Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUISelLowering.cpp
blob1fc44b671366cd563440c87f45b6f1d8eea5b7de
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
13 //===----------------------------------------------------------------------===//
15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
19 #include "AMDGPUISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
42 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
43 CCValAssign::LocInfo LocInfo,
44 ISD::ArgFlagsTy ArgFlags, CCState &State,
45 const TargetRegisterClass *RC,
46 unsigned NumRegs) {
47 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
48 unsigned RegResult = State.AllocateReg(RegList);
49 if (RegResult == AMDGPU::NoRegister)
50 return false;
52 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
53 return true;
56 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
57 CCValAssign::LocInfo LocInfo,
58 ISD::ArgFlagsTy ArgFlags, CCState &State) {
59 switch (LocVT.SimpleTy) {
60 case MVT::i64:
61 case MVT::f64:
62 case MVT::v2i32:
63 case MVT::v2f32:
64 case MVT::v4i16:
65 case MVT::v4f16: {
66 // Up to SGPR0-SGPR39
67 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
68 &AMDGPU::SGPR_64RegClass, 20);
70 default:
71 return false;
75 // Allocate up to VGPR31.
77 // TODO: Since there are no VGPR alignent requirements would it be better to
78 // split into individual scalar registers?
79 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
80 CCValAssign::LocInfo LocInfo,
81 ISD::ArgFlagsTy ArgFlags, CCState &State) {
82 switch (LocVT.SimpleTy) {
83 case MVT::i64:
84 case MVT::f64:
85 case MVT::v2i32:
86 case MVT::v2f32:
87 case MVT::v4i16:
88 case MVT::v4f16: {
89 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
90 &AMDGPU::VReg_64RegClass, 31);
92 case MVT::v4i32:
93 case MVT::v4f32:
94 case MVT::v2i64:
95 case MVT::v2f64: {
96 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
97 &AMDGPU::VReg_128RegClass, 29);
99 case MVT::v8i32:
100 case MVT::v8f32: {
101 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
102 &AMDGPU::VReg_256RegClass, 25);
105 case MVT::v16i32:
106 case MVT::v16f32: {
107 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
108 &AMDGPU::VReg_512RegClass, 17);
111 default:
112 return false;
116 #include "AMDGPUGenCallingConv.inc"
118 // Find a larger type to do a load / store of a vector with.
119 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
120 unsigned StoreSize = VT.getStoreSizeInBits();
121 if (StoreSize <= 32)
122 return EVT::getIntegerVT(Ctx, StoreSize);
124 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
125 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
129 EVT VT = Op.getValueType();
130 KnownBits Known = DAG.computeKnownBits(Op);
131 return VT.getSizeInBits() - Known.countMinLeadingZeros();
134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
135 EVT VT = Op.getValueType();
137 // In order for this to be a signed 24-bit value, bit 23, must
138 // be a sign bit.
139 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
143 const AMDGPUSubtarget &STI)
144 : TargetLowering(TM), Subtarget(&STI) {
145 // Lower floating point store/load to integer store/load to reduce the number
146 // of patterns in tablegen.
147 setOperationAction(ISD::LOAD, MVT::f32, Promote);
148 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
150 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
151 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
153 setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
154 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
156 setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
157 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
159 setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
160 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
162 setOperationAction(ISD::LOAD, MVT::i64, Promote);
163 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
165 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
166 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
168 setOperationAction(ISD::LOAD, MVT::f64, Promote);
169 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
171 setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
172 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
174 // There are no 64-bit extloads. These should be done as a 32-bit extload and
175 // an extension to 64-bit.
176 for (MVT VT : MVT::integer_valuetypes()) {
177 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
178 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
179 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
182 for (MVT VT : MVT::integer_valuetypes()) {
183 if (VT == MVT::i64)
184 continue;
186 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
187 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
189 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
191 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
192 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
194 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
196 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
198 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
199 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
202 for (MVT VT : MVT::integer_vector_valuetypes()) {
203 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
204 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
205 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
206 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
207 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
208 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
210 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
211 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
213 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
214 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
217 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
218 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
219 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
220 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
222 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
232 setOperationAction(ISD::STORE, MVT::f32, Promote);
233 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
235 setOperationAction(ISD::STORE, MVT::v2f32, Promote);
236 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
238 setOperationAction(ISD::STORE, MVT::v4f32, Promote);
239 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
241 setOperationAction(ISD::STORE, MVT::v8f32, Promote);
242 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
244 setOperationAction(ISD::STORE, MVT::v16f32, Promote);
245 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
247 setOperationAction(ISD::STORE, MVT::i64, Promote);
248 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
250 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
251 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
253 setOperationAction(ISD::STORE, MVT::f64, Promote);
254 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
256 setOperationAction(ISD::STORE, MVT::v2f64, Promote);
257 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
259 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
260 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
261 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
262 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
264 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
265 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
266 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
267 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
269 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
270 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
271 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
272 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
274 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
275 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
277 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
278 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
280 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
281 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
283 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
284 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
287 setOperationAction(ISD::Constant, MVT::i32, Legal);
288 setOperationAction(ISD::Constant, MVT::i64, Legal);
289 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
290 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
292 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
293 setOperationAction(ISD::BRIND, MVT::Other, Expand);
295 // This is totally unsupported, just custom lower to produce an error.
296 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
298 // Library functions. These default to Expand, but we have instructions
299 // for them.
300 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
301 setOperationAction(ISD::FEXP2, MVT::f32, Legal);
302 setOperationAction(ISD::FPOW, MVT::f32, Legal);
303 setOperationAction(ISD::FLOG2, MVT::f32, Legal);
304 setOperationAction(ISD::FABS, MVT::f32, Legal);
305 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
306 setOperationAction(ISD::FRINT, MVT::f32, Legal);
307 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
308 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
309 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
311 setOperationAction(ISD::FROUND, MVT::f32, Custom);
312 setOperationAction(ISD::FROUND, MVT::f64, Custom);
314 setOperationAction(ISD::FLOG, MVT::f32, Custom);
315 setOperationAction(ISD::FLOG10, MVT::f32, Custom);
316 setOperationAction(ISD::FEXP, MVT::f32, Custom);
319 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
320 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
322 setOperationAction(ISD::FREM, MVT::f32, Custom);
323 setOperationAction(ISD::FREM, MVT::f64, Custom);
325 // Expand to fneg + fadd.
326 setOperationAction(ISD::FSUB, MVT::f64, Expand);
328 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
329 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
332 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
333 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
334 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
335 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
336 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
339 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
340 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
341 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
343 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
344 for (MVT VT : ScalarIntVTs) {
345 // These should use [SU]DIVREM, so set them to expand
346 setOperationAction(ISD::SDIV, VT, Expand);
347 setOperationAction(ISD::UDIV, VT, Expand);
348 setOperationAction(ISD::SREM, VT, Expand);
349 setOperationAction(ISD::UREM, VT, Expand);
351 // GPU does not have divrem function for signed or unsigned.
352 setOperationAction(ISD::SDIVREM, VT, Custom);
353 setOperationAction(ISD::UDIVREM, VT, Custom);
355 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
356 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
357 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
359 setOperationAction(ISD::BSWAP, VT, Expand);
360 setOperationAction(ISD::CTTZ, VT, Expand);
361 setOperationAction(ISD::CTLZ, VT, Expand);
363 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
364 setOperationAction(ISD::ADDC, VT, Legal);
365 setOperationAction(ISD::SUBC, VT, Legal);
366 setOperationAction(ISD::ADDE, VT, Legal);
367 setOperationAction(ISD::SUBE, VT, Legal);
370 // The hardware supports 32-bit ROTR, but not ROTL.
371 setOperationAction(ISD::ROTL, MVT::i32, Expand);
372 setOperationAction(ISD::ROTL, MVT::i64, Expand);
373 setOperationAction(ISD::ROTR, MVT::i64, Expand);
375 setOperationAction(ISD::MUL, MVT::i64, Expand);
376 setOperationAction(ISD::MULHU, MVT::i64, Expand);
377 setOperationAction(ISD::MULHS, MVT::i64, Expand);
378 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
379 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
380 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
381 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
382 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
384 setOperationAction(ISD::SMIN, MVT::i32, Legal);
385 setOperationAction(ISD::UMIN, MVT::i32, Legal);
386 setOperationAction(ISD::SMAX, MVT::i32, Legal);
387 setOperationAction(ISD::UMAX, MVT::i32, Legal);
389 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
390 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
391 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
392 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
394 static const MVT::SimpleValueType VectorIntTypes[] = {
395 MVT::v2i32, MVT::v4i32
398 for (MVT VT : VectorIntTypes) {
399 // Expand the following operations for the current type by default.
400 setOperationAction(ISD::ADD, VT, Expand);
401 setOperationAction(ISD::AND, VT, Expand);
402 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
403 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
404 setOperationAction(ISD::MUL, VT, Expand);
405 setOperationAction(ISD::MULHU, VT, Expand);
406 setOperationAction(ISD::MULHS, VT, Expand);
407 setOperationAction(ISD::OR, VT, Expand);
408 setOperationAction(ISD::SHL, VT, Expand);
409 setOperationAction(ISD::SRA, VT, Expand);
410 setOperationAction(ISD::SRL, VT, Expand);
411 setOperationAction(ISD::ROTL, VT, Expand);
412 setOperationAction(ISD::ROTR, VT, Expand);
413 setOperationAction(ISD::SUB, VT, Expand);
414 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
415 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
416 setOperationAction(ISD::SDIV, VT, Expand);
417 setOperationAction(ISD::UDIV, VT, Expand);
418 setOperationAction(ISD::SREM, VT, Expand);
419 setOperationAction(ISD::UREM, VT, Expand);
420 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
421 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
422 setOperationAction(ISD::SDIVREM, VT, Custom);
423 setOperationAction(ISD::UDIVREM, VT, Expand);
424 setOperationAction(ISD::SELECT, VT, Expand);
425 setOperationAction(ISD::VSELECT, VT, Expand);
426 setOperationAction(ISD::SELECT_CC, VT, Expand);
427 setOperationAction(ISD::XOR, VT, Expand);
428 setOperationAction(ISD::BSWAP, VT, Expand);
429 setOperationAction(ISD::CTPOP, VT, Expand);
430 setOperationAction(ISD::CTTZ, VT, Expand);
431 setOperationAction(ISD::CTLZ, VT, Expand);
432 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
433 setOperationAction(ISD::SETCC, VT, Expand);
436 static const MVT::SimpleValueType FloatVectorTypes[] = {
437 MVT::v2f32, MVT::v4f32
440 for (MVT VT : FloatVectorTypes) {
441 setOperationAction(ISD::FABS, VT, Expand);
442 setOperationAction(ISD::FMINNUM, VT, Expand);
443 setOperationAction(ISD::FMAXNUM, VT, Expand);
444 setOperationAction(ISD::FADD, VT, Expand);
445 setOperationAction(ISD::FCEIL, VT, Expand);
446 setOperationAction(ISD::FCOS, VT, Expand);
447 setOperationAction(ISD::FDIV, VT, Expand);
448 setOperationAction(ISD::FEXP2, VT, Expand);
449 setOperationAction(ISD::FEXP, VT, Expand);
450 setOperationAction(ISD::FLOG2, VT, Expand);
451 setOperationAction(ISD::FREM, VT, Expand);
452 setOperationAction(ISD::FLOG, VT, Expand);
453 setOperationAction(ISD::FLOG10, VT, Expand);
454 setOperationAction(ISD::FPOW, VT, Expand);
455 setOperationAction(ISD::FFLOOR, VT, Expand);
456 setOperationAction(ISD::FTRUNC, VT, Expand);
457 setOperationAction(ISD::FMUL, VT, Expand);
458 setOperationAction(ISD::FMA, VT, Expand);
459 setOperationAction(ISD::FRINT, VT, Expand);
460 setOperationAction(ISD::FNEARBYINT, VT, Expand);
461 setOperationAction(ISD::FSQRT, VT, Expand);
462 setOperationAction(ISD::FSIN, VT, Expand);
463 setOperationAction(ISD::FSUB, VT, Expand);
464 setOperationAction(ISD::FNEG, VT, Expand);
465 setOperationAction(ISD::VSELECT, VT, Expand);
466 setOperationAction(ISD::SELECT_CC, VT, Expand);
467 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
468 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
469 setOperationAction(ISD::SETCC, VT, Expand);
470 setOperationAction(ISD::FCANONICALIZE, VT, Expand);
473 // This causes using an unrolled select operation rather than expansion with
474 // bit operations. This is in general better, but the alternative using BFI
475 // instructions may be better if the select sources are SGPRs.
476 setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
477 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
479 setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
480 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
482 // There are no libcalls of any kind.
483 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
484 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
486 setBooleanContents(ZeroOrNegativeOneBooleanContent);
487 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
489 setSchedulingPreference(Sched::RegPressure);
490 setJumpIsExpensive(true);
492 // FIXME: This is only partially true. If we have to do vector compares, any
493 // SGPR pair can be a condition register. If we have a uniform condition, we
494 // are better off doing SALU operations, where there is only one SCC. For now,
495 // we don't have a way of knowing during instruction selection if a condition
496 // will be uniform and we always use vector compares. Assume we are using
497 // vector compares until that is fixed.
498 setHasMultipleConditionRegisters(true);
500 PredictableSelectIsExpensive = false;
502 // We want to find all load dependencies for long chains of stores to enable
503 // merging into very wide vectors. The problem is with vectors with > 4
504 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
505 // vectors are a legal type, even though we have to split the loads
506 // usually. When we can more precisely specify load legality per address
507 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
508 // smarter so that they can figure out what to do in 2 iterations without all
509 // N > 4 stores on the same chain.
510 GatherAllAliasesMaxDepth = 16;
512 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
513 // about these during lowering.
514 MaxStoresPerMemcpy = 0xffffffff;
515 MaxStoresPerMemmove = 0xffffffff;
516 MaxStoresPerMemset = 0xffffffff;
518 setTargetDAGCombine(ISD::BITCAST);
519 setTargetDAGCombine(ISD::SHL);
520 setTargetDAGCombine(ISD::SRA);
521 setTargetDAGCombine(ISD::SRL);
522 setTargetDAGCombine(ISD::TRUNCATE);
523 setTargetDAGCombine(ISD::MUL);
524 setTargetDAGCombine(ISD::MULHU);
525 setTargetDAGCombine(ISD::MULHS);
526 setTargetDAGCombine(ISD::SELECT);
527 setTargetDAGCombine(ISD::SELECT_CC);
528 setTargetDAGCombine(ISD::STORE);
529 setTargetDAGCombine(ISD::FADD);
530 setTargetDAGCombine(ISD::FSUB);
531 setTargetDAGCombine(ISD::FNEG);
532 setTargetDAGCombine(ISD::FABS);
533 setTargetDAGCombine(ISD::AssertZext);
534 setTargetDAGCombine(ISD::AssertSext);
537 //===----------------------------------------------------------------------===//
538 // Target Information
539 //===----------------------------------------------------------------------===//
541 LLVM_READNONE
542 static bool fnegFoldsIntoOp(unsigned Opc) {
543 switch (Opc) {
544 case ISD::FADD:
545 case ISD::FSUB:
546 case ISD::FMUL:
547 case ISD::FMA:
548 case ISD::FMAD:
549 case ISD::FMINNUM:
550 case ISD::FMAXNUM:
551 case ISD::FMINNUM_IEEE:
552 case ISD::FMAXNUM_IEEE:
553 case ISD::FSIN:
554 case ISD::FTRUNC:
555 case ISD::FRINT:
556 case ISD::FNEARBYINT:
557 case ISD::FCANONICALIZE:
558 case AMDGPUISD::RCP:
559 case AMDGPUISD::RCP_LEGACY:
560 case AMDGPUISD::RCP_IFLAG:
561 case AMDGPUISD::SIN_HW:
562 case AMDGPUISD::FMUL_LEGACY:
563 case AMDGPUISD::FMIN_LEGACY:
564 case AMDGPUISD::FMAX_LEGACY:
565 case AMDGPUISD::FMED3:
566 return true;
567 default:
568 return false;
572 /// \p returns true if the operation will definitely need to use a 64-bit
573 /// encoding, and thus will use a VOP3 encoding regardless of the source
574 /// modifiers.
575 LLVM_READONLY
576 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
577 return N->getNumOperands() > 2 || VT == MVT::f64;
580 // Most FP instructions support source modifiers, but this could be refined
581 // slightly.
582 LLVM_READONLY
583 static bool hasSourceMods(const SDNode *N) {
584 if (isa<MemSDNode>(N))
585 return false;
587 switch (N->getOpcode()) {
588 case ISD::CopyToReg:
589 case ISD::SELECT:
590 case ISD::FDIV:
591 case ISD::FREM:
592 case ISD::INLINEASM:
593 case ISD::INLINEASM_BR:
594 case AMDGPUISD::INTERP_P1:
595 case AMDGPUISD::INTERP_P2:
596 case AMDGPUISD::DIV_SCALE:
598 // TODO: Should really be looking at the users of the bitcast. These are
599 // problematic because bitcasts are used to legalize all stores to integer
600 // types.
601 case ISD::BITCAST:
602 return false;
603 default:
604 return true;
608 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
609 unsigned CostThreshold) {
610 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
611 // it is truly free to use a source modifier in all cases. If there are
612 // multiple users but for each one will necessitate using VOP3, there will be
613 // a code size increase. Try to avoid increasing code size unless we know it
614 // will save on the instruction count.
615 unsigned NumMayIncreaseSize = 0;
616 MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
618 // XXX - Should this limit number of uses to check?
619 for (const SDNode *U : N->uses()) {
620 if (!hasSourceMods(U))
621 return false;
623 if (!opMustUseVOP3Encoding(U, VT)) {
624 if (++NumMayIncreaseSize > CostThreshold)
625 return false;
629 return true;
632 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
633 return MVT::i32;
636 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
637 return true;
640 // The backend supports 32 and 64 bit floating point immediates.
641 // FIXME: Why are we reporting vectors of FP immediates as legal?
642 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
643 EVT ScalarVT = VT.getScalarType();
644 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
645 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
648 // We don't want to shrink f64 / f32 constants.
649 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
650 EVT ScalarVT = VT.getScalarType();
651 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
654 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
655 ISD::LoadExtType ExtTy,
656 EVT NewVT) const {
657 // TODO: This may be worth removing. Check regression tests for diffs.
658 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
659 return false;
661 unsigned NewSize = NewVT.getStoreSizeInBits();
663 // If we are reducing to a 32-bit load, this is always better.
664 if (NewSize == 32)
665 return true;
667 EVT OldVT = N->getValueType(0);
668 unsigned OldSize = OldVT.getStoreSizeInBits();
670 MemSDNode *MN = cast<MemSDNode>(N);
671 unsigned AS = MN->getAddressSpace();
672 // Do not shrink an aligned scalar load to sub-dword.
673 // Scalar engine cannot do sub-dword loads.
674 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
675 (AS == AMDGPUAS::CONSTANT_ADDRESS ||
676 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
677 (isa<LoadSDNode>(N) &&
678 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
679 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
680 return false;
682 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
683 // extloads, so doing one requires using a buffer_load. In cases where we
684 // still couldn't use a scalar load, using the wider load shouldn't really
685 // hurt anything.
687 // If the old size already had to be an extload, there's no harm in continuing
688 // to reduce the width.
689 return (OldSize < 32);
692 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
693 EVT CastTy) const {
695 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
697 if (LoadTy.getScalarType() == MVT::i32)
698 return false;
700 unsigned LScalarSize = LoadTy.getScalarSizeInBits();
701 unsigned CastScalarSize = CastTy.getScalarSizeInBits();
703 return (LScalarSize < CastScalarSize) ||
704 (CastScalarSize >= 32);
707 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
708 // profitable with the expansion for 64-bit since it's generally good to
709 // speculate things.
710 // FIXME: These should really have the size as a parameter.
711 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
712 return true;
715 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
716 return true;
719 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
720 switch (N->getOpcode()) {
721 default:
722 return false;
723 case ISD::EntryToken:
724 case ISD::TokenFactor:
725 return true;
726 case ISD::INTRINSIC_WO_CHAIN:
728 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
729 switch (IntrID) {
730 default:
731 return false;
732 case Intrinsic::amdgcn_readfirstlane:
733 case Intrinsic::amdgcn_readlane:
734 return true;
737 break;
738 case ISD::LOAD:
740 const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
741 if (L->getMemOperand()->getAddrSpace()
742 == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
743 return true;
744 return false;
746 break;
750 //===---------------------------------------------------------------------===//
751 // Target Properties
752 //===---------------------------------------------------------------------===//
754 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
755 assert(VT.isFloatingPoint());
757 // Packed operations do not have a fabs modifier.
758 return VT == MVT::f32 || VT == MVT::f64 ||
759 (Subtarget->has16BitInsts() && VT == MVT::f16);
762 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
763 assert(VT.isFloatingPoint());
764 return VT == MVT::f32 || VT == MVT::f64 ||
765 (Subtarget->has16BitInsts() && VT == MVT::f16) ||
766 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
769 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
770 unsigned NumElem,
771 unsigned AS) const {
772 return true;
775 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
776 // There are few operations which truly have vector input operands. Any vector
777 // operation is going to involve operations on each component, and a
778 // build_vector will be a copy per element, so it always makes sense to use a
779 // build_vector input in place of the extracted element to avoid a copy into a
780 // super register.
782 // We should probably only do this if all users are extracts only, but this
783 // should be the common case.
784 return true;
787 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
788 // Truncate is just accessing a subregister.
790 unsigned SrcSize = Source.getSizeInBits();
791 unsigned DestSize = Dest.getSizeInBits();
793 return DestSize < SrcSize && DestSize % 32 == 0 ;
796 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
797 // Truncate is just accessing a subregister.
799 unsigned SrcSize = Source->getScalarSizeInBits();
800 unsigned DestSize = Dest->getScalarSizeInBits();
802 if (DestSize== 16 && Subtarget->has16BitInsts())
803 return SrcSize >= 32;
805 return DestSize < SrcSize && DestSize % 32 == 0;
808 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
809 unsigned SrcSize = Src->getScalarSizeInBits();
810 unsigned DestSize = Dest->getScalarSizeInBits();
812 if (SrcSize == 16 && Subtarget->has16BitInsts())
813 return DestSize >= 32;
815 return SrcSize == 32 && DestSize == 64;
818 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
819 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
820 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
821 // this will enable reducing 64-bit operations the 32-bit, which is always
822 // good.
824 if (Src == MVT::i16)
825 return Dest == MVT::i32 ||Dest == MVT::i64 ;
827 return Src == MVT::i32 && Dest == MVT::i64;
830 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
831 return isZExtFree(Val.getValueType(), VT2);
834 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
835 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
836 // limited number of native 64-bit operations. Shrinking an operation to fit
837 // in a single 32-bit register should always be helpful. As currently used,
838 // this is much less general than the name suggests, and is only used in
839 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
840 // not profitable, and may actually be harmful.
841 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
844 //===---------------------------------------------------------------------===//
845 // TargetLowering Callbacks
846 //===---------------------------------------------------------------------===//
848 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
849 bool IsVarArg) {
850 switch (CC) {
851 case CallingConv::AMDGPU_KERNEL:
852 case CallingConv::SPIR_KERNEL:
853 llvm_unreachable("kernels should not be handled here");
854 case CallingConv::AMDGPU_VS:
855 case CallingConv::AMDGPU_GS:
856 case CallingConv::AMDGPU_PS:
857 case CallingConv::AMDGPU_CS:
858 case CallingConv::AMDGPU_HS:
859 case CallingConv::AMDGPU_ES:
860 case CallingConv::AMDGPU_LS:
861 return CC_AMDGPU;
862 case CallingConv::C:
863 case CallingConv::Fast:
864 case CallingConv::Cold:
865 return CC_AMDGPU_Func;
866 default:
867 report_fatal_error("Unsupported calling convention.");
871 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
872 bool IsVarArg) {
873 switch (CC) {
874 case CallingConv::AMDGPU_KERNEL:
875 case CallingConv::SPIR_KERNEL:
876 llvm_unreachable("kernels should not be handled here");
877 case CallingConv::AMDGPU_VS:
878 case CallingConv::AMDGPU_GS:
879 case CallingConv::AMDGPU_PS:
880 case CallingConv::AMDGPU_CS:
881 case CallingConv::AMDGPU_HS:
882 case CallingConv::AMDGPU_ES:
883 case CallingConv::AMDGPU_LS:
884 return RetCC_SI_Shader;
885 case CallingConv::C:
886 case CallingConv::Fast:
887 case CallingConv::Cold:
888 return RetCC_AMDGPU_Func;
889 default:
890 report_fatal_error("Unsupported calling convention.");
894 /// The SelectionDAGBuilder will automatically promote function arguments
895 /// with illegal types. However, this does not work for the AMDGPU targets
896 /// since the function arguments are stored in memory as these illegal types.
897 /// In order to handle this properly we need to get the original types sizes
898 /// from the LLVM IR Function and fixup the ISD:InputArg values before
899 /// passing them to AnalyzeFormalArguments()
901 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
902 /// input values across multiple registers. Each item in the Ins array
903 /// represents a single value that will be stored in registers. Ins[x].VT is
904 /// the value type of the value that will be stored in the register, so
905 /// whatever SDNode we lower the argument to needs to be this type.
907 /// In order to correctly lower the arguments we need to know the size of each
908 /// argument. Since Ins[x].VT gives us the size of the register that will
909 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
910 /// for the orignal function argument so that we can deduce the correct memory
911 /// type to use for Ins[x]. In most cases the correct memory type will be
912 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
913 /// we have a kernel argument of type v8i8, this argument will be split into
914 /// 8 parts and each part will be represented by its own item in the Ins array.
915 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
916 /// the argument before it was split. From this, we deduce that the memory type
917 /// for each individual part is i8. We pass the memory type as LocVT to the
918 /// calling convention analysis function and the register type (Ins[x].VT) as
919 /// the ValVT.
920 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
921 CCState &State,
922 const SmallVectorImpl<ISD::InputArg> &Ins) const {
923 const MachineFunction &MF = State.getMachineFunction();
924 const Function &Fn = MF.getFunction();
925 LLVMContext &Ctx = Fn.getParent()->getContext();
926 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
927 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
928 CallingConv::ID CC = Fn.getCallingConv();
930 unsigned MaxAlign = 1;
931 uint64_t ExplicitArgOffset = 0;
932 const DataLayout &DL = Fn.getParent()->getDataLayout();
934 unsigned InIndex = 0;
936 for (const Argument &Arg : Fn.args()) {
937 Type *BaseArgTy = Arg.getType();
938 unsigned Align = DL.getABITypeAlignment(BaseArgTy);
939 MaxAlign = std::max(Align, MaxAlign);
940 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
942 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
943 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
945 // We're basically throwing away everything passed into us and starting over
946 // to get accurate in-memory offsets. The "PartOffset" is completely useless
947 // to us as computed in Ins.
949 // We also need to figure out what type legalization is trying to do to get
950 // the correct memory offsets.
952 SmallVector<EVT, 16> ValueVTs;
953 SmallVector<uint64_t, 16> Offsets;
954 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
956 for (unsigned Value = 0, NumValues = ValueVTs.size();
957 Value != NumValues; ++Value) {
958 uint64_t BasePartOffset = Offsets[Value];
960 EVT ArgVT = ValueVTs[Value];
961 EVT MemVT = ArgVT;
962 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
963 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
965 if (NumRegs == 1) {
966 // This argument is not split, so the IR type is the memory type.
967 if (ArgVT.isExtended()) {
968 // We have an extended type, like i24, so we should just use the
969 // register type.
970 MemVT = RegisterVT;
971 } else {
972 MemVT = ArgVT;
974 } else if (ArgVT.isVector() && RegisterVT.isVector() &&
975 ArgVT.getScalarType() == RegisterVT.getScalarType()) {
976 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
977 // We have a vector value which has been split into a vector with
978 // the same scalar type, but fewer elements. This should handle
979 // all the floating-point vector types.
980 MemVT = RegisterVT;
981 } else if (ArgVT.isVector() &&
982 ArgVT.getVectorNumElements() == NumRegs) {
983 // This arg has been split so that each element is stored in a separate
984 // register.
985 MemVT = ArgVT.getScalarType();
986 } else if (ArgVT.isExtended()) {
987 // We have an extended type, like i65.
988 MemVT = RegisterVT;
989 } else {
990 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
991 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
992 if (RegisterVT.isInteger()) {
993 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
994 } else if (RegisterVT.isVector()) {
995 assert(!RegisterVT.getScalarType().isFloatingPoint());
996 unsigned NumElements = RegisterVT.getVectorNumElements();
997 assert(MemoryBits % NumElements == 0);
998 // This vector type has been split into another vector type with
999 // a different elements size.
1000 EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1001 MemoryBits / NumElements);
1002 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1003 } else {
1004 llvm_unreachable("cannot deduce memory type.");
1008 // Convert one element vectors to scalar.
1009 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1010 MemVT = MemVT.getScalarType();
1012 if (MemVT.isExtended()) {
1013 // This should really only happen if we have vec3 arguments
1014 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
1015 MemVT = MemVT.getPow2VectorType(State.getContext());
1018 unsigned PartOffset = 0;
1019 for (unsigned i = 0; i != NumRegs; ++i) {
1020 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1021 BasePartOffset + PartOffset,
1022 MemVT.getSimpleVT(),
1023 CCValAssign::Full));
1024 PartOffset += MemVT.getStoreSize();
1030 SDValue AMDGPUTargetLowering::LowerReturn(
1031 SDValue Chain, CallingConv::ID CallConv,
1032 bool isVarArg,
1033 const SmallVectorImpl<ISD::OutputArg> &Outs,
1034 const SmallVectorImpl<SDValue> &OutVals,
1035 const SDLoc &DL, SelectionDAG &DAG) const {
1036 // FIXME: Fails for r600 tests
1037 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1038 // "wave terminate should not have return values");
1039 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1042 //===---------------------------------------------------------------------===//
1043 // Target specific lowering
1044 //===---------------------------------------------------------------------===//
1046 /// Selects the correct CCAssignFn for a given CallingConvention value.
1047 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1048 bool IsVarArg) {
1049 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1052 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1053 bool IsVarArg) {
1054 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1057 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1058 SelectionDAG &DAG,
1059 MachineFrameInfo &MFI,
1060 int ClobberedFI) const {
1061 SmallVector<SDValue, 8> ArgChains;
1062 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1063 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1065 // Include the original chain at the beginning of the list. When this is
1066 // used by target LowerCall hooks, this helps legalize find the
1067 // CALLSEQ_BEGIN node.
1068 ArgChains.push_back(Chain);
1070 // Add a chain value for each stack argument corresponding
1071 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1072 UE = DAG.getEntryNode().getNode()->use_end();
1073 U != UE; ++U) {
1074 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1075 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1076 if (FI->getIndex() < 0) {
1077 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1078 int64_t InLastByte = InFirstByte;
1079 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1081 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1082 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1083 ArgChains.push_back(SDValue(L, 1));
1089 // Build a tokenfactor for all the chains.
1090 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1093 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1094 SmallVectorImpl<SDValue> &InVals,
1095 StringRef Reason) const {
1096 SDValue Callee = CLI.Callee;
1097 SelectionDAG &DAG = CLI.DAG;
1099 const Function &Fn = DAG.getMachineFunction().getFunction();
1101 StringRef FuncName("<unknown>");
1103 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1104 FuncName = G->getSymbol();
1105 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1106 FuncName = G->getGlobal()->getName();
1108 DiagnosticInfoUnsupported NoCalls(
1109 Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1110 DAG.getContext()->diagnose(NoCalls);
1112 if (!CLI.IsTailCall) {
1113 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1114 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1117 return DAG.getEntryNode();
1120 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1121 SmallVectorImpl<SDValue> &InVals) const {
1122 return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1125 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1126 SelectionDAG &DAG) const {
1127 const Function &Fn = DAG.getMachineFunction().getFunction();
1129 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1130 SDLoc(Op).getDebugLoc());
1131 DAG.getContext()->diagnose(NoDynamicAlloca);
1132 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1133 return DAG.getMergeValues(Ops, SDLoc());
1136 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1137 SelectionDAG &DAG) const {
1138 switch (Op.getOpcode()) {
1139 default:
1140 Op->print(errs(), &DAG);
1141 llvm_unreachable("Custom lowering code for this"
1142 "instruction is not implemented yet!");
1143 break;
1144 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1145 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1146 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1147 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1148 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1149 case ISD::FREM: return LowerFREM(Op, DAG);
1150 case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1151 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1152 case ISD::FRINT: return LowerFRINT(Op, DAG);
1153 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1154 case ISD::FROUND: return LowerFROUND(Op, DAG);
1155 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1156 case ISD::FLOG:
1157 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1158 case ISD::FLOG10:
1159 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1160 case ISD::FEXP:
1161 return lowerFEXP(Op, DAG);
1162 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1163 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1164 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1165 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1166 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1167 case ISD::CTTZ:
1168 case ISD::CTTZ_ZERO_UNDEF:
1169 case ISD::CTLZ:
1170 case ISD::CTLZ_ZERO_UNDEF:
1171 return LowerCTLZ_CTTZ(Op, DAG);
1172 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1174 return Op;
1177 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1178 SmallVectorImpl<SDValue> &Results,
1179 SelectionDAG &DAG) const {
1180 switch (N->getOpcode()) {
1181 case ISD::SIGN_EXTEND_INREG:
1182 // Different parts of legalization seem to interpret which type of
1183 // sign_extend_inreg is the one to check for custom lowering. The extended
1184 // from type is what really matters, but some places check for custom
1185 // lowering of the result type. This results in trying to use
1186 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1187 // nothing here and let the illegal result integer be handled normally.
1188 return;
1189 default:
1190 return;
1194 static bool hasDefinedInitializer(const GlobalValue *GV) {
1195 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1196 if (!GVar || !GVar->hasInitializer())
1197 return false;
1199 return !isa<UndefValue>(GVar->getInitializer());
1202 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1203 SDValue Op,
1204 SelectionDAG &DAG) const {
1206 const DataLayout &DL = DAG.getDataLayout();
1207 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1208 const GlobalValue *GV = G->getGlobal();
1210 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1211 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1212 if (!MFI->isEntryFunction()) {
1213 const Function &Fn = DAG.getMachineFunction().getFunction();
1214 DiagnosticInfoUnsupported BadLDSDecl(
1215 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1216 DAG.getContext()->diagnose(BadLDSDecl);
1219 // XXX: What does the value of G->getOffset() mean?
1220 assert(G->getOffset() == 0 &&
1221 "Do not know what to do with an non-zero offset");
1223 // TODO: We could emit code to handle the initialization somewhere.
1224 if (!hasDefinedInitializer(GV)) {
1225 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1226 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1230 const Function &Fn = DAG.getMachineFunction().getFunction();
1231 DiagnosticInfoUnsupported BadInit(
1232 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1233 DAG.getContext()->diagnose(BadInit);
1234 return SDValue();
1237 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1238 SelectionDAG &DAG) const {
1239 SmallVector<SDValue, 8> Args;
1241 EVT VT = Op.getValueType();
1242 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1243 SDLoc SL(Op);
1244 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1245 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1247 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1248 return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1251 for (const SDUse &U : Op->ops())
1252 DAG.ExtractVectorElements(U.get(), Args);
1254 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1257 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1258 SelectionDAG &DAG) const {
1260 SmallVector<SDValue, 8> Args;
1261 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1262 EVT VT = Op.getValueType();
1263 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1264 VT.getVectorNumElements());
1266 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1269 /// Generate Min/Max node
1270 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1271 SDValue LHS, SDValue RHS,
1272 SDValue True, SDValue False,
1273 SDValue CC,
1274 DAGCombinerInfo &DCI) const {
1275 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1276 return SDValue();
1278 SelectionDAG &DAG = DCI.DAG;
1279 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1280 switch (CCOpcode) {
1281 case ISD::SETOEQ:
1282 case ISD::SETONE:
1283 case ISD::SETUNE:
1284 case ISD::SETNE:
1285 case ISD::SETUEQ:
1286 case ISD::SETEQ:
1287 case ISD::SETFALSE:
1288 case ISD::SETFALSE2:
1289 case ISD::SETTRUE:
1290 case ISD::SETTRUE2:
1291 case ISD::SETUO:
1292 case ISD::SETO:
1293 break;
1294 case ISD::SETULE:
1295 case ISD::SETULT: {
1296 if (LHS == True)
1297 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1298 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1300 case ISD::SETOLE:
1301 case ISD::SETOLT:
1302 case ISD::SETLE:
1303 case ISD::SETLT: {
1304 // Ordered. Assume ordered for undefined.
1306 // Only do this after legalization to avoid interfering with other combines
1307 // which might occur.
1308 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1309 !DCI.isCalledByLegalizer())
1310 return SDValue();
1312 // We need to permute the operands to get the correct NaN behavior. The
1313 // selected operand is the second one based on the failing compare with NaN,
1314 // so permute it based on the compare type the hardware uses.
1315 if (LHS == True)
1316 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1317 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1319 case ISD::SETUGE:
1320 case ISD::SETUGT: {
1321 if (LHS == True)
1322 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1323 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1325 case ISD::SETGT:
1326 case ISD::SETGE:
1327 case ISD::SETOGE:
1328 case ISD::SETOGT: {
1329 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1330 !DCI.isCalledByLegalizer())
1331 return SDValue();
1333 if (LHS == True)
1334 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1335 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1337 case ISD::SETCC_INVALID:
1338 llvm_unreachable("Invalid setcc condcode!");
1340 return SDValue();
1343 std::pair<SDValue, SDValue>
1344 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1345 SDLoc SL(Op);
1347 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1349 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1350 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1352 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1353 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1355 return std::make_pair(Lo, Hi);
1358 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1359 SDLoc SL(Op);
1361 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1362 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1363 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1366 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1367 SDLoc SL(Op);
1369 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1370 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1371 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1374 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1375 SelectionDAG &DAG) const {
1376 LoadSDNode *Load = cast<LoadSDNode>(Op);
1377 EVT VT = Op.getValueType();
1380 // If this is a 2 element vector, we really want to scalarize and not create
1381 // weird 1 element vectors.
1382 if (VT.getVectorNumElements() == 2)
1383 return scalarizeVectorLoad(Load, DAG);
1385 SDValue BasePtr = Load->getBasePtr();
1386 EVT MemVT = Load->getMemoryVT();
1387 SDLoc SL(Op);
1389 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1391 EVT LoVT, HiVT;
1392 EVT LoMemVT, HiMemVT;
1393 SDValue Lo, Hi;
1395 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1396 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1397 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1399 unsigned Size = LoMemVT.getStoreSize();
1400 unsigned BaseAlign = Load->getAlignment();
1401 unsigned HiAlign = MinAlign(BaseAlign, Size);
1403 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1404 Load->getChain(), BasePtr, SrcValue, LoMemVT,
1405 BaseAlign, Load->getMemOperand()->getFlags());
1406 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1407 SDValue HiLoad =
1408 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1409 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1410 HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1412 SDValue Ops[] = {
1413 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1414 DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1415 LoLoad.getValue(1), HiLoad.getValue(1))
1418 return DAG.getMergeValues(Ops, SL);
1421 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1422 SelectionDAG &DAG) const {
1423 StoreSDNode *Store = cast<StoreSDNode>(Op);
1424 SDValue Val = Store->getValue();
1425 EVT VT = Val.getValueType();
1427 // If this is a 2 element vector, we really want to scalarize and not create
1428 // weird 1 element vectors.
1429 if (VT.getVectorNumElements() == 2)
1430 return scalarizeVectorStore(Store, DAG);
1432 EVT MemVT = Store->getMemoryVT();
1433 SDValue Chain = Store->getChain();
1434 SDValue BasePtr = Store->getBasePtr();
1435 SDLoc SL(Op);
1437 EVT LoVT, HiVT;
1438 EVT LoMemVT, HiMemVT;
1439 SDValue Lo, Hi;
1441 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1442 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1443 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1445 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1447 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1448 unsigned BaseAlign = Store->getAlignment();
1449 unsigned Size = LoMemVT.getStoreSize();
1450 unsigned HiAlign = MinAlign(BaseAlign, Size);
1452 SDValue LoStore =
1453 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1454 Store->getMemOperand()->getFlags());
1455 SDValue HiStore =
1456 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1457 HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1459 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1462 // This is a shortcut for integer division because we have fast i32<->f32
1463 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1464 // float is enough to accurately represent up to a 24-bit signed integer.
1465 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1466 bool Sign) const {
1467 SDLoc DL(Op);
1468 EVT VT = Op.getValueType();
1469 SDValue LHS = Op.getOperand(0);
1470 SDValue RHS = Op.getOperand(1);
1471 MVT IntVT = MVT::i32;
1472 MVT FltVT = MVT::f32;
1474 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1475 if (LHSSignBits < 9)
1476 return SDValue();
1478 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1479 if (RHSSignBits < 9)
1480 return SDValue();
1482 unsigned BitSize = VT.getSizeInBits();
1483 unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1484 unsigned DivBits = BitSize - SignBits;
1485 if (Sign)
1486 ++DivBits;
1488 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1489 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1491 SDValue jq = DAG.getConstant(1, DL, IntVT);
1493 if (Sign) {
1494 // char|short jq = ia ^ ib;
1495 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1497 // jq = jq >> (bitsize - 2)
1498 jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1499 DAG.getConstant(BitSize - 2, DL, VT));
1501 // jq = jq | 0x1
1502 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1505 // int ia = (int)LHS;
1506 SDValue ia = LHS;
1508 // int ib, (int)RHS;
1509 SDValue ib = RHS;
1511 // float fa = (float)ia;
1512 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1514 // float fb = (float)ib;
1515 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1517 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1518 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1520 // fq = trunc(fq);
1521 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1523 // float fqneg = -fq;
1524 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1526 // float fr = mad(fqneg, fb, fa);
1527 unsigned OpCode = Subtarget->hasFP32Denormals() ?
1528 (unsigned)AMDGPUISD::FMAD_FTZ :
1529 (unsigned)ISD::FMAD;
1530 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1532 // int iq = (int)fq;
1533 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1535 // fr = fabs(fr);
1536 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1538 // fb = fabs(fb);
1539 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1541 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1543 // int cv = fr >= fb;
1544 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1546 // jq = (cv ? jq : 0);
1547 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1549 // dst = iq + jq;
1550 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1552 // Rem needs compensation, it's easier to recompute it
1553 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1554 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1556 // Truncate to number of bits this divide really is.
1557 if (Sign) {
1558 SDValue InRegSize
1559 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1560 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1561 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1562 } else {
1563 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1564 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1565 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1568 return DAG.getMergeValues({ Div, Rem }, DL);
1571 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1572 SelectionDAG &DAG,
1573 SmallVectorImpl<SDValue> &Results) const {
1574 SDLoc DL(Op);
1575 EVT VT = Op.getValueType();
1577 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1579 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1581 SDValue One = DAG.getConstant(1, DL, HalfVT);
1582 SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1584 //HiLo split
1585 SDValue LHS = Op.getOperand(0);
1586 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1587 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1589 SDValue RHS = Op.getOperand(1);
1590 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1591 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1593 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1594 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1596 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1597 LHS_Lo, RHS_Lo);
1599 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1600 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1602 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1603 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1604 return;
1607 if (isTypeLegal(MVT::i64)) {
1608 // Compute denominator reciprocal.
1609 unsigned FMAD = Subtarget->hasFP32Denormals() ?
1610 (unsigned)AMDGPUISD::FMAD_FTZ :
1611 (unsigned)ISD::FMAD;
1613 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1614 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1615 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1616 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1617 Cvt_Lo);
1618 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1619 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1620 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1621 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1622 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1623 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1624 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1625 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1626 Mul1);
1627 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1628 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1629 SDValue Rcp64 = DAG.getBitcast(VT,
1630 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1632 SDValue Zero64 = DAG.getConstant(0, DL, VT);
1633 SDValue One64 = DAG.getConstant(1, DL, VT);
1634 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1635 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1637 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1638 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1639 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1640 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1641 Zero);
1642 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1643 One);
1645 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1646 Mulhi1_Lo, Zero1);
1647 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1648 Mulhi1_Hi, Add1_Lo.getValue(1));
1649 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1650 SDValue Add1 = DAG.getBitcast(VT,
1651 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1653 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1654 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1655 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1656 Zero);
1657 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1658 One);
1660 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1661 Mulhi2_Lo, Zero1);
1662 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1663 Mulhi2_Hi, Add1_Lo.getValue(1));
1664 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1665 Zero, Add2_Lo.getValue(1));
1666 SDValue Add2 = DAG.getBitcast(VT,
1667 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1668 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1670 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1672 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1673 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1674 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1675 Mul3_Lo, Zero1);
1676 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1677 Mul3_Hi, Sub1_Lo.getValue(1));
1678 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1679 SDValue Sub1 = DAG.getBitcast(VT,
1680 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1682 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1683 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1684 ISD::SETUGE);
1685 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1686 ISD::SETUGE);
1687 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1689 // TODO: Here and below portions of the code can be enclosed into if/endif.
1690 // Currently control flow is unconditional and we have 4 selects after
1691 // potential endif to substitute PHIs.
1693 // if C3 != 0 ...
1694 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1695 RHS_Lo, Zero1);
1696 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1697 RHS_Hi, Sub1_Lo.getValue(1));
1698 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1699 Zero, Sub2_Lo.getValue(1));
1700 SDValue Sub2 = DAG.getBitcast(VT,
1701 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1703 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1705 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1706 ISD::SETUGE);
1707 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1708 ISD::SETUGE);
1709 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1711 // if (C6 != 0)
1712 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1714 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1715 RHS_Lo, Zero1);
1716 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1717 RHS_Hi, Sub2_Lo.getValue(1));
1718 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1719 Zero, Sub3_Lo.getValue(1));
1720 SDValue Sub3 = DAG.getBitcast(VT,
1721 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1723 // endif C6
1724 // endif C3
1726 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1727 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1729 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1730 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1732 Results.push_back(Div);
1733 Results.push_back(Rem);
1735 return;
1738 // r600 expandion.
1739 // Get Speculative values
1740 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1741 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1743 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1744 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1745 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1747 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1748 SDValue DIV_Lo = Zero;
1750 const unsigned halfBitWidth = HalfVT.getSizeInBits();
1752 for (unsigned i = 0; i < halfBitWidth; ++i) {
1753 const unsigned bitPos = halfBitWidth - i - 1;
1754 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1755 // Get value of high bit
1756 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1757 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1758 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1760 // Shift
1761 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1762 // Add LHS high bit
1763 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1765 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1766 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1768 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1770 // Update REM
1771 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1772 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1775 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1776 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1777 Results.push_back(DIV);
1778 Results.push_back(REM);
1781 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1782 SelectionDAG &DAG) const {
1783 SDLoc DL(Op);
1784 EVT VT = Op.getValueType();
1786 if (VT == MVT::i64) {
1787 SmallVector<SDValue, 2> Results;
1788 LowerUDIVREM64(Op, DAG, Results);
1789 return DAG.getMergeValues(Results, DL);
1792 if (VT == MVT::i32) {
1793 if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1794 return Res;
1797 SDValue Num = Op.getOperand(0);
1798 SDValue Den = Op.getOperand(1);
1800 // RCP = URECIP(Den) = 2^32 / Den + e
1801 // e is rounding error.
1802 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1804 // RCP_LO = mul(RCP, Den) */
1805 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1807 // RCP_HI = mulhu (RCP, Den) */
1808 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1810 // NEG_RCP_LO = -RCP_LO
1811 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1812 RCP_LO);
1814 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1815 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1816 NEG_RCP_LO, RCP_LO,
1817 ISD::SETEQ);
1818 // Calculate the rounding error from the URECIP instruction
1819 // E = mulhu(ABS_RCP_LO, RCP)
1820 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1822 // RCP_A_E = RCP + E
1823 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1825 // RCP_S_E = RCP - E
1826 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1828 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1829 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1830 RCP_A_E, RCP_S_E,
1831 ISD::SETEQ);
1832 // Quotient = mulhu(Tmp0, Num)
1833 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1835 // Num_S_Remainder = Quotient * Den
1836 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1838 // Remainder = Num - Num_S_Remainder
1839 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1841 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1842 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1843 DAG.getConstant(-1, DL, VT),
1844 DAG.getConstant(0, DL, VT),
1845 ISD::SETUGE);
1846 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1847 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1848 Num_S_Remainder,
1849 DAG.getConstant(-1, DL, VT),
1850 DAG.getConstant(0, DL, VT),
1851 ISD::SETUGE);
1852 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1853 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1854 Remainder_GE_Zero);
1856 // Calculate Division result:
1858 // Quotient_A_One = Quotient + 1
1859 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1860 DAG.getConstant(1, DL, VT));
1862 // Quotient_S_One = Quotient - 1
1863 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1864 DAG.getConstant(1, DL, VT));
1866 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1867 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1868 Quotient, Quotient_A_One, ISD::SETEQ);
1870 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1871 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1872 Quotient_S_One, Div, ISD::SETEQ);
1874 // Calculate Rem result:
1876 // Remainder_S_Den = Remainder - Den
1877 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1879 // Remainder_A_Den = Remainder + Den
1880 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1882 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1883 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1884 Remainder, Remainder_S_Den, ISD::SETEQ);
1886 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1887 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1888 Remainder_A_Den, Rem, ISD::SETEQ);
1889 SDValue Ops[2] = {
1890 Div,
1893 return DAG.getMergeValues(Ops, DL);
1896 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1897 SelectionDAG &DAG) const {
1898 SDLoc DL(Op);
1899 EVT VT = Op.getValueType();
1901 SDValue LHS = Op.getOperand(0);
1902 SDValue RHS = Op.getOperand(1);
1904 SDValue Zero = DAG.getConstant(0, DL, VT);
1905 SDValue NegOne = DAG.getConstant(-1, DL, VT);
1907 if (VT == MVT::i32) {
1908 if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1909 return Res;
1912 if (VT == MVT::i64 &&
1913 DAG.ComputeNumSignBits(LHS) > 32 &&
1914 DAG.ComputeNumSignBits(RHS) > 32) {
1915 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1917 //HiLo split
1918 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1919 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1920 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1921 LHS_Lo, RHS_Lo);
1922 SDValue Res[2] = {
1923 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1924 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1926 return DAG.getMergeValues(Res, DL);
1929 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1930 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1931 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1932 SDValue RSign = LHSign; // Remainder sign is the same as LHS
1934 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1935 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1937 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1938 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1940 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1941 SDValue Rem = Div.getValue(1);
1943 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1944 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1946 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1947 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1949 SDValue Res[2] = {
1950 Div,
1953 return DAG.getMergeValues(Res, DL);
1956 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1957 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1958 SDLoc SL(Op);
1959 EVT VT = Op.getValueType();
1960 SDValue X = Op.getOperand(0);
1961 SDValue Y = Op.getOperand(1);
1963 // TODO: Should this propagate fast-math-flags?
1965 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1966 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1967 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1969 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1972 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1973 SDLoc SL(Op);
1974 SDValue Src = Op.getOperand(0);
1976 // result = trunc(src)
1977 // if (src > 0.0 && src != result)
1978 // result += 1.0
1980 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1982 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1983 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1985 EVT SetCCVT =
1986 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1988 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1989 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1990 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1992 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1993 // TODO: Should this propagate fast-math-flags?
1994 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1997 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1998 SelectionDAG &DAG) {
1999 const unsigned FractBits = 52;
2000 const unsigned ExpBits = 11;
2002 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2004 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2005 DAG.getConstant(ExpBits, SL, MVT::i32));
2006 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2007 DAG.getConstant(1023, SL, MVT::i32));
2009 return Exp;
2012 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2013 SDLoc SL(Op);
2014 SDValue Src = Op.getOperand(0);
2016 assert(Op.getValueType() == MVT::f64);
2018 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2019 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2021 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2023 // Extract the upper half, since this is where we will find the sign and
2024 // exponent.
2025 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2027 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2029 const unsigned FractBits = 52;
2031 // Extract the sign bit.
2032 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2033 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2035 // Extend back to 64-bits.
2036 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2037 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2039 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2040 const SDValue FractMask
2041 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2043 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2044 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2045 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2047 EVT SetCCVT =
2048 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2050 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2052 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2053 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2055 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2056 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2058 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2061 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2062 SDLoc SL(Op);
2063 SDValue Src = Op.getOperand(0);
2065 assert(Op.getValueType() == MVT::f64);
2067 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2068 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2069 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2071 // TODO: Should this propagate fast-math-flags?
2073 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2074 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2076 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2078 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2079 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2081 EVT SetCCVT =
2082 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2083 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2085 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2088 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2089 // FNEARBYINT and FRINT are the same, except in their handling of FP
2090 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2091 // rint, so just treat them as equivalent.
2092 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2095 // XXX - May require not supporting f32 denormals?
2097 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2098 // compare and vselect end up producing worse code than scalarizing the whole
2099 // operation.
2100 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2101 SDLoc SL(Op);
2102 SDValue X = Op.getOperand(0);
2103 EVT VT = Op.getValueType();
2105 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2107 // TODO: Should this propagate fast-math-flags?
2109 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2111 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2113 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2114 const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2115 const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2117 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2119 EVT SetCCVT =
2120 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2122 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2124 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2126 return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2129 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2130 SDLoc SL(Op);
2131 SDValue X = Op.getOperand(0);
2133 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2135 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2136 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2137 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2138 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2139 EVT SetCCVT =
2140 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2142 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2144 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2146 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2148 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2149 MVT::i64);
2151 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2152 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2153 DAG.getConstant(INT64_C(0x0008000000000000), SL,
2154 MVT::i64),
2155 Exp);
2157 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2158 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2159 DAG.getConstant(0, SL, MVT::i64), Tmp0,
2160 ISD::SETNE);
2162 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2163 D, DAG.getConstant(0, SL, MVT::i64));
2164 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2166 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2167 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2169 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2170 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2171 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2173 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2174 ExpEqNegOne,
2175 DAG.getConstantFP(1.0, SL, MVT::f64),
2176 DAG.getConstantFP(0.0, SL, MVT::f64));
2178 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2180 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2181 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2183 return K;
2186 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2187 EVT VT = Op.getValueType();
2189 if (VT == MVT::f32 || VT == MVT::f16)
2190 return LowerFROUND32_16(Op, DAG);
2192 if (VT == MVT::f64)
2193 return LowerFROUND64(Op, DAG);
2195 llvm_unreachable("unhandled type");
2198 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2199 SDLoc SL(Op);
2200 SDValue Src = Op.getOperand(0);
2202 // result = trunc(src);
2203 // if (src < 0.0 && src != result)
2204 // result += -1.0.
2206 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2208 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2209 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2211 EVT SetCCVT =
2212 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2214 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2215 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2216 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2218 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2219 // TODO: Should this propagate fast-math-flags?
2220 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2223 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2224 double Log2BaseInverted) const {
2225 EVT VT = Op.getValueType();
2227 SDLoc SL(Op);
2228 SDValue Operand = Op.getOperand(0);
2229 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2230 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2232 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2235 // Return M_LOG2E of appropriate type
2236 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) {
2237 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
2238 case MVT::f32:
2239 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT);
2240 case MVT::f16:
2241 return DAG.getConstantFP(
2242 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2243 SL, VT);
2244 case MVT::f64:
2245 return DAG.getConstantFP(
2246 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT);
2247 default:
2248 llvm_unreachable("unsupported fp type");
2252 // exp2(M_LOG2E_F * f);
2253 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2254 EVT VT = Op.getValueType();
2255 SDLoc SL(Op);
2256 SDValue Src = Op.getOperand(0);
2258 const SDValue K = getLog2EVal(DAG, SL, VT);
2259 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2260 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2263 static bool isCtlzOpc(unsigned Opc) {
2264 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2267 static bool isCttzOpc(unsigned Opc) {
2268 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2271 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2272 SDLoc SL(Op);
2273 SDValue Src = Op.getOperand(0);
2274 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2275 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2277 unsigned ISDOpc, NewOpc;
2278 if (isCtlzOpc(Op.getOpcode())) {
2279 ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2280 NewOpc = AMDGPUISD::FFBH_U32;
2281 } else if (isCttzOpc(Op.getOpcode())) {
2282 ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2283 NewOpc = AMDGPUISD::FFBL_B32;
2284 } else
2285 llvm_unreachable("Unexpected OPCode!!!");
2288 if (ZeroUndef && Src.getValueType() == MVT::i32)
2289 return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2291 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2293 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2294 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2296 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2297 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2299 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2300 *DAG.getContext(), MVT::i32);
2302 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2303 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2305 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2306 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2308 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2309 SDValue Add, NewOpr;
2310 if (isCtlzOpc(Op.getOpcode())) {
2311 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2312 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2313 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2314 } else {
2315 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2316 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2317 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2320 if (!ZeroUndef) {
2321 // Test if the full 64-bit input is zero.
2323 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2324 // which we probably don't want.
2325 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2326 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2327 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2329 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2330 // with the same cycles, otherwise it is slower.
2331 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2332 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2334 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2336 // The instruction returns -1 for 0 input, but the defined intrinsic
2337 // behavior is to return the number of bits.
2338 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2339 SrcIsZero, Bits32, NewOpr);
2342 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2345 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2346 bool Signed) const {
2347 // Unsigned
2348 // cul2f(ulong u)
2350 // uint lz = clz(u);
2351 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2352 // u = (u << lz) & 0x7fffffffffffffffUL;
2353 // ulong t = u & 0xffffffffffUL;
2354 // uint v = (e << 23) | (uint)(u >> 40);
2355 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2356 // return as_float(v + r);
2358 // Signed
2359 // cl2f(long l)
2361 // long s = l >> 63;
2362 // float r = cul2f((l + s) ^ s);
2363 // return s ? -r : r;
2366 SDLoc SL(Op);
2367 SDValue Src = Op.getOperand(0);
2368 SDValue L = Src;
2370 SDValue S;
2371 if (Signed) {
2372 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2373 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2375 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2376 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2379 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2380 *DAG.getContext(), MVT::f32);
2383 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2384 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2385 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2386 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2388 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2389 SDValue E = DAG.getSelect(SL, MVT::i32,
2390 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2391 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2392 ZeroI32);
2394 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2395 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2396 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2398 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2399 DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2401 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2402 U, DAG.getConstant(40, SL, MVT::i64));
2404 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2405 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2406 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl));
2408 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2409 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2410 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2412 SDValue One = DAG.getConstant(1, SL, MVT::i32);
2414 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2416 SDValue R = DAG.getSelect(SL, MVT::i32,
2417 RCmp,
2418 One,
2419 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2420 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2421 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2423 if (!Signed)
2424 return R;
2426 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2427 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2430 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2431 bool Signed) const {
2432 SDLoc SL(Op);
2433 SDValue Src = Op.getOperand(0);
2435 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2437 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2438 DAG.getConstant(0, SL, MVT::i32));
2439 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2440 DAG.getConstant(1, SL, MVT::i32));
2442 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2443 SL, MVT::f64, Hi);
2445 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2447 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2448 DAG.getConstant(32, SL, MVT::i32));
2449 // TODO: Should this propagate fast-math-flags?
2450 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2453 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2454 SelectionDAG &DAG) const {
2455 assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2456 "operation should be legal");
2458 // TODO: Factor out code common with LowerSINT_TO_FP.
2460 EVT DestVT = Op.getValueType();
2461 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2462 SDLoc DL(Op);
2463 SDValue Src = Op.getOperand(0);
2465 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2466 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2467 SDValue FPRound =
2468 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2470 return FPRound;
2473 if (DestVT == MVT::f32)
2474 return LowerINT_TO_FP32(Op, DAG, false);
2476 assert(DestVT == MVT::f64);
2477 return LowerINT_TO_FP64(Op, DAG, false);
2480 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2481 SelectionDAG &DAG) const {
2482 assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2483 "operation should be legal");
2485 // TODO: Factor out code common with LowerUINT_TO_FP.
2487 EVT DestVT = Op.getValueType();
2488 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2489 SDLoc DL(Op);
2490 SDValue Src = Op.getOperand(0);
2492 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2493 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2494 SDValue FPRound =
2495 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2497 return FPRound;
2500 if (DestVT == MVT::f32)
2501 return LowerINT_TO_FP32(Op, DAG, true);
2503 assert(DestVT == MVT::f64);
2504 return LowerINT_TO_FP64(Op, DAG, true);
2507 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2508 bool Signed) const {
2509 SDLoc SL(Op);
2511 SDValue Src = Op.getOperand(0);
2513 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2515 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2516 MVT::f64);
2517 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2518 MVT::f64);
2519 // TODO: Should this propagate fast-math-flags?
2520 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2522 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2525 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2527 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2528 MVT::i32, FloorMul);
2529 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2531 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2533 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2536 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2537 SDLoc DL(Op);
2538 SDValue N0 = Op.getOperand(0);
2540 // Convert to target node to get known bits
2541 if (N0.getValueType() == MVT::f32)
2542 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2544 if (getTargetMachine().Options.UnsafeFPMath) {
2545 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2546 return SDValue();
2549 assert(N0.getSimpleValueType() == MVT::f64);
2551 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2552 const unsigned ExpMask = 0x7ff;
2553 const unsigned ExpBiasf64 = 1023;
2554 const unsigned ExpBiasf16 = 15;
2555 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2556 SDValue One = DAG.getConstant(1, DL, MVT::i32);
2557 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2558 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2559 DAG.getConstant(32, DL, MVT::i64));
2560 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2561 U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2562 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2563 DAG.getConstant(20, DL, MVT::i64));
2564 E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2565 DAG.getConstant(ExpMask, DL, MVT::i32));
2566 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2567 // add the f16 bias (15) to get the biased exponent for the f16 format.
2568 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2569 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2571 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2572 DAG.getConstant(8, DL, MVT::i32));
2573 M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2574 DAG.getConstant(0xffe, DL, MVT::i32));
2576 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2577 DAG.getConstant(0x1ff, DL, MVT::i32));
2578 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2580 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2581 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2583 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2584 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2585 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2586 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2588 // N = M | (E << 12);
2589 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2590 DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2591 DAG.getConstant(12, DL, MVT::i32)));
2593 // B = clamp(1-E, 0, 13);
2594 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2595 One, E);
2596 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2597 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2598 DAG.getConstant(13, DL, MVT::i32));
2600 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2601 DAG.getConstant(0x1000, DL, MVT::i32));
2603 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2604 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2605 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2606 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2608 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2609 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2610 DAG.getConstant(0x7, DL, MVT::i32));
2611 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2612 DAG.getConstant(2, DL, MVT::i32));
2613 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2614 One, Zero, ISD::SETEQ);
2615 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2616 One, Zero, ISD::SETGT);
2617 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2618 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2620 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2621 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2622 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2623 I, V, ISD::SETEQ);
2625 // Extract the sign bit.
2626 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2627 DAG.getConstant(16, DL, MVT::i32));
2628 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2629 DAG.getConstant(0x8000, DL, MVT::i32));
2631 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2632 return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2635 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2636 SelectionDAG &DAG) const {
2637 SDValue Src = Op.getOperand(0);
2639 // TODO: Factor out code common with LowerFP_TO_UINT.
2641 EVT SrcVT = Src.getValueType();
2642 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2643 SDLoc DL(Op);
2645 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2646 SDValue FpToInt32 =
2647 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2649 return FpToInt32;
2652 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2653 return LowerFP64_TO_INT(Op, DAG, true);
2655 return SDValue();
2658 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2659 SelectionDAG &DAG) const {
2660 SDValue Src = Op.getOperand(0);
2662 // TODO: Factor out code common with LowerFP_TO_SINT.
2664 EVT SrcVT = Src.getValueType();
2665 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2666 SDLoc DL(Op);
2668 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2669 SDValue FpToInt32 =
2670 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2672 return FpToInt32;
2675 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2676 return LowerFP64_TO_INT(Op, DAG, false);
2678 return SDValue();
2681 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2682 SelectionDAG &DAG) const {
2683 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2684 MVT VT = Op.getSimpleValueType();
2685 MVT ScalarVT = VT.getScalarType();
2687 assert(VT.isVector());
2689 SDValue Src = Op.getOperand(0);
2690 SDLoc DL(Op);
2692 // TODO: Don't scalarize on Evergreen?
2693 unsigned NElts = VT.getVectorNumElements();
2694 SmallVector<SDValue, 8> Args;
2695 DAG.ExtractVectorElements(Src, Args, 0, NElts);
2697 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2698 for (unsigned I = 0; I < NElts; ++I)
2699 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2701 return DAG.getBuildVector(VT, DL, Args);
2704 //===----------------------------------------------------------------------===//
2705 // Custom DAG optimizations
2706 //===----------------------------------------------------------------------===//
2708 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2709 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2712 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2713 EVT VT = Op.getValueType();
2714 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2715 // as unsigned 24-bit values.
2716 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2719 static SDValue simplifyI24(SDNode *Node24,
2720 TargetLowering::DAGCombinerInfo &DCI) {
2721 SelectionDAG &DAG = DCI.DAG;
2722 SDValue LHS = Node24->getOperand(0);
2723 SDValue RHS = Node24->getOperand(1);
2725 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2727 // First try to simplify using GetDemandedBits which allows the operands to
2728 // have other uses, but will only perform simplifications that involve
2729 // bypassing some nodes for this user.
2730 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2731 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2732 if (DemandedLHS || DemandedRHS)
2733 return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(),
2734 DemandedLHS ? DemandedLHS : LHS,
2735 DemandedRHS ? DemandedRHS : RHS);
2737 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2738 // operands if this node is the only user.
2739 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2740 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2741 return SDValue(Node24, 0);
2742 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2743 return SDValue(Node24, 0);
2745 return SDValue();
2748 template <typename IntTy>
2749 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2750 uint32_t Width, const SDLoc &DL) {
2751 if (Width + Offset < 32) {
2752 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2753 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2754 return DAG.getConstant(Result, DL, MVT::i32);
2757 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2760 static bool hasVolatileUser(SDNode *Val) {
2761 for (SDNode *U : Val->uses()) {
2762 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2763 if (M->isVolatile())
2764 return true;
2768 return false;
2771 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2772 // i32 vectors are the canonical memory type.
2773 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2774 return false;
2776 if (!VT.isByteSized())
2777 return false;
2779 unsigned Size = VT.getStoreSize();
2781 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2782 return false;
2784 if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2785 return false;
2787 return true;
2790 // Replace load of an illegal type with a store of a bitcast to a friendlier
2791 // type.
2792 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2793 DAGCombinerInfo &DCI) const {
2794 if (!DCI.isBeforeLegalize())
2795 return SDValue();
2797 LoadSDNode *LN = cast<LoadSDNode>(N);
2798 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2799 return SDValue();
2801 SDLoc SL(N);
2802 SelectionDAG &DAG = DCI.DAG;
2803 EVT VT = LN->getMemoryVT();
2805 unsigned Size = VT.getStoreSize();
2806 unsigned Align = LN->getAlignment();
2807 if (Align < Size && isTypeLegal(VT)) {
2808 bool IsFast;
2809 unsigned AS = LN->getAddressSpace();
2811 // Expand unaligned loads earlier than legalization. Due to visitation order
2812 // problems during legalization, the emitted instructions to pack and unpack
2813 // the bytes again are not eliminated in the case of an unaligned copy.
2814 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2815 if (VT.isVector())
2816 return scalarizeVectorLoad(LN, DAG);
2818 SDValue Ops[2];
2819 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2820 return DAG.getMergeValues(Ops, SDLoc(N));
2823 if (!IsFast)
2824 return SDValue();
2827 if (!shouldCombineMemoryType(VT))
2828 return SDValue();
2830 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2832 SDValue NewLoad
2833 = DAG.getLoad(NewVT, SL, LN->getChain(),
2834 LN->getBasePtr(), LN->getMemOperand());
2836 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2837 DCI.CombineTo(N, BC, NewLoad.getValue(1));
2838 return SDValue(N, 0);
2841 // Replace store of an illegal type with a store of a bitcast to a friendlier
2842 // type.
2843 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2844 DAGCombinerInfo &DCI) const {
2845 if (!DCI.isBeforeLegalize())
2846 return SDValue();
2848 StoreSDNode *SN = cast<StoreSDNode>(N);
2849 if (SN->isVolatile() || !ISD::isNormalStore(SN))
2850 return SDValue();
2852 EVT VT = SN->getMemoryVT();
2853 unsigned Size = VT.getStoreSize();
2855 SDLoc SL(N);
2856 SelectionDAG &DAG = DCI.DAG;
2857 unsigned Align = SN->getAlignment();
2858 if (Align < Size && isTypeLegal(VT)) {
2859 bool IsFast;
2860 unsigned AS = SN->getAddressSpace();
2862 // Expand unaligned stores earlier than legalization. Due to visitation
2863 // order problems during legalization, the emitted instructions to pack and
2864 // unpack the bytes again are not eliminated in the case of an unaligned
2865 // copy.
2866 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2867 if (VT.isVector())
2868 return scalarizeVectorStore(SN, DAG);
2870 return expandUnalignedStore(SN, DAG);
2873 if (!IsFast)
2874 return SDValue();
2877 if (!shouldCombineMemoryType(VT))
2878 return SDValue();
2880 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2881 SDValue Val = SN->getValue();
2883 //DCI.AddToWorklist(Val.getNode());
2885 bool OtherUses = !Val.hasOneUse();
2886 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2887 if (OtherUses) {
2888 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2889 DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2892 return DAG.getStore(SN->getChain(), SL, CastVal,
2893 SN->getBasePtr(), SN->getMemOperand());
2896 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2897 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2898 // issues.
2899 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2900 DAGCombinerInfo &DCI) const {
2901 SelectionDAG &DAG = DCI.DAG;
2902 SDValue N0 = N->getOperand(0);
2904 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2905 // (vt2 (truncate (assertzext vt0:x, vt1)))
2906 if (N0.getOpcode() == ISD::TRUNCATE) {
2907 SDValue N1 = N->getOperand(1);
2908 EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2909 SDLoc SL(N);
2911 SDValue Src = N0.getOperand(0);
2912 EVT SrcVT = Src.getValueType();
2913 if (SrcVT.bitsGE(ExtVT)) {
2914 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2915 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2919 return SDValue();
2921 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2922 /// binary operation \p Opc to it with the corresponding constant operands.
2923 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2924 DAGCombinerInfo &DCI, const SDLoc &SL,
2925 unsigned Opc, SDValue LHS,
2926 uint32_t ValLo, uint32_t ValHi) const {
2927 SelectionDAG &DAG = DCI.DAG;
2928 SDValue Lo, Hi;
2929 std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2931 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2932 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2934 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2935 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2937 // Re-visit the ands. It's possible we eliminated one of them and it could
2938 // simplify the vector.
2939 DCI.AddToWorklist(Lo.getNode());
2940 DCI.AddToWorklist(Hi.getNode());
2942 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2943 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2946 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2947 DAGCombinerInfo &DCI) const {
2948 EVT VT = N->getValueType(0);
2950 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2951 if (!RHS)
2952 return SDValue();
2954 SDValue LHS = N->getOperand(0);
2955 unsigned RHSVal = RHS->getZExtValue();
2956 if (!RHSVal)
2957 return LHS;
2959 SDLoc SL(N);
2960 SelectionDAG &DAG = DCI.DAG;
2962 switch (LHS->getOpcode()) {
2963 default:
2964 break;
2965 case ISD::ZERO_EXTEND:
2966 case ISD::SIGN_EXTEND:
2967 case ISD::ANY_EXTEND: {
2968 SDValue X = LHS->getOperand(0);
2970 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
2971 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
2972 // Prefer build_vector as the canonical form if packed types are legal.
2973 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
2974 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
2975 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
2976 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
2979 // shl (ext x) => zext (shl x), if shift does not overflow int
2980 if (VT != MVT::i64)
2981 break;
2982 KnownBits Known = DAG.computeKnownBits(X);
2983 unsigned LZ = Known.countMinLeadingZeros();
2984 if (LZ < RHSVal)
2985 break;
2986 EVT XVT = X.getValueType();
2987 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
2988 return DAG.getZExtOrTrunc(Shl, SL, VT);
2992 if (VT != MVT::i64)
2993 return SDValue();
2995 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2997 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2998 // common case, splitting this into a move and a 32-bit shift is faster and
2999 // the same code size.
3000 if (RHSVal < 32)
3001 return SDValue();
3003 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3005 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3006 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3008 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3010 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3011 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3014 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3015 DAGCombinerInfo &DCI) const {
3016 if (N->getValueType(0) != MVT::i64)
3017 return SDValue();
3019 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3020 if (!RHS)
3021 return SDValue();
3023 SelectionDAG &DAG = DCI.DAG;
3024 SDLoc SL(N);
3025 unsigned RHSVal = RHS->getZExtValue();
3027 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3028 if (RHSVal == 32) {
3029 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3030 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3031 DAG.getConstant(31, SL, MVT::i32));
3033 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3034 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3037 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3038 if (RHSVal == 63) {
3039 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3040 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3041 DAG.getConstant(31, SL, MVT::i32));
3042 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3043 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3046 return SDValue();
3049 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3050 DAGCombinerInfo &DCI) const {
3051 if (N->getValueType(0) != MVT::i64)
3052 return SDValue();
3054 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3055 if (!RHS)
3056 return SDValue();
3058 unsigned ShiftAmt = RHS->getZExtValue();
3059 if (ShiftAmt < 32)
3060 return SDValue();
3062 // srl i64:x, C for C >= 32
3063 // =>
3064 // build_pair (srl hi_32(x), C - 32), 0
3066 SelectionDAG &DAG = DCI.DAG;
3067 SDLoc SL(N);
3069 SDValue One = DAG.getConstant(1, SL, MVT::i32);
3070 SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3072 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
3073 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
3074 VecOp, One);
3076 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3077 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3079 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3081 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3084 SDValue AMDGPUTargetLowering::performTruncateCombine(
3085 SDNode *N, DAGCombinerInfo &DCI) const {
3086 SDLoc SL(N);
3087 SelectionDAG &DAG = DCI.DAG;
3088 EVT VT = N->getValueType(0);
3089 SDValue Src = N->getOperand(0);
3091 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3092 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3093 SDValue Vec = Src.getOperand(0);
3094 if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3095 SDValue Elt0 = Vec.getOperand(0);
3096 EVT EltVT = Elt0.getValueType();
3097 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3098 if (EltVT.isFloatingPoint()) {
3099 Elt0 = DAG.getNode(ISD::BITCAST, SL,
3100 EltVT.changeTypeToInteger(), Elt0);
3103 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3108 // Equivalent of above for accessing the high element of a vector as an
3109 // integer operation.
3110 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3111 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3112 if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3113 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3114 SDValue BV = stripBitcast(Src.getOperand(0));
3115 if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3116 BV.getValueType().getVectorNumElements() == 2) {
3117 SDValue SrcElt = BV.getOperand(1);
3118 EVT SrcEltVT = SrcElt.getValueType();
3119 if (SrcEltVT.isFloatingPoint()) {
3120 SrcElt = DAG.getNode(ISD::BITCAST, SL,
3121 SrcEltVT.changeTypeToInteger(), SrcElt);
3124 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3130 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3132 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3133 // i16 (trunc (srl (i32 (trunc x), K)))
3134 if (VT.getScalarSizeInBits() < 32) {
3135 EVT SrcVT = Src.getValueType();
3136 if (SrcVT.getScalarSizeInBits() > 32 &&
3137 (Src.getOpcode() == ISD::SRL ||
3138 Src.getOpcode() == ISD::SRA ||
3139 Src.getOpcode() == ISD::SHL)) {
3140 SDValue Amt = Src.getOperand(1);
3141 KnownBits Known = DAG.computeKnownBits(Amt);
3142 unsigned Size = VT.getScalarSizeInBits();
3143 if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3144 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3145 EVT MidVT = VT.isVector() ?
3146 EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3147 VT.getVectorNumElements()) : MVT::i32;
3149 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3150 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3151 Src.getOperand(0));
3152 DCI.AddToWorklist(Trunc.getNode());
3154 if (Amt.getValueType() != NewShiftVT) {
3155 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3156 DCI.AddToWorklist(Amt.getNode());
3159 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3160 Trunc, Amt);
3161 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3166 return SDValue();
3169 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3170 // instructions. If we only match on the legalized i64 mul expansion,
3171 // SimplifyDemandedBits will be unable to remove them because there will be
3172 // multiple uses due to the separate mul + mulh[su].
3173 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3174 SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3175 if (Size <= 32) {
3176 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3177 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3180 // Because we want to eliminate extension instructions before the
3181 // operation, we need to create a single user here (i.e. not the separate
3182 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3184 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3186 SDValue Mul = DAG.getNode(MulOpc, SL,
3187 DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3189 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3190 Mul.getValue(0), Mul.getValue(1));
3193 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3194 DAGCombinerInfo &DCI) const {
3195 EVT VT = N->getValueType(0);
3197 unsigned Size = VT.getSizeInBits();
3198 if (VT.isVector() || Size > 64)
3199 return SDValue();
3201 // There are i16 integer mul/mad.
3202 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3203 return SDValue();
3205 SelectionDAG &DAG = DCI.DAG;
3206 SDLoc DL(N);
3208 SDValue N0 = N->getOperand(0);
3209 SDValue N1 = N->getOperand(1);
3211 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3212 // in the source into any_extends if the result of the mul is truncated. Since
3213 // we can assume the high bits are whatever we want, use the underlying value
3214 // to avoid the unknown high bits from interfering.
3215 if (N0.getOpcode() == ISD::ANY_EXTEND)
3216 N0 = N0.getOperand(0);
3218 if (N1.getOpcode() == ISD::ANY_EXTEND)
3219 N1 = N1.getOperand(0);
3221 SDValue Mul;
3223 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3224 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3225 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3226 Mul = getMul24(DAG, DL, N0, N1, Size, false);
3227 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3228 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3229 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3230 Mul = getMul24(DAG, DL, N0, N1, Size, true);
3231 } else {
3232 return SDValue();
3235 // We need to use sext even for MUL_U24, because MUL_U24 is used
3236 // for signed multiply of 8 and 16-bit types.
3237 return DAG.getSExtOrTrunc(Mul, DL, VT);
3240 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3241 DAGCombinerInfo &DCI) const {
3242 EVT VT = N->getValueType(0);
3244 if (!Subtarget->hasMulI24() || VT.isVector())
3245 return SDValue();
3247 SelectionDAG &DAG = DCI.DAG;
3248 SDLoc DL(N);
3250 SDValue N0 = N->getOperand(0);
3251 SDValue N1 = N->getOperand(1);
3253 if (!isI24(N0, DAG) || !isI24(N1, DAG))
3254 return SDValue();
3256 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3257 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3259 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3260 DCI.AddToWorklist(Mulhi.getNode());
3261 return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3264 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3265 DAGCombinerInfo &DCI) const {
3266 EVT VT = N->getValueType(0);
3268 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3269 return SDValue();
3271 SelectionDAG &DAG = DCI.DAG;
3272 SDLoc DL(N);
3274 SDValue N0 = N->getOperand(0);
3275 SDValue N1 = N->getOperand(1);
3277 if (!isU24(N0, DAG) || !isU24(N1, DAG))
3278 return SDValue();
3280 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3281 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3283 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3284 DCI.AddToWorklist(Mulhi.getNode());
3285 return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3288 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3289 SDNode *N, DAGCombinerInfo &DCI) const {
3290 SelectionDAG &DAG = DCI.DAG;
3292 // Simplify demanded bits before splitting into multiple users.
3293 if (SDValue V = simplifyI24(N, DCI))
3294 return V;
3296 SDValue N0 = N->getOperand(0);
3297 SDValue N1 = N->getOperand(1);
3299 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3301 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3302 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3304 SDLoc SL(N);
3306 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3307 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3308 return DAG.getMergeValues({ MulLo, MulHi }, SL);
3311 static bool isNegativeOne(SDValue Val) {
3312 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3313 return C->isAllOnesValue();
3314 return false;
3317 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3318 SDValue Op,
3319 const SDLoc &DL,
3320 unsigned Opc) const {
3321 EVT VT = Op.getValueType();
3322 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3323 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3324 LegalVT != MVT::i16))
3325 return SDValue();
3327 if (VT != MVT::i32)
3328 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3330 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3331 if (VT != MVT::i32)
3332 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3334 return FFBX;
3337 // The native instructions return -1 on 0 input. Optimize out a select that
3338 // produces -1 on 0.
3340 // TODO: If zero is not undef, we could also do this if the output is compared
3341 // against the bitwidth.
3343 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3344 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3345 SDValue LHS, SDValue RHS,
3346 DAGCombinerInfo &DCI) const {
3347 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3348 if (!CmpRhs || !CmpRhs->isNullValue())
3349 return SDValue();
3351 SelectionDAG &DAG = DCI.DAG;
3352 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3353 SDValue CmpLHS = Cond.getOperand(0);
3355 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3356 AMDGPUISD::FFBH_U32;
3358 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3359 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3360 if (CCOpcode == ISD::SETEQ &&
3361 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3362 RHS.getOperand(0) == CmpLHS &&
3363 isNegativeOne(LHS)) {
3364 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3367 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3368 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3369 if (CCOpcode == ISD::SETNE &&
3370 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3371 LHS.getOperand(0) == CmpLHS &&
3372 isNegativeOne(RHS)) {
3373 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3376 return SDValue();
3379 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3380 unsigned Op,
3381 const SDLoc &SL,
3382 SDValue Cond,
3383 SDValue N1,
3384 SDValue N2) {
3385 SelectionDAG &DAG = DCI.DAG;
3386 EVT VT = N1.getValueType();
3388 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3389 N1.getOperand(0), N2.getOperand(0));
3390 DCI.AddToWorklist(NewSelect.getNode());
3391 return DAG.getNode(Op, SL, VT, NewSelect);
3394 // Pull a free FP operation out of a select so it may fold into uses.
3396 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3397 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3399 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3400 // select c, (fabs x), +k -> fabs (select c, x, k)
3401 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3402 SDValue N) {
3403 SelectionDAG &DAG = DCI.DAG;
3404 SDValue Cond = N.getOperand(0);
3405 SDValue LHS = N.getOperand(1);
3406 SDValue RHS = N.getOperand(2);
3408 EVT VT = N.getValueType();
3409 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3410 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3411 return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3412 SDLoc(N), Cond, LHS, RHS);
3415 bool Inv = false;
3416 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3417 std::swap(LHS, RHS);
3418 Inv = true;
3421 // TODO: Support vector constants.
3422 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3423 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3424 SDLoc SL(N);
3425 // If one side is an fneg/fabs and the other is a constant, we can push the
3426 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3427 SDValue NewLHS = LHS.getOperand(0);
3428 SDValue NewRHS = RHS;
3430 // Careful: if the neg can be folded up, don't try to pull it back down.
3431 bool ShouldFoldNeg = true;
3433 if (NewLHS.hasOneUse()) {
3434 unsigned Opc = NewLHS.getOpcode();
3435 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3436 ShouldFoldNeg = false;
3437 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3438 ShouldFoldNeg = false;
3441 if (ShouldFoldNeg) {
3442 if (LHS.getOpcode() == ISD::FNEG)
3443 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3444 else if (CRHS->isNegative())
3445 return SDValue();
3447 if (Inv)
3448 std::swap(NewLHS, NewRHS);
3450 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3451 Cond, NewLHS, NewRHS);
3452 DCI.AddToWorklist(NewSelect.getNode());
3453 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3457 return SDValue();
3461 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3462 DAGCombinerInfo &DCI) const {
3463 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3464 return Folded;
3466 SDValue Cond = N->getOperand(0);
3467 if (Cond.getOpcode() != ISD::SETCC)
3468 return SDValue();
3470 EVT VT = N->getValueType(0);
3471 SDValue LHS = Cond.getOperand(0);
3472 SDValue RHS = Cond.getOperand(1);
3473 SDValue CC = Cond.getOperand(2);
3475 SDValue True = N->getOperand(1);
3476 SDValue False = N->getOperand(2);
3478 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3479 SelectionDAG &DAG = DCI.DAG;
3480 if ((DAG.isConstantValueOfAnyType(True) ||
3481 DAG.isConstantValueOfAnyType(True)) &&
3482 (!DAG.isConstantValueOfAnyType(False) &&
3483 !DAG.isConstantValueOfAnyType(False))) {
3484 // Swap cmp + select pair to move constant to false input.
3485 // This will allow using VOPC cndmasks more often.
3486 // select (setcc x, y), k, x -> select (setcc y, x) x, x
3488 SDLoc SL(N);
3489 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3490 LHS.getValueType().isInteger());
3492 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3493 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3496 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3497 SDValue MinMax
3498 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3499 // Revisit this node so we can catch min3/max3/med3 patterns.
3500 //DCI.AddToWorklist(MinMax.getNode());
3501 return MinMax;
3505 // There's no reason to not do this if the condition has other uses.
3506 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3509 static bool isInv2Pi(const APFloat &APF) {
3510 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3511 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3512 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3514 return APF.bitwiseIsEqual(KF16) ||
3515 APF.bitwiseIsEqual(KF32) ||
3516 APF.bitwiseIsEqual(KF64);
3519 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3520 // additional cost to negate them.
3521 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3522 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3523 if (C->isZero() && !C->isNegative())
3524 return true;
3526 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3527 return true;
3530 return false;
3533 static unsigned inverseMinMax(unsigned Opc) {
3534 switch (Opc) {
3535 case ISD::FMAXNUM:
3536 return ISD::FMINNUM;
3537 case ISD::FMINNUM:
3538 return ISD::FMAXNUM;
3539 case ISD::FMAXNUM_IEEE:
3540 return ISD::FMINNUM_IEEE;
3541 case ISD::FMINNUM_IEEE:
3542 return ISD::FMAXNUM_IEEE;
3543 case AMDGPUISD::FMAX_LEGACY:
3544 return AMDGPUISD::FMIN_LEGACY;
3545 case AMDGPUISD::FMIN_LEGACY:
3546 return AMDGPUISD::FMAX_LEGACY;
3547 default:
3548 llvm_unreachable("invalid min/max opcode");
3552 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3553 DAGCombinerInfo &DCI) const {
3554 SelectionDAG &DAG = DCI.DAG;
3555 SDValue N0 = N->getOperand(0);
3556 EVT VT = N->getValueType(0);
3558 unsigned Opc = N0.getOpcode();
3560 // If the input has multiple uses and we can either fold the negate down, or
3561 // the other uses cannot, give up. This both prevents unprofitable
3562 // transformations and infinite loops: we won't repeatedly try to fold around
3563 // a negate that has no 'good' form.
3564 if (N0.hasOneUse()) {
3565 // This may be able to fold into the source, but at a code size cost. Don't
3566 // fold if the fold into the user is free.
3567 if (allUsesHaveSourceMods(N, 0))
3568 return SDValue();
3569 } else {
3570 if (fnegFoldsIntoOp(Opc) &&
3571 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3572 return SDValue();
3575 SDLoc SL(N);
3576 switch (Opc) {
3577 case ISD::FADD: {
3578 if (!mayIgnoreSignedZero(N0))
3579 return SDValue();
3581 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3582 SDValue LHS = N0.getOperand(0);
3583 SDValue RHS = N0.getOperand(1);
3585 if (LHS.getOpcode() != ISD::FNEG)
3586 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3587 else
3588 LHS = LHS.getOperand(0);
3590 if (RHS.getOpcode() != ISD::FNEG)
3591 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3592 else
3593 RHS = RHS.getOperand(0);
3595 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3596 if (!N0.hasOneUse())
3597 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3598 return Res;
3600 case ISD::FMUL:
3601 case AMDGPUISD::FMUL_LEGACY: {
3602 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3603 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3604 SDValue LHS = N0.getOperand(0);
3605 SDValue RHS = N0.getOperand(1);
3607 if (LHS.getOpcode() == ISD::FNEG)
3608 LHS = LHS.getOperand(0);
3609 else if (RHS.getOpcode() == ISD::FNEG)
3610 RHS = RHS.getOperand(0);
3611 else
3612 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3614 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3615 if (!N0.hasOneUse())
3616 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3617 return Res;
3619 case ISD::FMA:
3620 case ISD::FMAD: {
3621 if (!mayIgnoreSignedZero(N0))
3622 return SDValue();
3624 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3625 SDValue LHS = N0.getOperand(0);
3626 SDValue MHS = N0.getOperand(1);
3627 SDValue RHS = N0.getOperand(2);
3629 if (LHS.getOpcode() == ISD::FNEG)
3630 LHS = LHS.getOperand(0);
3631 else if (MHS.getOpcode() == ISD::FNEG)
3632 MHS = MHS.getOperand(0);
3633 else
3634 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3636 if (RHS.getOpcode() != ISD::FNEG)
3637 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3638 else
3639 RHS = RHS.getOperand(0);
3641 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3642 if (!N0.hasOneUse())
3643 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3644 return Res;
3646 case ISD::FMAXNUM:
3647 case ISD::FMINNUM:
3648 case ISD::FMAXNUM_IEEE:
3649 case ISD::FMINNUM_IEEE:
3650 case AMDGPUISD::FMAX_LEGACY:
3651 case AMDGPUISD::FMIN_LEGACY: {
3652 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3653 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3654 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3655 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3657 SDValue LHS = N0.getOperand(0);
3658 SDValue RHS = N0.getOperand(1);
3660 // 0 doesn't have a negated inline immediate.
3661 // TODO: This constant check should be generalized to other operations.
3662 if (isConstantCostlierToNegate(RHS))
3663 return SDValue();
3665 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3666 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3667 unsigned Opposite = inverseMinMax(Opc);
3669 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3670 if (!N0.hasOneUse())
3671 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3672 return Res;
3674 case AMDGPUISD::FMED3: {
3675 SDValue Ops[3];
3676 for (unsigned I = 0; I < 3; ++I)
3677 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3679 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3680 if (!N0.hasOneUse())
3681 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3682 return Res;
3684 case ISD::FP_EXTEND:
3685 case ISD::FTRUNC:
3686 case ISD::FRINT:
3687 case ISD::FNEARBYINT: // XXX - Should fround be handled?
3688 case ISD::FSIN:
3689 case ISD::FCANONICALIZE:
3690 case AMDGPUISD::RCP:
3691 case AMDGPUISD::RCP_LEGACY:
3692 case AMDGPUISD::RCP_IFLAG:
3693 case AMDGPUISD::SIN_HW: {
3694 SDValue CvtSrc = N0.getOperand(0);
3695 if (CvtSrc.getOpcode() == ISD::FNEG) {
3696 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3697 // (fneg (rcp (fneg x))) -> (rcp x)
3698 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3701 if (!N0.hasOneUse())
3702 return SDValue();
3704 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3705 // (fneg (rcp x)) -> (rcp (fneg x))
3706 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3707 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3709 case ISD::FP_ROUND: {
3710 SDValue CvtSrc = N0.getOperand(0);
3712 if (CvtSrc.getOpcode() == ISD::FNEG) {
3713 // (fneg (fp_round (fneg x))) -> (fp_round x)
3714 return DAG.getNode(ISD::FP_ROUND, SL, VT,
3715 CvtSrc.getOperand(0), N0.getOperand(1));
3718 if (!N0.hasOneUse())
3719 return SDValue();
3721 // (fneg (fp_round x)) -> (fp_round (fneg x))
3722 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3723 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3725 case ISD::FP16_TO_FP: {
3726 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3727 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3728 // Put the fneg back as a legal source operation that can be matched later.
3729 SDLoc SL(N);
3731 SDValue Src = N0.getOperand(0);
3732 EVT SrcVT = Src.getValueType();
3734 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3735 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3736 DAG.getConstant(0x8000, SL, SrcVT));
3737 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3739 default:
3740 return SDValue();
3744 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3745 DAGCombinerInfo &DCI) const {
3746 SelectionDAG &DAG = DCI.DAG;
3747 SDValue N0 = N->getOperand(0);
3749 if (!N0.hasOneUse())
3750 return SDValue();
3752 switch (N0.getOpcode()) {
3753 case ISD::FP16_TO_FP: {
3754 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3755 SDLoc SL(N);
3756 SDValue Src = N0.getOperand(0);
3757 EVT SrcVT = Src.getValueType();
3759 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3760 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3761 DAG.getConstant(0x7fff, SL, SrcVT));
3762 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3764 default:
3765 return SDValue();
3769 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3770 DAGCombinerInfo &DCI) const {
3771 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3772 if (!CFP)
3773 return SDValue();
3775 // XXX - Should this flush denormals?
3776 const APFloat &Val = CFP->getValueAPF();
3777 APFloat One(Val.getSemantics(), "1.0");
3778 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3781 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3782 DAGCombinerInfo &DCI) const {
3783 SelectionDAG &DAG = DCI.DAG;
3784 SDLoc DL(N);
3786 switch(N->getOpcode()) {
3787 default:
3788 break;
3789 case ISD::BITCAST: {
3790 EVT DestVT = N->getValueType(0);
3792 // Push casts through vector builds. This helps avoid emitting a large
3793 // number of copies when materializing floating point vector constants.
3795 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3796 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3797 if (DestVT.isVector()) {
3798 SDValue Src = N->getOperand(0);
3799 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3800 EVT SrcVT = Src.getValueType();
3801 unsigned NElts = DestVT.getVectorNumElements();
3803 if (SrcVT.getVectorNumElements() == NElts) {
3804 EVT DestEltVT = DestVT.getVectorElementType();
3806 SmallVector<SDValue, 8> CastedElts;
3807 SDLoc SL(N);
3808 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3809 SDValue Elt = Src.getOperand(I);
3810 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3813 return DAG.getBuildVector(DestVT, SL, CastedElts);
3818 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3819 break;
3821 // Fold bitcasts of constants.
3823 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3824 // TODO: Generalize and move to DAGCombiner
3825 SDValue Src = N->getOperand(0);
3826 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3827 if (Src.getValueType() == MVT::i64) {
3828 SDLoc SL(N);
3829 uint64_t CVal = C->getZExtValue();
3830 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3831 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3832 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3833 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3837 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3838 const APInt &Val = C->getValueAPF().bitcastToAPInt();
3839 SDLoc SL(N);
3840 uint64_t CVal = Val.getZExtValue();
3841 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3842 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3843 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3845 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3848 break;
3850 case ISD::SHL: {
3851 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3852 break;
3854 return performShlCombine(N, DCI);
3856 case ISD::SRL: {
3857 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3858 break;
3860 return performSrlCombine(N, DCI);
3862 case ISD::SRA: {
3863 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3864 break;
3866 return performSraCombine(N, DCI);
3868 case ISD::TRUNCATE:
3869 return performTruncateCombine(N, DCI);
3870 case ISD::MUL:
3871 return performMulCombine(N, DCI);
3872 case ISD::MULHS:
3873 return performMulhsCombine(N, DCI);
3874 case ISD::MULHU:
3875 return performMulhuCombine(N, DCI);
3876 case AMDGPUISD::MUL_I24:
3877 case AMDGPUISD::MUL_U24:
3878 case AMDGPUISD::MULHI_I24:
3879 case AMDGPUISD::MULHI_U24: {
3880 if (SDValue V = simplifyI24(N, DCI))
3881 return V;
3882 return SDValue();
3884 case AMDGPUISD::MUL_LOHI_I24:
3885 case AMDGPUISD::MUL_LOHI_U24:
3886 return performMulLoHi24Combine(N, DCI);
3887 case ISD::SELECT:
3888 return performSelectCombine(N, DCI);
3889 case ISD::FNEG:
3890 return performFNegCombine(N, DCI);
3891 case ISD::FABS:
3892 return performFAbsCombine(N, DCI);
3893 case AMDGPUISD::BFE_I32:
3894 case AMDGPUISD::BFE_U32: {
3895 assert(!N->getValueType(0).isVector() &&
3896 "Vector handling of BFE not implemented");
3897 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3898 if (!Width)
3899 break;
3901 uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3902 if (WidthVal == 0)
3903 return DAG.getConstant(0, DL, MVT::i32);
3905 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3906 if (!Offset)
3907 break;
3909 SDValue BitsFrom = N->getOperand(0);
3910 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3912 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3914 if (OffsetVal == 0) {
3915 // This is already sign / zero extended, so try to fold away extra BFEs.
3916 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3918 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3919 if (OpSignBits >= SignBits)
3920 return BitsFrom;
3922 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3923 if (Signed) {
3924 // This is a sign_extend_inreg. Replace it to take advantage of existing
3925 // DAG Combines. If not eliminated, we will match back to BFE during
3926 // selection.
3928 // TODO: The sext_inreg of extended types ends, although we can could
3929 // handle them in a single BFE.
3930 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3931 DAG.getValueType(SmallVT));
3934 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3937 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3938 if (Signed) {
3939 return constantFoldBFE<int32_t>(DAG,
3940 CVal->getSExtValue(),
3941 OffsetVal,
3942 WidthVal,
3943 DL);
3946 return constantFoldBFE<uint32_t>(DAG,
3947 CVal->getZExtValue(),
3948 OffsetVal,
3949 WidthVal,
3950 DL);
3953 if ((OffsetVal + WidthVal) >= 32 &&
3954 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
3955 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3956 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3957 BitsFrom, ShiftVal);
3960 if (BitsFrom.hasOneUse()) {
3961 APInt Demanded = APInt::getBitsSet(32,
3962 OffsetVal,
3963 OffsetVal + WidthVal);
3965 KnownBits Known;
3966 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3967 !DCI.isBeforeLegalizeOps());
3968 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3969 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
3970 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
3971 DCI.CommitTargetLoweringOpt(TLO);
3975 break;
3977 case ISD::LOAD:
3978 return performLoadCombine(N, DCI);
3979 case ISD::STORE:
3980 return performStoreCombine(N, DCI);
3981 case AMDGPUISD::RCP:
3982 case AMDGPUISD::RCP_IFLAG:
3983 return performRcpCombine(N, DCI);
3984 case ISD::AssertZext:
3985 case ISD::AssertSext:
3986 return performAssertSZExtCombine(N, DCI);
3988 return SDValue();
3991 //===----------------------------------------------------------------------===//
3992 // Helper functions
3993 //===----------------------------------------------------------------------===//
3995 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3996 const TargetRegisterClass *RC,
3997 unsigned Reg, EVT VT,
3998 const SDLoc &SL,
3999 bool RawReg) const {
4000 MachineFunction &MF = DAG.getMachineFunction();
4001 MachineRegisterInfo &MRI = MF.getRegInfo();
4002 unsigned VReg;
4004 if (!MRI.isLiveIn(Reg)) {
4005 VReg = MRI.createVirtualRegister(RC);
4006 MRI.addLiveIn(Reg, VReg);
4007 } else {
4008 VReg = MRI.getLiveInVirtReg(Reg);
4011 if (RawReg)
4012 return DAG.getRegister(VReg, VT);
4014 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4017 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4018 EVT VT,
4019 const SDLoc &SL,
4020 int64_t Offset) const {
4021 MachineFunction &MF = DAG.getMachineFunction();
4022 MachineFrameInfo &MFI = MF.getFrameInfo();
4024 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
4025 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4026 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4028 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4029 MachineMemOperand::MODereferenceable |
4030 MachineMemOperand::MOInvariant);
4033 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4034 const SDLoc &SL,
4035 SDValue Chain,
4036 SDValue ArgVal,
4037 int64_t Offset) const {
4038 MachineFunction &MF = DAG.getMachineFunction();
4039 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4041 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4042 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4043 MachineMemOperand::MODereferenceable);
4044 return Store;
4047 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4048 const TargetRegisterClass *RC,
4049 EVT VT, const SDLoc &SL,
4050 const ArgDescriptor &Arg) const {
4051 assert(Arg && "Attempting to load missing argument");
4053 if (Arg.isRegister())
4054 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
4055 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4058 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4059 const MachineFunction &MF, const ImplicitParameter Param) const {
4060 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4061 const AMDGPUSubtarget &ST =
4062 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4063 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4064 unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4065 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4066 ExplicitArgOffset;
4067 switch (Param) {
4068 case GRID_DIM:
4069 return ArgOffset;
4070 case GRID_OFFSET:
4071 return ArgOffset + 4;
4073 llvm_unreachable("unexpected implicit parameter type");
4076 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4078 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4079 switch ((AMDGPUISD::NodeType)Opcode) {
4080 case AMDGPUISD::FIRST_NUMBER: break;
4081 // AMDIL DAG nodes
4082 NODE_NAME_CASE(UMUL);
4083 NODE_NAME_CASE(BRANCH_COND);
4085 // AMDGPU DAG nodes
4086 NODE_NAME_CASE(IF)
4087 NODE_NAME_CASE(ELSE)
4088 NODE_NAME_CASE(LOOP)
4089 NODE_NAME_CASE(CALL)
4090 NODE_NAME_CASE(TC_RETURN)
4091 NODE_NAME_CASE(TRAP)
4092 NODE_NAME_CASE(RET_FLAG)
4093 NODE_NAME_CASE(RETURN_TO_EPILOG)
4094 NODE_NAME_CASE(ENDPGM)
4095 NODE_NAME_CASE(DWORDADDR)
4096 NODE_NAME_CASE(FRACT)
4097 NODE_NAME_CASE(SETCC)
4098 NODE_NAME_CASE(SETREG)
4099 NODE_NAME_CASE(FMA_W_CHAIN)
4100 NODE_NAME_CASE(FMUL_W_CHAIN)
4101 NODE_NAME_CASE(CLAMP)
4102 NODE_NAME_CASE(COS_HW)
4103 NODE_NAME_CASE(SIN_HW)
4104 NODE_NAME_CASE(FMAX_LEGACY)
4105 NODE_NAME_CASE(FMIN_LEGACY)
4106 NODE_NAME_CASE(FMAX3)
4107 NODE_NAME_CASE(SMAX3)
4108 NODE_NAME_CASE(UMAX3)
4109 NODE_NAME_CASE(FMIN3)
4110 NODE_NAME_CASE(SMIN3)
4111 NODE_NAME_CASE(UMIN3)
4112 NODE_NAME_CASE(FMED3)
4113 NODE_NAME_CASE(SMED3)
4114 NODE_NAME_CASE(UMED3)
4115 NODE_NAME_CASE(FDOT2)
4116 NODE_NAME_CASE(URECIP)
4117 NODE_NAME_CASE(DIV_SCALE)
4118 NODE_NAME_CASE(DIV_FMAS)
4119 NODE_NAME_CASE(DIV_FIXUP)
4120 NODE_NAME_CASE(FMAD_FTZ)
4121 NODE_NAME_CASE(TRIG_PREOP)
4122 NODE_NAME_CASE(RCP)
4123 NODE_NAME_CASE(RSQ)
4124 NODE_NAME_CASE(RCP_LEGACY)
4125 NODE_NAME_CASE(RSQ_LEGACY)
4126 NODE_NAME_CASE(RCP_IFLAG)
4127 NODE_NAME_CASE(FMUL_LEGACY)
4128 NODE_NAME_CASE(RSQ_CLAMP)
4129 NODE_NAME_CASE(LDEXP)
4130 NODE_NAME_CASE(FP_CLASS)
4131 NODE_NAME_CASE(DOT4)
4132 NODE_NAME_CASE(CARRY)
4133 NODE_NAME_CASE(BORROW)
4134 NODE_NAME_CASE(BFE_U32)
4135 NODE_NAME_CASE(BFE_I32)
4136 NODE_NAME_CASE(BFI)
4137 NODE_NAME_CASE(BFM)
4138 NODE_NAME_CASE(FFBH_U32)
4139 NODE_NAME_CASE(FFBH_I32)
4140 NODE_NAME_CASE(FFBL_B32)
4141 NODE_NAME_CASE(MUL_U24)
4142 NODE_NAME_CASE(MUL_I24)
4143 NODE_NAME_CASE(MULHI_U24)
4144 NODE_NAME_CASE(MULHI_I24)
4145 NODE_NAME_CASE(MUL_LOHI_U24)
4146 NODE_NAME_CASE(MUL_LOHI_I24)
4147 NODE_NAME_CASE(MAD_U24)
4148 NODE_NAME_CASE(MAD_I24)
4149 NODE_NAME_CASE(MAD_I64_I32)
4150 NODE_NAME_CASE(MAD_U64_U32)
4151 NODE_NAME_CASE(PERM)
4152 NODE_NAME_CASE(TEXTURE_FETCH)
4153 NODE_NAME_CASE(EXPORT)
4154 NODE_NAME_CASE(EXPORT_DONE)
4155 NODE_NAME_CASE(R600_EXPORT)
4156 NODE_NAME_CASE(CONST_ADDRESS)
4157 NODE_NAME_CASE(REGISTER_LOAD)
4158 NODE_NAME_CASE(REGISTER_STORE)
4159 NODE_NAME_CASE(SAMPLE)
4160 NODE_NAME_CASE(SAMPLEB)
4161 NODE_NAME_CASE(SAMPLED)
4162 NODE_NAME_CASE(SAMPLEL)
4163 NODE_NAME_CASE(CVT_F32_UBYTE0)
4164 NODE_NAME_CASE(CVT_F32_UBYTE1)
4165 NODE_NAME_CASE(CVT_F32_UBYTE2)
4166 NODE_NAME_CASE(CVT_F32_UBYTE3)
4167 NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4168 NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4169 NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4170 NODE_NAME_CASE(CVT_PK_I16_I32)
4171 NODE_NAME_CASE(CVT_PK_U16_U32)
4172 NODE_NAME_CASE(FP_TO_FP16)
4173 NODE_NAME_CASE(FP16_ZEXT)
4174 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4175 NODE_NAME_CASE(CONST_DATA_PTR)
4176 NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4177 NODE_NAME_CASE(KILL)
4178 NODE_NAME_CASE(DUMMY_CHAIN)
4179 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4180 NODE_NAME_CASE(INIT_EXEC)
4181 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4182 NODE_NAME_CASE(SENDMSG)
4183 NODE_NAME_CASE(SENDMSGHALT)
4184 NODE_NAME_CASE(INTERP_MOV)
4185 NODE_NAME_CASE(INTERP_P1)
4186 NODE_NAME_CASE(INTERP_P2)
4187 NODE_NAME_CASE(INTERP_P1LL_F16)
4188 NODE_NAME_CASE(INTERP_P1LV_F16)
4189 NODE_NAME_CASE(INTERP_P2_F16)
4190 NODE_NAME_CASE(STORE_MSKOR)
4191 NODE_NAME_CASE(LOAD_CONSTANT)
4192 NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4193 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
4194 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4195 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4196 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4197 NODE_NAME_CASE(DS_ORDERED_COUNT)
4198 NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4199 NODE_NAME_CASE(ATOMIC_INC)
4200 NODE_NAME_CASE(ATOMIC_DEC)
4201 NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4202 NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4203 NODE_NAME_CASE(BUFFER_LOAD)
4204 NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4205 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4206 NODE_NAME_CASE(SBUFFER_LOAD)
4207 NODE_NAME_CASE(BUFFER_STORE)
4208 NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4209 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4210 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4211 NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4212 NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4213 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4214 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4215 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4216 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4217 NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4218 NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4219 NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4220 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4222 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4224 return nullptr;
4227 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4228 SelectionDAG &DAG, int Enabled,
4229 int &RefinementSteps,
4230 bool &UseOneConstNR,
4231 bool Reciprocal) const {
4232 EVT VT = Operand.getValueType();
4234 if (VT == MVT::f32) {
4235 RefinementSteps = 0;
4236 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4239 // TODO: There is also f64 rsq instruction, but the documentation is less
4240 // clear on its precision.
4242 return SDValue();
4245 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4246 SelectionDAG &DAG, int Enabled,
4247 int &RefinementSteps) const {
4248 EVT VT = Operand.getValueType();
4250 if (VT == MVT::f32) {
4251 // Reciprocal, < 1 ulp error.
4253 // This reciprocal approximation converges to < 0.5 ulp error with one
4254 // newton rhapson performed with two fused multiple adds (FMAs).
4256 RefinementSteps = 0;
4257 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4260 // TODO: There is also f64 rcp instruction, but the documentation is less
4261 // clear on its precision.
4263 return SDValue();
4266 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4267 const SDValue Op, KnownBits &Known,
4268 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4270 Known.resetAll(); // Don't know anything.
4272 unsigned Opc = Op.getOpcode();
4274 switch (Opc) {
4275 default:
4276 break;
4277 case AMDGPUISD::CARRY:
4278 case AMDGPUISD::BORROW: {
4279 Known.Zero = APInt::getHighBitsSet(32, 31);
4280 break;
4283 case AMDGPUISD::BFE_I32:
4284 case AMDGPUISD::BFE_U32: {
4285 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4286 if (!CWidth)
4287 return;
4289 uint32_t Width = CWidth->getZExtValue() & 0x1f;
4291 if (Opc == AMDGPUISD::BFE_U32)
4292 Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4294 break;
4296 case AMDGPUISD::FP_TO_FP16:
4297 case AMDGPUISD::FP16_ZEXT: {
4298 unsigned BitWidth = Known.getBitWidth();
4300 // High bits are zero.
4301 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4302 break;
4304 case AMDGPUISD::MUL_U24:
4305 case AMDGPUISD::MUL_I24: {
4306 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4307 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4308 unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4309 RHSKnown.countMinTrailingZeros();
4310 Known.Zero.setLowBits(std::min(TrailZ, 32u));
4312 // Truncate to 24 bits.
4313 LHSKnown = LHSKnown.trunc(24);
4314 RHSKnown = RHSKnown.trunc(24);
4316 bool Negative = false;
4317 if (Opc == AMDGPUISD::MUL_I24) {
4318 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4319 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4320 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4321 if (MaxValBits >= 32)
4322 break;
4323 bool LHSNegative = LHSKnown.isNegative();
4324 bool LHSPositive = LHSKnown.isNonNegative();
4325 bool RHSNegative = RHSKnown.isNegative();
4326 bool RHSPositive = RHSKnown.isNonNegative();
4327 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4328 break;
4329 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4330 if (Negative)
4331 Known.One.setHighBits(32 - MaxValBits);
4332 else
4333 Known.Zero.setHighBits(32 - MaxValBits);
4334 } else {
4335 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4336 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4337 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4338 if (MaxValBits >= 32)
4339 break;
4340 Known.Zero.setHighBits(32 - MaxValBits);
4342 break;
4344 case AMDGPUISD::PERM: {
4345 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4346 if (!CMask)
4347 return;
4349 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4350 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4351 unsigned Sel = CMask->getZExtValue();
4353 for (unsigned I = 0; I < 32; I += 8) {
4354 unsigned SelBits = Sel & 0xff;
4355 if (SelBits < 4) {
4356 SelBits *= 8;
4357 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4358 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4359 } else if (SelBits < 7) {
4360 SelBits = (SelBits & 3) * 8;
4361 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4362 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4363 } else if (SelBits == 0x0c) {
4364 Known.Zero |= 0xff << I;
4365 } else if (SelBits > 0x0c) {
4366 Known.One |= 0xff << I;
4368 Sel >>= 8;
4370 break;
4372 case ISD::INTRINSIC_WO_CHAIN: {
4373 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4374 switch (IID) {
4375 case Intrinsic::amdgcn_mbcnt_lo:
4376 case Intrinsic::amdgcn_mbcnt_hi: {
4377 const GCNSubtarget &ST =
4378 DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4379 // These return at most the wavefront size - 1.
4380 unsigned Size = Op.getValueType().getSizeInBits();
4381 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4382 break;
4384 default:
4385 break;
4391 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4392 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4393 unsigned Depth) const {
4394 switch (Op.getOpcode()) {
4395 case AMDGPUISD::BFE_I32: {
4396 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4397 if (!Width)
4398 return 1;
4400 unsigned SignBits = 32 - Width->getZExtValue() + 1;
4401 if (!isNullConstant(Op.getOperand(1)))
4402 return SignBits;
4404 // TODO: Could probably figure something out with non-0 offsets.
4405 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4406 return std::max(SignBits, Op0SignBits);
4409 case AMDGPUISD::BFE_U32: {
4410 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4411 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4414 case AMDGPUISD::CARRY:
4415 case AMDGPUISD::BORROW:
4416 return 31;
4417 case AMDGPUISD::FP_TO_FP16:
4418 case AMDGPUISD::FP16_ZEXT:
4419 return 16;
4420 default:
4421 return 1;
4425 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4426 const SelectionDAG &DAG,
4427 bool SNaN,
4428 unsigned Depth) const {
4429 unsigned Opcode = Op.getOpcode();
4430 switch (Opcode) {
4431 case AMDGPUISD::FMIN_LEGACY:
4432 case AMDGPUISD::FMAX_LEGACY: {
4433 if (SNaN)
4434 return true;
4436 // TODO: Can check no nans on one of the operands for each one, but which
4437 // one?
4438 return false;
4440 case AMDGPUISD::FMUL_LEGACY:
4441 case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4442 if (SNaN)
4443 return true;
4444 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4445 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4447 case AMDGPUISD::FMED3:
4448 case AMDGPUISD::FMIN3:
4449 case AMDGPUISD::FMAX3:
4450 case AMDGPUISD::FMAD_FTZ: {
4451 if (SNaN)
4452 return true;
4453 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4454 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4455 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4457 case AMDGPUISD::CVT_F32_UBYTE0:
4458 case AMDGPUISD::CVT_F32_UBYTE1:
4459 case AMDGPUISD::CVT_F32_UBYTE2:
4460 case AMDGPUISD::CVT_F32_UBYTE3:
4461 return true;
4463 case AMDGPUISD::RCP:
4464 case AMDGPUISD::RSQ:
4465 case AMDGPUISD::RCP_LEGACY:
4466 case AMDGPUISD::RSQ_LEGACY:
4467 case AMDGPUISD::RSQ_CLAMP: {
4468 if (SNaN)
4469 return true;
4471 // TODO: Need is known positive check.
4472 return false;
4474 case AMDGPUISD::LDEXP:
4475 case AMDGPUISD::FRACT: {
4476 if (SNaN)
4477 return true;
4478 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4480 case AMDGPUISD::DIV_SCALE:
4481 case AMDGPUISD::DIV_FMAS:
4482 case AMDGPUISD::DIV_FIXUP:
4483 case AMDGPUISD::TRIG_PREOP:
4484 // TODO: Refine on operands.
4485 return SNaN;
4486 case AMDGPUISD::SIN_HW:
4487 case AMDGPUISD::COS_HW: {
4488 // TODO: Need check for infinity
4489 return SNaN;
4491 case ISD::INTRINSIC_WO_CHAIN: {
4492 unsigned IntrinsicID
4493 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4494 // TODO: Handle more intrinsics
4495 switch (IntrinsicID) {
4496 case Intrinsic::amdgcn_cubeid:
4497 return true;
4499 case Intrinsic::amdgcn_frexp_mant: {
4500 if (SNaN)
4501 return true;
4502 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4504 case Intrinsic::amdgcn_cvt_pkrtz: {
4505 if (SNaN)
4506 return true;
4507 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4508 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4510 case Intrinsic::amdgcn_fdot2:
4511 // TODO: Refine on operand
4512 return SNaN;
4513 default:
4514 return false;
4517 default:
4518 return false;
4522 TargetLowering::AtomicExpansionKind
4523 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4524 switch (RMW->getOperation()) {
4525 case AtomicRMWInst::Nand:
4526 case AtomicRMWInst::FAdd:
4527 case AtomicRMWInst::FSub:
4528 return AtomicExpansionKind::CmpXChg;
4529 default:
4530 return AtomicExpansionKind::None;