Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / ARM / ARMFrameLowering.cpp
blobcee6f867526880d75666fa86e682f8025f241cfb
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "ARMFrameLowering.h"
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMBaseRegisterInfo.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMSubtarget.h"
19 #include "MCTargetDesc/ARMAddressingModes.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Utils/ARMBaseInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/RegisterScavenging.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetOpcodes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/MC/MCContext.h"
45 #include "llvm/MC/MCDwarf.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <iterator>
62 #include <utility>
63 #include <vector>
65 #define DEBUG_TYPE "arm-frame-lowering"
67 using namespace llvm;
69 static cl::opt<bool>
70 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
71 cl::desc("Align ARM NEON spills in prolog and epilog"));
73 static MachineBasicBlock::iterator
74 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
75 unsigned NumAlignedDPRCS2Regs);
77 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
78 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4),
79 STI(sti) {}
81 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
82 // iOS always has a FP for backtracking, force other targets to keep their FP
83 // when doing FastISel. The emitted code is currently superior, and in cases
84 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
85 return MF.getSubtarget<ARMSubtarget>().useFastISel();
88 /// Returns true if the target can safely skip saving callee-saved registers
89 /// for noreturn nounwind functions.
90 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
91 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
92 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
93 !MF.getFunction().hasFnAttribute(Attribute::UWTable));
95 // Frame pointer and link register are not treated as normal CSR, thus we
96 // can always skip CSR saves for nonreturning functions.
97 return true;
100 /// hasFP - Return true if the specified function should have a dedicated frame
101 /// pointer register. This is true if the function has variable sized allocas
102 /// or if frame pointer elimination is disabled.
103 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
104 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
105 const MachineFrameInfo &MFI = MF.getFrameInfo();
107 // ABI-required frame pointer.
108 if (MF.getTarget().Options.DisableFramePointerElim(MF))
109 return true;
111 // Frame pointer required for use within this function.
112 return (RegInfo->needsStackRealignment(MF) ||
113 MFI.hasVarSizedObjects() ||
114 MFI.isFrameAddressTaken());
117 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
118 /// not required, we reserve argument space for call sites in the function
119 /// immediately on entry to the current function. This eliminates the need for
120 /// add/sub sp brackets around call sites. Returns true if the call frame is
121 /// included as part of the stack frame.
122 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
123 const MachineFrameInfo &MFI = MF.getFrameInfo();
124 unsigned CFSize = MFI.getMaxCallFrameSize();
125 // It's not always a good idea to include the call frame as part of the
126 // stack frame. ARM (especially Thumb) has small immediate offset to
127 // address the stack frame. So a large call frame can cause poor codegen
128 // and may even makes it impossible to scavenge a register.
129 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
130 return false;
132 return !MFI.hasVarSizedObjects();
135 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
136 /// call frame pseudos can be simplified. Unlike most targets, having a FP
137 /// is not sufficient here since we still may reference some objects via SP
138 /// even when FP is available in Thumb2 mode.
139 bool
140 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
141 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
144 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII,
145 const MCPhysReg *CSRegs) {
146 // Integer spill area is handled with "pop".
147 if (isPopOpcode(MI.getOpcode())) {
148 // The first two operands are predicates. The last two are
149 // imp-def and imp-use of SP. Check everything in between.
150 for (int i = 5, e = MI.getNumOperands(); i != e; ++i)
151 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs))
152 return false;
153 return true;
155 if ((MI.getOpcode() == ARM::LDR_POST_IMM ||
156 MI.getOpcode() == ARM::LDR_POST_REG ||
157 MI.getOpcode() == ARM::t2LDR_POST) &&
158 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) &&
159 MI.getOperand(1).getReg() == ARM::SP)
160 return true;
162 return false;
165 static void emitRegPlusImmediate(
166 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
167 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
168 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
169 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
170 if (isARM)
171 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
172 Pred, PredReg, TII, MIFlags);
173 else
174 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
175 Pred, PredReg, TII, MIFlags);
178 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
179 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
180 const ARMBaseInstrInfo &TII, int NumBytes,
181 unsigned MIFlags = MachineInstr::NoFlags,
182 ARMCC::CondCodes Pred = ARMCC::AL,
183 unsigned PredReg = 0) {
184 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
185 MIFlags, Pred, PredReg);
188 static int sizeOfSPAdjustment(const MachineInstr &MI) {
189 int RegSize;
190 switch (MI.getOpcode()) {
191 case ARM::VSTMDDB_UPD:
192 RegSize = 8;
193 break;
194 case ARM::STMDB_UPD:
195 case ARM::t2STMDB_UPD:
196 RegSize = 4;
197 break;
198 case ARM::t2STR_PRE:
199 case ARM::STR_PRE_IMM:
200 return 4;
201 default:
202 llvm_unreachable("Unknown push or pop like instruction");
205 int count = 0;
206 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
207 // pred) so the list starts at 4.
208 for (int i = MI.getNumOperands() - 1; i >= 4; --i)
209 count += RegSize;
210 return count;
213 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
214 size_t StackSizeInBytes) {
215 const MachineFrameInfo &MFI = MF.getFrameInfo();
216 const Function &F = MF.getFunction();
217 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
218 if (F.hasFnAttribute("stack-probe-size"))
219 F.getFnAttribute("stack-probe-size")
220 .getValueAsString()
221 .getAsInteger(0, StackProbeSize);
222 return (StackSizeInBytes >= StackProbeSize) &&
223 !F.hasFnAttribute("no-stack-arg-probe");
226 namespace {
228 struct StackAdjustingInsts {
229 struct InstInfo {
230 MachineBasicBlock::iterator I;
231 unsigned SPAdjust;
232 bool BeforeFPSet;
235 SmallVector<InstInfo, 4> Insts;
237 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
238 bool BeforeFPSet = false) {
239 InstInfo Info = {I, SPAdjust, BeforeFPSet};
240 Insts.push_back(Info);
243 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
244 auto Info =
245 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
246 assert(Info != Insts.end() && "invalid sp adjusting instruction");
247 Info->SPAdjust += ExtraBytes;
250 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
251 const ARMBaseInstrInfo &TII, bool HasFP) {
252 MachineFunction &MF = *MBB.getParent();
253 unsigned CFAOffset = 0;
254 for (auto &Info : Insts) {
255 if (HasFP && !Info.BeforeFPSet)
256 return;
258 CFAOffset -= Info.SPAdjust;
259 unsigned CFIIndex = MF.addFrameInst(
260 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
261 BuildMI(MBB, std::next(Info.I), dl,
262 TII.get(TargetOpcode::CFI_INSTRUCTION))
263 .addCFIIndex(CFIIndex)
264 .setMIFlags(MachineInstr::FrameSetup);
269 } // end anonymous namespace
271 /// Emit an instruction sequence that will align the address in
272 /// register Reg by zero-ing out the lower bits. For versions of the
273 /// architecture that support Neon, this must be done in a single
274 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
275 /// single instruction. That function only gets called when optimizing
276 /// spilling of D registers on a core with the Neon instruction set
277 /// present.
278 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
279 const TargetInstrInfo &TII,
280 MachineBasicBlock &MBB,
281 MachineBasicBlock::iterator MBBI,
282 const DebugLoc &DL, const unsigned Reg,
283 const unsigned Alignment,
284 const bool MustBeSingleInstruction) {
285 const ARMSubtarget &AST =
286 static_cast<const ARMSubtarget &>(MF.getSubtarget());
287 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
288 const unsigned AlignMask = Alignment - 1;
289 const unsigned NrBitsToZero = countTrailingZeros(Alignment);
290 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
291 if (!AFI->isThumbFunction()) {
292 // if the BFC instruction is available, use that to zero the lower
293 // bits:
294 // bfc Reg, #0, log2(Alignment)
295 // otherwise use BIC, if the mask to zero the required number of bits
296 // can be encoded in the bic immediate field
297 // bic Reg, Reg, Alignment-1
298 // otherwise, emit
299 // lsr Reg, Reg, log2(Alignment)
300 // lsl Reg, Reg, log2(Alignment)
301 if (CanUseBFC) {
302 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
303 .addReg(Reg, RegState::Kill)
304 .addImm(~AlignMask)
305 .add(predOps(ARMCC::AL));
306 } else if (AlignMask <= 255) {
307 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
308 .addReg(Reg, RegState::Kill)
309 .addImm(AlignMask)
310 .add(predOps(ARMCC::AL))
311 .add(condCodeOp());
312 } else {
313 assert(!MustBeSingleInstruction &&
314 "Shouldn't call emitAligningInstructions demanding a single "
315 "instruction to be emitted for large stack alignment for a target "
316 "without BFC.");
317 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
318 .addReg(Reg, RegState::Kill)
319 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
320 .add(predOps(ARMCC::AL))
321 .add(condCodeOp());
322 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
323 .addReg(Reg, RegState::Kill)
324 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
325 .add(predOps(ARMCC::AL))
326 .add(condCodeOp());
328 } else {
329 // Since this is only reached for Thumb-2 targets, the BFC instruction
330 // should always be available.
331 assert(CanUseBFC);
332 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
333 .addReg(Reg, RegState::Kill)
334 .addImm(~AlignMask)
335 .add(predOps(ARMCC::AL));
339 /// We need the offset of the frame pointer relative to other MachineFrameInfo
340 /// offsets which are encoded relative to SP at function begin.
341 /// See also emitPrologue() for how the FP is set up.
342 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
343 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
344 /// this to produce a conservative estimate that we check in an assert() later.
345 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) {
346 // This is a conservative estimation: Assume the frame pointer being r7 and
347 // pc("r15") up to r8 getting spilled before (= 8 registers).
348 return -AFI.getArgRegsSaveSize() - (8 * 4);
351 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
352 MachineBasicBlock &MBB) const {
353 MachineBasicBlock::iterator MBBI = MBB.begin();
354 MachineFrameInfo &MFI = MF.getFrameInfo();
355 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
356 MachineModuleInfo &MMI = MF.getMMI();
357 MCContext &Context = MMI.getContext();
358 const TargetMachine &TM = MF.getTarget();
359 const MCRegisterInfo *MRI = Context.getRegisterInfo();
360 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
361 const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
362 assert(!AFI->isThumb1OnlyFunction() &&
363 "This emitPrologue does not support Thumb1!");
364 bool isARM = !AFI->isThumbFunction();
365 unsigned Align = STI.getFrameLowering()->getStackAlignment();
366 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
367 unsigned NumBytes = MFI.getStackSize();
368 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
370 // Debug location must be unknown since the first debug location is used
371 // to determine the end of the prologue.
372 DebugLoc dl;
374 unsigned FramePtr = RegInfo->getFrameRegister(MF);
376 // Determine the sizes of each callee-save spill areas and record which frame
377 // belongs to which callee-save spill areas.
378 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
379 int FramePtrSpillFI = 0;
380 int D8SpillFI = 0;
382 // All calls are tail calls in GHC calling conv, and functions have no
383 // prologue/epilogue.
384 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
385 return;
387 StackAdjustingInsts DefCFAOffsetCandidates;
388 bool HasFP = hasFP(MF);
390 // Allocate the vararg register save area.
391 if (ArgRegsSaveSize) {
392 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
393 MachineInstr::FrameSetup);
394 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
397 if (!AFI->hasStackFrame() &&
398 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
399 if (NumBytes - ArgRegsSaveSize != 0) {
400 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
401 MachineInstr::FrameSetup);
402 DefCFAOffsetCandidates.addInst(std::prev(MBBI),
403 NumBytes - ArgRegsSaveSize, true);
405 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
406 return;
409 // Determine spill area sizes.
410 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
411 unsigned Reg = CSI[i].getReg();
412 int FI = CSI[i].getFrameIdx();
413 switch (Reg) {
414 case ARM::R8:
415 case ARM::R9:
416 case ARM::R10:
417 case ARM::R11:
418 case ARM::R12:
419 if (STI.splitFramePushPop(MF)) {
420 GPRCS2Size += 4;
421 break;
423 LLVM_FALLTHROUGH;
424 case ARM::R0:
425 case ARM::R1:
426 case ARM::R2:
427 case ARM::R3:
428 case ARM::R4:
429 case ARM::R5:
430 case ARM::R6:
431 case ARM::R7:
432 case ARM::LR:
433 if (Reg == FramePtr)
434 FramePtrSpillFI = FI;
435 GPRCS1Size += 4;
436 break;
437 default:
438 // This is a DPR. Exclude the aligned DPRCS2 spills.
439 if (Reg == ARM::D8)
440 D8SpillFI = FI;
441 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
442 DPRCSSize += 8;
446 // Move past area 1.
447 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
448 if (GPRCS1Size > 0) {
449 GPRCS1Push = LastPush = MBBI++;
450 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
453 // Determine starting offsets of spill areas.
454 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size;
455 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
456 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U;
457 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign;
458 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
459 int FramePtrOffsetInPush = 0;
460 if (HasFP) {
461 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
462 assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset &&
463 "Max FP estimation is wrong");
464 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize;
465 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
466 NumBytes);
468 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
469 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
470 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
472 // Move past area 2.
473 if (GPRCS2Size > 0) {
474 GPRCS2Push = LastPush = MBBI++;
475 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
478 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
479 // .cfi_offset operations will reflect that.
480 if (DPRGapSize) {
481 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
482 if (LastPush != MBB.end() &&
483 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
484 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
485 else {
486 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
487 MachineInstr::FrameSetup);
488 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
492 // Move past area 3.
493 if (DPRCSSize > 0) {
494 // Since vpush register list cannot have gaps, there may be multiple vpush
495 // instructions in the prologue.
496 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
497 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
498 LastPush = MBBI++;
502 // Move past the aligned DPRCS2 area.
503 if (AFI->getNumAlignedDPRCS2Regs() > 0) {
504 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
505 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
506 // leaves the stack pointer pointing to the DPRCS2 area.
508 // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
509 NumBytes += MFI.getObjectOffset(D8SpillFI);
510 } else
511 NumBytes = DPRCSOffset;
513 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
514 uint32_t NumWords = NumBytes >> 2;
516 if (NumWords < 65536)
517 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
518 .addImm(NumWords)
519 .setMIFlags(MachineInstr::FrameSetup)
520 .add(predOps(ARMCC::AL));
521 else
522 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
523 .addImm(NumWords)
524 .setMIFlags(MachineInstr::FrameSetup);
526 switch (TM.getCodeModel()) {
527 case CodeModel::Tiny:
528 llvm_unreachable("Tiny code model not available on ARM.");
529 case CodeModel::Small:
530 case CodeModel::Medium:
531 case CodeModel::Kernel:
532 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
533 .add(predOps(ARMCC::AL))
534 .addExternalSymbol("__chkstk")
535 .addReg(ARM::R4, RegState::Implicit)
536 .setMIFlags(MachineInstr::FrameSetup);
537 break;
538 case CodeModel::Large:
539 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
540 .addExternalSymbol("__chkstk")
541 .setMIFlags(MachineInstr::FrameSetup);
543 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
544 .add(predOps(ARMCC::AL))
545 .addReg(ARM::R12, RegState::Kill)
546 .addReg(ARM::R4, RegState::Implicit)
547 .setMIFlags(MachineInstr::FrameSetup);
548 break;
551 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
552 .addReg(ARM::SP, RegState::Kill)
553 .addReg(ARM::R4, RegState::Kill)
554 .setMIFlags(MachineInstr::FrameSetup)
555 .add(predOps(ARMCC::AL))
556 .add(condCodeOp());
557 NumBytes = 0;
560 if (NumBytes) {
561 // Adjust SP after all the callee-save spills.
562 if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
563 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
564 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
565 else {
566 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
567 MachineInstr::FrameSetup);
568 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
571 if (HasFP && isARM)
572 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
573 // Note it's not safe to do this in Thumb2 mode because it would have
574 // taken two instructions:
575 // mov sp, r7
576 // sub sp, #24
577 // If an interrupt is taken between the two instructions, then sp is in
578 // an inconsistent state (pointing to the middle of callee-saved area).
579 // The interrupt handler can end up clobbering the registers.
580 AFI->setShouldRestoreSPFromFP(true);
583 // Set FP to point to the stack slot that contains the previous FP.
584 // For iOS, FP is R7, which has now been stored in spill area 1.
585 // Otherwise, if this is not iOS, all the callee-saved registers go
586 // into spill area 1, including the FP in R11. In either case, it
587 // is in area one and the adjustment needs to take place just after
588 // that push.
589 if (HasFP) {
590 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
591 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
592 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
593 dl, TII, FramePtr, ARM::SP,
594 PushSize + FramePtrOffsetInPush,
595 MachineInstr::FrameSetup);
596 if (FramePtrOffsetInPush + PushSize != 0) {
597 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
598 nullptr, MRI->getDwarfRegNum(FramePtr, true),
599 -(ArgRegsSaveSize - FramePtrOffsetInPush)));
600 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
601 .addCFIIndex(CFIIndex)
602 .setMIFlags(MachineInstr::FrameSetup);
603 } else {
604 unsigned CFIIndex =
605 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
606 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
607 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
608 .addCFIIndex(CFIIndex)
609 .setMIFlags(MachineInstr::FrameSetup);
613 // Now that the prologue's actual instructions are finalised, we can insert
614 // the necessary DWARF cf instructions to describe the situation. Start by
615 // recording where each register ended up:
616 if (GPRCS1Size > 0) {
617 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
618 int CFIIndex;
619 for (const auto &Entry : CSI) {
620 unsigned Reg = Entry.getReg();
621 int FI = Entry.getFrameIdx();
622 switch (Reg) {
623 case ARM::R8:
624 case ARM::R9:
625 case ARM::R10:
626 case ARM::R11:
627 case ARM::R12:
628 if (STI.splitFramePushPop(MF))
629 break;
630 LLVM_FALLTHROUGH;
631 case ARM::R0:
632 case ARM::R1:
633 case ARM::R2:
634 case ARM::R3:
635 case ARM::R4:
636 case ARM::R5:
637 case ARM::R6:
638 case ARM::R7:
639 case ARM::LR:
640 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
641 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
642 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
643 .addCFIIndex(CFIIndex)
644 .setMIFlags(MachineInstr::FrameSetup);
645 break;
650 if (GPRCS2Size > 0) {
651 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
652 for (const auto &Entry : CSI) {
653 unsigned Reg = Entry.getReg();
654 int FI = Entry.getFrameIdx();
655 switch (Reg) {
656 case ARM::R8:
657 case ARM::R9:
658 case ARM::R10:
659 case ARM::R11:
660 case ARM::R12:
661 if (STI.splitFramePushPop(MF)) {
662 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
663 unsigned Offset = MFI.getObjectOffset(FI);
664 unsigned CFIIndex = MF.addFrameInst(
665 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
666 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
667 .addCFIIndex(CFIIndex)
668 .setMIFlags(MachineInstr::FrameSetup);
670 break;
675 if (DPRCSSize > 0) {
676 // Since vpush register list cannot have gaps, there may be multiple vpush
677 // instructions in the prologue.
678 MachineBasicBlock::iterator Pos = std::next(LastPush);
679 for (const auto &Entry : CSI) {
680 unsigned Reg = Entry.getReg();
681 int FI = Entry.getFrameIdx();
682 if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
683 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
684 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
685 unsigned Offset = MFI.getObjectOffset(FI);
686 unsigned CFIIndex = MF.addFrameInst(
687 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
688 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
689 .addCFIIndex(CFIIndex)
690 .setMIFlags(MachineInstr::FrameSetup);
695 // Now we can emit descriptions of where the canonical frame address was
696 // throughout the process. If we have a frame pointer, it takes over the job
697 // half-way through, so only the first few .cfi_def_cfa_offset instructions
698 // actually get emitted.
699 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
701 if (STI.isTargetELF() && hasFP(MF))
702 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
703 AFI->getFramePtrSpillOffset());
705 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
706 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
707 AFI->setDPRCalleeSavedGapSize(DPRGapSize);
708 AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
710 // If we need dynamic stack realignment, do it here. Be paranoid and make
711 // sure if we also have VLAs, we have a base pointer for frame access.
712 // If aligned NEON registers were spilled, the stack has already been
713 // realigned.
714 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
715 unsigned MaxAlign = MFI.getMaxAlignment();
716 assert(!AFI->isThumb1OnlyFunction());
717 if (!AFI->isThumbFunction()) {
718 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
719 false);
720 } else {
721 // We cannot use sp as source/dest register here, thus we're using r4 to
722 // perform the calculations. We're emitting the following sequence:
723 // mov r4, sp
724 // -- use emitAligningInstructions to produce best sequence to zero
725 // -- out lower bits in r4
726 // mov sp, r4
727 // FIXME: It will be better just to find spare register here.
728 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
729 .addReg(ARM::SP, RegState::Kill)
730 .add(predOps(ARMCC::AL));
731 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
732 false);
733 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
734 .addReg(ARM::R4, RegState::Kill)
735 .add(predOps(ARMCC::AL));
738 AFI->setShouldRestoreSPFromFP(true);
741 // If we need a base pointer, set it up here. It's whatever the value
742 // of the stack pointer is at this point. Any variable size objects
743 // will be allocated after this, so we can still use the base pointer
744 // to reference locals.
745 // FIXME: Clarify FrameSetup flags here.
746 if (RegInfo->hasBasePointer(MF)) {
747 if (isARM)
748 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
749 .addReg(ARM::SP)
750 .add(predOps(ARMCC::AL))
751 .add(condCodeOp());
752 else
753 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
754 .addReg(ARM::SP)
755 .add(predOps(ARMCC::AL));
758 // If the frame has variable sized objects then the epilogue must restore
759 // the sp from fp. We can assume there's an FP here since hasFP already
760 // checks for hasVarSizedObjects.
761 if (MFI.hasVarSizedObjects())
762 AFI->setShouldRestoreSPFromFP(true);
765 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
766 MachineBasicBlock &MBB) const {
767 MachineFrameInfo &MFI = MF.getFrameInfo();
768 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
769 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
770 const ARMBaseInstrInfo &TII =
771 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
772 assert(!AFI->isThumb1OnlyFunction() &&
773 "This emitEpilogue does not support Thumb1!");
774 bool isARM = !AFI->isThumbFunction();
776 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
777 int NumBytes = (int)MFI.getStackSize();
778 unsigned FramePtr = RegInfo->getFrameRegister(MF);
780 // All calls are tail calls in GHC calling conv, and functions have no
781 // prologue/epilogue.
782 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
783 return;
785 // First put ourselves on the first (from top) terminator instructions.
786 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
787 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
789 if (!AFI->hasStackFrame()) {
790 if (NumBytes - ArgRegsSaveSize != 0)
791 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize);
792 } else {
793 // Unwind MBBI to point to first LDR / VLDRD.
794 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
795 if (MBBI != MBB.begin()) {
796 do {
797 --MBBI;
798 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs));
799 if (!isCSRestore(*MBBI, TII, CSRegs))
800 ++MBBI;
803 // Move SP to start of FP callee save spill area.
804 NumBytes -= (ArgRegsSaveSize +
805 AFI->getGPRCalleeSavedArea1Size() +
806 AFI->getGPRCalleeSavedArea2Size() +
807 AFI->getDPRCalleeSavedGapSize() +
808 AFI->getDPRCalleeSavedAreaSize());
810 // Reset SP based on frame pointer only if the stack frame extends beyond
811 // frame pointer stack slot or target is ELF and the function has FP.
812 if (AFI->shouldRestoreSPFromFP()) {
813 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
814 if (NumBytes) {
815 if (isARM)
816 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
817 ARMCC::AL, 0, TII);
818 else {
819 // It's not possible to restore SP from FP in a single instruction.
820 // For iOS, this looks like:
821 // mov sp, r7
822 // sub sp, #24
823 // This is bad, if an interrupt is taken after the mov, sp is in an
824 // inconsistent state.
825 // Use the first callee-saved register as a scratch register.
826 assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
827 "No scratch register to restore SP from FP!");
828 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
829 ARMCC::AL, 0, TII);
830 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
831 .addReg(ARM::R4)
832 .add(predOps(ARMCC::AL));
834 } else {
835 // Thumb2 or ARM.
836 if (isARM)
837 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
838 .addReg(FramePtr)
839 .add(predOps(ARMCC::AL))
840 .add(condCodeOp());
841 else
842 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
843 .addReg(FramePtr)
844 .add(predOps(ARMCC::AL));
846 } else if (NumBytes &&
847 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
848 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
850 // Increment past our save areas.
851 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
852 MBBI++;
853 // Since vpop register list cannot have gaps, there may be multiple vpop
854 // instructions in the epilogue.
855 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
856 MBBI++;
858 if (AFI->getDPRCalleeSavedGapSize()) {
859 assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
860 "unexpected DPR alignment gap");
861 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize());
864 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
865 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
868 if (ArgRegsSaveSize)
869 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize);
872 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
873 /// debug info. It's the same as what we use for resolving the code-gen
874 /// references for now. FIXME: This can go wrong when references are
875 /// SP-relative and simple call frames aren't used.
877 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
878 unsigned &FrameReg) const {
879 return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
883 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
884 int FI, unsigned &FrameReg,
885 int SPAdj) const {
886 const MachineFrameInfo &MFI = MF.getFrameInfo();
887 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
888 MF.getSubtarget().getRegisterInfo());
889 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
890 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
891 int FPOffset = Offset - AFI->getFramePtrSpillOffset();
892 bool isFixed = MFI.isFixedObjectIndex(FI);
894 FrameReg = ARM::SP;
895 Offset += SPAdj;
897 // SP can move around if there are allocas. We may also lose track of SP
898 // when emergency spilling inside a non-reserved call frame setup.
899 bool hasMovingSP = !hasReservedCallFrame(MF);
901 // When dynamically realigning the stack, use the frame pointer for
902 // parameters, and the stack/base pointer for locals.
903 if (RegInfo->needsStackRealignment(MF)) {
904 assert(hasFP(MF) && "dynamic stack realignment without a FP!");
905 if (isFixed) {
906 FrameReg = RegInfo->getFrameRegister(MF);
907 Offset = FPOffset;
908 } else if (hasMovingSP) {
909 assert(RegInfo->hasBasePointer(MF) &&
910 "VLAs and dynamic stack alignment, but missing base pointer!");
911 FrameReg = RegInfo->getBaseRegister();
912 Offset -= SPAdj;
914 return Offset;
917 // If there is a frame pointer, use it when we can.
918 if (hasFP(MF) && AFI->hasStackFrame()) {
919 // Use frame pointer to reference fixed objects. Use it for locals if
920 // there are VLAs (and thus the SP isn't reliable as a base).
921 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
922 FrameReg = RegInfo->getFrameRegister(MF);
923 return FPOffset;
924 } else if (hasMovingSP) {
925 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
926 if (AFI->isThumb2Function()) {
927 // Try to use the frame pointer if we can, else use the base pointer
928 // since it's available. This is handy for the emergency spill slot, in
929 // particular.
930 if (FPOffset >= -255 && FPOffset < 0) {
931 FrameReg = RegInfo->getFrameRegister(MF);
932 return FPOffset;
935 } else if (AFI->isThumbFunction()) {
936 // Prefer SP to base pointer, if the offset is suitably aligned and in
937 // range as the effective range of the immediate offset is bigger when
938 // basing off SP.
939 // Use add <rd>, sp, #<imm8>
940 // ldr <rd>, [sp, #<imm8>]
941 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
942 return Offset;
943 // In Thumb2 mode, the negative offset is very limited. Try to avoid
944 // out of range references. ldr <rt>,[<rn>, #-<imm8>]
945 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
946 FrameReg = RegInfo->getFrameRegister(MF);
947 return FPOffset;
949 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
950 // Otherwise, use SP or FP, whichever is closer to the stack slot.
951 FrameReg = RegInfo->getFrameRegister(MF);
952 return FPOffset;
955 // Use the base pointer if we have one.
956 if (RegInfo->hasBasePointer(MF))
957 FrameReg = RegInfo->getBaseRegister();
958 return Offset;
961 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
962 MachineBasicBlock::iterator MI,
963 const std::vector<CalleeSavedInfo> &CSI,
964 unsigned StmOpc, unsigned StrOpc,
965 bool NoGap,
966 bool(*Func)(unsigned, bool),
967 unsigned NumAlignedDPRCS2Regs,
968 unsigned MIFlags) const {
969 MachineFunction &MF = *MBB.getParent();
970 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
971 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
973 DebugLoc DL;
975 using RegAndKill = std::pair<unsigned, bool>;
977 SmallVector<RegAndKill, 4> Regs;
978 unsigned i = CSI.size();
979 while (i != 0) {
980 unsigned LastReg = 0;
981 for (; i != 0; --i) {
982 unsigned Reg = CSI[i-1].getReg();
983 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
985 // D-registers in the aligned area DPRCS2 are NOT spilled here.
986 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
987 continue;
989 const MachineRegisterInfo &MRI = MF.getRegInfo();
990 bool isLiveIn = MRI.isLiveIn(Reg);
991 if (!isLiveIn && !MRI.isReserved(Reg))
992 MBB.addLiveIn(Reg);
993 // If NoGap is true, push consecutive registers and then leave the rest
994 // for other instructions. e.g.
995 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
996 if (NoGap && LastReg && LastReg != Reg-1)
997 break;
998 LastReg = Reg;
999 // Do not set a kill flag on values that are also marked as live-in. This
1000 // happens with the @llvm-returnaddress intrinsic and with arguments
1001 // passed in callee saved registers.
1002 // Omitting the kill flags is conservatively correct even if the live-in
1003 // is not used after all.
1004 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1007 if (Regs.empty())
1008 continue;
1010 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1011 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1014 if (Regs.size() > 1 || StrOpc== 0) {
1015 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1016 .addReg(ARM::SP)
1017 .setMIFlags(MIFlags)
1018 .add(predOps(ARMCC::AL));
1019 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1020 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1021 } else if (Regs.size() == 1) {
1022 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1023 .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1024 .addReg(ARM::SP)
1025 .setMIFlags(MIFlags)
1026 .addImm(-4)
1027 .add(predOps(ARMCC::AL));
1029 Regs.clear();
1031 // Put any subsequent vpush instructions before this one: they will refer to
1032 // higher register numbers so need to be pushed first in order to preserve
1033 // monotonicity.
1034 if (MI != MBB.begin())
1035 --MI;
1039 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1040 MachineBasicBlock::iterator MI,
1041 std::vector<CalleeSavedInfo> &CSI,
1042 unsigned LdmOpc, unsigned LdrOpc,
1043 bool isVarArg, bool NoGap,
1044 bool(*Func)(unsigned, bool),
1045 unsigned NumAlignedDPRCS2Regs) const {
1046 MachineFunction &MF = *MBB.getParent();
1047 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1048 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1049 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1050 DebugLoc DL;
1051 bool isTailCall = false;
1052 bool isInterrupt = false;
1053 bool isTrap = false;
1054 if (MBB.end() != MI) {
1055 DL = MI->getDebugLoc();
1056 unsigned RetOpcode = MI->getOpcode();
1057 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1058 isInterrupt =
1059 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1060 isTrap =
1061 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1062 RetOpcode == ARM::tTRAP;
1065 SmallVector<unsigned, 4> Regs;
1066 unsigned i = CSI.size();
1067 while (i != 0) {
1068 unsigned LastReg = 0;
1069 bool DeleteRet = false;
1070 for (; i != 0; --i) {
1071 CalleeSavedInfo &Info = CSI[i-1];
1072 unsigned Reg = Info.getReg();
1073 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1075 // The aligned reloads from area DPRCS2 are not inserted here.
1076 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1077 continue;
1079 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1080 !isTrap && STI.hasV5TOps()) {
1081 if (MBB.succ_empty()) {
1082 Reg = ARM::PC;
1083 // Fold the return instruction into the LDM.
1084 DeleteRet = true;
1085 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1086 // We 'restore' LR into PC so it is not live out of the return block:
1087 // Clear Restored bit.
1088 Info.setRestored(false);
1089 } else
1090 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1093 // If NoGap is true, pop consecutive registers and then leave the rest
1094 // for other instructions. e.g.
1095 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1096 if (NoGap && LastReg && LastReg != Reg-1)
1097 break;
1099 LastReg = Reg;
1100 Regs.push_back(Reg);
1103 if (Regs.empty())
1104 continue;
1106 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1107 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1110 if (Regs.size() > 1 || LdrOpc == 0) {
1111 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1112 .addReg(ARM::SP)
1113 .add(predOps(ARMCC::AL));
1114 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1115 MIB.addReg(Regs[i], getDefRegState(true));
1116 if (DeleteRet) {
1117 if (MI != MBB.end()) {
1118 MIB.copyImplicitOps(*MI);
1119 MI->eraseFromParent();
1122 MI = MIB;
1123 } else if (Regs.size() == 1) {
1124 // If we adjusted the reg to PC from LR above, switch it back here. We
1125 // only do that for LDM.
1126 if (Regs[0] == ARM::PC)
1127 Regs[0] = ARM::LR;
1128 MachineInstrBuilder MIB =
1129 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1130 .addReg(ARM::SP, RegState::Define)
1131 .addReg(ARM::SP);
1132 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1133 // that refactoring is complete (eventually).
1134 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1135 MIB.addReg(0);
1136 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1137 } else
1138 MIB.addImm(4);
1139 MIB.add(predOps(ARMCC::AL));
1141 Regs.clear();
1143 // Put any subsequent vpop instructions after this one: they will refer to
1144 // higher register numbers so need to be popped afterwards.
1145 if (MI != MBB.end())
1146 ++MI;
1150 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1151 /// starting from d8. Also insert stack realignment code and leave the stack
1152 /// pointer pointing to the d8 spill slot.
1153 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1154 MachineBasicBlock::iterator MI,
1155 unsigned NumAlignedDPRCS2Regs,
1156 const std::vector<CalleeSavedInfo> &CSI,
1157 const TargetRegisterInfo *TRI) {
1158 MachineFunction &MF = *MBB.getParent();
1159 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1160 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1161 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1162 MachineFrameInfo &MFI = MF.getFrameInfo();
1164 // Mark the D-register spill slots as properly aligned. Since MFI computes
1165 // stack slot layout backwards, this can actually mean that the d-reg stack
1166 // slot offsets can be wrong. The offset for d8 will always be correct.
1167 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1168 unsigned DNum = CSI[i].getReg() - ARM::D8;
1169 if (DNum > NumAlignedDPRCS2Regs - 1)
1170 continue;
1171 int FI = CSI[i].getFrameIdx();
1172 // The even-numbered registers will be 16-byte aligned, the odd-numbered
1173 // registers will be 8-byte aligned.
1174 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16);
1176 // The stack slot for D8 needs to be maximally aligned because this is
1177 // actually the point where we align the stack pointer. MachineFrameInfo
1178 // computes all offsets relative to the incoming stack pointer which is a
1179 // bit weird when realigning the stack. Any extra padding for this
1180 // over-alignment is not realized because the code inserted below adjusts
1181 // the stack pointer by numregs * 8 before aligning the stack pointer.
1182 if (DNum == 0)
1183 MFI.setObjectAlignment(FI, MFI.getMaxAlignment());
1186 // Move the stack pointer to the d8 spill slot, and align it at the same
1187 // time. Leave the stack slot address in the scratch register r4.
1189 // sub r4, sp, #numregs * 8
1190 // bic r4, r4, #align - 1
1191 // mov sp, r4
1193 bool isThumb = AFI->isThumbFunction();
1194 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1195 AFI->setShouldRestoreSPFromFP(true);
1197 // sub r4, sp, #numregs * 8
1198 // The immediate is <= 64, so it doesn't need any special encoding.
1199 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1200 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1201 .addReg(ARM::SP)
1202 .addImm(8 * NumAlignedDPRCS2Regs)
1203 .add(predOps(ARMCC::AL))
1204 .add(condCodeOp());
1206 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment();
1207 // We must set parameter MustBeSingleInstruction to true, since
1208 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1209 // stack alignment. Luckily, this can always be done since all ARM
1210 // architecture versions that support Neon also support the BFC
1211 // instruction.
1212 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1214 // mov sp, r4
1215 // The stack pointer must be adjusted before spilling anything, otherwise
1216 // the stack slots could be clobbered by an interrupt handler.
1217 // Leave r4 live, it is used below.
1218 Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1219 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1220 .addReg(ARM::R4)
1221 .add(predOps(ARMCC::AL));
1222 if (!isThumb)
1223 MIB.add(condCodeOp());
1225 // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1226 // r4 holds the stack slot address.
1227 unsigned NextReg = ARM::D8;
1229 // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1230 // The writeback is only needed when emitting two vst1.64 instructions.
1231 if (NumAlignedDPRCS2Regs >= 6) {
1232 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1233 &ARM::QQPRRegClass);
1234 MBB.addLiveIn(SupReg);
1235 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1236 .addReg(ARM::R4, RegState::Kill)
1237 .addImm(16)
1238 .addReg(NextReg)
1239 .addReg(SupReg, RegState::ImplicitKill)
1240 .add(predOps(ARMCC::AL));
1241 NextReg += 4;
1242 NumAlignedDPRCS2Regs -= 4;
1245 // We won't modify r4 beyond this point. It currently points to the next
1246 // register to be spilled.
1247 unsigned R4BaseReg = NextReg;
1249 // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1250 if (NumAlignedDPRCS2Regs >= 4) {
1251 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1252 &ARM::QQPRRegClass);
1253 MBB.addLiveIn(SupReg);
1254 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1255 .addReg(ARM::R4)
1256 .addImm(16)
1257 .addReg(NextReg)
1258 .addReg(SupReg, RegState::ImplicitKill)
1259 .add(predOps(ARMCC::AL));
1260 NextReg += 4;
1261 NumAlignedDPRCS2Regs -= 4;
1264 // 16-byte aligned vst1.64 with 2 d-regs.
1265 if (NumAlignedDPRCS2Regs >= 2) {
1266 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1267 &ARM::QPRRegClass);
1268 MBB.addLiveIn(SupReg);
1269 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1270 .addReg(ARM::R4)
1271 .addImm(16)
1272 .addReg(SupReg)
1273 .add(predOps(ARMCC::AL));
1274 NextReg += 2;
1275 NumAlignedDPRCS2Regs -= 2;
1278 // Finally, use a vanilla vstr.64 for the odd last register.
1279 if (NumAlignedDPRCS2Regs) {
1280 MBB.addLiveIn(NextReg);
1281 // vstr.64 uses addrmode5 which has an offset scale of 4.
1282 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1283 .addReg(NextReg)
1284 .addReg(ARM::R4)
1285 .addImm((NextReg - R4BaseReg) * 2)
1286 .add(predOps(ARMCC::AL));
1289 // The last spill instruction inserted should kill the scratch register r4.
1290 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1293 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1294 /// iterator to the following instruction.
1295 static MachineBasicBlock::iterator
1296 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1297 unsigned NumAlignedDPRCS2Regs) {
1298 // sub r4, sp, #numregs * 8
1299 // bic r4, r4, #align - 1
1300 // mov sp, r4
1301 ++MI; ++MI; ++MI;
1302 assert(MI->mayStore() && "Expecting spill instruction");
1304 // These switches all fall through.
1305 switch(NumAlignedDPRCS2Regs) {
1306 case 7:
1307 ++MI;
1308 assert(MI->mayStore() && "Expecting spill instruction");
1309 LLVM_FALLTHROUGH;
1310 default:
1311 ++MI;
1312 assert(MI->mayStore() && "Expecting spill instruction");
1313 LLVM_FALLTHROUGH;
1314 case 1:
1315 case 2:
1316 case 4:
1317 assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1318 ++MI;
1320 return MI;
1323 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1324 /// starting from d8. These instructions are assumed to execute while the
1325 /// stack is still aligned, unlike the code inserted by emitPopInst.
1326 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1327 MachineBasicBlock::iterator MI,
1328 unsigned NumAlignedDPRCS2Regs,
1329 const std::vector<CalleeSavedInfo> &CSI,
1330 const TargetRegisterInfo *TRI) {
1331 MachineFunction &MF = *MBB.getParent();
1332 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1333 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1334 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1336 // Find the frame index assigned to d8.
1337 int D8SpillFI = 0;
1338 for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1339 if (CSI[i].getReg() == ARM::D8) {
1340 D8SpillFI = CSI[i].getFrameIdx();
1341 break;
1344 // Materialize the address of the d8 spill slot into the scratch register r4.
1345 // This can be fairly complicated if the stack frame is large, so just use
1346 // the normal frame index elimination mechanism to do it. This code runs as
1347 // the initial part of the epilog where the stack and base pointers haven't
1348 // been changed yet.
1349 bool isThumb = AFI->isThumbFunction();
1350 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1352 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1353 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1354 .addFrameIndex(D8SpillFI)
1355 .addImm(0)
1356 .add(predOps(ARMCC::AL))
1357 .add(condCodeOp());
1359 // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1360 unsigned NextReg = ARM::D8;
1362 // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1363 if (NumAlignedDPRCS2Regs >= 6) {
1364 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1365 &ARM::QQPRRegClass);
1366 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1367 .addReg(ARM::R4, RegState::Define)
1368 .addReg(ARM::R4, RegState::Kill)
1369 .addImm(16)
1370 .addReg(SupReg, RegState::ImplicitDefine)
1371 .add(predOps(ARMCC::AL));
1372 NextReg += 4;
1373 NumAlignedDPRCS2Regs -= 4;
1376 // We won't modify r4 beyond this point. It currently points to the next
1377 // register to be spilled.
1378 unsigned R4BaseReg = NextReg;
1380 // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1381 if (NumAlignedDPRCS2Regs >= 4) {
1382 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1383 &ARM::QQPRRegClass);
1384 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1385 .addReg(ARM::R4)
1386 .addImm(16)
1387 .addReg(SupReg, RegState::ImplicitDefine)
1388 .add(predOps(ARMCC::AL));
1389 NextReg += 4;
1390 NumAlignedDPRCS2Regs -= 4;
1393 // 16-byte aligned vld1.64 with 2 d-regs.
1394 if (NumAlignedDPRCS2Regs >= 2) {
1395 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1396 &ARM::QPRRegClass);
1397 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1398 .addReg(ARM::R4)
1399 .addImm(16)
1400 .add(predOps(ARMCC::AL));
1401 NextReg += 2;
1402 NumAlignedDPRCS2Regs -= 2;
1405 // Finally, use a vanilla vldr.64 for the remaining odd register.
1406 if (NumAlignedDPRCS2Regs)
1407 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1408 .addReg(ARM::R4)
1409 .addImm(2 * (NextReg - R4BaseReg))
1410 .add(predOps(ARMCC::AL));
1412 // Last store kills r4.
1413 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1416 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1417 MachineBasicBlock::iterator MI,
1418 const std::vector<CalleeSavedInfo> &CSI,
1419 const TargetRegisterInfo *TRI) const {
1420 if (CSI.empty())
1421 return false;
1423 MachineFunction &MF = *MBB.getParent();
1424 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1426 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1427 unsigned PushOneOpc = AFI->isThumbFunction() ?
1428 ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1429 unsigned FltOpc = ARM::VSTMDDB_UPD;
1430 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1431 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1432 MachineInstr::FrameSetup);
1433 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1434 MachineInstr::FrameSetup);
1435 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1436 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1438 // The code above does not insert spill code for the aligned DPRCS2 registers.
1439 // The stack realignment code will be inserted between the push instructions
1440 // and these spills.
1441 if (NumAlignedDPRCS2Regs)
1442 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1444 return true;
1447 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1448 MachineBasicBlock::iterator MI,
1449 std::vector<CalleeSavedInfo> &CSI,
1450 const TargetRegisterInfo *TRI) const {
1451 if (CSI.empty())
1452 return false;
1454 MachineFunction &MF = *MBB.getParent();
1455 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1456 bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1457 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1459 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1460 // registers. Do that here instead.
1461 if (NumAlignedDPRCS2Regs)
1462 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1464 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1465 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1466 unsigned FltOpc = ARM::VLDMDIA_UPD;
1467 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1468 NumAlignedDPRCS2Regs);
1469 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1470 &isARMArea2Register, 0);
1471 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1472 &isARMArea1Register, 0);
1474 return true;
1477 // FIXME: Make generic?
1478 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF,
1479 const ARMBaseInstrInfo &TII) {
1480 unsigned FnSize = 0;
1481 for (auto &MBB : MF) {
1482 for (auto &MI : MBB)
1483 FnSize += TII.getInstSizeInBytes(MI);
1485 return FnSize;
1488 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1489 /// frames and return the stack size limit beyond which some of these
1490 /// instructions will require a scratch register during their expansion later.
1491 // FIXME: Move to TII?
1492 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1493 const TargetFrameLowering *TFI) {
1494 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1495 unsigned Limit = (1 << 12) - 1;
1496 for (auto &MBB : MF) {
1497 for (auto &MI : MBB) {
1498 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1499 if (!MI.getOperand(i).isFI())
1500 continue;
1502 // When using ADDri to get the address of a stack object, 255 is the
1503 // largest offset guaranteed to fit in the immediate offset.
1504 if (MI.getOpcode() == ARM::ADDri) {
1505 Limit = std::min(Limit, (1U << 8) - 1);
1506 break;
1509 // Otherwise check the addressing mode.
1510 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1511 case ARMII::AddrMode3:
1512 case ARMII::AddrModeT2_i8:
1513 Limit = std::min(Limit, (1U << 8) - 1);
1514 break;
1515 case ARMII::AddrMode5:
1516 case ARMII::AddrModeT2_i8s4:
1517 case ARMII::AddrModeT2_ldrex:
1518 Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1519 break;
1520 case ARMII::AddrModeT2_i12:
1521 // i12 supports only positive offset so these will be converted to
1522 // i8 opcodes. See llvm::rewriteT2FrameIndex.
1523 if (TFI->hasFP(MF) && AFI->hasStackFrame())
1524 Limit = std::min(Limit, (1U << 8) - 1);
1525 break;
1526 case ARMII::AddrMode4:
1527 case ARMII::AddrMode6:
1528 // Addressing modes 4 & 6 (load/store) instructions can't encode an
1529 // immediate offset for stack references.
1530 return 0;
1531 default:
1532 break;
1534 break; // At most one FI per instruction
1539 return Limit;
1542 // In functions that realign the stack, it can be an advantage to spill the
1543 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1544 // instructions take alignment hints that can improve performance.
1545 static void
1546 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1547 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1548 if (!SpillAlignedNEONRegs)
1549 return;
1551 // Naked functions don't spill callee-saved registers.
1552 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1553 return;
1555 // We are planning to use NEON instructions vst1 / vld1.
1556 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1557 return;
1559 // Don't bother if the default stack alignment is sufficiently high.
1560 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8)
1561 return;
1563 // Aligned spills require stack realignment.
1564 if (!static_cast<const ARMBaseRegisterInfo *>(
1565 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1566 return;
1568 // We always spill contiguous d-registers starting from d8. Count how many
1569 // needs spilling. The register allocator will almost always use the
1570 // callee-saved registers in order, but it can happen that there are holes in
1571 // the range. Registers above the hole will be spilled to the standard DPRCS
1572 // area.
1573 unsigned NumSpills = 0;
1574 for (; NumSpills < 8; ++NumSpills)
1575 if (!SavedRegs.test(ARM::D8 + NumSpills))
1576 break;
1578 // Don't do this for just one d-register. It's not worth it.
1579 if (NumSpills < 2)
1580 return;
1582 // Spill the first NumSpills D-registers after realigning the stack.
1583 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1585 // A scratch register is required for the vst1 / vld1 instructions.
1586 SavedRegs.set(ARM::R4);
1589 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1590 BitVector &SavedRegs,
1591 RegScavenger *RS) const {
1592 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1593 // This tells PEI to spill the FP as if it is any other callee-save register
1594 // to take advantage the eliminateFrameIndex machinery. This also ensures it
1595 // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1596 // to combine multiple loads / stores.
1597 bool CanEliminateFrame = true;
1598 bool CS1Spilled = false;
1599 bool LRSpilled = false;
1600 unsigned NumGPRSpills = 0;
1601 unsigned NumFPRSpills = 0;
1602 SmallVector<unsigned, 4> UnspilledCS1GPRs;
1603 SmallVector<unsigned, 4> UnspilledCS2GPRs;
1604 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1605 MF.getSubtarget().getRegisterInfo());
1606 const ARMBaseInstrInfo &TII =
1607 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1608 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1609 MachineFrameInfo &MFI = MF.getFrameInfo();
1610 MachineRegisterInfo &MRI = MF.getRegInfo();
1611 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1612 (void)TRI; // Silence unused warning in non-assert builds.
1613 unsigned FramePtr = RegInfo->getFrameRegister(MF);
1615 // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1616 // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1617 // since it's not always possible to restore sp from fp in a single
1618 // instruction.
1619 // FIXME: It will be better just to find spare register here.
1620 if (AFI->isThumb2Function() &&
1621 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
1622 SavedRegs.set(ARM::R4);
1624 // If a stack probe will be emitted, spill R4 and LR, since they are
1625 // clobbered by the stack probe call.
1626 // This estimate should be a safe, conservative estimate. The actual
1627 // stack probe is enabled based on the size of the local objects;
1628 // this estimate also includes the varargs store size.
1629 if (STI.isTargetWindows() &&
1630 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1631 SavedRegs.set(ARM::R4);
1632 SavedRegs.set(ARM::LR);
1635 if (AFI->isThumb1OnlyFunction()) {
1636 // Spill LR if Thumb1 function uses variable length argument lists.
1637 if (AFI->getArgRegsSaveSize() > 0)
1638 SavedRegs.set(ARM::LR);
1640 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1641 // requires stack alignment. We don't know for sure what the stack size
1642 // will be, but for this, an estimate is good enough. If there anything
1643 // changes it, it'll be a spill, which implies we've used all the registers
1644 // and so R4 is already used, so not marking it here will be OK.
1645 // FIXME: It will be better just to find spare register here.
1646 if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
1647 MFI.estimateStackSize(MF) > 508)
1648 SavedRegs.set(ARM::R4);
1651 // See if we can spill vector registers to aligned stack.
1652 checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1654 // Spill the BasePtr if it's used.
1655 if (RegInfo->hasBasePointer(MF))
1656 SavedRegs.set(RegInfo->getBaseRegister());
1658 // Don't spill FP if the frame can be eliminated. This is determined
1659 // by scanning the callee-save registers to see if any is modified.
1660 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1661 for (unsigned i = 0; CSRegs[i]; ++i) {
1662 unsigned Reg = CSRegs[i];
1663 bool Spilled = false;
1664 if (SavedRegs.test(Reg)) {
1665 Spilled = true;
1666 CanEliminateFrame = false;
1669 if (!ARM::GPRRegClass.contains(Reg)) {
1670 if (Spilled) {
1671 if (ARM::SPRRegClass.contains(Reg))
1672 NumFPRSpills++;
1673 else if (ARM::DPRRegClass.contains(Reg))
1674 NumFPRSpills += 2;
1675 else if (ARM::QPRRegClass.contains(Reg))
1676 NumFPRSpills += 4;
1678 continue;
1681 if (Spilled) {
1682 NumGPRSpills++;
1684 if (!STI.splitFramePushPop(MF)) {
1685 if (Reg == ARM::LR)
1686 LRSpilled = true;
1687 CS1Spilled = true;
1688 continue;
1691 // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1692 switch (Reg) {
1693 case ARM::LR:
1694 LRSpilled = true;
1695 LLVM_FALLTHROUGH;
1696 case ARM::R0: case ARM::R1:
1697 case ARM::R2: case ARM::R3:
1698 case ARM::R4: case ARM::R5:
1699 case ARM::R6: case ARM::R7:
1700 CS1Spilled = true;
1701 break;
1702 default:
1703 break;
1705 } else {
1706 if (!STI.splitFramePushPop(MF)) {
1707 UnspilledCS1GPRs.push_back(Reg);
1708 continue;
1711 switch (Reg) {
1712 case ARM::R0: case ARM::R1:
1713 case ARM::R2: case ARM::R3:
1714 case ARM::R4: case ARM::R5:
1715 case ARM::R6: case ARM::R7:
1716 case ARM::LR:
1717 UnspilledCS1GPRs.push_back(Reg);
1718 break;
1719 default:
1720 UnspilledCS2GPRs.push_back(Reg);
1721 break;
1726 bool ForceLRSpill = false;
1727 if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1728 unsigned FnSize = GetFunctionSizeInBytes(MF, TII);
1729 // Force LR to be spilled if the Thumb function size is > 2048. This enables
1730 // use of BL to implement far jump. If it turns out that it's not needed
1731 // then the branch fix up path will undo it.
1732 if (FnSize >= (1 << 11)) {
1733 CanEliminateFrame = false;
1734 ForceLRSpill = true;
1738 // If any of the stack slot references may be out of range of an immediate
1739 // offset, make sure a register (or a spill slot) is available for the
1740 // register scavenger. Note that if we're indexing off the frame pointer, the
1741 // effective stack size is 4 bytes larger since the FP points to the stack
1742 // slot of the previous FP. Also, if we have variable sized objects in the
1743 // function, stack slot references will often be negative, and some of
1744 // our instructions are positive-offset only, so conservatively consider
1745 // that case to want a spill slot (or register) as well. Similarly, if
1746 // the function adjusts the stack pointer during execution and the
1747 // adjustments aren't already part of our stack size estimate, our offset
1748 // calculations may be off, so be conservative.
1749 // FIXME: We could add logic to be more precise about negative offsets
1750 // and which instructions will need a scratch register for them. Is it
1751 // worth the effort and added fragility?
1752 unsigned EstimatedStackSize =
1753 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1755 // Determine biggest (positive) SP offset in MachineFrameInfo.
1756 int MaxFixedOffset = 0;
1757 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1758 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1759 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1762 bool HasFP = hasFP(MF);
1763 if (HasFP) {
1764 if (AFI->hasStackFrame())
1765 EstimatedStackSize += 4;
1766 } else {
1767 // If FP is not used, SP will be used to access arguments, so count the
1768 // size of arguments into the estimation.
1769 EstimatedStackSize += MaxFixedOffset;
1771 EstimatedStackSize += 16; // For possible paddings.
1773 unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this);
1774 int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI);
1775 bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit ||
1776 MFI.hasVarSizedObjects() ||
1777 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) ||
1778 // For large argument stacks fp relative addressed may overflow.
1779 (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit);
1780 if (BigFrameOffsets ||
1781 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1782 AFI->setHasStackFrame(true);
1784 if (HasFP) {
1785 SavedRegs.set(FramePtr);
1786 // If the frame pointer is required by the ABI, also spill LR so that we
1787 // emit a complete frame record.
1788 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
1789 SavedRegs.set(ARM::LR);
1790 LRSpilled = true;
1791 NumGPRSpills++;
1792 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
1793 if (LRPos != UnspilledCS1GPRs.end())
1794 UnspilledCS1GPRs.erase(LRPos);
1796 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
1797 if (FPPos != UnspilledCS1GPRs.end())
1798 UnspilledCS1GPRs.erase(FPPos);
1799 NumGPRSpills++;
1800 if (FramePtr == ARM::R7)
1801 CS1Spilled = true;
1804 // This is true when we inserted a spill for an unused register that can now
1805 // be used for register scavenging.
1806 bool ExtraCSSpill = false;
1808 if (AFI->isThumb1OnlyFunction()) {
1809 // For Thumb1-only targets, we need some low registers when we save and
1810 // restore the high registers (which aren't allocatable, but could be
1811 // used by inline assembly) because the push/pop instructions can not
1812 // access high registers. If necessary, we might need to push more low
1813 // registers to ensure that there is at least one free that can be used
1814 // for the saving & restoring, and preferably we should ensure that as
1815 // many as are needed are available so that fewer push/pop instructions
1816 // are required.
1818 // Low registers which are not currently pushed, but could be (r4-r7).
1819 SmallVector<unsigned, 4> AvailableRegs;
1821 // Unused argument registers (r0-r3) can be clobbered in the prologue for
1822 // free.
1823 int EntryRegDeficit = 0;
1824 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
1825 if (!MF.getRegInfo().isLiveIn(Reg)) {
1826 --EntryRegDeficit;
1827 LLVM_DEBUG(dbgs()
1828 << printReg(Reg, TRI)
1829 << " is unused argument register, EntryRegDeficit = "
1830 << EntryRegDeficit << "\n");
1834 // Unused return registers can be clobbered in the epilogue for free.
1835 int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
1836 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
1837 << " return regs used, ExitRegDeficit = "
1838 << ExitRegDeficit << "\n");
1840 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
1841 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
1843 // r4-r6 can be used in the prologue if they are pushed by the first push
1844 // instruction.
1845 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
1846 if (SavedRegs.test(Reg)) {
1847 --RegDeficit;
1848 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1849 << " is saved low register, RegDeficit = "
1850 << RegDeficit << "\n");
1851 } else {
1852 AvailableRegs.push_back(Reg);
1853 LLVM_DEBUG(
1854 dbgs()
1855 << printReg(Reg, TRI)
1856 << " is non-saved low register, adding to AvailableRegs\n");
1860 // r7 can be used if it is not being used as the frame pointer.
1861 if (!HasFP) {
1862 if (SavedRegs.test(ARM::R7)) {
1863 --RegDeficit;
1864 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
1865 << RegDeficit << "\n");
1866 } else {
1867 AvailableRegs.push_back(ARM::R7);
1868 LLVM_DEBUG(
1869 dbgs()
1870 << "%r7 is non-saved low register, adding to AvailableRegs\n");
1874 // Each of r8-r11 needs to be copied to a low register, then pushed.
1875 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
1876 if (SavedRegs.test(Reg)) {
1877 ++RegDeficit;
1878 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1879 << " is saved high register, RegDeficit = "
1880 << RegDeficit << "\n");
1884 // LR can only be used by PUSH, not POP, and can't be used at all if the
1885 // llvm.returnaddress intrinsic is used. This is only worth doing if we
1886 // are more limited at function entry than exit.
1887 if ((EntryRegDeficit > ExitRegDeficit) &&
1888 !(MF.getRegInfo().isLiveIn(ARM::LR) &&
1889 MF.getFrameInfo().isReturnAddressTaken())) {
1890 if (SavedRegs.test(ARM::LR)) {
1891 --RegDeficit;
1892 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
1893 << RegDeficit << "\n");
1894 } else {
1895 AvailableRegs.push_back(ARM::LR);
1896 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
1900 // If there are more high registers that need pushing than low registers
1901 // available, push some more low registers so that we can use fewer push
1902 // instructions. This might not reduce RegDeficit all the way to zero,
1903 // because we can only guarantee that r4-r6 are available, but r8-r11 may
1904 // need saving.
1905 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
1906 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
1907 unsigned Reg = AvailableRegs.pop_back_val();
1908 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1909 << " to make up reg deficit\n");
1910 SavedRegs.set(Reg);
1911 NumGPRSpills++;
1912 CS1Spilled = true;
1913 assert(!MRI.isReserved(Reg) && "Should not be reserved");
1914 if (!MRI.isPhysRegUsed(Reg))
1915 ExtraCSSpill = true;
1916 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
1917 if (Reg == ARM::LR)
1918 LRSpilled = true;
1920 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
1921 << "\n");
1924 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
1925 // restore LR in that case.
1926 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
1928 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
1929 // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
1930 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
1931 SavedRegs.set(ARM::LR);
1932 NumGPRSpills++;
1933 SmallVectorImpl<unsigned>::iterator LRPos;
1934 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
1935 if (LRPos != UnspilledCS1GPRs.end())
1936 UnspilledCS1GPRs.erase(LRPos);
1938 ForceLRSpill = false;
1939 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR))
1940 ExtraCSSpill = true;
1943 // If stack and double are 8-byte aligned and we are spilling an odd number
1944 // of GPRs, spill one extra callee save GPR so we won't have to pad between
1945 // the integer and double callee save areas.
1946 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
1947 unsigned TargetAlign = getStackAlignment();
1948 if (TargetAlign >= 8 && (NumGPRSpills & 1)) {
1949 if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
1950 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
1951 unsigned Reg = UnspilledCS1GPRs[i];
1952 // Don't spill high register if the function is thumb. In the case of
1953 // Windows on ARM, accept R11 (frame pointer)
1954 if (!AFI->isThumbFunction() ||
1955 (STI.isTargetWindows() && Reg == ARM::R11) ||
1956 isARMLowRegister(Reg) ||
1957 (Reg == ARM::LR && !ExpensiveLRRestore)) {
1958 SavedRegs.set(Reg);
1959 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1960 << " to make up alignment\n");
1961 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
1962 ExtraCSSpill = true;
1963 break;
1966 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
1967 unsigned Reg = UnspilledCS2GPRs.front();
1968 SavedRegs.set(Reg);
1969 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1970 << " to make up alignment\n");
1971 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
1972 ExtraCSSpill = true;
1976 // Estimate if we might need to scavenge a register at some point in order
1977 // to materialize a stack offset. If so, either spill one additional
1978 // callee-saved register or reserve a special spill slot to facilitate
1979 // register scavenging. Thumb1 needs a spill slot for stack pointer
1980 // adjustments also, even when the frame itself is small.
1981 if (BigFrameOffsets && !ExtraCSSpill) {
1982 // If any non-reserved CS register isn't spilled, just spill one or two
1983 // extra. That should take care of it!
1984 unsigned NumExtras = TargetAlign / 4;
1985 SmallVector<unsigned, 2> Extras;
1986 while (NumExtras && !UnspilledCS1GPRs.empty()) {
1987 unsigned Reg = UnspilledCS1GPRs.back();
1988 UnspilledCS1GPRs.pop_back();
1989 if (!MRI.isReserved(Reg) &&
1990 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) ||
1991 Reg == ARM::LR)) {
1992 Extras.push_back(Reg);
1993 NumExtras--;
1996 // For non-Thumb1 functions, also check for hi-reg CS registers
1997 if (!AFI->isThumb1OnlyFunction()) {
1998 while (NumExtras && !UnspilledCS2GPRs.empty()) {
1999 unsigned Reg = UnspilledCS2GPRs.back();
2000 UnspilledCS2GPRs.pop_back();
2001 if (!MRI.isReserved(Reg)) {
2002 Extras.push_back(Reg);
2003 NumExtras--;
2007 if (NumExtras == 0) {
2008 for (unsigned Reg : Extras) {
2009 SavedRegs.set(Reg);
2010 if (!MRI.isPhysRegUsed(Reg))
2011 ExtraCSSpill = true;
2014 if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) {
2015 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot
2016 // closest to SP or frame pointer.
2017 assert(RS && "Register scavenging not provided");
2018 const TargetRegisterClass &RC = ARM::GPRRegClass;
2019 unsigned Size = TRI->getSpillSize(RC);
2020 unsigned Align = TRI->getSpillAlignment(RC);
2021 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));
2026 if (ForceLRSpill) {
2027 SavedRegs.set(ARM::LR);
2028 AFI->setLRIsSpilledForFarJump(true);
2032 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2033 MachineFunction &MF, MachineBasicBlock &MBB,
2034 MachineBasicBlock::iterator I) const {
2035 const ARMBaseInstrInfo &TII =
2036 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2037 if (!hasReservedCallFrame(MF)) {
2038 // If we have alloca, convert as follows:
2039 // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2040 // ADJCALLSTACKUP -> add, sp, sp, amount
2041 MachineInstr &Old = *I;
2042 DebugLoc dl = Old.getDebugLoc();
2043 unsigned Amount = TII.getFrameSize(Old);
2044 if (Amount != 0) {
2045 // We need to keep the stack aligned properly. To do this, we round the
2046 // amount of space needed for the outgoing arguments up to the next
2047 // alignment boundary.
2048 Amount = alignSPAdjust(Amount);
2050 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2051 assert(!AFI->isThumb1OnlyFunction() &&
2052 "This eliminateCallFramePseudoInstr does not support Thumb1!");
2053 bool isARM = !AFI->isThumbFunction();
2055 // Replace the pseudo instruction with a new instruction...
2056 unsigned Opc = Old.getOpcode();
2057 int PIdx = Old.findFirstPredOperandIdx();
2058 ARMCC::CondCodes Pred =
2059 (PIdx == -1) ? ARMCC::AL
2060 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
2061 unsigned PredReg = TII.getFramePred(Old);
2062 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2063 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2064 Pred, PredReg);
2065 } else {
2066 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2067 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2068 Pred, PredReg);
2072 return MBB.erase(I);
2075 /// Get the minimum constant for ARM that is greater than or equal to the
2076 /// argument. In ARM, constants can have any value that can be produced by
2077 /// rotating an 8-bit value to the right by an even number of bits within a
2078 /// 32-bit word.
2079 static uint32_t alignToARMConstant(uint32_t Value) {
2080 unsigned Shifted = 0;
2082 if (Value == 0)
2083 return 0;
2085 while (!(Value & 0xC0000000)) {
2086 Value = Value << 2;
2087 Shifted += 2;
2090 bool Carry = (Value & 0x00FFFFFF);
2091 Value = ((Value & 0xFF000000) >> 24) + Carry;
2093 if (Value & 0x0000100)
2094 Value = Value & 0x000001FC;
2096 if (Shifted > 24)
2097 Value = Value >> (Shifted - 24);
2098 else
2099 Value = Value << (24 - Shifted);
2101 return Value;
2104 // The stack limit in the TCB is set to this many bytes above the actual
2105 // stack limit.
2106 static const uint64_t kSplitStackAvailable = 256;
2108 // Adjust the function prologue to enable split stacks. This currently only
2109 // supports android and linux.
2111 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2112 // must be well defined in order to allow for consistent implementations of the
2113 // __morestack helper function. The ABI is also not a normal ABI in that it
2114 // doesn't follow the normal calling conventions because this allows the
2115 // prologue of each function to be optimized further.
2117 // Currently, the ABI looks like (when calling __morestack)
2119 // * r4 holds the minimum stack size requested for this function call
2120 // * r5 holds the stack size of the arguments to the function
2121 // * the beginning of the function is 3 instructions after the call to
2122 // __morestack
2124 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2125 // place the arguments on to the new stack, and the 3-instruction knowledge to
2126 // jump directly to the body of the function when working on the new stack.
2128 // An old (and possibly no longer compatible) implementation of __morestack for
2129 // ARM can be found at [1].
2131 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2132 void ARMFrameLowering::adjustForSegmentedStacks(
2133 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2134 unsigned Opcode;
2135 unsigned CFIIndex;
2136 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2137 bool Thumb = ST->isThumb();
2139 // Sadly, this currently doesn't support varargs, platforms other than
2140 // android/linux. Note that thumb1/thumb2 are support for android/linux.
2141 if (MF.getFunction().isVarArg())
2142 report_fatal_error("Segmented stacks do not support vararg functions.");
2143 if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2144 report_fatal_error("Segmented stacks not supported on this platform.");
2146 MachineFrameInfo &MFI = MF.getFrameInfo();
2147 MachineModuleInfo &MMI = MF.getMMI();
2148 MCContext &Context = MMI.getContext();
2149 const MCRegisterInfo *MRI = Context.getRegisterInfo();
2150 const ARMBaseInstrInfo &TII =
2151 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2152 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2153 DebugLoc DL;
2155 uint64_t StackSize = MFI.getStackSize();
2157 // Do not generate a prologue for leaf functions with a stack of size zero.
2158 // For non-leaf functions we have to allow for the possibility that the
2159 // callis to a non-split function, as in PR37807. This function could also
2160 // take the address of a non-split function. When the linker tries to adjust
2161 // its non-existent prologue, it would fail with an error. Mark the object
2162 // file so that such failures are not errors. See this Go language bug-report
2163 // https://go-review.googlesource.com/c/go/+/148819/
2164 if (StackSize == 0 && !MFI.hasTailCall()) {
2165 MF.getMMI().setHasNosplitStack(true);
2166 return;
2169 // Use R4 and R5 as scratch registers.
2170 // We save R4 and R5 before use and restore them before leaving the function.
2171 unsigned ScratchReg0 = ARM::R4;
2172 unsigned ScratchReg1 = ARM::R5;
2173 uint64_t AlignedStackSize;
2175 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2176 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2177 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2178 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2179 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2181 // Grab everything that reaches PrologueMBB to update there liveness as well.
2182 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2183 SmallVector<MachineBasicBlock *, 2> WalkList;
2184 WalkList.push_back(&PrologueMBB);
2186 do {
2187 MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2188 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2189 if (BeforePrologueRegion.insert(PredBB).second)
2190 WalkList.push_back(PredBB);
2192 } while (!WalkList.empty());
2194 // The order in that list is important.
2195 // The blocks will all be inserted before PrologueMBB using that order.
2196 // Therefore the block that should appear first in the CFG should appear
2197 // first in the list.
2198 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2199 PostStackMBB};
2201 for (MachineBasicBlock *B : AddedBlocks)
2202 BeforePrologueRegion.insert(B);
2204 for (const auto &LI : PrologueMBB.liveins()) {
2205 for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2206 PredBB->addLiveIn(LI);
2209 // Remove the newly added blocks from the list, since we know
2210 // we do not have to do the following updates for them.
2211 for (MachineBasicBlock *B : AddedBlocks) {
2212 BeforePrologueRegion.erase(B);
2213 MF.insert(PrologueMBB.getIterator(), B);
2216 for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2217 // Make sure the LiveIns are still sorted and unique.
2218 MBB->sortUniqueLiveIns();
2219 // Replace the edges to PrologueMBB by edges to the sequences
2220 // we are about to add.
2221 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2224 // The required stack size that is aligned to ARM constant criterion.
2225 AlignedStackSize = alignToARMConstant(StackSize);
2227 // When the frame size is less than 256 we just compare the stack
2228 // boundary directly to the value of the stack pointer, per gcc.
2229 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2231 // We will use two of the callee save registers as scratch registers so we
2232 // need to save those registers onto the stack.
2233 // We will use SR0 to hold stack limit and SR1 to hold the stack size
2234 // requested and arguments for __morestack().
2235 // SR0: Scratch Register #0
2236 // SR1: Scratch Register #1
2237 // push {SR0, SR1}
2238 if (Thumb) {
2239 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2240 .add(predOps(ARMCC::AL))
2241 .addReg(ScratchReg0)
2242 .addReg(ScratchReg1);
2243 } else {
2244 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2245 .addReg(ARM::SP, RegState::Define)
2246 .addReg(ARM::SP)
2247 .add(predOps(ARMCC::AL))
2248 .addReg(ScratchReg0)
2249 .addReg(ScratchReg1);
2252 // Emit the relevant DWARF information about the change in stack pointer as
2253 // well as where to find both r4 and r5 (the callee-save registers)
2254 CFIIndex =
2255 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
2256 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2257 .addCFIIndex(CFIIndex);
2258 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2259 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2260 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2261 .addCFIIndex(CFIIndex);
2262 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2263 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2264 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2265 .addCFIIndex(CFIIndex);
2267 // mov SR1, sp
2268 if (Thumb) {
2269 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2270 .addReg(ARM::SP)
2271 .add(predOps(ARMCC::AL));
2272 } else if (CompareStackPointer) {
2273 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2274 .addReg(ARM::SP)
2275 .add(predOps(ARMCC::AL))
2276 .add(condCodeOp());
2279 // sub SR1, sp, #StackSize
2280 if (!CompareStackPointer && Thumb) {
2281 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2282 .add(condCodeOp())
2283 .addReg(ScratchReg1)
2284 .addImm(AlignedStackSize)
2285 .add(predOps(ARMCC::AL));
2286 } else if (!CompareStackPointer) {
2287 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2288 .addReg(ARM::SP)
2289 .addImm(AlignedStackSize)
2290 .add(predOps(ARMCC::AL))
2291 .add(condCodeOp());
2294 if (Thumb && ST->isThumb1Only()) {
2295 unsigned PCLabelId = ARMFI->createPICLabelUId();
2296 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2297 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2298 MachineConstantPool *MCP = MF.getConstantPool();
2299 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4);
2301 // ldr SR0, [pc, offset(STACK_LIMIT)]
2302 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2303 .addConstantPoolIndex(CPI)
2304 .add(predOps(ARMCC::AL));
2306 // ldr SR0, [SR0]
2307 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2308 .addReg(ScratchReg0)
2309 .addImm(0)
2310 .add(predOps(ARMCC::AL));
2311 } else {
2312 // Get TLS base address from the coprocessor
2313 // mrc p15, #0, SR0, c13, c0, #3
2314 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0)
2315 .addImm(15)
2316 .addImm(0)
2317 .addImm(13)
2318 .addImm(0)
2319 .addImm(3)
2320 .add(predOps(ARMCC::AL));
2322 // Use the last tls slot on android and a private field of the TCP on linux.
2323 assert(ST->isTargetAndroid() || ST->isTargetLinux());
2324 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2326 // Get the stack limit from the right offset
2327 // ldr SR0, [sr0, #4 * TlsOffset]
2328 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0)
2329 .addReg(ScratchReg0)
2330 .addImm(4 * TlsOffset)
2331 .add(predOps(ARMCC::AL));
2334 // Compare stack limit with stack size requested.
2335 // cmp SR0, SR1
2336 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2337 BuildMI(GetMBB, DL, TII.get(Opcode))
2338 .addReg(ScratchReg0)
2339 .addReg(ScratchReg1)
2340 .add(predOps(ARMCC::AL));
2342 // This jump is taken if StackLimit < SP - stack required.
2343 Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2344 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2345 .addImm(ARMCC::LO)
2346 .addReg(ARM::CPSR);
2349 // Calling __morestack(StackSize, Size of stack arguments).
2350 // __morestack knows that the stack size requested is in SR0(r4)
2351 // and amount size of stack arguments is in SR1(r5).
2353 // Pass first argument for the __morestack by Scratch Register #0.
2354 // The amount size of stack required
2355 if (Thumb) {
2356 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2357 .add(condCodeOp())
2358 .addImm(AlignedStackSize)
2359 .add(predOps(ARMCC::AL));
2360 } else {
2361 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2362 .addImm(AlignedStackSize)
2363 .add(predOps(ARMCC::AL))
2364 .add(condCodeOp());
2366 // Pass second argument for the __morestack by Scratch Register #1.
2367 // The amount size of stack consumed to save function arguments.
2368 if (Thumb) {
2369 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2370 .add(condCodeOp())
2371 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2372 .add(predOps(ARMCC::AL));
2373 } else {
2374 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2375 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2376 .add(predOps(ARMCC::AL))
2377 .add(condCodeOp());
2380 // push {lr} - Save return address of this function.
2381 if (Thumb) {
2382 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2383 .add(predOps(ARMCC::AL))
2384 .addReg(ARM::LR);
2385 } else {
2386 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2387 .addReg(ARM::SP, RegState::Define)
2388 .addReg(ARM::SP)
2389 .add(predOps(ARMCC::AL))
2390 .addReg(ARM::LR);
2393 // Emit the DWARF info about the change in stack as well as where to find the
2394 // previous link register
2395 CFIIndex =
2396 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
2397 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2398 .addCFIIndex(CFIIndex);
2399 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2400 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2401 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2402 .addCFIIndex(CFIIndex);
2404 // Call __morestack().
2405 if (Thumb) {
2406 BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2407 .add(predOps(ARMCC::AL))
2408 .addExternalSymbol("__morestack");
2409 } else {
2410 BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2411 .addExternalSymbol("__morestack");
2414 // pop {lr} - Restore return address of this original function.
2415 if (Thumb) {
2416 if (ST->isThumb1Only()) {
2417 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2418 .add(predOps(ARMCC::AL))
2419 .addReg(ScratchReg0);
2420 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2421 .addReg(ScratchReg0)
2422 .add(predOps(ARMCC::AL));
2423 } else {
2424 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2425 .addReg(ARM::LR, RegState::Define)
2426 .addReg(ARM::SP, RegState::Define)
2427 .addReg(ARM::SP)
2428 .addImm(4)
2429 .add(predOps(ARMCC::AL));
2431 } else {
2432 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2433 .addReg(ARM::SP, RegState::Define)
2434 .addReg(ARM::SP)
2435 .add(predOps(ARMCC::AL))
2436 .addReg(ARM::LR);
2439 // Restore SR0 and SR1 in case of __morestack() was called.
2440 // __morestack() will skip PostStackMBB block so we need to restore
2441 // scratch registers from here.
2442 // pop {SR0, SR1}
2443 if (Thumb) {
2444 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2445 .add(predOps(ARMCC::AL))
2446 .addReg(ScratchReg0)
2447 .addReg(ScratchReg1);
2448 } else {
2449 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2450 .addReg(ARM::SP, RegState::Define)
2451 .addReg(ARM::SP)
2452 .add(predOps(ARMCC::AL))
2453 .addReg(ScratchReg0)
2454 .addReg(ScratchReg1);
2457 // Update the CFA offset now that we've popped
2458 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2459 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2460 .addCFIIndex(CFIIndex);
2462 // Return from this function.
2463 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2465 // Restore SR0 and SR1 in case of __morestack() was not called.
2466 // pop {SR0, SR1}
2467 if (Thumb) {
2468 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2469 .add(predOps(ARMCC::AL))
2470 .addReg(ScratchReg0)
2471 .addReg(ScratchReg1);
2472 } else {
2473 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2474 .addReg(ARM::SP, RegState::Define)
2475 .addReg(ARM::SP)
2476 .add(predOps(ARMCC::AL))
2477 .addReg(ScratchReg0)
2478 .addReg(ScratchReg1);
2481 // Update the CFA offset now that we've popped
2482 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2483 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2484 .addCFIIndex(CFIIndex);
2486 // Tell debuggers that r4 and r5 are now the same as they were in the
2487 // previous function, that they're the "Same Value".
2488 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2489 nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2490 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2491 .addCFIIndex(CFIIndex);
2492 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2493 nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2494 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2495 .addCFIIndex(CFIIndex);
2497 // Organizing MBB lists
2498 PostStackMBB->addSuccessor(&PrologueMBB);
2500 AllocMBB->addSuccessor(PostStackMBB);
2502 GetMBB->addSuccessor(PostStackMBB);
2503 GetMBB->addSuccessor(AllocMBB);
2505 McrMBB->addSuccessor(GetMBB);
2507 PrevStackMBB->addSuccessor(McrMBB);
2509 #ifdef EXPENSIVE_CHECKS
2510 MF.verify();
2511 #endif