1220 assert(G
->getOffset() == 0 &&
1221 "Do not know what to do with an non-zero offset");
1223 // TODO: We could emit code to handle the initialization somewhere.
1224 if (!hasDefinedInitializer(GV
)) {
1225 unsigned Offset
= MFI
->allocateLDSGlobal(DL
, *GV
);
1226 return DAG
.getConstant(Offset
, SDLoc(Op
), Op
.getValueType());
1230 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1231 DiagnosticInfoUnsupported
BadInit(
1232 Fn
, "unsupported initializer for address space", SDLoc(Op
).getDebugLoc());
1233 DAG
.getContext()->diagnose(BadInit
);
1237 SDValue
AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op
,
1238 SelectionDAG
&DAG
) const {
1239 SmallVector
<SDValue
, 8> Args
;
1241 EVT VT
= Op
.getValueType();
1242 if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
1244 SDValue Lo
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(0));
1245 SDValue Hi
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(1));
1247 SDValue BV
= DAG
.getBuildVector(MVT::v2i32
, SL
, { Lo
, Hi
});
1248 return DAG
.getNode(ISD::BITCAST
, SL
, VT
, BV
);
1251 for (const SDUse
&U
: Op
->ops())
1252 DAG
.ExtractVectorElements(U
.get(), Args
);
1254 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1257 SDValue
AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
1258 SelectionDAG
&DAG
) const {
1260 SmallVector
<SDValue
, 8> Args
;
1261 unsigned Start
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1262 EVT VT
= Op
.getValueType();
1263 DAG
.ExtractVectorElements(Op
.getOperand(0), Args
, Start
,
1264 VT
.getVectorNumElements());
1266 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1269 /// Generate Min/Max node
1270 SDValue
AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc
&DL
, EVT VT
,
1271 SDValue LHS
, SDValue RHS
,
1272 SDValue True
, SDValue False
,
1274 DAGCombinerInfo
&DCI
) const {
1275 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
1278 SelectionDAG
&DAG
= DCI
.DAG
;
1279 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
1288 case ISD::SETFALSE2
:
1297 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1298 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1304 // Ordered. Assume ordered for undefined.
1306 // Only do this after legalization to avoid interfering with other combines
1307 // which might occur.
1308 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1309 !DCI
.isCalledByLegalizer())
1312 // We need to permute the operands to get the correct NaN behavior. The
1313 // selected operand is the second one based on the failing compare with NaN,
1314 // so permute it based on the compare type the hardware uses.
1316 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1317 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1322 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1323 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1329 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1330 !DCI
.isCalledByLegalizer())
1334 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1335 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1337 case ISD::SETCC_INVALID
:
1338 llvm_unreachable("Invalid setcc condcode!");
1343 std::pair
<SDValue
, SDValue
>
1344 AMDGPUTargetLowering::split64BitValue(SDValue Op
, SelectionDAG
&DAG
) const {
1347 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1349 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1350 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1352 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1353 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1355 return std::make_pair(Lo
, Hi
);
1358 SDValue
AMDGPUTargetLowering::getLoHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1361 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1362 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1363 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1366 SDValue
AMDGPUTargetLowering::getHiHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1369 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1370 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1371 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1374 SDValue
AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op
,
1375 SelectionDAG
&DAG
) const {
1376 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1377 EVT VT
= Op
.getValueType();
1380 // If this is a 2 element vector, we really want to scalarize and not create
1381 // weird 1 element vectors.
1382 if (VT
.getVectorNumElements() == 2)
1383 return scalarizeVectorLoad(Load
, DAG
);
1385 SDValue BasePtr
= Load
->getBasePtr();
1386 EVT MemVT
= Load
->getMemoryVT();
1389 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1392 EVT LoMemVT
, HiMemVT
;
1395 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(VT
);
1396 std::tie(LoMemVT
, HiMemVT
) = DAG
.GetSplitDestVTs(MemVT
);
1397 std::tie(Lo
, Hi
) = DAG
.SplitVector(Op
, SL
, LoVT
, HiVT
);
1399 unsigned Size
= LoMemVT
.getStoreSize();
1400 unsigned BaseAlign
= Load
->getAlignment();
1401 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1403 SDValue LoLoad
= DAG
.getExtLoad(Load
->getExtensionType(), SL
, LoVT
,
1404 Load
->getChain(), BasePtr
, SrcValue
, LoMemVT
,
1405 BaseAlign
, Load
->getMemOperand()->getFlags());
1406 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Size
);
1408 DAG
.getExtLoad(Load
->getExtensionType(), SL
, HiVT
, Load
->getChain(),
1409 HiPtr
, SrcValue
.getWithOffset(LoMemVT
.getStoreSize()),
1410 HiMemVT
, HiAlign
, Load
->getMemOperand()->getFlags());
1413 DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, VT
, LoLoad
, HiLoad
),
1414 DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
,
1415 LoLoad
.getValue(1), HiLoad
.getValue(1))
1418 return DAG
.getMergeValues(Ops
, SL
);
1421 SDValue
AMDGPUTargetLowering::SplitVectorStore(SDValue Op
,
1422 SelectionDAG
&DAG
) const {
1423 StoreSDNode
*Store
= cast
<StoreSDNode
>(Op
);
1424 SDValue Val
= Store
->getValue();
1425 EVT VT
= Val
.getValueType();
1427 // If this is a 2 element vector, we really want to scalarize and not create
1428 // weird 1 element vectors.
1429 if (VT
.getVectorNumElements() == 2)
1430 return scalarizeVectorStore(Store
, DAG
);
1432 EVT MemVT
= Store
->getMemoryVT();
1433 SDValue Chain
= Store
->getChain();
1434 SDValue BasePtr
= Store
->getBasePtr();
1438 EVT LoMemVT
, HiMemVT
;
1441 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(VT
);
1442 std::tie(LoMemVT
, HiMemVT
) = DAG
.GetSplitDestVTs(MemVT
);
1443 std::tie(Lo
, Hi
) = DAG
.SplitVector(Val
, SL
, LoVT
, HiVT
);
1445 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, LoMemVT
.getStoreSize());
1447 const MachinePointerInfo
&SrcValue
= Store
->getMemOperand()->getPointerInfo();
1448 unsigned BaseAlign
= Store
->getAlignment();
1449 unsigned Size
= LoMemVT
.getStoreSize();
1450 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1453 DAG
.getTruncStore(Chain
, SL
, Lo
, BasePtr
, SrcValue
, LoMemVT
, BaseAlign
,
1454 Store
->getMemOperand()->getFlags());
1456 DAG
.getTruncStore(Chain
, SL
, Hi
, HiPtr
, SrcValue
.getWithOffset(Size
),
1457 HiMemVT
, HiAlign
, Store
->getMemOperand()->getFlags());
1459 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoStore
, HiStore
);
1462 // This is a shortcut for integer division because we have fast i32<->f32
1463 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1464 // float is enough to accurately represent up to a 24-bit signed integer.
1465 SDValue
AMDGPUTargetLowering::LowerDIVREM24(SDValue Op
, SelectionDAG
&DAG
,
1468 EVT VT
= Op
.getValueType();
1469 SDValue LHS
= Op
.getOperand(0);
1470 SDValue RHS
= Op
.getOperand(1);
1471 MVT IntVT
= MVT::i32
;
1472 MVT FltVT
= MVT::f32
;
1474 unsigned LHSSignBits
= DAG
.ComputeNumSignBits(LHS
);
1475 if (LHSSignBits
< 9)
1478 unsigned RHSSignBits
= DAG
.ComputeNumSignBits(RHS
);
1479 if (RHSSignBits
< 9)
1482 unsigned BitSize
= VT
.getSizeInBits();
1483 unsigned SignBits
= std::min(LHSSignBits
, RHSSignBits
);
1484 unsigned DivBits
= BitSize
- SignBits
;
1488 ISD::NodeType ToFp
= Sign
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
;
1489 ISD::NodeType ToInt
= Sign
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
;
1491 SDValue jq
= DAG
.getConstant(1, DL
, IntVT
);
1494 // char|short jq = ia ^ ib;
1495 jq
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, RHS
);
1497 // jq = jq >> (bitsize - 2)
1498 jq
= DAG
.getNode(ISD::SRA
, DL
, VT
, jq
,
1499 DAG
.getConstant(BitSize
- 2, DL
, VT
));
1502 jq
= DAG
.getNode(ISD::OR
, DL
, VT
, jq
, DAG
.getConstant(1, DL
, VT
));
1505 // int ia = (int)LHS;
1508 // int ib, (int)RHS;
1511 // float fa = (float)ia;
1512 SDValue fa
= DAG
.getNode(ToFp
, DL
, FltVT
, ia
);
1514 // float fb = (float)ib;
1515 SDValue fb
= DAG
.getNode(ToFp
, DL
, FltVT
, ib
);
1517 SDValue fq
= DAG
.getNode(ISD::FMUL
, DL
, FltVT
,
1518 fa
, DAG
.getNode(AMDGPUISD::RCP
, DL
, FltVT
, fb
));
1521 fq
= DAG
.getNode(ISD::FTRUNC
, DL
, FltVT
, fq
);
1523 // float fqneg = -fq;
1524 SDValue fqneg
= DAG
.getNode(ISD::FNEG
, DL
, FltVT
, fq
);
1526 // float fr = mad(fqneg, fb, fa);
1527 unsigned OpCode
= Subtarget
->hasFP32Denormals() ?
1528 (unsigned)AMDGPUISD::FMAD_FTZ
:
1529 (unsigned)ISD::FMAD
;
1530 SDValue fr
= DAG
.getNode(OpCode
, DL
, FltVT
, fqneg
, fb
, fa
);
1532 // int iq = (int)fq;
1533 SDValue iq
= DAG
.getNode(ToInt
, DL
, IntVT
, fq
);
1536 fr
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fr
);
1539 fb
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fb
);
1541 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
1543 // int cv = fr >= fb;
1544 SDValue cv
= DAG
.getSetCC(DL
, SetCCVT
, fr
, fb
, ISD::SETOGE
);
1546 // jq = (cv ? jq : 0);
1547 jq
= DAG
.getNode(ISD::SELECT
, DL
, VT
, cv
, jq
, DAG
.getConstant(0, DL
, VT
));
1550 SDValue Div
= DAG
.getNode(ISD::ADD
, DL
, VT
, iq
, jq
);
1552 // Rem needs compensation, it's easier to recompute it
1553 SDValue Rem
= DAG
.getNode(ISD::MUL
, DL
, VT
, Div
, RHS
);
1554 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, LHS
, Rem
);
1556 // Truncate to number of bits this divide really is.
1559 = DAG
.getValueType(EVT::getIntegerVT(*DAG
.getContext(), DivBits
));
1560 Div
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Div
, InRegSize
);
1561 Rem
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Rem
, InRegSize
);
1563 SDValue TruncMask
= DAG
.getConstant((UINT64_C(1) << DivBits
) - 1, DL
, VT
);
1564 Div
= DAG
.getNode(ISD::AND
, DL
, VT
, Div
, TruncMask
);
1565 Rem
= DAG
.getNode(ISD::AND
, DL
, VT
, Rem
, TruncMask
);
1568 return DAG
.getMergeValues({ Div
, Rem
}, DL
);
1571 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op
,
1573 SmallVectorImpl
<SDValue
> &Results
) const {
1575 EVT VT
= Op
.getValueType();
1577 assert(VT
== MVT::i64
&& "LowerUDIVREM64 expects an i64");
1579 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1581 SDValue One
= DAG
.getConstant(1, DL
, HalfVT
);
1582 SDValue Zero
= DAG
.getConstant(0, DL
, HalfVT
);
1585 SDValue LHS
= Op
.getOperand(0);
1586 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1587 SDValue LHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, One
);
1589 SDValue RHS
= Op
.getOperand(1);
1590 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1591 SDValue RHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, One
);
1593 if (DAG
.MaskedValueIsZero(RHS
, APInt::getHighBitsSet(64, 32)) &&
1594 DAG
.MaskedValueIsZero(LHS
, APInt::getHighBitsSet(64, 32))) {
1596 SDValue Res
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1599 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(0), Zero
});
1600 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(1), Zero
});
1602 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
));
1603 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
));
1607 if (isTypeLegal(MVT::i64
)) {
1608 // Compute denominator reciprocal.
1609 unsigned FMAD
= Subtarget
->hasFP32Denormals() ?
1610 (unsigned)AMDGPUISD::FMAD_FTZ
:
1611 (unsigned)ISD::FMAD
;
1613 SDValue Cvt_Lo
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Lo
);
1614 SDValue Cvt_Hi
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Hi
);
1615 SDValue Mad1
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Cvt_Hi
,
1616 DAG
.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL
, MVT::f32
),
1618 SDValue Rcp
= DAG
.getNode(AMDGPUISD::RCP
, DL
, MVT::f32
, Mad1
);
1619 SDValue Mul1
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Rcp
,
1620 DAG
.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL
, MVT::f32
));
1621 SDValue Mul2
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Mul1
,
1622 DAG
.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL
, MVT::f32
));
1623 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, DL
, MVT::f32
, Mul2
);
1624 SDValue Mad2
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Trunc
,
1625 DAG
.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL
, MVT::f32
),
1627 SDValue Rcp_Lo
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Mad2
);
1628 SDValue Rcp_Hi
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Trunc
);
1629 SDValue Rcp64
= DAG
.getBitcast(VT
,
1630 DAG
.getBuildVector(MVT::v2i32
, DL
, {Rcp_Lo
, Rcp_Hi
}));
1632 SDValue Zero64
= DAG
.getConstant(0, DL
, VT
);
1633 SDValue One64
= DAG
.getConstant(1, DL
, VT
);
1634 SDValue Zero1
= DAG
.getConstant(0, DL
, MVT::i1
);
1635 SDVTList HalfCarryVT
= DAG
.getVTList(HalfVT
, MVT::i1
);
1637 SDValue Neg_RHS
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero64
, RHS
);
1638 SDValue Mullo1
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Rcp64
);
1639 SDValue Mulhi1
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Rcp64
, Mullo1
);
1640 SDValue Mulhi1_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1642 SDValue Mulhi1_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1645 SDValue Add1_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Lo
,
1647 SDValue Add1_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Hi
,
1648 Mulhi1_Hi
, Add1_Lo
.getValue(1));
1649 SDValue Add1_HiNc
= DAG
.getNode(ISD::ADD
, DL
, HalfVT
, Rcp_Hi
, Mulhi1_Hi
);
1650 SDValue Add1
= DAG
.getBitcast(VT
,
1651 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add1_Lo
, Add1_Hi
}));
1653 SDValue Mullo2
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Add1
);
1654 SDValue Mulhi2
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Add1
, Mullo2
);
1655 SDValue Mulhi2_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1657 SDValue Mulhi2_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1660 SDValue Add2_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_Lo
,
1662 SDValue Add2_HiC
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_HiNc
,
1663 Mulhi2_Hi
, Add1_Lo
.getValue(1));
1664 SDValue Add2_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add2_HiC
,
1665 Zero
, Add2_Lo
.getValue(1));
1666 SDValue Add2
= DAG
.getBitcast(VT
,
1667 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add2_Lo
, Add2_Hi
}));
1668 SDValue Mulhi3
= DAG
.getNode(ISD::MULHU
, DL
, VT
, LHS
, Add2
);
1670 SDValue Mul3
= DAG
.getNode(ISD::MUL
, DL
, VT
, RHS
, Mulhi3
);
1672 SDValue Mul3_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, Zero
);
1673 SDValue Mul3_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, One
);
1674 SDValue Sub1_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Lo
,
1676 SDValue Sub1_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Hi
,
1677 Mul3_Hi
, Sub1_Lo
.getValue(1));
1678 SDValue Sub1_Mi
= DAG
.getNode(ISD::SUB
, DL
, HalfVT
, LHS_Hi
, Mul3_Hi
);
1679 SDValue Sub1
= DAG
.getBitcast(VT
,
1680 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub1_Lo
, Sub1_Hi
}));
1682 SDValue MinusOne
= DAG
.getConstant(0xffffffffu
, DL
, HalfVT
);
1683 SDValue C1
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, MinusOne
, Zero
,
1685 SDValue C2
= DAG
.getSelectCC(DL
, Sub1_Lo
, RHS_Lo
, MinusOne
, Zero
,
1687 SDValue C3
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, C2
, C1
, ISD::SETEQ
);
1689 // TODO: Here and below portions of the code can be enclosed into if/endif.
1690 // Currently control flow is unconditional and we have 4 selects after
1691 // potential endif to substitute PHIs.
1694 SDValue Sub2_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Lo
,
1696 SDValue Sub2_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Mi
,
1697 RHS_Hi
, Sub1_Lo
.getValue(1));
1698 SDValue Sub2_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1699 Zero
, Sub2_Lo
.getValue(1));
1700 SDValue Sub2
= DAG
.getBitcast(VT
,
1701 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub2_Lo
, Sub2_Hi
}));
1703 SDValue Add3
= DAG
.getNode(ISD::ADD
, DL
, VT
, Mulhi3
, One64
);
1705 SDValue C4
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, MinusOne
, Zero
,
1707 SDValue C5
= DAG
.getSelectCC(DL
, Sub2_Lo
, RHS_Lo
, MinusOne
, Zero
,
1709 SDValue C6
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, C5
, C4
, ISD::SETEQ
);
1712 SDValue Add4
= DAG
.getNode(ISD::ADD
, DL
, VT
, Add3
, One64
);
1714 SDValue Sub3_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Lo
,
1716 SDValue Sub3_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1717 RHS_Hi
, Sub2_Lo
.getValue(1));
1718 SDValue Sub3_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub3_Mi
,
1719 Zero
, Sub3_Lo
.getValue(1));
1720 SDValue Sub3
= DAG
.getBitcast(VT
,
1721 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub3_Lo
, Sub3_Hi
}));
1726 SDValue Sel1
= DAG
.getSelectCC(DL
, C6
, Zero
, Add4
, Add3
, ISD::SETNE
);
1727 SDValue Div
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel1
, Mulhi3
, ISD::SETNE
);
1729 SDValue Sel2
= DAG
.getSelectCC(DL
, C6
, Zero
, Sub3
, Sub2
, ISD::SETNE
);
1730 SDValue Rem
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel2
, Sub1
, ISD::SETNE
);
1732 Results
.push_back(Div
);
1733 Results
.push_back(Rem
);
1739 // Get Speculative values
1740 SDValue DIV_Part
= DAG
.getNode(ISD::UDIV
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1741 SDValue REM_Part
= DAG
.getNode(ISD::UREM
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1743 SDValue REM_Lo
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, REM_Part
, LHS_Hi
, ISD::SETEQ
);
1744 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {REM_Lo
, Zero
});
1745 REM
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
);
1747 SDValue DIV_Hi
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, DIV_Part
, Zero
, ISD::SETEQ
);
1748 SDValue DIV_Lo
= Zero
;
1750 const unsigned halfBitWidth
= HalfVT
.getSizeInBits();
1752 for (unsigned i
= 0; i
< halfBitWidth
; ++i
) {
1753 const unsigned bitPos
= halfBitWidth
- i
- 1;
1754 SDValue POS
= DAG
.getConstant(bitPos
, DL
, HalfVT
);
1755 // Get value of high bit
1756 SDValue HBit
= DAG
.getNode(ISD::SRL
, DL
, HalfVT
, LHS_Lo
, POS
);
1757 HBit
= DAG
.getNode(ISD::AND
, DL
, HalfVT
, HBit
, One
);
1758 HBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, HBit
);
1761 REM
= DAG
.getNode(ISD::SHL
, DL
, VT
, REM
, DAG
.getConstant(1, DL
, VT
));
1763 REM
= DAG
.getNode(ISD::OR
, DL
, VT
, REM
, HBit
);
1765 SDValue BIT
= DAG
.getConstant(1ULL << bitPos
, DL
, HalfVT
);
1766 SDValue realBIT
= DAG
.getSelectCC(DL
, REM
, RHS
, BIT
, Zero
, ISD::SETUGE
);
1768 DIV_Lo
= DAG
.getNode(ISD::OR
, DL
, HalfVT
, DIV_Lo
, realBIT
);
1771 SDValue REM_sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, REM
, RHS
);
1772 REM
= DAG
.getSelectCC(DL
, REM
, RHS
, REM_sub
, REM
, ISD::SETUGE
);
1775 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {DIV_Lo
, DIV_Hi
});
1776 DIV
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
);
1777 Results
.push_back(DIV
);
1778 Results
.push_back(REM
);
1781 SDValue
AMDGPUTargetLowering::LowerUDIVREM(SDValue Op
,
1782 SelectionDAG
&DAG
) const {
1784 EVT VT
= Op
.getValueType();
1786 if (VT
== MVT::i64
) {
1787 SmallVector
<SDValue
, 2> Results
;
1788 LowerUDIVREM64(Op
, DAG
, Results
);
1789 return DAG
.getMergeValues(Results
, DL
);
1792 if (VT
== MVT::i32
) {
1793 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, false))
1797 SDValue Num
= Op
.getOperand(0);
1798 SDValue Den
= Op
.getOperand(1);
1800 // RCP = URECIP(Den) = 2^32 / Den + e
1801 // e is rounding error.
1802 SDValue RCP
= DAG
.getNode(AMDGPUISD::URECIP
, DL
, VT
, Den
);
1804 // RCP_LO = mul(RCP, Den) */
1805 SDValue RCP_LO
= DAG
.getNode(ISD::MUL
, DL
, VT
, RCP
, Den
);
1807 // RCP_HI = mulhu (RCP, Den) */
1808 SDValue RCP_HI
= DAG
.getNode(ISD::MULHU
, DL
, VT
, RCP
, Den
);
1810 // NEG_RCP_LO = -RCP_LO
1811 SDValue NEG_RCP_LO
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
1814 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1815 SDValue ABS_RCP_LO
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1818 // Calculate the rounding error from the URECIP instruction
1819 // E = mulhu(ABS_RCP_LO, RCP)
1820 SDValue E
= DAG
.getNode(ISD::MULHU
, DL
, VT
, ABS_RCP_LO
, RCP
);
1822 // RCP_A_E = RCP + E
1823 SDValue RCP_A_E
= DAG
.getNode(ISD::ADD
, DL
, VT
, RCP
, E
);
1825 // RCP_S_E = RCP - E
1826 SDValue RCP_S_E
= DAG
.getNode(ISD::SUB
, DL
, VT
, RCP
, E
);
1828 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1829 SDValue Tmp0
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1832 // Quotient = mulhu(Tmp0, Num)
1833 SDValue Quotient
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Tmp0
, Num
);
1835 // Num_S_Remainder = Quotient * Den
1836 SDValue Num_S_Remainder
= DAG
.getNode(ISD::MUL
, DL
, VT
, Quotient
, Den
);
1838 // Remainder = Num - Num_S_Remainder
1839 SDValue Remainder
= DAG
.getNode(ISD::SUB
, DL
, VT
, Num
, Num_S_Remainder
);
1841 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1842 SDValue Remainder_GE_Den
= DAG
.getSelectCC(DL
, Remainder
, Den
,
1843 DAG
.getConstant(-1, DL
, VT
),
1844 DAG
.getConstant(0, DL
, VT
),
1846 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1847 SDValue Remainder_GE_Zero
= DAG
.getSelectCC(DL
, Num
,
1849 DAG
.getConstant(-1, DL
, VT
),
1850 DAG
.getConstant(0, DL
, VT
),
1852 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1853 SDValue Tmp1
= DAG
.getNode(ISD::AND
, DL
, VT
, Remainder_GE_Den
,
1856 // Calculate Division result:
1858 // Quotient_A_One = Quotient + 1
1859 SDValue Quotient_A_One
= DAG
.getNode(ISD::ADD
, DL
, VT
, Quotient
,
1860 DAG
.getConstant(1, DL
, VT
));
1862 // Quotient_S_One = Quotient - 1
1863 SDValue Quotient_S_One
= DAG
.getNode(ISD::SUB
, DL
, VT
, Quotient
,
1864 DAG
.getConstant(1, DL
, VT
));
1866 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1867 SDValue Div
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1868 Quotient
, Quotient_A_One
, ISD::SETEQ
);
1870 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1871 Div
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1872 Quotient_S_One
, Div
, ISD::SETEQ
);
1874 // Calculate Rem result:
1876 // Remainder_S_Den = Remainder - Den
1877 SDValue Remainder_S_Den
= DAG
.getNode(ISD::SUB
, DL
, VT
, Remainder
, Den
);
1879 // Remainder_A_Den = Remainder + Den
1880 SDValue Remainder_A_Den
= DAG
.getNode(ISD::ADD
, DL
, VT
, Remainder
, Den
);
1882 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1883 SDValue Rem
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1884 Remainder
, Remainder_S_Den
, ISD::SETEQ
);
1886 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1887 Rem
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1888 Remainder_A_Den
, Rem
, ISD::SETEQ
);
1893 return DAG
.getMergeValues(Ops
, DL
);
1896 SDValue
AMDGPUTargetLowering::LowerSDIVREM(SDValue Op
,
1897 SelectionDAG
&DAG
) const {
1899 EVT VT
= Op
.getValueType();
1901 SDValue LHS
= Op
.getOperand(0);
1902 SDValue RHS
= Op
.getOperand(1);
1904 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
1905 SDValue NegOne
= DAG
.getConstant(-1, DL
, VT
);
1907 if (VT
== MVT::i32
) {
1908 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, true))
1912 if (VT
== MVT::i64
&&
1913 DAG
.ComputeNumSignBits(LHS
) > 32 &&
1914 DAG
.ComputeNumSignBits(RHS
) > 32) {
1915 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1918 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1919 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1920 SDValue DIVREM
= DAG
.getNode(ISD::SDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1923 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(0)),
1924 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(1))
1926 return DAG
.getMergeValues(Res
, DL
);
1929 SDValue LHSign
= DAG
.getSelectCC(DL
, LHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1930 SDValue RHSign
= DAG
.getSelectCC(DL
, RHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1931 SDValue DSign
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHSign
, RHSign
);
1932 SDValue RSign
= LHSign
; // Remainder sign is the same as LHS
1934 LHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, LHSign
);
1935 RHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, RHS
, RHSign
);
1937 LHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, LHSign
);
1938 RHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, RHS
, RHSign
);
1940 SDValue Div
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
1941 SDValue Rem
= Div
.getValue(1);
1943 Div
= DAG
.getNode(ISD::XOR
, DL
, VT
, Div
, DSign
);
1944 Rem
= DAG
.getNode(ISD::XOR
, DL
, VT
, Rem
, RSign
);
1946 Div
= DAG
.getNode(ISD::SUB
, DL
, VT
, Div
, DSign
);
1947 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, Rem
, RSign
);
1953 return DAG
.getMergeValues(Res
, DL
);
1956 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1957 SDValue
AMDGPUTargetLowering::LowerFREM(SDValue Op
, SelectionDAG
&DAG
) const {
1959 EVT VT
= Op
.getValueType();
1960 SDValue X
= Op
.getOperand(0);
1961 SDValue Y
= Op
.getOperand(1);
1963 // TODO: Should this propagate fast-math-flags?
1965 SDValue Div
= DAG
.getNode(ISD::FDIV
, SL
, VT
, X
, Y
);
1966 SDValue Floor
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, Div
);
1967 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Floor
, Y
);
1969 return DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, Mul
);
1972 SDValue
AMDGPUTargetLowering::LowerFCEIL(SDValue Op
, SelectionDAG
&DAG
) const {
1974 SDValue Src
= Op
.getOperand(0);
1976 // result = trunc(src)
1977 // if (src > 0.0 && src != result)
1980 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
1982 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
1983 const SDValue One
= DAG
.getConstantFP(1.0, SL
, MVT::f64
);
1986 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
1988 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOGT
);
1989 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
1990 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
1992 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, One
, Zero
);
1993 // TODO: Should this propagate fast-math-flags?
1994 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
1997 static SDValue
extractF64Exponent(SDValue Hi
, const SDLoc
&SL
,
1998 SelectionDAG
&DAG
) {
1999 const unsigned FractBits
= 52;
2000 const unsigned ExpBits
= 11;
2002 SDValue ExpPart
= DAG
.getNode(AMDGPUISD::BFE_U32
, SL
, MVT::i32
,
2004 DAG
.getConstant(FractBits
- 32, SL
, MVT::i32
),
2005 DAG
.getConstant(ExpBits
, SL
, MVT::i32
));
2006 SDValue Exp
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, ExpPart
,
2007 DAG
.getConstant(1023, SL
, MVT::i32
));
2012 SDValue
AMDGPUTargetLowering::LowerFTRUNC(SDValue Op
, SelectionDAG
&DAG
) const {
2014 SDValue Src
= Op
.getOperand(0);
2016 assert(Op
.getValueType() == MVT::f64
);
2018 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2019 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2021 SDValue VecSrc
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2023 // Extract the upper half, since this is where we will find the sign and
2025 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecSrc
, One
);
2027 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2029 const unsigned FractBits
= 52;
2031 // Extract the sign bit.
2032 const SDValue SignBitMask
= DAG
.getConstant(UINT32_C(1) << 31, SL
, MVT::i32
);
2033 SDValue SignBit
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, Hi
, SignBitMask
);
2035 // Extend back to 64-bits.
2036 SDValue SignBit64
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, SignBit
});
2037 SignBit64
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, SignBit64
);
2039 SDValue BcInt
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Src
);
2040 const SDValue FractMask
2041 = DAG
.getConstant((UINT64_C(1) << FractBits
) - 1, SL
, MVT::i64
);
2043 SDValue Shr
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, FractMask
, Exp
);
2044 SDValue Not
= DAG
.getNOT(SL
, Shr
, MVT::i64
);
2045 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, BcInt
, Not
);
2048 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2050 const SDValue FiftyOne
= DAG
.getConstant(FractBits
- 1, SL
, MVT::i32
);
2052 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2053 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2055 SDValue Tmp1
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpLt0
, SignBit64
, Tmp0
);
2056 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpGt51
, BcInt
, Tmp1
);
2058 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, Tmp2
);
2061 SDValue
AMDGPUTargetLowering::LowerFRINT(SDValue Op
, SelectionDAG
&DAG
) const {
2063 SDValue Src
= Op
.getOperand(0);
2065 assert(Op
.getValueType() == MVT::f64
);
2067 APFloat
C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2068 SDValue C1
= DAG
.getConstantFP(C1Val
, SL
, MVT::f64
);
2069 SDValue CopySign
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, C1
, Src
);
2071 // TODO: Should this propagate fast-math-flags?
2073 SDValue Tmp1
= DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Src
, CopySign
);
2074 SDValue Tmp2
= DAG
.getNode(ISD::FSUB
, SL
, MVT::f64
, Tmp1
, CopySign
);
2076 SDValue Fabs
= DAG
.getNode(ISD::FABS
, SL
, MVT::f64
, Src
);
2078 APFloat
C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2079 SDValue C2
= DAG
.getConstantFP(C2Val
, SL
, MVT::f64
);
2082 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2083 SDValue Cond
= DAG
.getSetCC(SL
, SetCCVT
, Fabs
, C2
, ISD::SETOGT
);
2085 return DAG
.getSelect(SL
, MVT::f64
, Cond
, Src
, Tmp2
);
2088 SDValue
AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op
, SelectionDAG
&DAG
) const {
2089 // FNEARBYINT and FRINT are the same, except in their handling of FP
2090 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2091 // rint, so just treat them as equivalent.
2092 return DAG
.getNode(ISD::FRINT
, SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0));
2095 // XXX - May require not supporting f32 denormals?
2097 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2098 // compare and vselect end up producing worse code than scalarizing the whole
2100 SDValue
AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op
, SelectionDAG
&DAG
) const {
2102 SDValue X
= Op
.getOperand(0);
2103 EVT VT
= Op
.getValueType();
2105 SDValue T
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, X
);
2107 // TODO: Should this propagate fast-math-flags?
2109 SDValue Diff
= DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, T
);
2111 SDValue AbsDiff
= DAG
.getNode(ISD::FABS
, SL
, VT
, Diff
);
2113 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, VT
);
2114 const SDValue One
= DAG
.getConstantFP(1.0, SL
, VT
);
2115 const SDValue Half
= DAG
.getConstantFP(0.5, SL
, VT
);
2117 SDValue SignOne
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, VT
, One
, X
);
2120 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
2122 SDValue Cmp
= DAG
.getSetCC(SL
, SetCCVT
, AbsDiff
, Half
, ISD::SETOGE
);
2124 SDValue Sel
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cmp
, SignOne
, Zero
);
2126 return DAG
.getNode(ISD::FADD
, SL
, VT
, T
, Sel
);
2129 SDValue
AMDGPUTargetLowering::LowerFROUND64(SDValue Op
, SelectionDAG
&DAG
) const {
2131 SDValue X
= Op
.getOperand(0);
2133 SDValue L
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, X
);
2135 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2136 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2137 const SDValue NegOne
= DAG
.getConstant(-1, SL
, MVT::i32
);
2138 const SDValue FiftyOne
= DAG
.getConstant(51, SL
, MVT::i32
);
2140 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2142 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, X
);
2144 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
, One
);
2146 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2148 const SDValue Mask
= DAG
.getConstant(INT64_C(0x000fffffffffffff), SL
,
2151 SDValue M
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, Mask
, Exp
);
2152 SDValue D
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
,
2153 DAG
.getConstant(INT64_C(0x0008000000000000), SL
,
2157 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, L
, M
);
2158 SDValue Tmp1
= DAG
.getSetCC(SL
, SetCCVT
,
2159 DAG
.getConstant(0, SL
, MVT::i64
), Tmp0
,
2162 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, Tmp1
,
2163 D
, DAG
.getConstant(0, SL
, MVT::i64
));
2164 SDValue K
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, Tmp2
);
2166 K
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, K
, DAG
.getNOT(SL
, M
, MVT::i64
));
2167 K
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, K
);
2169 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2170 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2171 SDValue ExpEqNegOne
= DAG
.getSetCC(SL
, SetCCVT
, NegOne
, Exp
, ISD::SETEQ
);
2173 SDValue Mag
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
,
2175 DAG
.getConstantFP(1.0, SL
, MVT::f64
),
2176 DAG
.getConstantFP(0.0, SL
, MVT::f64
));
2178 SDValue S
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, Mag
, X
);
2180 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpLt0
, S
, K
);
2181 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpGt51
, X
, K
);
2186 SDValue
AMDGPUTargetLowering::LowerFROUND(SDValue Op
, SelectionDAG
&DAG
) const {
2187 EVT VT
= Op
.getValueType();
2189 if (VT
== MVT::f32
|| VT
== MVT::f16
)
2190 return LowerFROUND32_16(Op
, DAG
);
2193 return LowerFROUND64(Op
, DAG
);
2195 llvm_unreachable("unhandled type");
2198 SDValue
AMDGPUTargetLowering::LowerFFLOOR(SDValue Op
, SelectionDAG
&DAG
) const {
2200 SDValue Src
= Op
.getOperand(0);
2202 // result = trunc(src);
2203 // if (src < 0.0 && src != result)
2206 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2208 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2209 const SDValue NegOne
= DAG
.getConstantFP(-1.0, SL
, MVT::f64
);
2212 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2214 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOLT
);
2215 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2216 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2218 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, NegOne
, Zero
);
2219 // TODO: Should this propagate fast-math-flags?
2220 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2223 SDValue
AMDGPUTargetLowering::LowerFLOG(SDValue Op
, SelectionDAG
&DAG
,
2224 double Log2BaseInverted
) const {
2225 EVT VT
= Op
.getValueType();
2228 SDValue Operand
= Op
.getOperand(0);
2229 SDValue Log2Operand
= DAG
.getNode(ISD::FLOG2
, SL
, VT
, Operand
);
2230 SDValue Log2BaseInvertedOperand
= DAG
.getConstantFP(Log2BaseInverted
, SL
, VT
);
2232 return DAG
.getNode(ISD::FMUL
, SL
, VT
, Log2Operand
, Log2BaseInvertedOperand
);
2235 // Return M_LOG2E of appropriate type
2236 static SDValue
getLog2EVal(SelectionDAG
&DAG
, const SDLoc
&SL
, EVT VT
) {
2237 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
2239 return DAG
.getConstantFP(1.44269504088896340735992468100189214f
, SL
, VT
);
2241 return DAG
.getConstantFP(
2242 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2245 return DAG
.getConstantFP(
2246 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL
, VT
);
2248 llvm_unreachable("unsupported fp type");
2252 // exp2(M_LOG2E_F * f);
2253 SDValue
AMDGPUTargetLowering::lowerFEXP(SDValue Op
, SelectionDAG
&DAG
) const {
2254 EVT VT
= Op
.getValueType();
2256 SDValue Src
= Op
.getOperand(0);
2258 const SDValue K
= getLog2EVal(DAG
, SL
, VT
);
2259 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Src
, K
, Op
->getFlags());
2260 return DAG
.getNode(ISD::FEXP2
, SL
, VT
, Mul
, Op
->getFlags());
2263 static bool isCtlzOpc(unsigned Opc
) {
2264 return Opc
== ISD::CTLZ
|| Opc
== ISD::CTLZ_ZERO_UNDEF
;
2267 static bool isCttzOpc(unsigned Opc
) {
2268 return Opc
== ISD::CTTZ
|| Opc
== ISD::CTTZ_ZERO_UNDEF
;
2271 SDValue
AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op
, SelectionDAG
&DAG
) const {
2273 SDValue Src
= Op
.getOperand(0);
2274 bool ZeroUndef
= Op
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
||
2275 Op
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
;
2277 unsigned ISDOpc
, NewOpc
;
2278 if (isCtlzOpc(Op
.getOpcode())) {
2279 ISDOpc
= ISD::CTLZ_ZERO_UNDEF
;
2280 NewOpc
= AMDGPUISD::FFBH_U32
;
2281 } else if (isCttzOpc(Op
.getOpcode())) {
2282 ISDOpc
= ISD::CTTZ_ZERO_UNDEF
;
2283 NewOpc
= AMDGPUISD::FFBL_B32
;
2285 llvm_unreachable("Unexpected OPCode!!!");
2288 if (ZeroUndef
&& Src
.getValueType() == MVT::i32
)
2289 return DAG
.getNode(NewOpc
, SL
, MVT::i32
, Src
);
2291 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2293 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2294 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2296 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
2297 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
2299 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2300 *DAG
.getContext(), MVT::i32
);
2302 SDValue HiOrLo
= isCtlzOpc(Op
.getOpcode()) ? Hi
: Lo
;
2303 SDValue Hi0orLo0
= DAG
.getSetCC(SL
, SetCCVT
, HiOrLo
, Zero
, ISD::SETEQ
);
2305 SDValue OprLo
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Lo
);
2306 SDValue OprHi
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Hi
);
2308 const SDValue Bits32
= DAG
.getConstant(32, SL
, MVT::i32
);
2309 SDValue Add
, NewOpr
;
2310 if (isCtlzOpc(Op
.getOpcode())) {
2311 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprLo
, Bits32
);
2312 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2313 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprHi
);
2315 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprHi
, Bits32
);
2316 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2317 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprLo
);
2321 // Test if the full 64-bit input is zero.
2323 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2324 // which we probably don't want.
2325 SDValue LoOrHi
= isCtlzOpc(Op
.getOpcode()) ? Lo
: Hi
;
2326 SDValue Lo0OrHi0
= DAG
.getSetCC(SL
, SetCCVT
, LoOrHi
, Zero
, ISD::SETEQ
);
2327 SDValue SrcIsZero
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lo0OrHi0
, Hi0orLo0
);
2329 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2330 // with the same cycles, otherwise it is slower.
2331 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2332 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2334 const SDValue Bits32
= DAG
.getConstant(64, SL
, MVT::i32
);
2336 // The instruction returns -1 for 0 input, but the defined intrinsic
2337 // behavior is to return the number of bits.
2338 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
,
2339 SrcIsZero
, Bits32
, NewOpr
);
2342 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, MVT::i64
, NewOpr
);
2345 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op
, SelectionDAG
&DAG
,
2346 bool Signed
) const {
2350 // uint lz = clz(u);
2351 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2352 // u = (u << lz) & 0x7fffffffffffffffUL;
2353 // ulong t = u & 0xffffffffffUL;
2354 // uint v = (e << 23) | (uint)(u >> 40);
2355 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2356 // return as_float(v + r);
2361 // long s = l >> 63;
2362 // float r = cul2f((l + s) ^ s);
2363 // return s ? -r : r;
2367 SDValue Src
= Op
.getOperand(0);
2372 const SDValue SignBit
= DAG
.getConstant(63, SL
, MVT::i64
);
2373 S
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, L
, SignBit
);
2375 SDValue LPlusS
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, S
);
2376 L
= DAG
.getNode(ISD::XOR
, SL
, MVT::i64
, LPlusS
, S
);
2379 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2380 *DAG
.getContext(), MVT::f32
);
2383 SDValue ZeroI32
= DAG
.getConstant(0, SL
, MVT::i32
);
2384 SDValue ZeroI64
= DAG
.getConstant(0, SL
, MVT::i64
);
2385 SDValue LZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SL
, MVT::i64
, L
);
2386 LZ
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LZ
);
2388 SDValue K
= DAG
.getConstant(127U + 63U, SL
, MVT::i32
);
2389 SDValue E
= DAG
.getSelect(SL
, MVT::i32
,
2390 DAG
.getSetCC(SL
, SetCCVT
, L
, ZeroI64
, ISD::SETNE
),
2391 DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, K
, LZ
),
2394 SDValue U
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
,
2395 DAG
.getNode(ISD::SHL
, SL
, MVT::i64
, L
, LZ
),
2396 DAG
.getConstant((-1ULL) >> 1, SL
, MVT::i64
));
2398 SDValue T
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, U
,
2399 DAG
.getConstant(0xffffffffffULL
, SL
, MVT::i64
));
2401 SDValue UShl
= DAG
.getNode(ISD::SRL
, SL
, MVT::i64
,
2402 U
, DAG
.getConstant(40, SL
, MVT::i64
));
2404 SDValue V
= DAG
.getNode(ISD::OR
, SL
, MVT::i32
,
2405 DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, E
, DAG
.getConstant(23, SL
, MVT::i32
)),
2406 DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, UShl
));
2408 SDValue C
= DAG
.getConstant(0x8000000000ULL
, SL
, MVT::i64
);
2409 SDValue RCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETUGT
);
2410 SDValue TCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETEQ
);
2412 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2414 SDValue VTrunc1
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, V
, One
);
2416 SDValue R
= DAG
.getSelect(SL
, MVT::i32
,
2419 DAG
.getSelect(SL
, MVT::i32
, TCmp
, VTrunc1
, ZeroI32
));
2420 R
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, V
, R
);
2421 R
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, R
);
2426 SDValue RNeg
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, R
);
2427 return DAG
.getSelect(SL
, MVT::f32
, DAG
.getSExtOrTrunc(S
, SL
, SetCCVT
), RNeg
, R
);
2430 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op
, SelectionDAG
&DAG
,
2431 bool Signed
) const {
2433 SDValue Src
= Op
.getOperand(0);
2435 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2437 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2438 DAG
.getConstant(0, SL
, MVT::i32
));
2439 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2440 DAG
.getConstant(1, SL
, MVT::i32
));
2442 SDValue CvtHi
= DAG
.getNode(Signed
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
2445 SDValue CvtLo
= DAG
.getNode(ISD::UINT_TO_FP
, SL
, MVT::f64
, Lo
);
2447 SDValue LdExp
= DAG
.getNode(AMDGPUISD::LDEXP
, SL
, MVT::f64
, CvtHi
,
2448 DAG
.getConstant(32, SL
, MVT::i32
));
2449 // TODO: Should this propagate fast-math-flags?
2450 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, LdExp
, CvtLo
);
2453 SDValue
AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op
,
2454 SelectionDAG
&DAG
) const {
2455 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2456 "operation should be legal");
2458 // TODO: Factor out code common with LowerSINT_TO_FP.
2460 EVT DestVT
= Op
.getValueType();
2461 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2463 SDValue Src
= Op
.getOperand(0);
2465 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2466 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2468 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2473 if (DestVT
== MVT::f32
)
2474 return LowerINT_TO_FP32(Op
, DAG
, false);
2476 assert(DestVT
== MVT::f64
);
2477 return LowerINT_TO_FP64(Op
, DAG
, false);
2480 SDValue
AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op
,
2481 SelectionDAG
&DAG
) const {
2482 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2483 "operation should be legal");
2485 // TODO: Factor out code common with LowerUINT_TO_FP.
2487 EVT DestVT
= Op
.getValueType();
2488 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2490 SDValue Src
= Op
.getOperand(0);
2492 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2493 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2495 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2500 if (DestVT
== MVT::f32
)
2501 return LowerINT_TO_FP32(Op
, DAG
, true);
2503 assert(DestVT
== MVT::f64
);
2504 return LowerINT_TO_FP64(Op
, DAG
, true);
2507 SDValue
AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
2508 bool Signed
) const {
2511 SDValue Src
= Op
.getOperand(0);
2513 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2515 SDValue K0
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL
,
2517 SDValue K1
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL
,
2519 // TODO: Should this propagate fast-math-flags?
2520 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, MVT::f64
, Trunc
, K0
);
2522 SDValue FloorMul
= DAG
.getNode(ISD::FFLOOR
, SL
, MVT::f64
, Mul
);
2525 SDValue Fma
= DAG
.getNode(ISD::FMA
, SL
, MVT::f64
, FloorMul
, K1
, Trunc
);
2527 SDValue Hi
= DAG
.getNode(Signed
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
, SL
,
2528 MVT::i32
, FloorMul
);
2529 SDValue Lo
= DAG
.getNode(ISD::FP_TO_UINT
, SL
, MVT::i32
, Fma
);
2531 SDValue Result
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Lo
, Hi
});
2533 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Result
);
2536 SDValue
AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op
, SelectionDAG
&DAG
) const {
2538 SDValue N0
= Op
.getOperand(0);
2540 // Convert to target node to get known bits
2541 if (N0
.getValueType() == MVT::f32
)
2542 return DAG
.getNode(AMDGPUISD::FP_TO_FP16
, DL
, Op
.getValueType(), N0
);
2544 if (getTargetMachine().Options
.UnsafeFPMath
) {
2545 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2549 assert(N0
.getSimpleValueType() == MVT::f64
);
2551 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2552 const unsigned ExpMask
= 0x7ff;
2553 const unsigned ExpBiasf64
= 1023;
2554 const unsigned ExpBiasf16
= 15;
2555 SDValue Zero
= DAG
.getConstant(0, DL
, MVT::i32
);
2556 SDValue One
= DAG
.getConstant(1, DL
, MVT::i32
);
2557 SDValue U
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, N0
);
2558 SDValue UH
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, U
,
2559 DAG
.getConstant(32, DL
, MVT::i64
));
2560 UH
= DAG
.getZExtOrTrunc(UH
, DL
, MVT::i32
);
2561 U
= DAG
.getZExtOrTrunc(U
, DL
, MVT::i32
);
2562 SDValue E
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2563 DAG
.getConstant(20, DL
, MVT::i64
));
2564 E
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, E
,
2565 DAG
.getConstant(ExpMask
, DL
, MVT::i32
));
2566 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2567 // add the f16 bias (15) to get the biased exponent for the f16 format.
2568 E
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, E
,
2569 DAG
.getConstant(-ExpBiasf64
+ ExpBiasf16
, DL
, MVT::i32
));
2571 SDValue M
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2572 DAG
.getConstant(8, DL
, MVT::i32
));
2573 M
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, M
,
2574 DAG
.getConstant(0xffe, DL
, MVT::i32
));
2576 SDValue MaskedSig
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, UH
,
2577 DAG
.getConstant(0x1ff, DL
, MVT::i32
));
2578 MaskedSig
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, MaskedSig
, U
);
2580 SDValue Lo40Set
= DAG
.getSelectCC(DL
, MaskedSig
, Zero
, Zero
, One
, ISD::SETEQ
);
2581 M
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
, Lo40Set
);
2583 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2584 SDValue I
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
,
2585 DAG
.getSelectCC(DL
, M
, Zero
, DAG
.getConstant(0x0200, DL
, MVT::i32
),
2586 Zero
, ISD::SETNE
), DAG
.getConstant(0x7c00, DL
, MVT::i32
));
2588 // N = M | (E << 12);
2589 SDValue N
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2590 DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, E
,
2591 DAG
.getConstant(12, DL
, MVT::i32
)));
2593 // B = clamp(1-E, 0, 13);
2594 SDValue OneSubExp
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
2596 SDValue B
= DAG
.getNode(ISD::SMAX
, DL
, MVT::i32
, OneSubExp
, Zero
);
2597 B
= DAG
.getNode(ISD::SMIN
, DL
, MVT::i32
, B
,
2598 DAG
.getConstant(13, DL
, MVT::i32
));
2600 SDValue SigSetHigh
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2601 DAG
.getConstant(0x1000, DL
, MVT::i32
));
2603 SDValue D
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SigSetHigh
, B
);
2604 SDValue D0
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, D
, B
);
2605 SDValue D1
= DAG
.getSelectCC(DL
, D0
, SigSetHigh
, One
, Zero
, ISD::SETNE
);
2606 D
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, D
, D1
);
2608 SDValue V
= DAG
.getSelectCC(DL
, E
, One
, D
, N
, ISD::SETLT
);
2609 SDValue VLow3
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, V
,
2610 DAG
.getConstant(0x7, DL
, MVT::i32
));
2611 V
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, V
,
2612 DAG
.getConstant(2, DL
, MVT::i32
));
2613 SDValue V0
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(3, DL
, MVT::i32
),
2614 One
, Zero
, ISD::SETEQ
);
2615 SDValue V1
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(5, DL
, MVT::i32
),
2616 One
, Zero
, ISD::SETGT
);
2617 V1
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, V0
, V1
);
2618 V
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, V
, V1
);
2620 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(30, DL
, MVT::i32
),
2621 DAG
.getConstant(0x7c00, DL
, MVT::i32
), V
, ISD::SETGT
);
2622 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(1039, DL
, MVT::i32
),
2625 // Extract the sign bit.
2626 SDValue Sign
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2627 DAG
.getConstant(16, DL
, MVT::i32
));
2628 Sign
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Sign
,
2629 DAG
.getConstant(0x8000, DL
, MVT::i32
));
2631 V
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Sign
, V
);
2632 return DAG
.getZExtOrTrunc(V
, DL
, Op
.getValueType());
2635 SDValue
AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op
,
2636 SelectionDAG
&DAG
) const {
2637 SDValue Src
= Op
.getOperand(0);
2639 // TODO: Factor out code common with LowerFP_TO_UINT.
2641 EVT SrcVT
= Src
.getValueType();
2642 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2645 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2647 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2652 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2653 return LowerFP64_TO_INT(Op
, DAG
, true);
2658 SDValue
AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op
,
2659 SelectionDAG
&DAG
) const {
2660 SDValue Src
= Op
.getOperand(0);
2662 // TODO: Factor out code common with LowerFP_TO_SINT.
2664 EVT SrcVT
= Src
.getValueType();
2665 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2668 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2670 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2675 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2676 return LowerFP64_TO_INT(Op
, DAG
, false);
2681 SDValue
AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op
,
2682 SelectionDAG
&DAG
) const {
2683 EVT ExtraVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2684 MVT VT
= Op
.getSimpleValueType();
2685 MVT ScalarVT
= VT
.getScalarType();
2687 assert(VT
.isVector());
2689 SDValue Src
= Op
.getOperand(0);
2692 // TODO: Don't scalarize on Evergreen?
2693 unsigned NElts
= VT
.getVectorNumElements();
2694 SmallVector
<SDValue
, 8> Args
;
2695 DAG
.ExtractVectorElements(Src
, Args
, 0, NElts
);
2697 SDValue VTOp
= DAG
.getValueType(ExtraVT
.getScalarType());
2698 for (unsigned I
= 0; I
< NElts
; ++I
)
2699 Args
[I
] = DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, ScalarVT
, Args
[I
], VTOp
);
2701 return DAG
.getBuildVector(VT
, DL
, Args
);
2704 //===----------------------------------------------------------------------===//
2705 // Custom DAG optimizations
2706 //===----------------------------------------------------------------------===//
2708 static bool isU24(SDValue Op
, SelectionDAG
&DAG
) {
2709 return AMDGPUTargetLowering::numBitsUnsigned(Op
, DAG
) <= 24;
2712 static bool isI24(SDValue Op
, SelectionDAG
&DAG
) {
2713 EVT VT
= Op
.getValueType();
2714 return VT
.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2715 // as unsigned 24-bit values.
2716 AMDGPUTargetLowering::numBitsSigned(Op
, DAG
) < 24;
2719 static SDValue
simplifyI24(SDNode
*Node24
,
2720 TargetLowering::DAGCombinerInfo
&DCI
) {
2721 SelectionDAG
&DAG
= DCI
.DAG
;
2722 SDValue LHS
= Node24
->getOperand(0);
2723 SDValue RHS
= Node24
->getOperand(1);
2725 APInt Demanded
= APInt::getLowBitsSet(LHS
.getValueSizeInBits(), 24);
2727 // First try to simplify using GetDemandedBits which allows the operands to
2728 // have other uses, but will only perform simplifications that involve
2729 // bypassing some nodes for this user.
2730 SDValue DemandedLHS
= DAG
.GetDemandedBits(LHS
, Demanded
);
2731 SDValue DemandedRHS
= DAG
.GetDemandedBits(RHS
, Demanded
);
2732 if (DemandedLHS
|| DemandedRHS
)
2733 return DAG
.getNode(Node24
->getOpcode(), SDLoc(Node24
), Node24
->getVTList(),
2734 DemandedLHS
? DemandedLHS
: LHS
,
2735 DemandedRHS
? DemandedRHS
: RHS
);
2737 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2738 // operands if this node is the only user.
2739 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2740 if (TLI
.SimplifyDemandedBits(LHS
, Demanded
, DCI
))
2741 return SDValue(Node24
, 0);
2742 if (TLI
.SimplifyDemandedBits(RHS
, Demanded
, DCI
))
2743 return SDValue(Node24
, 0);
2748 template <typename IntTy
>
2749 static SDValue
constantFoldBFE(SelectionDAG
&DAG
, IntTy Src0
, uint32_t Offset
,
2750 uint32_t Width
, const SDLoc
&DL
) {
2751 if (Width
+ Offset
< 32) {
2752 uint32_t Shl
= static_cast<uint32_t>(Src0
) << (32 - Offset
- Width
);
2753 IntTy Result
= static_cast<IntTy
>(Shl
) >> (32 - Width
);
2754 return DAG
.getConstant(Result
, DL
, MVT::i32
);
2757 return DAG
.getConstant(Src0
>> Offset
, DL
, MVT::i32
);
2760 static bool hasVolatileUser(SDNode
*Val
) {
2761 for (SDNode
*U
: Val
->uses()) {
2762 if (MemSDNode
*M
= dyn_cast
<MemSDNode
>(U
)) {
2763 if (M
->isVolatile())
2771 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT
) const {
2772 // i32 vectors are the canonical memory type.
2773 if (VT
.getScalarType() == MVT::i32
|| isTypeLegal(VT
))
2776 if (!VT
.isByteSized())
2779 unsigned Size
= VT
.getStoreSize();
2781 if ((Size
== 1 || Size
== 2 || Size
== 4) && !VT
.isVector())
2784 if (Size
== 3 || (Size
> 4 && (Size
% 4 != 0)))
2790 // Replace load of an illegal type with a store of a bitcast to a friendlier
2792 SDValue
AMDGPUTargetLowering::performLoadCombine(SDNode
*N
,
2793 DAGCombinerInfo
&DCI
) const {
2794 if (!DCI
.isBeforeLegalize())
2797 LoadSDNode
*LN
= cast
<LoadSDNode
>(N
);
2798 if (LN
->isVolatile() || !ISD::isNormalLoad(LN
) || hasVolatileUser(LN
))
2802 SelectionDAG
&DAG
= DCI
.DAG
;
2803 EVT VT
= LN
->getMemoryVT();
2805 unsigned Size
= VT
.getStoreSize();
2806 unsigned Align
= LN
->getAlignment();
2807 if (Align
< Size
&& isTypeLegal(VT
)) {
2809 unsigned AS
= LN
->getAddressSpace();
2811 // Expand unaligned loads earlier than legalization. Due to visitation order
2812 // problems during legalization, the emitted instructions to pack and unpack
2813 // the bytes again are not eliminated in the case of an unaligned copy.
2814 if (!allowsMisalignedMemoryAccesses(VT
, AS
, Align
, &IsFast
)) {
2816 return scalarizeVectorLoad(LN
, DAG
);
2819 std::tie(Ops
[0], Ops
[1]) = expandUnalignedLoad(LN
, DAG
);
2820 return DAG
.getMergeValues(Ops
, SDLoc(N
));
2827 if (!shouldCombineMemoryType(VT
))
2830 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2833 = DAG
.getLoad(NewVT
, SL
, LN
->getChain(),
2834 LN
->getBasePtr(), LN
->getMemOperand());
2836 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, NewLoad
);
2837 DCI
.CombineTo(N
, BC
, NewLoad
.getValue(1));
2838 return SDValue(N
, 0);
2841 // Replace store of an illegal type with a store of a bitcast to a friendlier
2843 SDValue
AMDGPUTargetLowering::performStoreCombine(SDNode
*N
,
2844 DAGCombinerInfo
&DCI
) const {
2845 if (!DCI
.isBeforeLegalize())
2848 StoreSDNode
*SN
= cast
<StoreSDNode
>(N
);
2849 if (SN
->isVolatile() || !ISD::isNormalStore(SN
))
2852 EVT VT
= SN
->getMemoryVT();
2853 unsigned Size
= VT
.getStoreSize();
2856 SelectionDAG
&DAG
= DCI
.DAG
;
2857 unsigned Align
= SN
->getAlignment();
2858 if (Align
< Size
&& isTypeLegal(VT
)) {
2860 unsigned AS
= SN
->getAddressSpace();
2862 // Expand unaligned stores earlier than legalization. Due to visitation
2863 // order problems during legalization, the emitted instructions to pack and
2864 // unpack the bytes again are not eliminated in the case of an unaligned
2866 if (!allowsMisalignedMemoryAccesses(VT
, AS
, Align
, &IsFast
)) {
2868 return scalarizeVectorStore(SN
, DAG
);
2870 return expandUnalignedStore(SN
, DAG
);
2877 if (!shouldCombineMemoryType(VT
))
2880 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2881 SDValue Val
= SN
->getValue();
2883 //DCI.AddToWorklist(Val.getNode());
2885 bool OtherUses
= !Val
.hasOneUse();
2886 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NewVT
, Val
);
2888 SDValue CastBack
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, CastVal
);
2889 DAG
.ReplaceAllUsesOfValueWith(Val
, CastBack
);
2892 return DAG
.getStore(SN
->getChain(), SL
, CastVal
,
2893 SN
->getBasePtr(), SN
->getMemOperand());
2896 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2897 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2899 SDValue
AMDGPUTargetLowering::performAssertSZExtCombine(SDNode
*N
,
2900 DAGCombinerInfo
&DCI
) const {
2901 SelectionDAG
&DAG
= DCI
.DAG
;
2902 SDValue N0
= N
->getOperand(0);
2904 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2905 // (vt2 (truncate (assertzext vt0:x, vt1)))
2906 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2907 SDValue N1
= N
->getOperand(1);
2908 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
2911 SDValue Src
= N0
.getOperand(0);
2912 EVT SrcVT
= Src
.getValueType();
2913 if (SrcVT
.bitsGE(ExtVT
)) {
2914 SDValue NewInReg
= DAG
.getNode(N
->getOpcode(), SL
, SrcVT
, Src
, N1
);
2915 return DAG
.getNode(ISD::TRUNCATE
, SL
, N
->getValueType(0), NewInReg
);
2921 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2922 /// binary operation \p Opc to it with the corresponding constant operands.
2923 SDValue
AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2924 DAGCombinerInfo
&DCI
, const SDLoc
&SL
,
2925 unsigned Opc
, SDValue LHS
,
2926 uint32_t ValLo
, uint32_t ValHi
) const {
2927 SelectionDAG
&DAG
= DCI
.DAG
;
2929 std::tie(Lo
, Hi
) = split64BitValue(LHS
, DAG
);
2931 SDValue LoRHS
= DAG
.getConstant(ValLo
, SL
, MVT::i32
);
2932 SDValue HiRHS
= DAG
.getConstant(ValHi
, SL
, MVT::i32
);
2934 SDValue LoAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Lo
, LoRHS
);
2935 SDValue HiAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Hi
, HiRHS
);
2937 // Re-visit the ands. It's possible we eliminated one of them and it could
2938 // simplify the vector.
2939 DCI
.AddToWorklist(Lo
.getNode());
2940 DCI
.AddToWorklist(Hi
.getNode());
2942 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {LoAnd
, HiAnd
});
2943 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
2946 SDValue
AMDGPUTargetLowering::performShlCombine(SDNode
*N
,
2947 DAGCombinerInfo
&DCI
) const {
2948 EVT VT
= N
->getValueType(0);
2950 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2954 SDValue LHS
= N
->getOperand(0);
2955 unsigned RHSVal
= RHS
->getZExtValue();
2960 SelectionDAG
&DAG
= DCI
.DAG
;
2962 switch (LHS
->getOpcode()) {
2965 case ISD::ZERO_EXTEND
:
2966 case ISD::SIGN_EXTEND
:
2967 case ISD::ANY_EXTEND
: {
2968 SDValue X
= LHS
->getOperand(0);
2970 if (VT
== MVT::i32
&& RHSVal
== 16 && X
.getValueType() == MVT::i16
&&
2971 isOperationLegal(ISD::BUILD_VECTOR
, MVT::v2i16
)) {
2972 // Prefer build_vector as the canonical form if packed types are legal.
2973 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
2974 SDValue Vec
= DAG
.getBuildVector(MVT::v2i16
, SL
,
2975 { DAG
.getConstant(0, SL
, MVT::i16
), LHS
->getOperand(0) });
2976 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Vec
);
2979 // shl (ext x) => zext (shl x), if shift does not overflow int
2982 KnownBits Known
= DAG
.computeKnownBits(X
);
2983 unsigned LZ
= Known
.countMinLeadingZeros();
2986 EVT XVT
= X
.getValueType();
2987 SDValue Shl
= DAG
.getNode(ISD::SHL
, SL
, XVT
, X
, SDValue(RHS
, 0));
2988 return DAG
.getZExtOrTrunc(Shl
, SL
, VT
);
2995 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2997 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2998 // common case, splitting this into a move and a 32-bit shift is faster and
2999 // the same code size.
3003 SDValue ShiftAmt
= DAG
.getConstant(RHSVal
- 32, SL
, MVT::i32
);
3005 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LHS
);
3006 SDValue NewShift
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, Lo
, ShiftAmt
);
3008 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3010 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, NewShift
});
3011 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3014 SDValue
AMDGPUTargetLowering::performSraCombine(SDNode
*N
,
3015 DAGCombinerInfo
&DCI
) const {
3016 if (N
->getValueType(0) != MVT::i64
)
3019 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3023 SelectionDAG
&DAG
= DCI
.DAG
;
3025 unsigned RHSVal
= RHS
->getZExtValue();
3027 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3029 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3030 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3031 DAG
.getConstant(31, SL
, MVT::i32
));
3033 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Hi
, NewShift
});
3034 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3037 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3039 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3040 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3041 DAG
.getConstant(31, SL
, MVT::i32
));
3042 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, NewShift
});
3043 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3049 SDValue
AMDGPUTargetLowering::performSrlCombine(SDNode
*N
,
3050 DAGCombinerInfo
&DCI
) const {
3051 if (N
->getValueType(0) != MVT::i64
)
3054 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3058 unsigned ShiftAmt
= RHS
->getZExtValue();
3062 // srl i64:x, C for C >= 32
3064 // build_pair (srl hi_32(x), C - 32), 0
3066 SelectionDAG
&DAG
= DCI
.DAG
;
3069 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
3070 SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3072 SDValue VecOp
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, N
->getOperand(0));
3073 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
,
3076 SDValue NewConst
= DAG
.getConstant(ShiftAmt
- 32, SL
, MVT::i32
);
3077 SDValue NewShift
= DAG
.getNode(ISD::SRL
, SL
, MVT::i32
, Hi
, NewConst
);
3079 SDValue BuildPair
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, Zero
});
3081 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildPair
);
3084 SDValue
AMDGPUTargetLowering::performTruncateCombine(
3085 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3087 SelectionDAG
&DAG
= DCI
.DAG
;
3088 EVT VT
= N
->getValueType(0);
3089 SDValue Src
= N
->getOperand(0);
3091 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3092 if (Src
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
3093 SDValue Vec
= Src
.getOperand(0);
3094 if (Vec
.getOpcode() == ISD::BUILD_VECTOR
) {
3095 SDValue Elt0
= Vec
.getOperand(0);
3096 EVT EltVT
= Elt0
.getValueType();
3097 if (VT
.getSizeInBits() <= EltVT
.getSizeInBits()) {
3098 if (EltVT
.isFloatingPoint()) {
3099 Elt0
= DAG
.getNode(ISD::BITCAST
, SL
,
3100 EltVT
.changeTypeToInteger(), Elt0
);
3103 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, Elt0
);
3108 // Equivalent of above for accessing the high element of a vector as an
3109 // integer operation.
3110 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3111 if (Src
.getOpcode() == ISD::SRL
&& !VT
.isVector()) {
3112 if (auto K
= isConstOrConstSplat(Src
.getOperand(1))) {
3113 if (2 * K
->getZExtValue() == Src
.getValueType().getScalarSizeInBits()) {
3114 SDValue BV
= stripBitcast(Src
.getOperand(0));
3115 if (BV
.getOpcode() == ISD::BUILD_VECTOR
&&
3116 BV
.getValueType().getVectorNumElements() == 2) {
3117 SDValue SrcElt
= BV
.getOperand(1);
3118 EVT SrcEltVT
= SrcElt
.getValueType();
3119 if (SrcEltVT
.isFloatingPoint()) {
3120 SrcElt
= DAG
.getNode(ISD::BITCAST
, SL
,
3121 SrcEltVT
.changeTypeToInteger(), SrcElt
);
3124 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, SrcElt
);
3130 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3132 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3133 // i16 (trunc (srl (i32 (trunc x), K)))
3134 if (VT
.getScalarSizeInBits() < 32) {
3135 EVT SrcVT
= Src
.getValueType();
3136 if (SrcVT
.getScalarSizeInBits() > 32 &&
3137 (Src
.getOpcode() == ISD::SRL
||
3138 Src
.getOpcode() == ISD::SRA
||
3139 Src
.getOpcode() == ISD::SHL
)) {
3140 SDValue Amt
= Src
.getOperand(1);
3141 KnownBits Known
= DAG
.computeKnownBits(Amt
);
3142 unsigned Size
= VT
.getScalarSizeInBits();
3143 if ((Known
.isConstant() && Known
.getConstant().ule(Size
)) ||
3144 (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
))) {
3145 EVT MidVT
= VT
.isVector() ?
3146 EVT::getVectorVT(*DAG
.getContext(), MVT::i32
,
3147 VT
.getVectorNumElements()) : MVT::i32
;
3149 EVT NewShiftVT
= getShiftAmountTy(MidVT
, DAG
.getDataLayout());
3150 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MidVT
,
3152 DCI
.AddToWorklist(Trunc
.getNode());
3154 if (Amt
.getValueType() != NewShiftVT
) {
3155 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, NewShiftVT
);
3156 DCI
.AddToWorklist(Amt
.getNode());
3159 SDValue ShrunkShift
= DAG
.getNode(Src
.getOpcode(), SL
, MidVT
,
3161 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, ShrunkShift
);
3169 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3170 // instructions. If we only match on the legalized i64 mul expansion,
3171 // SimplifyDemandedBits will be unable to remove them because there will be
3172 // multiple uses due to the separate mul + mulh[su].
3173 static SDValue
getMul24(SelectionDAG
&DAG
, const SDLoc
&SL
,
3174 SDValue N0
, SDValue N1
, unsigned Size
, bool Signed
) {
3176 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3177 return DAG
.getNode(MulOpc
, SL
, MVT::i32
, N0
, N1
);
3180 // Because we want to eliminate extension instructions before the
3181 // operation, we need to create a single user here (i.e. not the separate
3182 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3184 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_LOHI_I24
: AMDGPUISD::MUL_LOHI_U24
;
3186 SDValue Mul
= DAG
.getNode(MulOpc
, SL
,
3187 DAG
.getVTList(MVT::i32
, MVT::i32
), N0
, N1
);
3189 return DAG
.getNode(ISD::BUILD_PAIR
, SL
, MVT::i64
,
3190 Mul
.getValue(0), Mul
.getValue(1));
3193 SDValue
AMDGPUTargetLowering::performMulCombine(SDNode
*N
,
3194 DAGCombinerInfo
&DCI
) const {
3195 EVT VT
= N
->getValueType(0);
3197 unsigned Size
= VT
.getSizeInBits();
3198 if (VT
.isVector() || Size
> 64)
3201 // There are i16 integer mul/mad.
3202 if (Subtarget
->has16BitInsts() && VT
.getScalarType().bitsLE(MVT::i16
))
3205 SelectionDAG
&DAG
= DCI
.DAG
;
3208 SDValue N0
= N
->getOperand(0);
3209 SDValue N1
= N
->getOperand(1);
3211 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3212 // in the source into any_extends if the result of the mul is truncated. Since
3213 // we can assume the high bits are whatever we want, use the underlying value
3214 // to avoid the unknown high bits from interfering.
3215 if (N0
.getOpcode() == ISD::ANY_EXTEND
)
3216 N0
= N0
.getOperand(0);
3218 if (N1
.getOpcode() == ISD::ANY_EXTEND
)
3219 N1
= N1
.getOperand(0);
3223 if (Subtarget
->hasMulU24() && isU24(N0
, DAG
) && isU24(N1
, DAG
)) {
3224 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3225 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3226 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, false);
3227 } else if (Subtarget
->hasMulI24() && isI24(N0
, DAG
) && isI24(N1
, DAG
)) {
3228 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3229 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3230 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, true);
3235 // We need to use sext even for MUL_U24, because MUL_U24 is used
3236 // for signed multiply of 8 and 16-bit types.
3237 return DAG
.getSExtOrTrunc(Mul
, DL
, VT
);
3240 SDValue
AMDGPUTargetLowering::performMulhsCombine(SDNode
*N
,
3241 DAGCombinerInfo
&DCI
) const {
3242 EVT VT
= N
->getValueType(0);
3244 if (!Subtarget
->hasMulI24() || VT
.isVector())
3247 SelectionDAG
&DAG
= DCI
.DAG
;
3250 SDValue N0
= N
->getOperand(0);
3251 SDValue N1
= N
->getOperand(1);
3253 if (!isI24(N0
, DAG
) || !isI24(N1
, DAG
))
3256 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3257 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3259 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_I24
, DL
, MVT::i32
, N0
, N1
);
3260 DCI
.AddToWorklist(Mulhi
.getNode());
3261 return DAG
.getSExtOrTrunc(Mulhi
, DL
, VT
);
3264 SDValue
AMDGPUTargetLowering::performMulhuCombine(SDNode
*N
,
3265 DAGCombinerInfo
&DCI
) const {
3266 EVT VT
= N
->getValueType(0);
3268 if (!Subtarget
->hasMulU24() || VT
.isVector() || VT
.getSizeInBits() > 32)
3271 SelectionDAG
&DAG
= DCI
.DAG
;
3274 SDValue N0
= N
->getOperand(0);
3275 SDValue N1
= N
->getOperand(1);
3277 if (!isU24(N0
, DAG
) || !isU24(N1
, DAG
))
3280 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3281 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3283 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_U24
, DL
, MVT::i32
, N0
, N1
);
3284 DCI
.AddToWorklist(Mulhi
.getNode());
3285 return DAG
.getZExtOrTrunc(Mulhi
, DL
, VT
);
3288 SDValue
AMDGPUTargetLowering::performMulLoHi24Combine(
3289 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3290 SelectionDAG
&DAG
= DCI
.DAG
;
3292 // Simplify demanded bits before splitting into multiple users.
3293 if (SDValue V
= simplifyI24(N
, DCI
))
3296 SDValue N0
= N
->getOperand(0);
3297 SDValue N1
= N
->getOperand(1);
3299 bool Signed
= (N
->getOpcode() == AMDGPUISD::MUL_LOHI_I24
);
3301 unsigned MulLoOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3302 unsigned MulHiOpc
= Signed
? AMDGPUISD::MULHI_I24
: AMDGPUISD::MULHI_U24
;
3306 SDValue MulLo
= DAG
.getNode(MulLoOpc
, SL
, MVT::i32
, N0
, N1
);
3307 SDValue MulHi
= DAG
.getNode(MulHiOpc
, SL
, MVT::i32
, N0
, N1
);
3308 return DAG
.getMergeValues({ MulLo
, MulHi
}, SL
);
3311 static bool isNegativeOne(SDValue Val
) {
3312 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
))
3313 return C
->isAllOnesValue();
3317 SDValue
AMDGPUTargetLowering::getFFBX_U32(SelectionDAG
&DAG
,
3320 unsigned Opc
) const {
3321 EVT VT
= Op
.getValueType();
3322 EVT LegalVT
= getTypeToTransformTo(*DAG
.getContext(), VT
);
3323 if (LegalVT
!= MVT::i32
&& (Subtarget
->has16BitInsts() &&
3324 LegalVT
!= MVT::i16
))
3328 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, Op
);
3330 SDValue FFBX
= DAG
.getNode(Opc
, DL
, MVT::i32
, Op
);
3332 FFBX
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, FFBX
);
3337 // The native instructions return -1 on 0 input. Optimize out a select that
3338 // produces -1 on 0.
3340 // TODO: If zero is not undef, we could also do this if the output is compared
3341 // against the bitwidth.
3343 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3344 SDValue
AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc
&SL
, SDValue Cond
,
3345 SDValue LHS
, SDValue RHS
,
3346 DAGCombinerInfo
&DCI
) const {
3347 ConstantSDNode
*CmpRhs
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
3348 if (!CmpRhs
|| !CmpRhs
->isNullValue())
3351 SelectionDAG
&DAG
= DCI
.DAG
;
3352 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
3353 SDValue CmpLHS
= Cond
.getOperand(0);
3355 unsigned Opc
= isCttzOpc(RHS
.getOpcode()) ? AMDGPUISD::FFBL_B32
:
3356 AMDGPUISD::FFBH_U32
;
3358 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3359 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3360 if (CCOpcode
== ISD::SETEQ
&&
3361 (isCtlzOpc(RHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3362 RHS
.getOperand(0) == CmpLHS
&&
3363 isNegativeOne(LHS
)) {
3364 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3367 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3368 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3369 if (CCOpcode
== ISD::SETNE
&&
3370 (isCtlzOpc(LHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3371 LHS
.getOperand(0) == CmpLHS
&&
3372 isNegativeOne(RHS
)) {
3373 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3379 static SDValue
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3385 SelectionDAG
&DAG
= DCI
.DAG
;
3386 EVT VT
= N1
.getValueType();
3388 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cond
,
3389 N1
.getOperand(0), N2
.getOperand(0));
3390 DCI
.AddToWorklist(NewSelect
.getNode());
3391 return DAG
.getNode(Op
, SL
, VT
, NewSelect
);
3394 // Pull a free FP operation out of a select so it may fold into uses.
3396 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3397 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3399 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3400 // select c, (fabs x), +k -> fabs (select c, x, k)
3401 static SDValue
foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3403 SelectionDAG
&DAG
= DCI
.DAG
;
3404 SDValue Cond
= N
.getOperand(0);
3405 SDValue LHS
= N
.getOperand(1);
3406 SDValue RHS
= N
.getOperand(2);
3408 EVT VT
= N
.getValueType();
3409 if ((LHS
.getOpcode() == ISD::FABS
&& RHS
.getOpcode() == ISD::FABS
) ||
3410 (LHS
.getOpcode() == ISD::FNEG
&& RHS
.getOpcode() == ISD::FNEG
)) {
3411 return distributeOpThroughSelect(DCI
, LHS
.getOpcode(),
3412 SDLoc(N
), Cond
, LHS
, RHS
);
3416 if (RHS
.getOpcode() == ISD::FABS
|| RHS
.getOpcode() == ISD::FNEG
) {
3417 std::swap(LHS
, RHS
);
3421 // TODO: Support vector constants.
3422 ConstantFPSDNode
*CRHS
= dyn_cast
<ConstantFPSDNode
>(RHS
);
3423 if ((LHS
.getOpcode() == ISD::FNEG
|| LHS
.getOpcode() == ISD::FABS
) && CRHS
) {
3425 // If one side is an fneg/fabs and the other is a constant, we can push the
3426 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3427 SDValue NewLHS
= LHS
.getOperand(0);
3428 SDValue NewRHS
= RHS
;
3430 // Careful: if the neg can be folded up, don't try to pull it back down.
3431 bool ShouldFoldNeg
= true;
3433 if (NewLHS
.hasOneUse()) {
3434 unsigned Opc
= NewLHS
.getOpcode();
3435 if (LHS
.getOpcode() == ISD::FNEG
&& fnegFoldsIntoOp(Opc
))
3436 ShouldFoldNeg
= false;
3437 if (LHS
.getOpcode() == ISD::FABS
&& Opc
== ISD::FMUL
)
3438 ShouldFoldNeg
= false;
3441 if (ShouldFoldNeg
) {
3442 if (LHS
.getOpcode() == ISD::FNEG
)
3443 NewRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3444 else if (CRHS
->isNegative())
3448 std::swap(NewLHS
, NewRHS
);
3450 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
,
3451 Cond
, NewLHS
, NewRHS
);
3452 DCI
.AddToWorklist(NewSelect
.getNode());
3453 return DAG
.getNode(LHS
.getOpcode(), SL
, VT
, NewSelect
);
3461 SDValue
AMDGPUTargetLowering::performSelectCombine(SDNode
*N
,
3462 DAGCombinerInfo
&DCI
) const {
3463 if (SDValue Folded
= foldFreeOpFromSelect(DCI
, SDValue(N
, 0)))
3466 SDValue Cond
= N
->getOperand(0);
3467 if (Cond
.getOpcode() != ISD::SETCC
)
3470 EVT VT
= N
->getValueType(0);
3471 SDValue LHS
= Cond
.getOperand(0);
3472 SDValue RHS
= Cond
.getOperand(1);
3473 SDValue CC
= Cond
.getOperand(2);
3475 SDValue True
= N
->getOperand(1);
3476 SDValue False
= N
->getOperand(2);
3478 if (Cond
.hasOneUse()) { // TODO: Look for multiple select uses.
3479 SelectionDAG
&DAG
= DCI
.DAG
;
3480 if ((DAG
.isConstantValueOfAnyType(True
) ||
3481 DAG
.isConstantValueOfAnyType(True
)) &&
3482 (!DAG
.isConstantValueOfAnyType(False
) &&
3483 !DAG
.isConstantValueOfAnyType(False
))) {
3484 // Swap cmp + select pair to move constant to false input.
3485 // This will allow using VOPC cndmasks more often.
3486 // select (setcc x, y), k, x -> select (setcc y, x) x, x
3489 ISD::CondCode NewCC
= getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
3490 LHS
.getValueType().isInteger());
3492 SDValue NewCond
= DAG
.getSetCC(SL
, Cond
.getValueType(), LHS
, RHS
, NewCC
);
3493 return DAG
.getNode(ISD::SELECT
, SL
, VT
, NewCond
, False
, True
);
3496 if (VT
== MVT::f32
&& Subtarget
->hasFminFmaxLegacy()) {
3498 = combineFMinMaxLegacy(SDLoc(N
), VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
3499 // Revisit this node so we can catch min3/max3/med3 patterns.
3500 //DCI.AddToWorklist(MinMax.getNode());
3505 // There's no reason to not do this if the condition has other uses.
3506 return performCtlz_CttzCombine(SDLoc(N
), Cond
, True
, False
, DCI
);
3509 static bool isInv2Pi(const APFloat
&APF
) {
3510 static const APFloat
KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3511 static const APFloat
KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3512 static const APFloat
KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3514 return APF
.bitwiseIsEqual(KF16
) ||
3515 APF
.bitwiseIsEqual(KF32
) ||
3516 APF
.bitwiseIsEqual(KF64
);
3519 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3520 // additional cost to negate them.
3521 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N
) const {
3522 if (const ConstantFPSDNode
*C
= isConstOrConstSplatFP(N
)) {
3523 if (C
->isZero() && !C
->isNegative())
3526 if (Subtarget
->hasInv2PiInlineImm() && isInv2Pi(C
->getValueAPF()))
3533 static unsigned inverseMinMax(unsigned Opc
) {
3536 return ISD::FMINNUM
;
3538 return ISD::FMAXNUM
;
3539 case ISD::FMAXNUM_IEEE
:
3540 return ISD::FMINNUM_IEEE
;
3541 case ISD::FMINNUM_IEEE
:
3542 return ISD::FMAXNUM_IEEE
;
3543 case AMDGPUISD::FMAX_LEGACY
:
3544 return AMDGPUISD::FMIN_LEGACY
;
3545 case AMDGPUISD::FMIN_LEGACY
:
3546 return AMDGPUISD::FMAX_LEGACY
;
3548 llvm_unreachable("invalid min/max opcode");
3552 SDValue
AMDGPUTargetLowering::performFNegCombine(SDNode
*N
,
3553 DAGCombinerInfo
&DCI
) const {
3554 SelectionDAG
&DAG
= DCI
.DAG
;
3555 SDValue N0
= N
->getOperand(0);
3556 EVT VT
= N
->getValueType(0);
3558 unsigned Opc
= N0
.getOpcode();
3560 // If the input has multiple uses and we can either fold the negate down, or
3561 // the other uses cannot, give up. This both prevents unprofitable
3562 // transformations and infinite loops: we won't repeatedly try to fold around
3563 // a negate that has no 'good' form.
3564 if (N0
.hasOneUse()) {
3565 // This may be able to fold into the source, but at a code size cost. Don't
3566 // fold if the fold into the user is free.
3567 if (allUsesHaveSourceMods(N
, 0))
3570 if (fnegFoldsIntoOp(Opc
) &&
3571 (allUsesHaveSourceMods(N
) || !allUsesHaveSourceMods(N0
.getNode())))
3578 if (!mayIgnoreSignedZero(N0
))
3581 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3582 SDValue LHS
= N0
.getOperand(0);
3583 SDValue RHS
= N0
.getOperand(1);
3585 if (LHS
.getOpcode() != ISD::FNEG
)
3586 LHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3588 LHS
= LHS
.getOperand(0);
3590 if (RHS
.getOpcode() != ISD::FNEG
)
3591 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3593 RHS
= RHS
.getOperand(0);
3595 SDValue Res
= DAG
.getNode(ISD::FADD
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3596 if (!N0
.hasOneUse())
3597 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3601 case AMDGPUISD::FMUL_LEGACY
: {
3602 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3603 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3604 SDValue LHS
= N0
.getOperand(0);
3605 SDValue RHS
= N0
.getOperand(1);
3607 if (LHS
.getOpcode() == ISD::FNEG
)
3608 LHS
= LHS
.getOperand(0);
3609 else if (RHS
.getOpcode() == ISD::FNEG
)
3610 RHS
= RHS
.getOperand(0);
3612 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3614 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3615 if (!N0
.hasOneUse())
3616 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3621 if (!mayIgnoreSignedZero(N0
))
3624 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3625 SDValue LHS
= N0
.getOperand(0);
3626 SDValue MHS
= N0
.getOperand(1);
3627 SDValue RHS
= N0
.getOperand(2);
3629 if (LHS
.getOpcode() == ISD::FNEG
)
3630 LHS
= LHS
.getOperand(0);
3631 else if (MHS
.getOpcode() == ISD::FNEG
)
3632 MHS
= MHS
.getOperand(0);
3634 MHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, MHS
);
3636 if (RHS
.getOpcode() != ISD::FNEG
)
3637 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3639 RHS
= RHS
.getOperand(0);
3641 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, MHS
, RHS
);
3642 if (!N0
.hasOneUse())
3643 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3648 case ISD::FMAXNUM_IEEE
:
3649 case ISD::FMINNUM_IEEE
:
3650 case AMDGPUISD::FMAX_LEGACY
:
3651 case AMDGPUISD::FMIN_LEGACY
: {
3652 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3653 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3654 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3655 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3657 SDValue LHS
= N0
.getOperand(0);
3658 SDValue RHS
= N0
.getOperand(1);
3660 // 0 doesn't have a negated inline immediate.
3661 // TODO: This constant check should be generalized to other operations.
3662 if (isConstantCostlierToNegate(RHS
))
3665 SDValue NegLHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3666 SDValue NegRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3667 unsigned Opposite
= inverseMinMax(Opc
);
3669 SDValue Res
= DAG
.getNode(Opposite
, SL
, VT
, NegLHS
, NegRHS
, N0
->getFlags());
3670 if (!N0
.hasOneUse())
3671 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3674 case AMDGPUISD::FMED3
: {
3676 for (unsigned I
= 0; I
< 3; ++I
)
3677 Ops
[I
] = DAG
.getNode(ISD::FNEG
, SL
, VT
, N0
->getOperand(I
), N0
->getFlags());
3679 SDValue Res
= DAG
.getNode(AMDGPUISD::FMED3
, SL
, VT
, Ops
, N0
->getFlags());
3680 if (!N0
.hasOneUse())
3681 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3684 case ISD::FP_EXTEND
:
3687 case ISD::FNEARBYINT
: // XXX - Should fround be handled?
3689 case ISD::FCANONICALIZE
:
3690 case AMDGPUISD::RCP
:
3691 case AMDGPUISD::RCP_LEGACY
:
3692 case AMDGPUISD::RCP_IFLAG
:
3693 case AMDGPUISD::SIN_HW
: {
3694 SDValue CvtSrc
= N0
.getOperand(0);
3695 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3696 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3697 // (fneg (rcp (fneg x))) -> (rcp x)
3698 return DAG
.getNode(Opc
, SL
, VT
, CvtSrc
.getOperand(0));
3701 if (!N0
.hasOneUse())
3704 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3705 // (fneg (rcp x)) -> (rcp (fneg x))
3706 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3707 return DAG
.getNode(Opc
, SL
, VT
, Neg
, N0
->getFlags());
3709 case ISD::FP_ROUND
: {
3710 SDValue CvtSrc
= N0
.getOperand(0);
3712 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3713 // (fneg (fp_round (fneg x))) -> (fp_round x)
3714 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
,
3715 CvtSrc
.getOperand(0), N0
.getOperand(1));
3718 if (!N0
.hasOneUse())
3721 // (fneg (fp_round x)) -> (fp_round (fneg x))
3722 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3723 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
, Neg
, N0
.getOperand(1));
3725 case ISD::FP16_TO_FP
: {
3726 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3727 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3728 // Put the fneg back as a legal source operation that can be matched later.
3731 SDValue Src
= N0
.getOperand(0);
3732 EVT SrcVT
= Src
.getValueType();
3734 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3735 SDValue IntFNeg
= DAG
.getNode(ISD::XOR
, SL
, SrcVT
, Src
,
3736 DAG
.getConstant(0x8000, SL
, SrcVT
));
3737 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFNeg
);
3744 SDValue
AMDGPUTargetLowering::performFAbsCombine(SDNode
*N
,
3745 DAGCombinerInfo
&DCI
) const {
3746 SelectionDAG
&DAG
= DCI
.DAG
;
3747 SDValue N0
= N
->getOperand(0);
3749 if (!N0
.hasOneUse())
3752 switch (N0
.getOpcode()) {
3753 case ISD::FP16_TO_FP
: {
3754 assert(!Subtarget
->has16BitInsts() && "should only see if f16 is illegal");
3756 SDValue Src
= N0
.getOperand(0);
3757 EVT SrcVT
= Src
.getValueType();
3759 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3760 SDValue IntFAbs
= DAG
.getNode(ISD::AND
, SL
, SrcVT
, Src
,
3761 DAG
.getConstant(0x7fff, SL
, SrcVT
));
3762 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFAbs
);
3769 SDValue
AMDGPUTargetLowering::performRcpCombine(SDNode
*N
,
3770 DAGCombinerInfo
&DCI
) const {
3771 const auto *CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0));
3775 // XXX - Should this flush denormals?
3776 const APFloat
&Val
= CFP
->getValueAPF();
3777 APFloat
One(Val
.getSemantics(), "1.0");
3778 return DCI
.DAG
.getConstantFP(One
/ Val
, SDLoc(N
), N
->getValueType(0));
3781 SDValue
AMDGPUTargetLowering::PerformDAGCombine(SDNode
*N
,
3782 DAGCombinerInfo
&DCI
) const {
3783 SelectionDAG
&DAG
= DCI
.DAG
;
3786 switch(N
->getOpcode()) {
3789 case ISD::BITCAST
: {
3790 EVT DestVT
= N
->getValueType(0);
3792 // Push casts through vector builds. This helps avoid emitting a large
3793 // number of copies when materializing floating point vector constants.
3795 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3796 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3797 if (DestVT
.isVector()) {
3798 SDValue Src
= N
->getOperand(0);
3799 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
3800 EVT SrcVT
= Src
.getValueType();
3801 unsigned NElts
= DestVT
.getVectorNumElements();
3803 if (SrcVT
.getVectorNumElements() == NElts
) {
3804 EVT DestEltVT
= DestVT
.getVectorElementType();
3806 SmallVector
<SDValue
, 8> CastedElts
;
3808 for (unsigned I
= 0, E
= SrcVT
.getVectorNumElements(); I
!= E
; ++I
) {
3809 SDValue Elt
= Src
.getOperand(I
);
3810 CastedElts
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, DestEltVT
, Elt
));
3813 return DAG
.getBuildVector(DestVT
, SL
, CastedElts
);
3818 if (DestVT
.getSizeInBits() != 64 && !DestVT
.isVector())
3821 // Fold bitcasts of constants.
3823 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3824 // TODO: Generalize and move to DAGCombiner
3825 SDValue Src
= N
->getOperand(0);
3826 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Src
)) {
3827 if (Src
.getValueType() == MVT::i64
) {
3829 uint64_t CVal
= C
->getZExtValue();
3830 SDValue BV
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3831 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3832 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3833 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, BV
);
3837 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Src
)) {
3838 const APInt
&Val
= C
->getValueAPF().bitcastToAPInt();
3840 uint64_t CVal
= Val
.getZExtValue();
3841 SDValue Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3842 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3843 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3845 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, Vec
);
3851 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3854 return performShlCombine(N
, DCI
);
3857 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3860 return performSrlCombine(N
, DCI
);
3863 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3866 return performSraCombine(N
, DCI
);
3869 return performTruncateCombine(N
, DCI
);
3871 return performMulCombine(N
, DCI
);
3873 return performMulhsCombine(N
, DCI
);
3875 return performMulhuCombine(N
, DCI
);
3876 case AMDGPUISD::MUL_I24
:
3877 case AMDGPUISD::MUL_U24
:
3878 case AMDGPUISD::MULHI_I24
:
3879 case AMDGPUISD::MULHI_U24
: {
3880 if (SDValue V
= simplifyI24(N
, DCI
))
3884 case AMDGPUISD::MUL_LOHI_I24
:
3885 case AMDGPUISD::MUL_LOHI_U24
:
3886 return performMulLoHi24Combine(N
, DCI
);
3888 return performSelectCombine(N
, DCI
);
3890 return performFNegCombine(N
, DCI
);
3892 return performFAbsCombine(N
, DCI
);
3893 case AMDGPUISD::BFE_I32
:
3894 case AMDGPUISD::BFE_U32
: {
3895 assert(!N
->getValueType(0).isVector() &&
3896 "Vector handling of BFE not implemented");
3897 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
3901 uint32_t WidthVal
= Width
->getZExtValue() & 0x1f;
3903 return DAG
.getConstant(0, DL
, MVT::i32
);
3905 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3909 SDValue BitsFrom
= N
->getOperand(0);
3910 uint32_t OffsetVal
= Offset
->getZExtValue() & 0x1f;
3912 bool Signed
= N
->getOpcode() == AMDGPUISD::BFE_I32
;
3914 if (OffsetVal
== 0) {
3915 // This is already sign / zero extended, so try to fold away extra BFEs.
3916 unsigned SignBits
= Signed
? (32 - WidthVal
+ 1) : (32 - WidthVal
);
3918 unsigned OpSignBits
= DAG
.ComputeNumSignBits(BitsFrom
);
3919 if (OpSignBits
>= SignBits
)
3922 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), WidthVal
);
3924 // This is a sign_extend_inreg. Replace it to take advantage of existing
3925 // DAG Combines. If not eliminated, we will match back to BFE during
3928 // TODO: The sext_inreg of extended types ends, although we can could
3929 // handle them in a single BFE.
3930 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, BitsFrom
,
3931 DAG
.getValueType(SmallVT
));
3934 return DAG
.getZeroExtendInReg(BitsFrom
, DL
, SmallVT
);
3937 if (ConstantSDNode
*CVal
= dyn_cast
<ConstantSDNode
>(BitsFrom
)) {
3939 return constantFoldBFE
<int32_t>(DAG
,
3940 CVal
->getSExtValue(),
3946 return constantFoldBFE
<uint32_t>(DAG
,
3947 CVal
->getZExtValue(),
3953 if ((OffsetVal
+ WidthVal
) >= 32 &&
3954 !(Subtarget
->hasSDWA() && OffsetVal
== 16 && WidthVal
== 16)) {
3955 SDValue ShiftVal
= DAG
.getConstant(OffsetVal
, DL
, MVT::i32
);
3956 return DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, MVT::i32
,
3957 BitsFrom
, ShiftVal
);
3960 if (BitsFrom
.hasOneUse()) {
3961 APInt Demanded
= APInt::getBitsSet(32,
3963 OffsetVal
+ WidthVal
);
3966 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
3967 !DCI
.isBeforeLegalizeOps());
3968 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3969 if (TLI
.ShrinkDemandedConstant(BitsFrom
, Demanded
, TLO
) ||
3970 TLI
.SimplifyDemandedBits(BitsFrom
, Demanded
, Known
, TLO
)) {
3971 DCI
.CommitTargetLoweringOpt(TLO
);
3978 return performLoadCombine(N
, DCI
);
3980 return performStoreCombine(N
, DCI
);
3981 case AMDGPUISD::RCP
:
3982 case AMDGPUISD::RCP_IFLAG
:
3983 return performRcpCombine(N
, DCI
);
3984 case ISD::AssertZext
:
3985 case ISD::AssertSext
:
3986 return performAssertSZExtCombine(N
, DCI
);
3991 //===----------------------------------------------------------------------===//
3993 //===----------------------------------------------------------------------===//
3995 SDValue
AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG
&DAG
,
3996 const TargetRegisterClass
*RC
,
3997 unsigned Reg
, EVT VT
,
3999 bool RawReg
) const {
4000 MachineFunction
&MF
= DAG
.getMachineFunction();
4001 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4004 if (!MRI
.isLiveIn(Reg
)) {
4005 VReg
= MRI
.createVirtualRegister(RC
);
4006 MRI
.addLiveIn(Reg
, VReg
);
4008 VReg
= MRI
.getLiveInVirtReg(Reg
);
4012 return DAG
.getRegister(VReg
, VT
);
4014 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SL
, VReg
, VT
);
4017 SDValue
AMDGPUTargetLowering::loadStackInputValue(SelectionDAG
&DAG
,
4020 int64_t Offset
) const {
4021 MachineFunction
&MF
= DAG
.getMachineFunction();
4022 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4024 int FI
= MFI
.CreateFixedObject(VT
.getStoreSize(), Offset
, true);
4025 auto SrcPtrInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4026 SDValue Ptr
= DAG
.getFrameIndex(FI
, MVT::i32
);
4028 return DAG
.getLoad(VT
, SL
, DAG
.getEntryNode(), Ptr
, SrcPtrInfo
, 4,
4029 MachineMemOperand::MODereferenceable
|
4030 MachineMemOperand::MOInvariant
);
4033 SDValue
AMDGPUTargetLowering::storeStackInputValue(SelectionDAG
&DAG
,
4037 int64_t Offset
) const {
4038 MachineFunction
&MF
= DAG
.getMachineFunction();
4039 MachinePointerInfo DstInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4041 SDValue Ptr
= DAG
.getConstant(Offset
, SL
, MVT::i32
);
4042 SDValue Store
= DAG
.getStore(Chain
, SL
, ArgVal
, Ptr
, DstInfo
, 4,
4043 MachineMemOperand::MODereferenceable
);
4047 SDValue
AMDGPUTargetLowering::loadInputValue(SelectionDAG
&DAG
,
4048 const TargetRegisterClass
*RC
,
4049 EVT VT
, const SDLoc
&SL
,
4050 const ArgDescriptor
&Arg
) const {
4051 assert(Arg
&& "Attempting to load missing argument");
4053 if (Arg
.isRegister())
4054 return CreateLiveInRegister(DAG
, RC
, Arg
.getRegister(), VT
, SL
);
4055 return loadStackInputValue(DAG
, VT
, SL
, Arg
.getStackOffset());
4058 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4059 const MachineFunction
&MF
, const ImplicitParameter Param
) const {
4060 const AMDGPUMachineFunction
*MFI
= MF
.getInfo
<AMDGPUMachineFunction
>();
4061 const AMDGPUSubtarget
&ST
=
4062 AMDGPUSubtarget::get(getTargetMachine(), MF
.getFunction());
4063 unsigned ExplicitArgOffset
= ST
.getExplicitKernelArgOffset(MF
.getFunction());
4064 unsigned Alignment
= ST
.getAlignmentForImplicitArgPtr();
4065 uint64_t ArgOffset
= alignTo(MFI
->getExplicitKernArgSize(), Alignment
) +
4071 return ArgOffset
+ 4;
4073 llvm_unreachable("unexpected implicit parameter type");
4076 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4078 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode
) const {
4079 switch ((AMDGPUISD::NodeType
)Opcode
) {
4080 case AMDGPUISD::FIRST_NUMBER
: break;
4082 NODE_NAME_CASE(UMUL
);
4083 NODE_NAME_CASE(BRANCH_COND
);
4087 NODE_NAME_CASE(ELSE
)
4088 NODE_NAME_CASE(LOOP
)
4089 NODE_NAME_CASE(CALL
)
4090 NODE_NAME_CASE(TC_RETURN
)
4091 NODE_NAME_CASE(TRAP
)
4092 NODE_NAME_CASE(RET_FLAG
)
4093 NODE_NAME_CASE(RETURN_TO_EPILOG
)
4094 NODE_NAME_CASE(ENDPGM
)
4095 NODE_NAME_CASE(DWORDADDR
)
4096 NODE_NAME_CASE(FRACT
)
4097 NODE_NAME_CASE(SETCC
)
4098 NODE_NAME_CASE(SETREG
)
4099 NODE_NAME_CASE(FMA_W_CHAIN
)
4100 NODE_NAME_CASE(FMUL_W_CHAIN
)
4101 NODE_NAME_CASE(CLAMP
)
4102 NODE_NAME_CASE(COS_HW
)
4103 NODE_NAME_CASE(SIN_HW
)
4104 NODE_NAME_CASE(FMAX_LEGACY
)
4105 NODE_NAME_CASE(FMIN_LEGACY
)
4106 NODE_NAME_CASE(FMAX3
)
4107 NODE_NAME_CASE(SMAX3
)
4108 NODE_NAME_CASE(UMAX3
)
4109 NODE_NAME_CASE(FMIN3
)
4110 NODE_NAME_CASE(SMIN3
)
4111 NODE_NAME_CASE(UMIN3
)
4112 NODE_NAME_CASE(FMED3
)
4113 NODE_NAME_CASE(SMED3
)
4114 NODE_NAME_CASE(UMED3
)
4115 NODE_NAME_CASE(FDOT2
)
4116 NODE_NAME_CASE(URECIP
)
4117 NODE_NAME_CASE(DIV_SCALE
)
4118 NODE_NAME_CASE(DIV_FMAS
)
4119 NODE_NAME_CASE(DIV_FIXUP
)
4120 NODE_NAME_CASE(FMAD_FTZ
)
4121 NODE_NAME_CASE(TRIG_PREOP
)
4124 NODE_NAME_CASE(RCP_LEGACY
)
4125 NODE_NAME_CASE(RSQ_LEGACY
)
4126 NODE_NAME_CASE(RCP_IFLAG
)
4127 NODE_NAME_CASE(FMUL_LEGACY
)
4128 NODE_NAME_CASE(RSQ_CLAMP
)
4129 NODE_NAME_CASE(LDEXP
)
4130 NODE_NAME_CASE(FP_CLASS
)
4131 NODE_NAME_CASE(DOT4
)
4132 NODE_NAME_CASE(CARRY
)
4133 NODE_NAME_CASE(BORROW
)
4134 NODE_NAME_CASE(BFE_U32
)
4135 NODE_NAME_CASE(BFE_I32
)
4138 NODE_NAME_CASE(FFBH_U32
)
4139 NODE_NAME_CASE(FFBH_I32
)
4140 NODE_NAME_CASE(FFBL_B32
)
4141 NODE_NAME_CASE(MUL_U24
)
4142 NODE_NAME_CASE(MUL_I24
)
4143 NODE_NAME_CASE(MULHI_U24
)
4144 NODE_NAME_CASE(MULHI_I24
)
4145 NODE_NAME_CASE(MUL_LOHI_U24
)
4146 NODE_NAME_CASE(MUL_LOHI_I24
)
4147 NODE_NAME_CASE(MAD_U24
)
4148 NODE_NAME_CASE(MAD_I24
)
4149 NODE_NAME_CASE(MAD_I64_I32
)
4150 NODE_NAME_CASE(MAD_U64_U32
)
4151 NODE_NAME_CASE(PERM
)
4152 NODE_NAME_CASE(TEXTURE_FETCH
)
4153 NODE_NAME_CASE(EXPORT
)
4154 NODE_NAME_CASE(EXPORT_DONE
)
4155 NODE_NAME_CASE(R600_EXPORT
)
4156 NODE_NAME_CASE(CONST_ADDRESS
)
4157 NODE_NAME_CASE(REGISTER_LOAD
)
4158 NODE_NAME_CASE(REGISTER_STORE
)
4159 NODE_NAME_CASE(SAMPLE
)
4160 NODE_NAME_CASE(SAMPLEB
)
4161 NODE_NAME_CASE(SAMPLED
)
4162 NODE_NAME_CASE(SAMPLEL
)
4163 NODE_NAME_CASE(CVT_F32_UBYTE0
)
4164 NODE_NAME_CASE(CVT_F32_UBYTE1
)
4165 NODE_NAME_CASE(CVT_F32_UBYTE2
)
4166 NODE_NAME_CASE(CVT_F32_UBYTE3
)
4167 NODE_NAME_CASE(CVT_PKRTZ_F16_F32
)
4168 NODE_NAME_CASE(CVT_PKNORM_I16_F32
)
4169 NODE_NAME_CASE(CVT_PKNORM_U16_F32
)
4170 NODE_NAME_CASE(CVT_PK_I16_I32
)
4171 NODE_NAME_CASE(CVT_PK_U16_U32
)
4172 NODE_NAME_CASE(FP_TO_FP16
)
4173 NODE_NAME_CASE(FP16_ZEXT
)
4174 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR
)
4175 NODE_NAME_CASE(CONST_DATA_PTR
)
4176 NODE_NAME_CASE(PC_ADD_REL_OFFSET
)
4177 NODE_NAME_CASE(KILL
)
4178 NODE_NAME_CASE(DUMMY_CHAIN
)
4179 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER
: break;
4180 NODE_NAME_CASE(INIT_EXEC
)
4181 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT
)
4182 NODE_NAME_CASE(SENDMSG
)
4183 NODE_NAME_CASE(SENDMSGHALT
)
4184 NODE_NAME_CASE(INTERP_MOV
)
4185 NODE_NAME_CASE(INTERP_P1
)
4186 NODE_NAME_CASE(INTERP_P2
)
4187 NODE_NAME_CASE(INTERP_P1LL_F16
)
4188 NODE_NAME_CASE(INTERP_P1LV_F16
)
4189 NODE_NAME_CASE(INTERP_P2_F16
)
4190 NODE_NAME_CASE(STORE_MSKOR
)
4191 NODE_NAME_CASE(LOAD_CONSTANT
)
4192 NODE_NAME_CASE(TBUFFER_STORE_FORMAT
)
4193 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3
)
4194 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16
)
4195 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT
)
4196 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16
)
4197 NODE_NAME_CASE(DS_ORDERED_COUNT
)
4198 NODE_NAME_CASE(ATOMIC_CMP_SWAP
)
4199 NODE_NAME_CASE(ATOMIC_INC
)
4200 NODE_NAME_CASE(ATOMIC_DEC
)
4201 NODE_NAME_CASE(ATOMIC_LOAD_FMIN
)
4202 NODE_NAME_CASE(ATOMIC_LOAD_FMAX
)
4203 NODE_NAME_CASE(BUFFER_LOAD
)
4204 NODE_NAME_CASE(BUFFER_LOAD_FORMAT
)
4205 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16
)
4206 NODE_NAME_CASE(SBUFFER_LOAD
)
4207 NODE_NAME_CASE(BUFFER_STORE
)
4208 NODE_NAME_CASE(BUFFER_STORE_FORMAT
)
4209 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16
)
4210 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP
)
4211 NODE_NAME_CASE(BUFFER_ATOMIC_ADD
)
4212 NODE_NAME_CASE(BUFFER_ATOMIC_SUB
)
4213 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN
)
4214 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN
)
4215 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX
)
4216 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX
)
4217 NODE_NAME_CASE(BUFFER_ATOMIC_AND
)
4218 NODE_NAME_CASE(BUFFER_ATOMIC_OR
)
4219 NODE_NAME_CASE(BUFFER_ATOMIC_XOR
)
4220 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP
)
4222 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER
: break;
4227 SDValue
AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand
,
4228 SelectionDAG
&DAG
, int Enabled
,
4229 int &RefinementSteps
,
4230 bool &UseOneConstNR
,
4231 bool Reciprocal
) const {
4232 EVT VT
= Operand
.getValueType();
4234 if (VT
== MVT::f32
) {
4235 RefinementSteps
= 0;
4236 return DAG
.getNode(AMDGPUISD::RSQ
, SDLoc(Operand
), VT
, Operand
);
4239 // TODO: There is also f64 rsq instruction, but the documentation is less
4240 // clear on its precision.
4245 SDValue
AMDGPUTargetLowering::getRecipEstimate(SDValue Operand
,
4246 SelectionDAG
&DAG
, int Enabled
,
4247 int &RefinementSteps
) const {
4248 EVT VT
= Operand
.getValueType();
4250 if (VT
== MVT::f32
) {
4251 // Reciprocal, < 1 ulp error.
4253 // This reciprocal approximation converges to < 0.5 ulp error with one
4254 // newton rhapson performed with two fused multiple adds (FMAs).
4256 RefinementSteps
= 0;
4257 return DAG
.getNode(AMDGPUISD::RCP
, SDLoc(Operand
), VT
, Operand
);
4260 // TODO: There is also f64 rcp instruction, but the documentation is less
4261 // clear on its precision.
4266 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4267 const SDValue Op
, KnownBits
&Known
,
4268 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
4270 Known
.resetAll(); // Don't know anything.
4272 unsigned Opc
= Op
.getOpcode();
4277 case AMDGPUISD::CARRY
:
4278 case AMDGPUISD::BORROW
: {
4279 Known
.Zero
= APInt::getHighBitsSet(32, 31);
4283 case AMDGPUISD::BFE_I32
:
4284 case AMDGPUISD::BFE_U32
: {
4285 ConstantSDNode
*CWidth
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4289 uint32_t Width
= CWidth
->getZExtValue() & 0x1f;
4291 if (Opc
== AMDGPUISD::BFE_U32
)
4292 Known
.Zero
= APInt::getHighBitsSet(32, 32 - Width
);
4296 case AMDGPUISD::FP_TO_FP16
:
4297 case AMDGPUISD::FP16_ZEXT
: {
4298 unsigned BitWidth
= Known
.getBitWidth();
4300 // High bits are zero.
4301 Known
.Zero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
4304 case AMDGPUISD::MUL_U24
:
4305 case AMDGPUISD::MUL_I24
: {
4306 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4307 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4308 unsigned TrailZ
= LHSKnown
.countMinTrailingZeros() +
4309 RHSKnown
.countMinTrailingZeros();
4310 Known
.Zero
.setLowBits(std::min(TrailZ
, 32u));
4312 // Truncate to 24 bits.
4313 LHSKnown
= LHSKnown
.trunc(24);
4314 RHSKnown
= RHSKnown
.trunc(24);
4316 bool Negative
= false;
4317 if (Opc
== AMDGPUISD::MUL_I24
) {
4318 unsigned LHSValBits
= 24 - LHSKnown
.countMinSignBits();
4319 unsigned RHSValBits
= 24 - RHSKnown
.countMinSignBits();
4320 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4321 if (MaxValBits
>= 32)
4323 bool LHSNegative
= LHSKnown
.isNegative();
4324 bool LHSPositive
= LHSKnown
.isNonNegative();
4325 bool RHSNegative
= RHSKnown
.isNegative();
4326 bool RHSPositive
= RHSKnown
.isNonNegative();
4327 if ((!LHSNegative
&& !LHSPositive
) || (!RHSNegative
&& !RHSPositive
))
4329 Negative
= (LHSNegative
&& RHSPositive
) || (LHSPositive
&& RHSNegative
);
4331 Known
.One
.setHighBits(32 - MaxValBits
);
4333 Known
.Zero
.setHighBits(32 - MaxValBits
);
4335 unsigned LHSValBits
= 24 - LHSKnown
.countMinLeadingZeros();
4336 unsigned RHSValBits
= 24 - RHSKnown
.countMinLeadingZeros();
4337 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4338 if (MaxValBits
>= 32)
4340 Known
.Zero
.setHighBits(32 - MaxValBits
);
4344 case AMDGPUISD::PERM
: {
4345 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4349 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4350 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4351 unsigned Sel
= CMask
->getZExtValue();
4353 for (unsigned I
= 0; I
< 32; I
+= 8) {
4354 unsigned SelBits
= Sel
& 0xff;
4357 Known
.One
|= ((RHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4358 Known
.Zero
|= ((RHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4359 } else if (SelBits
< 7) {
4360 SelBits
= (SelBits
& 3) * 8;
4361 Known
.One
|= ((LHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4362 Known
.Zero
|= ((LHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4363 } else if (SelBits
== 0x0c) {
4364 Known
.Zero
|= 0xff << I
;
4365 } else if (SelBits
> 0x0c) {
4366 Known
.One
|= 0xff << I
;
4372 case ISD::INTRINSIC_WO_CHAIN
: {
4373 unsigned IID
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4375 case Intrinsic::amdgcn_mbcnt_lo
:
4376 case Intrinsic::amdgcn_mbcnt_hi
: {
4377 const GCNSubtarget
&ST
=
4378 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
4379 // These return at most the wavefront size - 1.
4380 unsigned Size
= Op
.getValueType().getSizeInBits();
4381 Known
.Zero
.setHighBits(Size
- ST
.getWavefrontSizeLog2());
4391 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4392 SDValue Op
, const APInt
&DemandedElts
, const SelectionDAG
&DAG
,
4393 unsigned Depth
) const {
4394 switch (Op
.getOpcode()) {
4395 case AMDGPUISD::BFE_I32
: {
4396 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4400 unsigned SignBits
= 32 - Width
->getZExtValue() + 1;
4401 if (!isNullConstant(Op
.getOperand(1)))
4404 // TODO: Could probably figure something out with non-0 offsets.
4405 unsigned Op0SignBits
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
4406 return std::max(SignBits
, Op0SignBits
);
4409 case AMDGPUISD::BFE_U32
: {
4410 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4411 return Width
? 32 - (Width
->getZExtValue() & 0x1f) : 1;
4414 case AMDGPUISD::CARRY
:
4415 case AMDGPUISD::BORROW
:
4417 case AMDGPUISD::FP_TO_FP16
:
4418 case AMDGPUISD::FP16_ZEXT
:
4425 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
4426 const SelectionDAG
&DAG
,
4428 unsigned Depth
) const {
4429 unsigned Opcode
= Op
.getOpcode();
4431 case AMDGPUISD::FMIN_LEGACY
:
4432 case AMDGPUISD::FMAX_LEGACY
: {
4436 // TODO: Can check no nans on one of the operands for each one, but which
4440 case AMDGPUISD::FMUL_LEGACY
:
4441 case AMDGPUISD::CVT_PKRTZ_F16_F32
: {
4444 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4445 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4447 case AMDGPUISD::FMED3
:
4448 case AMDGPUISD::FMIN3
:
4449 case AMDGPUISD::FMAX3
:
4450 case AMDGPUISD::FMAD_FTZ
: {
4453 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4454 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4455 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4457 case AMDGPUISD::CVT_F32_UBYTE0
:
4458 case AMDGPUISD::CVT_F32_UBYTE1
:
4459 case AMDGPUISD::CVT_F32_UBYTE2
:
4460 case AMDGPUISD::CVT_F32_UBYTE3
:
4463 case AMDGPUISD::RCP
:
4464 case AMDGPUISD::RSQ
:
4465 case AMDGPUISD::RCP_LEGACY
:
4466 case AMDGPUISD::RSQ_LEGACY
:
4467 case AMDGPUISD::RSQ_CLAMP
: {
4471 // TODO: Need is known positive check.
4474 case AMDGPUISD::LDEXP
:
4475 case AMDGPUISD::FRACT
: {
4478 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4480 case AMDGPUISD::DIV_SCALE
:
4481 case AMDGPUISD::DIV_FMAS
:
4482 case AMDGPUISD::DIV_FIXUP
:
4483 case AMDGPUISD::TRIG_PREOP
:
4484 // TODO: Refine on operands.
4486 case AMDGPUISD::SIN_HW
:
4487 case AMDGPUISD::COS_HW
: {
4488 // TODO: Need check for infinity
4491 case ISD::INTRINSIC_WO_CHAIN
: {
4492 unsigned IntrinsicID
4493 = cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4494 // TODO: Handle more intrinsics
4495 switch (IntrinsicID
) {
4496 case Intrinsic::amdgcn_cubeid
:
4499 case Intrinsic::amdgcn_frexp_mant
: {
4502 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4504 case Intrinsic::amdgcn_cvt_pkrtz
: {
4507 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4508 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4510 case Intrinsic::amdgcn_fdot2
:
4511 // TODO: Refine on operand
4522 TargetLowering::AtomicExpansionKind
4523 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*RMW
) const {
4524 switch (RMW
->getOperation()) {
4525 case AtomicRMWInst::Nand
:
4526 case AtomicRMWInst::FAdd
:
4527 case AtomicRMWInst::FSub
:
4528 return AtomicExpansionKind::CmpXChg
;
4530 return AtomicExpansionKind::None
;