Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / ARM / ARMBaseInstrInfo.cpp
bloba23ae20858eb4ad82dd2ceb29deaa11c2a534746
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <new>
63 #include <utility>
64 #include <vector>
66 using namespace llvm;
68 #define DEBUG_TYPE "arm-instrinfo"
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
73 static cl::opt<bool>
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
75 cl::desc("Enable ARM 2-addr to 3-addr conv"));
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
78 struct ARM_MLxEntry {
79 uint16_t MLxOpc; // MLA / MLS opcode
80 uint16_t MulOpc; // Expanded multiplication opcode
81 uint16_t AddSubOpc; // Expanded add / sub opcode
82 bool NegAcc; // True if the acc is negated before the add / sub.
83 bool HasLane; // True if instruction has an extra "lane" operand.
86 static const ARM_MLxEntry ARM_MLxTable[] = {
87 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
88 // fp scalar ops
89 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
90 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
91 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
92 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
93 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
94 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
95 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
96 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
98 // fp SIMD ops
99 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
100 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
101 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
102 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
103 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
104 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
105 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
106 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
110 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
111 Subtarget(STI) {
112 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
113 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
114 llvm_unreachable("Duplicated entries?");
115 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
116 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer *
123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
124 const ScheduleDAG *DAG) const {
125 if (usePreRAHazardRecognizer()) {
126 const InstrItineraryData *II =
127 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
128 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
130 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
133 ScheduleHazardRecognizer *ARMBaseInstrInfo::
134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
135 const ScheduleDAG *DAG) const {
136 if (Subtarget.isThumb2() || Subtarget.hasVFP2())
137 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
138 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
142 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
143 // FIXME: Thumb2 support.
145 if (!EnableARM3Addr)
146 return nullptr;
148 MachineFunction &MF = *MI.getParent()->getParent();
149 uint64_t TSFlags = MI.getDesc().TSFlags;
150 bool isPre = false;
151 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
152 default: return nullptr;
153 case ARMII::IndexModePre:
154 isPre = true;
155 break;
156 case ARMII::IndexModePost:
157 break;
160 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
161 // operation.
162 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
163 if (MemOpc == 0)
164 return nullptr;
166 MachineInstr *UpdateMI = nullptr;
167 MachineInstr *MemMI = nullptr;
168 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
169 const MCInstrDesc &MCID = MI.getDesc();
170 unsigned NumOps = MCID.getNumOperands();
171 bool isLoad = !MI.mayStore();
172 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
173 const MachineOperand &Base = MI.getOperand(2);
174 const MachineOperand &Offset = MI.getOperand(NumOps - 3);
175 unsigned WBReg = WB.getReg();
176 unsigned BaseReg = Base.getReg();
177 unsigned OffReg = Offset.getReg();
178 unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
179 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
180 switch (AddrMode) {
181 default: llvm_unreachable("Unknown indexed op!");
182 case ARMII::AddrMode2: {
183 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
184 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
185 if (OffReg == 0) {
186 if (ARM_AM::getSOImmVal(Amt) == -1)
187 // Can't encode it in a so_imm operand. This transformation will
188 // add more than 1 instruction. Abandon!
189 return nullptr;
190 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
191 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
192 .addReg(BaseReg)
193 .addImm(Amt)
194 .add(predOps(Pred))
195 .add(condCodeOp());
196 } else if (Amt != 0) {
197 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
198 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
199 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
200 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
201 .addReg(BaseReg)
202 .addReg(OffReg)
203 .addReg(0)
204 .addImm(SOOpc)
205 .add(predOps(Pred))
206 .add(condCodeOp());
207 } else
208 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
209 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
210 .addReg(BaseReg)
211 .addReg(OffReg)
212 .add(predOps(Pred))
213 .add(condCodeOp());
214 break;
216 case ARMII::AddrMode3 : {
217 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
218 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
219 if (OffReg == 0)
220 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
222 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
223 .addReg(BaseReg)
224 .addImm(Amt)
225 .add(predOps(Pred))
226 .add(condCodeOp());
227 else
228 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
230 .addReg(BaseReg)
231 .addReg(OffReg)
232 .add(predOps(Pred))
233 .add(condCodeOp());
234 break;
238 std::vector<MachineInstr*> NewMIs;
239 if (isPre) {
240 if (isLoad)
241 MemMI =
242 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
243 .addReg(WBReg)
244 .addImm(0)
245 .addImm(Pred);
246 else
247 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
248 .addReg(MI.getOperand(1).getReg())
249 .addReg(WBReg)
250 .addReg(0)
251 .addImm(0)
252 .addImm(Pred);
253 NewMIs.push_back(MemMI);
254 NewMIs.push_back(UpdateMI);
255 } else {
256 if (isLoad)
257 MemMI =
258 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
259 .addReg(BaseReg)
260 .addImm(0)
261 .addImm(Pred);
262 else
263 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
264 .addReg(MI.getOperand(1).getReg())
265 .addReg(BaseReg)
266 .addReg(0)
267 .addImm(0)
268 .addImm(Pred);
269 if (WB.isDead())
270 UpdateMI->getOperand(0).setIsDead();
271 NewMIs.push_back(UpdateMI);
272 NewMIs.push_back(MemMI);
275 // Transfer LiveVariables states, kill / dead info.
276 if (LV) {
277 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
278 MachineOperand &MO = MI.getOperand(i);
279 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
280 unsigned Reg = MO.getReg();
282 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
283 if (MO.isDef()) {
284 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
285 if (MO.isDead())
286 LV->addVirtualRegisterDead(Reg, *NewMI);
288 if (MO.isUse() && MO.isKill()) {
289 for (unsigned j = 0; j < 2; ++j) {
290 // Look at the two new MI's in reverse order.
291 MachineInstr *NewMI = NewMIs[j];
292 if (!NewMI->readsRegister(Reg))
293 continue;
294 LV->addVirtualRegisterKilled(Reg, *NewMI);
295 if (VI.removeKill(MI))
296 VI.Kills.push_back(NewMI);
297 break;
304 MachineBasicBlock::iterator MBBI = MI.getIterator();
305 MFI->insert(MBBI, NewMIs[1]);
306 MFI->insert(MBBI, NewMIs[0]);
307 return NewMIs[0];
310 // Branch analysis.
311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
312 MachineBasicBlock *&TBB,
313 MachineBasicBlock *&FBB,
314 SmallVectorImpl<MachineOperand> &Cond,
315 bool AllowModify) const {
316 TBB = nullptr;
317 FBB = nullptr;
319 MachineBasicBlock::iterator I = MBB.end();
320 if (I == MBB.begin())
321 return false; // Empty blocks are easy.
322 --I;
324 // Walk backwards from the end of the basic block until the branch is
325 // analyzed or we give up.
326 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
327 // Flag to be raised on unanalyzeable instructions. This is useful in cases
328 // where we want to clean up on the end of the basic block before we bail
329 // out.
330 bool CantAnalyze = false;
332 // Skip over DEBUG values and predicated nonterminators.
333 while (I->isDebugInstr() || !I->isTerminator()) {
334 if (I == MBB.begin())
335 return false;
336 --I;
339 if (isIndirectBranchOpcode(I->getOpcode()) ||
340 isJumpTableBranchOpcode(I->getOpcode())) {
341 // Indirect branches and jump tables can't be analyzed, but we still want
342 // to clean up any instructions at the tail of the basic block.
343 CantAnalyze = true;
344 } else if (isUncondBranchOpcode(I->getOpcode())) {
345 TBB = I->getOperand(0).getMBB();
346 } else if (isCondBranchOpcode(I->getOpcode())) {
347 // Bail out if we encounter multiple conditional branches.
348 if (!Cond.empty())
349 return true;
351 assert(!FBB && "FBB should have been null.");
352 FBB = TBB;
353 TBB = I->getOperand(0).getMBB();
354 Cond.push_back(I->getOperand(1));
355 Cond.push_back(I->getOperand(2));
356 } else if (I->isReturn()) {
357 // Returns can't be analyzed, but we should run cleanup.
358 CantAnalyze = !isPredicated(*I);
359 } else {
360 // We encountered other unrecognized terminator. Bail out immediately.
361 return true;
364 // Cleanup code - to be run for unpredicated unconditional branches and
365 // returns.
366 if (!isPredicated(*I) &&
367 (isUncondBranchOpcode(I->getOpcode()) ||
368 isIndirectBranchOpcode(I->getOpcode()) ||
369 isJumpTableBranchOpcode(I->getOpcode()) ||
370 I->isReturn())) {
371 // Forget any previous condition branch information - it no longer applies.
372 Cond.clear();
373 FBB = nullptr;
375 // If we can modify the function, delete everything below this
376 // unconditional branch.
377 if (AllowModify) {
378 MachineBasicBlock::iterator DI = std::next(I);
379 while (DI != MBB.end()) {
380 MachineInstr &InstToDelete = *DI;
381 ++DI;
382 InstToDelete.eraseFromParent();
387 if (CantAnalyze)
388 return true;
390 if (I == MBB.begin())
391 return false;
393 --I;
396 // We made it past the terminators without bailing out - we must have
397 // analyzed this branch successfully.
398 return false;
401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
402 int *BytesRemoved) const {
403 assert(!BytesRemoved && "code size not handled");
405 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
406 if (I == MBB.end())
407 return 0;
409 if (!isUncondBranchOpcode(I->getOpcode()) &&
410 !isCondBranchOpcode(I->getOpcode()))
411 return 0;
413 // Remove the branch.
414 I->eraseFromParent();
416 I = MBB.end();
418 if (I == MBB.begin()) return 1;
419 --I;
420 if (!isCondBranchOpcode(I->getOpcode()))
421 return 1;
423 // Remove the branch.
424 I->eraseFromParent();
425 return 2;
428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
429 MachineBasicBlock *TBB,
430 MachineBasicBlock *FBB,
431 ArrayRef<MachineOperand> Cond,
432 const DebugLoc &DL,
433 int *BytesAdded) const {
434 assert(!BytesAdded && "code size not handled");
435 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
436 int BOpc = !AFI->isThumbFunction()
437 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
438 int BccOpc = !AFI->isThumbFunction()
439 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
440 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
442 // Shouldn't be a fall through.
443 assert(TBB && "insertBranch must not be told to insert a fallthrough");
444 assert((Cond.size() == 2 || Cond.size() == 0) &&
445 "ARM branch conditions have two components!");
447 // For conditional branches, we use addOperand to preserve CPSR flags.
449 if (!FBB) {
450 if (Cond.empty()) { // Unconditional branch?
451 if (isThumb)
452 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
453 else
454 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
455 } else
456 BuildMI(&MBB, DL, get(BccOpc))
457 .addMBB(TBB)
458 .addImm(Cond[0].getImm())
459 .add(Cond[1]);
460 return 1;
463 // Two-way conditional branch.
464 BuildMI(&MBB, DL, get(BccOpc))
465 .addMBB(TBB)
466 .addImm(Cond[0].getImm())
467 .add(Cond[1]);
468 if (isThumb)
469 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
470 else
471 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
472 return 2;
475 bool ARMBaseInstrInfo::
476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
478 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
479 return false;
482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
483 if (MI.isBundle()) {
484 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
485 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
486 while (++I != E && I->isInsideBundle()) {
487 int PIdx = I->findFirstPredOperandIdx();
488 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
489 return true;
491 return false;
494 int PIdx = MI.findFirstPredOperandIdx();
495 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
498 bool ARMBaseInstrInfo::PredicateInstruction(
499 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
500 unsigned Opc = MI.getOpcode();
501 if (isUncondBranchOpcode(Opc)) {
502 MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
503 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
504 .addImm(Pred[0].getImm())
505 .addReg(Pred[1].getReg());
506 return true;
509 int PIdx = MI.findFirstPredOperandIdx();
510 if (PIdx != -1) {
511 MachineOperand &PMO = MI.getOperand(PIdx);
512 PMO.setImm(Pred[0].getImm());
513 MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
514 return true;
516 return false;
519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
520 ArrayRef<MachineOperand> Pred2) const {
521 if (Pred1.size() > 2 || Pred2.size() > 2)
522 return false;
524 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
525 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
526 if (CC1 == CC2)
527 return true;
529 switch (CC1) {
530 default:
531 return false;
532 case ARMCC::AL:
533 return true;
534 case ARMCC::HS:
535 return CC2 == ARMCC::HI;
536 case ARMCC::LS:
537 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
538 case ARMCC::GE:
539 return CC2 == ARMCC::GT;
540 case ARMCC::LE:
541 return CC2 == ARMCC::LT;
545 bool ARMBaseInstrInfo::DefinesPredicate(
546 MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
547 bool Found = false;
548 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
549 const MachineOperand &MO = MI.getOperand(i);
550 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
551 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
552 Pred.push_back(MO);
553 Found = true;
557 return Found;
560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
561 for (const auto &MO : MI.operands())
562 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
563 return true;
564 return false;
567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
568 unsigned Op) const {
569 const MachineOperand &Offset = MI.getOperand(Op + 1);
570 return Offset.getReg() != 0;
573 // Load with negative register offset requires additional 1cyc and +I unit
574 // for Cortex A57
575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
576 unsigned Op) const {
577 const MachineOperand &Offset = MI.getOperand(Op + 1);
578 const MachineOperand &Opc = MI.getOperand(Op + 2);
579 assert(Opc.isImm());
580 assert(Offset.isReg());
581 int64_t OpcImm = Opc.getImm();
583 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
584 return (isSub && Offset.getReg() != 0);
587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
588 unsigned Op) const {
589 const MachineOperand &Opc = MI.getOperand(Op + 2);
590 unsigned OffImm = Opc.getImm();
591 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
594 // Load, scaled register offset, not plus LSL2
595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
596 unsigned Op) const {
597 const MachineOperand &Opc = MI.getOperand(Op + 2);
598 unsigned OffImm = Opc.getImm();
600 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
601 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
602 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
603 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
604 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
605 return !SimpleScaled;
608 // Minus reg for ldstso addr mode
609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
610 unsigned Op) const {
611 unsigned OffImm = MI.getOperand(Op + 2).getImm();
612 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
615 // Load, scaled register offset
616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
617 unsigned Op) const {
618 unsigned OffImm = MI.getOperand(Op + 2).getImm();
619 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
622 static bool isEligibleForITBlock(const MachineInstr *MI) {
623 switch (MI->getOpcode()) {
624 default: return true;
625 case ARM::tADC: // ADC (register) T1
626 case ARM::tADDi3: // ADD (immediate) T1
627 case ARM::tADDi8: // ADD (immediate) T2
628 case ARM::tADDrr: // ADD (register) T1
629 case ARM::tAND: // AND (register) T1
630 case ARM::tASRri: // ASR (immediate) T1
631 case ARM::tASRrr: // ASR (register) T1
632 case ARM::tBIC: // BIC (register) T1
633 case ARM::tEOR: // EOR (register) T1
634 case ARM::tLSLri: // LSL (immediate) T1
635 case ARM::tLSLrr: // LSL (register) T1
636 case ARM::tLSRri: // LSR (immediate) T1
637 case ARM::tLSRrr: // LSR (register) T1
638 case ARM::tMUL: // MUL T1
639 case ARM::tMVN: // MVN (register) T1
640 case ARM::tORR: // ORR (register) T1
641 case ARM::tROR: // ROR (register) T1
642 case ARM::tRSB: // RSB (immediate) T1
643 case ARM::tSBC: // SBC (register) T1
644 case ARM::tSUBi3: // SUB (immediate) T1
645 case ARM::tSUBi8: // SUB (immediate) T2
646 case ARM::tSUBrr: // SUB (register) T1
647 return !ARMBaseInstrInfo::isCPSRDefined(*MI);
651 /// isPredicable - Return true if the specified instruction can be predicated.
652 /// By default, this returns true for every instruction with a
653 /// PredicateOperand.
654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
655 if (!MI.isPredicable())
656 return false;
658 if (MI.isBundle())
659 return false;
661 if (!isEligibleForITBlock(&MI))
662 return false;
664 const ARMFunctionInfo *AFI =
665 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
667 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
668 // In their ARM encoding, they can't be encoded in a conditional form.
669 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
670 return false;
672 if (AFI->isThumb2Function()) {
673 if (getSubtarget().restrictIT())
674 return isV8EligibleForIT(&MI);
677 return true;
680 namespace llvm {
682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
683 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
684 const MachineOperand &MO = MI->getOperand(i);
685 if (!MO.isReg() || MO.isUndef() || MO.isUse())
686 continue;
687 if (MO.getReg() != ARM::CPSR)
688 continue;
689 if (!MO.isDead())
690 return false;
692 // all definitions of CPSR are dead
693 return true;
696 } // end namespace llvm
698 /// GetInstSize - Return the size of the specified MachineInstr.
700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
701 const MachineBasicBlock &MBB = *MI.getParent();
702 const MachineFunction *MF = MBB.getParent();
703 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
705 const MCInstrDesc &MCID = MI.getDesc();
706 if (MCID.getSize())
707 return MCID.getSize();
709 // If this machine instr is an inline asm, measure it.
710 if (MI.getOpcode() == ARM::INLINEASM) {
711 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
712 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
713 Size = alignTo(Size, 4);
714 return Size;
716 unsigned Opc = MI.getOpcode();
717 switch (Opc) {
718 default:
719 // pseudo-instruction sizes are zero.
720 return 0;
721 case TargetOpcode::BUNDLE:
722 return getInstBundleLength(MI);
723 case ARM::MOVi16_ga_pcrel:
724 case ARM::MOVTi16_ga_pcrel:
725 case ARM::t2MOVi16_ga_pcrel:
726 case ARM::t2MOVTi16_ga_pcrel:
727 return 4;
728 case ARM::MOVi32imm:
729 case ARM::t2MOVi32imm:
730 return 8;
731 case ARM::CONSTPOOL_ENTRY:
732 case ARM::JUMPTABLE_INSTS:
733 case ARM::JUMPTABLE_ADDRS:
734 case ARM::JUMPTABLE_TBB:
735 case ARM::JUMPTABLE_TBH:
736 // If this machine instr is a constant pool entry, its size is recorded as
737 // operand #2.
738 return MI.getOperand(2).getImm();
739 case ARM::Int_eh_sjlj_longjmp:
740 return 16;
741 case ARM::tInt_eh_sjlj_longjmp:
742 return 10;
743 case ARM::tInt_WIN_eh_sjlj_longjmp:
744 return 12;
745 case ARM::Int_eh_sjlj_setjmp:
746 case ARM::Int_eh_sjlj_setjmp_nofp:
747 return 20;
748 case ARM::tInt_eh_sjlj_setjmp:
749 case ARM::t2Int_eh_sjlj_setjmp:
750 case ARM::t2Int_eh_sjlj_setjmp_nofp:
751 return 12;
752 case ARM::SPACE:
753 return MI.getOperand(1).getImm();
757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
758 unsigned Size = 0;
759 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
760 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
761 while (++I != E && I->isInsideBundle()) {
762 assert(!I->isBundle() && "No nested bundle!");
763 Size += getInstSizeInBytes(*I);
765 return Size;
768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
769 MachineBasicBlock::iterator I,
770 unsigned DestReg, bool KillSrc,
771 const ARMSubtarget &Subtarget) const {
772 unsigned Opc = Subtarget.isThumb()
773 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
774 : ARM::MRS;
776 MachineInstrBuilder MIB =
777 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
779 // There is only 1 A/R class MRS instruction, and it always refers to
780 // APSR. However, there are lots of other possibilities on M-class cores.
781 if (Subtarget.isMClass())
782 MIB.addImm(0x800);
784 MIB.add(predOps(ARMCC::AL))
785 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
789 MachineBasicBlock::iterator I,
790 unsigned SrcReg, bool KillSrc,
791 const ARMSubtarget &Subtarget) const {
792 unsigned Opc = Subtarget.isThumb()
793 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
794 : ARM::MSR;
796 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
798 if (Subtarget.isMClass())
799 MIB.addImm(0x800);
800 else
801 MIB.addImm(8);
803 MIB.addReg(SrcReg, getKillRegState(KillSrc))
804 .add(predOps(ARMCC::AL))
805 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
808 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
809 MachineBasicBlock::iterator I,
810 const DebugLoc &DL, unsigned DestReg,
811 unsigned SrcReg, bool KillSrc) const {
812 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
813 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
815 if (GPRDest && GPRSrc) {
816 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
817 .addReg(SrcReg, getKillRegState(KillSrc))
818 .add(predOps(ARMCC::AL))
819 .add(condCodeOp());
820 return;
823 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
824 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
826 unsigned Opc = 0;
827 if (SPRDest && SPRSrc)
828 Opc = ARM::VMOVS;
829 else if (GPRDest && SPRSrc)
830 Opc = ARM::VMOVRS;
831 else if (SPRDest && GPRSrc)
832 Opc = ARM::VMOVSR;
833 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
834 Opc = ARM::VMOVD;
835 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
836 Opc = ARM::VORRq;
838 if (Opc) {
839 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
840 MIB.addReg(SrcReg, getKillRegState(KillSrc));
841 if (Opc == ARM::VORRq)
842 MIB.addReg(SrcReg, getKillRegState(KillSrc));
843 MIB.add(predOps(ARMCC::AL));
844 return;
847 // Handle register classes that require multiple instructions.
848 unsigned BeginIdx = 0;
849 unsigned SubRegs = 0;
850 int Spacing = 1;
852 // Use VORRq when possible.
853 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
854 Opc = ARM::VORRq;
855 BeginIdx = ARM::qsub_0;
856 SubRegs = 2;
857 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
858 Opc = ARM::VORRq;
859 BeginIdx = ARM::qsub_0;
860 SubRegs = 4;
861 // Fall back to VMOVD.
862 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
863 Opc = ARM::VMOVD;
864 BeginIdx = ARM::dsub_0;
865 SubRegs = 2;
866 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
867 Opc = ARM::VMOVD;
868 BeginIdx = ARM::dsub_0;
869 SubRegs = 3;
870 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
871 Opc = ARM::VMOVD;
872 BeginIdx = ARM::dsub_0;
873 SubRegs = 4;
874 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
875 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
876 BeginIdx = ARM::gsub_0;
877 SubRegs = 2;
878 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
879 Opc = ARM::VMOVD;
880 BeginIdx = ARM::dsub_0;
881 SubRegs = 2;
882 Spacing = 2;
883 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
884 Opc = ARM::VMOVD;
885 BeginIdx = ARM::dsub_0;
886 SubRegs = 3;
887 Spacing = 2;
888 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
889 Opc = ARM::VMOVD;
890 BeginIdx = ARM::dsub_0;
891 SubRegs = 4;
892 Spacing = 2;
893 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
894 Opc = ARM::VMOVS;
895 BeginIdx = ARM::ssub_0;
896 SubRegs = 2;
897 } else if (SrcReg == ARM::CPSR) {
898 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
899 return;
900 } else if (DestReg == ARM::CPSR) {
901 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
902 return;
905 assert(Opc && "Impossible reg-to-reg copy");
907 const TargetRegisterInfo *TRI = &getRegisterInfo();
908 MachineInstrBuilder Mov;
910 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
911 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
912 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
913 Spacing = -Spacing;
915 #ifndef NDEBUG
916 SmallSet<unsigned, 4> DstRegs;
917 #endif
918 for (unsigned i = 0; i != SubRegs; ++i) {
919 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
920 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
921 assert(Dst && Src && "Bad sub-register");
922 #ifndef NDEBUG
923 assert(!DstRegs.count(Src) && "destructive vector copy");
924 DstRegs.insert(Dst);
925 #endif
926 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
927 // VORR takes two source operands.
928 if (Opc == ARM::VORRq)
929 Mov.addReg(Src);
930 Mov = Mov.add(predOps(ARMCC::AL));
931 // MOVr can set CC.
932 if (Opc == ARM::MOVr)
933 Mov = Mov.add(condCodeOp());
935 // Add implicit super-register defs and kills to the last instruction.
936 Mov->addRegisterDefined(DestReg, TRI);
937 if (KillSrc)
938 Mov->addRegisterKilled(SrcReg, TRI);
941 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI,
942 const MachineOperand *&Src,
943 const MachineOperand *&Dest) const {
944 // VMOVRRD is also a copy instruction but it requires
945 // special way of handling. It is more complex copy version
946 // and since that we are not considering it. For recognition
947 // of such instruction isExtractSubregLike MI interface fuction
948 // could be used.
949 // VORRq is considered as a move only if two inputs are
950 // the same register.
951 if (!MI.isMoveReg() ||
952 (MI.getOpcode() == ARM::VORRq &&
953 MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
954 return false;
955 Dest = &MI.getOperand(0);
956 Src = &MI.getOperand(1);
957 return true;
960 const MachineInstrBuilder &
961 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
962 unsigned SubIdx, unsigned State,
963 const TargetRegisterInfo *TRI) const {
964 if (!SubIdx)
965 return MIB.addReg(Reg, State);
967 if (TargetRegisterInfo::isPhysicalRegister(Reg))
968 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
969 return MIB.addReg(Reg, State, SubIdx);
972 void ARMBaseInstrInfo::
973 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
974 unsigned SrcReg, bool isKill, int FI,
975 const TargetRegisterClass *RC,
976 const TargetRegisterInfo *TRI) const {
977 MachineFunction &MF = *MBB.getParent();
978 MachineFrameInfo &MFI = MF.getFrameInfo();
979 unsigned Align = MFI.getObjectAlignment(FI);
981 MachineMemOperand *MMO = MF.getMachineMemOperand(
982 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
983 MFI.getObjectSize(FI), Align);
985 switch (TRI->getSpillSize(*RC)) {
986 case 2:
987 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
988 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
989 .addReg(SrcReg, getKillRegState(isKill))
990 .addFrameIndex(FI)
991 .addImm(0)
992 .addMemOperand(MMO)
993 .add(predOps(ARMCC::AL));
994 } else
995 llvm_unreachable("Unknown reg class!");
996 break;
997 case 4:
998 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
999 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1000 .addReg(SrcReg, getKillRegState(isKill))
1001 .addFrameIndex(FI)
1002 .addImm(0)
1003 .addMemOperand(MMO)
1004 .add(predOps(ARMCC::AL));
1005 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1006 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1007 .addReg(SrcReg, getKillRegState(isKill))
1008 .addFrameIndex(FI)
1009 .addImm(0)
1010 .addMemOperand(MMO)
1011 .add(predOps(ARMCC::AL));
1012 } else
1013 llvm_unreachable("Unknown reg class!");
1014 break;
1015 case 8:
1016 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1017 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1018 .addReg(SrcReg, getKillRegState(isKill))
1019 .addFrameIndex(FI)
1020 .addImm(0)
1021 .addMemOperand(MMO)
1022 .add(predOps(ARMCC::AL));
1023 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1024 if (Subtarget.hasV5TEOps()) {
1025 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1026 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1027 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1028 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1029 .add(predOps(ARMCC::AL));
1030 } else {
1031 // Fallback to STM instruction, which has existed since the dawn of
1032 // time.
1033 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1034 .addFrameIndex(FI)
1035 .addMemOperand(MMO)
1036 .add(predOps(ARMCC::AL));
1037 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1038 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1040 } else
1041 llvm_unreachable("Unknown reg class!");
1042 break;
1043 case 16:
1044 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1045 // Use aligned spills if the stack can be realigned.
1046 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1047 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1048 .addFrameIndex(FI)
1049 .addImm(16)
1050 .addReg(SrcReg, getKillRegState(isKill))
1051 .addMemOperand(MMO)
1052 .add(predOps(ARMCC::AL));
1053 } else {
1054 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1055 .addReg(SrcReg, getKillRegState(isKill))
1056 .addFrameIndex(FI)
1057 .addMemOperand(MMO)
1058 .add(predOps(ARMCC::AL));
1060 } else
1061 llvm_unreachable("Unknown reg class!");
1062 break;
1063 case 24:
1064 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1065 // Use aligned spills if the stack can be realigned.
1066 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1067 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1068 .addFrameIndex(FI)
1069 .addImm(16)
1070 .addReg(SrcReg, getKillRegState(isKill))
1071 .addMemOperand(MMO)
1072 .add(predOps(ARMCC::AL));
1073 } else {
1074 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1075 get(ARM::VSTMDIA))
1076 .addFrameIndex(FI)
1077 .add(predOps(ARMCC::AL))
1078 .addMemOperand(MMO);
1079 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1080 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1081 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1083 } else
1084 llvm_unreachable("Unknown reg class!");
1085 break;
1086 case 32:
1087 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1088 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1089 // FIXME: It's possible to only store part of the QQ register if the
1090 // spilled def has a sub-register index.
1091 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1092 .addFrameIndex(FI)
1093 .addImm(16)
1094 .addReg(SrcReg, getKillRegState(isKill))
1095 .addMemOperand(MMO)
1096 .add(predOps(ARMCC::AL));
1097 } else {
1098 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1099 get(ARM::VSTMDIA))
1100 .addFrameIndex(FI)
1101 .add(predOps(ARMCC::AL))
1102 .addMemOperand(MMO);
1103 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1104 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1105 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1106 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1108 } else
1109 llvm_unreachable("Unknown reg class!");
1110 break;
1111 case 64:
1112 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1113 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1114 .addFrameIndex(FI)
1115 .add(predOps(ARMCC::AL))
1116 .addMemOperand(MMO);
1117 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1118 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1119 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1120 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1121 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1122 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1123 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1124 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1125 } else
1126 llvm_unreachable("Unknown reg class!");
1127 break;
1128 default:
1129 llvm_unreachable("Unknown reg class!");
1133 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1134 int &FrameIndex) const {
1135 switch (MI.getOpcode()) {
1136 default: break;
1137 case ARM::STRrs:
1138 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1139 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1140 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1141 MI.getOperand(3).getImm() == 0) {
1142 FrameIndex = MI.getOperand(1).getIndex();
1143 return MI.getOperand(0).getReg();
1145 break;
1146 case ARM::STRi12:
1147 case ARM::t2STRi12:
1148 case ARM::tSTRspi:
1149 case ARM::VSTRD:
1150 case ARM::VSTRS:
1151 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1152 MI.getOperand(2).getImm() == 0) {
1153 FrameIndex = MI.getOperand(1).getIndex();
1154 return MI.getOperand(0).getReg();
1156 break;
1157 case ARM::VST1q64:
1158 case ARM::VST1d64TPseudo:
1159 case ARM::VST1d64QPseudo:
1160 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1161 FrameIndex = MI.getOperand(0).getIndex();
1162 return MI.getOperand(2).getReg();
1164 break;
1165 case ARM::VSTMQIA:
1166 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1167 FrameIndex = MI.getOperand(1).getIndex();
1168 return MI.getOperand(0).getReg();
1170 break;
1173 return 0;
1176 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1177 int &FrameIndex) const {
1178 SmallVector<const MachineMemOperand *, 1> Accesses;
1179 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses)) {
1180 FrameIndex =
1181 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1182 ->getFrameIndex();
1183 return true;
1185 return false;
1188 void ARMBaseInstrInfo::
1189 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1190 unsigned DestReg, int FI,
1191 const TargetRegisterClass *RC,
1192 const TargetRegisterInfo *TRI) const {
1193 DebugLoc DL;
1194 if (I != MBB.end()) DL = I->getDebugLoc();
1195 MachineFunction &MF = *MBB.getParent();
1196 MachineFrameInfo &MFI = MF.getFrameInfo();
1197 unsigned Align = MFI.getObjectAlignment(FI);
1198 MachineMemOperand *MMO = MF.getMachineMemOperand(
1199 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1200 MFI.getObjectSize(FI), Align);
1202 switch (TRI->getSpillSize(*RC)) {
1203 case 2:
1204 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1205 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1206 .addFrameIndex(FI)
1207 .addImm(0)
1208 .addMemOperand(MMO)
1209 .add(predOps(ARMCC::AL));
1210 } else
1211 llvm_unreachable("Unknown reg class!");
1212 break;
1213 case 4:
1214 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1215 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1216 .addFrameIndex(FI)
1217 .addImm(0)
1218 .addMemOperand(MMO)
1219 .add(predOps(ARMCC::AL));
1220 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1221 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1222 .addFrameIndex(FI)
1223 .addImm(0)
1224 .addMemOperand(MMO)
1225 .add(predOps(ARMCC::AL));
1226 } else
1227 llvm_unreachable("Unknown reg class!");
1228 break;
1229 case 8:
1230 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1231 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1232 .addFrameIndex(FI)
1233 .addImm(0)
1234 .addMemOperand(MMO)
1235 .add(predOps(ARMCC::AL));
1236 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1237 MachineInstrBuilder MIB;
1239 if (Subtarget.hasV5TEOps()) {
1240 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1241 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1242 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1243 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1244 .add(predOps(ARMCC::AL));
1245 } else {
1246 // Fallback to LDM instruction, which has existed since the dawn of
1247 // time.
1248 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1249 .addFrameIndex(FI)
1250 .addMemOperand(MMO)
1251 .add(predOps(ARMCC::AL));
1252 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1253 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1256 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1257 MIB.addReg(DestReg, RegState::ImplicitDefine);
1258 } else
1259 llvm_unreachable("Unknown reg class!");
1260 break;
1261 case 16:
1262 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1263 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1264 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1265 .addFrameIndex(FI)
1266 .addImm(16)
1267 .addMemOperand(MMO)
1268 .add(predOps(ARMCC::AL));
1269 } else {
1270 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1271 .addFrameIndex(FI)
1272 .addMemOperand(MMO)
1273 .add(predOps(ARMCC::AL));
1275 } else
1276 llvm_unreachable("Unknown reg class!");
1277 break;
1278 case 24:
1279 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1280 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1281 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1282 .addFrameIndex(FI)
1283 .addImm(16)
1284 .addMemOperand(MMO)
1285 .add(predOps(ARMCC::AL));
1286 } else {
1287 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1288 .addFrameIndex(FI)
1289 .addMemOperand(MMO)
1290 .add(predOps(ARMCC::AL));
1291 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1292 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1293 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1294 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1295 MIB.addReg(DestReg, RegState::ImplicitDefine);
1297 } else
1298 llvm_unreachable("Unknown reg class!");
1299 break;
1300 case 32:
1301 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1302 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1303 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1304 .addFrameIndex(FI)
1305 .addImm(16)
1306 .addMemOperand(MMO)
1307 .add(predOps(ARMCC::AL));
1308 } else {
1309 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1310 .addFrameIndex(FI)
1311 .add(predOps(ARMCC::AL))
1312 .addMemOperand(MMO);
1313 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1314 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1315 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1316 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1317 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1318 MIB.addReg(DestReg, RegState::ImplicitDefine);
1320 } else
1321 llvm_unreachable("Unknown reg class!");
1322 break;
1323 case 64:
1324 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1325 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1326 .addFrameIndex(FI)
1327 .add(predOps(ARMCC::AL))
1328 .addMemOperand(MMO);
1329 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1330 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1331 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1332 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1333 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1334 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1335 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1336 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1337 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1338 MIB.addReg(DestReg, RegState::ImplicitDefine);
1339 } else
1340 llvm_unreachable("Unknown reg class!");
1341 break;
1342 default:
1343 llvm_unreachable("Unknown regclass!");
1347 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1348 int &FrameIndex) const {
1349 switch (MI.getOpcode()) {
1350 default: break;
1351 case ARM::LDRrs:
1352 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1353 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1354 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1355 MI.getOperand(3).getImm() == 0) {
1356 FrameIndex = MI.getOperand(1).getIndex();
1357 return MI.getOperand(0).getReg();
1359 break;
1360 case ARM::LDRi12:
1361 case ARM::t2LDRi12:
1362 case ARM::tLDRspi:
1363 case ARM::VLDRD:
1364 case ARM::VLDRS:
1365 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1366 MI.getOperand(2).getImm() == 0) {
1367 FrameIndex = MI.getOperand(1).getIndex();
1368 return MI.getOperand(0).getReg();
1370 break;
1371 case ARM::VLD1q64:
1372 case ARM::VLD1d8TPseudo:
1373 case ARM::VLD1d16TPseudo:
1374 case ARM::VLD1d32TPseudo:
1375 case ARM::VLD1d64TPseudo:
1376 case ARM::VLD1d8QPseudo:
1377 case ARM::VLD1d16QPseudo:
1378 case ARM::VLD1d32QPseudo:
1379 case ARM::VLD1d64QPseudo:
1380 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1381 FrameIndex = MI.getOperand(1).getIndex();
1382 return MI.getOperand(0).getReg();
1384 break;
1385 case ARM::VLDMQIA:
1386 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1387 FrameIndex = MI.getOperand(1).getIndex();
1388 return MI.getOperand(0).getReg();
1390 break;
1393 return 0;
1396 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1397 int &FrameIndex) const {
1398 SmallVector<const MachineMemOperand *, 1> Accesses;
1399 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses)) {
1400 FrameIndex =
1401 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1402 ->getFrameIndex();
1403 return true;
1405 return false;
1408 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1409 /// depending on whether the result is used.
1410 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1411 bool isThumb1 = Subtarget.isThumb1Only();
1412 bool isThumb2 = Subtarget.isThumb2();
1413 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1415 DebugLoc dl = MI->getDebugLoc();
1416 MachineBasicBlock *BB = MI->getParent();
1418 MachineInstrBuilder LDM, STM;
1419 if (isThumb1 || !MI->getOperand(1).isDead()) {
1420 MachineOperand LDWb(MI->getOperand(1));
1421 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1422 : isThumb1 ? ARM::tLDMIA_UPD
1423 : ARM::LDMIA_UPD))
1424 .add(LDWb);
1425 } else {
1426 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1429 if (isThumb1 || !MI->getOperand(0).isDead()) {
1430 MachineOperand STWb(MI->getOperand(0));
1431 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1432 : isThumb1 ? ARM::tSTMIA_UPD
1433 : ARM::STMIA_UPD))
1434 .add(STWb);
1435 } else {
1436 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1439 MachineOperand LDBase(MI->getOperand(3));
1440 LDM.add(LDBase).add(predOps(ARMCC::AL));
1442 MachineOperand STBase(MI->getOperand(2));
1443 STM.add(STBase).add(predOps(ARMCC::AL));
1445 // Sort the scratch registers into ascending order.
1446 const TargetRegisterInfo &TRI = getRegisterInfo();
1447 SmallVector<unsigned, 6> ScratchRegs;
1448 for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1449 ScratchRegs.push_back(MI->getOperand(I).getReg());
1450 llvm::sort(ScratchRegs,
1451 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1452 return TRI.getEncodingValue(Reg1) <
1453 TRI.getEncodingValue(Reg2);
1456 for (const auto &Reg : ScratchRegs) {
1457 LDM.addReg(Reg, RegState::Define);
1458 STM.addReg(Reg, RegState::Kill);
1461 BB->erase(MI);
1464 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1465 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1466 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1467 "LOAD_STACK_GUARD currently supported only for MachO.");
1468 expandLoadStackGuard(MI);
1469 MI.getParent()->erase(MI);
1470 return true;
1473 if (MI.getOpcode() == ARM::MEMCPY) {
1474 expandMEMCPY(MI);
1475 return true;
1478 // This hook gets to expand COPY instructions before they become
1479 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1480 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1481 // changed into a VORR that can go down the NEON pipeline.
1482 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
1483 return false;
1485 // Look for a copy between even S-registers. That is where we keep floats
1486 // when using NEON v2f32 instructions for f32 arithmetic.
1487 unsigned DstRegS = MI.getOperand(0).getReg();
1488 unsigned SrcRegS = MI.getOperand(1).getReg();
1489 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1490 return false;
1492 const TargetRegisterInfo *TRI = &getRegisterInfo();
1493 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1494 &ARM::DPRRegClass);
1495 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1496 &ARM::DPRRegClass);
1497 if (!DstRegD || !SrcRegD)
1498 return false;
1500 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1501 // legal if the COPY already defines the full DstRegD, and it isn't a
1502 // sub-register insertion.
1503 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1504 return false;
1506 // A dead copy shouldn't show up here, but reject it just in case.
1507 if (MI.getOperand(0).isDead())
1508 return false;
1510 // All clear, widen the COPY.
1511 LLVM_DEBUG(dbgs() << "widening: " << MI);
1512 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1514 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1515 // or some other super-register.
1516 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1517 if (ImpDefIdx != -1)
1518 MI.RemoveOperand(ImpDefIdx);
1520 // Change the opcode and operands.
1521 MI.setDesc(get(ARM::VMOVD));
1522 MI.getOperand(0).setReg(DstRegD);
1523 MI.getOperand(1).setReg(SrcRegD);
1524 MIB.add(predOps(ARMCC::AL));
1526 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1527 // register scavenger and machine verifier, so we need to indicate that we
1528 // are reading an undefined value from SrcRegD, but a proper value from
1529 // SrcRegS.
1530 MI.getOperand(1).setIsUndef();
1531 MIB.addReg(SrcRegS, RegState::Implicit);
1533 // SrcRegD may actually contain an unrelated value in the ssub_1
1534 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1535 if (MI.getOperand(1).isKill()) {
1536 MI.getOperand(1).setIsKill(false);
1537 MI.addRegisterKilled(SrcRegS, TRI, true);
1540 LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1541 return true;
1544 /// Create a copy of a const pool value. Update CPI to the new index and return
1545 /// the label UID.
1546 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1547 MachineConstantPool *MCP = MF.getConstantPool();
1548 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1550 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1551 assert(MCPE.isMachineConstantPoolEntry() &&
1552 "Expecting a machine constantpool entry!");
1553 ARMConstantPoolValue *ACPV =
1554 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1556 unsigned PCLabelId = AFI->createPICLabelUId();
1557 ARMConstantPoolValue *NewCPV = nullptr;
1559 // FIXME: The below assumes PIC relocation model and that the function
1560 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1561 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1562 // instructions, so that's probably OK, but is PIC always correct when
1563 // we get here?
1564 if (ACPV->isGlobalValue())
1565 NewCPV = ARMConstantPoolConstant::Create(
1566 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1567 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1568 else if (ACPV->isExtSymbol())
1569 NewCPV = ARMConstantPoolSymbol::
1570 Create(MF.getFunction().getContext(),
1571 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1572 else if (ACPV->isBlockAddress())
1573 NewCPV = ARMConstantPoolConstant::
1574 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1575 ARMCP::CPBlockAddress, 4);
1576 else if (ACPV->isLSDA())
1577 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1578 ARMCP::CPLSDA, 4);
1579 else if (ACPV->isMachineBasicBlock())
1580 NewCPV = ARMConstantPoolMBB::
1581 Create(MF.getFunction().getContext(),
1582 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1583 else
1584 llvm_unreachable("Unexpected ARM constantpool value type!!");
1585 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1586 return PCLabelId;
1589 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1590 MachineBasicBlock::iterator I,
1591 unsigned DestReg, unsigned SubIdx,
1592 const MachineInstr &Orig,
1593 const TargetRegisterInfo &TRI) const {
1594 unsigned Opcode = Orig.getOpcode();
1595 switch (Opcode) {
1596 default: {
1597 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1598 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1599 MBB.insert(I, MI);
1600 break;
1602 case ARM::tLDRpci_pic:
1603 case ARM::t2LDRpci_pic: {
1604 MachineFunction &MF = *MBB.getParent();
1605 unsigned CPI = Orig.getOperand(1).getIndex();
1606 unsigned PCLabelId = duplicateCPV(MF, CPI);
1607 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1608 .addConstantPoolIndex(CPI)
1609 .addImm(PCLabelId)
1610 .cloneMemRefs(Orig);
1611 break;
1616 MachineInstr &
1617 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1618 MachineBasicBlock::iterator InsertBefore,
1619 const MachineInstr &Orig) const {
1620 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1621 MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1622 for (;;) {
1623 switch (I->getOpcode()) {
1624 case ARM::tLDRpci_pic:
1625 case ARM::t2LDRpci_pic: {
1626 MachineFunction &MF = *MBB.getParent();
1627 unsigned CPI = I->getOperand(1).getIndex();
1628 unsigned PCLabelId = duplicateCPV(MF, CPI);
1629 I->getOperand(1).setIndex(CPI);
1630 I->getOperand(2).setImm(PCLabelId);
1631 break;
1634 if (!I->isBundledWithSucc())
1635 break;
1636 ++I;
1638 return Cloned;
1641 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1642 const MachineInstr &MI1,
1643 const MachineRegisterInfo *MRI) const {
1644 unsigned Opcode = MI0.getOpcode();
1645 if (Opcode == ARM::t2LDRpci ||
1646 Opcode == ARM::t2LDRpci_pic ||
1647 Opcode == ARM::tLDRpci ||
1648 Opcode == ARM::tLDRpci_pic ||
1649 Opcode == ARM::LDRLIT_ga_pcrel ||
1650 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1651 Opcode == ARM::tLDRLIT_ga_pcrel ||
1652 Opcode == ARM::MOV_ga_pcrel ||
1653 Opcode == ARM::MOV_ga_pcrel_ldr ||
1654 Opcode == ARM::t2MOV_ga_pcrel) {
1655 if (MI1.getOpcode() != Opcode)
1656 return false;
1657 if (MI0.getNumOperands() != MI1.getNumOperands())
1658 return false;
1660 const MachineOperand &MO0 = MI0.getOperand(1);
1661 const MachineOperand &MO1 = MI1.getOperand(1);
1662 if (MO0.getOffset() != MO1.getOffset())
1663 return false;
1665 if (Opcode == ARM::LDRLIT_ga_pcrel ||
1666 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1667 Opcode == ARM::tLDRLIT_ga_pcrel ||
1668 Opcode == ARM::MOV_ga_pcrel ||
1669 Opcode == ARM::MOV_ga_pcrel_ldr ||
1670 Opcode == ARM::t2MOV_ga_pcrel)
1671 // Ignore the PC labels.
1672 return MO0.getGlobal() == MO1.getGlobal();
1674 const MachineFunction *MF = MI0.getParent()->getParent();
1675 const MachineConstantPool *MCP = MF->getConstantPool();
1676 int CPI0 = MO0.getIndex();
1677 int CPI1 = MO1.getIndex();
1678 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1679 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1680 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1681 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1682 if (isARMCP0 && isARMCP1) {
1683 ARMConstantPoolValue *ACPV0 =
1684 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1685 ARMConstantPoolValue *ACPV1 =
1686 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1687 return ACPV0->hasSameValue(ACPV1);
1688 } else if (!isARMCP0 && !isARMCP1) {
1689 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1691 return false;
1692 } else if (Opcode == ARM::PICLDR) {
1693 if (MI1.getOpcode() != Opcode)
1694 return false;
1695 if (MI0.getNumOperands() != MI1.getNumOperands())
1696 return false;
1698 unsigned Addr0 = MI0.getOperand(1).getReg();
1699 unsigned Addr1 = MI1.getOperand(1).getReg();
1700 if (Addr0 != Addr1) {
1701 if (!MRI ||
1702 !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1703 !TargetRegisterInfo::isVirtualRegister(Addr1))
1704 return false;
1706 // This assumes SSA form.
1707 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1708 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1709 // Check if the loaded value, e.g. a constantpool of a global address, are
1710 // the same.
1711 if (!produceSameValue(*Def0, *Def1, MRI))
1712 return false;
1715 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1716 // %12 = PICLDR %11, 0, 14, %noreg
1717 const MachineOperand &MO0 = MI0.getOperand(i);
1718 const MachineOperand &MO1 = MI1.getOperand(i);
1719 if (!MO0.isIdenticalTo(MO1))
1720 return false;
1722 return true;
1725 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1728 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1729 /// determine if two loads are loading from the same base address. It should
1730 /// only return true if the base pointers are the same and the only differences
1731 /// between the two addresses is the offset. It also returns the offsets by
1732 /// reference.
1734 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1735 /// is permanently disabled.
1736 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1737 int64_t &Offset1,
1738 int64_t &Offset2) const {
1739 // Don't worry about Thumb: just ARM and Thumb2.
1740 if (Subtarget.isThumb1Only()) return false;
1742 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1743 return false;
1745 switch (Load1->getMachineOpcode()) {
1746 default:
1747 return false;
1748 case ARM::LDRi12:
1749 case ARM::LDRBi12:
1750 case ARM::LDRD:
1751 case ARM::LDRH:
1752 case ARM::LDRSB:
1753 case ARM::LDRSH:
1754 case ARM::VLDRD:
1755 case ARM::VLDRS:
1756 case ARM::t2LDRi8:
1757 case ARM::t2LDRBi8:
1758 case ARM::t2LDRDi8:
1759 case ARM::t2LDRSHi8:
1760 case ARM::t2LDRi12:
1761 case ARM::t2LDRBi12:
1762 case ARM::t2LDRSHi12:
1763 break;
1766 switch (Load2->getMachineOpcode()) {
1767 default:
1768 return false;
1769 case ARM::LDRi12:
1770 case ARM::LDRBi12:
1771 case ARM::LDRD:
1772 case ARM::LDRH:
1773 case ARM::LDRSB:
1774 case ARM::LDRSH:
1775 case ARM::VLDRD:
1776 case ARM::VLDRS:
1777 case ARM::t2LDRi8:
1778 case ARM::t2LDRBi8:
1779 case ARM::t2LDRSHi8:
1780 case ARM::t2LDRi12:
1781 case ARM::t2LDRBi12:
1782 case ARM::t2LDRSHi12:
1783 break;
1786 // Check if base addresses and chain operands match.
1787 if (Load1->getOperand(0) != Load2->getOperand(0) ||
1788 Load1->getOperand(4) != Load2->getOperand(4))
1789 return false;
1791 // Index should be Reg0.
1792 if (Load1->getOperand(3) != Load2->getOperand(3))
1793 return false;
1795 // Determine the offsets.
1796 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1797 isa<ConstantSDNode>(Load2->getOperand(1))) {
1798 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1799 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1800 return true;
1803 return false;
1806 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1807 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1808 /// be scheduled togther. On some targets if two loads are loading from
1809 /// addresses in the same cache line, it's better if they are scheduled
1810 /// together. This function takes two integers that represent the load offsets
1811 /// from the common base address. It returns true if it decides it's desirable
1812 /// to schedule the two loads together. "NumLoads" is the number of loads that
1813 /// have already been scheduled after Load1.
1815 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1816 /// is permanently disabled.
1817 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1818 int64_t Offset1, int64_t Offset2,
1819 unsigned NumLoads) const {
1820 // Don't worry about Thumb: just ARM and Thumb2.
1821 if (Subtarget.isThumb1Only()) return false;
1823 assert(Offset2 > Offset1);
1825 if ((Offset2 - Offset1) / 8 > 64)
1826 return false;
1828 // Check if the machine opcodes are different. If they are different
1829 // then we consider them to not be of the same base address,
1830 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1831 // In this case, they are considered to be the same because they are different
1832 // encoding forms of the same basic instruction.
1833 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1834 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1835 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1836 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1837 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1838 return false; // FIXME: overly conservative?
1840 // Four loads in a row should be sufficient.
1841 if (NumLoads >= 3)
1842 return false;
1844 return true;
1847 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1848 const MachineBasicBlock *MBB,
1849 const MachineFunction &MF) const {
1850 // Debug info is never a scheduling boundary. It's necessary to be explicit
1851 // due to the special treatment of IT instructions below, otherwise a
1852 // dbg_value followed by an IT will result in the IT instruction being
1853 // considered a scheduling hazard, which is wrong. It should be the actual
1854 // instruction preceding the dbg_value instruction(s), just like it is
1855 // when debug info is not present.
1856 if (MI.isDebugInstr())
1857 return false;
1859 // Terminators and labels can't be scheduled around.
1860 if (MI.isTerminator() || MI.isPosition())
1861 return true;
1863 // Treat the start of the IT block as a scheduling boundary, but schedule
1864 // t2IT along with all instructions following it.
1865 // FIXME: This is a big hammer. But the alternative is to add all potential
1866 // true and anti dependencies to IT block instructions as implicit operands
1867 // to the t2IT instruction. The added compile time and complexity does not
1868 // seem worth it.
1869 MachineBasicBlock::const_iterator I = MI;
1870 // Make sure to skip any debug instructions
1871 while (++I != MBB->end() && I->isDebugInstr())
1873 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1874 return true;
1876 // Don't attempt to schedule around any instruction that defines
1877 // a stack-oriented pointer, as it's unlikely to be profitable. This
1878 // saves compile time, because it doesn't require every single
1879 // stack slot reference to depend on the instruction that does the
1880 // modification.
1881 // Calls don't actually change the stack pointer, even if they have imp-defs.
1882 // No ARM calling conventions change the stack pointer. (X86 calling
1883 // conventions sometimes do).
1884 if (!MI.isCall() && MI.definesRegister(ARM::SP))
1885 return true;
1887 return false;
1890 bool ARMBaseInstrInfo::
1891 isProfitableToIfCvt(MachineBasicBlock &MBB,
1892 unsigned NumCycles, unsigned ExtraPredCycles,
1893 BranchProbability Probability) const {
1894 if (!NumCycles)
1895 return false;
1897 // If we are optimizing for size, see if the branch in the predecessor can be
1898 // lowered to cbn?z by the constant island lowering pass, and return false if
1899 // so. This results in a shorter instruction sequence.
1900 if (MBB.getParent()->getFunction().optForSize()) {
1901 MachineBasicBlock *Pred = *MBB.pred_begin();
1902 if (!Pred->empty()) {
1903 MachineInstr *LastMI = &*Pred->rbegin();
1904 if (LastMI->getOpcode() == ARM::t2Bcc) {
1905 MachineBasicBlock::iterator CmpMI = LastMI;
1906 if (CmpMI != Pred->begin()) {
1907 --CmpMI;
1908 if (CmpMI->getOpcode() == ARM::tCMPi8 ||
1909 CmpMI->getOpcode() == ARM::t2CMPri) {
1910 unsigned Reg = CmpMI->getOperand(0).getReg();
1911 unsigned PredReg = 0;
1912 ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
1913 if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
1914 isARMLowRegister(Reg))
1915 return false;
1921 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
1922 MBB, 0, 0, Probability);
1925 bool ARMBaseInstrInfo::
1926 isProfitableToIfCvt(MachineBasicBlock &TBB,
1927 unsigned TCycles, unsigned TExtra,
1928 MachineBasicBlock &FBB,
1929 unsigned FCycles, unsigned FExtra,
1930 BranchProbability Probability) const {
1931 if (!TCycles)
1932 return false;
1934 // Attempt to estimate the relative costs of predication versus branching.
1935 // Here we scale up each component of UnpredCost to avoid precision issue when
1936 // scaling TCycles/FCycles by Probability.
1937 const unsigned ScalingUpFactor = 1024;
1939 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
1940 unsigned UnpredCost;
1941 if (!Subtarget.hasBranchPredictor()) {
1942 // When we don't have a branch predictor it's always cheaper to not take a
1943 // branch than take it, so we have to take that into account.
1944 unsigned NotTakenBranchCost = 1;
1945 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
1946 unsigned TUnpredCycles, FUnpredCycles;
1947 if (!FCycles) {
1948 // Triangle: TBB is the fallthrough
1949 TUnpredCycles = TCycles + NotTakenBranchCost;
1950 FUnpredCycles = TakenBranchCost;
1951 } else {
1952 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
1953 TUnpredCycles = TCycles + TakenBranchCost;
1954 FUnpredCycles = FCycles + NotTakenBranchCost;
1955 // The branch at the end of FBB will disappear when it's predicated, so
1956 // discount it from PredCost.
1957 PredCost -= 1 * ScalingUpFactor;
1959 // The total cost is the cost of each path scaled by their probabilites
1960 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
1961 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
1962 UnpredCost = TUnpredCost + FUnpredCost;
1963 // When predicating assume that the first IT can be folded away but later
1964 // ones cost one cycle each
1965 if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
1966 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
1968 } else {
1969 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
1970 unsigned FUnpredCost =
1971 Probability.getCompl().scale(FCycles * ScalingUpFactor);
1972 UnpredCost = TUnpredCost + FUnpredCost;
1973 UnpredCost += 1 * ScalingUpFactor; // The branch itself
1974 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1977 return PredCost <= UnpredCost;
1980 bool
1981 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1982 MachineBasicBlock &FMBB) const {
1983 // Reduce false anti-dependencies to let the target's out-of-order execution
1984 // engine do its thing.
1985 return Subtarget.isProfitableToUnpredicate();
1988 /// getInstrPredicate - If instruction is predicated, returns its predicate
1989 /// condition, otherwise returns AL. It also returns the condition code
1990 /// register by reference.
1991 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
1992 unsigned &PredReg) {
1993 int PIdx = MI.findFirstPredOperandIdx();
1994 if (PIdx == -1) {
1995 PredReg = 0;
1996 return ARMCC::AL;
1999 PredReg = MI.getOperand(PIdx+1).getReg();
2000 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2003 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2004 if (Opc == ARM::B)
2005 return ARM::Bcc;
2006 if (Opc == ARM::tB)
2007 return ARM::tBcc;
2008 if (Opc == ARM::t2B)
2009 return ARM::t2Bcc;
2011 llvm_unreachable("Unknown unconditional branch opcode!");
2014 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2015 bool NewMI,
2016 unsigned OpIdx1,
2017 unsigned OpIdx2) const {
2018 switch (MI.getOpcode()) {
2019 case ARM::MOVCCr:
2020 case ARM::t2MOVCCr: {
2021 // MOVCC can be commuted by inverting the condition.
2022 unsigned PredReg = 0;
2023 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2024 // MOVCC AL can't be inverted. Shouldn't happen.
2025 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2026 return nullptr;
2027 MachineInstr *CommutedMI =
2028 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2029 if (!CommutedMI)
2030 return nullptr;
2031 // After swapping the MOVCC operands, also invert the condition.
2032 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2033 .setImm(ARMCC::getOppositeCondition(CC));
2034 return CommutedMI;
2037 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2040 /// Identify instructions that can be folded into a MOVCC instruction, and
2041 /// return the defining instruction.
2042 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
2043 const MachineRegisterInfo &MRI,
2044 const TargetInstrInfo *TII) {
2045 if (!TargetRegisterInfo::isVirtualRegister(Reg))
2046 return nullptr;
2047 if (!MRI.hasOneNonDBGUse(Reg))
2048 return nullptr;
2049 MachineInstr *MI = MRI.getVRegDef(Reg);
2050 if (!MI)
2051 return nullptr;
2052 // MI is folded into the MOVCC by predicating it.
2053 if (!MI->isPredicable())
2054 return nullptr;
2055 // Check if MI has any non-dead defs or physreg uses. This also detects
2056 // predicated instructions which will be reading CPSR.
2057 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2058 const MachineOperand &MO = MI->getOperand(i);
2059 // Reject frame index operands, PEI can't handle the predicated pseudos.
2060 if (MO.isFI() || MO.isCPI() || MO.isJTI())
2061 return nullptr;
2062 if (!MO.isReg())
2063 continue;
2064 // MI can't have any tied operands, that would conflict with predication.
2065 if (MO.isTied())
2066 return nullptr;
2067 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
2068 return nullptr;
2069 if (MO.isDef() && !MO.isDead())
2070 return nullptr;
2072 bool DontMoveAcrossStores = true;
2073 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2074 return nullptr;
2075 return MI;
2078 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2079 SmallVectorImpl<MachineOperand> &Cond,
2080 unsigned &TrueOp, unsigned &FalseOp,
2081 bool &Optimizable) const {
2082 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2083 "Unknown select instruction");
2084 // MOVCC operands:
2085 // 0: Def.
2086 // 1: True use.
2087 // 2: False use.
2088 // 3: Condition code.
2089 // 4: CPSR use.
2090 TrueOp = 1;
2091 FalseOp = 2;
2092 Cond.push_back(MI.getOperand(3));
2093 Cond.push_back(MI.getOperand(4));
2094 // We can always fold a def.
2095 Optimizable = true;
2096 return false;
2099 MachineInstr *
2100 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2101 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2102 bool PreferFalse) const {
2103 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2104 "Unknown select instruction");
2105 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2106 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2107 bool Invert = !DefMI;
2108 if (!DefMI)
2109 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2110 if (!DefMI)
2111 return nullptr;
2113 // Find new register class to use.
2114 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2115 unsigned DestReg = MI.getOperand(0).getReg();
2116 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2117 if (!MRI.constrainRegClass(DestReg, PreviousClass))
2118 return nullptr;
2120 // Create a new predicated version of DefMI.
2121 // Rfalse is the first use.
2122 MachineInstrBuilder NewMI =
2123 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2125 // Copy all the DefMI operands, excluding its (null) predicate.
2126 const MCInstrDesc &DefDesc = DefMI->getDesc();
2127 for (unsigned i = 1, e = DefDesc.getNumOperands();
2128 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2129 NewMI.add(DefMI->getOperand(i));
2131 unsigned CondCode = MI.getOperand(3).getImm();
2132 if (Invert)
2133 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2134 else
2135 NewMI.addImm(CondCode);
2136 NewMI.add(MI.getOperand(4));
2138 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2139 if (NewMI->hasOptionalDef())
2140 NewMI.add(condCodeOp());
2142 // The output register value when the predicate is false is an implicit
2143 // register operand tied to the first def.
2144 // The tie makes the register allocator ensure the FalseReg is allocated the
2145 // same register as operand 0.
2146 FalseReg.setImplicit();
2147 NewMI.add(FalseReg);
2148 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2150 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2151 SeenMIs.insert(NewMI);
2152 SeenMIs.erase(DefMI);
2154 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2155 // DefMI would be invalid when tranferred inside the loop. Checking for a
2156 // loop is expensive, but at least remove kill flags if they are in different
2157 // BBs.
2158 if (DefMI->getParent() != MI.getParent())
2159 NewMI->clearKillInfo();
2161 // The caller will erase MI, but not DefMI.
2162 DefMI->eraseFromParent();
2163 return NewMI;
2166 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2167 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2168 /// def operand.
2170 /// This will go away once we can teach tblgen how to set the optional CPSR def
2171 /// operand itself.
2172 struct AddSubFlagsOpcodePair {
2173 uint16_t PseudoOpc;
2174 uint16_t MachineOpc;
2177 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2178 {ARM::ADDSri, ARM::ADDri},
2179 {ARM::ADDSrr, ARM::ADDrr},
2180 {ARM::ADDSrsi, ARM::ADDrsi},
2181 {ARM::ADDSrsr, ARM::ADDrsr},
2183 {ARM::SUBSri, ARM::SUBri},
2184 {ARM::SUBSrr, ARM::SUBrr},
2185 {ARM::SUBSrsi, ARM::SUBrsi},
2186 {ARM::SUBSrsr, ARM::SUBrsr},
2188 {ARM::RSBSri, ARM::RSBri},
2189 {ARM::RSBSrsi, ARM::RSBrsi},
2190 {ARM::RSBSrsr, ARM::RSBrsr},
2192 {ARM::tADDSi3, ARM::tADDi3},
2193 {ARM::tADDSi8, ARM::tADDi8},
2194 {ARM::tADDSrr, ARM::tADDrr},
2195 {ARM::tADCS, ARM::tADC},
2197 {ARM::tSUBSi3, ARM::tSUBi3},
2198 {ARM::tSUBSi8, ARM::tSUBi8},
2199 {ARM::tSUBSrr, ARM::tSUBrr},
2200 {ARM::tSBCS, ARM::tSBC},
2201 {ARM::tRSBS, ARM::tRSB},
2203 {ARM::t2ADDSri, ARM::t2ADDri},
2204 {ARM::t2ADDSrr, ARM::t2ADDrr},
2205 {ARM::t2ADDSrs, ARM::t2ADDrs},
2207 {ARM::t2SUBSri, ARM::t2SUBri},
2208 {ARM::t2SUBSrr, ARM::t2SUBrr},
2209 {ARM::t2SUBSrs, ARM::t2SUBrs},
2211 {ARM::t2RSBSri, ARM::t2RSBri},
2212 {ARM::t2RSBSrs, ARM::t2RSBrs},
2215 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2216 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2217 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2218 return AddSubFlagsOpcodeMap[i].MachineOpc;
2219 return 0;
2222 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2223 MachineBasicBlock::iterator &MBBI,
2224 const DebugLoc &dl, unsigned DestReg,
2225 unsigned BaseReg, int NumBytes,
2226 ARMCC::CondCodes Pred, unsigned PredReg,
2227 const ARMBaseInstrInfo &TII,
2228 unsigned MIFlags) {
2229 if (NumBytes == 0 && DestReg != BaseReg) {
2230 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2231 .addReg(BaseReg, RegState::Kill)
2232 .add(predOps(Pred, PredReg))
2233 .add(condCodeOp())
2234 .setMIFlags(MIFlags);
2235 return;
2238 bool isSub = NumBytes < 0;
2239 if (isSub) NumBytes = -NumBytes;
2241 while (NumBytes) {
2242 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2243 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2244 assert(ThisVal && "Didn't extract field correctly");
2246 // We will handle these bits from offset, clear them.
2247 NumBytes &= ~ThisVal;
2249 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2251 // Build the new ADD / SUB.
2252 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2253 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2254 .addReg(BaseReg, RegState::Kill)
2255 .addImm(ThisVal)
2256 .add(predOps(Pred, PredReg))
2257 .add(condCodeOp())
2258 .setMIFlags(MIFlags);
2259 BaseReg = DestReg;
2263 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2264 MachineFunction &MF, MachineInstr *MI,
2265 unsigned NumBytes) {
2266 // This optimisation potentially adds lots of load and store
2267 // micro-operations, it's only really a great benefit to code-size.
2268 if (!Subtarget.optForMinSize())
2269 return false;
2271 // If only one register is pushed/popped, LLVM can use an LDR/STR
2272 // instead. We can't modify those so make sure we're dealing with an
2273 // instruction we understand.
2274 bool IsPop = isPopOpcode(MI->getOpcode());
2275 bool IsPush = isPushOpcode(MI->getOpcode());
2276 if (!IsPush && !IsPop)
2277 return false;
2279 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2280 MI->getOpcode() == ARM::VLDMDIA_UPD;
2281 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2282 MI->getOpcode() == ARM::tPOP ||
2283 MI->getOpcode() == ARM::tPOP_RET;
2285 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2286 MI->getOperand(1).getReg() == ARM::SP)) &&
2287 "trying to fold sp update into non-sp-updating push/pop");
2289 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2290 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2291 // if this is violated.
2292 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2293 return false;
2295 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2296 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2297 int RegListIdx = IsT1PushPop ? 2 : 4;
2299 // Calculate the space we'll need in terms of registers.
2300 unsigned RegsNeeded;
2301 const TargetRegisterClass *RegClass;
2302 if (IsVFPPushPop) {
2303 RegsNeeded = NumBytes / 8;
2304 RegClass = &ARM::DPRRegClass;
2305 } else {
2306 RegsNeeded = NumBytes / 4;
2307 RegClass = &ARM::GPRRegClass;
2310 // We're going to have to strip all list operands off before
2311 // re-adding them since the order matters, so save the existing ones
2312 // for later.
2313 SmallVector<MachineOperand, 4> RegList;
2315 // We're also going to need the first register transferred by this
2316 // instruction, which won't necessarily be the first register in the list.
2317 unsigned FirstRegEnc = -1;
2319 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2320 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2321 MachineOperand &MO = MI->getOperand(i);
2322 RegList.push_back(MO);
2324 if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2325 FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2328 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2330 // Now try to find enough space in the reglist to allocate NumBytes.
2331 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2332 --CurRegEnc) {
2333 unsigned CurReg = RegClass->getRegister(CurRegEnc);
2334 if (!IsPop) {
2335 // Pushing any register is completely harmless, mark the register involved
2336 // as undef since we don't care about its value and must not restore it
2337 // during stack unwinding.
2338 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2339 false, false, true));
2340 --RegsNeeded;
2341 continue;
2344 // However, we can only pop an extra register if it's not live. For
2345 // registers live within the function we might clobber a return value
2346 // register; the other way a register can be live here is if it's
2347 // callee-saved.
2348 if (isCalleeSavedRegister(CurReg, CSRegs) ||
2349 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2350 MachineBasicBlock::LQR_Dead) {
2351 // VFP pops don't allow holes in the register list, so any skip is fatal
2352 // for our transformation. GPR pops do, so we should just keep looking.
2353 if (IsVFPPushPop)
2354 return false;
2355 else
2356 continue;
2359 // Mark the unimportant registers as <def,dead> in the POP.
2360 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2361 true));
2362 --RegsNeeded;
2365 if (RegsNeeded > 0)
2366 return false;
2368 // Finally we know we can profitably perform the optimisation so go
2369 // ahead: strip all existing registers off and add them back again
2370 // in the right order.
2371 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2372 MI->RemoveOperand(i);
2374 // Add the complete list back in.
2375 MachineInstrBuilder MIB(MF, &*MI);
2376 for (int i = RegList.size() - 1; i >= 0; --i)
2377 MIB.add(RegList[i]);
2379 return true;
2382 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2383 unsigned FrameReg, int &Offset,
2384 const ARMBaseInstrInfo &TII) {
2385 unsigned Opcode = MI.getOpcode();
2386 const MCInstrDesc &Desc = MI.getDesc();
2387 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2388 bool isSub = false;
2390 // Memory operands in inline assembly always use AddrMode2.
2391 if (Opcode == ARM::INLINEASM)
2392 AddrMode = ARMII::AddrMode2;
2394 if (Opcode == ARM::ADDri) {
2395 Offset += MI.getOperand(FrameRegIdx+1).getImm();
2396 if (Offset == 0) {
2397 // Turn it into a move.
2398 MI.setDesc(TII.get(ARM::MOVr));
2399 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2400 MI.RemoveOperand(FrameRegIdx+1);
2401 Offset = 0;
2402 return true;
2403 } else if (Offset < 0) {
2404 Offset = -Offset;
2405 isSub = true;
2406 MI.setDesc(TII.get(ARM::SUBri));
2409 // Common case: small offset, fits into instruction.
2410 if (ARM_AM::getSOImmVal(Offset) != -1) {
2411 // Replace the FrameIndex with sp / fp
2412 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2413 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2414 Offset = 0;
2415 return true;
2418 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2419 // as possible.
2420 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2421 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2423 // We will handle these bits from offset, clear them.
2424 Offset &= ~ThisImmVal;
2426 // Get the properly encoded SOImmVal field.
2427 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2428 "Bit extraction didn't work?");
2429 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2430 } else {
2431 unsigned ImmIdx = 0;
2432 int InstrOffs = 0;
2433 unsigned NumBits = 0;
2434 unsigned Scale = 1;
2435 switch (AddrMode) {
2436 case ARMII::AddrMode_i12:
2437 ImmIdx = FrameRegIdx + 1;
2438 InstrOffs = MI.getOperand(ImmIdx).getImm();
2439 NumBits = 12;
2440 break;
2441 case ARMII::AddrMode2:
2442 ImmIdx = FrameRegIdx+2;
2443 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2444 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2445 InstrOffs *= -1;
2446 NumBits = 12;
2447 break;
2448 case ARMII::AddrMode3:
2449 ImmIdx = FrameRegIdx+2;
2450 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2451 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2452 InstrOffs *= -1;
2453 NumBits = 8;
2454 break;
2455 case ARMII::AddrMode4:
2456 case ARMII::AddrMode6:
2457 // Can't fold any offset even if it's zero.
2458 return false;
2459 case ARMII::AddrMode5:
2460 ImmIdx = FrameRegIdx+1;
2461 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2462 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2463 InstrOffs *= -1;
2464 NumBits = 8;
2465 Scale = 4;
2466 break;
2467 case ARMII::AddrMode5FP16:
2468 ImmIdx = FrameRegIdx+1;
2469 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2470 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2471 InstrOffs *= -1;
2472 NumBits = 8;
2473 Scale = 2;
2474 break;
2475 default:
2476 llvm_unreachable("Unsupported addressing mode!");
2479 Offset += InstrOffs * Scale;
2480 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2481 if (Offset < 0) {
2482 Offset = -Offset;
2483 isSub = true;
2486 // Attempt to fold address comp. if opcode has offset bits
2487 if (NumBits > 0) {
2488 // Common case: small offset, fits into instruction.
2489 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2490 int ImmedOffset = Offset / Scale;
2491 unsigned Mask = (1 << NumBits) - 1;
2492 if ((unsigned)Offset <= Mask * Scale) {
2493 // Replace the FrameIndex with sp
2494 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2495 // FIXME: When addrmode2 goes away, this will simplify (like the
2496 // T2 version), as the LDR.i12 versions don't need the encoding
2497 // tricks for the offset value.
2498 if (isSub) {
2499 if (AddrMode == ARMII::AddrMode_i12)
2500 ImmedOffset = -ImmedOffset;
2501 else
2502 ImmedOffset |= 1 << NumBits;
2504 ImmOp.ChangeToImmediate(ImmedOffset);
2505 Offset = 0;
2506 return true;
2509 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2510 ImmedOffset = ImmedOffset & Mask;
2511 if (isSub) {
2512 if (AddrMode == ARMII::AddrMode_i12)
2513 ImmedOffset = -ImmedOffset;
2514 else
2515 ImmedOffset |= 1 << NumBits;
2517 ImmOp.ChangeToImmediate(ImmedOffset);
2518 Offset &= ~(Mask*Scale);
2522 Offset = (isSub) ? -Offset : Offset;
2523 return Offset == 0;
2526 /// analyzeCompare - For a comparison instruction, return the source registers
2527 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2528 /// compares against in CmpValue. Return true if the comparison instruction
2529 /// can be analyzed.
2530 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2531 unsigned &SrcReg2, int &CmpMask,
2532 int &CmpValue) const {
2533 switch (MI.getOpcode()) {
2534 default: break;
2535 case ARM::CMPri:
2536 case ARM::t2CMPri:
2537 case ARM::tCMPi8:
2538 SrcReg = MI.getOperand(0).getReg();
2539 SrcReg2 = 0;
2540 CmpMask = ~0;
2541 CmpValue = MI.getOperand(1).getImm();
2542 return true;
2543 case ARM::CMPrr:
2544 case ARM::t2CMPrr:
2545 SrcReg = MI.getOperand(0).getReg();
2546 SrcReg2 = MI.getOperand(1).getReg();
2547 CmpMask = ~0;
2548 CmpValue = 0;
2549 return true;
2550 case ARM::TSTri:
2551 case ARM::t2TSTri:
2552 SrcReg = MI.getOperand(0).getReg();
2553 SrcReg2 = 0;
2554 CmpMask = MI.getOperand(1).getImm();
2555 CmpValue = 0;
2556 return true;
2559 return false;
2562 /// isSuitableForMask - Identify a suitable 'and' instruction that
2563 /// operates on the given source register and applies the same mask
2564 /// as a 'tst' instruction. Provide a limited look-through for copies.
2565 /// When successful, MI will hold the found instruction.
2566 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2567 int CmpMask, bool CommonUse) {
2568 switch (MI->getOpcode()) {
2569 case ARM::ANDri:
2570 case ARM::t2ANDri:
2571 if (CmpMask != MI->getOperand(2).getImm())
2572 return false;
2573 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2574 return true;
2575 break;
2578 return false;
2581 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2582 /// the condition code if we modify the instructions such that flags are
2583 /// set by MI(b,a).
2584 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2585 switch (CC) {
2586 default: return ARMCC::AL;
2587 case ARMCC::EQ: return ARMCC::EQ;
2588 case ARMCC::NE: return ARMCC::NE;
2589 case ARMCC::HS: return ARMCC::LS;
2590 case ARMCC::LO: return ARMCC::HI;
2591 case ARMCC::HI: return ARMCC::LO;
2592 case ARMCC::LS: return ARMCC::HS;
2593 case ARMCC::GE: return ARMCC::LE;
2594 case ARMCC::LT: return ARMCC::GT;
2595 case ARMCC::GT: return ARMCC::LT;
2596 case ARMCC::LE: return ARMCC::GE;
2600 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2601 /// the condition code if we modify the instructions such that flags are
2602 /// set by ADD(a,b,X).
2603 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2604 switch (CC) {
2605 default: return ARMCC::AL;
2606 case ARMCC::HS: return ARMCC::LO;
2607 case ARMCC::LO: return ARMCC::HS;
2608 case ARMCC::VS: return ARMCC::VS;
2609 case ARMCC::VC: return ARMCC::VC;
2613 /// isRedundantFlagInstr - check whether the first instruction, whose only
2614 /// purpose is to update flags, can be made redundant.
2615 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2616 /// CMPri can be made redundant by SUBri if the operands are the same.
2617 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2618 /// This function can be extended later on.
2619 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2620 unsigned SrcReg, unsigned SrcReg2,
2621 int ImmValue, const MachineInstr *OI) {
2622 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2623 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2624 ((OI->getOperand(1).getReg() == SrcReg &&
2625 OI->getOperand(2).getReg() == SrcReg2) ||
2626 (OI->getOperand(1).getReg() == SrcReg2 &&
2627 OI->getOperand(2).getReg() == SrcReg)))
2628 return true;
2630 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2631 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2632 OI->getOperand(1).getReg() == SrcReg &&
2633 OI->getOperand(2).getImm() == ImmValue)
2634 return true;
2636 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2637 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2638 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2639 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2640 OI->getOperand(0).getReg() == SrcReg &&
2641 OI->getOperand(1).getReg() == SrcReg2)
2642 return true;
2643 return false;
2646 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2647 switch (MI->getOpcode()) {
2648 default: return false;
2649 case ARM::tLSLri:
2650 case ARM::tLSRri:
2651 case ARM::tLSLrr:
2652 case ARM::tLSRrr:
2653 case ARM::tSUBrr:
2654 case ARM::tADDrr:
2655 case ARM::tADDi3:
2656 case ARM::tADDi8:
2657 case ARM::tSUBi3:
2658 case ARM::tSUBi8:
2659 case ARM::tMUL:
2660 IsThumb1 = true;
2661 LLVM_FALLTHROUGH;
2662 case ARM::RSBrr:
2663 case ARM::RSBri:
2664 case ARM::RSCrr:
2665 case ARM::RSCri:
2666 case ARM::ADDrr:
2667 case ARM::ADDri:
2668 case ARM::ADCrr:
2669 case ARM::ADCri:
2670 case ARM::SUBrr:
2671 case ARM::SUBri:
2672 case ARM::SBCrr:
2673 case ARM::SBCri:
2674 case ARM::t2RSBri:
2675 case ARM::t2ADDrr:
2676 case ARM::t2ADDri:
2677 case ARM::t2ADCrr:
2678 case ARM::t2ADCri:
2679 case ARM::t2SUBrr:
2680 case ARM::t2SUBri:
2681 case ARM::t2SBCrr:
2682 case ARM::t2SBCri:
2683 case ARM::ANDrr:
2684 case ARM::ANDri:
2685 case ARM::t2ANDrr:
2686 case ARM::t2ANDri:
2687 case ARM::ORRrr:
2688 case ARM::ORRri:
2689 case ARM::t2ORRrr:
2690 case ARM::t2ORRri:
2691 case ARM::EORrr:
2692 case ARM::EORri:
2693 case ARM::t2EORrr:
2694 case ARM::t2EORri:
2695 case ARM::t2LSRri:
2696 case ARM::t2LSRrr:
2697 case ARM::t2LSLri:
2698 case ARM::t2LSLrr:
2699 return true;
2703 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2704 /// comparison into one that sets the zero bit in the flags register;
2705 /// Remove a redundant Compare instruction if an earlier instruction can set the
2706 /// flags in the same way as Compare.
2707 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2708 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2709 /// condition code of instructions which use the flags.
2710 bool ARMBaseInstrInfo::optimizeCompareInstr(
2711 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2712 int CmpValue, const MachineRegisterInfo *MRI) const {
2713 // Get the unique definition of SrcReg.
2714 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2715 if (!MI) return false;
2717 // Masked compares sometimes use the same register as the corresponding 'and'.
2718 if (CmpMask != ~0) {
2719 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2720 MI = nullptr;
2721 for (MachineRegisterInfo::use_instr_iterator
2722 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2723 UI != UE; ++UI) {
2724 if (UI->getParent() != CmpInstr.getParent())
2725 continue;
2726 MachineInstr *PotentialAND = &*UI;
2727 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2728 isPredicated(*PotentialAND))
2729 continue;
2730 MI = PotentialAND;
2731 break;
2733 if (!MI) return false;
2737 // Get ready to iterate backward from CmpInstr.
2738 MachineBasicBlock::iterator I = CmpInstr, E = MI,
2739 B = CmpInstr.getParent()->begin();
2741 // Early exit if CmpInstr is at the beginning of the BB.
2742 if (I == B) return false;
2744 // There are two possible candidates which can be changed to set CPSR:
2745 // One is MI, the other is a SUB or ADD instruction.
2746 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2747 // ADDr[ri](r1, r2, X).
2748 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2749 MachineInstr *SubAdd = nullptr;
2750 if (SrcReg2 != 0)
2751 // MI is not a candidate for CMPrr.
2752 MI = nullptr;
2753 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2754 // Conservatively refuse to convert an instruction which isn't in the same
2755 // BB as the comparison.
2756 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2757 // Thus we cannot return here.
2758 if (CmpInstr.getOpcode() == ARM::CMPri ||
2759 CmpInstr.getOpcode() == ARM::t2CMPri)
2760 MI = nullptr;
2761 else
2762 return false;
2765 bool IsThumb1 = false;
2766 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2767 return false;
2769 // We also want to do this peephole for cases like this: if (a*b == 0),
2770 // and optimise away the CMP instruction from the generated code sequence:
2771 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2772 // resulting from the select instruction, but these MOVS instructions for
2773 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2774 // However, if we only have MOVS instructions in between the CMP and the
2775 // other instruction (the MULS in this example), then the CPSR is dead so we
2776 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2777 // reordering and then continue the analysis hoping we can eliminate the
2778 // CMP. This peephole works on the vregs, so is still in SSA form. As a
2779 // consequence, the movs won't redefine/kill the MUL operands which would
2780 // make this reordering illegal.
2781 if (MI && IsThumb1) {
2782 --I;
2783 bool CanReorder = true;
2784 const bool HasStmts = I != E;
2785 for (; I != E; --I) {
2786 if (I->getOpcode() != ARM::tMOVi8) {
2787 CanReorder = false;
2788 break;
2791 if (HasStmts && CanReorder) {
2792 MI = MI->removeFromParent();
2793 E = CmpInstr;
2794 CmpInstr.getParent()->insert(E, MI);
2796 I = CmpInstr;
2797 E = MI;
2800 // Check that CPSR isn't set between the comparison instruction and the one we
2801 // want to change. At the same time, search for SubAdd.
2802 const TargetRegisterInfo *TRI = &getRegisterInfo();
2803 do {
2804 const MachineInstr &Instr = *--I;
2806 // Check whether CmpInstr can be made redundant by the current instruction.
2807 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr)) {
2808 SubAdd = &*I;
2809 break;
2812 // Allow E (which was initially MI) to be SubAdd but do not search before E.
2813 if (I == E)
2814 break;
2816 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2817 Instr.readsRegister(ARM::CPSR, TRI))
2818 // This instruction modifies or uses CPSR after the one we want to
2819 // change. We can't do this transformation.
2820 return false;
2822 } while (I != B);
2824 // Return false if no candidates exist.
2825 if (!MI && !SubAdd)
2826 return false;
2828 // If we found a SubAdd, use it as it will be closer to the CMP
2829 if (SubAdd) {
2830 MI = SubAdd;
2831 IsThumb1 = false;
2834 // We can't use a predicated instruction - it doesn't always write the flags.
2835 if (isPredicated(*MI))
2836 return false;
2838 // Scan forward for the use of CPSR
2839 // When checking against MI: if it's a conditional code that requires
2840 // checking of the V bit or C bit, then this is not safe to do.
2841 // It is safe to remove CmpInstr if CPSR is redefined or killed.
2842 // If we are done with the basic block, we need to check whether CPSR is
2843 // live-out.
2844 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2845 OperandsToUpdate;
2846 bool isSafe = false;
2847 I = CmpInstr;
2848 E = CmpInstr.getParent()->end();
2849 while (!isSafe && ++I != E) {
2850 const MachineInstr &Instr = *I;
2851 for (unsigned IO = 0, EO = Instr.getNumOperands();
2852 !isSafe && IO != EO; ++IO) {
2853 const MachineOperand &MO = Instr.getOperand(IO);
2854 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2855 isSafe = true;
2856 break;
2858 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2859 continue;
2860 if (MO.isDef()) {
2861 isSafe = true;
2862 break;
2864 // Condition code is after the operand before CPSR except for VSELs.
2865 ARMCC::CondCodes CC;
2866 bool IsInstrVSel = true;
2867 switch (Instr.getOpcode()) {
2868 default:
2869 IsInstrVSel = false;
2870 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2871 break;
2872 case ARM::VSELEQD:
2873 case ARM::VSELEQS:
2874 CC = ARMCC::EQ;
2875 break;
2876 case ARM::VSELGTD:
2877 case ARM::VSELGTS:
2878 CC = ARMCC::GT;
2879 break;
2880 case ARM::VSELGED:
2881 case ARM::VSELGES:
2882 CC = ARMCC::GE;
2883 break;
2884 case ARM::VSELVSS:
2885 case ARM::VSELVSD:
2886 CC = ARMCC::VS;
2887 break;
2890 if (SubAdd) {
2891 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2892 // on CMP needs to be updated to be based on SUB.
2893 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
2894 // needs to be modified.
2895 // Push the condition code operands to OperandsToUpdate.
2896 // If it is safe to remove CmpInstr, the condition code of these
2897 // operands will be modified.
2898 unsigned Opc = SubAdd->getOpcode();
2899 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
2900 Opc == ARM::SUBri || Opc == ARM::t2SUBri;
2901 if (!IsSub || (SrcReg2 != 0 && SubAdd->getOperand(1).getReg() == SrcReg2 &&
2902 SubAdd->getOperand(2).getReg() == SrcReg)) {
2903 // VSel doesn't support condition code update.
2904 if (IsInstrVSel)
2905 return false;
2906 // Ensure we can swap the condition.
2907 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
2908 if (NewCC == ARMCC::AL)
2909 return false;
2910 OperandsToUpdate.push_back(
2911 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2913 } else {
2914 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
2915 switch (CC) {
2916 case ARMCC::EQ: // Z
2917 case ARMCC::NE: // Z
2918 case ARMCC::MI: // N
2919 case ARMCC::PL: // N
2920 case ARMCC::AL: // none
2921 // CPSR can be used multiple times, we should continue.
2922 break;
2923 case ARMCC::HS: // C
2924 case ARMCC::LO: // C
2925 case ARMCC::VS: // V
2926 case ARMCC::VC: // V
2927 case ARMCC::HI: // C Z
2928 case ARMCC::LS: // C Z
2929 case ARMCC::GE: // N V
2930 case ARMCC::LT: // N V
2931 case ARMCC::GT: // Z N V
2932 case ARMCC::LE: // Z N V
2933 // The instruction uses the V bit or C bit which is not safe.
2934 return false;
2940 // If CPSR is not killed nor re-defined, we should check whether it is
2941 // live-out. If it is live-out, do not optimize.
2942 if (!isSafe) {
2943 MachineBasicBlock *MBB = CmpInstr.getParent();
2944 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2945 SE = MBB->succ_end(); SI != SE; ++SI)
2946 if ((*SI)->isLiveIn(ARM::CPSR))
2947 return false;
2950 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
2951 // set CPSR so this is represented as an explicit output)
2952 if (!IsThumb1) {
2953 MI->getOperand(5).setReg(ARM::CPSR);
2954 MI->getOperand(5).setIsDef(true);
2956 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
2957 CmpInstr.eraseFromParent();
2959 // Modify the condition code of operands in OperandsToUpdate.
2960 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2961 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2962 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2963 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2965 MI->clearRegisterDeads(ARM::CPSR);
2967 return true;
2970 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
2971 // Do not sink MI if it might be used to optimize a redundant compare.
2972 // We heuristically only look at the instruction immediately following MI to
2973 // avoid potentially searching the entire basic block.
2974 if (isPredicated(MI))
2975 return true;
2976 MachineBasicBlock::const_iterator Next = &MI;
2977 ++Next;
2978 unsigned SrcReg, SrcReg2;
2979 int CmpMask, CmpValue;
2980 if (Next != MI.getParent()->end() &&
2981 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
2982 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI))
2983 return false;
2984 return true;
2987 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2988 unsigned Reg,
2989 MachineRegisterInfo *MRI) const {
2990 // Fold large immediates into add, sub, or, xor.
2991 unsigned DefOpc = DefMI.getOpcode();
2992 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2993 return false;
2994 if (!DefMI.getOperand(1).isImm())
2995 // Could be t2MOVi32imm @xx
2996 return false;
2998 if (!MRI->hasOneNonDBGUse(Reg))
2999 return false;
3001 const MCInstrDesc &DefMCID = DefMI.getDesc();
3002 if (DefMCID.hasOptionalDef()) {
3003 unsigned NumOps = DefMCID.getNumOperands();
3004 const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3005 if (MO.getReg() == ARM::CPSR && !MO.isDead())
3006 // If DefMI defines CPSR and it is not dead, it's obviously not safe
3007 // to delete DefMI.
3008 return false;
3011 const MCInstrDesc &UseMCID = UseMI.getDesc();
3012 if (UseMCID.hasOptionalDef()) {
3013 unsigned NumOps = UseMCID.getNumOperands();
3014 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3015 // If the instruction sets the flag, do not attempt this optimization
3016 // since it may change the semantics of the code.
3017 return false;
3020 unsigned UseOpc = UseMI.getOpcode();
3021 unsigned NewUseOpc = 0;
3022 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3023 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3024 bool Commute = false;
3025 switch (UseOpc) {
3026 default: return false;
3027 case ARM::SUBrr:
3028 case ARM::ADDrr:
3029 case ARM::ORRrr:
3030 case ARM::EORrr:
3031 case ARM::t2SUBrr:
3032 case ARM::t2ADDrr:
3033 case ARM::t2ORRrr:
3034 case ARM::t2EORrr: {
3035 Commute = UseMI.getOperand(2).getReg() != Reg;
3036 switch (UseOpc) {
3037 default: break;
3038 case ARM::ADDrr:
3039 case ARM::SUBrr:
3040 if (UseOpc == ARM::SUBrr && Commute)
3041 return false;
3043 // ADD/SUB are special because they're essentially the same operation, so
3044 // we can handle a larger range of immediates.
3045 if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3046 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3047 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3048 ImmVal = -ImmVal;
3049 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3050 } else
3051 return false;
3052 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3053 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3054 break;
3055 case ARM::ORRrr:
3056 case ARM::EORrr:
3057 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3058 return false;
3059 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3060 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3061 switch (UseOpc) {
3062 default: break;
3063 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3064 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3066 break;
3067 case ARM::t2ADDrr:
3068 case ARM::t2SUBrr:
3069 if (UseOpc == ARM::t2SUBrr && Commute)
3070 return false;
3072 // ADD/SUB are special because they're essentially the same operation, so
3073 // we can handle a larger range of immediates.
3074 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3075 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
3076 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3077 ImmVal = -ImmVal;
3078 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
3079 } else
3080 return false;
3081 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3082 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3083 break;
3084 case ARM::t2ORRrr:
3085 case ARM::t2EORrr:
3086 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3087 return false;
3088 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3089 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3090 switch (UseOpc) {
3091 default: break;
3092 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3093 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3095 break;
3100 unsigned OpIdx = Commute ? 2 : 1;
3101 unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
3102 bool isKill = UseMI.getOperand(OpIdx).isKill();
3103 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
3104 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3105 NewReg)
3106 .addReg(Reg1, getKillRegState(isKill))
3107 .addImm(SOImmValV1)
3108 .add(predOps(ARMCC::AL))
3109 .add(condCodeOp());
3110 UseMI.setDesc(get(NewUseOpc));
3111 UseMI.getOperand(1).setReg(NewReg);
3112 UseMI.getOperand(1).setIsKill();
3113 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3114 DefMI.eraseFromParent();
3115 return true;
3118 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3119 const MachineInstr &MI) {
3120 switch (MI.getOpcode()) {
3121 default: {
3122 const MCInstrDesc &Desc = MI.getDesc();
3123 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3124 assert(UOps >= 0 && "bad # UOps");
3125 return UOps;
3128 case ARM::LDRrs:
3129 case ARM::LDRBrs:
3130 case ARM::STRrs:
3131 case ARM::STRBrs: {
3132 unsigned ShOpVal = MI.getOperand(3).getImm();
3133 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3134 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3135 if (!isSub &&
3136 (ShImm == 0 ||
3137 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3138 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3139 return 1;
3140 return 2;
3143 case ARM::LDRH:
3144 case ARM::STRH: {
3145 if (!MI.getOperand(2).getReg())
3146 return 1;
3148 unsigned ShOpVal = MI.getOperand(3).getImm();
3149 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3150 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3151 if (!isSub &&
3152 (ShImm == 0 ||
3153 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3154 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3155 return 1;
3156 return 2;
3159 case ARM::LDRSB:
3160 case ARM::LDRSH:
3161 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3163 case ARM::LDRSB_POST:
3164 case ARM::LDRSH_POST: {
3165 unsigned Rt = MI.getOperand(0).getReg();
3166 unsigned Rm = MI.getOperand(3).getReg();
3167 return (Rt == Rm) ? 4 : 3;
3170 case ARM::LDR_PRE_REG:
3171 case ARM::LDRB_PRE_REG: {
3172 unsigned Rt = MI.getOperand(0).getReg();
3173 unsigned Rm = MI.getOperand(3).getReg();
3174 if (Rt == Rm)
3175 return 3;
3176 unsigned ShOpVal = MI.getOperand(4).getImm();
3177 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3178 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3179 if (!isSub &&
3180 (ShImm == 0 ||
3181 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3182 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3183 return 2;
3184 return 3;
3187 case ARM::STR_PRE_REG:
3188 case ARM::STRB_PRE_REG: {
3189 unsigned ShOpVal = MI.getOperand(4).getImm();
3190 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3191 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3192 if (!isSub &&
3193 (ShImm == 0 ||
3194 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3195 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3196 return 2;
3197 return 3;
3200 case ARM::LDRH_PRE:
3201 case ARM::STRH_PRE: {
3202 unsigned Rt = MI.getOperand(0).getReg();
3203 unsigned Rm = MI.getOperand(3).getReg();
3204 if (!Rm)
3205 return 2;
3206 if (Rt == Rm)
3207 return 3;
3208 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3211 case ARM::LDR_POST_REG:
3212 case ARM::LDRB_POST_REG:
3213 case ARM::LDRH_POST: {
3214 unsigned Rt = MI.getOperand(0).getReg();
3215 unsigned Rm = MI.getOperand(3).getReg();
3216 return (Rt == Rm) ? 3 : 2;
3219 case ARM::LDR_PRE_IMM:
3220 case ARM::LDRB_PRE_IMM:
3221 case ARM::LDR_POST_IMM:
3222 case ARM::LDRB_POST_IMM:
3223 case ARM::STRB_POST_IMM:
3224 case ARM::STRB_POST_REG:
3225 case ARM::STRB_PRE_IMM:
3226 case ARM::STRH_POST:
3227 case ARM::STR_POST_IMM:
3228 case ARM::STR_POST_REG:
3229 case ARM::STR_PRE_IMM:
3230 return 2;
3232 case ARM::LDRSB_PRE:
3233 case ARM::LDRSH_PRE: {
3234 unsigned Rm = MI.getOperand(3).getReg();
3235 if (Rm == 0)
3236 return 3;
3237 unsigned Rt = MI.getOperand(0).getReg();
3238 if (Rt == Rm)
3239 return 4;
3240 unsigned ShOpVal = MI.getOperand(4).getImm();
3241 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3242 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3243 if (!isSub &&
3244 (ShImm == 0 ||
3245 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3246 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3247 return 3;
3248 return 4;
3251 case ARM::LDRD: {
3252 unsigned Rt = MI.getOperand(0).getReg();
3253 unsigned Rn = MI.getOperand(2).getReg();
3254 unsigned Rm = MI.getOperand(3).getReg();
3255 if (Rm)
3256 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3257 : 3;
3258 return (Rt == Rn) ? 3 : 2;
3261 case ARM::STRD: {
3262 unsigned Rm = MI.getOperand(3).getReg();
3263 if (Rm)
3264 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3265 : 3;
3266 return 2;
3269 case ARM::LDRD_POST:
3270 case ARM::t2LDRD_POST:
3271 return 3;
3273 case ARM::STRD_POST:
3274 case ARM::t2STRD_POST:
3275 return 4;
3277 case ARM::LDRD_PRE: {
3278 unsigned Rt = MI.getOperand(0).getReg();
3279 unsigned Rn = MI.getOperand(3).getReg();
3280 unsigned Rm = MI.getOperand(4).getReg();
3281 if (Rm)
3282 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3283 : 4;
3284 return (Rt == Rn) ? 4 : 3;
3287 case ARM::t2LDRD_PRE: {
3288 unsigned Rt = MI.getOperand(0).getReg();
3289 unsigned Rn = MI.getOperand(3).getReg();
3290 return (Rt == Rn) ? 4 : 3;
3293 case ARM::STRD_PRE: {
3294 unsigned Rm = MI.getOperand(4).getReg();
3295 if (Rm)
3296 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3297 : 4;
3298 return 3;
3301 case ARM::t2STRD_PRE:
3302 return 3;
3304 case ARM::t2LDR_POST:
3305 case ARM::t2LDRB_POST:
3306 case ARM::t2LDRB_PRE:
3307 case ARM::t2LDRSBi12:
3308 case ARM::t2LDRSBi8:
3309 case ARM::t2LDRSBpci:
3310 case ARM::t2LDRSBs:
3311 case ARM::t2LDRH_POST:
3312 case ARM::t2LDRH_PRE:
3313 case ARM::t2LDRSBT:
3314 case ARM::t2LDRSB_POST:
3315 case ARM::t2LDRSB_PRE:
3316 case ARM::t2LDRSH_POST:
3317 case ARM::t2LDRSH_PRE:
3318 case ARM::t2LDRSHi12:
3319 case ARM::t2LDRSHi8:
3320 case ARM::t2LDRSHpci:
3321 case ARM::t2LDRSHs:
3322 return 2;
3324 case ARM::t2LDRDi8: {
3325 unsigned Rt = MI.getOperand(0).getReg();
3326 unsigned Rn = MI.getOperand(2).getReg();
3327 return (Rt == Rn) ? 3 : 2;
3330 case ARM::t2STRB_POST:
3331 case ARM::t2STRB_PRE:
3332 case ARM::t2STRBs:
3333 case ARM::t2STRDi8:
3334 case ARM::t2STRH_POST:
3335 case ARM::t2STRH_PRE:
3336 case ARM::t2STRHs:
3337 case ARM::t2STR_POST:
3338 case ARM::t2STR_PRE:
3339 case ARM::t2STRs:
3340 return 2;
3344 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3345 // can't be easily determined return 0 (missing MachineMemOperand).
3347 // FIXME: The current MachineInstr design does not support relying on machine
3348 // mem operands to determine the width of a memory access. Instead, we expect
3349 // the target to provide this information based on the instruction opcode and
3350 // operands. However, using MachineMemOperand is the best solution now for
3351 // two reasons:
3353 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3354 // operands. This is much more dangerous than using the MachineMemOperand
3355 // sizes because CodeGen passes can insert/remove optional machine operands. In
3356 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3357 // postRA passes as well.
3359 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3360 // machine model that calls this should handle the unknown (zero size) case.
3362 // Long term, we should require a target hook that verifies MachineMemOperand
3363 // sizes during MC lowering. That target hook should be local to MC lowering
3364 // because we can't ensure that it is aware of other MI forms. Doing this will
3365 // ensure that MachineMemOperands are correctly propagated through all passes.
3366 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3367 unsigned Size = 0;
3368 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3369 E = MI.memoperands_end();
3370 I != E; ++I) {
3371 Size += (*I)->getSize();
3373 return Size / 4;
3376 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3377 unsigned NumRegs) {
3378 unsigned UOps = 1 + NumRegs; // 1 for address computation.
3379 switch (Opc) {
3380 default:
3381 break;
3382 case ARM::VLDMDIA_UPD:
3383 case ARM::VLDMDDB_UPD:
3384 case ARM::VLDMSIA_UPD:
3385 case ARM::VLDMSDB_UPD:
3386 case ARM::VSTMDIA_UPD:
3387 case ARM::VSTMDDB_UPD:
3388 case ARM::VSTMSIA_UPD:
3389 case ARM::VSTMSDB_UPD:
3390 case ARM::LDMIA_UPD:
3391 case ARM::LDMDA_UPD:
3392 case ARM::LDMDB_UPD:
3393 case ARM::LDMIB_UPD:
3394 case ARM::STMIA_UPD:
3395 case ARM::STMDA_UPD:
3396 case ARM::STMDB_UPD:
3397 case ARM::STMIB_UPD:
3398 case ARM::tLDMIA_UPD:
3399 case ARM::tSTMIA_UPD:
3400 case ARM::t2LDMIA_UPD:
3401 case ARM::t2LDMDB_UPD:
3402 case ARM::t2STMIA_UPD:
3403 case ARM::t2STMDB_UPD:
3404 ++UOps; // One for base register writeback.
3405 break;
3406 case ARM::LDMIA_RET:
3407 case ARM::tPOP_RET:
3408 case ARM::t2LDMIA_RET:
3409 UOps += 2; // One for base reg wb, one for write to pc.
3410 break;
3412 return UOps;
3415 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3416 const MachineInstr &MI) const {
3417 if (!ItinData || ItinData->isEmpty())
3418 return 1;
3420 const MCInstrDesc &Desc = MI.getDesc();
3421 unsigned Class = Desc.getSchedClass();
3422 int ItinUOps = ItinData->getNumMicroOps(Class);
3423 if (ItinUOps >= 0) {
3424 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3425 return getNumMicroOpsSwiftLdSt(ItinData, MI);
3427 return ItinUOps;
3430 unsigned Opc = MI.getOpcode();
3431 switch (Opc) {
3432 default:
3433 llvm_unreachable("Unexpected multi-uops instruction!");
3434 case ARM::VLDMQIA:
3435 case ARM::VSTMQIA:
3436 return 2;
3438 // The number of uOps for load / store multiple are determined by the number
3439 // registers.
3441 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3442 // same cycle. The scheduling for the first load / store must be done
3443 // separately by assuming the address is not 64-bit aligned.
3445 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3446 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3447 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3448 case ARM::VLDMDIA:
3449 case ARM::VLDMDIA_UPD:
3450 case ARM::VLDMDDB_UPD:
3451 case ARM::VLDMSIA:
3452 case ARM::VLDMSIA_UPD:
3453 case ARM::VLDMSDB_UPD:
3454 case ARM::VSTMDIA:
3455 case ARM::VSTMDIA_UPD:
3456 case ARM::VSTMDDB_UPD:
3457 case ARM::VSTMSIA:
3458 case ARM::VSTMSIA_UPD:
3459 case ARM::VSTMSDB_UPD: {
3460 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3461 return (NumRegs / 2) + (NumRegs % 2) + 1;
3464 case ARM::LDMIA_RET:
3465 case ARM::LDMIA:
3466 case ARM::LDMDA:
3467 case ARM::LDMDB:
3468 case ARM::LDMIB:
3469 case ARM::LDMIA_UPD:
3470 case ARM::LDMDA_UPD:
3471 case ARM::LDMDB_UPD:
3472 case ARM::LDMIB_UPD:
3473 case ARM::STMIA:
3474 case ARM::STMDA:
3475 case ARM::STMDB:
3476 case ARM::STMIB:
3477 case ARM::STMIA_UPD:
3478 case ARM::STMDA_UPD:
3479 case ARM::STMDB_UPD:
3480 case ARM::STMIB_UPD:
3481 case ARM::tLDMIA:
3482 case ARM::tLDMIA_UPD:
3483 case ARM::tSTMIA_UPD:
3484 case ARM::tPOP_RET:
3485 case ARM::tPOP:
3486 case ARM::tPUSH:
3487 case ARM::t2LDMIA_RET:
3488 case ARM::t2LDMIA:
3489 case ARM::t2LDMDB:
3490 case ARM::t2LDMIA_UPD:
3491 case ARM::t2LDMDB_UPD:
3492 case ARM::t2STMIA:
3493 case ARM::t2STMDB:
3494 case ARM::t2STMIA_UPD:
3495 case ARM::t2STMDB_UPD: {
3496 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3497 switch (Subtarget.getLdStMultipleTiming()) {
3498 case ARMSubtarget::SingleIssuePlusExtras:
3499 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3500 case ARMSubtarget::SingleIssue:
3501 // Assume the worst.
3502 return NumRegs;
3503 case ARMSubtarget::DoubleIssue: {
3504 if (NumRegs < 4)
3505 return 2;
3506 // 4 registers would be issued: 2, 2.
3507 // 5 registers would be issued: 2, 2, 1.
3508 unsigned UOps = (NumRegs / 2);
3509 if (NumRegs % 2)
3510 ++UOps;
3511 return UOps;
3513 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3514 unsigned UOps = (NumRegs / 2);
3515 // If there are odd number of registers or if it's not 64-bit aligned,
3516 // then it takes an extra AGU (Address Generation Unit) cycle.
3517 if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3518 (*MI.memoperands_begin())->getAlignment() < 8)
3519 ++UOps;
3520 return UOps;
3525 llvm_unreachable("Didn't find the number of microops");
3529 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3530 const MCInstrDesc &DefMCID,
3531 unsigned DefClass,
3532 unsigned DefIdx, unsigned DefAlign) const {
3533 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3534 if (RegNo <= 0)
3535 // Def is the address writeback.
3536 return ItinData->getOperandCycle(DefClass, DefIdx);
3538 int DefCycle;
3539 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3540 // (regno / 2) + (regno % 2) + 1
3541 DefCycle = RegNo / 2 + 1;
3542 if (RegNo % 2)
3543 ++DefCycle;
3544 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3545 DefCycle = RegNo;
3546 bool isSLoad = false;
3548 switch (DefMCID.getOpcode()) {
3549 default: break;
3550 case ARM::VLDMSIA:
3551 case ARM::VLDMSIA_UPD:
3552 case ARM::VLDMSDB_UPD:
3553 isSLoad = true;
3554 break;
3557 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3558 // then it takes an extra cycle.
3559 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3560 ++DefCycle;
3561 } else {
3562 // Assume the worst.
3563 DefCycle = RegNo + 2;
3566 return DefCycle;
3569 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3570 unsigned BaseReg = MI.getOperand(0).getReg();
3571 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3572 const auto &Op = MI.getOperand(i);
3573 if (Op.isReg() && Op.getReg() == BaseReg)
3574 return true;
3576 return false;
3578 unsigned
3579 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3580 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3581 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3582 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3586 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3587 const MCInstrDesc &DefMCID,
3588 unsigned DefClass,
3589 unsigned DefIdx, unsigned DefAlign) const {
3590 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3591 if (RegNo <= 0)
3592 // Def is the address writeback.
3593 return ItinData->getOperandCycle(DefClass, DefIdx);
3595 int DefCycle;
3596 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3597 // 4 registers would be issued: 1, 2, 1.
3598 // 5 registers would be issued: 1, 2, 2.
3599 DefCycle = RegNo / 2;
3600 if (DefCycle < 1)
3601 DefCycle = 1;
3602 // Result latency is issue cycle + 2: E2.
3603 DefCycle += 2;
3604 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3605 DefCycle = (RegNo / 2);
3606 // If there are odd number of registers or if it's not 64-bit aligned,
3607 // then it takes an extra AGU (Address Generation Unit) cycle.
3608 if ((RegNo % 2) || DefAlign < 8)
3609 ++DefCycle;
3610 // Result latency is AGU cycles + 2.
3611 DefCycle += 2;
3612 } else {
3613 // Assume the worst.
3614 DefCycle = RegNo + 2;
3617 return DefCycle;
3621 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3622 const MCInstrDesc &UseMCID,
3623 unsigned UseClass,
3624 unsigned UseIdx, unsigned UseAlign) const {
3625 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3626 if (RegNo <= 0)
3627 return ItinData->getOperandCycle(UseClass, UseIdx);
3629 int UseCycle;
3630 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3631 // (regno / 2) + (regno % 2) + 1
3632 UseCycle = RegNo / 2 + 1;
3633 if (RegNo % 2)
3634 ++UseCycle;
3635 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3636 UseCycle = RegNo;
3637 bool isSStore = false;
3639 switch (UseMCID.getOpcode()) {
3640 default: break;
3641 case ARM::VSTMSIA:
3642 case ARM::VSTMSIA_UPD:
3643 case ARM::VSTMSDB_UPD:
3644 isSStore = true;
3645 break;
3648 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3649 // then it takes an extra cycle.
3650 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3651 ++UseCycle;
3652 } else {
3653 // Assume the worst.
3654 UseCycle = RegNo + 2;
3657 return UseCycle;
3661 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3662 const MCInstrDesc &UseMCID,
3663 unsigned UseClass,
3664 unsigned UseIdx, unsigned UseAlign) const {
3665 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3666 if (RegNo <= 0)
3667 return ItinData->getOperandCycle(UseClass, UseIdx);
3669 int UseCycle;
3670 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3671 UseCycle = RegNo / 2;
3672 if (UseCycle < 2)
3673 UseCycle = 2;
3674 // Read in E3.
3675 UseCycle += 2;
3676 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3677 UseCycle = (RegNo / 2);
3678 // If there are odd number of registers or if it's not 64-bit aligned,
3679 // then it takes an extra AGU (Address Generation Unit) cycle.
3680 if ((RegNo % 2) || UseAlign < 8)
3681 ++UseCycle;
3682 } else {
3683 // Assume the worst.
3684 UseCycle = 1;
3686 return UseCycle;
3690 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3691 const MCInstrDesc &DefMCID,
3692 unsigned DefIdx, unsigned DefAlign,
3693 const MCInstrDesc &UseMCID,
3694 unsigned UseIdx, unsigned UseAlign) const {
3695 unsigned DefClass = DefMCID.getSchedClass();
3696 unsigned UseClass = UseMCID.getSchedClass();
3698 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3699 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3701 // This may be a def / use of a variable_ops instruction, the operand
3702 // latency might be determinable dynamically. Let the target try to
3703 // figure it out.
3704 int DefCycle = -1;
3705 bool LdmBypass = false;
3706 switch (DefMCID.getOpcode()) {
3707 default:
3708 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3709 break;
3711 case ARM::VLDMDIA:
3712 case ARM::VLDMDIA_UPD:
3713 case ARM::VLDMDDB_UPD:
3714 case ARM::VLDMSIA:
3715 case ARM::VLDMSIA_UPD:
3716 case ARM::VLDMSDB_UPD:
3717 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3718 break;
3720 case ARM::LDMIA_RET:
3721 case ARM::LDMIA:
3722 case ARM::LDMDA:
3723 case ARM::LDMDB:
3724 case ARM::LDMIB:
3725 case ARM::LDMIA_UPD:
3726 case ARM::LDMDA_UPD:
3727 case ARM::LDMDB_UPD:
3728 case ARM::LDMIB_UPD:
3729 case ARM::tLDMIA:
3730 case ARM::tLDMIA_UPD:
3731 case ARM::tPUSH:
3732 case ARM::t2LDMIA_RET:
3733 case ARM::t2LDMIA:
3734 case ARM::t2LDMDB:
3735 case ARM::t2LDMIA_UPD:
3736 case ARM::t2LDMDB_UPD:
3737 LdmBypass = true;
3738 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3739 break;
3742 if (DefCycle == -1)
3743 // We can't seem to determine the result latency of the def, assume it's 2.
3744 DefCycle = 2;
3746 int UseCycle = -1;
3747 switch (UseMCID.getOpcode()) {
3748 default:
3749 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3750 break;
3752 case ARM::VSTMDIA:
3753 case ARM::VSTMDIA_UPD:
3754 case ARM::VSTMDDB_UPD:
3755 case ARM::VSTMSIA:
3756 case ARM::VSTMSIA_UPD:
3757 case ARM::VSTMSDB_UPD:
3758 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3759 break;
3761 case ARM::STMIA:
3762 case ARM::STMDA:
3763 case ARM::STMDB:
3764 case ARM::STMIB:
3765 case ARM::STMIA_UPD:
3766 case ARM::STMDA_UPD:
3767 case ARM::STMDB_UPD:
3768 case ARM::STMIB_UPD:
3769 case ARM::tSTMIA_UPD:
3770 case ARM::tPOP_RET:
3771 case ARM::tPOP:
3772 case ARM::t2STMIA:
3773 case ARM::t2STMDB:
3774 case ARM::t2STMIA_UPD:
3775 case ARM::t2STMDB_UPD:
3776 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3777 break;
3780 if (UseCycle == -1)
3781 // Assume it's read in the first stage.
3782 UseCycle = 1;
3784 UseCycle = DefCycle - UseCycle + 1;
3785 if (UseCycle > 0) {
3786 if (LdmBypass) {
3787 // It's a variable_ops instruction so we can't use DefIdx here. Just use
3788 // first def operand.
3789 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3790 UseClass, UseIdx))
3791 --UseCycle;
3792 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3793 UseClass, UseIdx)) {
3794 --UseCycle;
3798 return UseCycle;
3801 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3802 const MachineInstr *MI, unsigned Reg,
3803 unsigned &DefIdx, unsigned &Dist) {
3804 Dist = 0;
3806 MachineBasicBlock::const_iterator I = MI; ++I;
3807 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3808 assert(II->isInsideBundle() && "Empty bundle?");
3810 int Idx = -1;
3811 while (II->isInsideBundle()) {
3812 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3813 if (Idx != -1)
3814 break;
3815 --II;
3816 ++Dist;
3819 assert(Idx != -1 && "Cannot find bundled definition!");
3820 DefIdx = Idx;
3821 return &*II;
3824 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3825 const MachineInstr &MI, unsigned Reg,
3826 unsigned &UseIdx, unsigned &Dist) {
3827 Dist = 0;
3829 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
3830 assert(II->isInsideBundle() && "Empty bundle?");
3831 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
3833 // FIXME: This doesn't properly handle multiple uses.
3834 int Idx = -1;
3835 while (II != E && II->isInsideBundle()) {
3836 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3837 if (Idx != -1)
3838 break;
3839 if (II->getOpcode() != ARM::t2IT)
3840 ++Dist;
3841 ++II;
3844 if (Idx == -1) {
3845 Dist = 0;
3846 return nullptr;
3849 UseIdx = Idx;
3850 return &*II;
3853 /// Return the number of cycles to add to (or subtract from) the static
3854 /// itinerary based on the def opcode and alignment. The caller will ensure that
3855 /// adjusted latency is at least one cycle.
3856 static int adjustDefLatency(const ARMSubtarget &Subtarget,
3857 const MachineInstr &DefMI,
3858 const MCInstrDesc &DefMCID, unsigned DefAlign) {
3859 int Adjust = 0;
3860 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3861 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3862 // variants are one cycle cheaper.
3863 switch (DefMCID.getOpcode()) {
3864 default: break;
3865 case ARM::LDRrs:
3866 case ARM::LDRBrs: {
3867 unsigned ShOpVal = DefMI.getOperand(3).getImm();
3868 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3869 if (ShImm == 0 ||
3870 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3871 --Adjust;
3872 break;
3874 case ARM::t2LDRs:
3875 case ARM::t2LDRBs:
3876 case ARM::t2LDRHs:
3877 case ARM::t2LDRSHs: {
3878 // Thumb2 mode: lsl only.
3879 unsigned ShAmt = DefMI.getOperand(3).getImm();
3880 if (ShAmt == 0 || ShAmt == 2)
3881 --Adjust;
3882 break;
3885 } else if (Subtarget.isSwift()) {
3886 // FIXME: Properly handle all of the latency adjustments for address
3887 // writeback.
3888 switch (DefMCID.getOpcode()) {
3889 default: break;
3890 case ARM::LDRrs:
3891 case ARM::LDRBrs: {
3892 unsigned ShOpVal = DefMI.getOperand(3).getImm();
3893 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3894 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3895 if (!isSub &&
3896 (ShImm == 0 ||
3897 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3898 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3899 Adjust -= 2;
3900 else if (!isSub &&
3901 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3902 --Adjust;
3903 break;
3905 case ARM::t2LDRs:
3906 case ARM::t2LDRBs:
3907 case ARM::t2LDRHs:
3908 case ARM::t2LDRSHs: {
3909 // Thumb2 mode: lsl only.
3910 unsigned ShAmt = DefMI.getOperand(3).getImm();
3911 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3912 Adjust -= 2;
3913 break;
3918 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
3919 switch (DefMCID.getOpcode()) {
3920 default: break;
3921 case ARM::VLD1q8:
3922 case ARM::VLD1q16:
3923 case ARM::VLD1q32:
3924 case ARM::VLD1q64:
3925 case ARM::VLD1q8wb_fixed:
3926 case ARM::VLD1q16wb_fixed:
3927 case ARM::VLD1q32wb_fixed:
3928 case ARM::VLD1q64wb_fixed:
3929 case ARM::VLD1q8wb_register:
3930 case ARM::VLD1q16wb_register:
3931 case ARM::VLD1q32wb_register:
3932 case ARM::VLD1q64wb_register:
3933 case ARM::VLD2d8:
3934 case ARM::VLD2d16:
3935 case ARM::VLD2d32:
3936 case ARM::VLD2q8:
3937 case ARM::VLD2q16:
3938 case ARM::VLD2q32:
3939 case ARM::VLD2d8wb_fixed:
3940 case ARM::VLD2d16wb_fixed:
3941 case ARM::VLD2d32wb_fixed:
3942 case ARM::VLD2q8wb_fixed:
3943 case ARM::VLD2q16wb_fixed:
3944 case ARM::VLD2q32wb_fixed:
3945 case ARM::VLD2d8wb_register:
3946 case ARM::VLD2d16wb_register:
3947 case ARM::VLD2d32wb_register:
3948 case ARM::VLD2q8wb_register:
3949 case ARM::VLD2q16wb_register:
3950 case ARM::VLD2q32wb_register:
3951 case ARM::VLD3d8:
3952 case ARM::VLD3d16:
3953 case ARM::VLD3d32:
3954 case ARM::VLD1d64T:
3955 case ARM::VLD3d8_UPD:
3956 case ARM::VLD3d16_UPD:
3957 case ARM::VLD3d32_UPD:
3958 case ARM::VLD1d64Twb_fixed:
3959 case ARM::VLD1d64Twb_register:
3960 case ARM::VLD3q8_UPD:
3961 case ARM::VLD3q16_UPD:
3962 case ARM::VLD3q32_UPD:
3963 case ARM::VLD4d8:
3964 case ARM::VLD4d16:
3965 case ARM::VLD4d32:
3966 case ARM::VLD1d64Q:
3967 case ARM::VLD4d8_UPD:
3968 case ARM::VLD4d16_UPD:
3969 case ARM::VLD4d32_UPD:
3970 case ARM::VLD1d64Qwb_fixed:
3971 case ARM::VLD1d64Qwb_register:
3972 case ARM::VLD4q8_UPD:
3973 case ARM::VLD4q16_UPD:
3974 case ARM::VLD4q32_UPD:
3975 case ARM::VLD1DUPq8:
3976 case ARM::VLD1DUPq16:
3977 case ARM::VLD1DUPq32:
3978 case ARM::VLD1DUPq8wb_fixed:
3979 case ARM::VLD1DUPq16wb_fixed:
3980 case ARM::VLD1DUPq32wb_fixed:
3981 case ARM::VLD1DUPq8wb_register:
3982 case ARM::VLD1DUPq16wb_register:
3983 case ARM::VLD1DUPq32wb_register:
3984 case ARM::VLD2DUPd8:
3985 case ARM::VLD2DUPd16:
3986 case ARM::VLD2DUPd32:
3987 case ARM::VLD2DUPd8wb_fixed:
3988 case ARM::VLD2DUPd16wb_fixed:
3989 case ARM::VLD2DUPd32wb_fixed:
3990 case ARM::VLD2DUPd8wb_register:
3991 case ARM::VLD2DUPd16wb_register:
3992 case ARM::VLD2DUPd32wb_register:
3993 case ARM::VLD4DUPd8:
3994 case ARM::VLD4DUPd16:
3995 case ARM::VLD4DUPd32:
3996 case ARM::VLD4DUPd8_UPD:
3997 case ARM::VLD4DUPd16_UPD:
3998 case ARM::VLD4DUPd32_UPD:
3999 case ARM::VLD1LNd8:
4000 case ARM::VLD1LNd16:
4001 case ARM::VLD1LNd32:
4002 case ARM::VLD1LNd8_UPD:
4003 case ARM::VLD1LNd16_UPD:
4004 case ARM::VLD1LNd32_UPD:
4005 case ARM::VLD2LNd8:
4006 case ARM::VLD2LNd16:
4007 case ARM::VLD2LNd32:
4008 case ARM::VLD2LNq16:
4009 case ARM::VLD2LNq32:
4010 case ARM::VLD2LNd8_UPD:
4011 case ARM::VLD2LNd16_UPD:
4012 case ARM::VLD2LNd32_UPD:
4013 case ARM::VLD2LNq16_UPD:
4014 case ARM::VLD2LNq32_UPD:
4015 case ARM::VLD4LNd8:
4016 case ARM::VLD4LNd16:
4017 case ARM::VLD4LNd32:
4018 case ARM::VLD4LNq16:
4019 case ARM::VLD4LNq32:
4020 case ARM::VLD4LNd8_UPD:
4021 case ARM::VLD4LNd16_UPD:
4022 case ARM::VLD4LNd32_UPD:
4023 case ARM::VLD4LNq16_UPD:
4024 case ARM::VLD4LNq32_UPD:
4025 // If the address is not 64-bit aligned, the latencies of these
4026 // instructions increases by one.
4027 ++Adjust;
4028 break;
4031 return Adjust;
4034 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4035 const MachineInstr &DefMI,
4036 unsigned DefIdx,
4037 const MachineInstr &UseMI,
4038 unsigned UseIdx) const {
4039 // No operand latency. The caller may fall back to getInstrLatency.
4040 if (!ItinData || ItinData->isEmpty())
4041 return -1;
4043 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4044 unsigned Reg = DefMO.getReg();
4046 const MachineInstr *ResolvedDefMI = &DefMI;
4047 unsigned DefAdj = 0;
4048 if (DefMI.isBundle())
4049 ResolvedDefMI =
4050 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4051 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4052 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4053 return 1;
4056 const MachineInstr *ResolvedUseMI = &UseMI;
4057 unsigned UseAdj = 0;
4058 if (UseMI.isBundle()) {
4059 ResolvedUseMI =
4060 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4061 if (!ResolvedUseMI)
4062 return -1;
4065 return getOperandLatencyImpl(
4066 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4067 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4070 int ARMBaseInstrInfo::getOperandLatencyImpl(
4071 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4072 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4073 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4074 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4075 if (Reg == ARM::CPSR) {
4076 if (DefMI.getOpcode() == ARM::FMSTAT) {
4077 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4078 return Subtarget.isLikeA9() ? 1 : 20;
4081 // CPSR set and branch can be paired in the same cycle.
4082 if (UseMI.isBranch())
4083 return 0;
4085 // Otherwise it takes the instruction latency (generally one).
4086 unsigned Latency = getInstrLatency(ItinData, DefMI);
4088 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4089 // its uses. Instructions which are otherwise scheduled between them may
4090 // incur a code size penalty (not able to use the CPSR setting 16-bit
4091 // instructions).
4092 if (Latency > 0 && Subtarget.isThumb2()) {
4093 const MachineFunction *MF = DefMI.getParent()->getParent();
4094 // FIXME: Use Function::optForSize().
4095 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4096 --Latency;
4098 return Latency;
4101 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4102 return -1;
4104 unsigned DefAlign = DefMI.hasOneMemOperand()
4105 ? (*DefMI.memoperands_begin())->getAlignment()
4106 : 0;
4107 unsigned UseAlign = UseMI.hasOneMemOperand()
4108 ? (*UseMI.memoperands_begin())->getAlignment()
4109 : 0;
4111 // Get the itinerary's latency if possible, and handle variable_ops.
4112 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4113 UseIdx, UseAlign);
4114 // Unable to find operand latency. The caller may resort to getInstrLatency.
4115 if (Latency < 0)
4116 return Latency;
4118 // Adjust for IT block position.
4119 int Adj = DefAdj + UseAdj;
4121 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4122 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4123 if (Adj >= 0 || (int)Latency > -Adj) {
4124 return Latency + Adj;
4126 // Return the itinerary latency, which may be zero but not less than zero.
4127 return Latency;
4131 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4132 SDNode *DefNode, unsigned DefIdx,
4133 SDNode *UseNode, unsigned UseIdx) const {
4134 if (!DefNode->isMachineOpcode())
4135 return 1;
4137 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4139 if (isZeroCost(DefMCID.Opcode))
4140 return 0;
4142 if (!ItinData || ItinData->isEmpty())
4143 return DefMCID.mayLoad() ? 3 : 1;
4145 if (!UseNode->isMachineOpcode()) {
4146 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4147 int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4148 int Threshold = 1 + Adj;
4149 return Latency <= Threshold ? 1 : Latency - Adj;
4152 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4153 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
4154 unsigned DefAlign = !DefMN->memoperands_empty()
4155 ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4156 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
4157 unsigned UseAlign = !UseMN->memoperands_empty()
4158 ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4159 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4160 UseMCID, UseIdx, UseAlign);
4162 if (Latency > 1 &&
4163 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4164 Subtarget.isCortexA7())) {
4165 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4166 // variants are one cycle cheaper.
4167 switch (DefMCID.getOpcode()) {
4168 default: break;
4169 case ARM::LDRrs:
4170 case ARM::LDRBrs: {
4171 unsigned ShOpVal =
4172 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4173 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4174 if (ShImm == 0 ||
4175 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4176 --Latency;
4177 break;
4179 case ARM::t2LDRs:
4180 case ARM::t2LDRBs:
4181 case ARM::t2LDRHs:
4182 case ARM::t2LDRSHs: {
4183 // Thumb2 mode: lsl only.
4184 unsigned ShAmt =
4185 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4186 if (ShAmt == 0 || ShAmt == 2)
4187 --Latency;
4188 break;
4191 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4192 // FIXME: Properly handle all of the latency adjustments for address
4193 // writeback.
4194 switch (DefMCID.getOpcode()) {
4195 default: break;
4196 case ARM::LDRrs:
4197 case ARM::LDRBrs: {
4198 unsigned ShOpVal =
4199 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4200 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4201 if (ShImm == 0 ||
4202 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4203 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4204 Latency -= 2;
4205 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4206 --Latency;
4207 break;
4209 case ARM::t2LDRs:
4210 case ARM::t2LDRBs:
4211 case ARM::t2LDRHs:
4212 case ARM::t2LDRSHs:
4213 // Thumb2 mode: lsl 0-3 only.
4214 Latency -= 2;
4215 break;
4219 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4220 switch (DefMCID.getOpcode()) {
4221 default: break;
4222 case ARM::VLD1q8:
4223 case ARM::VLD1q16:
4224 case ARM::VLD1q32:
4225 case ARM::VLD1q64:
4226 case ARM::VLD1q8wb_register:
4227 case ARM::VLD1q16wb_register:
4228 case ARM::VLD1q32wb_register:
4229 case ARM::VLD1q64wb_register:
4230 case ARM::VLD1q8wb_fixed:
4231 case ARM::VLD1q16wb_fixed:
4232 case ARM::VLD1q32wb_fixed:
4233 case ARM::VLD1q64wb_fixed:
4234 case ARM::VLD2d8:
4235 case ARM::VLD2d16:
4236 case ARM::VLD2d32:
4237 case ARM::VLD2q8Pseudo:
4238 case ARM::VLD2q16Pseudo:
4239 case ARM::VLD2q32Pseudo:
4240 case ARM::VLD2d8wb_fixed:
4241 case ARM::VLD2d16wb_fixed:
4242 case ARM::VLD2d32wb_fixed:
4243 case ARM::VLD2q8PseudoWB_fixed:
4244 case ARM::VLD2q16PseudoWB_fixed:
4245 case ARM::VLD2q32PseudoWB_fixed:
4246 case ARM::VLD2d8wb_register:
4247 case ARM::VLD2d16wb_register:
4248 case ARM::VLD2d32wb_register:
4249 case ARM::VLD2q8PseudoWB_register:
4250 case ARM::VLD2q16PseudoWB_register:
4251 case ARM::VLD2q32PseudoWB_register:
4252 case ARM::VLD3d8Pseudo:
4253 case ARM::VLD3d16Pseudo:
4254 case ARM::VLD3d32Pseudo:
4255 case ARM::VLD1d8TPseudo:
4256 case ARM::VLD1d16TPseudo:
4257 case ARM::VLD1d32TPseudo:
4258 case ARM::VLD1d64TPseudo:
4259 case ARM::VLD1d64TPseudoWB_fixed:
4260 case ARM::VLD1d64TPseudoWB_register:
4261 case ARM::VLD3d8Pseudo_UPD:
4262 case ARM::VLD3d16Pseudo_UPD:
4263 case ARM::VLD3d32Pseudo_UPD:
4264 case ARM::VLD3q8Pseudo_UPD:
4265 case ARM::VLD3q16Pseudo_UPD:
4266 case ARM::VLD3q32Pseudo_UPD:
4267 case ARM::VLD3q8oddPseudo:
4268 case ARM::VLD3q16oddPseudo:
4269 case ARM::VLD3q32oddPseudo:
4270 case ARM::VLD3q8oddPseudo_UPD:
4271 case ARM::VLD3q16oddPseudo_UPD:
4272 case ARM::VLD3q32oddPseudo_UPD:
4273 case ARM::VLD4d8Pseudo:
4274 case ARM::VLD4d16Pseudo:
4275 case ARM::VLD4d32Pseudo:
4276 case ARM::VLD1d8QPseudo:
4277 case ARM::VLD1d16QPseudo:
4278 case ARM::VLD1d32QPseudo:
4279 case ARM::VLD1d64QPseudo:
4280 case ARM::VLD1d64QPseudoWB_fixed:
4281 case ARM::VLD1d64QPseudoWB_register:
4282 case ARM::VLD1q8HighQPseudo:
4283 case ARM::VLD1q8LowQPseudo_UPD:
4284 case ARM::VLD1q8HighTPseudo:
4285 case ARM::VLD1q8LowTPseudo_UPD:
4286 case ARM::VLD1q16HighQPseudo:
4287 case ARM::VLD1q16LowQPseudo_UPD:
4288 case ARM::VLD1q16HighTPseudo:
4289 case ARM::VLD1q16LowTPseudo_UPD:
4290 case ARM::VLD1q32HighQPseudo:
4291 case ARM::VLD1q32LowQPseudo_UPD:
4292 case ARM::VLD1q32HighTPseudo:
4293 case ARM::VLD1q32LowTPseudo_UPD:
4294 case ARM::VLD1q64HighQPseudo:
4295 case ARM::VLD1q64LowQPseudo_UPD:
4296 case ARM::VLD1q64HighTPseudo:
4297 case ARM::VLD1q64LowTPseudo_UPD:
4298 case ARM::VLD4d8Pseudo_UPD:
4299 case ARM::VLD4d16Pseudo_UPD:
4300 case ARM::VLD4d32Pseudo_UPD:
4301 case ARM::VLD4q8Pseudo_UPD:
4302 case ARM::VLD4q16Pseudo_UPD:
4303 case ARM::VLD4q32Pseudo_UPD:
4304 case ARM::VLD4q8oddPseudo:
4305 case ARM::VLD4q16oddPseudo:
4306 case ARM::VLD4q32oddPseudo:
4307 case ARM::VLD4q8oddPseudo_UPD:
4308 case ARM::VLD4q16oddPseudo_UPD:
4309 case ARM::VLD4q32oddPseudo_UPD:
4310 case ARM::VLD1DUPq8:
4311 case ARM::VLD1DUPq16:
4312 case ARM::VLD1DUPq32:
4313 case ARM::VLD1DUPq8wb_fixed:
4314 case ARM::VLD1DUPq16wb_fixed:
4315 case ARM::VLD1DUPq32wb_fixed:
4316 case ARM::VLD1DUPq8wb_register:
4317 case ARM::VLD1DUPq16wb_register:
4318 case ARM::VLD1DUPq32wb_register:
4319 case ARM::VLD2DUPd8:
4320 case ARM::VLD2DUPd16:
4321 case ARM::VLD2DUPd32:
4322 case ARM::VLD2DUPd8wb_fixed:
4323 case ARM::VLD2DUPd16wb_fixed:
4324 case ARM::VLD2DUPd32wb_fixed:
4325 case ARM::VLD2DUPd8wb_register:
4326 case ARM::VLD2DUPd16wb_register:
4327 case ARM::VLD2DUPd32wb_register:
4328 case ARM::VLD2DUPq8EvenPseudo:
4329 case ARM::VLD2DUPq8OddPseudo:
4330 case ARM::VLD2DUPq16EvenPseudo:
4331 case ARM::VLD2DUPq16OddPseudo:
4332 case ARM::VLD2DUPq32EvenPseudo:
4333 case ARM::VLD2DUPq32OddPseudo:
4334 case ARM::VLD3DUPq8EvenPseudo:
4335 case ARM::VLD3DUPq8OddPseudo:
4336 case ARM::VLD3DUPq16EvenPseudo:
4337 case ARM::VLD3DUPq16OddPseudo:
4338 case ARM::VLD3DUPq32EvenPseudo:
4339 case ARM::VLD3DUPq32OddPseudo:
4340 case ARM::VLD4DUPd8Pseudo:
4341 case ARM::VLD4DUPd16Pseudo:
4342 case ARM::VLD4DUPd32Pseudo:
4343 case ARM::VLD4DUPd8Pseudo_UPD:
4344 case ARM::VLD4DUPd16Pseudo_UPD:
4345 case ARM::VLD4DUPd32Pseudo_UPD:
4346 case ARM::VLD4DUPq8EvenPseudo:
4347 case ARM::VLD4DUPq8OddPseudo:
4348 case ARM::VLD4DUPq16EvenPseudo:
4349 case ARM::VLD4DUPq16OddPseudo:
4350 case ARM::VLD4DUPq32EvenPseudo:
4351 case ARM::VLD4DUPq32OddPseudo:
4352 case ARM::VLD1LNq8Pseudo:
4353 case ARM::VLD1LNq16Pseudo:
4354 case ARM::VLD1LNq32Pseudo:
4355 case ARM::VLD1LNq8Pseudo_UPD:
4356 case ARM::VLD1LNq16Pseudo_UPD:
4357 case ARM::VLD1LNq32Pseudo_UPD:
4358 case ARM::VLD2LNd8Pseudo:
4359 case ARM::VLD2LNd16Pseudo:
4360 case ARM::VLD2LNd32Pseudo:
4361 case ARM::VLD2LNq16Pseudo:
4362 case ARM::VLD2LNq32Pseudo:
4363 case ARM::VLD2LNd8Pseudo_UPD:
4364 case ARM::VLD2LNd16Pseudo_UPD:
4365 case ARM::VLD2LNd32Pseudo_UPD:
4366 case ARM::VLD2LNq16Pseudo_UPD:
4367 case ARM::VLD2LNq32Pseudo_UPD:
4368 case ARM::VLD4LNd8Pseudo:
4369 case ARM::VLD4LNd16Pseudo:
4370 case ARM::VLD4LNd32Pseudo:
4371 case ARM::VLD4LNq16Pseudo:
4372 case ARM::VLD4LNq32Pseudo:
4373 case ARM::VLD4LNd8Pseudo_UPD:
4374 case ARM::VLD4LNd16Pseudo_UPD:
4375 case ARM::VLD4LNd32Pseudo_UPD:
4376 case ARM::VLD4LNq16Pseudo_UPD:
4377 case ARM::VLD4LNq32Pseudo_UPD:
4378 // If the address is not 64-bit aligned, the latencies of these
4379 // instructions increases by one.
4380 ++Latency;
4381 break;
4384 return Latency;
4387 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4388 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4389 MI.isImplicitDef())
4390 return 0;
4392 if (MI.isBundle())
4393 return 0;
4395 const MCInstrDesc &MCID = MI.getDesc();
4397 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4398 !Subtarget.cheapPredicableCPSRDef())) {
4399 // When predicated, CPSR is an additional source operand for CPSR updating
4400 // instructions, this apparently increases their latencies.
4401 return 1;
4403 return 0;
4406 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4407 const MachineInstr &MI,
4408 unsigned *PredCost) const {
4409 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4410 MI.isImplicitDef())
4411 return 1;
4413 // An instruction scheduler typically runs on unbundled instructions, however
4414 // other passes may query the latency of a bundled instruction.
4415 if (MI.isBundle()) {
4416 unsigned Latency = 0;
4417 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4418 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4419 while (++I != E && I->isInsideBundle()) {
4420 if (I->getOpcode() != ARM::t2IT)
4421 Latency += getInstrLatency(ItinData, *I, PredCost);
4423 return Latency;
4426 const MCInstrDesc &MCID = MI.getDesc();
4427 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4428 !Subtarget.cheapPredicableCPSRDef()))) {
4429 // When predicated, CPSR is an additional source operand for CPSR updating
4430 // instructions, this apparently increases their latencies.
4431 *PredCost = 1;
4433 // Be sure to call getStageLatency for an empty itinerary in case it has a
4434 // valid MinLatency property.
4435 if (!ItinData)
4436 return MI.mayLoad() ? 3 : 1;
4438 unsigned Class = MCID.getSchedClass();
4440 // For instructions with variable uops, use uops as latency.
4441 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4442 return getNumMicroOps(ItinData, MI);
4444 // For the common case, fall back on the itinerary's latency.
4445 unsigned Latency = ItinData->getStageLatency(Class);
4447 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4448 unsigned DefAlign =
4449 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4450 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4451 if (Adj >= 0 || (int)Latency > -Adj) {
4452 return Latency + Adj;
4454 return Latency;
4457 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4458 SDNode *Node) const {
4459 if (!Node->isMachineOpcode())
4460 return 1;
4462 if (!ItinData || ItinData->isEmpty())
4463 return 1;
4465 unsigned Opcode = Node->getMachineOpcode();
4466 switch (Opcode) {
4467 default:
4468 return ItinData->getStageLatency(get(Opcode).getSchedClass());
4469 case ARM::VLDMQIA:
4470 case ARM::VSTMQIA:
4471 return 2;
4475 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4476 const MachineRegisterInfo *MRI,
4477 const MachineInstr &DefMI,
4478 unsigned DefIdx,
4479 const MachineInstr &UseMI,
4480 unsigned UseIdx) const {
4481 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4482 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4483 if (Subtarget.nonpipelinedVFP() &&
4484 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4485 return true;
4487 // Hoist VFP / NEON instructions with 4 or higher latency.
4488 unsigned Latency =
4489 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4490 if (Latency <= 3)
4491 return false;
4492 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4493 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4496 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4497 const MachineInstr &DefMI,
4498 unsigned DefIdx) const {
4499 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4500 if (!ItinData || ItinData->isEmpty())
4501 return false;
4503 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4504 if (DDomain == ARMII::DomainGeneral) {
4505 unsigned DefClass = DefMI.getDesc().getSchedClass();
4506 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4507 return (DefCycle != -1 && DefCycle <= 2);
4509 return false;
4512 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4513 StringRef &ErrInfo) const {
4514 if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4515 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4516 return false;
4518 return true;
4521 // LoadStackGuard has so far only been implemented for MachO. Different code
4522 // sequence is needed for other targets.
4523 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4524 unsigned LoadImmOpc,
4525 unsigned LoadOpc) const {
4526 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4527 "ROPI/RWPI not currently supported with stack guard");
4529 MachineBasicBlock &MBB = *MI->getParent();
4530 DebugLoc DL = MI->getDebugLoc();
4531 unsigned Reg = MI->getOperand(0).getReg();
4532 const GlobalValue *GV =
4533 cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4534 MachineInstrBuilder MIB;
4536 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4537 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4539 if (Subtarget.isGVIndirectSymbol(GV)) {
4540 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4541 MIB.addReg(Reg, RegState::Kill).addImm(0);
4542 auto Flags = MachineMemOperand::MOLoad |
4543 MachineMemOperand::MODereferenceable |
4544 MachineMemOperand::MOInvariant;
4545 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4546 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4547 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4550 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4551 MIB.addReg(Reg, RegState::Kill)
4552 .addImm(0)
4553 .cloneMemRefs(*MI)
4554 .add(predOps(ARMCC::AL));
4557 bool
4558 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4559 unsigned &AddSubOpc,
4560 bool &NegAcc, bool &HasLane) const {
4561 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4562 if (I == MLxEntryMap.end())
4563 return false;
4565 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4566 MulOpc = Entry.MulOpc;
4567 AddSubOpc = Entry.AddSubOpc;
4568 NegAcc = Entry.NegAcc;
4569 HasLane = Entry.HasLane;
4570 return true;
4573 //===----------------------------------------------------------------------===//
4574 // Execution domains.
4575 //===----------------------------------------------------------------------===//
4577 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4578 // and some can go down both. The vmov instructions go down the VFP pipeline,
4579 // but they can be changed to vorr equivalents that are executed by the NEON
4580 // pipeline.
4582 // We use the following execution domain numbering:
4584 enum ARMExeDomain {
4585 ExeGeneric = 0,
4586 ExeVFP = 1,
4587 ExeNEON = 2
4591 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4593 std::pair<uint16_t, uint16_t>
4594 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4595 // If we don't have access to NEON instructions then we won't be able
4596 // to swizzle anything to the NEON domain. Check to make sure.
4597 if (Subtarget.hasNEON()) {
4598 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4599 // if they are not predicated.
4600 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4601 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4603 // CortexA9 is particularly picky about mixing the two and wants these
4604 // converted.
4605 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4606 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4607 MI.getOpcode() == ARM::VMOVS))
4608 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4610 // No other instructions can be swizzled, so just determine their domain.
4611 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4613 if (Domain & ARMII::DomainNEON)
4614 return std::make_pair(ExeNEON, 0);
4616 // Certain instructions can go either way on Cortex-A8.
4617 // Treat them as NEON instructions.
4618 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4619 return std::make_pair(ExeNEON, 0);
4621 if (Domain & ARMII::DomainVFP)
4622 return std::make_pair(ExeVFP, 0);
4624 return std::make_pair(ExeGeneric, 0);
4627 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4628 unsigned SReg, unsigned &Lane) {
4629 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4630 Lane = 0;
4632 if (DReg != ARM::NoRegister)
4633 return DReg;
4635 Lane = 1;
4636 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4638 assert(DReg && "S-register with no D super-register?");
4639 return DReg;
4642 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4643 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4644 /// zero if no register needs to be defined as implicit-use.
4646 /// If the function cannot determine if an SPR should be marked implicit use or
4647 /// not, it returns false.
4649 /// This function handles cases where an instruction is being modified from taking
4650 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4651 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4652 /// lane of the DPR).
4654 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4655 /// (including the case where the DPR itself is defined), it should not.
4657 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4658 MachineInstr &MI, unsigned DReg,
4659 unsigned Lane, unsigned &ImplicitSReg) {
4660 // If the DPR is defined or used already, the other SPR lane will be chained
4661 // correctly, so there is nothing to be done.
4662 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4663 ImplicitSReg = 0;
4664 return true;
4667 // Otherwise we need to go searching to see if the SPR is set explicitly.
4668 ImplicitSReg = TRI->getSubReg(DReg,
4669 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4670 MachineBasicBlock::LivenessQueryResult LQR =
4671 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4673 if (LQR == MachineBasicBlock::LQR_Live)
4674 return true;
4675 else if (LQR == MachineBasicBlock::LQR_Unknown)
4676 return false;
4678 // If the register is known not to be live, there is no need to add an
4679 // implicit-use.
4680 ImplicitSReg = 0;
4681 return true;
4684 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4685 unsigned Domain) const {
4686 unsigned DstReg, SrcReg, DReg;
4687 unsigned Lane;
4688 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4689 const TargetRegisterInfo *TRI = &getRegisterInfo();
4690 switch (MI.getOpcode()) {
4691 default:
4692 llvm_unreachable("cannot handle opcode!");
4693 break;
4694 case ARM::VMOVD:
4695 if (Domain != ExeNEON)
4696 break;
4698 // Zap the predicate operands.
4699 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4701 // Make sure we've got NEON instructions.
4702 assert(Subtarget.hasNEON() && "VORRd requires NEON");
4704 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4705 DstReg = MI.getOperand(0).getReg();
4706 SrcReg = MI.getOperand(1).getReg();
4708 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4709 MI.RemoveOperand(i - 1);
4711 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4712 MI.setDesc(get(ARM::VORRd));
4713 MIB.addReg(DstReg, RegState::Define)
4714 .addReg(SrcReg)
4715 .addReg(SrcReg)
4716 .add(predOps(ARMCC::AL));
4717 break;
4718 case ARM::VMOVRS:
4719 if (Domain != ExeNEON)
4720 break;
4721 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4723 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4724 DstReg = MI.getOperand(0).getReg();
4725 SrcReg = MI.getOperand(1).getReg();
4727 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4728 MI.RemoveOperand(i - 1);
4730 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4732 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4733 // Note that DSrc has been widened and the other lane may be undef, which
4734 // contaminates the entire register.
4735 MI.setDesc(get(ARM::VGETLNi32));
4736 MIB.addReg(DstReg, RegState::Define)
4737 .addReg(DReg, RegState::Undef)
4738 .addImm(Lane)
4739 .add(predOps(ARMCC::AL));
4741 // The old source should be an implicit use, otherwise we might think it
4742 // was dead before here.
4743 MIB.addReg(SrcReg, RegState::Implicit);
4744 break;
4745 case ARM::VMOVSR: {
4746 if (Domain != ExeNEON)
4747 break;
4748 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4750 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4751 DstReg = MI.getOperand(0).getReg();
4752 SrcReg = MI.getOperand(1).getReg();
4754 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4756 unsigned ImplicitSReg;
4757 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4758 break;
4760 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4761 MI.RemoveOperand(i - 1);
4763 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4764 // Again DDst may be undefined at the beginning of this instruction.
4765 MI.setDesc(get(ARM::VSETLNi32));
4766 MIB.addReg(DReg, RegState::Define)
4767 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4768 .addReg(SrcReg)
4769 .addImm(Lane)
4770 .add(predOps(ARMCC::AL));
4772 // The narrower destination must be marked as set to keep previous chains
4773 // in place.
4774 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4775 if (ImplicitSReg != 0)
4776 MIB.addReg(ImplicitSReg, RegState::Implicit);
4777 break;
4779 case ARM::VMOVS: {
4780 if (Domain != ExeNEON)
4781 break;
4783 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4784 DstReg = MI.getOperand(0).getReg();
4785 SrcReg = MI.getOperand(1).getReg();
4787 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4788 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4789 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4791 unsigned ImplicitSReg;
4792 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4793 break;
4795 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4796 MI.RemoveOperand(i - 1);
4798 if (DSrc == DDst) {
4799 // Destination can be:
4800 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4801 MI.setDesc(get(ARM::VDUPLN32d));
4802 MIB.addReg(DDst, RegState::Define)
4803 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
4804 .addImm(SrcLane)
4805 .add(predOps(ARMCC::AL));
4807 // Neither the source or the destination are naturally represented any
4808 // more, so add them in manually.
4809 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4810 MIB.addReg(SrcReg, RegState::Implicit);
4811 if (ImplicitSReg != 0)
4812 MIB.addReg(ImplicitSReg, RegState::Implicit);
4813 break;
4816 // In general there's no single instruction that can perform an S <-> S
4817 // move in NEON space, but a pair of VEXT instructions *can* do the
4818 // job. It turns out that the VEXTs needed will only use DSrc once, with
4819 // the position based purely on the combination of lane-0 and lane-1
4820 // involved. For example
4821 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
4822 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
4823 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
4824 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
4826 // Pattern of the MachineInstrs is:
4827 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4828 MachineInstrBuilder NewMIB;
4829 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
4830 DDst);
4832 // On the first instruction, both DSrc and DDst may be undef if present.
4833 // Specifically when the original instruction didn't have them as an
4834 // <imp-use>.
4835 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4836 bool CurUndef = !MI.readsRegister(CurReg, TRI);
4837 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4839 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4840 CurUndef = !MI.readsRegister(CurReg, TRI);
4841 NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
4842 .addImm(1)
4843 .add(predOps(ARMCC::AL));
4845 if (SrcLane == DstLane)
4846 NewMIB.addReg(SrcReg, RegState::Implicit);
4848 MI.setDesc(get(ARM::VEXTd32));
4849 MIB.addReg(DDst, RegState::Define);
4851 // On the second instruction, DDst has definitely been defined above, so
4852 // it is not undef. DSrc, if present, can be undef as above.
4853 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4854 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4855 MIB.addReg(CurReg, getUndefRegState(CurUndef));
4857 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4858 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4859 MIB.addReg(CurReg, getUndefRegState(CurUndef))
4860 .addImm(1)
4861 .add(predOps(ARMCC::AL));
4863 if (SrcLane != DstLane)
4864 MIB.addReg(SrcReg, RegState::Implicit);
4866 // As before, the original destination is no longer represented, add it
4867 // implicitly.
4868 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4869 if (ImplicitSReg != 0)
4870 MIB.addReg(ImplicitSReg, RegState::Implicit);
4871 break;
4876 //===----------------------------------------------------------------------===//
4877 // Partial register updates
4878 //===----------------------------------------------------------------------===//
4880 // Swift renames NEON registers with 64-bit granularity. That means any
4881 // instruction writing an S-reg implicitly reads the containing D-reg. The
4882 // problem is mostly avoided by translating f32 operations to v2f32 operations
4883 // on D-registers, but f32 loads are still a problem.
4885 // These instructions can load an f32 into a NEON register:
4887 // VLDRS - Only writes S, partial D update.
4888 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4889 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4891 // FCONSTD can be used as a dependency-breaking instruction.
4892 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
4893 const MachineInstr &MI, unsigned OpNum,
4894 const TargetRegisterInfo *TRI) const {
4895 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
4896 if (!PartialUpdateClearance)
4897 return 0;
4899 assert(TRI && "Need TRI instance");
4901 const MachineOperand &MO = MI.getOperand(OpNum);
4902 if (MO.readsReg())
4903 return 0;
4904 unsigned Reg = MO.getReg();
4905 int UseOp = -1;
4907 switch (MI.getOpcode()) {
4908 // Normal instructions writing only an S-register.
4909 case ARM::VLDRS:
4910 case ARM::FCONSTS:
4911 case ARM::VMOVSR:
4912 case ARM::VMOVv8i8:
4913 case ARM::VMOVv4i16:
4914 case ARM::VMOVv2i32:
4915 case ARM::VMOVv2f32:
4916 case ARM::VMOVv1i64:
4917 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
4918 break;
4920 // Explicitly reads the dependency.
4921 case ARM::VLD1LNd32:
4922 UseOp = 3;
4923 break;
4924 default:
4925 return 0;
4928 // If this instruction actually reads a value from Reg, there is no unwanted
4929 // dependency.
4930 if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
4931 return 0;
4933 // We must be able to clobber the whole D-reg.
4934 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4935 // Virtual register must be a def undef foo:ssub_0 operand.
4936 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
4937 return 0;
4938 } else if (ARM::SPRRegClass.contains(Reg)) {
4939 // Physical register: MI must define the full D-reg.
4940 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4941 &ARM::DPRRegClass);
4942 if (!DReg || !MI.definesRegister(DReg, TRI))
4943 return 0;
4946 // MI has an unwanted D-register dependency.
4947 // Avoid defs in the previous N instructrions.
4948 return PartialUpdateClearance;
4951 // Break a partial register dependency after getPartialRegUpdateClearance
4952 // returned non-zero.
4953 void ARMBaseInstrInfo::breakPartialRegDependency(
4954 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4955 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
4956 assert(TRI && "Need TRI instance");
4958 const MachineOperand &MO = MI.getOperand(OpNum);
4959 unsigned Reg = MO.getReg();
4960 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4961 "Can't break virtual register dependencies.");
4962 unsigned DReg = Reg;
4964 // If MI defines an S-reg, find the corresponding D super-register.
4965 if (ARM::SPRRegClass.contains(Reg)) {
4966 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4967 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4970 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4971 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4973 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4974 // the full D-register by loading the same value to both lanes. The
4975 // instruction is micro-coded with 2 uops, so don't do this until we can
4976 // properly schedule micro-coded instructions. The dispatcher stalls cause
4977 // too big regressions.
4979 // Insert the dependency-breaking FCONSTD before MI.
4980 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4981 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
4982 .addImm(96)
4983 .add(predOps(ARMCC::AL));
4984 MI.addRegisterKilled(DReg, TRI, true);
4987 bool ARMBaseInstrInfo::hasNOP() const {
4988 return Subtarget.getFeatureBits()[ARM::HasV6KOps];
4991 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4992 if (MI->getNumOperands() < 4)
4993 return true;
4994 unsigned ShOpVal = MI->getOperand(3).getImm();
4995 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4996 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4997 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4998 ((ShImm == 1 || ShImm == 2) &&
4999 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5000 return true;
5002 return false;
5005 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5006 const MachineInstr &MI, unsigned DefIdx,
5007 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5008 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5009 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5011 switch (MI.getOpcode()) {
5012 case ARM::VMOVDRR:
5013 // dX = VMOVDRR rY, rZ
5014 // is the same as:
5015 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5016 // Populate the InputRegs accordingly.
5017 // rY
5018 const MachineOperand *MOReg = &MI.getOperand(1);
5019 if (!MOReg->isUndef())
5020 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5021 MOReg->getSubReg(), ARM::ssub_0));
5022 // rZ
5023 MOReg = &MI.getOperand(2);
5024 if (!MOReg->isUndef())
5025 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5026 MOReg->getSubReg(), ARM::ssub_1));
5027 return true;
5029 llvm_unreachable("Target dependent opcode missing");
5032 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5033 const MachineInstr &MI, unsigned DefIdx,
5034 RegSubRegPairAndIdx &InputReg) const {
5035 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5036 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5038 switch (MI.getOpcode()) {
5039 case ARM::VMOVRRD:
5040 // rX, rY = VMOVRRD dZ
5041 // is the same as:
5042 // rX = EXTRACT_SUBREG dZ, ssub_0
5043 // rY = EXTRACT_SUBREG dZ, ssub_1
5044 const MachineOperand &MOReg = MI.getOperand(2);
5045 if (MOReg.isUndef())
5046 return false;
5047 InputReg.Reg = MOReg.getReg();
5048 InputReg.SubReg = MOReg.getSubReg();
5049 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5050 return true;
5052 llvm_unreachable("Target dependent opcode missing");
5055 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5056 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5057 RegSubRegPairAndIdx &InsertedReg) const {
5058 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5059 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5061 switch (MI.getOpcode()) {
5062 case ARM::VSETLNi32:
5063 // dX = VSETLNi32 dY, rZ, imm
5064 const MachineOperand &MOBaseReg = MI.getOperand(1);
5065 const MachineOperand &MOInsertedReg = MI.getOperand(2);
5066 if (MOInsertedReg.isUndef())
5067 return false;
5068 const MachineOperand &MOIndex = MI.getOperand(3);
5069 BaseReg.Reg = MOBaseReg.getReg();
5070 BaseReg.SubReg = MOBaseReg.getSubReg();
5072 InsertedReg.Reg = MOInsertedReg.getReg();
5073 InsertedReg.SubReg = MOInsertedReg.getSubReg();
5074 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5075 return true;
5077 llvm_unreachable("Target dependent opcode missing");
5080 std::pair<unsigned, unsigned>
5081 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5082 const unsigned Mask = ARMII::MO_OPTION_MASK;
5083 return std::make_pair(TF & Mask, TF & ~Mask);
5086 ArrayRef<std::pair<unsigned, const char *>>
5087 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5088 using namespace ARMII;
5090 static const std::pair<unsigned, const char *> TargetFlags[] = {
5091 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5092 return makeArrayRef(TargetFlags);
5095 ArrayRef<std::pair<unsigned, const char *>>
5096 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5097 using namespace ARMII;
5099 static const std::pair<unsigned, const char *> TargetFlags[] = {
5100 {MO_COFFSTUB, "arm-coffstub"},
5101 {MO_GOT, "arm-got"},
5102 {MO_SBREL, "arm-sbrel"},
5103 {MO_DLLIMPORT, "arm-dllimport"},
5104 {MO_SECREL, "arm-secrel"},
5105 {MO_NONLAZY, "arm-nonlazy"}};
5106 return makeArrayRef(TargetFlags);