Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / ARM / ARMParallelDSP.cpp
blob9730c32577e91c1e17de8397859b627de2a4325f
1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/LoopAccessAnalysis.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/NoFolder.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/LoopUtils.h"
28 #include "llvm/Pass.h"
29 #include "llvm/PassRegistry.h"
30 #include "llvm/PassSupport.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "ARM.h"
35 #include "ARMSubtarget.h"
37 using namespace llvm;
38 using namespace PatternMatch;
40 #define DEBUG_TYPE "arm-parallel-dsp"
42 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
44 static cl::opt<bool>
45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
46 cl::desc("Disable the ARM Parallel DSP pass"));
48 namespace {
49 struct OpChain;
50 struct BinOpChain;
51 struct Reduction;
53 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
54 using ReductionList = SmallVector<Reduction, 8>;
55 using ValueList = SmallVector<Value*, 8>;
56 using MemInstList = SmallVector<Instruction*, 8>;
57 using PMACPair = std::pair<BinOpChain*,BinOpChain*>;
58 using PMACPairList = SmallVector<PMACPair, 8>;
59 using Instructions = SmallVector<Instruction*,16>;
60 using MemLocList = SmallVector<MemoryLocation, 4>;
62 struct OpChain {
63 Instruction *Root;
64 ValueList AllValues;
65 MemInstList VecLd; // List of all load instructions.
66 MemLocList MemLocs; // All memory locations read by this tree.
67 bool ReadOnly = true;
69 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
70 virtual ~OpChain() = default;
72 void SetMemoryLocations() {
73 const auto Size = LocationSize::unknown();
74 for (auto *V : AllValues) {
75 if (auto *I = dyn_cast<Instruction>(V)) {
76 if (I->mayWriteToMemory())
77 ReadOnly = false;
78 if (auto *Ld = dyn_cast<LoadInst>(V))
79 MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size));
84 unsigned size() const { return AllValues.size(); }
87 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
88 // 'Reduction' contains the phi-node and accumulator statement from where we
89 // start pattern matching, and 'BinOpChain' the multiplication
90 // instructions that are candidates for parallel execution.
91 struct BinOpChain : public OpChain {
92 ValueList LHS; // List of all (narrow) left hand operands.
93 ValueList RHS; // List of all (narrow) right hand operands.
94 bool Exchange = false;
96 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
97 OpChain(I, lhs), LHS(lhs), RHS(rhs) {
98 for (auto *V : RHS)
99 AllValues.push_back(V);
102 bool AreSymmetrical(BinOpChain *Other);
105 struct Reduction {
106 PHINode *Phi; // The Phi-node from where we start
107 // pattern matching.
108 Instruction *AccIntAdd; // The accumulating integer add statement,
109 // i.e, the reduction statement.
110 OpChainList MACCandidates; // The MAC candidates associated with
111 // this reduction statement.
112 PMACPairList PMACPairs;
113 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
116 class ARMParallelDSP : public LoopPass {
117 ScalarEvolution *SE;
118 AliasAnalysis *AA;
119 TargetLibraryInfo *TLI;
120 DominatorTree *DT;
121 LoopInfo *LI;
122 Loop *L;
123 const DataLayout *DL;
124 Module *M;
125 std::map<LoadInst*, LoadInst*> LoadPairs;
126 std::map<LoadInst*, SmallVector<LoadInst*, 4>> SequentialLoads;
128 bool RecordSequentialLoads(BasicBlock *Header);
129 bool InsertParallelMACs(Reduction &Reduction);
130 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
131 void CreateParallelMACPairs(Reduction &R);
132 Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
133 Instruction *Acc, bool Exchange,
134 Instruction *InsertAfter);
136 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
137 /// Dual performs two signed 16x16-bit multiplications. It adds the
138 /// products to a 32-bit accumulate operand. Optionally, the instruction can
139 /// exchange the halfwords of the second operand before performing the
140 /// arithmetic.
141 bool MatchSMLAD(Function &F);
143 public:
144 static char ID;
146 ARMParallelDSP() : LoopPass(ID) { }
148 void getAnalysisUsage(AnalysisUsage &AU) const override {
149 LoopPass::getAnalysisUsage(AU);
150 AU.addRequired<AssumptionCacheTracker>();
151 AU.addRequired<ScalarEvolutionWrapperPass>();
152 AU.addRequired<AAResultsWrapperPass>();
153 AU.addRequired<TargetLibraryInfoWrapperPass>();
154 AU.addRequired<LoopInfoWrapperPass>();
155 AU.addRequired<DominatorTreeWrapperPass>();
156 AU.addRequired<TargetPassConfig>();
157 AU.addPreserved<LoopInfoWrapperPass>();
158 AU.setPreservesCFG();
161 bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
162 if (DisableParallelDSP)
163 return false;
164 L = TheLoop;
165 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
166 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
167 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
168 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
169 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
170 auto &TPC = getAnalysis<TargetPassConfig>();
172 BasicBlock *Header = TheLoop->getHeader();
173 if (!Header)
174 return false;
176 // TODO: We assume the loop header and latch to be the same block.
177 // This is not a fundamental restriction, but lifting this would just
178 // require more work to do the transformation and then patch up the CFG.
179 if (Header != TheLoop->getLoopLatch()) {
180 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
181 "running pass ARMParallelDSP\n");
182 return false;
185 Function &F = *Header->getParent();
186 M = F.getParent();
187 DL = &M->getDataLayout();
189 auto &TM = TPC.getTM<TargetMachine>();
190 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
192 if (!ST->allowsUnalignedMem()) {
193 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
194 "running pass ARMParallelDSP\n");
195 return false;
198 if (!ST->hasDSP()) {
199 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
200 "ARMParallelDSP\n");
201 return false;
204 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
205 bool Changes = false;
207 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
208 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
210 if (!RecordSequentialLoads(Header)) {
211 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n");
212 return false;
215 Changes = MatchSMLAD(F);
216 return Changes;
221 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
222 // instructions, which is set to 16. So here we should collect all i8 and i16
223 // narrow operations.
224 // TODO: we currently only collect i16, and will support i8 later, so that's
225 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
226 template<unsigned MaxBitWidth>
227 static bool IsNarrowSequence(Value *V, ValueList &VL) {
228 LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
229 ConstantInt *CInt;
231 if (match(V, m_ConstantInt(CInt))) {
232 // TODO: if a constant is used, it needs to fit within the bit width.
233 return false;
236 auto *I = dyn_cast<Instruction>(V);
237 if (!I)
238 return false;
240 Value *Val, *LHS, *RHS;
241 if (match(V, m_Trunc(m_Value(Val)))) {
242 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
243 return IsNarrowSequence<MaxBitWidth>(Val, VL);
244 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
245 // TODO: we need to implement sadd16/sadd8 for this, which enables to
246 // also do the rewrite for smlad8.ll, but it is unsupported for now.
247 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
248 return false;
249 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
250 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
251 LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
252 cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
253 return false;
256 if (match(Val, m_Load(m_Value()))) {
257 LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
258 VL.push_back(Val);
259 VL.push_back(I);
260 return true;
263 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
264 return false;
267 template<typename MemInst>
268 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
269 const DataLayout &DL, ScalarEvolution &SE) {
270 if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
271 LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
272 return false;
274 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
275 LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
276 return true;
278 LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
279 return false;
282 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
283 MemInstList &VecMem) {
284 if (!Ld0 || !Ld1)
285 return false;
287 LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
288 dbgs() << "Ld0:"; Ld0->dump();
289 dbgs() << "Ld1:"; Ld1->dump();
292 if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
293 LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
294 return false;
297 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
298 return false;
300 VecMem.clear();
301 VecMem.push_back(Ld0);
302 VecMem.push_back(Ld1);
303 return true;
306 /// Iterate through the block and record base, offset pairs of loads as well as
307 /// maximal sequences of sequential loads.
308 bool ARMParallelDSP::RecordSequentialLoads(BasicBlock *Header) {
309 SmallVector<LoadInst*, 8> Loads;
310 for (auto &I : *Header) {
311 auto *Ld = dyn_cast<LoadInst>(&I);
312 if (!Ld)
313 continue;
314 Loads.push_back(Ld);
317 std::map<LoadInst*, LoadInst*> BaseLoads;
319 for (auto *Ld0 : Loads) {
320 for (auto *Ld1 : Loads) {
321 if (Ld0 == Ld1)
322 continue;
324 if (AreSequentialAccesses<LoadInst>(Ld0, Ld1, *DL, *SE)) {
325 LoadPairs[Ld0] = Ld1;
326 if (BaseLoads.count(Ld0)) {
327 LoadInst *Base = BaseLoads[Ld0];
328 BaseLoads[Ld1] = Base;
329 SequentialLoads[Base].push_back(Ld1);
330 } else {
331 BaseLoads[Ld1] = Ld0;
332 SequentialLoads[Ld0].push_back(Ld1);
337 return LoadPairs.size() > 1;
340 void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) {
341 OpChainList &Candidates = R.MACCandidates;
342 PMACPairList &PMACPairs = R.PMACPairs;
343 const unsigned Elems = Candidates.size();
345 if (Elems < 2)
346 return;
348 auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) {
349 if (!PMul0->AreSymmetrical(PMul1))
350 return false;
352 // The first elements of each vector should be loads with sexts. If we
353 // find that its two pairs of consecutive loads, then these can be
354 // transformed into two wider loads and the users can be replaced with
355 // DSP intrinsics.
356 for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) {
357 auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]);
358 auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]);
359 auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]);
360 auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]);
362 if (!Ld0 || !Ld1 || !Ld2 || !Ld3)
363 return false;
365 LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n"
366 << "\t Ld0: " << *Ld0 << "\n"
367 << "\t Ld1: " << *Ld1 << "\n"
368 << "and operands " << x + 2 << ":\n"
369 << "\t Ld2: " << *Ld2 << "\n"
370 << "\t Ld3: " << *Ld3 << "\n");
372 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
373 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
374 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
375 PMACPairs.push_back(std::make_pair(PMul0, PMul1));
376 return true;
377 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
378 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
379 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
380 PMul1->Exchange = true;
381 PMACPairs.push_back(std::make_pair(PMul0, PMul1));
382 return true;
384 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
385 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
386 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
387 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
388 LLVM_DEBUG(dbgs() << " and swapping muls\n");
389 PMul0->Exchange = true;
390 // Only the second operand can be exchanged, so swap the muls.
391 PMACPairs.push_back(std::make_pair(PMul1, PMul0));
392 return true;
395 return false;
398 SmallPtrSet<const Instruction*, 4> Paired;
399 for (unsigned i = 0; i < Elems; ++i) {
400 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
401 if (Paired.count(PMul0->Root))
402 continue;
404 for (unsigned j = 0; j < Elems; ++j) {
405 if (i == j)
406 continue;
408 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get());
409 if (Paired.count(PMul1->Root))
410 continue;
412 const Instruction *Mul0 = PMul0->Root;
413 const Instruction *Mul1 = PMul1->Root;
414 if (Mul0 == Mul1)
415 continue;
417 assert(PMul0 != PMul1 && "expected different chains");
419 LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
420 dbgs() << "- "; Mul0->dump();
421 dbgs() << "- "; Mul1->dump());
423 LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
424 if (CanPair(PMul0, PMul1)) {
425 Paired.insert(Mul0);
426 Paired.insert(Mul1);
427 break;
433 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) {
434 Instruction *Acc = Reduction.Phi;
435 Instruction *InsertAfter = Reduction.AccIntAdd;
437 for (auto &Pair : Reduction.PMACPairs) {
438 BinOpChain *PMul0 = Pair.first;
439 BinOpChain *PMul1 = Pair.second;
440 LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
441 dbgs() << "- "; PMul0->Root->dump();
442 dbgs() << "- "; PMul1->Root->dump());
444 auto *VecLd0 = cast<LoadInst>(PMul0->VecLd[0]);
445 auto *VecLd1 = cast<LoadInst>(PMul1->VecLd[0]);
446 Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, PMul1->Exchange, InsertAfter);
447 InsertAfter = Acc;
450 if (Acc != Reduction.Phi) {
451 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
452 Reduction.AccIntAdd->replaceAllUsesWith(Acc);
453 return true;
455 return false;
458 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header,
459 ReductionList &Reductions) {
460 RecurrenceDescriptor RecDesc;
461 const bool HasFnNoNaNAttr =
462 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
463 const BasicBlock *Latch = TheLoop->getLoopLatch();
465 // We need a preheader as getIncomingValueForBlock assumes there is one.
466 if (!TheLoop->getLoopPreheader()) {
467 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
468 return;
471 for (PHINode &Phi : Header->phis()) {
472 const auto *Ty = Phi.getType();
473 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
474 continue;
476 const bool IsReduction =
477 RecurrenceDescriptor::AddReductionVar(&Phi,
478 RecurrenceDescriptor::RK_IntegerAdd,
479 TheLoop, HasFnNoNaNAttr, RecDesc);
480 if (!IsReduction)
481 continue;
483 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
484 if (!Acc)
485 continue;
487 Reductions.push_back(Reduction(&Phi, Acc));
490 LLVM_DEBUG(
491 dbgs() << "\nAccumulating integer additions (reductions) found:\n";
492 for (auto &R : Reductions) {
493 dbgs() << "- "; R.Phi->dump();
494 dbgs() << "-> "; R.AccIntAdd->dump();
499 static void AddMACCandidate(OpChainList &Candidates,
500 Instruction *Mul,
501 Value *MulOp0, Value *MulOp1) {
502 LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
503 assert(Mul->getOpcode() == Instruction::Mul &&
504 "expected mul instruction");
505 ValueList LHS;
506 ValueList RHS;
507 if (IsNarrowSequence<16>(MulOp0, LHS) &&
508 IsNarrowSequence<16>(MulOp1, RHS)) {
509 LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
510 Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS));
514 static void MatchParallelMACSequences(Reduction &R,
515 OpChainList &Candidates) {
516 Instruction *Acc = R.AccIntAdd;
517 LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc);
519 // Returns false to signal the search should be stopped.
520 std::function<bool(Value*)> Match =
521 [&Candidates, &Match](Value *V) -> bool {
523 auto *I = dyn_cast<Instruction>(V);
524 if (!I)
525 return false;
527 switch (I->getOpcode()) {
528 case Instruction::Add:
529 if (Match(I->getOperand(0)) || (Match(I->getOperand(1))))
530 return true;
531 break;
532 case Instruction::Mul: {
533 Value *MulOp0 = I->getOperand(0);
534 Value *MulOp1 = I->getOperand(1);
535 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1))
536 AddMACCandidate(Candidates, I, MulOp0, MulOp1);
537 return false;
539 case Instruction::SExt:
540 return Match(I->getOperand(0));
542 return false;
545 while (Match (Acc));
546 LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found "
547 << Candidates.size() << " candidates.\n");
550 // Collects all instructions that are not part of the MAC chains, which is the
551 // set of instructions that can potentially alias with the MAC operands.
552 static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
553 Instructions &Writes) {
554 for (auto &I : *Header) {
555 if (I.mayReadFromMemory())
556 Reads.push_back(&I);
557 if (I.mayWriteToMemory())
558 Writes.push_back(&I);
562 // Check whether statements in the basic block that write to memory alias with
563 // the memory locations accessed by the MAC-chains.
564 // TODO: we need the read statements when we accept more complicated chains.
565 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
566 Instructions &Writes, OpChainList &MACCandidates) {
567 LLVM_DEBUG(dbgs() << "Alias checks:\n");
568 for (auto &MAC : MACCandidates) {
569 LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump());
571 // At the moment, we allow only simple chains that only consist of reads,
572 // accumulate their result with an integer add, and thus that don't write
573 // memory, and simply bail if they do.
574 if (!MAC->ReadOnly)
575 return true;
577 // Now for all writes in the basic block, check that they don't alias with
578 // the memory locations accessed by our MAC-chain:
579 for (auto *I : Writes) {
580 LLVM_DEBUG(dbgs() << "- "; I->dump());
581 assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs");
582 for (auto &MemLoc : MAC->MemLocs) {
583 if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
584 ModRefInfo::ModRef))) {
585 LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
586 return true;
592 LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
593 return false;
596 static bool CheckMACMemory(OpChainList &Candidates) {
597 for (auto &C : Candidates) {
598 // A mul has 2 operands, and a narrow op consist of sext and a load; thus
599 // we expect at least 4 items in this operand value list.
600 if (C->size() < 4) {
601 LLVM_DEBUG(dbgs() << "Operand list too short.\n");
602 return false;
604 C->SetMemoryLocations();
605 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
606 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
608 // Use +=2 to skip over the expected extend instructions.
609 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
610 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
611 return false;
614 return true;
617 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
618 // multiplications.
619 // To use SMLAD:
620 // 1) we first need to find integer add reduction PHIs,
621 // 2) then from the PHI, look for this pattern:
623 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
624 // ld0 = load i16
625 // sext0 = sext i16 %ld0 to i32
626 // ld1 = load i16
627 // sext1 = sext i16 %ld1 to i32
628 // mul0 = mul %sext0, %sext1
629 // ld2 = load i16
630 // sext2 = sext i16 %ld2 to i32
631 // ld3 = load i16
632 // sext3 = sext i16 %ld3 to i32
633 // mul1 = mul i32 %sext2, %sext3
634 // add0 = add i32 %mul0, %acc0
635 // acc1 = add i32 %add0, %mul1
637 // Which can be selected to:
639 // ldr.h r0
640 // ldr.h r1
641 // smlad r2, r0, r1, r2
643 // If constants are used instead of loads, these will need to be hoisted
644 // out and into a register.
646 // If loop invariants are used instead of loads, these need to be packed
647 // before the loop begins.
649 bool ARMParallelDSP::MatchSMLAD(Function &F) {
650 BasicBlock *Header = L->getHeader();
651 LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
652 dbgs() << "Header block:\n"; Header->dump();
653 dbgs() << "Loop info:\n\n"; L->dump());
655 bool Changed = false;
656 ReductionList Reductions;
657 MatchReductions(F, L, Header, Reductions);
659 for (auto &R : Reductions) {
660 OpChainList MACCandidates;
661 MatchParallelMACSequences(R, MACCandidates);
662 if (!CheckMACMemory(MACCandidates))
663 continue;
665 R.MACCandidates = std::move(MACCandidates);
667 LLVM_DEBUG(dbgs() << "MAC candidates:\n";
668 for (auto &M : R.MACCandidates)
669 M->Root->dump();
670 dbgs() << "\n";);
673 // Collect all instructions that may read or write memory. Our alias
674 // analysis checks bail out if any of these instructions aliases with an
675 // instruction from the MAC-chain.
676 Instructions Reads, Writes;
677 AliasCandidates(Header, Reads, Writes);
679 for (auto &R : Reductions) {
680 if (AreAliased(AA, Reads, Writes, R.MACCandidates))
681 return false;
682 CreateParallelMACPairs(R);
683 Changed |= InsertParallelMACs(R);
686 LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
687 return Changed;
690 static LoadInst *CreateLoadIns(IRBuilder<NoFolder> &IRB, LoadInst &BaseLoad,
691 Type *LoadTy) {
692 const unsigned AddrSpace = BaseLoad.getPointerAddressSpace();
694 Value *VecPtr = IRB.CreateBitCast(BaseLoad.getPointerOperand(),
695 LoadTy->getPointerTo(AddrSpace));
696 return IRB.CreateAlignedLoad(LoadTy, VecPtr, BaseLoad.getAlignment());
699 Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
700 Instruction *Acc, bool Exchange,
701 Instruction *InsertAfter) {
702 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"
703 << "- " << *VecLd0 << "\n"
704 << "- " << *VecLd1 << "\n"
705 << "- " << *Acc << "\n"
706 << "Exchange: " << Exchange << "\n");
708 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
709 ++BasicBlock::iterator(InsertAfter));
711 // Replace the reduction chain with an intrinsic call
712 Type *Ty = IntegerType::get(M->getContext(), 32);
713 LoadInst *NewLd0 = CreateLoadIns(Builder, VecLd0[0], Ty);
714 LoadInst *NewLd1 = CreateLoadIns(Builder, VecLd1[0], Ty);
715 Value* Args[] = { NewLd0, NewLd1, Acc };
716 Function *SMLAD = nullptr;
717 if (Exchange)
718 SMLAD = Acc->getType()->isIntegerTy(32) ?
719 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
720 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
721 else
722 SMLAD = Acc->getType()->isIntegerTy(32) ?
723 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
724 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
725 CallInst *Call = Builder.CreateCall(SMLAD, Args);
726 NumSMLAD++;
727 return Call;
730 // Compare the value lists in Other to this chain.
731 bool BinOpChain::AreSymmetrical(BinOpChain *Other) {
732 // Element-by-element comparison of Value lists returning true if they are
733 // instructions with the same opcode or constants with the same value.
734 auto CompareValueList = [](const ValueList &VL0,
735 const ValueList &VL1) {
736 if (VL0.size() != VL1.size()) {
737 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
738 << VL0.size() << " != " << VL1.size() << "\n");
739 return false;
742 const unsigned Pairs = VL0.size();
743 LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");
745 for (unsigned i = 0; i < Pairs; ++i) {
746 const Value *V0 = VL0[i];
747 const Value *V1 = VL1[i];
748 const auto *Inst0 = dyn_cast<Instruction>(V0);
749 const auto *Inst1 = dyn_cast<Instruction>(V1);
751 LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
752 dbgs() << "mul1: "; V0->dump();
753 dbgs() << "mul2: "; V1->dump());
755 if (!Inst0 || !Inst1)
756 return false;
758 if (Inst0->isSameOperationAs(Inst1)) {
759 LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
760 continue;
763 const APInt *C0, *C1;
764 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
765 return false;
768 LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
769 return true;
772 return CompareValueList(LHS, Other->LHS) &&
773 CompareValueList(RHS, Other->RHS);
776 Pass *llvm::createARMParallelDSPPass() {
777 return new ARMParallelDSP();
780 char ARMParallelDSP::ID = 0;
782 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
783 "Transform loops to use DSP intrinsics", false, false)
784 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
785 "Transform loops to use DSP intrinsics", false, false)