Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / ARM / ARMRegisterInfo.td
blob668d374ef16098d69132eadd6c02f302790c3b5a
1 //===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 include "ARMSystemRegister.td"
11 //===----------------------------------------------------------------------===//
12 //  Declarations that describe the ARM register file
13 //===----------------------------------------------------------------------===//
15 // Registers are identified with 4-bit ID numbers.
16 class ARMReg<bits<16> Enc, string n, list<Register> subregs = []> : Register<n> {
17   let HWEncoding = Enc;
18   let Namespace = "ARM";
19   let SubRegs = subregs;
20   // All bits of ARM registers with sub-registers are covered by sub-registers.
21   let CoveredBySubRegs = 1;
24 class ARMFReg<bits<16> Enc, string n> : Register<n> {
25   let HWEncoding = Enc;
26   let Namespace = "ARM";
29 // Subregister indices.
30 let Namespace = "ARM" in {
31 def qqsub_0 : SubRegIndex<256>;
32 def qqsub_1 : SubRegIndex<256, 256>;
34 // Note: Code depends on these having consecutive numbers.
35 def qsub_0 : SubRegIndex<128>;
36 def qsub_1 : SubRegIndex<128, 128>;
37 def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>;
38 def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>;
40 def dsub_0 : SubRegIndex<64>;
41 def dsub_1 : SubRegIndex<64, 64>;
42 def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
43 def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
44 def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
45 def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>;
46 def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>;
47 def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>;
49 def ssub_0  : SubRegIndex<32>;
50 def ssub_1  : SubRegIndex<32, 32>;
51 def ssub_2  : ComposedSubRegIndex<dsub_1, ssub_0>;
52 def ssub_3  : ComposedSubRegIndex<dsub_1, ssub_1>;
53 def ssub_4  : ComposedSubRegIndex<dsub_2, ssub_0>;
54 def ssub_5  : ComposedSubRegIndex<dsub_2, ssub_1>;
55 def ssub_6  : ComposedSubRegIndex<dsub_3, ssub_0>;
56 def ssub_7  : ComposedSubRegIndex<dsub_3, ssub_1>;
57 def ssub_8  : ComposedSubRegIndex<dsub_4, ssub_0>;
58 def ssub_9  : ComposedSubRegIndex<dsub_4, ssub_1>;
59 def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>;
60 def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>;
61 def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>;
62 def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>;
64 def gsub_0 : SubRegIndex<32>;
65 def gsub_1 : SubRegIndex<32, 32>;
66 // Let TableGen synthesize the remaining 12 ssub_* indices.
67 // We don't need to name them.
70 // Integer registers
71 def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
72 def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
73 def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
74 def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
75 def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
76 def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
77 def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
78 def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
79 // These require 32-bit instructions.
80 let CostPerUse = 1 in {
81 def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
82 def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
83 def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
84 def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
85 def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
86 def SP  : ARMReg<13, "sp">,  DwarfRegNum<[13]>;
87 def LR  : ARMReg<14, "lr">,  DwarfRegNum<[14]>;
88 def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;
91 // Float registers
92 def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
93 def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
94 def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
95 def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
96 def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
97 def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
98 def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
99 def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
100 def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
101 def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
102 def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
103 def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
104 def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
105 def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
106 def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
107 def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
109 // Aliases of the F* registers used to hold 64-bit fp values (doubles)
110 let SubRegIndices = [ssub_0, ssub_1] in {
111 def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
112 def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
113 def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
114 def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
115 def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
116 def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
117 def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
118 def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
119 def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
120 def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
121 def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
122 def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
123 def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
124 def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
125 def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
126 def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
129 // VFP3 defines 16 additional double registers
130 def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
131 def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
132 def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
133 def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
134 def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
135 def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
136 def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
137 def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
138 def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
139 def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
140 def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
141 def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
142 def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
143 def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
144 def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
145 def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
147 // Advanced SIMD (NEON) defines 16 quad-word aliases
148 let SubRegIndices = [dsub_0, dsub_1] in {
149 def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
150 def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
151 def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
152 def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
153 def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
154 def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
155 def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
156 def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
158 let SubRegIndices = [dsub_0, dsub_1] in {
159 def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
160 def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
161 def Q10 : ARMReg<10, "q10", [D20, D21]>;
162 def Q11 : ARMReg<11, "q11", [D22, D23]>;
163 def Q12 : ARMReg<12, "q12", [D24, D25]>;
164 def Q13 : ARMReg<13, "q13", [D26, D27]>;
165 def Q14 : ARMReg<14, "q14", [D28, D29]>;
166 def Q15 : ARMReg<15, "q15", [D30, D31]>;
169 // Current Program Status Register.
170 // We model fpscr with two registers: FPSCR models the control bits and will be
171 // reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV
172 // models the APSR when it's accessed by some special instructions. In such cases
173 // it has the same encoding as PC.
174 def CPSR       : ARMReg<0,  "cpsr">;
175 def APSR       : ARMReg<1,  "apsr">;
176 def APSR_NZCV  : ARMReg<15, "apsr_nzcv">;
177 def SPSR       : ARMReg<2,  "spsr">;
178 def FPSCR      : ARMReg<3,  "fpscr">;
179 def FPSCR_NZCV : ARMReg<3,  "fpscr_nzcv"> {
180   let Aliases = [FPSCR];
182 def ITSTATE    : ARMReg<4, "itstate">;
184 // Special Registers - only available in privileged mode.
185 def FPSID   : ARMReg<0,  "fpsid">;
186 def MVFR2   : ARMReg<5,  "mvfr2">;
187 def MVFR1   : ARMReg<6,  "mvfr1">;
188 def MVFR0   : ARMReg<7,  "mvfr0">;
189 def FPEXC   : ARMReg<8,  "fpexc">;
190 def FPINST  : ARMReg<9,  "fpinst">;
191 def FPINST2 : ARMReg<10, "fpinst2">;
193 // Register classes.
195 // pc  == Program Counter
196 // lr  == Link Register
197 // sp  == Stack Pointer
198 // r12 == ip (scratch)
199 // r7  == Frame Pointer (thumb-style backtraces)
200 // r9  == May be reserved as Thread Register
201 // r11 == Frame Pointer (arm-style backtraces)
202 // r10 == Stack Limit
204 def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
205                                                SP, LR, PC)> {
206   // Allocate LR as the first CSR since it is always saved anyway.
207   // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
208   // know how to spill them. If we make our prologue/epilogue code smarter at
209   // some point, we can go back to using the above allocation orders for the
210   // Thumb1 instructions that know how to use hi regs.
211   let AltOrders = [(add LR, GPR), (trunc GPR, 8)];
212   let AltOrderSelect = [{
213       return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
214   }];
215   let DiagnosticString = "operand must be a register in range [r0, r15]";
218 // GPRs without the PC.  Some ARM instructions do not allow the PC in
219 // certain operand slots, particularly as the destination.  Primarily
220 // useful for disassembly.
221 def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
222   let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
223   let AltOrderSelect = [{
224       return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
225   }];
226   let DiagnosticString = "operand must be a register in range [r0, r14]";
229 // GPRs without the PC but with APSR. Some instructions allow accessing the
230 // APSR, while actually encoding PC in the register field. This is useful
231 // for assembly and disassembly only.
232 def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> {
233   let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
234   let AltOrderSelect = [{
235       return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
236   }];
237   let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv";
240 // GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
241 // implied SP argument list.
242 // FIXME: It would be better to not use this at all and refactor the
243 // instructions to not have SP an an explicit argument. That makes
244 // frame index resolution a bit trickier, though.
245 def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> {
246   let DiagnosticString = "operand must be a register sp";
249 // restricted GPR register class. Many Thumb2 instructions allow the full
250 // register range for operands, but have undefined behaviours when PC
251 // or SP (R13 or R15) are used. The ARM ISA refers to these operands
252 // via the BadReg() pseudo-code description.
253 def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
254   let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)];
255   let AltOrderSelect = [{
256       return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
257   }];
258   let DiagnosticType = "rGPR";
261 // Thumb registers are R0-R7 normally. Some instructions can still use
262 // the general GPR register class above (MOV, e.g.)
263 def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> {
264   let DiagnosticString = "operand must be a register in range [r0, r7]";
267 // Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow
268 // the PC to be used as a destination operand as well.
269 def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>;
271 // The high registers in thumb mode, R8-R15.
272 def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> {
273   let DiagnosticString = "operand must be a register in range [r8, r15]";
276 // For tail calls, we can't use callee-saved registers, as they are restored
277 // to the saved value before the tail call, which would clobber a call address.
278 // Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
279 // this class and the preceding one(!)  This is what we want.
280 def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> {
281   let AltOrders = [(and tcGPR, tGPR)];
282   let AltOrderSelect = [{
283       return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
284   }];
287 // Condition code registers.
288 def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
289   let CopyCost = -1;  // Don't allow copying of status registers.
290   let isAllocatable = 0;
293 // Scalar single precision floating point register class..
294 // FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack
295 // to avoid partial-write dependencies on D or Q (depending on platform)
296 // registers (S registers are renamed as portions of D/Q registers).
297 def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> {
298   let AltOrders = [(add (decimate SPR, 2), SPR),
299                    (add (decimate SPR, 4),
300                         (decimate SPR, 2),
301                         (decimate (rotl SPR, 1), 4),
302                         (decimate (rotl SPR, 1), 2))];
303   let AltOrderSelect = [{
304     return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
305   }];
306   let DiagnosticString = "operand must be a register in range [s0, s31]";
309 def HPR : RegisterClass<"ARM", [f16], 32, (sequence "S%u", 0, 31)> {
310   let AltOrders = [(add (decimate HPR, 2), SPR),
311                    (add (decimate HPR, 4),
312                         (decimate HPR, 2),
313                         (decimate (rotl HPR, 1), 4),
314                         (decimate (rotl HPR, 1), 2))];
315   let AltOrderSelect = [{
316     return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
317   }];
318   let DiagnosticString = "operand must be a register in range [s0, s31]";
321 // Subset of SPR which can be used as a source of NEON scalars for 16-bit
322 // operations
323 def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> {
324   let DiagnosticString = "operand must be a register in range [s0, s15]";
327 // Scalar double precision floating point / generic 64-bit vector register
328 // class.
329 // ARM requires only word alignment for double. It's more performant if it
330 // is double-word alignment though.
331 def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
332                         (sequence "D%u", 0, 31)> {
333   // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on
334   // Darwin platforms.
335   let AltOrders = [(rotl DPR, 16),
336                    (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))];
337   let AltOrderSelect = [{
338     return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
339   }];
340   let DiagnosticType = "DPR";
343 // Subset of DPR that are accessible with VFP2 (and so that also have
344 // 32-bit SPR subregs).
345 def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
346                              (trunc DPR, 16)> {
347   let DiagnosticString = "operand must be a register in range [d0, d15]";
350 // Subset of DPR which can be used as a source of NEON scalars for 16-bit
351 // operations
352 def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
353                           (trunc DPR, 8)> {
354   let DiagnosticString = "operand must be a register in range [d0, d7]";
357 // Generic 128-bit vector register class.
358 def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], 128,
359                         (sequence "Q%u", 0, 15)> {
360   // Allocate non-VFP2 aliases Q8-Q15 first.
361   let AltOrders = [(rotl QPR, 8)];
362   let AltOrderSelect = [{ return 1; }];
363   let DiagnosticString = "operand must be a register in range [q0, q15]";
366 // Subset of QPR that have 32-bit SPR subregs.
367 def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
368                              128, (trunc QPR, 8)> {
369   let DiagnosticString = "operand must be a register in range [q0, q7]";
372 // Subset of QPR that have DPR_8 and SPR_8 subregs.
373 def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
374                            128, (trunc QPR, 4)> {
375   let DiagnosticString = "operand must be a register in range [q0, q3]";
378 // Pseudo-registers representing odd-even pairs of D registers. The even-odd
379 // pairs are already represented by the Q registers.
380 // These are needed by NEON instructions requiring two consecutive D registers.
381 // There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
382 def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
383                                 [(decimate (shl DPR, 1), 2),
384                                  (decimate (shl DPR, 2), 2)]>;
386 // Register class representing a pair of consecutive D registers.
387 // Use the Q registers for the even-odd pairs.
388 def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
389                           128, (interleave QPR, TuplesOE2D)> {
390   // Allocate starting at non-VFP2 registers D16-D31 first.
391   // Prefer even-odd pairs as they are easier to copy.
392   let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16))];
393   let AltOrderSelect = [{ return 1; }];
396 // Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP.
397 // These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs.
398 def Tuples2R : RegisterTuples<[gsub_0, gsub_1],
399                               [(add R0, R2, R4, R6, R8, R10, R12),
400                                (add R1, R3, R5, R7, R9, R11, SP)]>;
402 // Register class representing a pair of even-odd GPRs.
403 def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2R)> {
404   let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
407 // Pseudo-registers representing 3 consecutive D registers.
408 def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
409                               [(shl DPR, 0),
410                                (shl DPR, 1),
411                                (shl DPR, 2)]>;
413 // 3 consecutive D registers.
414 def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
415   let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
418 // Pseudo 256-bit registers to represent pairs of Q registers. These should
419 // never be present in the emitted code.
420 // These are used for NEON load / store instructions, e.g., vld4, vst3.
421 def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;
423 // Pseudo 256-bit vector register class to model pairs of Q registers
424 // (4 consecutive D registers).
425 def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
426   // Allocate non-VFP2 aliases first.
427   let AltOrders = [(rotl QQPR, 8)];
428   let AltOrderSelect = [{ return 1; }];
431 // Tuples of 4 D regs that isn't also a pair of Q regs.
432 def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
433                                 [(decimate (shl DPR, 1), 2),
434                                  (decimate (shl DPR, 2), 2),
435                                  (decimate (shl DPR, 3), 2),
436                                  (decimate (shl DPR, 4), 2)]>;
438 // 4 consecutive D registers.
439 def DQuad : RegisterClass<"ARM", [v4i64], 256,
440                           (interleave Tuples2Q, TuplesOE4D)>;
442 // Pseudo 512-bit registers to represent four consecutive Q registers.
443 def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
444                                [(shl QQPR, 0), (shl QQPR, 2)]>;
446 // Pseudo 512-bit vector register class to model 4 consecutive Q registers
447 // (8 consecutive D registers).
448 def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
449   // Allocate non-VFP2 aliases first.
450   let AltOrders = [(rotl QQQQPR, 8)];
451   let AltOrderSelect = [{ return 1; }];
455 // Pseudo-registers representing 2-spaced consecutive D registers.
456 def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
457                                  [(shl DPR, 0),
458                                   (shl DPR, 2)]>;
460 // Spaced pairs of D registers.
461 def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;
463 def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
464                                  [(shl DPR, 0),
465                                   (shl DPR, 2),
466                                   (shl DPR, 4)]>;
468 // Spaced triples of D registers.
469 def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
470   let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
473 def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
474                                  [(shl DPR, 0),
475                                   (shl DPR, 2),
476                                   (shl DPR, 4),
477                                   (shl DPR, 6)]>;
479 // Spaced quads of D registers.
480 def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;