1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "ARMFeatures.h"
10 #include "InstPrinter/ARMInstPrinter.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInst.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/MC/MCObjectFileInfo.h"
33 #include "llvm/MC/MCParser/MCAsmLexer.h"
34 #include "llvm/MC/MCParser/MCAsmParser.h"
35 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
36 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
38 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSubtargetInfo.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/SubtargetFeature.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/ARMEHABI.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/SMLoc.h"
53 #include "llvm/Support/TargetParser.h"
54 #include "llvm/Support/TargetRegistry.h"
55 #include "llvm/Support/raw_ostream.h"
67 #define DEBUG_TYPE "asm-parser"
73 enum class ImplicitItModeTy
{ Always
, Never
, ARMOnly
, ThumbOnly
};
75 static cl::opt
<ImplicitItModeTy
> ImplicitItMode(
76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly
),
77 cl::desc("Allow conditional instructions outdside of an IT block"),
78 cl::values(clEnumValN(ImplicitItModeTy::Always
, "always",
79 "Accept in both ISAs, emit implicit ITs in Thumb"),
80 clEnumValN(ImplicitItModeTy::Never
, "never",
81 "Warn in ARM, reject in Thumb"),
82 clEnumValN(ImplicitItModeTy::ARMOnly
, "arm",
83 "Accept in ARM, reject in Thumb"),
84 clEnumValN(ImplicitItModeTy::ThumbOnly
, "thumb",
85 "Warn in ARM, emit implicit ITs in Thumb")));
87 static cl::opt
<bool> AddBuildAttributes("arm-add-build-attributes",
90 enum VectorLaneTy
{ NoLanes
, AllLanes
, IndexedLane
};
93 using Locs
= SmallVector
<SMLoc
, 4>;
99 Locs PersonalityIndexLocs
;
100 Locs HandlerDataLocs
;
104 UnwindContext(MCAsmParser
&P
) : Parser(P
), FPReg(ARM::SP
) {}
106 bool hasFnStart() const { return !FnStartLocs
.empty(); }
107 bool cantUnwind() const { return !CantUnwindLocs
.empty(); }
108 bool hasHandlerData() const { return !HandlerDataLocs
.empty(); }
110 bool hasPersonality() const {
111 return !(PersonalityLocs
.empty() && PersonalityIndexLocs
.empty());
114 void recordFnStart(SMLoc L
) { FnStartLocs
.push_back(L
); }
115 void recordCantUnwind(SMLoc L
) { CantUnwindLocs
.push_back(L
); }
116 void recordPersonality(SMLoc L
) { PersonalityLocs
.push_back(L
); }
117 void recordHandlerData(SMLoc L
) { HandlerDataLocs
.push_back(L
); }
118 void recordPersonalityIndex(SMLoc L
) { PersonalityIndexLocs
.push_back(L
); }
120 void saveFPReg(int Reg
) { FPReg
= Reg
; }
121 int getFPReg() const { return FPReg
; }
123 void emitFnStartLocNotes() const {
124 for (Locs::const_iterator FI
= FnStartLocs
.begin(), FE
= FnStartLocs
.end();
126 Parser
.Note(*FI
, ".fnstart was specified here");
129 void emitCantUnwindLocNotes() const {
130 for (Locs::const_iterator UI
= CantUnwindLocs
.begin(),
131 UE
= CantUnwindLocs
.end(); UI
!= UE
; ++UI
)
132 Parser
.Note(*UI
, ".cantunwind was specified here");
135 void emitHandlerDataLocNotes() const {
136 for (Locs::const_iterator HI
= HandlerDataLocs
.begin(),
137 HE
= HandlerDataLocs
.end(); HI
!= HE
; ++HI
)
138 Parser
.Note(*HI
, ".handlerdata was specified here");
141 void emitPersonalityLocNotes() const {
142 for (Locs::const_iterator PI
= PersonalityLocs
.begin(),
143 PE
= PersonalityLocs
.end(),
144 PII
= PersonalityIndexLocs
.begin(),
145 PIE
= PersonalityIndexLocs
.end();
146 PI
!= PE
|| PII
!= PIE
;) {
147 if (PI
!= PE
&& (PII
== PIE
|| PI
->getPointer() < PII
->getPointer()))
148 Parser
.Note(*PI
++, ".personality was specified here");
149 else if (PII
!= PIE
&& (PI
== PE
|| PII
->getPointer() < PI
->getPointer()))
150 Parser
.Note(*PII
++, ".personalityindex was specified here");
152 llvm_unreachable(".personality and .personalityindex cannot be "
153 "at the same location");
158 FnStartLocs
= Locs();
159 CantUnwindLocs
= Locs();
160 PersonalityLocs
= Locs();
161 HandlerDataLocs
= Locs();
162 PersonalityIndexLocs
= Locs();
167 class ARMAsmParser
: public MCTargetAsmParser
{
168 const MCRegisterInfo
*MRI
;
171 ARMTargetStreamer
&getTargetStreamer() {
172 assert(getParser().getStreamer().getTargetStreamer() &&
173 "do not have a target streamer");
174 MCTargetStreamer
&TS
= *getParser().getStreamer().getTargetStreamer();
175 return static_cast<ARMTargetStreamer
&>(TS
);
178 // Map of register aliases registers via the .req directive.
179 StringMap
<unsigned> RegisterReqs
;
181 bool NextSymbolIsThumb
;
183 bool useImplicitITThumb() const {
184 return ImplicitItMode
== ImplicitItModeTy::Always
||
185 ImplicitItMode
== ImplicitItModeTy::ThumbOnly
;
188 bool useImplicitITARM() const {
189 return ImplicitItMode
== ImplicitItModeTy::Always
||
190 ImplicitItMode
== ImplicitItModeTy::ARMOnly
;
194 ARMCC::CondCodes Cond
; // Condition for IT block.
195 unsigned Mask
:4; // Condition mask for instructions.
196 // Starting at first 1 (from lsb).
197 // '1' condition as indicated in IT.
198 // '0' inverse of condition (else).
199 // Count of instructions in IT block is
200 // 4 - trailingzeroes(mask)
201 // Note that this does not have the same encoding
202 // as in the IT instruction, which also depends
203 // on the low bit of the condition code.
205 unsigned CurPosition
; // Current position in parsing of IT
206 // block. In range [0,4], with 0 being the IT
207 // instruction itself. Initialized according to
208 // count of instructions in block. ~0U if no
211 bool IsExplicit
; // true - The IT instruction was present in the
212 // input, we should not modify it.
213 // false - The IT instruction was added
214 // implicitly, we can extend it if that
218 SmallVector
<MCInst
, 4> PendingConditionalInsts
;
220 void flushPendingInstructions(MCStreamer
&Out
) override
{
221 if (!inImplicitITBlock()) {
222 assert(PendingConditionalInsts
.size() == 0);
226 // Emit the IT instruction
227 unsigned Mask
= getITMaskEncoding();
229 ITInst
.setOpcode(ARM::t2IT
);
230 ITInst
.addOperand(MCOperand::createImm(ITState
.Cond
));
231 ITInst
.addOperand(MCOperand::createImm(Mask
));
232 Out
.EmitInstruction(ITInst
, getSTI());
234 // Emit the conditonal instructions
235 assert(PendingConditionalInsts
.size() <= 4);
236 for (const MCInst
&Inst
: PendingConditionalInsts
) {
237 Out
.EmitInstruction(Inst
, getSTI());
239 PendingConditionalInsts
.clear();
241 // Clear the IT state
243 ITState
.CurPosition
= ~0U;
246 bool inITBlock() { return ITState
.CurPosition
!= ~0U; }
247 bool inExplicitITBlock() { return inITBlock() && ITState
.IsExplicit
; }
248 bool inImplicitITBlock() { return inITBlock() && !ITState
.IsExplicit
; }
250 bool lastInITBlock() {
251 return ITState
.CurPosition
== 4 - countTrailingZeros(ITState
.Mask
);
254 void forwardITPosition() {
255 if (!inITBlock()) return;
256 // Move to the next instruction in the IT block, if there is one. If not,
257 // mark the block as done, except for implicit IT blocks, which we leave
258 // open until we find an instruction that can't be added to it.
259 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
260 if (++ITState
.CurPosition
== 5 - TZ
&& ITState
.IsExplicit
)
261 ITState
.CurPosition
= ~0U; // Done with the IT block after this.
264 // Rewind the state of the current IT block, removing the last slot from it.
265 void rewindImplicitITPosition() {
266 assert(inImplicitITBlock());
267 assert(ITState
.CurPosition
> 1);
268 ITState
.CurPosition
--;
269 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
270 unsigned NewMask
= 0;
271 NewMask
|= ITState
.Mask
& (0xC << TZ
);
272 NewMask
|= 0x2 << TZ
;
273 ITState
.Mask
= NewMask
;
276 // Rewind the state of the current IT block, removing the last slot from it.
277 // If we were at the first slot, this closes the IT block.
278 void discardImplicitITBlock() {
279 assert(inImplicitITBlock());
280 assert(ITState
.CurPosition
== 1);
281 ITState
.CurPosition
= ~0U;
284 // Return the low-subreg of a given Q register.
285 unsigned getDRegFromQReg(unsigned QReg
) const {
286 return MRI
->getSubReg(QReg
, ARM::dsub_0
);
289 // Get the encoding of the IT mask, as it will appear in an IT instruction.
290 unsigned getITMaskEncoding() {
292 unsigned Mask
= ITState
.Mask
;
293 unsigned TZ
= countTrailingZeros(Mask
);
294 if ((ITState
.Cond
& 1) == 0) {
295 assert(Mask
&& TZ
<= 3 && "illegal IT mask value!");
296 Mask
^= (0xE << TZ
) & 0xF;
301 // Get the condition code corresponding to the current IT block slot.
302 ARMCC::CondCodes
currentITCond() {
304 if (ITState
.CurPosition
== 1)
307 MaskBit
= (ITState
.Mask
>> (5 - ITState
.CurPosition
)) & 1;
309 return MaskBit
? ITState
.Cond
: ARMCC::getOppositeCondition(ITState
.Cond
);
312 // Invert the condition of the current IT block slot without changing any
313 // other slots in the same block.
314 void invertCurrentITCondition() {
315 if (ITState
.CurPosition
== 1) {
316 ITState
.Cond
= ARMCC::getOppositeCondition(ITState
.Cond
);
318 ITState
.Mask
^= 1 << (5 - ITState
.CurPosition
);
322 // Returns true if the current IT block is full (all 4 slots used).
323 bool isITBlockFull() {
324 return inITBlock() && (ITState
.Mask
& 1);
327 // Extend the current implicit IT block to have one more slot with the given
329 void extendImplicitITBlock(ARMCC::CondCodes Cond
) {
330 assert(inImplicitITBlock());
331 assert(!isITBlockFull());
332 assert(Cond
== ITState
.Cond
||
333 Cond
== ARMCC::getOppositeCondition(ITState
.Cond
));
334 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
335 unsigned NewMask
= 0;
336 // Keep any existing condition bits.
337 NewMask
|= ITState
.Mask
& (0xE << TZ
);
338 // Insert the new condition bit.
339 NewMask
|= (Cond
== ITState
.Cond
) << TZ
;
340 // Move the trailing 1 down one bit.
341 NewMask
|= 1 << (TZ
- 1);
342 ITState
.Mask
= NewMask
;
345 // Create a new implicit IT block with a dummy condition code.
346 void startImplicitITBlock() {
347 assert(!inITBlock());
348 ITState
.Cond
= ARMCC::AL
;
350 ITState
.CurPosition
= 1;
351 ITState
.IsExplicit
= false;
354 // Create a new explicit IT block with the given condition and mask. The mask
355 // should be in the parsed format, with a 1 implying 't', regardless of the
356 // low bit of the condition.
357 void startExplicitITBlock(ARMCC::CondCodes Cond
, unsigned Mask
) {
358 assert(!inITBlock());
361 ITState
.CurPosition
= 0;
362 ITState
.IsExplicit
= true;
365 void Note(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
366 return getParser().Note(L
, Msg
, Range
);
369 bool Warning(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
370 return getParser().Warning(L
, Msg
, Range
);
373 bool Error(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
374 return getParser().Error(L
, Msg
, Range
);
377 bool validatetLDMRegList(const MCInst
&Inst
, const OperandVector
&Operands
,
378 unsigned ListNo
, bool IsARPop
= false);
379 bool validatetSTMRegList(const MCInst
&Inst
, const OperandVector
&Operands
,
382 int tryParseRegister();
383 bool tryParseRegisterWithWriteBack(OperandVector
&);
384 int tryParseShiftRegister(OperandVector
&);
385 bool parseRegisterList(OperandVector
&);
386 bool parseMemory(OperandVector
&);
387 bool parseOperand(OperandVector
&, StringRef Mnemonic
);
388 bool parsePrefix(ARMMCExpr::VariantKind
&RefKind
);
389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc
&ShiftType
,
390 unsigned &ShiftAmount
);
391 bool parseLiteralValues(unsigned Size
, SMLoc L
);
392 bool parseDirectiveThumb(SMLoc L
);
393 bool parseDirectiveARM(SMLoc L
);
394 bool parseDirectiveThumbFunc(SMLoc L
);
395 bool parseDirectiveCode(SMLoc L
);
396 bool parseDirectiveSyntax(SMLoc L
);
397 bool parseDirectiveReq(StringRef Name
, SMLoc L
);
398 bool parseDirectiveUnreq(SMLoc L
);
399 bool parseDirectiveArch(SMLoc L
);
400 bool parseDirectiveEabiAttr(SMLoc L
);
401 bool parseDirectiveCPU(SMLoc L
);
402 bool parseDirectiveFPU(SMLoc L
);
403 bool parseDirectiveFnStart(SMLoc L
);
404 bool parseDirectiveFnEnd(SMLoc L
);
405 bool parseDirectiveCantUnwind(SMLoc L
);
406 bool parseDirectivePersonality(SMLoc L
);
407 bool parseDirectiveHandlerData(SMLoc L
);
408 bool parseDirectiveSetFP(SMLoc L
);
409 bool parseDirectivePad(SMLoc L
);
410 bool parseDirectiveRegSave(SMLoc L
, bool IsVector
);
411 bool parseDirectiveInst(SMLoc L
, char Suffix
= '\0');
412 bool parseDirectiveLtorg(SMLoc L
);
413 bool parseDirectiveEven(SMLoc L
);
414 bool parseDirectivePersonalityIndex(SMLoc L
);
415 bool parseDirectiveUnwindRaw(SMLoc L
);
416 bool parseDirectiveTLSDescSeq(SMLoc L
);
417 bool parseDirectiveMovSP(SMLoc L
);
418 bool parseDirectiveObjectArch(SMLoc L
);
419 bool parseDirectiveArchExtension(SMLoc L
);
420 bool parseDirectiveAlign(SMLoc L
);
421 bool parseDirectiveThumbSet(SMLoc L
);
423 StringRef
splitMnemonic(StringRef Mnemonic
, unsigned &PredicationCode
,
424 bool &CarrySetting
, unsigned &ProcessorIMod
,
426 void getMnemonicAcceptInfo(StringRef Mnemonic
, StringRef FullInst
,
427 bool &CanAcceptCarrySet
,
428 bool &CanAcceptPredicationCode
);
430 void tryConvertingToTwoOperandForm(StringRef Mnemonic
, bool CarrySetting
,
431 OperandVector
&Operands
);
432 bool isThumb() const {
433 // FIXME: Can tablegen auto-generate this?
434 return getSTI().getFeatureBits()[ARM::ModeThumb
];
437 bool isThumbOne() const {
438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2
];
441 bool isThumbTwo() const {
442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2
];
445 bool hasThumb() const {
446 return getSTI().getFeatureBits()[ARM::HasV4TOps
];
449 bool hasThumb2() const {
450 return getSTI().getFeatureBits()[ARM::FeatureThumb2
];
453 bool hasV6Ops() const {
454 return getSTI().getFeatureBits()[ARM::HasV6Ops
];
457 bool hasV6T2Ops() const {
458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops
];
461 bool hasV6MOps() const {
462 return getSTI().getFeatureBits()[ARM::HasV6MOps
];
465 bool hasV7Ops() const {
466 return getSTI().getFeatureBits()[ARM::HasV7Ops
];
469 bool hasV8Ops() const {
470 return getSTI().getFeatureBits()[ARM::HasV8Ops
];
473 bool hasV8MBaseline() const {
474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps
];
477 bool hasV8MMainline() const {
478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps
];
481 bool has8MSecExt() const {
482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt
];
485 bool hasARM() const {
486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM
];
489 bool hasDSP() const {
490 return getSTI().getFeatureBits()[ARM::FeatureDSP
];
493 bool hasD16() const {
494 return getSTI().getFeatureBits()[ARM::FeatureD16
];
497 bool hasV8_1aOps() const {
498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps
];
501 bool hasRAS() const {
502 return getSTI().getFeatureBits()[ARM::FeatureRAS
];
506 MCSubtargetInfo
&STI
= copySTI();
507 uint64_t FB
= ComputeAvailableFeatures(STI
.ToggleFeature(ARM::ModeThumb
));
508 setAvailableFeatures(FB
);
511 void FixModeAfterArchChange(bool WasThumb
, SMLoc Loc
);
513 bool isMClass() const {
514 return getSTI().getFeatureBits()[ARM::FeatureMClass
];
517 /// @name Auto-generated Match Functions
520 #define GET_ASSEMBLER_HEADER
521 #include "ARMGenAsmMatcher.inc"
525 OperandMatchResultTy
parseITCondCode(OperandVector
&);
526 OperandMatchResultTy
parseCoprocNumOperand(OperandVector
&);
527 OperandMatchResultTy
parseCoprocRegOperand(OperandVector
&);
528 OperandMatchResultTy
parseCoprocOptionOperand(OperandVector
&);
529 OperandMatchResultTy
parseMemBarrierOptOperand(OperandVector
&);
530 OperandMatchResultTy
parseTraceSyncBarrierOptOperand(OperandVector
&);
531 OperandMatchResultTy
parseInstSyncBarrierOptOperand(OperandVector
&);
532 OperandMatchResultTy
parseProcIFlagsOperand(OperandVector
&);
533 OperandMatchResultTy
parseMSRMaskOperand(OperandVector
&);
534 OperandMatchResultTy
parseBankedRegOperand(OperandVector
&);
535 OperandMatchResultTy
parsePKHImm(OperandVector
&O
, StringRef Op
, int Low
,
537 OperandMatchResultTy
parsePKHLSLImm(OperandVector
&O
) {
538 return parsePKHImm(O
, "lsl", 0, 31);
540 OperandMatchResultTy
parsePKHASRImm(OperandVector
&O
) {
541 return parsePKHImm(O
, "asr", 1, 32);
543 OperandMatchResultTy
parseSetEndImm(OperandVector
&);
544 OperandMatchResultTy
parseShifterImm(OperandVector
&);
545 OperandMatchResultTy
parseRotImm(OperandVector
&);
546 OperandMatchResultTy
parseModImm(OperandVector
&);
547 OperandMatchResultTy
parseBitfield(OperandVector
&);
548 OperandMatchResultTy
parsePostIdxReg(OperandVector
&);
549 OperandMatchResultTy
parseAM3Offset(OperandVector
&);
550 OperandMatchResultTy
parseFPImm(OperandVector
&);
551 OperandMatchResultTy
parseVectorList(OperandVector
&);
552 OperandMatchResultTy
parseVectorLane(VectorLaneTy
&LaneKind
, unsigned &Index
,
555 // Asm Match Converter Methods
556 void cvtThumbMultiply(MCInst
&Inst
, const OperandVector
&);
557 void cvtThumbBranches(MCInst
&Inst
, const OperandVector
&);
559 bool validateInstruction(MCInst
&Inst
, const OperandVector
&Ops
);
560 bool processInstruction(MCInst
&Inst
, const OperandVector
&Ops
, MCStreamer
&Out
);
561 bool shouldOmitCCOutOperand(StringRef Mnemonic
, OperandVector
&Operands
);
562 bool shouldOmitPredicateOperand(StringRef Mnemonic
, OperandVector
&Operands
);
563 bool isITBlockTerminator(MCInst
&Inst
) const;
564 void fixupGNULDRDAlias(StringRef Mnemonic
, OperandVector
&Operands
);
565 bool validateLDRDSTRD(MCInst
&Inst
, const OperandVector
&Operands
,
566 bool Load
, bool ARMMode
, bool Writeback
);
569 enum ARMMatchResultTy
{
570 Match_RequiresITBlock
= FIRST_TARGET_MATCH_RESULT_TY
,
571 Match_RequiresNotITBlock
,
573 Match_RequiresThumb2
,
575 Match_RequiresFlagSetting
,
576 #define GET_OPERAND_DIAGNOSTIC_TYPES
577 #include "ARMGenAsmMatcher.inc"
581 ARMAsmParser(const MCSubtargetInfo
&STI
, MCAsmParser
&Parser
,
582 const MCInstrInfo
&MII
, const MCTargetOptions
&Options
)
583 : MCTargetAsmParser(Options
, STI
, MII
), UC(Parser
) {
584 MCAsmParserExtension::Initialize(Parser
);
586 // Cache the MCRegisterInfo.
587 MRI
= getContext().getRegisterInfo();
589 // Initialize the set of available features.
590 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
592 // Add build attributes based on the selected target.
593 if (AddBuildAttributes
)
594 getTargetStreamer().emitTargetAttributes(STI
);
596 // Not in an ITBlock to start with.
597 ITState
.CurPosition
= ~0U;
599 NextSymbolIsThumb
= false;
602 // Implementation of the MCTargetAsmParser interface:
603 bool ParseRegister(unsigned &RegNo
, SMLoc
&StartLoc
, SMLoc
&EndLoc
) override
;
604 bool ParseInstruction(ParseInstructionInfo
&Info
, StringRef Name
,
605 SMLoc NameLoc
, OperandVector
&Operands
) override
;
606 bool ParseDirective(AsmToken DirectiveID
) override
;
608 unsigned validateTargetOperandClass(MCParsedAsmOperand
&Op
,
609 unsigned Kind
) override
;
610 unsigned checkTargetMatchPredicate(MCInst
&Inst
) override
;
612 bool MatchAndEmitInstruction(SMLoc IDLoc
, unsigned &Opcode
,
613 OperandVector
&Operands
, MCStreamer
&Out
,
615 bool MatchingInlineAsm
) override
;
616 unsigned MatchInstruction(OperandVector
&Operands
, MCInst
&Inst
,
617 SmallVectorImpl
<NearMissInfo
> &NearMisses
,
618 bool MatchingInlineAsm
, bool &EmitInITBlock
,
621 struct NearMissMessage
{
623 SmallString
<128> Message
;
626 const char *getCustomOperandDiag(ARMMatchResultTy MatchError
);
628 void FilterNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMissesIn
,
629 SmallVectorImpl
<NearMissMessage
> &NearMissesOut
,
630 SMLoc IDLoc
, OperandVector
&Operands
);
631 void ReportNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMisses
, SMLoc IDLoc
,
632 OperandVector
&Operands
);
634 void doBeforeLabelEmit(MCSymbol
*Symbol
) override
;
636 void onLabelParsed(MCSymbol
*Symbol
) override
;
639 /// ARMOperand - Instances of this class represent a parsed ARM machine
641 class ARMOperand
: public MCParsedAsmOperand
{
651 k_InstSyncBarrierOpt
,
652 k_TraceSyncBarrierOpt
,
664 k_VectorListAllLanes
,
671 k_ConstantPoolImmediate
,
672 k_BitfieldDescriptor
,
676 SMLoc StartLoc
, EndLoc
, AlignmentLoc
;
677 SmallVector
<unsigned, 8> Registers
;
680 ARMCC::CondCodes Val
;
687 struct CoprocOptionOp
{
700 ARM_ISB::InstSyncBOpt Val
;
704 ARM_TSB::TraceSyncBOpt Val
;
708 ARM_PROC::IFlags Val
;
728 // A vector register list is a sequential list of 1 to 4 registers.
729 struct VectorListOp
{
736 struct VectorIndexOp
{
744 /// Combined record for all forms of ARM address expressions.
747 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
749 const MCConstantExpr
*OffsetImm
; // Offset immediate value
750 unsigned OffsetRegNum
; // Offset register num, when OffsetImm == NULL
751 ARM_AM::ShiftOpc ShiftType
; // Shift type for OffsetReg
752 unsigned ShiftImm
; // shift for OffsetReg.
753 unsigned Alignment
; // 0 = no alignment specified
754 // n = alignment in bytes (2, 4, 8, 16, or 32)
755 unsigned isNegative
: 1; // Negated OffsetReg? (~'U' bit)
758 struct PostIdxRegOp
{
761 ARM_AM::ShiftOpc ShiftTy
;
765 struct ShifterImmOp
{
770 struct RegShiftedRegOp
{
771 ARM_AM::ShiftOpc ShiftTy
;
777 struct RegShiftedImmOp
{
778 ARM_AM::ShiftOpc ShiftTy
;
800 struct CoprocOptionOp CoprocOption
;
801 struct MBOptOp MBOpt
;
802 struct ISBOptOp ISBOpt
;
803 struct TSBOptOp TSBOpt
;
804 struct ITMaskOp ITMask
;
805 struct IFlagsOp IFlags
;
806 struct MMaskOp MMask
;
807 struct BankedRegOp BankedReg
;
810 struct VectorListOp VectorList
;
811 struct VectorIndexOp VectorIndex
;
813 struct MemoryOp Memory
;
814 struct PostIdxRegOp PostIdxReg
;
815 struct ShifterImmOp ShifterImm
;
816 struct RegShiftedRegOp RegShiftedReg
;
817 struct RegShiftedImmOp RegShiftedImm
;
818 struct RotImmOp RotImm
;
819 struct ModImmOp ModImm
;
820 struct BitfieldOp Bitfield
;
824 ARMOperand(KindTy K
) : MCParsedAsmOperand(), Kind(K
) {}
826 /// getStartLoc - Get the location of the first token of this operand.
827 SMLoc
getStartLoc() const override
{ return StartLoc
; }
829 /// getEndLoc - Get the location of the last token of this operand.
830 SMLoc
getEndLoc() const override
{ return EndLoc
; }
832 /// getLocRange - Get the range between the first and last token of this
834 SMRange
getLocRange() const { return SMRange(StartLoc
, EndLoc
); }
836 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
837 SMLoc
getAlignmentLoc() const {
838 assert(Kind
== k_Memory
&& "Invalid access!");
842 ARMCC::CondCodes
getCondCode() const {
843 assert(Kind
== k_CondCode
&& "Invalid access!");
847 unsigned getCoproc() const {
848 assert((Kind
== k_CoprocNum
|| Kind
== k_CoprocReg
) && "Invalid access!");
852 StringRef
getToken() const {
853 assert(Kind
== k_Token
&& "Invalid access!");
854 return StringRef(Tok
.Data
, Tok
.Length
);
857 unsigned getReg() const override
{
858 assert((Kind
== k_Register
|| Kind
== k_CCOut
) && "Invalid access!");
862 const SmallVectorImpl
<unsigned> &getRegList() const {
863 assert((Kind
== k_RegisterList
|| Kind
== k_DPRRegisterList
||
864 Kind
== k_SPRRegisterList
) && "Invalid access!");
868 const MCExpr
*getImm() const {
869 assert(isImm() && "Invalid access!");
873 const MCExpr
*getConstantPoolImm() const {
874 assert(isConstantPoolImm() && "Invalid access!");
878 unsigned getVectorIndex() const {
879 assert(Kind
== k_VectorIndex
&& "Invalid access!");
880 return VectorIndex
.Val
;
883 ARM_MB::MemBOpt
getMemBarrierOpt() const {
884 assert(Kind
== k_MemBarrierOpt
&& "Invalid access!");
888 ARM_ISB::InstSyncBOpt
getInstSyncBarrierOpt() const {
889 assert(Kind
== k_InstSyncBarrierOpt
&& "Invalid access!");
893 ARM_TSB::TraceSyncBOpt
getTraceSyncBarrierOpt() const {
894 assert(Kind
== k_TraceSyncBarrierOpt
&& "Invalid access!");
898 ARM_PROC::IFlags
getProcIFlags() const {
899 assert(Kind
== k_ProcIFlags
&& "Invalid access!");
903 unsigned getMSRMask() const {
904 assert(Kind
== k_MSRMask
&& "Invalid access!");
908 unsigned getBankedReg() const {
909 assert(Kind
== k_BankedReg
&& "Invalid access!");
910 return BankedReg
.Val
;
913 bool isCoprocNum() const { return Kind
== k_CoprocNum
; }
914 bool isCoprocReg() const { return Kind
== k_CoprocReg
; }
915 bool isCoprocOption() const { return Kind
== k_CoprocOption
; }
916 bool isCondCode() const { return Kind
== k_CondCode
; }
917 bool isCCOut() const { return Kind
== k_CCOut
; }
918 bool isITMask() const { return Kind
== k_ITCondMask
; }
919 bool isITCondCode() const { return Kind
== k_CondCode
; }
920 bool isImm() const override
{
921 return Kind
== k_Immediate
;
924 bool isARMBranchTarget() const {
925 if (!isImm()) return false;
927 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm()))
928 return CE
->getValue() % 4 == 0;
933 bool isThumbBranchTarget() const {
934 if (!isImm()) return false;
936 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm()))
937 return CE
->getValue() % 2 == 0;
941 // checks whether this operand is an unsigned offset which fits is a field
942 // of specified width and scaled by a specific number of bits
943 template<unsigned width
, unsigned scale
>
944 bool isUnsignedOffset() const {
945 if (!isImm()) return false;
946 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
947 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
948 int64_t Val
= CE
->getValue();
949 int64_t Align
= 1LL << scale
;
950 int64_t Max
= Align
* ((1LL << width
) - 1);
951 return ((Val
% Align
) == 0) && (Val
>= 0) && (Val
<= Max
);
956 // checks whether this operand is an signed offset which fits is a field
957 // of specified width and scaled by a specific number of bits
958 template<unsigned width
, unsigned scale
>
959 bool isSignedOffset() const {
960 if (!isImm()) return false;
961 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
962 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
963 int64_t Val
= CE
->getValue();
964 int64_t Align
= 1LL << scale
;
965 int64_t Max
= Align
* ((1LL << (width
-1)) - 1);
966 int64_t Min
= -Align
* (1LL << (width
-1));
967 return ((Val
% Align
) == 0) && (Val
>= Min
) && (Val
<= Max
);
972 // checks whether this operand is a memory operand computed as an offset
973 // applied to PC. the offset may have 8 bits of magnitude and is represented
974 // with two bits of shift. textually it may be either [pc, #imm], #imm or
975 // relocable expression...
976 bool isThumbMemPC() const {
979 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
980 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
);
981 if (!CE
) return false;
982 Val
= CE
->getValue();
985 if(!Memory
.OffsetImm
|| Memory
.OffsetRegNum
) return false;
986 if(Memory
.BaseRegNum
!= ARM::PC
) return false;
987 Val
= Memory
.OffsetImm
->getValue();
990 return ((Val
% 4) == 0) && (Val
>= 0) && (Val
<= 1020);
993 bool isFPImm() const {
994 if (!isImm()) return false;
995 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
996 if (!CE
) return false;
997 int Val
= ARM_AM::getFP32Imm(APInt(32, CE
->getValue()));
1001 template<int64_t N
, int64_t M
>
1002 bool isImmediate() const {
1003 if (!isImm()) return false;
1004 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1005 if (!CE
) return false;
1006 int64_t Value
= CE
->getValue();
1007 return Value
>= N
&& Value
<= M
;
1010 template<int64_t N
, int64_t M
>
1011 bool isImmediateS4() const {
1012 if (!isImm()) return false;
1013 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1014 if (!CE
) return false;
1015 int64_t Value
= CE
->getValue();
1016 return ((Value
& 3) == 0) && Value
>= N
&& Value
<= M
;
1019 bool isFBits16() const {
1020 return isImmediate
<0, 17>();
1022 bool isFBits32() const {
1023 return isImmediate
<1, 33>();
1025 bool isImm8s4() const {
1026 return isImmediateS4
<-1020, 1020>();
1028 bool isImm0_1020s4() const {
1029 return isImmediateS4
<0, 1020>();
1031 bool isImm0_508s4() const {
1032 return isImmediateS4
<0, 508>();
1034 bool isImm0_508s4Neg() const {
1035 if (!isImm()) return false;
1036 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1037 if (!CE
) return false;
1038 int64_t Value
= -CE
->getValue();
1039 // explicitly exclude zero. we want that to use the normal 0_508 version.
1040 return ((Value
& 3) == 0) && Value
> 0 && Value
<= 508;
1043 bool isImm0_4095Neg() const {
1044 if (!isImm()) return false;
1045 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1046 if (!CE
) return false;
1047 // isImm0_4095Neg is used with 32-bit immediates only.
1048 // 32-bit immediates are zero extended to 64-bit when parsed,
1049 // thus simple -CE->getValue() results in a big negative number,
1050 // not a small positive number as intended
1051 if ((CE
->getValue() >> 32) > 0) return false;
1052 uint32_t Value
= -static_cast<uint32_t>(CE
->getValue());
1053 return Value
> 0 && Value
< 4096;
1056 bool isImm0_7() const {
1057 return isImmediate
<0, 7>();
1060 bool isImm1_16() const {
1061 return isImmediate
<1, 16>();
1064 bool isImm1_32() const {
1065 return isImmediate
<1, 32>();
1068 bool isImm8_255() const {
1069 return isImmediate
<8, 255>();
1072 bool isImm256_65535Expr() const {
1073 if (!isImm()) return false;
1074 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1075 // If it's not a constant expression, it'll generate a fixup and be
1077 if (!CE
) return true;
1078 int64_t Value
= CE
->getValue();
1079 return Value
>= 256 && Value
< 65536;
1082 bool isImm0_65535Expr() const {
1083 if (!isImm()) return false;
1084 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1085 // If it's not a constant expression, it'll generate a fixup and be
1087 if (!CE
) return true;
1088 int64_t Value
= CE
->getValue();
1089 return Value
>= 0 && Value
< 65536;
1092 bool isImm24bit() const {
1093 return isImmediate
<0, 0xffffff + 1>();
1096 bool isImmThumbSR() const {
1097 return isImmediate
<1, 33>();
1100 bool isPKHLSLImm() const {
1101 return isImmediate
<0, 32>();
1104 bool isPKHASRImm() const {
1105 return isImmediate
<0, 33>();
1108 bool isAdrLabel() const {
1109 // If we have an immediate that's not a constant, treat it as a label
1110 // reference needing a fixup.
1111 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1114 // If it is a constant, it must fit into a modified immediate encoding.
1115 if (!isImm()) return false;
1116 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1117 if (!CE
) return false;
1118 int64_t Value
= CE
->getValue();
1119 return (ARM_AM::getSOImmVal(Value
) != -1 ||
1120 ARM_AM::getSOImmVal(-Value
) != -1);
1123 bool isT2SOImm() const {
1124 // If we have an immediate that's not a constant, treat it as an expression
1126 if (isImm() && !isa
<MCConstantExpr
>(getImm())) {
1127 // We want to avoid matching :upper16: and :lower16: as we want these
1128 // expressions to match in isImm0_65535Expr()
1129 const ARMMCExpr
*ARM16Expr
= dyn_cast
<ARMMCExpr
>(getImm());
1130 return (!ARM16Expr
|| (ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_HI16
&&
1131 ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_LO16
));
1133 if (!isImm()) return false;
1134 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1135 if (!CE
) return false;
1136 int64_t Value
= CE
->getValue();
1137 return ARM_AM::getT2SOImmVal(Value
) != -1;
1140 bool isT2SOImmNot() const {
1141 if (!isImm()) return false;
1142 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1143 if (!CE
) return false;
1144 int64_t Value
= CE
->getValue();
1145 return ARM_AM::getT2SOImmVal(Value
) == -1 &&
1146 ARM_AM::getT2SOImmVal(~Value
) != -1;
1149 bool isT2SOImmNeg() const {
1150 if (!isImm()) return false;
1151 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1152 if (!CE
) return false;
1153 int64_t Value
= CE
->getValue();
1154 // Only use this when not representable as a plain so_imm.
1155 return ARM_AM::getT2SOImmVal(Value
) == -1 &&
1156 ARM_AM::getT2SOImmVal(-Value
) != -1;
1159 bool isSetEndImm() const {
1160 if (!isImm()) return false;
1161 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1162 if (!CE
) return false;
1163 int64_t Value
= CE
->getValue();
1164 return Value
== 1 || Value
== 0;
1167 bool isReg() const override
{ return Kind
== k_Register
; }
1168 bool isRegList() const { return Kind
== k_RegisterList
; }
1169 bool isDPRRegList() const { return Kind
== k_DPRRegisterList
; }
1170 bool isSPRRegList() const { return Kind
== k_SPRRegisterList
; }
1171 bool isToken() const override
{ return Kind
== k_Token
; }
1172 bool isMemBarrierOpt() const { return Kind
== k_MemBarrierOpt
; }
1173 bool isInstSyncBarrierOpt() const { return Kind
== k_InstSyncBarrierOpt
; }
1174 bool isTraceSyncBarrierOpt() const { return Kind
== k_TraceSyncBarrierOpt
; }
1175 bool isMem() const override
{
1176 if (Kind
!= k_Memory
)
1178 if (Memory
.BaseRegNum
&&
1179 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.BaseRegNum
))
1181 if (Memory
.OffsetRegNum
&&
1182 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.OffsetRegNum
))
1186 bool isShifterImm() const { return Kind
== k_ShifterImmediate
; }
1187 bool isRegShiftedReg() const {
1188 return Kind
== k_ShiftedRegister
&&
1189 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1190 RegShiftedReg
.SrcReg
) &&
1191 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1192 RegShiftedReg
.ShiftReg
);
1194 bool isRegShiftedImm() const {
1195 return Kind
== k_ShiftedImmediate
&&
1196 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1197 RegShiftedImm
.SrcReg
);
1199 bool isRotImm() const { return Kind
== k_RotateImmediate
; }
1200 bool isModImm() const { return Kind
== k_ModifiedImmediate
; }
1202 bool isModImmNot() const {
1203 if (!isImm()) return false;
1204 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1205 if (!CE
) return false;
1206 int64_t Value
= CE
->getValue();
1207 return ARM_AM::getSOImmVal(~Value
) != -1;
1210 bool isModImmNeg() const {
1211 if (!isImm()) return false;
1212 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1213 if (!CE
) return false;
1214 int64_t Value
= CE
->getValue();
1215 return ARM_AM::getSOImmVal(Value
) == -1 &&
1216 ARM_AM::getSOImmVal(-Value
) != -1;
1219 bool isThumbModImmNeg1_7() const {
1220 if (!isImm()) return false;
1221 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1222 if (!CE
) return false;
1223 int32_t Value
= -(int32_t)CE
->getValue();
1224 return 0 < Value
&& Value
< 8;
1227 bool isThumbModImmNeg8_255() const {
1228 if (!isImm()) return false;
1229 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1230 if (!CE
) return false;
1231 int32_t Value
= -(int32_t)CE
->getValue();
1232 return 7 < Value
&& Value
< 256;
1235 bool isConstantPoolImm() const { return Kind
== k_ConstantPoolImmediate
; }
1236 bool isBitfield() const { return Kind
== k_BitfieldDescriptor
; }
1237 bool isPostIdxRegShifted() const {
1238 return Kind
== k_PostIndexRegister
&&
1239 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(PostIdxReg
.RegNum
);
1241 bool isPostIdxReg() const {
1242 return isPostIdxRegShifted() && PostIdxReg
.ShiftTy
== ARM_AM::no_shift
;
1244 bool isMemNoOffset(bool alignOK
= false, unsigned Alignment
= 0) const {
1247 // No offset of any kind.
1248 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1249 (alignOK
|| Memory
.Alignment
== Alignment
);
1251 bool isMemPCRelImm12() const {
1252 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1254 // Base register must be PC.
1255 if (Memory
.BaseRegNum
!= ARM::PC
)
1257 // Immediate offset in range [-4095, 4095].
1258 if (!Memory
.OffsetImm
) return true;
1259 int64_t Val
= Memory
.OffsetImm
->getValue();
1260 return (Val
> -4096 && Val
< 4096) ||
1261 (Val
== std::numeric_limits
<int32_t>::min());
1264 bool isAlignedMemory() const {
1265 return isMemNoOffset(true);
1268 bool isAlignedMemoryNone() const {
1269 return isMemNoOffset(false, 0);
1272 bool isDupAlignedMemoryNone() const {
1273 return isMemNoOffset(false, 0);
1276 bool isAlignedMemory16() const {
1277 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1279 return isMemNoOffset(false, 0);
1282 bool isDupAlignedMemory16() const {
1283 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1285 return isMemNoOffset(false, 0);
1288 bool isAlignedMemory32() const {
1289 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1291 return isMemNoOffset(false, 0);
1294 bool isDupAlignedMemory32() const {
1295 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1297 return isMemNoOffset(false, 0);
1300 bool isAlignedMemory64() const {
1301 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1303 return isMemNoOffset(false, 0);
1306 bool isDupAlignedMemory64() const {
1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1309 return isMemNoOffset(false, 0);
1312 bool isAlignedMemory64or128() const {
1313 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1315 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1317 return isMemNoOffset(false, 0);
1320 bool isDupAlignedMemory64or128() const {
1321 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1323 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1325 return isMemNoOffset(false, 0);
1328 bool isAlignedMemory64or128or256() const {
1329 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1331 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1333 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1335 return isMemNoOffset(false, 0);
1338 bool isAddrMode2() const {
1339 if (!isMem() || Memory
.Alignment
!= 0) return false;
1340 // Check for register offset.
1341 if (Memory
.OffsetRegNum
) return true;
1342 // Immediate offset in range [-4095, 4095].
1343 if (!Memory
.OffsetImm
) return true;
1344 int64_t Val
= Memory
.OffsetImm
->getValue();
1345 return Val
> -4096 && Val
< 4096;
1348 bool isAM2OffsetImm() const {
1349 if (!isImm()) return false;
1350 // Immediate offset in range [-4095, 4095].
1351 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1352 if (!CE
) return false;
1353 int64_t Val
= CE
->getValue();
1354 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1355 (Val
> -4096 && Val
< 4096);
1358 bool isAddrMode3() const {
1359 // If we have an immediate that's not a constant, treat it as a label
1360 // reference needing a fixup. If it is a constant, it's something else
1361 // and we reject it.
1362 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1364 if (!isMem() || Memory
.Alignment
!= 0) return false;
1365 // No shifts are legal for AM3.
1366 if (Memory
.ShiftType
!= ARM_AM::no_shift
) return false;
1367 // Check for register offset.
1368 if (Memory
.OffsetRegNum
) return true;
1369 // Immediate offset in range [-255, 255].
1370 if (!Memory
.OffsetImm
) return true;
1371 int64_t Val
= Memory
.OffsetImm
->getValue();
1372 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1373 // have to check for this too.
1374 return (Val
> -256 && Val
< 256) ||
1375 Val
== std::numeric_limits
<int32_t>::min();
1378 bool isAM3Offset() const {
1383 // Immediate offset in range [-255, 255].
1384 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1385 if (!CE
) return false;
1386 int64_t Val
= CE
->getValue();
1387 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1388 return (Val
> -256 && Val
< 256) ||
1389 Val
== std::numeric_limits
<int32_t>::min();
1392 bool isAddrMode5() const {
1393 // If we have an immediate that's not a constant, treat it as a label
1394 // reference needing a fixup. If it is a constant, it's something else
1395 // and we reject it.
1396 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1398 if (!isMem() || Memory
.Alignment
!= 0) return false;
1399 // Check for register offset.
1400 if (Memory
.OffsetRegNum
) return false;
1401 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1402 if (!Memory
.OffsetImm
) return true;
1403 int64_t Val
= Memory
.OffsetImm
->getValue();
1404 return (Val
>= -1020 && Val
<= 1020 && ((Val
& 3) == 0)) ||
1405 Val
== std::numeric_limits
<int32_t>::min();
1408 bool isAddrMode5FP16() const {
1409 // If we have an immediate that's not a constant, treat it as a label
1410 // reference needing a fixup. If it is a constant, it's something else
1411 // and we reject it.
1412 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1414 if (!isMem() || Memory
.Alignment
!= 0) return false;
1415 // Check for register offset.
1416 if (Memory
.OffsetRegNum
) return false;
1417 // Immediate offset in range [-510, 510] and a multiple of 2.
1418 if (!Memory
.OffsetImm
) return true;
1419 int64_t Val
= Memory
.OffsetImm
->getValue();
1420 return (Val
>= -510 && Val
<= 510 && ((Val
& 1) == 0)) ||
1421 Val
== std::numeric_limits
<int32_t>::min();
1424 bool isMemTBB() const {
1425 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1426 Memory
.ShiftType
!= ARM_AM::no_shift
|| Memory
.Alignment
!= 0)
1431 bool isMemTBH() const {
1432 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1433 Memory
.ShiftType
!= ARM_AM::lsl
|| Memory
.ShiftImm
!= 1 ||
1434 Memory
.Alignment
!= 0 )
1439 bool isMemRegOffset() const {
1440 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.Alignment
!= 0)
1445 bool isT2MemRegOffset() const {
1446 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1447 Memory
.Alignment
!= 0 || Memory
.BaseRegNum
== ARM::PC
)
1449 // Only lsl #{0, 1, 2, 3} allowed.
1450 if (Memory
.ShiftType
== ARM_AM::no_shift
)
1452 if (Memory
.ShiftType
!= ARM_AM::lsl
|| Memory
.ShiftImm
> 3)
1457 bool isMemThumbRR() const {
1458 // Thumb reg+reg addressing is simple. Just two registers, a base and
1459 // an offset. No shifts, negations or any other complicating factors.
1460 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1461 Memory
.ShiftType
!= ARM_AM::no_shift
|| Memory
.Alignment
!= 0)
1463 return isARMLowRegister(Memory
.BaseRegNum
) &&
1464 (!Memory
.OffsetRegNum
|| isARMLowRegister(Memory
.OffsetRegNum
));
1467 bool isMemThumbRIs4() const {
1468 if (!isMem() || Memory
.OffsetRegNum
!= 0 ||
1469 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1471 // Immediate offset, multiple of 4 in range [0, 124].
1472 if (!Memory
.OffsetImm
) return true;
1473 int64_t Val
= Memory
.OffsetImm
->getValue();
1474 return Val
>= 0 && Val
<= 124 && (Val
% 4) == 0;
1477 bool isMemThumbRIs2() const {
1478 if (!isMem() || Memory
.OffsetRegNum
!= 0 ||
1479 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1481 // Immediate offset, multiple of 4 in range [0, 62].
1482 if (!Memory
.OffsetImm
) return true;
1483 int64_t Val
= Memory
.OffsetImm
->getValue();
1484 return Val
>= 0 && Val
<= 62 && (Val
% 2) == 0;
1487 bool isMemThumbRIs1() const {
1488 if (!isMem() || Memory
.OffsetRegNum
!= 0 ||
1489 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1491 // Immediate offset in range [0, 31].
1492 if (!Memory
.OffsetImm
) return true;
1493 int64_t Val
= Memory
.OffsetImm
->getValue();
1494 return Val
>= 0 && Val
<= 31;
1497 bool isMemThumbSPI() const {
1498 if (!isMem() || Memory
.OffsetRegNum
!= 0 ||
1499 Memory
.BaseRegNum
!= ARM::SP
|| Memory
.Alignment
!= 0)
1501 // Immediate offset, multiple of 4 in range [0, 1020].
1502 if (!Memory
.OffsetImm
) return true;
1503 int64_t Val
= Memory
.OffsetImm
->getValue();
1504 return Val
>= 0 && Val
<= 1020 && (Val
% 4) == 0;
1507 bool isMemImm8s4Offset() const {
1508 // If we have an immediate that's not a constant, treat it as a label
1509 // reference needing a fixup. If it is a constant, it's something else
1510 // and we reject it.
1511 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1513 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1515 // Immediate offset a multiple of 4 in range [-1020, 1020].
1516 if (!Memory
.OffsetImm
) return true;
1517 int64_t Val
= Memory
.OffsetImm
->getValue();
1518 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1519 return (Val
>= -1020 && Val
<= 1020 && (Val
& 3) == 0) ||
1520 Val
== std::numeric_limits
<int32_t>::min();
1523 bool isMemImm0_1020s4Offset() const {
1524 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1526 // Immediate offset a multiple of 4 in range [0, 1020].
1527 if (!Memory
.OffsetImm
) return true;
1528 int64_t Val
= Memory
.OffsetImm
->getValue();
1529 return Val
>= 0 && Val
<= 1020 && (Val
& 3) == 0;
1532 bool isMemImm8Offset() const {
1533 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1535 // Base reg of PC isn't allowed for these encodings.
1536 if (Memory
.BaseRegNum
== ARM::PC
) return false;
1537 // Immediate offset in range [-255, 255].
1538 if (!Memory
.OffsetImm
) return true;
1539 int64_t Val
= Memory
.OffsetImm
->getValue();
1540 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1541 (Val
> -256 && Val
< 256);
1544 bool isMemPosImm8Offset() const {
1545 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1547 // Immediate offset in range [0, 255].
1548 if (!Memory
.OffsetImm
) return true;
1549 int64_t Val
= Memory
.OffsetImm
->getValue();
1550 return Val
>= 0 && Val
< 256;
1553 bool isMemNegImm8Offset() const {
1554 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1556 // Base reg of PC isn't allowed for these encodings.
1557 if (Memory
.BaseRegNum
== ARM::PC
) return false;
1558 // Immediate offset in range [-255, -1].
1559 if (!Memory
.OffsetImm
) return false;
1560 int64_t Val
= Memory
.OffsetImm
->getValue();
1561 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1562 (Val
> -256 && Val
< 0);
1565 bool isMemUImm12Offset() const {
1566 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1568 // Immediate offset in range [0, 4095].
1569 if (!Memory
.OffsetImm
) return true;
1570 int64_t Val
= Memory
.OffsetImm
->getValue();
1571 return (Val
>= 0 && Val
< 4096);
1574 bool isMemImm12Offset() const {
1575 // If we have an immediate that's not a constant, treat it as a label
1576 // reference needing a fixup. If it is a constant, it's something else
1577 // and we reject it.
1579 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1582 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1584 // Immediate offset in range [-4095, 4095].
1585 if (!Memory
.OffsetImm
) return true;
1586 int64_t Val
= Memory
.OffsetImm
->getValue();
1587 return (Val
> -4096 && Val
< 4096) ||
1588 (Val
== std::numeric_limits
<int32_t>::min());
1591 bool isConstPoolAsmImm() const {
1592 // Delay processing of Constant Pool Immediate, this will turn into
1593 // a constant. Match no other operand
1594 return (isConstantPoolImm());
1597 bool isPostIdxImm8() const {
1598 if (!isImm()) return false;
1599 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1600 if (!CE
) return false;
1601 int64_t Val
= CE
->getValue();
1602 return (Val
> -256 && Val
< 256) ||
1603 (Val
== std::numeric_limits
<int32_t>::min());
1606 bool isPostIdxImm8s4() const {
1607 if (!isImm()) return false;
1608 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1609 if (!CE
) return false;
1610 int64_t Val
= CE
->getValue();
1611 return ((Val
& 3) == 0 && Val
>= -1020 && Val
<= 1020) ||
1612 (Val
== std::numeric_limits
<int32_t>::min());
1615 bool isMSRMask() const { return Kind
== k_MSRMask
; }
1616 bool isBankedReg() const { return Kind
== k_BankedReg
; }
1617 bool isProcIFlags() const { return Kind
== k_ProcIFlags
; }
1620 bool isSingleSpacedVectorList() const {
1621 return Kind
== k_VectorList
&& !VectorList
.isDoubleSpaced
;
1624 bool isDoubleSpacedVectorList() const {
1625 return Kind
== k_VectorList
&& VectorList
.isDoubleSpaced
;
1628 bool isVecListOneD() const {
1629 if (!isSingleSpacedVectorList()) return false;
1630 return VectorList
.Count
== 1;
1633 bool isVecListDPair() const {
1634 if (!isSingleSpacedVectorList()) return false;
1635 return (ARMMCRegisterClasses
[ARM::DPairRegClassID
]
1636 .contains(VectorList
.RegNum
));
1639 bool isVecListThreeD() const {
1640 if (!isSingleSpacedVectorList()) return false;
1641 return VectorList
.Count
== 3;
1644 bool isVecListFourD() const {
1645 if (!isSingleSpacedVectorList()) return false;
1646 return VectorList
.Count
== 4;
1649 bool isVecListDPairSpaced() const {
1650 if (Kind
!= k_VectorList
) return false;
1651 if (isSingleSpacedVectorList()) return false;
1652 return (ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
]
1653 .contains(VectorList
.RegNum
));
1656 bool isVecListThreeQ() const {
1657 if (!isDoubleSpacedVectorList()) return false;
1658 return VectorList
.Count
== 3;
1661 bool isVecListFourQ() const {
1662 if (!isDoubleSpacedVectorList()) return false;
1663 return VectorList
.Count
== 4;
1666 bool isSingleSpacedVectorAllLanes() const {
1667 return Kind
== k_VectorListAllLanes
&& !VectorList
.isDoubleSpaced
;
1670 bool isDoubleSpacedVectorAllLanes() const {
1671 return Kind
== k_VectorListAllLanes
&& VectorList
.isDoubleSpaced
;
1674 bool isVecListOneDAllLanes() const {
1675 if (!isSingleSpacedVectorAllLanes()) return false;
1676 return VectorList
.Count
== 1;
1679 bool isVecListDPairAllLanes() const {
1680 if (!isSingleSpacedVectorAllLanes()) return false;
1681 return (ARMMCRegisterClasses
[ARM::DPairRegClassID
]
1682 .contains(VectorList
.RegNum
));
1685 bool isVecListDPairSpacedAllLanes() const {
1686 if (!isDoubleSpacedVectorAllLanes()) return false;
1687 return VectorList
.Count
== 2;
1690 bool isVecListThreeDAllLanes() const {
1691 if (!isSingleSpacedVectorAllLanes()) return false;
1692 return VectorList
.Count
== 3;
1695 bool isVecListThreeQAllLanes() const {
1696 if (!isDoubleSpacedVectorAllLanes()) return false;
1697 return VectorList
.Count
== 3;
1700 bool isVecListFourDAllLanes() const {
1701 if (!isSingleSpacedVectorAllLanes()) return false;
1702 return VectorList
.Count
== 4;
1705 bool isVecListFourQAllLanes() const {
1706 if (!isDoubleSpacedVectorAllLanes()) return false;
1707 return VectorList
.Count
== 4;
1710 bool isSingleSpacedVectorIndexed() const {
1711 return Kind
== k_VectorListIndexed
&& !VectorList
.isDoubleSpaced
;
1714 bool isDoubleSpacedVectorIndexed() const {
1715 return Kind
== k_VectorListIndexed
&& VectorList
.isDoubleSpaced
;
1718 bool isVecListOneDByteIndexed() const {
1719 if (!isSingleSpacedVectorIndexed()) return false;
1720 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 7;
1723 bool isVecListOneDHWordIndexed() const {
1724 if (!isSingleSpacedVectorIndexed()) return false;
1725 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 3;
1728 bool isVecListOneDWordIndexed() const {
1729 if (!isSingleSpacedVectorIndexed()) return false;
1730 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 1;
1733 bool isVecListTwoDByteIndexed() const {
1734 if (!isSingleSpacedVectorIndexed()) return false;
1735 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 7;
1738 bool isVecListTwoDHWordIndexed() const {
1739 if (!isSingleSpacedVectorIndexed()) return false;
1740 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 3;
1743 bool isVecListTwoQWordIndexed() const {
1744 if (!isDoubleSpacedVectorIndexed()) return false;
1745 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 1;
1748 bool isVecListTwoQHWordIndexed() const {
1749 if (!isDoubleSpacedVectorIndexed()) return false;
1750 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 3;
1753 bool isVecListTwoDWordIndexed() const {
1754 if (!isSingleSpacedVectorIndexed()) return false;
1755 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 1;
1758 bool isVecListThreeDByteIndexed() const {
1759 if (!isSingleSpacedVectorIndexed()) return false;
1760 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 7;
1763 bool isVecListThreeDHWordIndexed() const {
1764 if (!isSingleSpacedVectorIndexed()) return false;
1765 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 3;
1768 bool isVecListThreeQWordIndexed() const {
1769 if (!isDoubleSpacedVectorIndexed()) return false;
1770 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 1;
1773 bool isVecListThreeQHWordIndexed() const {
1774 if (!isDoubleSpacedVectorIndexed()) return false;
1775 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 3;
1778 bool isVecListThreeDWordIndexed() const {
1779 if (!isSingleSpacedVectorIndexed()) return false;
1780 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 1;
1783 bool isVecListFourDByteIndexed() const {
1784 if (!isSingleSpacedVectorIndexed()) return false;
1785 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 7;
1788 bool isVecListFourDHWordIndexed() const {
1789 if (!isSingleSpacedVectorIndexed()) return false;
1790 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 3;
1793 bool isVecListFourQWordIndexed() const {
1794 if (!isDoubleSpacedVectorIndexed()) return false;
1795 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 1;
1798 bool isVecListFourQHWordIndexed() const {
1799 if (!isDoubleSpacedVectorIndexed()) return false;
1800 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 3;
1803 bool isVecListFourDWordIndexed() const {
1804 if (!isSingleSpacedVectorIndexed()) return false;
1805 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 1;
1808 bool isVectorIndex8() const {
1809 if (Kind
!= k_VectorIndex
) return false;
1810 return VectorIndex
.Val
< 8;
1813 bool isVectorIndex16() const {
1814 if (Kind
!= k_VectorIndex
) return false;
1815 return VectorIndex
.Val
< 4;
1818 bool isVectorIndex32() const {
1819 if (Kind
!= k_VectorIndex
) return false;
1820 return VectorIndex
.Val
< 2;
1822 bool isVectorIndex64() const {
1823 if (Kind
!= k_VectorIndex
) return false;
1824 return VectorIndex
.Val
< 1;
1827 bool isNEONi8splat() const {
1828 if (!isImm()) return false;
1829 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1830 // Must be a constant.
1831 if (!CE
) return false;
1832 int64_t Value
= CE
->getValue();
1833 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1835 return Value
>= 0 && Value
< 256;
1838 bool isNEONi16splat() const {
1839 if (isNEONByteReplicate(2))
1840 return false; // Leave that for bytes replication and forbid by default.
1843 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1844 // Must be a constant.
1845 if (!CE
) return false;
1846 unsigned Value
= CE
->getValue();
1847 return ARM_AM::isNEONi16splat(Value
);
1850 bool isNEONi16splatNot() const {
1853 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1854 // Must be a constant.
1855 if (!CE
) return false;
1856 unsigned Value
= CE
->getValue();
1857 return ARM_AM::isNEONi16splat(~Value
& 0xffff);
1860 bool isNEONi32splat() const {
1861 if (isNEONByteReplicate(4))
1862 return false; // Leave that for bytes replication and forbid by default.
1865 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1866 // Must be a constant.
1867 if (!CE
) return false;
1868 unsigned Value
= CE
->getValue();
1869 return ARM_AM::isNEONi32splat(Value
);
1872 bool isNEONi32splatNot() const {
1875 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1876 // Must be a constant.
1877 if (!CE
) return false;
1878 unsigned Value
= CE
->getValue();
1879 return ARM_AM::isNEONi32splat(~Value
);
1882 static bool isValidNEONi32vmovImm(int64_t Value
) {
1883 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1884 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1885 return ((Value
& 0xffffffffffffff00) == 0) ||
1886 ((Value
& 0xffffffffffff00ff) == 0) ||
1887 ((Value
& 0xffffffffff00ffff) == 0) ||
1888 ((Value
& 0xffffffff00ffffff) == 0) ||
1889 ((Value
& 0xffffffffffff00ff) == 0xff) ||
1890 ((Value
& 0xffffffffff00ffff) == 0xffff);
1893 bool isNEONReplicate(unsigned Width
, unsigned NumElems
, bool Inv
) const {
1894 assert((Width
== 8 || Width
== 16 || Width
== 32) &&
1895 "Invalid element width");
1896 assert(NumElems
* Width
<= 64 && "Invalid result width");
1900 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1901 // Must be a constant.
1904 int64_t Value
= CE
->getValue();
1906 return false; // Don't bother with zero.
1910 uint64_t Mask
= (1ull << Width
) - 1;
1911 uint64_t Elem
= Value
& Mask
;
1912 if (Width
== 16 && (Elem
& 0x00ff) != 0 && (Elem
& 0xff00) != 0)
1914 if (Width
== 32 && !isValidNEONi32vmovImm(Elem
))
1917 for (unsigned i
= 1; i
< NumElems
; ++i
) {
1919 if ((Value
& Mask
) != Elem
)
1925 bool isNEONByteReplicate(unsigned NumBytes
) const {
1926 return isNEONReplicate(8, NumBytes
, false);
1929 static void checkNeonReplicateArgs(unsigned FromW
, unsigned ToW
) {
1930 assert((FromW
== 8 || FromW
== 16 || FromW
== 32) &&
1931 "Invalid source width");
1932 assert((ToW
== 16 || ToW
== 32 || ToW
== 64) &&
1933 "Invalid destination width");
1934 assert(FromW
< ToW
&& "ToW is not less than FromW");
1937 template<unsigned FromW
, unsigned ToW
>
1938 bool isNEONmovReplicate() const {
1939 checkNeonReplicateArgs(FromW
, ToW
);
1940 if (ToW
== 64 && isNEONi64splat())
1942 return isNEONReplicate(FromW
, ToW
/ FromW
, false);
1945 template<unsigned FromW
, unsigned ToW
>
1946 bool isNEONinvReplicate() const {
1947 checkNeonReplicateArgs(FromW
, ToW
);
1948 return isNEONReplicate(FromW
, ToW
/ FromW
, true);
1951 bool isNEONi32vmov() const {
1952 if (isNEONByteReplicate(4))
1953 return false; // Let it to be classified as byte-replicate case.
1956 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1957 // Must be a constant.
1960 return isValidNEONi32vmovImm(CE
->getValue());
1963 bool isNEONi32vmovNeg() const {
1964 if (!isImm()) return false;
1965 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1966 // Must be a constant.
1967 if (!CE
) return false;
1968 return isValidNEONi32vmovImm(~CE
->getValue());
1971 bool isNEONi64splat() const {
1972 if (!isImm()) return false;
1973 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1974 // Must be a constant.
1975 if (!CE
) return false;
1976 uint64_t Value
= CE
->getValue();
1977 // i64 value with each byte being either 0 or 0xff.
1978 for (unsigned i
= 0; i
< 8; ++i
, Value
>>= 8)
1979 if ((Value
& 0xff) != 0 && (Value
& 0xff) != 0xff) return false;
1983 template<int64_t Angle
, int64_t Remainder
>
1984 bool isComplexRotation() const {
1985 if (!isImm()) return false;
1987 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1988 if (!CE
) return false;
1989 uint64_t Value
= CE
->getValue();
1991 return (Value
% Angle
== Remainder
&& Value
<= 270);
1994 void addExpr(MCInst
&Inst
, const MCExpr
*Expr
) const {
1995 // Add as immediates when possible. Null MCExpr = 0.
1997 Inst
.addOperand(MCOperand::createImm(0));
1998 else if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
))
1999 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2001 Inst
.addOperand(MCOperand::createExpr(Expr
));
2004 void addARMBranchTargetOperands(MCInst
&Inst
, unsigned N
) const {
2005 assert(N
== 1 && "Invalid number of operands!");
2006 addExpr(Inst
, getImm());
2009 void addThumbBranchTargetOperands(MCInst
&Inst
, unsigned N
) const {
2010 assert(N
== 1 && "Invalid number of operands!");
2011 addExpr(Inst
, getImm());
2014 void addCondCodeOperands(MCInst
&Inst
, unsigned N
) const {
2015 assert(N
== 2 && "Invalid number of operands!");
2016 Inst
.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2017 unsigned RegNum
= getCondCode() == ARMCC::AL
? 0: ARM::CPSR
;
2018 Inst
.addOperand(MCOperand::createReg(RegNum
));
2021 void addCoprocNumOperands(MCInst
&Inst
, unsigned N
) const {
2022 assert(N
== 1 && "Invalid number of operands!");
2023 Inst
.addOperand(MCOperand::createImm(getCoproc()));
2026 void addCoprocRegOperands(MCInst
&Inst
, unsigned N
) const {
2027 assert(N
== 1 && "Invalid number of operands!");
2028 Inst
.addOperand(MCOperand::createImm(getCoproc()));
2031 void addCoprocOptionOperands(MCInst
&Inst
, unsigned N
) const {
2032 assert(N
== 1 && "Invalid number of operands!");
2033 Inst
.addOperand(MCOperand::createImm(CoprocOption
.Val
));
2036 void addITMaskOperands(MCInst
&Inst
, unsigned N
) const {
2037 assert(N
== 1 && "Invalid number of operands!");
2038 Inst
.addOperand(MCOperand::createImm(ITMask
.Mask
));
2041 void addITCondCodeOperands(MCInst
&Inst
, unsigned N
) const {
2042 assert(N
== 1 && "Invalid number of operands!");
2043 Inst
.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2046 void addCCOutOperands(MCInst
&Inst
, unsigned N
) const {
2047 assert(N
== 1 && "Invalid number of operands!");
2048 Inst
.addOperand(MCOperand::createReg(getReg()));
2051 void addRegOperands(MCInst
&Inst
, unsigned N
) const {
2052 assert(N
== 1 && "Invalid number of operands!");
2053 Inst
.addOperand(MCOperand::createReg(getReg()));
2056 void addRegShiftedRegOperands(MCInst
&Inst
, unsigned N
) const {
2057 assert(N
== 3 && "Invalid number of operands!");
2058 assert(isRegShiftedReg() &&
2059 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2060 Inst
.addOperand(MCOperand::createReg(RegShiftedReg
.SrcReg
));
2061 Inst
.addOperand(MCOperand::createReg(RegShiftedReg
.ShiftReg
));
2062 Inst
.addOperand(MCOperand::createImm(
2063 ARM_AM::getSORegOpc(RegShiftedReg
.ShiftTy
, RegShiftedReg
.ShiftImm
)));
2066 void addRegShiftedImmOperands(MCInst
&Inst
, unsigned N
) const {
2067 assert(N
== 2 && "Invalid number of operands!");
2068 assert(isRegShiftedImm() &&
2069 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2070 Inst
.addOperand(MCOperand::createReg(RegShiftedImm
.SrcReg
));
2071 // Shift of #32 is encoded as 0 where permitted
2072 unsigned Imm
= (RegShiftedImm
.ShiftImm
== 32 ? 0 : RegShiftedImm
.ShiftImm
);
2073 Inst
.addOperand(MCOperand::createImm(
2074 ARM_AM::getSORegOpc(RegShiftedImm
.ShiftTy
, Imm
)));
2077 void addShifterImmOperands(MCInst
&Inst
, unsigned N
) const {
2078 assert(N
== 1 && "Invalid number of operands!");
2079 Inst
.addOperand(MCOperand::createImm((ShifterImm
.isASR
<< 5) |
2083 void addRegListOperands(MCInst
&Inst
, unsigned N
) const {
2084 assert(N
== 1 && "Invalid number of operands!");
2085 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
2086 for (SmallVectorImpl
<unsigned>::const_iterator
2087 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ++I
)
2088 Inst
.addOperand(MCOperand::createReg(*I
));
2091 void addDPRRegListOperands(MCInst
&Inst
, unsigned N
) const {
2092 addRegListOperands(Inst
, N
);
2095 void addSPRRegListOperands(MCInst
&Inst
, unsigned N
) const {
2096 addRegListOperands(Inst
, N
);
2099 void addRotImmOperands(MCInst
&Inst
, unsigned N
) const {
2100 assert(N
== 1 && "Invalid number of operands!");
2101 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2102 Inst
.addOperand(MCOperand::createImm(RotImm
.Imm
>> 3));
2105 void addModImmOperands(MCInst
&Inst
, unsigned N
) const {
2106 assert(N
== 1 && "Invalid number of operands!");
2108 // Support for fixups (MCFixup)
2110 return addImmOperands(Inst
, N
);
2112 Inst
.addOperand(MCOperand::createImm(ModImm
.Bits
| (ModImm
.Rot
<< 7)));
2115 void addModImmNotOperands(MCInst
&Inst
, unsigned N
) const {
2116 assert(N
== 1 && "Invalid number of operands!");
2117 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2118 uint32_t Enc
= ARM_AM::getSOImmVal(~CE
->getValue());
2119 Inst
.addOperand(MCOperand::createImm(Enc
));
2122 void addModImmNegOperands(MCInst
&Inst
, unsigned N
) const {
2123 assert(N
== 1 && "Invalid number of operands!");
2124 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2125 uint32_t Enc
= ARM_AM::getSOImmVal(-CE
->getValue());
2126 Inst
.addOperand(MCOperand::createImm(Enc
));
2129 void addThumbModImmNeg8_255Operands(MCInst
&Inst
, unsigned N
) const {
2130 assert(N
== 1 && "Invalid number of operands!");
2131 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2132 uint32_t Val
= -CE
->getValue();
2133 Inst
.addOperand(MCOperand::createImm(Val
));
2136 void addThumbModImmNeg1_7Operands(MCInst
&Inst
, unsigned N
) const {
2137 assert(N
== 1 && "Invalid number of operands!");
2138 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2139 uint32_t Val
= -CE
->getValue();
2140 Inst
.addOperand(MCOperand::createImm(Val
));
2143 void addBitfieldOperands(MCInst
&Inst
, unsigned N
) const {
2144 assert(N
== 1 && "Invalid number of operands!");
2145 // Munge the lsb/width into a bitfield mask.
2146 unsigned lsb
= Bitfield
.LSB
;
2147 unsigned width
= Bitfield
.Width
;
2148 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2149 uint32_t Mask
= ~(((uint32_t)0xffffffff >> lsb
) << (32 - width
) >>
2150 (32 - (lsb
+ width
)));
2151 Inst
.addOperand(MCOperand::createImm(Mask
));
2154 void addImmOperands(MCInst
&Inst
, unsigned N
) const {
2155 assert(N
== 1 && "Invalid number of operands!");
2156 addExpr(Inst
, getImm());
2159 void addFBits16Operands(MCInst
&Inst
, unsigned N
) const {
2160 assert(N
== 1 && "Invalid number of operands!");
2161 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2162 Inst
.addOperand(MCOperand::createImm(16 - CE
->getValue()));
2165 void addFBits32Operands(MCInst
&Inst
, unsigned N
) const {
2166 assert(N
== 1 && "Invalid number of operands!");
2167 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2168 Inst
.addOperand(MCOperand::createImm(32 - CE
->getValue()));
2171 void addFPImmOperands(MCInst
&Inst
, unsigned N
) const {
2172 assert(N
== 1 && "Invalid number of operands!");
2173 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2174 int Val
= ARM_AM::getFP32Imm(APInt(32, CE
->getValue()));
2175 Inst
.addOperand(MCOperand::createImm(Val
));
2178 void addImm8s4Operands(MCInst
&Inst
, unsigned N
) const {
2179 assert(N
== 1 && "Invalid number of operands!");
2180 // FIXME: We really want to scale the value here, but the LDRD/STRD
2181 // instruction don't encode operands that way yet.
2182 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2183 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2186 void addImm0_1020s4Operands(MCInst
&Inst
, unsigned N
) const {
2187 assert(N
== 1 && "Invalid number of operands!");
2188 // The immediate is scaled by four in the encoding and is stored
2189 // in the MCInst as such. Lop off the low two bits here.
2190 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2191 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
2194 void addImm0_508s4NegOperands(MCInst
&Inst
, unsigned N
) const {
2195 assert(N
== 1 && "Invalid number of operands!");
2196 // The immediate is scaled by four in the encoding and is stored
2197 // in the MCInst as such. Lop off the low two bits here.
2198 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2199 Inst
.addOperand(MCOperand::createImm(-(CE
->getValue() / 4)));
2202 void addImm0_508s4Operands(MCInst
&Inst
, unsigned N
) const {
2203 assert(N
== 1 && "Invalid number of operands!");
2204 // The immediate is scaled by four in the encoding and is stored
2205 // in the MCInst as such. Lop off the low two bits here.
2206 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2207 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
2210 void addImm1_16Operands(MCInst
&Inst
, unsigned N
) const {
2211 assert(N
== 1 && "Invalid number of operands!");
2212 // The constant encodes as the immediate-1, and we store in the instruction
2213 // the bits as encoded, so subtract off one here.
2214 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2215 Inst
.addOperand(MCOperand::createImm(CE
->getValue() - 1));
2218 void addImm1_32Operands(MCInst
&Inst
, unsigned N
) const {
2219 assert(N
== 1 && "Invalid number of operands!");
2220 // The constant encodes as the immediate-1, and we store in the instruction
2221 // the bits as encoded, so subtract off one here.
2222 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2223 Inst
.addOperand(MCOperand::createImm(CE
->getValue() - 1));
2226 void addImmThumbSROperands(MCInst
&Inst
, unsigned N
) const {
2227 assert(N
== 1 && "Invalid number of operands!");
2228 // The constant encodes as the immediate, except for 32, which encodes as
2230 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2231 unsigned Imm
= CE
->getValue();
2232 Inst
.addOperand(MCOperand::createImm((Imm
== 32 ? 0 : Imm
)));
2235 void addPKHASRImmOperands(MCInst
&Inst
, unsigned N
) const {
2236 assert(N
== 1 && "Invalid number of operands!");
2237 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2238 // the instruction as well.
2239 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2240 int Val
= CE
->getValue();
2241 Inst
.addOperand(MCOperand::createImm(Val
== 32 ? 0 : Val
));
2244 void addT2SOImmNotOperands(MCInst
&Inst
, unsigned N
) const {
2245 assert(N
== 1 && "Invalid number of operands!");
2246 // The operand is actually a t2_so_imm, but we have its bitwise
2247 // negation in the assembly source, so twiddle it here.
2248 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2249 Inst
.addOperand(MCOperand::createImm(~(uint32_t)CE
->getValue()));
2252 void addT2SOImmNegOperands(MCInst
&Inst
, unsigned N
) const {
2253 assert(N
== 1 && "Invalid number of operands!");
2254 // The operand is actually a t2_so_imm, but we have its
2255 // negation in the assembly source, so twiddle it here.
2256 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2257 Inst
.addOperand(MCOperand::createImm(-(uint32_t)CE
->getValue()));
2260 void addImm0_4095NegOperands(MCInst
&Inst
, unsigned N
) const {
2261 assert(N
== 1 && "Invalid number of operands!");
2262 // The operand is actually an imm0_4095, but we have its
2263 // negation in the assembly source, so twiddle it here.
2264 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2265 Inst
.addOperand(MCOperand::createImm(-(uint32_t)CE
->getValue()));
2268 void addUnsignedOffset_b8s2Operands(MCInst
&Inst
, unsigned N
) const {
2269 if(const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm())) {
2270 Inst
.addOperand(MCOperand::createImm(CE
->getValue() >> 2));
2274 const MCSymbolRefExpr
*SR
= dyn_cast
<MCSymbolRefExpr
>(Imm
.Val
);
2275 assert(SR
&& "Unknown value type!");
2276 Inst
.addOperand(MCOperand::createExpr(SR
));
2279 void addThumbMemPCOperands(MCInst
&Inst
, unsigned N
) const {
2280 assert(N
== 1 && "Invalid number of operands!");
2282 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2284 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2288 const MCSymbolRefExpr
*SR
= dyn_cast
<MCSymbolRefExpr
>(Imm
.Val
);
2290 assert(SR
&& "Unknown value type!");
2291 Inst
.addOperand(MCOperand::createExpr(SR
));
2295 assert(isMem() && "Unknown value type!");
2296 assert(isa
<MCConstantExpr
>(Memory
.OffsetImm
) && "Unknown value type!");
2297 Inst
.addOperand(MCOperand::createImm(Memory
.OffsetImm
->getValue()));
2300 void addMemBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2301 assert(N
== 1 && "Invalid number of operands!");
2302 Inst
.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2305 void addInstSyncBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2306 assert(N
== 1 && "Invalid number of operands!");
2307 Inst
.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2310 void addTraceSyncBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2311 assert(N
== 1 && "Invalid number of operands!");
2312 Inst
.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2315 void addMemNoOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2316 assert(N
== 1 && "Invalid number of operands!");
2317 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2320 void addMemPCRelImm12Operands(MCInst
&Inst
, unsigned N
) const {
2321 assert(N
== 1 && "Invalid number of operands!");
2322 int32_t Imm
= Memory
.OffsetImm
->getValue();
2323 Inst
.addOperand(MCOperand::createImm(Imm
));
2326 void addAdrLabelOperands(MCInst
&Inst
, unsigned N
) const {
2327 assert(N
== 1 && "Invalid number of operands!");
2328 assert(isImm() && "Not an immediate!");
2330 // If we have an immediate that's not a constant, treat it as a label
2331 // reference needing a fixup.
2332 if (!isa
<MCConstantExpr
>(getImm())) {
2333 Inst
.addOperand(MCOperand::createExpr(getImm()));
2337 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2338 int Val
= CE
->getValue();
2339 Inst
.addOperand(MCOperand::createImm(Val
));
2342 void addAlignedMemoryOperands(MCInst
&Inst
, unsigned N
) const {
2343 assert(N
== 2 && "Invalid number of operands!");
2344 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2345 Inst
.addOperand(MCOperand::createImm(Memory
.Alignment
));
2348 void addDupAlignedMemoryNoneOperands(MCInst
&Inst
, unsigned N
) const {
2349 addAlignedMemoryOperands(Inst
, N
);
2352 void addAlignedMemoryNoneOperands(MCInst
&Inst
, unsigned N
) const {
2353 addAlignedMemoryOperands(Inst
, N
);
2356 void addAlignedMemory16Operands(MCInst
&Inst
, unsigned N
) const {
2357 addAlignedMemoryOperands(Inst
, N
);
2360 void addDupAlignedMemory16Operands(MCInst
&Inst
, unsigned N
) const {
2361 addAlignedMemoryOperands(Inst
, N
);
2364 void addAlignedMemory32Operands(MCInst
&Inst
, unsigned N
) const {
2365 addAlignedMemoryOperands(Inst
, N
);
2368 void addDupAlignedMemory32Operands(MCInst
&Inst
, unsigned N
) const {
2369 addAlignedMemoryOperands(Inst
, N
);
2372 void addAlignedMemory64Operands(MCInst
&Inst
, unsigned N
) const {
2373 addAlignedMemoryOperands(Inst
, N
);
2376 void addDupAlignedMemory64Operands(MCInst
&Inst
, unsigned N
) const {
2377 addAlignedMemoryOperands(Inst
, N
);
2380 void addAlignedMemory64or128Operands(MCInst
&Inst
, unsigned N
) const {
2381 addAlignedMemoryOperands(Inst
, N
);
2384 void addDupAlignedMemory64or128Operands(MCInst
&Inst
, unsigned N
) const {
2385 addAlignedMemoryOperands(Inst
, N
);
2388 void addAlignedMemory64or128or256Operands(MCInst
&Inst
, unsigned N
) const {
2389 addAlignedMemoryOperands(Inst
, N
);
2392 void addAddrMode2Operands(MCInst
&Inst
, unsigned N
) const {
2393 assert(N
== 3 && "Invalid number of operands!");
2394 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2395 if (!Memory
.OffsetRegNum
) {
2396 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2397 // Special case for #-0
2398 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2399 if (Val
< 0) Val
= -Val
;
2400 Val
= ARM_AM::getAM2Opc(AddSub
, Val
, ARM_AM::no_shift
);
2402 // For register offset, we encode the shift type and negation flag
2404 Val
= ARM_AM::getAM2Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
,
2405 Memory
.ShiftImm
, Memory
.ShiftType
);
2407 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2408 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2409 Inst
.addOperand(MCOperand::createImm(Val
));
2412 void addAM2OffsetImmOperands(MCInst
&Inst
, unsigned N
) const {
2413 assert(N
== 2 && "Invalid number of operands!");
2414 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2415 assert(CE
&& "non-constant AM2OffsetImm operand!");
2416 int32_t Val
= CE
->getValue();
2417 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2418 // Special case for #-0
2419 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2420 if (Val
< 0) Val
= -Val
;
2421 Val
= ARM_AM::getAM2Opc(AddSub
, Val
, ARM_AM::no_shift
);
2422 Inst
.addOperand(MCOperand::createReg(0));
2423 Inst
.addOperand(MCOperand::createImm(Val
));
2426 void addAddrMode3Operands(MCInst
&Inst
, unsigned N
) const {
2427 assert(N
== 3 && "Invalid number of operands!");
2428 // If we have an immediate that's not a constant, treat it as a label
2429 // reference needing a fixup. If it is a constant, it's something else
2430 // and we reject it.
2432 Inst
.addOperand(MCOperand::createExpr(getImm()));
2433 Inst
.addOperand(MCOperand::createReg(0));
2434 Inst
.addOperand(MCOperand::createImm(0));
2438 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2439 if (!Memory
.OffsetRegNum
) {
2440 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2441 // Special case for #-0
2442 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2443 if (Val
< 0) Val
= -Val
;
2444 Val
= ARM_AM::getAM3Opc(AddSub
, Val
);
2446 // For register offset, we encode the shift type and negation flag
2448 Val
= ARM_AM::getAM3Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
, 0);
2450 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2451 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2452 Inst
.addOperand(MCOperand::createImm(Val
));
2455 void addAM3OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2456 assert(N
== 2 && "Invalid number of operands!");
2457 if (Kind
== k_PostIndexRegister
) {
2459 ARM_AM::getAM3Opc(PostIdxReg
.isAdd
? ARM_AM::add
: ARM_AM::sub
, 0);
2460 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
2461 Inst
.addOperand(MCOperand::createImm(Val
));
2466 const MCConstantExpr
*CE
= static_cast<const MCConstantExpr
*>(getImm());
2467 int32_t Val
= CE
->getValue();
2468 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2469 // Special case for #-0
2470 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2471 if (Val
< 0) Val
= -Val
;
2472 Val
= ARM_AM::getAM3Opc(AddSub
, Val
);
2473 Inst
.addOperand(MCOperand::createReg(0));
2474 Inst
.addOperand(MCOperand::createImm(Val
));
2477 void addAddrMode5Operands(MCInst
&Inst
, unsigned N
) const {
2478 assert(N
== 2 && "Invalid number of operands!");
2479 // If we have an immediate that's not a constant, treat it as a label
2480 // reference needing a fixup. If it is a constant, it's something else
2481 // and we reject it.
2483 Inst
.addOperand(MCOperand::createExpr(getImm()));
2484 Inst
.addOperand(MCOperand::createImm(0));
2488 // The lower two bits are always zero and as such are not encoded.
2489 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 4 : 0;
2490 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2491 // Special case for #-0
2492 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2493 if (Val
< 0) Val
= -Val
;
2494 Val
= ARM_AM::getAM5Opc(AddSub
, Val
);
2495 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2496 Inst
.addOperand(MCOperand::createImm(Val
));
2499 void addAddrMode5FP16Operands(MCInst
&Inst
, unsigned N
) const {
2500 assert(N
== 2 && "Invalid number of operands!");
2501 // If we have an immediate that's not a constant, treat it as a label
2502 // reference needing a fixup. If it is a constant, it's something else
2503 // and we reject it.
2505 Inst
.addOperand(MCOperand::createExpr(getImm()));
2506 Inst
.addOperand(MCOperand::createImm(0));
2510 // The lower bit is always zero and as such is not encoded.
2511 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 2 : 0;
2512 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2513 // Special case for #-0
2514 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2515 if (Val
< 0) Val
= -Val
;
2516 Val
= ARM_AM::getAM5FP16Opc(AddSub
, Val
);
2517 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2518 Inst
.addOperand(MCOperand::createImm(Val
));
2521 void addMemImm8s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2522 assert(N
== 2 && "Invalid number of operands!");
2523 // If we have an immediate that's not a constant, treat it as a label
2524 // reference needing a fixup. If it is a constant, it's something else
2525 // and we reject it.
2527 Inst
.addOperand(MCOperand::createExpr(getImm()));
2528 Inst
.addOperand(MCOperand::createImm(0));
2532 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2533 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2534 Inst
.addOperand(MCOperand::createImm(Val
));
2537 void addMemImm0_1020s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2538 assert(N
== 2 && "Invalid number of operands!");
2539 // The lower two bits are always zero and as such are not encoded.
2540 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 4 : 0;
2541 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2542 Inst
.addOperand(MCOperand::createImm(Val
));
2545 void addMemImm8OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2546 assert(N
== 2 && "Invalid number of operands!");
2547 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2548 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2549 Inst
.addOperand(MCOperand::createImm(Val
));
2552 void addMemPosImm8OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2553 addMemImm8OffsetOperands(Inst
, N
);
2556 void addMemNegImm8OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2557 addMemImm8OffsetOperands(Inst
, N
);
2560 void addMemUImm12OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2561 assert(N
== 2 && "Invalid number of operands!");
2562 // If this is an immediate, it's a label reference.
2564 addExpr(Inst
, getImm());
2565 Inst
.addOperand(MCOperand::createImm(0));
2569 // Otherwise, it's a normal memory reg+offset.
2570 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2571 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2572 Inst
.addOperand(MCOperand::createImm(Val
));
2575 void addMemImm12OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2576 assert(N
== 2 && "Invalid number of operands!");
2577 // If this is an immediate, it's a label reference.
2579 addExpr(Inst
, getImm());
2580 Inst
.addOperand(MCOperand::createImm(0));
2584 // Otherwise, it's a normal memory reg+offset.
2585 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2586 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2587 Inst
.addOperand(MCOperand::createImm(Val
));
2590 void addConstPoolAsmImmOperands(MCInst
&Inst
, unsigned N
) const {
2591 assert(N
== 1 && "Invalid number of operands!");
2592 // This is container for the immediate that we will create the constant
2594 addExpr(Inst
, getConstantPoolImm());
2598 void addMemTBBOperands(MCInst
&Inst
, unsigned N
) const {
2599 assert(N
== 2 && "Invalid number of operands!");
2600 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2601 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2604 void addMemTBHOperands(MCInst
&Inst
, unsigned N
) const {
2605 assert(N
== 2 && "Invalid number of operands!");
2606 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2607 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2610 void addMemRegOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2611 assert(N
== 3 && "Invalid number of operands!");
2613 ARM_AM::getAM2Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
,
2614 Memory
.ShiftImm
, Memory
.ShiftType
);
2615 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2616 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2617 Inst
.addOperand(MCOperand::createImm(Val
));
2620 void addT2MemRegOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2621 assert(N
== 3 && "Invalid number of operands!");
2622 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2623 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2624 Inst
.addOperand(MCOperand::createImm(Memory
.ShiftImm
));
2627 void addMemThumbRROperands(MCInst
&Inst
, unsigned N
) const {
2628 assert(N
== 2 && "Invalid number of operands!");
2629 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2630 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2633 void addMemThumbRIs4Operands(MCInst
&Inst
, unsigned N
) const {
2634 assert(N
== 2 && "Invalid number of operands!");
2635 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 4) : 0;
2636 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2637 Inst
.addOperand(MCOperand::createImm(Val
));
2640 void addMemThumbRIs2Operands(MCInst
&Inst
, unsigned N
) const {
2641 assert(N
== 2 && "Invalid number of operands!");
2642 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 2) : 0;
2643 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2644 Inst
.addOperand(MCOperand::createImm(Val
));
2647 void addMemThumbRIs1Operands(MCInst
&Inst
, unsigned N
) const {
2648 assert(N
== 2 && "Invalid number of operands!");
2649 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue()) : 0;
2650 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2651 Inst
.addOperand(MCOperand::createImm(Val
));
2654 void addMemThumbSPIOperands(MCInst
&Inst
, unsigned N
) const {
2655 assert(N
== 2 && "Invalid number of operands!");
2656 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 4) : 0;
2657 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2658 Inst
.addOperand(MCOperand::createImm(Val
));
2661 void addPostIdxImm8Operands(MCInst
&Inst
, unsigned N
) const {
2662 assert(N
== 1 && "Invalid number of operands!");
2663 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2664 assert(CE
&& "non-constant post-idx-imm8 operand!");
2665 int Imm
= CE
->getValue();
2666 bool isAdd
= Imm
>= 0;
2667 if (Imm
== std::numeric_limits
<int32_t>::min()) Imm
= 0;
2668 Imm
= (Imm
< 0 ? -Imm
: Imm
) | (int)isAdd
<< 8;
2669 Inst
.addOperand(MCOperand::createImm(Imm
));
2672 void addPostIdxImm8s4Operands(MCInst
&Inst
, unsigned N
) const {
2673 assert(N
== 1 && "Invalid number of operands!");
2674 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2675 assert(CE
&& "non-constant post-idx-imm8s4 operand!");
2676 int Imm
= CE
->getValue();
2677 bool isAdd
= Imm
>= 0;
2678 if (Imm
== std::numeric_limits
<int32_t>::min()) Imm
= 0;
2679 // Immediate is scaled by 4.
2680 Imm
= ((Imm
< 0 ? -Imm
: Imm
) / 4) | (int)isAdd
<< 8;
2681 Inst
.addOperand(MCOperand::createImm(Imm
));
2684 void addPostIdxRegOperands(MCInst
&Inst
, unsigned N
) const {
2685 assert(N
== 2 && "Invalid number of operands!");
2686 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
2687 Inst
.addOperand(MCOperand::createImm(PostIdxReg
.isAdd
));
2690 void addPostIdxRegShiftedOperands(MCInst
&Inst
, unsigned N
) const {
2691 assert(N
== 2 && "Invalid number of operands!");
2692 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
2693 // The sign, shift type, and shift amount are encoded in a single operand
2694 // using the AM2 encoding helpers.
2695 ARM_AM::AddrOpc opc
= PostIdxReg
.isAdd
? ARM_AM::add
: ARM_AM::sub
;
2696 unsigned Imm
= ARM_AM::getAM2Opc(opc
, PostIdxReg
.ShiftImm
,
2697 PostIdxReg
.ShiftTy
);
2698 Inst
.addOperand(MCOperand::createImm(Imm
));
2701 void addMSRMaskOperands(MCInst
&Inst
, unsigned N
) const {
2702 assert(N
== 1 && "Invalid number of operands!");
2703 Inst
.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
2706 void addBankedRegOperands(MCInst
&Inst
, unsigned N
) const {
2707 assert(N
== 1 && "Invalid number of operands!");
2708 Inst
.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
2711 void addProcIFlagsOperands(MCInst
&Inst
, unsigned N
) const {
2712 assert(N
== 1 && "Invalid number of operands!");
2713 Inst
.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
2716 void addVecListOperands(MCInst
&Inst
, unsigned N
) const {
2717 assert(N
== 1 && "Invalid number of operands!");
2718 Inst
.addOperand(MCOperand::createReg(VectorList
.RegNum
));
2721 void addVecListIndexedOperands(MCInst
&Inst
, unsigned N
) const {
2722 assert(N
== 2 && "Invalid number of operands!");
2723 Inst
.addOperand(MCOperand::createReg(VectorList
.RegNum
));
2724 Inst
.addOperand(MCOperand::createImm(VectorList
.LaneIndex
));
2727 void addVectorIndex8Operands(MCInst
&Inst
, unsigned N
) const {
2728 assert(N
== 1 && "Invalid number of operands!");
2729 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
2732 void addVectorIndex16Operands(MCInst
&Inst
, unsigned N
) const {
2733 assert(N
== 1 && "Invalid number of operands!");
2734 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
2737 void addVectorIndex32Operands(MCInst
&Inst
, unsigned N
) const {
2738 assert(N
== 1 && "Invalid number of operands!");
2739 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
2742 void addVectorIndex64Operands(MCInst
&Inst
, unsigned N
) const {
2743 assert(N
== 1 && "Invalid number of operands!");
2744 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
2747 void addNEONi8splatOperands(MCInst
&Inst
, unsigned N
) const {
2748 assert(N
== 1 && "Invalid number of operands!");
2749 // The immediate encodes the type of constant as well as the value.
2750 // Mask in that this is an i8 splat.
2751 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2752 Inst
.addOperand(MCOperand::createImm(CE
->getValue() | 0xe00));
2755 void addNEONi16splatOperands(MCInst
&Inst
, unsigned N
) const {
2756 assert(N
== 1 && "Invalid number of operands!");
2757 // The immediate encodes the type of constant as well as the value.
2758 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2759 unsigned Value
= CE
->getValue();
2760 Value
= ARM_AM::encodeNEONi16splat(Value
);
2761 Inst
.addOperand(MCOperand::createImm(Value
));
2764 void addNEONi16splatNotOperands(MCInst
&Inst
, unsigned N
) const {
2765 assert(N
== 1 && "Invalid number of operands!");
2766 // The immediate encodes the type of constant as well as the value.
2767 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2768 unsigned Value
= CE
->getValue();
2769 Value
= ARM_AM::encodeNEONi16splat(~Value
& 0xffff);
2770 Inst
.addOperand(MCOperand::createImm(Value
));
2773 void addNEONi32splatOperands(MCInst
&Inst
, unsigned N
) const {
2774 assert(N
== 1 && "Invalid number of operands!");
2775 // The immediate encodes the type of constant as well as the value.
2776 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2777 unsigned Value
= CE
->getValue();
2778 Value
= ARM_AM::encodeNEONi32splat(Value
);
2779 Inst
.addOperand(MCOperand::createImm(Value
));
2782 void addNEONi32splatNotOperands(MCInst
&Inst
, unsigned N
) const {
2783 assert(N
== 1 && "Invalid number of operands!");
2784 // The immediate encodes the type of constant as well as the value.
2785 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2786 unsigned Value
= CE
->getValue();
2787 Value
= ARM_AM::encodeNEONi32splat(~Value
);
2788 Inst
.addOperand(MCOperand::createImm(Value
));
2791 void addNEONi8ReplicateOperands(MCInst
&Inst
, bool Inv
) const {
2792 // The immediate encodes the type of constant as well as the value.
2793 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2794 assert((Inst
.getOpcode() == ARM::VMOVv8i8
||
2795 Inst
.getOpcode() == ARM::VMOVv16i8
) &&
2796 "All instructions that wants to replicate non-zero byte "
2797 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2798 unsigned Value
= CE
->getValue();
2801 unsigned B
= Value
& 0xff;
2802 B
|= 0xe00; // cmode = 0b1110
2803 Inst
.addOperand(MCOperand::createImm(B
));
2806 void addNEONinvi8ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
2807 assert(N
== 1 && "Invalid number of operands!");
2808 addNEONi8ReplicateOperands(Inst
, true);
2811 static unsigned encodeNeonVMOVImmediate(unsigned Value
) {
2812 if (Value
>= 256 && Value
<= 0xffff)
2813 Value
= (Value
>> 8) | ((Value
& 0xff) ? 0xc00 : 0x200);
2814 else if (Value
> 0xffff && Value
<= 0xffffff)
2815 Value
= (Value
>> 16) | ((Value
& 0xff) ? 0xd00 : 0x400);
2816 else if (Value
> 0xffffff)
2817 Value
= (Value
>> 24) | 0x600;
2821 void addNEONi32vmovOperands(MCInst
&Inst
, unsigned N
) const {
2822 assert(N
== 1 && "Invalid number of operands!");
2823 // The immediate encodes the type of constant as well as the value.
2824 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2825 unsigned Value
= encodeNeonVMOVImmediate(CE
->getValue());
2826 Inst
.addOperand(MCOperand::createImm(Value
));
2829 void addNEONvmovi8ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
2830 assert(N
== 1 && "Invalid number of operands!");
2831 addNEONi8ReplicateOperands(Inst
, false);
2834 void addNEONvmovi16ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
2835 assert(N
== 1 && "Invalid number of operands!");
2836 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2837 assert((Inst
.getOpcode() == ARM::VMOVv4i16
||
2838 Inst
.getOpcode() == ARM::VMOVv8i16
||
2839 Inst
.getOpcode() == ARM::VMVNv4i16
||
2840 Inst
.getOpcode() == ARM::VMVNv8i16
) &&
2841 "All instructions that want to replicate non-zero half-word "
2842 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
2843 uint64_t Value
= CE
->getValue();
2844 unsigned Elem
= Value
& 0xffff;
2846 Elem
= (Elem
>> 8) | 0x200;
2847 Inst
.addOperand(MCOperand::createImm(Elem
));
2850 void addNEONi32vmovNegOperands(MCInst
&Inst
, unsigned N
) const {
2851 assert(N
== 1 && "Invalid number of operands!");
2852 // The immediate encodes the type of constant as well as the value.
2853 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2854 unsigned Value
= encodeNeonVMOVImmediate(~CE
->getValue());
2855 Inst
.addOperand(MCOperand::createImm(Value
));
2858 void addNEONvmovi32ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
2859 assert(N
== 1 && "Invalid number of operands!");
2860 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2861 assert((Inst
.getOpcode() == ARM::VMOVv2i32
||
2862 Inst
.getOpcode() == ARM::VMOVv4i32
||
2863 Inst
.getOpcode() == ARM::VMVNv2i32
||
2864 Inst
.getOpcode() == ARM::VMVNv4i32
) &&
2865 "All instructions that want to replicate non-zero word "
2866 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
2867 uint64_t Value
= CE
->getValue();
2868 unsigned Elem
= encodeNeonVMOVImmediate(Value
& 0xffffffff);
2869 Inst
.addOperand(MCOperand::createImm(Elem
));
2872 void addNEONi64splatOperands(MCInst
&Inst
, unsigned N
) const {
2873 assert(N
== 1 && "Invalid number of operands!");
2874 // The immediate encodes the type of constant as well as the value.
2875 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2876 uint64_t Value
= CE
->getValue();
2878 for (unsigned i
= 0; i
< 8; ++i
, Value
>>= 8) {
2879 Imm
|= (Value
& 1) << i
;
2881 Inst
.addOperand(MCOperand::createImm(Imm
| 0x1e00));
2884 void addComplexRotationEvenOperands(MCInst
&Inst
, unsigned N
) const {
2885 assert(N
== 1 && "Invalid number of operands!");
2886 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2887 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 90));
2890 void addComplexRotationOddOperands(MCInst
&Inst
, unsigned N
) const {
2891 assert(N
== 1 && "Invalid number of operands!");
2892 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2893 Inst
.addOperand(MCOperand::createImm((CE
->getValue() - 90) / 180));
2896 void print(raw_ostream
&OS
) const override
;
2898 static std::unique_ptr
<ARMOperand
> CreateITMask(unsigned Mask
, SMLoc S
) {
2899 auto Op
= make_unique
<ARMOperand
>(k_ITCondMask
);
2900 Op
->ITMask
.Mask
= Mask
;
2906 static std::unique_ptr
<ARMOperand
> CreateCondCode(ARMCC::CondCodes CC
,
2908 auto Op
= make_unique
<ARMOperand
>(k_CondCode
);
2915 static std::unique_ptr
<ARMOperand
> CreateCoprocNum(unsigned CopVal
, SMLoc S
) {
2916 auto Op
= make_unique
<ARMOperand
>(k_CoprocNum
);
2917 Op
->Cop
.Val
= CopVal
;
2923 static std::unique_ptr
<ARMOperand
> CreateCoprocReg(unsigned CopVal
, SMLoc S
) {
2924 auto Op
= make_unique
<ARMOperand
>(k_CoprocReg
);
2925 Op
->Cop
.Val
= CopVal
;
2931 static std::unique_ptr
<ARMOperand
> CreateCoprocOption(unsigned Val
, SMLoc S
,
2933 auto Op
= make_unique
<ARMOperand
>(k_CoprocOption
);
2940 static std::unique_ptr
<ARMOperand
> CreateCCOut(unsigned RegNum
, SMLoc S
) {
2941 auto Op
= make_unique
<ARMOperand
>(k_CCOut
);
2942 Op
->Reg
.RegNum
= RegNum
;
2948 static std::unique_ptr
<ARMOperand
> CreateToken(StringRef Str
, SMLoc S
) {
2949 auto Op
= make_unique
<ARMOperand
>(k_Token
);
2950 Op
->Tok
.Data
= Str
.data();
2951 Op
->Tok
.Length
= Str
.size();
2957 static std::unique_ptr
<ARMOperand
> CreateReg(unsigned RegNum
, SMLoc S
,
2959 auto Op
= make_unique
<ARMOperand
>(k_Register
);
2960 Op
->Reg
.RegNum
= RegNum
;
2966 static std::unique_ptr
<ARMOperand
>
2967 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy
, unsigned SrcReg
,
2968 unsigned ShiftReg
, unsigned ShiftImm
, SMLoc S
,
2970 auto Op
= make_unique
<ARMOperand
>(k_ShiftedRegister
);
2971 Op
->RegShiftedReg
.ShiftTy
= ShTy
;
2972 Op
->RegShiftedReg
.SrcReg
= SrcReg
;
2973 Op
->RegShiftedReg
.ShiftReg
= ShiftReg
;
2974 Op
->RegShiftedReg
.ShiftImm
= ShiftImm
;
2980 static std::unique_ptr
<ARMOperand
>
2981 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy
, unsigned SrcReg
,
2982 unsigned ShiftImm
, SMLoc S
, SMLoc E
) {
2983 auto Op
= make_unique
<ARMOperand
>(k_ShiftedImmediate
);
2984 Op
->RegShiftedImm
.ShiftTy
= ShTy
;
2985 Op
->RegShiftedImm
.SrcReg
= SrcReg
;
2986 Op
->RegShiftedImm
.ShiftImm
= ShiftImm
;
2992 static std::unique_ptr
<ARMOperand
> CreateShifterImm(bool isASR
, unsigned Imm
,
2994 auto Op
= make_unique
<ARMOperand
>(k_ShifterImmediate
);
2995 Op
->ShifterImm
.isASR
= isASR
;
2996 Op
->ShifterImm
.Imm
= Imm
;
3002 static std::unique_ptr
<ARMOperand
> CreateRotImm(unsigned Imm
, SMLoc S
,
3004 auto Op
= make_unique
<ARMOperand
>(k_RotateImmediate
);
3005 Op
->RotImm
.Imm
= Imm
;
3011 static std::unique_ptr
<ARMOperand
> CreateModImm(unsigned Bits
, unsigned Rot
,
3013 auto Op
= make_unique
<ARMOperand
>(k_ModifiedImmediate
);
3014 Op
->ModImm
.Bits
= Bits
;
3015 Op
->ModImm
.Rot
= Rot
;
3021 static std::unique_ptr
<ARMOperand
>
3022 CreateConstantPoolImm(const MCExpr
*Val
, SMLoc S
, SMLoc E
) {
3023 auto Op
= make_unique
<ARMOperand
>(k_ConstantPoolImmediate
);
3030 static std::unique_ptr
<ARMOperand
>
3031 CreateBitfield(unsigned LSB
, unsigned Width
, SMLoc S
, SMLoc E
) {
3032 auto Op
= make_unique
<ARMOperand
>(k_BitfieldDescriptor
);
3033 Op
->Bitfield
.LSB
= LSB
;
3034 Op
->Bitfield
.Width
= Width
;
3040 static std::unique_ptr
<ARMOperand
>
3041 CreateRegList(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
3042 SMLoc StartLoc
, SMLoc EndLoc
) {
3043 assert(Regs
.size() > 0 && "RegList contains no registers?");
3044 KindTy Kind
= k_RegisterList
;
3046 if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Regs
.front().second
))
3047 Kind
= k_DPRRegisterList
;
3048 else if (ARMMCRegisterClasses
[ARM::SPRRegClassID
].
3049 contains(Regs
.front().second
))
3050 Kind
= k_SPRRegisterList
;
3052 // Sort based on the register encoding values.
3053 array_pod_sort(Regs
.begin(), Regs
.end());
3055 auto Op
= make_unique
<ARMOperand
>(Kind
);
3056 for (SmallVectorImpl
<std::pair
<unsigned, unsigned>>::const_iterator
3057 I
= Regs
.begin(), E
= Regs
.end(); I
!= E
; ++I
)
3058 Op
->Registers
.push_back(I
->second
);
3059 Op
->StartLoc
= StartLoc
;
3060 Op
->EndLoc
= EndLoc
;
3064 static std::unique_ptr
<ARMOperand
> CreateVectorList(unsigned RegNum
,
3066 bool isDoubleSpaced
,
3068 auto Op
= make_unique
<ARMOperand
>(k_VectorList
);
3069 Op
->VectorList
.RegNum
= RegNum
;
3070 Op
->VectorList
.Count
= Count
;
3071 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3077 static std::unique_ptr
<ARMOperand
>
3078 CreateVectorListAllLanes(unsigned RegNum
, unsigned Count
, bool isDoubleSpaced
,
3080 auto Op
= make_unique
<ARMOperand
>(k_VectorListAllLanes
);
3081 Op
->VectorList
.RegNum
= RegNum
;
3082 Op
->VectorList
.Count
= Count
;
3083 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3089 static std::unique_ptr
<ARMOperand
>
3090 CreateVectorListIndexed(unsigned RegNum
, unsigned Count
, unsigned Index
,
3091 bool isDoubleSpaced
, SMLoc S
, SMLoc E
) {
3092 auto Op
= make_unique
<ARMOperand
>(k_VectorListIndexed
);
3093 Op
->VectorList
.RegNum
= RegNum
;
3094 Op
->VectorList
.Count
= Count
;
3095 Op
->VectorList
.LaneIndex
= Index
;
3096 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3102 static std::unique_ptr
<ARMOperand
>
3103 CreateVectorIndex(unsigned Idx
, SMLoc S
, SMLoc E
, MCContext
&Ctx
) {
3104 auto Op
= make_unique
<ARMOperand
>(k_VectorIndex
);
3105 Op
->VectorIndex
.Val
= Idx
;
3111 static std::unique_ptr
<ARMOperand
> CreateImm(const MCExpr
*Val
, SMLoc S
,
3113 auto Op
= make_unique
<ARMOperand
>(k_Immediate
);
3120 static std::unique_ptr
<ARMOperand
>
3121 CreateMem(unsigned BaseRegNum
, const MCConstantExpr
*OffsetImm
,
3122 unsigned OffsetRegNum
, ARM_AM::ShiftOpc ShiftType
,
3123 unsigned ShiftImm
, unsigned Alignment
, bool isNegative
, SMLoc S
,
3124 SMLoc E
, SMLoc AlignmentLoc
= SMLoc()) {
3125 auto Op
= make_unique
<ARMOperand
>(k_Memory
);
3126 Op
->Memory
.BaseRegNum
= BaseRegNum
;
3127 Op
->Memory
.OffsetImm
= OffsetImm
;
3128 Op
->Memory
.OffsetRegNum
= OffsetRegNum
;
3129 Op
->Memory
.ShiftType
= ShiftType
;
3130 Op
->Memory
.ShiftImm
= ShiftImm
;
3131 Op
->Memory
.Alignment
= Alignment
;
3132 Op
->Memory
.isNegative
= isNegative
;
3135 Op
->AlignmentLoc
= AlignmentLoc
;
3139 static std::unique_ptr
<ARMOperand
>
3140 CreatePostIdxReg(unsigned RegNum
, bool isAdd
, ARM_AM::ShiftOpc ShiftTy
,
3141 unsigned ShiftImm
, SMLoc S
, SMLoc E
) {
3142 auto Op
= make_unique
<ARMOperand
>(k_PostIndexRegister
);
3143 Op
->PostIdxReg
.RegNum
= RegNum
;
3144 Op
->PostIdxReg
.isAdd
= isAdd
;
3145 Op
->PostIdxReg
.ShiftTy
= ShiftTy
;
3146 Op
->PostIdxReg
.ShiftImm
= ShiftImm
;
3152 static std::unique_ptr
<ARMOperand
> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt
,
3154 auto Op
= make_unique
<ARMOperand
>(k_MemBarrierOpt
);
3155 Op
->MBOpt
.Val
= Opt
;
3161 static std::unique_ptr
<ARMOperand
>
3162 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt
, SMLoc S
) {
3163 auto Op
= make_unique
<ARMOperand
>(k_InstSyncBarrierOpt
);
3164 Op
->ISBOpt
.Val
= Opt
;
3170 static std::unique_ptr
<ARMOperand
>
3171 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt
, SMLoc S
) {
3172 auto Op
= make_unique
<ARMOperand
>(k_TraceSyncBarrierOpt
);
3173 Op
->TSBOpt
.Val
= Opt
;
3179 static std::unique_ptr
<ARMOperand
> CreateProcIFlags(ARM_PROC::IFlags IFlags
,
3181 auto Op
= make_unique
<ARMOperand
>(k_ProcIFlags
);
3182 Op
->IFlags
.Val
= IFlags
;
3188 static std::unique_ptr
<ARMOperand
> CreateMSRMask(unsigned MMask
, SMLoc S
) {
3189 auto Op
= make_unique
<ARMOperand
>(k_MSRMask
);
3190 Op
->MMask
.Val
= MMask
;
3196 static std::unique_ptr
<ARMOperand
> CreateBankedReg(unsigned Reg
, SMLoc S
) {
3197 auto Op
= make_unique
<ARMOperand
>(k_BankedReg
);
3198 Op
->BankedReg
.Val
= Reg
;
3205 } // end anonymous namespace.
3207 void ARMOperand::print(raw_ostream
&OS
) const {
3208 auto RegName
= [](unsigned Reg
) {
3210 return ARMInstPrinter::getRegisterName(Reg
);
3217 OS
<< "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3220 OS
<< "<ccout " << RegName(getReg()) << ">";
3222 case k_ITCondMask
: {
3223 static const char *const MaskStr
[] = {
3224 "(invalid)", "(teee)", "(tee)", "(teet)",
3225 "(te)", "(tete)", "(tet)", "(tett)",
3226 "(t)", "(ttee)", "(tte)", "(ttet)",
3227 "(tt)", "(ttte)", "(ttt)", "(tttt)"
3229 assert((ITMask
.Mask
& 0xf) == ITMask
.Mask
);
3230 OS
<< "<it-mask " << MaskStr
[ITMask
.Mask
] << ">";
3234 OS
<< "<coprocessor number: " << getCoproc() << ">";
3237 OS
<< "<coprocessor register: " << getCoproc() << ">";
3239 case k_CoprocOption
:
3240 OS
<< "<coprocessor option: " << CoprocOption
.Val
<< ">";
3243 OS
<< "<mask: " << getMSRMask() << ">";
3246 OS
<< "<banked reg: " << getBankedReg() << ">";
3251 case k_MemBarrierOpt
:
3252 OS
<< "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3254 case k_InstSyncBarrierOpt
:
3255 OS
<< "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3257 case k_TraceSyncBarrierOpt
:
3258 OS
<< "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3262 if (Memory
.BaseRegNum
)
3263 OS
<< " base:" << RegName(Memory
.BaseRegNum
);
3264 if (Memory
.OffsetImm
)
3265 OS
<< " offset-imm:" << *Memory
.OffsetImm
;
3266 if (Memory
.OffsetRegNum
)
3267 OS
<< " offset-reg:" << (Memory
.isNegative
? "-" : "")
3268 << RegName(Memory
.OffsetRegNum
);
3269 if (Memory
.ShiftType
!= ARM_AM::no_shift
) {
3270 OS
<< " shift-type:" << ARM_AM::getShiftOpcStr(Memory
.ShiftType
);
3271 OS
<< " shift-imm:" << Memory
.ShiftImm
;
3273 if (Memory
.Alignment
)
3274 OS
<< " alignment:" << Memory
.Alignment
;
3277 case k_PostIndexRegister
:
3278 OS
<< "post-idx register " << (PostIdxReg
.isAdd
? "" : "-")
3279 << RegName(PostIdxReg
.RegNum
);
3280 if (PostIdxReg
.ShiftTy
!= ARM_AM::no_shift
)
3281 OS
<< ARM_AM::getShiftOpcStr(PostIdxReg
.ShiftTy
) << " "
3282 << PostIdxReg
.ShiftImm
;
3285 case k_ProcIFlags
: {
3286 OS
<< "<ARM_PROC::";
3287 unsigned IFlags
= getProcIFlags();
3288 for (int i
=2; i
>= 0; --i
)
3289 if (IFlags
& (1 << i
))
3290 OS
<< ARM_PROC::IFlagsToString(1 << i
);
3295 OS
<< "<register " << RegName(getReg()) << ">";
3297 case k_ShifterImmediate
:
3298 OS
<< "<shift " << (ShifterImm
.isASR
? "asr" : "lsl")
3299 << " #" << ShifterImm
.Imm
<< ">";
3301 case k_ShiftedRegister
:
3302 OS
<< "<so_reg_reg " << RegName(RegShiftedReg
.SrcReg
) << " "
3303 << ARM_AM::getShiftOpcStr(RegShiftedReg
.ShiftTy
) << " "
3304 << RegName(RegShiftedReg
.ShiftReg
) << ">";
3306 case k_ShiftedImmediate
:
3307 OS
<< "<so_reg_imm " << RegName(RegShiftedImm
.SrcReg
) << " "
3308 << ARM_AM::getShiftOpcStr(RegShiftedImm
.ShiftTy
) << " #"
3309 << RegShiftedImm
.ShiftImm
<< ">";
3311 case k_RotateImmediate
:
3312 OS
<< "<ror " << " #" << (RotImm
.Imm
* 8) << ">";
3314 case k_ModifiedImmediate
:
3315 OS
<< "<mod_imm #" << ModImm
.Bits
<< ", #"
3316 << ModImm
.Rot
<< ")>";
3318 case k_ConstantPoolImmediate
:
3319 OS
<< "<constant_pool_imm #" << *getConstantPoolImm();
3321 case k_BitfieldDescriptor
:
3322 OS
<< "<bitfield " << "lsb: " << Bitfield
.LSB
3323 << ", width: " << Bitfield
.Width
<< ">";
3325 case k_RegisterList
:
3326 case k_DPRRegisterList
:
3327 case k_SPRRegisterList
: {
3328 OS
<< "<register_list ";
3330 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
3331 for (SmallVectorImpl
<unsigned>::const_iterator
3332 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ) {
3334 if (++I
< E
) OS
<< ", ";
3341 OS
<< "<vector_list " << VectorList
.Count
<< " * "
3342 << RegName(VectorList
.RegNum
) << ">";
3344 case k_VectorListAllLanes
:
3345 OS
<< "<vector_list(all lanes) " << VectorList
.Count
<< " * "
3346 << RegName(VectorList
.RegNum
) << ">";
3348 case k_VectorListIndexed
:
3349 OS
<< "<vector_list(lane " << VectorList
.LaneIndex
<< ") "
3350 << VectorList
.Count
<< " * " << RegName(VectorList
.RegNum
) << ">";
3353 OS
<< "'" << getToken() << "'";
3356 OS
<< "<vectorindex " << getVectorIndex() << ">";
3361 /// @name Auto-generated Match Functions
3364 static unsigned MatchRegisterName(StringRef Name
);
3368 bool ARMAsmParser::ParseRegister(unsigned &RegNo
,
3369 SMLoc
&StartLoc
, SMLoc
&EndLoc
) {
3370 const AsmToken
&Tok
= getParser().getTok();
3371 StartLoc
= Tok
.getLoc();
3372 EndLoc
= Tok
.getEndLoc();
3373 RegNo
= tryParseRegister();
3375 return (RegNo
== (unsigned)-1);
3378 /// Try to parse a register name. The token must be an Identifier when called,
3379 /// and if it is a register name the token is eaten and the register number is
3380 /// returned. Otherwise return -1.
3381 int ARMAsmParser::tryParseRegister() {
3382 MCAsmParser
&Parser
= getParser();
3383 const AsmToken
&Tok
= Parser
.getTok();
3384 if (Tok
.isNot(AsmToken::Identifier
)) return -1;
3386 std::string lowerCase
= Tok
.getString().lower();
3387 unsigned RegNum
= MatchRegisterName(lowerCase
);
3389 RegNum
= StringSwitch
<unsigned>(lowerCase
)
3390 .Case("r13", ARM::SP
)
3391 .Case("r14", ARM::LR
)
3392 .Case("r15", ARM::PC
)
3393 .Case("ip", ARM::R12
)
3394 // Additional register name aliases for 'gas' compatibility.
3395 .Case("a1", ARM::R0
)
3396 .Case("a2", ARM::R1
)
3397 .Case("a3", ARM::R2
)
3398 .Case("a4", ARM::R3
)
3399 .Case("v1", ARM::R4
)
3400 .Case("v2", ARM::R5
)
3401 .Case("v3", ARM::R6
)
3402 .Case("v4", ARM::R7
)
3403 .Case("v5", ARM::R8
)
3404 .Case("v6", ARM::R9
)
3405 .Case("v7", ARM::R10
)
3406 .Case("v8", ARM::R11
)
3407 .Case("sb", ARM::R9
)
3408 .Case("sl", ARM::R10
)
3409 .Case("fp", ARM::R11
)
3413 // Check for aliases registered via .req. Canonicalize to lower case.
3414 // That's more consistent since register names are case insensitive, and
3415 // it's how the original entry was passed in from MC/MCParser/AsmParser.
3416 StringMap
<unsigned>::const_iterator Entry
= RegisterReqs
.find(lowerCase
);
3417 // If no match, return failure.
3418 if (Entry
== RegisterReqs
.end())
3420 Parser
.Lex(); // Eat identifier token.
3421 return Entry
->getValue();
3424 // Some FPUs only have 16 D registers, so D16-D31 are invalid
3425 if (hasD16() && RegNum
>= ARM::D16
&& RegNum
<= ARM::D31
)
3428 Parser
.Lex(); // Eat identifier token.
3433 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3434 // If a recoverable error occurs, return 1. If an irrecoverable error
3435 // occurs, return -1. An irrecoverable error is one where tokens have been
3436 // consumed in the process of trying to parse the shifter (i.e., when it is
3437 // indeed a shifter operand, but malformed).
3438 int ARMAsmParser::tryParseShiftRegister(OperandVector
&Operands
) {
3439 MCAsmParser
&Parser
= getParser();
3440 SMLoc S
= Parser
.getTok().getLoc();
3441 const AsmToken
&Tok
= Parser
.getTok();
3442 if (Tok
.isNot(AsmToken::Identifier
))
3445 std::string lowerCase
= Tok
.getString().lower();
3446 ARM_AM::ShiftOpc ShiftTy
= StringSwitch
<ARM_AM::ShiftOpc
>(lowerCase
)
3447 .Case("asl", ARM_AM::lsl
)
3448 .Case("lsl", ARM_AM::lsl
)
3449 .Case("lsr", ARM_AM::lsr
)
3450 .Case("asr", ARM_AM::asr
)
3451 .Case("ror", ARM_AM::ror
)
3452 .Case("rrx", ARM_AM::rrx
)
3453 .Default(ARM_AM::no_shift
);
3455 if (ShiftTy
== ARM_AM::no_shift
)
3458 Parser
.Lex(); // Eat the operator.
3460 // The source register for the shift has already been added to the
3461 // operand list, so we need to pop it off and combine it into the shifted
3462 // register operand instead.
3463 std::unique_ptr
<ARMOperand
> PrevOp(
3464 (ARMOperand
*)Operands
.pop_back_val().release());
3465 if (!PrevOp
->isReg())
3466 return Error(PrevOp
->getStartLoc(), "shift must be of a register");
3467 int SrcReg
= PrevOp
->getReg();
3472 if (ShiftTy
== ARM_AM::rrx
) {
3473 // RRX Doesn't have an explicit shift amount. The encoder expects
3474 // the shift register to be the same as the source register. Seems odd,
3478 // Figure out if this is shifted by a constant or a register (for non-RRX).
3479 if (Parser
.getTok().is(AsmToken::Hash
) ||
3480 Parser
.getTok().is(AsmToken::Dollar
)) {
3481 Parser
.Lex(); // Eat hash.
3482 SMLoc ImmLoc
= Parser
.getTok().getLoc();
3483 const MCExpr
*ShiftExpr
= nullptr;
3484 if (getParser().parseExpression(ShiftExpr
, EndLoc
)) {
3485 Error(ImmLoc
, "invalid immediate shift value");
3488 // The expression must be evaluatable as an immediate.
3489 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftExpr
);
3491 Error(ImmLoc
, "invalid immediate shift value");
3494 // Range check the immediate.
3495 // lsl, ror: 0 <= imm <= 31
3496 // lsr, asr: 0 <= imm <= 32
3497 Imm
= CE
->getValue();
3499 ((ShiftTy
== ARM_AM::lsl
|| ShiftTy
== ARM_AM::ror
) && Imm
> 31) ||
3500 ((ShiftTy
== ARM_AM::lsr
|| ShiftTy
== ARM_AM::asr
) && Imm
> 32)) {
3501 Error(ImmLoc
, "immediate shift value out of range");
3504 // shift by zero is a nop. Always send it through as lsl.
3505 // ('as' compatibility)
3507 ShiftTy
= ARM_AM::lsl
;
3508 } else if (Parser
.getTok().is(AsmToken::Identifier
)) {
3509 SMLoc L
= Parser
.getTok().getLoc();
3510 EndLoc
= Parser
.getTok().getEndLoc();
3511 ShiftReg
= tryParseRegister();
3512 if (ShiftReg
== -1) {
3513 Error(L
, "expected immediate or register in shift operand");
3517 Error(Parser
.getTok().getLoc(),
3518 "expected immediate or register in shift operand");
3523 if (ShiftReg
&& ShiftTy
!= ARM_AM::rrx
)
3524 Operands
.push_back(ARMOperand::CreateShiftedRegister(ShiftTy
, SrcReg
,
3528 Operands
.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy
, SrcReg
, Imm
,
3534 /// Try to parse a register name. The token must be an Identifier when called.
3535 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3536 /// if there is a "writeback". 'true' if it's not a register.
3538 /// TODO this is likely to change to allow different register types and or to
3539 /// parse for a specific register type.
3540 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector
&Operands
) {
3541 MCAsmParser
&Parser
= getParser();
3542 SMLoc RegStartLoc
= Parser
.getTok().getLoc();
3543 SMLoc RegEndLoc
= Parser
.getTok().getEndLoc();
3544 int RegNo
= tryParseRegister();
3548 Operands
.push_back(ARMOperand::CreateReg(RegNo
, RegStartLoc
, RegEndLoc
));
3550 const AsmToken
&ExclaimTok
= Parser
.getTok();
3551 if (ExclaimTok
.is(AsmToken::Exclaim
)) {
3552 Operands
.push_back(ARMOperand::CreateToken(ExclaimTok
.getString(),
3553 ExclaimTok
.getLoc()));
3554 Parser
.Lex(); // Eat exclaim token
3558 // Also check for an index operand. This is only legal for vector registers,
3559 // but that'll get caught OK in operand matching, so we don't need to
3560 // explicitly filter everything else out here.
3561 if (Parser
.getTok().is(AsmToken::LBrac
)) {
3562 SMLoc SIdx
= Parser
.getTok().getLoc();
3563 Parser
.Lex(); // Eat left bracket token.
3565 const MCExpr
*ImmVal
;
3566 if (getParser().parseExpression(ImmVal
))
3568 const MCConstantExpr
*MCE
= dyn_cast
<MCConstantExpr
>(ImmVal
);
3570 return TokError("immediate value expected for vector index");
3572 if (Parser
.getTok().isNot(AsmToken::RBrac
))
3573 return Error(Parser
.getTok().getLoc(), "']' expected");
3575 SMLoc E
= Parser
.getTok().getEndLoc();
3576 Parser
.Lex(); // Eat right bracket token.
3578 Operands
.push_back(ARMOperand::CreateVectorIndex(MCE
->getValue(),
3586 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3587 /// instruction with a symbolic operand name.
3588 /// We accept "crN" syntax for GAS compatibility.
3589 /// <operand-name> ::= <prefix><number>
3590 /// If CoprocOp is 'c', then:
3591 /// <prefix> ::= c | cr
3592 /// If CoprocOp is 'p', then :
3594 /// <number> ::= integer in range [0, 15]
3595 static int MatchCoprocessorOperandName(StringRef Name
, char CoprocOp
) {
3596 // Use the same layout as the tablegen'erated register name matcher. Ugly,
3598 if (Name
.size() < 2 || Name
[0] != CoprocOp
)
3600 Name
= (Name
[1] == 'r') ? Name
.drop_front(2) : Name
.drop_front();
3602 switch (Name
.size()) {
3623 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3624 // However, old cores (v5/v6) did use them in that way.
3625 case '0': return 10;
3626 case '1': return 11;
3627 case '2': return 12;
3628 case '3': return 13;
3629 case '4': return 14;
3630 case '5': return 15;
3635 /// parseITCondCode - Try to parse a condition code for an IT instruction.
3636 OperandMatchResultTy
3637 ARMAsmParser::parseITCondCode(OperandVector
&Operands
) {
3638 MCAsmParser
&Parser
= getParser();
3639 SMLoc S
= Parser
.getTok().getLoc();
3640 const AsmToken
&Tok
= Parser
.getTok();
3641 if (!Tok
.is(AsmToken::Identifier
))
3642 return MatchOperand_NoMatch
;
3643 unsigned CC
= ARMCondCodeFromString(Tok
.getString());
3645 return MatchOperand_NoMatch
;
3646 Parser
.Lex(); // Eat the token.
3648 Operands
.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC
), S
));
3650 return MatchOperand_Success
;
3653 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3654 /// token must be an Identifier when called, and if it is a coprocessor
3655 /// number, the token is eaten and the operand is added to the operand list.
3656 OperandMatchResultTy
3657 ARMAsmParser::parseCoprocNumOperand(OperandVector
&Operands
) {
3658 MCAsmParser
&Parser
= getParser();
3659 SMLoc S
= Parser
.getTok().getLoc();
3660 const AsmToken
&Tok
= Parser
.getTok();
3661 if (Tok
.isNot(AsmToken::Identifier
))
3662 return MatchOperand_NoMatch
;
3664 int Num
= MatchCoprocessorOperandName(Tok
.getString(), 'p');
3666 return MatchOperand_NoMatch
;
3667 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3668 if ((hasV7Ops() || hasV8Ops()) && (Num
== 10 || Num
== 11))
3669 return MatchOperand_NoMatch
;
3671 Parser
.Lex(); // Eat identifier token.
3672 Operands
.push_back(ARMOperand::CreateCoprocNum(Num
, S
));
3673 return MatchOperand_Success
;
3676 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3677 /// token must be an Identifier when called, and if it is a coprocessor
3678 /// number, the token is eaten and the operand is added to the operand list.
3679 OperandMatchResultTy
3680 ARMAsmParser::parseCoprocRegOperand(OperandVector
&Operands
) {
3681 MCAsmParser
&Parser
= getParser();
3682 SMLoc S
= Parser
.getTok().getLoc();
3683 const AsmToken
&Tok
= Parser
.getTok();
3684 if (Tok
.isNot(AsmToken::Identifier
))
3685 return MatchOperand_NoMatch
;
3687 int Reg
= MatchCoprocessorOperandName(Tok
.getString(), 'c');
3689 return MatchOperand_NoMatch
;
3691 Parser
.Lex(); // Eat identifier token.
3692 Operands
.push_back(ARMOperand::CreateCoprocReg(Reg
, S
));
3693 return MatchOperand_Success
;
3696 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3697 /// coproc_option : '{' imm0_255 '}'
3698 OperandMatchResultTy
3699 ARMAsmParser::parseCoprocOptionOperand(OperandVector
&Operands
) {
3700 MCAsmParser
&Parser
= getParser();
3701 SMLoc S
= Parser
.getTok().getLoc();
3703 // If this isn't a '{', this isn't a coprocessor immediate operand.
3704 if (Parser
.getTok().isNot(AsmToken::LCurly
))
3705 return MatchOperand_NoMatch
;
3706 Parser
.Lex(); // Eat the '{'
3709 SMLoc Loc
= Parser
.getTok().getLoc();
3710 if (getParser().parseExpression(Expr
)) {
3711 Error(Loc
, "illegal expression");
3712 return MatchOperand_ParseFail
;
3714 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
3715 if (!CE
|| CE
->getValue() < 0 || CE
->getValue() > 255) {
3716 Error(Loc
, "coprocessor option must be an immediate in range [0, 255]");
3717 return MatchOperand_ParseFail
;
3719 int Val
= CE
->getValue();
3721 // Check for and consume the closing '}'
3722 if (Parser
.getTok().isNot(AsmToken::RCurly
))
3723 return MatchOperand_ParseFail
;
3724 SMLoc E
= Parser
.getTok().getEndLoc();
3725 Parser
.Lex(); // Eat the '}'
3727 Operands
.push_back(ARMOperand::CreateCoprocOption(Val
, S
, E
));
3728 return MatchOperand_Success
;
3731 // For register list parsing, we need to map from raw GPR register numbering
3732 // to the enumeration values. The enumeration values aren't sorted by
3733 // register number due to our using "sp", "lr" and "pc" as canonical names.
3734 static unsigned getNextRegister(unsigned Reg
) {
3735 // If this is a GPR, we need to do it manually, otherwise we can rely
3736 // on the sort ordering of the enumeration since the other reg-classes
3738 if (!ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
3741 default: llvm_unreachable("Invalid GPR number!");
3742 case ARM::R0
: return ARM::R1
; case ARM::R1
: return ARM::R2
;
3743 case ARM::R2
: return ARM::R3
; case ARM::R3
: return ARM::R4
;
3744 case ARM::R4
: return ARM::R5
; case ARM::R5
: return ARM::R6
;
3745 case ARM::R6
: return ARM::R7
; case ARM::R7
: return ARM::R8
;
3746 case ARM::R8
: return ARM::R9
; case ARM::R9
: return ARM::R10
;
3747 case ARM::R10
: return ARM::R11
; case ARM::R11
: return ARM::R12
;
3748 case ARM::R12
: return ARM::SP
; case ARM::SP
: return ARM::LR
;
3749 case ARM::LR
: return ARM::PC
; case ARM::PC
: return ARM::R0
;
3753 /// Parse a register list.
3754 bool ARMAsmParser::parseRegisterList(OperandVector
&Operands
) {
3755 MCAsmParser
&Parser
= getParser();
3756 if (Parser
.getTok().isNot(AsmToken::LCurly
))
3757 return TokError("Token is not a Left Curly Brace");
3758 SMLoc S
= Parser
.getTok().getLoc();
3759 Parser
.Lex(); // Eat '{' token.
3760 SMLoc RegLoc
= Parser
.getTok().getLoc();
3762 // Check the first register in the list to see what register class
3763 // this is a list of.
3764 int Reg
= tryParseRegister();
3766 return Error(RegLoc
, "register expected");
3768 // The reglist instructions have at most 16 registers, so reserve
3769 // space for that many.
3771 SmallVector
<std::pair
<unsigned, unsigned>, 16> Registers
;
3773 // Allow Q regs and just interpret them as the two D sub-registers.
3774 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
3775 Reg
= getDRegFromQReg(Reg
);
3776 EReg
= MRI
->getEncodingValue(Reg
);
3777 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3780 const MCRegisterClass
*RC
;
3781 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
3782 RC
= &ARMMCRegisterClasses
[ARM::GPRRegClassID
];
3783 else if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
))
3784 RC
= &ARMMCRegisterClasses
[ARM::DPRRegClassID
];
3785 else if (ARMMCRegisterClasses
[ARM::SPRRegClassID
].contains(Reg
))
3786 RC
= &ARMMCRegisterClasses
[ARM::SPRRegClassID
];
3788 return Error(RegLoc
, "invalid register in register list");
3790 // Store the register.
3791 EReg
= MRI
->getEncodingValue(Reg
);
3792 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3794 // This starts immediately after the first register token in the list,
3795 // so we can see either a comma or a minus (range separator) as a legal
3797 while (Parser
.getTok().is(AsmToken::Comma
) ||
3798 Parser
.getTok().is(AsmToken::Minus
)) {
3799 if (Parser
.getTok().is(AsmToken::Minus
)) {
3800 Parser
.Lex(); // Eat the minus.
3801 SMLoc AfterMinusLoc
= Parser
.getTok().getLoc();
3802 int EndReg
= tryParseRegister();
3804 return Error(AfterMinusLoc
, "register expected");
3805 // Allow Q regs and just interpret them as the two D sub-registers.
3806 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(EndReg
))
3807 EndReg
= getDRegFromQReg(EndReg
) + 1;
3808 // If the register is the same as the start reg, there's nothing
3812 // The register must be in the same register class as the first.
3813 if (!RC
->contains(EndReg
))
3814 return Error(AfterMinusLoc
, "invalid register in register list");
3815 // Ranges must go from low to high.
3816 if (MRI
->getEncodingValue(Reg
) > MRI
->getEncodingValue(EndReg
))
3817 return Error(AfterMinusLoc
, "bad range in register list");
3819 // Add all the registers in the range to the register list.
3820 while (Reg
!= EndReg
) {
3821 Reg
= getNextRegister(Reg
);
3822 EReg
= MRI
->getEncodingValue(Reg
);
3823 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3827 Parser
.Lex(); // Eat the comma.
3828 RegLoc
= Parser
.getTok().getLoc();
3830 const AsmToken RegTok
= Parser
.getTok();
3831 Reg
= tryParseRegister();
3833 return Error(RegLoc
, "register expected");
3834 // Allow Q regs and just interpret them as the two D sub-registers.
3835 bool isQReg
= false;
3836 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
3837 Reg
= getDRegFromQReg(Reg
);
3840 // The register must be in the same register class as the first.
3841 if (!RC
->contains(Reg
))
3842 return Error(RegLoc
, "invalid register in register list");
3843 // List must be monotonically increasing.
3844 if (MRI
->getEncodingValue(Reg
) < MRI
->getEncodingValue(OldReg
)) {
3845 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
3846 Warning(RegLoc
, "register list not in ascending order");
3848 return Error(RegLoc
, "register list not in ascending order");
3850 if (MRI
->getEncodingValue(Reg
) == MRI
->getEncodingValue(OldReg
)) {
3851 Warning(RegLoc
, "duplicated register (" + RegTok
.getString() +
3852 ") in register list");
3855 // VFP register lists must also be contiguous.
3856 if (RC
!= &ARMMCRegisterClasses
[ARM::GPRRegClassID
] &&
3858 return Error(RegLoc
, "non-contiguous register range");
3859 EReg
= MRI
->getEncodingValue(Reg
);
3860 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3862 EReg
= MRI
->getEncodingValue(++Reg
);
3863 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3867 if (Parser
.getTok().isNot(AsmToken::RCurly
))
3868 return Error(Parser
.getTok().getLoc(), "'}' expected");
3869 SMLoc E
= Parser
.getTok().getEndLoc();
3870 Parser
.Lex(); // Eat '}' token.
3872 // Push the register list operand.
3873 Operands
.push_back(ARMOperand::CreateRegList(Registers
, S
, E
));
3875 // The ARM system instruction variants for LDM/STM have a '^' token here.
3876 if (Parser
.getTok().is(AsmToken::Caret
)) {
3877 Operands
.push_back(ARMOperand::CreateToken("^",Parser
.getTok().getLoc()));
3878 Parser
.Lex(); // Eat '^' token.
3884 // Helper function to parse the lane index for vector lists.
3885 OperandMatchResultTy
ARMAsmParser::
3886 parseVectorLane(VectorLaneTy
&LaneKind
, unsigned &Index
, SMLoc
&EndLoc
) {
3887 MCAsmParser
&Parser
= getParser();
3888 Index
= 0; // Always return a defined index value.
3889 if (Parser
.getTok().is(AsmToken::LBrac
)) {
3890 Parser
.Lex(); // Eat the '['.
3891 if (Parser
.getTok().is(AsmToken::RBrac
)) {
3892 // "Dn[]" is the 'all lanes' syntax.
3893 LaneKind
= AllLanes
;
3894 EndLoc
= Parser
.getTok().getEndLoc();
3895 Parser
.Lex(); // Eat the ']'.
3896 return MatchOperand_Success
;
3899 // There's an optional '#' token here. Normally there wouldn't be, but
3900 // inline assemble puts one in, and it's friendly to accept that.
3901 if (Parser
.getTok().is(AsmToken::Hash
))
3902 Parser
.Lex(); // Eat '#' or '$'.
3904 const MCExpr
*LaneIndex
;
3905 SMLoc Loc
= Parser
.getTok().getLoc();
3906 if (getParser().parseExpression(LaneIndex
)) {
3907 Error(Loc
, "illegal expression");
3908 return MatchOperand_ParseFail
;
3910 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(LaneIndex
);
3912 Error(Loc
, "lane index must be empty or an integer");
3913 return MatchOperand_ParseFail
;
3915 if (Parser
.getTok().isNot(AsmToken::RBrac
)) {
3916 Error(Parser
.getTok().getLoc(), "']' expected");
3917 return MatchOperand_ParseFail
;
3919 EndLoc
= Parser
.getTok().getEndLoc();
3920 Parser
.Lex(); // Eat the ']'.
3921 int64_t Val
= CE
->getValue();
3923 // FIXME: Make this range check context sensitive for .8, .16, .32.
3924 if (Val
< 0 || Val
> 7) {
3925 Error(Parser
.getTok().getLoc(), "lane index out of range");
3926 return MatchOperand_ParseFail
;
3929 LaneKind
= IndexedLane
;
3930 return MatchOperand_Success
;
3933 return MatchOperand_Success
;
3936 // parse a vector register list
3937 OperandMatchResultTy
3938 ARMAsmParser::parseVectorList(OperandVector
&Operands
) {
3939 MCAsmParser
&Parser
= getParser();
3940 VectorLaneTy LaneKind
;
3942 SMLoc S
= Parser
.getTok().getLoc();
3943 // As an extension (to match gas), support a plain D register or Q register
3944 // (without encosing curly braces) as a single or double entry list,
3946 if (Parser
.getTok().is(AsmToken::Identifier
)) {
3947 SMLoc E
= Parser
.getTok().getEndLoc();
3948 int Reg
= tryParseRegister();
3950 return MatchOperand_NoMatch
;
3951 if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
)) {
3952 OperandMatchResultTy Res
= parseVectorLane(LaneKind
, LaneIndex
, E
);
3953 if (Res
!= MatchOperand_Success
)
3957 Operands
.push_back(ARMOperand::CreateVectorList(Reg
, 1, false, S
, E
));
3960 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(Reg
, 1, false,
3964 Operands
.push_back(ARMOperand::CreateVectorListIndexed(Reg
, 1,
3969 return MatchOperand_Success
;
3971 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
3972 Reg
= getDRegFromQReg(Reg
);
3973 OperandMatchResultTy Res
= parseVectorLane(LaneKind
, LaneIndex
, E
);
3974 if (Res
!= MatchOperand_Success
)
3978 Reg
= MRI
->getMatchingSuperReg(Reg
, ARM::dsub_0
,
3979 &ARMMCRegisterClasses
[ARM::DPairRegClassID
]);
3980 Operands
.push_back(ARMOperand::CreateVectorList(Reg
, 2, false, S
, E
));
3983 Reg
= MRI
->getMatchingSuperReg(Reg
, ARM::dsub_0
,
3984 &ARMMCRegisterClasses
[ARM::DPairRegClassID
]);
3985 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(Reg
, 2, false,
3989 Operands
.push_back(ARMOperand::CreateVectorListIndexed(Reg
, 2,
3994 return MatchOperand_Success
;
3996 Error(S
, "vector register expected");
3997 return MatchOperand_ParseFail
;
4000 if (Parser
.getTok().isNot(AsmToken::LCurly
))
4001 return MatchOperand_NoMatch
;
4003 Parser
.Lex(); // Eat '{' token.
4004 SMLoc RegLoc
= Parser
.getTok().getLoc();
4006 int Reg
= tryParseRegister();
4008 Error(RegLoc
, "register expected");
4009 return MatchOperand_ParseFail
;
4013 unsigned FirstReg
= Reg
;
4014 // The list is of D registers, but we also allow Q regs and just interpret
4015 // them as the two D sub-registers.
4016 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4017 FirstReg
= Reg
= getDRegFromQReg(Reg
);
4018 Spacing
= 1; // double-spacing requires explicit D registers, otherwise
4019 // it's ambiguous with four-register single spaced.
4025 if (parseVectorLane(LaneKind
, LaneIndex
, E
) != MatchOperand_Success
)
4026 return MatchOperand_ParseFail
;
4028 while (Parser
.getTok().is(AsmToken::Comma
) ||
4029 Parser
.getTok().is(AsmToken::Minus
)) {
4030 if (Parser
.getTok().is(AsmToken::Minus
)) {
4032 Spacing
= 1; // Register range implies a single spaced list.
4033 else if (Spacing
== 2) {
4034 Error(Parser
.getTok().getLoc(),
4035 "sequential registers in double spaced list");
4036 return MatchOperand_ParseFail
;
4038 Parser
.Lex(); // Eat the minus.
4039 SMLoc AfterMinusLoc
= Parser
.getTok().getLoc();
4040 int EndReg
= tryParseRegister();
4042 Error(AfterMinusLoc
, "register expected");
4043 return MatchOperand_ParseFail
;
4045 // Allow Q regs and just interpret them as the two D sub-registers.
4046 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(EndReg
))
4047 EndReg
= getDRegFromQReg(EndReg
) + 1;
4048 // If the register is the same as the start reg, there's nothing
4052 // The register must be in the same register class as the first.
4053 if (!ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(EndReg
)) {
4054 Error(AfterMinusLoc
, "invalid register in register list");
4055 return MatchOperand_ParseFail
;
4057 // Ranges must go from low to high.
4059 Error(AfterMinusLoc
, "bad range in register list");
4060 return MatchOperand_ParseFail
;
4062 // Parse the lane specifier if present.
4063 VectorLaneTy NextLaneKind
;
4064 unsigned NextLaneIndex
;
4065 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) !=
4066 MatchOperand_Success
)
4067 return MatchOperand_ParseFail
;
4068 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4069 Error(AfterMinusLoc
, "mismatched lane index in register list");
4070 return MatchOperand_ParseFail
;
4073 // Add all the registers in the range to the register list.
4074 Count
+= EndReg
- Reg
;
4078 Parser
.Lex(); // Eat the comma.
4079 RegLoc
= Parser
.getTok().getLoc();
4081 Reg
= tryParseRegister();
4083 Error(RegLoc
, "register expected");
4084 return MatchOperand_ParseFail
;
4086 // vector register lists must be contiguous.
4087 // It's OK to use the enumeration values directly here rather, as the
4088 // VFP register classes have the enum sorted properly.
4090 // The list is of D registers, but we also allow Q regs and just interpret
4091 // them as the two D sub-registers.
4092 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4094 Spacing
= 1; // Register range implies a single spaced list.
4095 else if (Spacing
== 2) {
4097 "invalid register in double-spaced list (must be 'D' register')");
4098 return MatchOperand_ParseFail
;
4100 Reg
= getDRegFromQReg(Reg
);
4101 if (Reg
!= OldReg
+ 1) {
4102 Error(RegLoc
, "non-contiguous register range");
4103 return MatchOperand_ParseFail
;
4107 // Parse the lane specifier if present.
4108 VectorLaneTy NextLaneKind
;
4109 unsigned NextLaneIndex
;
4110 SMLoc LaneLoc
= Parser
.getTok().getLoc();
4111 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) !=
4112 MatchOperand_Success
)
4113 return MatchOperand_ParseFail
;
4114 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4115 Error(LaneLoc
, "mismatched lane index in register list");
4116 return MatchOperand_ParseFail
;
4120 // Normal D register.
4121 // Figure out the register spacing (single or double) of the list if
4122 // we don't know it already.
4124 Spacing
= 1 + (Reg
== OldReg
+ 2);
4126 // Just check that it's contiguous and keep going.
4127 if (Reg
!= OldReg
+ Spacing
) {
4128 Error(RegLoc
, "non-contiguous register range");
4129 return MatchOperand_ParseFail
;
4132 // Parse the lane specifier if present.
4133 VectorLaneTy NextLaneKind
;
4134 unsigned NextLaneIndex
;
4135 SMLoc EndLoc
= Parser
.getTok().getLoc();
4136 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) != MatchOperand_Success
)
4137 return MatchOperand_ParseFail
;
4138 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4139 Error(EndLoc
, "mismatched lane index in register list");
4140 return MatchOperand_ParseFail
;
4144 if (Parser
.getTok().isNot(AsmToken::RCurly
)) {
4145 Error(Parser
.getTok().getLoc(), "'}' expected");
4146 return MatchOperand_ParseFail
;
4148 E
= Parser
.getTok().getEndLoc();
4149 Parser
.Lex(); // Eat '}' token.
4153 // Two-register operands have been converted to the
4154 // composite register classes.
4156 const MCRegisterClass
*RC
= (Spacing
== 1) ?
4157 &ARMMCRegisterClasses
[ARM::DPairRegClassID
] :
4158 &ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
];
4159 FirstReg
= MRI
->getMatchingSuperReg(FirstReg
, ARM::dsub_0
, RC
);
4161 Operands
.push_back(ARMOperand::CreateVectorList(FirstReg
, Count
,
4162 (Spacing
== 2), S
, E
));
4165 // Two-register operands have been converted to the
4166 // composite register classes.
4168 const MCRegisterClass
*RC
= (Spacing
== 1) ?
4169 &ARMMCRegisterClasses
[ARM::DPairRegClassID
] :
4170 &ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
];
4171 FirstReg
= MRI
->getMatchingSuperReg(FirstReg
, ARM::dsub_0
, RC
);
4173 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg
, Count
,
4178 Operands
.push_back(ARMOperand::CreateVectorListIndexed(FirstReg
, Count
,
4184 return MatchOperand_Success
;
4187 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4188 OperandMatchResultTy
4189 ARMAsmParser::parseMemBarrierOptOperand(OperandVector
&Operands
) {
4190 MCAsmParser
&Parser
= getParser();
4191 SMLoc S
= Parser
.getTok().getLoc();
4192 const AsmToken
&Tok
= Parser
.getTok();
4195 if (Tok
.is(AsmToken::Identifier
)) {
4196 StringRef OptStr
= Tok
.getString();
4198 Opt
= StringSwitch
<unsigned>(OptStr
.slice(0, OptStr
.size()).lower())
4199 .Case("sy", ARM_MB::SY
)
4200 .Case("st", ARM_MB::ST
)
4201 .Case("ld", ARM_MB::LD
)
4202 .Case("sh", ARM_MB::ISH
)
4203 .Case("ish", ARM_MB::ISH
)
4204 .Case("shst", ARM_MB::ISHST
)
4205 .Case("ishst", ARM_MB::ISHST
)
4206 .Case("ishld", ARM_MB::ISHLD
)
4207 .Case("nsh", ARM_MB::NSH
)
4208 .Case("un", ARM_MB::NSH
)
4209 .Case("nshst", ARM_MB::NSHST
)
4210 .Case("nshld", ARM_MB::NSHLD
)
4211 .Case("unst", ARM_MB::NSHST
)
4212 .Case("osh", ARM_MB::OSH
)
4213 .Case("oshst", ARM_MB::OSHST
)
4214 .Case("oshld", ARM_MB::OSHLD
)
4217 // ishld, oshld, nshld and ld are only available from ARMv8.
4218 if (!hasV8Ops() && (Opt
== ARM_MB::ISHLD
|| Opt
== ARM_MB::OSHLD
||
4219 Opt
== ARM_MB::NSHLD
|| Opt
== ARM_MB::LD
))
4223 return MatchOperand_NoMatch
;
4225 Parser
.Lex(); // Eat identifier token.
4226 } else if (Tok
.is(AsmToken::Hash
) ||
4227 Tok
.is(AsmToken::Dollar
) ||
4228 Tok
.is(AsmToken::Integer
)) {
4229 if (Parser
.getTok().isNot(AsmToken::Integer
))
4230 Parser
.Lex(); // Eat '#' or '$'.
4231 SMLoc Loc
= Parser
.getTok().getLoc();
4233 const MCExpr
*MemBarrierID
;
4234 if (getParser().parseExpression(MemBarrierID
)) {
4235 Error(Loc
, "illegal expression");
4236 return MatchOperand_ParseFail
;
4239 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(MemBarrierID
);
4241 Error(Loc
, "constant expression expected");
4242 return MatchOperand_ParseFail
;
4245 int Val
= CE
->getValue();
4247 Error(Loc
, "immediate value out of range");
4248 return MatchOperand_ParseFail
;
4251 Opt
= ARM_MB::RESERVED_0
+ Val
;
4253 return MatchOperand_ParseFail
;
4255 Operands
.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt
)Opt
, S
));
4256 return MatchOperand_Success
;
4259 OperandMatchResultTy
4260 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector
&Operands
) {
4261 MCAsmParser
&Parser
= getParser();
4262 SMLoc S
= Parser
.getTok().getLoc();
4263 const AsmToken
&Tok
= Parser
.getTok();
4265 if (Tok
.isNot(AsmToken::Identifier
))
4266 return MatchOperand_NoMatch
;
4268 if (!Tok
.getString().equals_lower("csync"))
4269 return MatchOperand_NoMatch
;
4271 Parser
.Lex(); // Eat identifier token.
4273 Operands
.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC
, S
));
4274 return MatchOperand_Success
;
4277 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4278 OperandMatchResultTy
4279 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector
&Operands
) {
4280 MCAsmParser
&Parser
= getParser();
4281 SMLoc S
= Parser
.getTok().getLoc();
4282 const AsmToken
&Tok
= Parser
.getTok();
4285 if (Tok
.is(AsmToken::Identifier
)) {
4286 StringRef OptStr
= Tok
.getString();
4288 if (OptStr
.equals_lower("sy"))
4291 return MatchOperand_NoMatch
;
4293 Parser
.Lex(); // Eat identifier token.
4294 } else if (Tok
.is(AsmToken::Hash
) ||
4295 Tok
.is(AsmToken::Dollar
) ||
4296 Tok
.is(AsmToken::Integer
)) {
4297 if (Parser
.getTok().isNot(AsmToken::Integer
))
4298 Parser
.Lex(); // Eat '#' or '$'.
4299 SMLoc Loc
= Parser
.getTok().getLoc();
4301 const MCExpr
*ISBarrierID
;
4302 if (getParser().parseExpression(ISBarrierID
)) {
4303 Error(Loc
, "illegal expression");
4304 return MatchOperand_ParseFail
;
4307 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ISBarrierID
);
4309 Error(Loc
, "constant expression expected");
4310 return MatchOperand_ParseFail
;
4313 int Val
= CE
->getValue();
4315 Error(Loc
, "immediate value out of range");
4316 return MatchOperand_ParseFail
;
4319 Opt
= ARM_ISB::RESERVED_0
+ Val
;
4321 return MatchOperand_ParseFail
;
4323 Operands
.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4324 (ARM_ISB::InstSyncBOpt
)Opt
, S
));
4325 return MatchOperand_Success
;
4329 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4330 OperandMatchResultTy
4331 ARMAsmParser::parseProcIFlagsOperand(OperandVector
&Operands
) {
4332 MCAsmParser
&Parser
= getParser();
4333 SMLoc S
= Parser
.getTok().getLoc();
4334 const AsmToken
&Tok
= Parser
.getTok();
4335 if (!Tok
.is(AsmToken::Identifier
))
4336 return MatchOperand_NoMatch
;
4337 StringRef IFlagsStr
= Tok
.getString();
4339 // An iflags string of "none" is interpreted to mean that none of the AIF
4340 // bits are set. Not a terribly useful instruction, but a valid encoding.
4341 unsigned IFlags
= 0;
4342 if (IFlagsStr
!= "none") {
4343 for (int i
= 0, e
= IFlagsStr
.size(); i
!= e
; ++i
) {
4344 unsigned Flag
= StringSwitch
<unsigned>(IFlagsStr
.substr(i
, 1).lower())
4345 .Case("a", ARM_PROC::A
)
4346 .Case("i", ARM_PROC::I
)
4347 .Case("f", ARM_PROC::F
)
4350 // If some specific iflag is already set, it means that some letter is
4351 // present more than once, this is not acceptable.
4352 if (Flag
== ~0U || (IFlags
& Flag
))
4353 return MatchOperand_NoMatch
;
4359 Parser
.Lex(); // Eat identifier token.
4360 Operands
.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags
)IFlags
, S
));
4361 return MatchOperand_Success
;
4364 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4365 OperandMatchResultTy
4366 ARMAsmParser::parseMSRMaskOperand(OperandVector
&Operands
) {
4367 MCAsmParser
&Parser
= getParser();
4368 SMLoc S
= Parser
.getTok().getLoc();
4369 const AsmToken
&Tok
= Parser
.getTok();
4371 if (Tok
.is(AsmToken::Integer
)) {
4372 int64_t Val
= Tok
.getIntVal();
4373 if (Val
> 255 || Val
< 0) {
4374 return MatchOperand_NoMatch
;
4376 unsigned SYSmvalue
= Val
& 0xFF;
4378 Operands
.push_back(ARMOperand::CreateMSRMask(SYSmvalue
, S
));
4379 return MatchOperand_Success
;
4382 if (!Tok
.is(AsmToken::Identifier
))
4383 return MatchOperand_NoMatch
;
4384 StringRef Mask
= Tok
.getString();
4387 auto TheReg
= ARMSysReg::lookupMClassSysRegByName(Mask
.lower());
4388 if (!TheReg
|| !TheReg
->hasRequiredFeatures(getSTI().getFeatureBits()))
4389 return MatchOperand_NoMatch
;
4391 unsigned SYSmvalue
= TheReg
->Encoding
& 0xFFF;
4393 Parser
.Lex(); // Eat identifier token.
4394 Operands
.push_back(ARMOperand::CreateMSRMask(SYSmvalue
, S
));
4395 return MatchOperand_Success
;
4398 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4399 size_t Start
= 0, Next
= Mask
.find('_');
4400 StringRef Flags
= "";
4401 std::string SpecReg
= Mask
.slice(Start
, Next
).lower();
4402 if (Next
!= StringRef::npos
)
4403 Flags
= Mask
.slice(Next
+1, Mask
.size());
4405 // FlagsVal contains the complete mask:
4407 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4408 unsigned FlagsVal
= 0;
4410 if (SpecReg
== "apsr") {
4411 FlagsVal
= StringSwitch
<unsigned>(Flags
)
4412 .Case("nzcvq", 0x8) // same as CPSR_f
4413 .Case("g", 0x4) // same as CPSR_s
4414 .Case("nzcvqg", 0xc) // same as CPSR_fs
4417 if (FlagsVal
== ~0U) {
4419 return MatchOperand_NoMatch
;
4421 FlagsVal
= 8; // No flag
4423 } else if (SpecReg
== "cpsr" || SpecReg
== "spsr") {
4424 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4425 if (Flags
== "all" || Flags
== "")
4427 for (int i
= 0, e
= Flags
.size(); i
!= e
; ++i
) {
4428 unsigned Flag
= StringSwitch
<unsigned>(Flags
.substr(i
, 1))
4435 // If some specific flag is already set, it means that some letter is
4436 // present more than once, this is not acceptable.
4437 if (Flag
== ~0U || (FlagsVal
& Flag
))
4438 return MatchOperand_NoMatch
;
4441 } else // No match for special register.
4442 return MatchOperand_NoMatch
;
4444 // Special register without flags is NOT equivalent to "fc" flags.
4445 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
4446 // two lines would enable gas compatibility at the expense of breaking
4452 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4453 if (SpecReg
== "spsr")
4456 Parser
.Lex(); // Eat identifier token.
4457 Operands
.push_back(ARMOperand::CreateMSRMask(FlagsVal
, S
));
4458 return MatchOperand_Success
;
4461 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4462 /// use in the MRS/MSR instructions added to support virtualization.
4463 OperandMatchResultTy
4464 ARMAsmParser::parseBankedRegOperand(OperandVector
&Operands
) {
4465 MCAsmParser
&Parser
= getParser();
4466 SMLoc S
= Parser
.getTok().getLoc();
4467 const AsmToken
&Tok
= Parser
.getTok();
4468 if (!Tok
.is(AsmToken::Identifier
))
4469 return MatchOperand_NoMatch
;
4470 StringRef RegName
= Tok
.getString();
4472 auto TheReg
= ARMBankedReg::lookupBankedRegByName(RegName
.lower());
4474 return MatchOperand_NoMatch
;
4475 unsigned Encoding
= TheReg
->Encoding
;
4477 Parser
.Lex(); // Eat identifier token.
4478 Operands
.push_back(ARMOperand::CreateBankedReg(Encoding
, S
));
4479 return MatchOperand_Success
;
4482 OperandMatchResultTy
4483 ARMAsmParser::parsePKHImm(OperandVector
&Operands
, StringRef Op
, int Low
,
4485 MCAsmParser
&Parser
= getParser();
4486 const AsmToken
&Tok
= Parser
.getTok();
4487 if (Tok
.isNot(AsmToken::Identifier
)) {
4488 Error(Parser
.getTok().getLoc(), Op
+ " operand expected.");
4489 return MatchOperand_ParseFail
;
4491 StringRef ShiftName
= Tok
.getString();
4492 std::string LowerOp
= Op
.lower();
4493 std::string UpperOp
= Op
.upper();
4494 if (ShiftName
!= LowerOp
&& ShiftName
!= UpperOp
) {
4495 Error(Parser
.getTok().getLoc(), Op
+ " operand expected.");
4496 return MatchOperand_ParseFail
;
4498 Parser
.Lex(); // Eat shift type token.
4500 // There must be a '#' and a shift amount.
4501 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4502 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4503 Error(Parser
.getTok().getLoc(), "'#' expected");
4504 return MatchOperand_ParseFail
;
4506 Parser
.Lex(); // Eat hash token.
4508 const MCExpr
*ShiftAmount
;
4509 SMLoc Loc
= Parser
.getTok().getLoc();
4511 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
4512 Error(Loc
, "illegal expression");
4513 return MatchOperand_ParseFail
;
4515 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
4517 Error(Loc
, "constant expression expected");
4518 return MatchOperand_ParseFail
;
4520 int Val
= CE
->getValue();
4521 if (Val
< Low
|| Val
> High
) {
4522 Error(Loc
, "immediate value out of range");
4523 return MatchOperand_ParseFail
;
4526 Operands
.push_back(ARMOperand::CreateImm(CE
, Loc
, EndLoc
));
4528 return MatchOperand_Success
;
4531 OperandMatchResultTy
4532 ARMAsmParser::parseSetEndImm(OperandVector
&Operands
) {
4533 MCAsmParser
&Parser
= getParser();
4534 const AsmToken
&Tok
= Parser
.getTok();
4535 SMLoc S
= Tok
.getLoc();
4536 if (Tok
.isNot(AsmToken::Identifier
)) {
4537 Error(S
, "'be' or 'le' operand expected");
4538 return MatchOperand_ParseFail
;
4540 int Val
= StringSwitch
<int>(Tok
.getString().lower())
4544 Parser
.Lex(); // Eat the token.
4547 Error(S
, "'be' or 'le' operand expected");
4548 return MatchOperand_ParseFail
;
4550 Operands
.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val
,
4552 S
, Tok
.getEndLoc()));
4553 return MatchOperand_Success
;
4556 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4557 /// instructions. Legal values are:
4558 /// lsl #n 'n' in [0,31]
4559 /// asr #n 'n' in [1,32]
4560 /// n == 32 encoded as n == 0.
4561 OperandMatchResultTy
4562 ARMAsmParser::parseShifterImm(OperandVector
&Operands
) {
4563 MCAsmParser
&Parser
= getParser();
4564 const AsmToken
&Tok
= Parser
.getTok();
4565 SMLoc S
= Tok
.getLoc();
4566 if (Tok
.isNot(AsmToken::Identifier
)) {
4567 Error(S
, "shift operator 'asr' or 'lsl' expected");
4568 return MatchOperand_ParseFail
;
4570 StringRef ShiftName
= Tok
.getString();
4572 if (ShiftName
== "lsl" || ShiftName
== "LSL")
4574 else if (ShiftName
== "asr" || ShiftName
== "ASR")
4577 Error(S
, "shift operator 'asr' or 'lsl' expected");
4578 return MatchOperand_ParseFail
;
4580 Parser
.Lex(); // Eat the operator.
4582 // A '#' and a shift amount.
4583 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4584 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4585 Error(Parser
.getTok().getLoc(), "'#' expected");
4586 return MatchOperand_ParseFail
;
4588 Parser
.Lex(); // Eat hash token.
4589 SMLoc ExLoc
= Parser
.getTok().getLoc();
4591 const MCExpr
*ShiftAmount
;
4593 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
4594 Error(ExLoc
, "malformed shift expression");
4595 return MatchOperand_ParseFail
;
4597 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
4599 Error(ExLoc
, "shift amount must be an immediate");
4600 return MatchOperand_ParseFail
;
4603 int64_t Val
= CE
->getValue();
4605 // Shift amount must be in [1,32]
4606 if (Val
< 1 || Val
> 32) {
4607 Error(ExLoc
, "'asr' shift amount must be in range [1,32]");
4608 return MatchOperand_ParseFail
;
4610 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4611 if (isThumb() && Val
== 32) {
4612 Error(ExLoc
, "'asr #32' shift amount not allowed in Thumb mode");
4613 return MatchOperand_ParseFail
;
4615 if (Val
== 32) Val
= 0;
4617 // Shift amount must be in [1,32]
4618 if (Val
< 0 || Val
> 31) {
4619 Error(ExLoc
, "'lsr' shift amount must be in range [0,31]");
4620 return MatchOperand_ParseFail
;
4624 Operands
.push_back(ARMOperand::CreateShifterImm(isASR
, Val
, S
, EndLoc
));
4626 return MatchOperand_Success
;
4629 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4630 /// of instructions. Legal values are:
4631 /// ror #n 'n' in {0, 8, 16, 24}
4632 OperandMatchResultTy
4633 ARMAsmParser::parseRotImm(OperandVector
&Operands
) {
4634 MCAsmParser
&Parser
= getParser();
4635 const AsmToken
&Tok
= Parser
.getTok();
4636 SMLoc S
= Tok
.getLoc();
4637 if (Tok
.isNot(AsmToken::Identifier
))
4638 return MatchOperand_NoMatch
;
4639 StringRef ShiftName
= Tok
.getString();
4640 if (ShiftName
!= "ror" && ShiftName
!= "ROR")
4641 return MatchOperand_NoMatch
;
4642 Parser
.Lex(); // Eat the operator.
4644 // A '#' and a rotate amount.
4645 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4646 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4647 Error(Parser
.getTok().getLoc(), "'#' expected");
4648 return MatchOperand_ParseFail
;
4650 Parser
.Lex(); // Eat hash token.
4651 SMLoc ExLoc
= Parser
.getTok().getLoc();
4653 const MCExpr
*ShiftAmount
;
4655 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
4656 Error(ExLoc
, "malformed rotate expression");
4657 return MatchOperand_ParseFail
;
4659 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
4661 Error(ExLoc
, "rotate amount must be an immediate");
4662 return MatchOperand_ParseFail
;
4665 int64_t Val
= CE
->getValue();
4666 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4667 // normally, zero is represented in asm by omitting the rotate operand
4669 if (Val
!= 8 && Val
!= 16 && Val
!= 24 && Val
!= 0) {
4670 Error(ExLoc
, "'ror' rotate amount must be 8, 16, or 24");
4671 return MatchOperand_ParseFail
;
4674 Operands
.push_back(ARMOperand::CreateRotImm(Val
, S
, EndLoc
));
4676 return MatchOperand_Success
;
4679 OperandMatchResultTy
4680 ARMAsmParser::parseModImm(OperandVector
&Operands
) {
4681 MCAsmParser
&Parser
= getParser();
4682 MCAsmLexer
&Lexer
= getLexer();
4685 SMLoc S
= Parser
.getTok().getLoc();
4687 // 1) A mod_imm operand can appear in the place of a register name:
4689 // add r0, r0, #mod_imm
4690 // to correctly handle the latter, we bail out as soon as we see an
4693 // 2) Similarly, we do not want to parse into complex operands:
4695 // mov r0, :lower16:(_foo)
4696 if (Parser
.getTok().is(AsmToken::Identifier
) ||
4697 Parser
.getTok().is(AsmToken::Colon
))
4698 return MatchOperand_NoMatch
;
4700 // Hash (dollar) is optional as per the ARMARM
4701 if (Parser
.getTok().is(AsmToken::Hash
) ||
4702 Parser
.getTok().is(AsmToken::Dollar
)) {
4703 // Avoid parsing into complex operands (#:)
4704 if (Lexer
.peekTok().is(AsmToken::Colon
))
4705 return MatchOperand_NoMatch
;
4707 // Eat the hash (dollar)
4712 Sx1
= Parser
.getTok().getLoc();
4713 const MCExpr
*Imm1Exp
;
4714 if (getParser().parseExpression(Imm1Exp
, Ex1
)) {
4715 Error(Sx1
, "malformed expression");
4716 return MatchOperand_ParseFail
;
4719 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm1Exp
);
4722 // Immediate must fit within 32-bits
4723 Imm1
= CE
->getValue();
4724 int Enc
= ARM_AM::getSOImmVal(Imm1
);
4725 if (Enc
!= -1 && Parser
.getTok().is(AsmToken::EndOfStatement
)) {
4727 Operands
.push_back(ARMOperand::CreateModImm((Enc
& 0xFF),
4730 return MatchOperand_Success
;
4733 // We have parsed an immediate which is not for us, fallback to a plain
4734 // immediate. This can happen for instruction aliases. For an example,
4735 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4736 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4737 // instruction with a mod_imm operand. The alias is defined such that the
4738 // parser method is shared, that's why we have to do this here.
4739 if (Parser
.getTok().is(AsmToken::EndOfStatement
)) {
4740 Operands
.push_back(ARMOperand::CreateImm(Imm1Exp
, Sx1
, Ex1
));
4741 return MatchOperand_Success
;
4744 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4745 // MCFixup). Fallback to a plain immediate.
4746 Operands
.push_back(ARMOperand::CreateImm(Imm1Exp
, Sx1
, Ex1
));
4747 return MatchOperand_Success
;
4750 // From this point onward, we expect the input to be a (#bits, #rot) pair
4751 if (Parser
.getTok().isNot(AsmToken::Comma
)) {
4752 Error(Sx1
, "expected modified immediate operand: #[0, 255], #even[0-30]");
4753 return MatchOperand_ParseFail
;
4757 Error(Sx1
, "immediate operand must a number in the range [0, 255]");
4758 return MatchOperand_ParseFail
;
4766 Sx2
= Parser
.getTok().getLoc();
4768 // Eat the optional hash (dollar)
4769 if (Parser
.getTok().is(AsmToken::Hash
) ||
4770 Parser
.getTok().is(AsmToken::Dollar
))
4773 const MCExpr
*Imm2Exp
;
4774 if (getParser().parseExpression(Imm2Exp
, Ex2
)) {
4775 Error(Sx2
, "malformed expression");
4776 return MatchOperand_ParseFail
;
4779 CE
= dyn_cast
<MCConstantExpr
>(Imm2Exp
);
4782 Imm2
= CE
->getValue();
4783 if (!(Imm2
& ~0x1E)) {
4785 Operands
.push_back(ARMOperand::CreateModImm(Imm1
, Imm2
, S
, Ex2
));
4786 return MatchOperand_Success
;
4788 Error(Sx2
, "immediate operand must an even number in the range [0, 30]");
4789 return MatchOperand_ParseFail
;
4791 Error(Sx2
, "constant expression expected");
4792 return MatchOperand_ParseFail
;
4796 OperandMatchResultTy
4797 ARMAsmParser::parseBitfield(OperandVector
&Operands
) {
4798 MCAsmParser
&Parser
= getParser();
4799 SMLoc S
= Parser
.getTok().getLoc();
4800 // The bitfield descriptor is really two operands, the LSB and the width.
4801 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4802 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4803 Error(Parser
.getTok().getLoc(), "'#' expected");
4804 return MatchOperand_ParseFail
;
4806 Parser
.Lex(); // Eat hash token.
4808 const MCExpr
*LSBExpr
;
4809 SMLoc E
= Parser
.getTok().getLoc();
4810 if (getParser().parseExpression(LSBExpr
)) {
4811 Error(E
, "malformed immediate expression");
4812 return MatchOperand_ParseFail
;
4814 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(LSBExpr
);
4816 Error(E
, "'lsb' operand must be an immediate");
4817 return MatchOperand_ParseFail
;
4820 int64_t LSB
= CE
->getValue();
4821 // The LSB must be in the range [0,31]
4822 if (LSB
< 0 || LSB
> 31) {
4823 Error(E
, "'lsb' operand must be in the range [0,31]");
4824 return MatchOperand_ParseFail
;
4826 E
= Parser
.getTok().getLoc();
4828 // Expect another immediate operand.
4829 if (Parser
.getTok().isNot(AsmToken::Comma
)) {
4830 Error(Parser
.getTok().getLoc(), "too few operands");
4831 return MatchOperand_ParseFail
;
4833 Parser
.Lex(); // Eat hash token.
4834 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4835 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4836 Error(Parser
.getTok().getLoc(), "'#' expected");
4837 return MatchOperand_ParseFail
;
4839 Parser
.Lex(); // Eat hash token.
4841 const MCExpr
*WidthExpr
;
4843 if (getParser().parseExpression(WidthExpr
, EndLoc
)) {
4844 Error(E
, "malformed immediate expression");
4845 return MatchOperand_ParseFail
;
4847 CE
= dyn_cast
<MCConstantExpr
>(WidthExpr
);
4849 Error(E
, "'width' operand must be an immediate");
4850 return MatchOperand_ParseFail
;
4853 int64_t Width
= CE
->getValue();
4854 // The LSB must be in the range [1,32-lsb]
4855 if (Width
< 1 || Width
> 32 - LSB
) {
4856 Error(E
, "'width' operand must be in the range [1,32-lsb]");
4857 return MatchOperand_ParseFail
;
4860 Operands
.push_back(ARMOperand::CreateBitfield(LSB
, Width
, S
, EndLoc
));
4862 return MatchOperand_Success
;
4865 OperandMatchResultTy
4866 ARMAsmParser::parsePostIdxReg(OperandVector
&Operands
) {
4867 // Check for a post-index addressing register operand. Specifically:
4868 // postidx_reg := '+' register {, shift}
4869 // | '-' register {, shift}
4870 // | register {, shift}
4872 // This method must return MatchOperand_NoMatch without consuming any tokens
4873 // in the case where there is no match, as other alternatives take other
4875 MCAsmParser
&Parser
= getParser();
4876 AsmToken Tok
= Parser
.getTok();
4877 SMLoc S
= Tok
.getLoc();
4878 bool haveEaten
= false;
4880 if (Tok
.is(AsmToken::Plus
)) {
4881 Parser
.Lex(); // Eat the '+' token.
4883 } else if (Tok
.is(AsmToken::Minus
)) {
4884 Parser
.Lex(); // Eat the '-' token.
4889 SMLoc E
= Parser
.getTok().getEndLoc();
4890 int Reg
= tryParseRegister();
4893 return MatchOperand_NoMatch
;
4894 Error(Parser
.getTok().getLoc(), "register expected");
4895 return MatchOperand_ParseFail
;
4898 ARM_AM::ShiftOpc ShiftTy
= ARM_AM::no_shift
;
4899 unsigned ShiftImm
= 0;
4900 if (Parser
.getTok().is(AsmToken::Comma
)) {
4901 Parser
.Lex(); // Eat the ','.
4902 if (parseMemRegOffsetShift(ShiftTy
, ShiftImm
))
4903 return MatchOperand_ParseFail
;
4905 // FIXME: Only approximates end...may include intervening whitespace.
4906 E
= Parser
.getTok().getLoc();
4909 Operands
.push_back(ARMOperand::CreatePostIdxReg(Reg
, isAdd
, ShiftTy
,
4912 return MatchOperand_Success
;
4915 OperandMatchResultTy
4916 ARMAsmParser::parseAM3Offset(OperandVector
&Operands
) {
4917 // Check for a post-index addressing register operand. Specifically:
4918 // am3offset := '+' register
4925 // This method must return MatchOperand_NoMatch without consuming any tokens
4926 // in the case where there is no match, as other alternatives take other
4928 MCAsmParser
&Parser
= getParser();
4929 AsmToken Tok
= Parser
.getTok();
4930 SMLoc S
= Tok
.getLoc();
4932 // Do immediates first, as we always parse those if we have a '#'.
4933 if (Parser
.getTok().is(AsmToken::Hash
) ||
4934 Parser
.getTok().is(AsmToken::Dollar
)) {
4935 Parser
.Lex(); // Eat '#' or '$'.
4936 // Explicitly look for a '-', as we need to encode negative zero
4938 bool isNegative
= Parser
.getTok().is(AsmToken::Minus
);
4939 const MCExpr
*Offset
;
4941 if (getParser().parseExpression(Offset
, E
))
4942 return MatchOperand_ParseFail
;
4943 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Offset
);
4945 Error(S
, "constant expression expected");
4946 return MatchOperand_ParseFail
;
4948 // Negative zero is encoded as the flag value
4949 // std::numeric_limits<int32_t>::min().
4950 int32_t Val
= CE
->getValue();
4951 if (isNegative
&& Val
== 0)
4952 Val
= std::numeric_limits
<int32_t>::min();
4955 ARMOperand::CreateImm(MCConstantExpr::create(Val
, getContext()), S
, E
));
4957 return MatchOperand_Success
;
4960 bool haveEaten
= false;
4962 if (Tok
.is(AsmToken::Plus
)) {
4963 Parser
.Lex(); // Eat the '+' token.
4965 } else if (Tok
.is(AsmToken::Minus
)) {
4966 Parser
.Lex(); // Eat the '-' token.
4971 Tok
= Parser
.getTok();
4972 int Reg
= tryParseRegister();
4975 return MatchOperand_NoMatch
;
4976 Error(Tok
.getLoc(), "register expected");
4977 return MatchOperand_ParseFail
;
4980 Operands
.push_back(ARMOperand::CreatePostIdxReg(Reg
, isAdd
, ARM_AM::no_shift
,
4981 0, S
, Tok
.getEndLoc()));
4983 return MatchOperand_Success
;
4986 /// Convert parsed operands to MCInst. Needed here because this instruction
4987 /// only has two register operands, but multiplication is commutative so
4988 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4989 void ARMAsmParser::cvtThumbMultiply(MCInst
&Inst
,
4990 const OperandVector
&Operands
) {
4991 ((ARMOperand
&)*Operands
[3]).addRegOperands(Inst
, 1);
4992 ((ARMOperand
&)*Operands
[1]).addCCOutOperands(Inst
, 1);
4993 // If we have a three-operand form, make sure to set Rn to be the operand
4994 // that isn't the same as Rd.
4996 if (Operands
.size() == 6 &&
4997 ((ARMOperand
&)*Operands
[4]).getReg() ==
4998 ((ARMOperand
&)*Operands
[3]).getReg())
5000 ((ARMOperand
&)*Operands
[RegOp
]).addRegOperands(Inst
, 1);
5001 Inst
.addOperand(Inst
.getOperand(0));
5002 ((ARMOperand
&)*Operands
[2]).addCondCodeOperands(Inst
, 2);
5005 void ARMAsmParser::cvtThumbBranches(MCInst
&Inst
,
5006 const OperandVector
&Operands
) {
5007 int CondOp
= -1, ImmOp
= -1;
5008 switch(Inst
.getOpcode()) {
5010 case ARM::tBcc
: CondOp
= 1; ImmOp
= 2; break;
5013 case ARM::t2Bcc
: CondOp
= 1; ImmOp
= 3; break;
5015 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5017 // first decide whether or not the branch should be conditional
5018 // by looking at it's location relative to an IT block
5020 // inside an IT block we cannot have any conditional branches. any
5021 // such instructions needs to be converted to unconditional form
5022 switch(Inst
.getOpcode()) {
5023 case ARM::tBcc
: Inst
.setOpcode(ARM::tB
); break;
5024 case ARM::t2Bcc
: Inst
.setOpcode(ARM::t2B
); break;
5027 // outside IT blocks we can only have unconditional branches with AL
5028 // condition code or conditional branches with non-AL condition code
5029 unsigned Cond
= static_cast<ARMOperand
&>(*Operands
[CondOp
]).getCondCode();
5030 switch(Inst
.getOpcode()) {
5033 Inst
.setOpcode(Cond
== ARMCC::AL
? ARM::tB
: ARM::tBcc
);
5037 Inst
.setOpcode(Cond
== ARMCC::AL
? ARM::t2B
: ARM::t2Bcc
);
5042 // now decide on encoding size based on branch target range
5043 switch(Inst
.getOpcode()) {
5044 // classify tB as either t2B or t1B based on range of immediate operand
5046 ARMOperand
&op
= static_cast<ARMOperand
&>(*Operands
[ImmOp
]);
5047 if (!op
.isSignedOffset
<11, 1>() && isThumb() && hasV8MBaseline())
5048 Inst
.setOpcode(ARM::t2B
);
5051 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5053 ARMOperand
&op
= static_cast<ARMOperand
&>(*Operands
[ImmOp
]);
5054 if (!op
.isSignedOffset
<8, 1>() && isThumb() && hasV8MBaseline())
5055 Inst
.setOpcode(ARM::t2Bcc
);
5059 ((ARMOperand
&)*Operands
[ImmOp
]).addImmOperands(Inst
, 1);
5060 ((ARMOperand
&)*Operands
[CondOp
]).addCondCodeOperands(Inst
, 2);
5063 /// Parse an ARM memory expression, return false if successful else return true
5064 /// or an error. The first token must be a '[' when called.
5065 bool ARMAsmParser::parseMemory(OperandVector
&Operands
) {
5066 MCAsmParser
&Parser
= getParser();
5068 if (Parser
.getTok().isNot(AsmToken::LBrac
))
5069 return TokError("Token is not a Left Bracket");
5070 S
= Parser
.getTok().getLoc();
5071 Parser
.Lex(); // Eat left bracket token.
5073 const AsmToken
&BaseRegTok
= Parser
.getTok();
5074 int BaseRegNum
= tryParseRegister();
5075 if (BaseRegNum
== -1)
5076 return Error(BaseRegTok
.getLoc(), "register expected");
5078 // The next token must either be a comma, a colon or a closing bracket.
5079 const AsmToken
&Tok
= Parser
.getTok();
5080 if (!Tok
.is(AsmToken::Colon
) && !Tok
.is(AsmToken::Comma
) &&
5081 !Tok
.is(AsmToken::RBrac
))
5082 return Error(Tok
.getLoc(), "malformed memory operand");
5084 if (Tok
.is(AsmToken::RBrac
)) {
5085 E
= Tok
.getEndLoc();
5086 Parser
.Lex(); // Eat right bracket token.
5088 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, 0,
5089 ARM_AM::no_shift
, 0, 0, false,
5092 // If there's a pre-indexing writeback marker, '!', just add it as a token
5093 // operand. It's rather odd, but syntactically valid.
5094 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5095 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5096 Parser
.Lex(); // Eat the '!'.
5102 assert((Tok
.is(AsmToken::Colon
) || Tok
.is(AsmToken::Comma
)) &&
5103 "Lost colon or comma in memory operand?!");
5104 if (Tok
.is(AsmToken::Comma
)) {
5105 Parser
.Lex(); // Eat the comma.
5108 // If we have a ':', it's an alignment specifier.
5109 if (Parser
.getTok().is(AsmToken::Colon
)) {
5110 Parser
.Lex(); // Eat the ':'.
5111 E
= Parser
.getTok().getLoc();
5112 SMLoc AlignmentLoc
= Tok
.getLoc();
5115 if (getParser().parseExpression(Expr
))
5118 // The expression has to be a constant. Memory references with relocations
5119 // don't come through here, as they use the <label> forms of the relevant
5121 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
5123 return Error (E
, "constant expression expected");
5126 switch (CE
->getValue()) {
5129 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5130 case 16: Align
= 2; break;
5131 case 32: Align
= 4; break;
5132 case 64: Align
= 8; break;
5133 case 128: Align
= 16; break;
5134 case 256: Align
= 32; break;
5137 // Now we should have the closing ']'
5138 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5139 return Error(Parser
.getTok().getLoc(), "']' expected");
5140 E
= Parser
.getTok().getEndLoc();
5141 Parser
.Lex(); // Eat right bracket token.
5143 // Don't worry about range checking the value here. That's handled by
5144 // the is*() predicates.
5145 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, 0,
5146 ARM_AM::no_shift
, 0, Align
,
5147 false, S
, E
, AlignmentLoc
));
5149 // If there's a pre-indexing writeback marker, '!', just add it as a token
5151 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5152 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5153 Parser
.Lex(); // Eat the '!'.
5159 // If we have a '#', it's an immediate offset, else assume it's a register
5160 // offset. Be friendly and also accept a plain integer (without a leading
5161 // hash) for gas compatibility.
5162 if (Parser
.getTok().is(AsmToken::Hash
) ||
5163 Parser
.getTok().is(AsmToken::Dollar
) ||
5164 Parser
.getTok().is(AsmToken::Integer
)) {
5165 if (Parser
.getTok().isNot(AsmToken::Integer
))
5166 Parser
.Lex(); // Eat '#' or '$'.
5167 E
= Parser
.getTok().getLoc();
5169 bool isNegative
= getParser().getTok().is(AsmToken::Minus
);
5170 const MCExpr
*Offset
;
5171 if (getParser().parseExpression(Offset
))
5174 // The expression has to be a constant. Memory references with relocations
5175 // don't come through here, as they use the <label> forms of the relevant
5177 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Offset
);
5179 return Error (E
, "constant expression expected");
5181 // If the constant was #-0, represent it as
5182 // std::numeric_limits<int32_t>::min().
5183 int32_t Val
= CE
->getValue();
5184 if (isNegative
&& Val
== 0)
5185 CE
= MCConstantExpr::create(std::numeric_limits
<int32_t>::min(),
5188 // Now we should have the closing ']'
5189 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5190 return Error(Parser
.getTok().getLoc(), "']' expected");
5191 E
= Parser
.getTok().getEndLoc();
5192 Parser
.Lex(); // Eat right bracket token.
5194 // Don't worry about range checking the value here. That's handled by
5195 // the is*() predicates.
5196 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, CE
, 0,
5197 ARM_AM::no_shift
, 0, 0,
5200 // If there's a pre-indexing writeback marker, '!', just add it as a token
5202 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5203 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5204 Parser
.Lex(); // Eat the '!'.
5210 // The register offset is optionally preceded by a '+' or '-'
5211 bool isNegative
= false;
5212 if (Parser
.getTok().is(AsmToken::Minus
)) {
5214 Parser
.Lex(); // Eat the '-'.
5215 } else if (Parser
.getTok().is(AsmToken::Plus
)) {
5217 Parser
.Lex(); // Eat the '+'.
5220 E
= Parser
.getTok().getLoc();
5221 int OffsetRegNum
= tryParseRegister();
5222 if (OffsetRegNum
== -1)
5223 return Error(E
, "register expected");
5225 // If there's a shift operator, handle it.
5226 ARM_AM::ShiftOpc ShiftType
= ARM_AM::no_shift
;
5227 unsigned ShiftImm
= 0;
5228 if (Parser
.getTok().is(AsmToken::Comma
)) {
5229 Parser
.Lex(); // Eat the ','.
5230 if (parseMemRegOffsetShift(ShiftType
, ShiftImm
))
5234 // Now we should have the closing ']'
5235 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5236 return Error(Parser
.getTok().getLoc(), "']' expected");
5237 E
= Parser
.getTok().getEndLoc();
5238 Parser
.Lex(); // Eat right bracket token.
5240 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, OffsetRegNum
,
5241 ShiftType
, ShiftImm
, 0, isNegative
,
5244 // If there's a pre-indexing writeback marker, '!', just add it as a token
5246 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5247 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5248 Parser
.Lex(); // Eat the '!'.
5254 /// parseMemRegOffsetShift - one of these two:
5255 /// ( lsl | lsr | asr | ror ) , # shift_amount
5257 /// return true if it parses a shift otherwise it returns false.
5258 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc
&St
,
5260 MCAsmParser
&Parser
= getParser();
5261 SMLoc Loc
= Parser
.getTok().getLoc();
5262 const AsmToken
&Tok
= Parser
.getTok();
5263 if (Tok
.isNot(AsmToken::Identifier
))
5264 return Error(Loc
, "illegal shift operator");
5265 StringRef ShiftName
= Tok
.getString();
5266 if (ShiftName
== "lsl" || ShiftName
== "LSL" ||
5267 ShiftName
== "asl" || ShiftName
== "ASL")
5269 else if (ShiftName
== "lsr" || ShiftName
== "LSR")
5271 else if (ShiftName
== "asr" || ShiftName
== "ASR")
5273 else if (ShiftName
== "ror" || ShiftName
== "ROR")
5275 else if (ShiftName
== "rrx" || ShiftName
== "RRX")
5278 return Error(Loc
, "illegal shift operator");
5279 Parser
.Lex(); // Eat shift type token.
5281 // rrx stands alone.
5283 if (St
!= ARM_AM::rrx
) {
5284 Loc
= Parser
.getTok().getLoc();
5285 // A '#' and a shift amount.
5286 const AsmToken
&HashTok
= Parser
.getTok();
5287 if (HashTok
.isNot(AsmToken::Hash
) &&
5288 HashTok
.isNot(AsmToken::Dollar
))
5289 return Error(HashTok
.getLoc(), "'#' expected");
5290 Parser
.Lex(); // Eat hash token.
5293 if (getParser().parseExpression(Expr
))
5295 // Range check the immediate.
5296 // lsl, ror: 0 <= imm <= 31
5297 // lsr, asr: 0 <= imm <= 32
5298 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
5300 return Error(Loc
, "shift amount must be an immediate");
5301 int64_t Imm
= CE
->getValue();
5303 ((St
== ARM_AM::lsl
|| St
== ARM_AM::ror
) && Imm
> 31) ||
5304 ((St
== ARM_AM::lsr
|| St
== ARM_AM::asr
) && Imm
> 32))
5305 return Error(Loc
, "immediate shift value out of range");
5306 // If <ShiftTy> #0, turn it into a no_shift.
5309 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5318 /// parseFPImm - A floating point immediate expression operand.
5319 OperandMatchResultTy
5320 ARMAsmParser::parseFPImm(OperandVector
&Operands
) {
5321 MCAsmParser
&Parser
= getParser();
5322 // Anything that can accept a floating point constant as an operand
5323 // needs to go through here, as the regular parseExpression is
5326 // This routine still creates a generic Immediate operand, containing
5327 // a bitcast of the 64-bit floating point value. The various operands
5328 // that accept floats can check whether the value is valid for them
5329 // via the standard is*() predicates.
5331 SMLoc S
= Parser
.getTok().getLoc();
5333 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5334 Parser
.getTok().isNot(AsmToken::Dollar
))
5335 return MatchOperand_NoMatch
;
5337 // Disambiguate the VMOV forms that can accept an FP immediate.
5338 // vmov.f32 <sreg>, #imm
5339 // vmov.f64 <dreg>, #imm
5340 // vmov.f32 <dreg>, #imm @ vector f32x2
5341 // vmov.f32 <qreg>, #imm @ vector f32x4
5343 // There are also the NEON VMOV instructions which expect an
5344 // integer constant. Make sure we don't try to parse an FPImm
5346 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5347 ARMOperand
&TyOp
= static_cast<ARMOperand
&>(*Operands
[2]);
5348 bool isVmovf
= TyOp
.isToken() &&
5349 (TyOp
.getToken() == ".f32" || TyOp
.getToken() == ".f64" ||
5350 TyOp
.getToken() == ".f16");
5351 ARMOperand
&Mnemonic
= static_cast<ARMOperand
&>(*Operands
[0]);
5352 bool isFconst
= Mnemonic
.isToken() && (Mnemonic
.getToken() == "fconstd" ||
5353 Mnemonic
.getToken() == "fconsts");
5354 if (!(isVmovf
|| isFconst
))
5355 return MatchOperand_NoMatch
;
5357 Parser
.Lex(); // Eat '#' or '$'.
5359 // Handle negation, as that still comes through as a separate token.
5360 bool isNegative
= false;
5361 if (Parser
.getTok().is(AsmToken::Minus
)) {
5365 const AsmToken
&Tok
= Parser
.getTok();
5366 SMLoc Loc
= Tok
.getLoc();
5367 if (Tok
.is(AsmToken::Real
) && isVmovf
) {
5368 APFloat
RealVal(APFloat::IEEEsingle(), Tok
.getString());
5369 uint64_t IntVal
= RealVal
.bitcastToAPInt().getZExtValue();
5370 // If we had a '-' in front, toggle the sign bit.
5371 IntVal
^= (uint64_t)isNegative
<< 31;
5372 Parser
.Lex(); // Eat the token.
5373 Operands
.push_back(ARMOperand::CreateImm(
5374 MCConstantExpr::create(IntVal
, getContext()),
5375 S
, Parser
.getTok().getLoc()));
5376 return MatchOperand_Success
;
5378 // Also handle plain integers. Instructions which allow floating point
5379 // immediates also allow a raw encoded 8-bit value.
5380 if (Tok
.is(AsmToken::Integer
) && isFconst
) {
5381 int64_t Val
= Tok
.getIntVal();
5382 Parser
.Lex(); // Eat the token.
5383 if (Val
> 255 || Val
< 0) {
5384 Error(Loc
, "encoded floating point value out of range");
5385 return MatchOperand_ParseFail
;
5387 float RealVal
= ARM_AM::getFPImmFloat(Val
);
5388 Val
= APFloat(RealVal
).bitcastToAPInt().getZExtValue();
5390 Operands
.push_back(ARMOperand::CreateImm(
5391 MCConstantExpr::create(Val
, getContext()), S
,
5392 Parser
.getTok().getLoc()));
5393 return MatchOperand_Success
;
5396 Error(Loc
, "invalid floating point immediate");
5397 return MatchOperand_ParseFail
;
5400 /// Parse a arm instruction operand. For now this parses the operand regardless
5401 /// of the mnemonic.
5402 bool ARMAsmParser::parseOperand(OperandVector
&Operands
, StringRef Mnemonic
) {
5403 MCAsmParser
&Parser
= getParser();
5406 // Check if the current operand has a custom associated parser, if so, try to
5407 // custom parse the operand, or fallback to the general approach.
5408 OperandMatchResultTy ResTy
= MatchOperandParserImpl(Operands
, Mnemonic
);
5409 if (ResTy
== MatchOperand_Success
)
5411 // If there wasn't a custom match, try the generic matcher below. Otherwise,
5412 // there was a match, but an error occurred, in which case, just return that
5413 // the operand parsing failed.
5414 if (ResTy
== MatchOperand_ParseFail
)
5417 switch (getLexer().getKind()) {
5419 Error(Parser
.getTok().getLoc(), "unexpected token in operand");
5421 case AsmToken::Identifier
: {
5422 // If we've seen a branch mnemonic, the next operand must be a label. This
5423 // is true even if the label is a register name. So "br r1" means branch to
5425 bool ExpectLabel
= Mnemonic
== "b" || Mnemonic
== "bl";
5427 if (!tryParseRegisterWithWriteBack(Operands
))
5429 int Res
= tryParseShiftRegister(Operands
);
5430 if (Res
== 0) // success
5432 else if (Res
== -1) // irrecoverable error
5434 // If this is VMRS, check for the apsr_nzcv operand.
5435 if (Mnemonic
== "vmrs" &&
5436 Parser
.getTok().getString().equals_lower("apsr_nzcv")) {
5437 S
= Parser
.getTok().getLoc();
5439 Operands
.push_back(ARMOperand::CreateToken("APSR_nzcv", S
));
5444 // Fall though for the Identifier case that is not a register or a
5448 case AsmToken::LParen
: // parenthesized expressions like (_strcmp-4)
5449 case AsmToken::Integer
: // things like 1f and 2b as a branch targets
5450 case AsmToken::String
: // quoted label names.
5451 case AsmToken::Dot
: { // . as a branch target
5452 // This was not a register so parse other operands that start with an
5453 // identifier (like labels) as expressions and create them as immediates.
5454 const MCExpr
*IdVal
;
5455 S
= Parser
.getTok().getLoc();
5456 if (getParser().parseExpression(IdVal
))
5458 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
5459 Operands
.push_back(ARMOperand::CreateImm(IdVal
, S
, E
));
5462 case AsmToken::LBrac
:
5463 return parseMemory(Operands
);
5464 case AsmToken::LCurly
:
5465 return parseRegisterList(Operands
);
5466 case AsmToken::Dollar
:
5467 case AsmToken::Hash
:
5468 // #42 -> immediate.
5469 S
= Parser
.getTok().getLoc();
5472 if (Parser
.getTok().isNot(AsmToken::Colon
)) {
5473 bool isNegative
= Parser
.getTok().is(AsmToken::Minus
);
5474 const MCExpr
*ImmVal
;
5475 if (getParser().parseExpression(ImmVal
))
5477 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ImmVal
);
5479 int32_t Val
= CE
->getValue();
5480 if (isNegative
&& Val
== 0)
5481 ImmVal
= MCConstantExpr::create(std::numeric_limits
<int32_t>::min(),
5484 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
5485 Operands
.push_back(ARMOperand::CreateImm(ImmVal
, S
, E
));
5487 // There can be a trailing '!' on operands that we want as a separate
5488 // '!' Token operand. Handle that here. For example, the compatibility
5489 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5490 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5491 Operands
.push_back(ARMOperand::CreateToken(Parser
.getTok().getString(),
5492 Parser
.getTok().getLoc()));
5493 Parser
.Lex(); // Eat exclaim token
5497 // w/ a ':' after the '#', it's just like a plain ':'.
5500 case AsmToken::Colon
: {
5501 S
= Parser
.getTok().getLoc();
5502 // ":lower16:" and ":upper16:" expression prefixes
5503 // FIXME: Check it's an expression prefix,
5504 // e.g. (FOO - :lower16:BAR) isn't legal.
5505 ARMMCExpr::VariantKind RefKind
;
5506 if (parsePrefix(RefKind
))
5509 const MCExpr
*SubExprVal
;
5510 if (getParser().parseExpression(SubExprVal
))
5513 const MCExpr
*ExprVal
= ARMMCExpr::create(RefKind
, SubExprVal
,
5515 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
5516 Operands
.push_back(ARMOperand::CreateImm(ExprVal
, S
, E
));
5519 case AsmToken::Equal
: {
5520 S
= Parser
.getTok().getLoc();
5521 if (Mnemonic
!= "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5522 return Error(S
, "unexpected token in operand");
5523 Parser
.Lex(); // Eat '='
5524 const MCExpr
*SubExprVal
;
5525 if (getParser().parseExpression(SubExprVal
))
5527 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
5529 // execute-only: we assume that assembly programmers know what they are
5530 // doing and allow literal pool creation here
5531 Operands
.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal
, S
, E
));
5537 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5538 // :lower16: and :upper16:.
5539 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind
&RefKind
) {
5540 MCAsmParser
&Parser
= getParser();
5541 RefKind
= ARMMCExpr::VK_ARM_None
;
5543 // consume an optional '#' (GNU compatibility)
5544 if (getLexer().is(AsmToken::Hash
))
5547 // :lower16: and :upper16: modifiers
5548 assert(getLexer().is(AsmToken::Colon
) && "expected a :");
5549 Parser
.Lex(); // Eat ':'
5551 if (getLexer().isNot(AsmToken::Identifier
)) {
5552 Error(Parser
.getTok().getLoc(), "expected prefix identifier in operand");
5557 COFF
= (1 << MCObjectFileInfo::IsCOFF
),
5558 ELF
= (1 << MCObjectFileInfo::IsELF
),
5559 MACHO
= (1 << MCObjectFileInfo::IsMachO
),
5560 WASM
= (1 << MCObjectFileInfo::IsWasm
),
5562 static const struct PrefixEntry
{
5563 const char *Spelling
;
5564 ARMMCExpr::VariantKind VariantKind
;
5565 uint8_t SupportedFormats
;
5566 } PrefixEntries
[] = {
5567 { "lower16", ARMMCExpr::VK_ARM_LO16
, COFF
| ELF
| MACHO
},
5568 { "upper16", ARMMCExpr::VK_ARM_HI16
, COFF
| ELF
| MACHO
},
5571 StringRef IDVal
= Parser
.getTok().getIdentifier();
5573 const auto &Prefix
=
5574 std::find_if(std::begin(PrefixEntries
), std::end(PrefixEntries
),
5575 [&IDVal
](const PrefixEntry
&PE
) {
5576 return PE
.Spelling
== IDVal
;
5578 if (Prefix
== std::end(PrefixEntries
)) {
5579 Error(Parser
.getTok().getLoc(), "unexpected prefix in operand");
5583 uint8_t CurrentFormat
;
5584 switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5585 case MCObjectFileInfo::IsMachO
:
5586 CurrentFormat
= MACHO
;
5588 case MCObjectFileInfo::IsELF
:
5589 CurrentFormat
= ELF
;
5591 case MCObjectFileInfo::IsCOFF
:
5592 CurrentFormat
= COFF
;
5594 case MCObjectFileInfo::IsWasm
:
5595 CurrentFormat
= WASM
;
5599 if (~Prefix
->SupportedFormats
& CurrentFormat
) {
5600 Error(Parser
.getTok().getLoc(),
5601 "cannot represent relocation in the current file format");
5605 RefKind
= Prefix
->VariantKind
;
5608 if (getLexer().isNot(AsmToken::Colon
)) {
5609 Error(Parser
.getTok().getLoc(), "unexpected token after prefix");
5612 Parser
.Lex(); // Eat the last ':'
5617 /// Given a mnemonic, split out possible predication code and carry
5618 /// setting letters to form a canonical mnemonic and flags.
5620 // FIXME: Would be nice to autogen this.
5621 // FIXME: This is a bit of a maze of special cases.
5622 StringRef
ARMAsmParser::splitMnemonic(StringRef Mnemonic
,
5623 unsigned &PredicationCode
,
5625 unsigned &ProcessorIMod
,
5626 StringRef
&ITMask
) {
5627 PredicationCode
= ARMCC::AL
;
5628 CarrySetting
= false;
5631 // Ignore some mnemonics we know aren't predicated forms.
5633 // FIXME: Would be nice to autogen this.
5634 if ((Mnemonic
== "movs" && isThumb()) ||
5635 Mnemonic
== "teq" || Mnemonic
== "vceq" || Mnemonic
== "svc" ||
5636 Mnemonic
== "mls" || Mnemonic
== "smmls" || Mnemonic
== "vcls" ||
5637 Mnemonic
== "vmls" || Mnemonic
== "vnmls" || Mnemonic
== "vacge" ||
5638 Mnemonic
== "vcge" || Mnemonic
== "vclt" || Mnemonic
== "vacgt" ||
5639 Mnemonic
== "vaclt" || Mnemonic
== "vacle" || Mnemonic
== "hlt" ||
5640 Mnemonic
== "vcgt" || Mnemonic
== "vcle" || Mnemonic
== "smlal" ||
5641 Mnemonic
== "umaal" || Mnemonic
== "umlal" || Mnemonic
== "vabal" ||
5642 Mnemonic
== "vmlal" || Mnemonic
== "vpadal" || Mnemonic
== "vqdmlal" ||
5643 Mnemonic
== "fmuls" || Mnemonic
== "vmaxnm" || Mnemonic
== "vminnm" ||
5644 Mnemonic
== "vcvta" || Mnemonic
== "vcvtn" || Mnemonic
== "vcvtp" ||
5645 Mnemonic
== "vcvtm" || Mnemonic
== "vrinta" || Mnemonic
== "vrintn" ||
5646 Mnemonic
== "vrintp" || Mnemonic
== "vrintm" || Mnemonic
== "hvc" ||
5647 Mnemonic
.startswith("vsel") || Mnemonic
== "vins" || Mnemonic
== "vmovx" ||
5648 Mnemonic
== "bxns" || Mnemonic
== "blxns" ||
5649 Mnemonic
== "vudot" || Mnemonic
== "vsdot" ||
5650 Mnemonic
== "vcmla" || Mnemonic
== "vcadd" ||
5651 Mnemonic
== "vfmal" || Mnemonic
== "vfmsl")
5654 // First, split out any predication code. Ignore mnemonics we know aren't
5655 // predicated but do have a carry-set and so weren't caught above.
5656 if (Mnemonic
!= "adcs" && Mnemonic
!= "bics" && Mnemonic
!= "movs" &&
5657 Mnemonic
!= "muls" && Mnemonic
!= "smlals" && Mnemonic
!= "smulls" &&
5658 Mnemonic
!= "umlals" && Mnemonic
!= "umulls" && Mnemonic
!= "lsls" &&
5659 Mnemonic
!= "sbcs" && Mnemonic
!= "rscs") {
5660 unsigned CC
= ARMCondCodeFromString(Mnemonic
.substr(Mnemonic
.size()-2));
5662 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size() - 2);
5663 PredicationCode
= CC
;
5667 // Next, determine if we have a carry setting bit. We explicitly ignore all
5668 // the instructions we know end in 's'.
5669 if (Mnemonic
.endswith("s") &&
5670 !(Mnemonic
== "cps" || Mnemonic
== "mls" ||
5671 Mnemonic
== "mrs" || Mnemonic
== "smmls" || Mnemonic
== "vabs" ||
5672 Mnemonic
== "vcls" || Mnemonic
== "vmls" || Mnemonic
== "vmrs" ||
5673 Mnemonic
== "vnmls" || Mnemonic
== "vqabs" || Mnemonic
== "vrecps" ||
5674 Mnemonic
== "vrsqrts" || Mnemonic
== "srs" || Mnemonic
== "flds" ||
5675 Mnemonic
== "fmrs" || Mnemonic
== "fsqrts" || Mnemonic
== "fsubs" ||
5676 Mnemonic
== "fsts" || Mnemonic
== "fcpys" || Mnemonic
== "fdivs" ||
5677 Mnemonic
== "fmuls" || Mnemonic
== "fcmps" || Mnemonic
== "fcmpzs" ||
5678 Mnemonic
== "vfms" || Mnemonic
== "vfnms" || Mnemonic
== "fconsts" ||
5679 Mnemonic
== "bxns" || Mnemonic
== "blxns" ||
5680 (Mnemonic
== "movs" && isThumb()))) {
5681 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size() - 1);
5682 CarrySetting
= true;
5685 // The "cps" instruction can have a interrupt mode operand which is glued into
5686 // the mnemonic. Check if this is the case, split it and parse the imod op
5687 if (Mnemonic
.startswith("cps")) {
5688 // Split out any imod code.
5690 StringSwitch
<unsigned>(Mnemonic
.substr(Mnemonic
.size()-2, 2))
5691 .Case("ie", ARM_PROC::IE
)
5692 .Case("id", ARM_PROC::ID
)
5695 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size()-2);
5696 ProcessorIMod
= IMod
;
5700 // The "it" instruction has the condition mask on the end of the mnemonic.
5701 if (Mnemonic
.startswith("it")) {
5702 ITMask
= Mnemonic
.slice(2, Mnemonic
.size());
5703 Mnemonic
= Mnemonic
.slice(0, 2);
5709 /// Given a canonical mnemonic, determine if the instruction ever allows
5710 /// inclusion of carry set or predication code operands.
5712 // FIXME: It would be nice to autogen this.
5713 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic
, StringRef FullInst
,
5714 bool &CanAcceptCarrySet
,
5715 bool &CanAcceptPredicationCode
) {
5717 Mnemonic
== "and" || Mnemonic
== "lsl" || Mnemonic
== "lsr" ||
5718 Mnemonic
== "rrx" || Mnemonic
== "ror" || Mnemonic
== "sub" ||
5719 Mnemonic
== "add" || Mnemonic
== "adc" || Mnemonic
== "mul" ||
5720 Mnemonic
== "bic" || Mnemonic
== "asr" || Mnemonic
== "orr" ||
5721 Mnemonic
== "mvn" || Mnemonic
== "rsb" || Mnemonic
== "rsc" ||
5722 Mnemonic
== "orn" || Mnemonic
== "sbc" || Mnemonic
== "eor" ||
5723 Mnemonic
== "neg" || Mnemonic
== "vfm" || Mnemonic
== "vfnm" ||
5725 (Mnemonic
== "smull" || Mnemonic
== "mov" || Mnemonic
== "mla" ||
5726 Mnemonic
== "smlal" || Mnemonic
== "umlal" || Mnemonic
== "umull"));
5728 if (Mnemonic
== "bkpt" || Mnemonic
== "cbnz" || Mnemonic
== "setend" ||
5729 Mnemonic
== "cps" || Mnemonic
== "it" || Mnemonic
== "cbz" ||
5730 Mnemonic
== "trap" || Mnemonic
== "hlt" || Mnemonic
== "udf" ||
5731 Mnemonic
.startswith("crc32") || Mnemonic
.startswith("cps") ||
5732 Mnemonic
.startswith("vsel") || Mnemonic
== "vmaxnm" ||
5733 Mnemonic
== "vminnm" || Mnemonic
== "vcvta" || Mnemonic
== "vcvtn" ||
5734 Mnemonic
== "vcvtp" || Mnemonic
== "vcvtm" || Mnemonic
== "vrinta" ||
5735 Mnemonic
== "vrintn" || Mnemonic
== "vrintp" || Mnemonic
== "vrintm" ||
5736 Mnemonic
.startswith("aes") || Mnemonic
== "hvc" || Mnemonic
== "setpan" ||
5737 Mnemonic
.startswith("sha1") || Mnemonic
.startswith("sha256") ||
5738 (FullInst
.startswith("vmull") && FullInst
.endswith(".p64")) ||
5739 Mnemonic
== "vmovx" || Mnemonic
== "vins" ||
5740 Mnemonic
== "vudot" || Mnemonic
== "vsdot" ||
5741 Mnemonic
== "vcmla" || Mnemonic
== "vcadd" ||
5742 Mnemonic
== "vfmal" || Mnemonic
== "vfmsl" ||
5743 Mnemonic
== "sb" || Mnemonic
== "ssbb" ||
5744 Mnemonic
== "pssbb") {
5745 // These mnemonics are never predicable
5746 CanAcceptPredicationCode
= false;
5747 } else if (!isThumb()) {
5748 // Some instructions are only predicable in Thumb mode
5749 CanAcceptPredicationCode
=
5750 Mnemonic
!= "cdp2" && Mnemonic
!= "clrex" && Mnemonic
!= "mcr2" &&
5751 Mnemonic
!= "mcrr2" && Mnemonic
!= "mrc2" && Mnemonic
!= "mrrc2" &&
5752 Mnemonic
!= "dmb" && Mnemonic
!= "dfb" && Mnemonic
!= "dsb" &&
5753 Mnemonic
!= "isb" && Mnemonic
!= "pld" && Mnemonic
!= "pli" &&
5754 Mnemonic
!= "pldw" && Mnemonic
!= "ldc2" && Mnemonic
!= "ldc2l" &&
5755 Mnemonic
!= "stc2" && Mnemonic
!= "stc2l" &&
5756 Mnemonic
!= "tsb" &&
5757 !Mnemonic
.startswith("rfe") && !Mnemonic
.startswith("srs");
5758 } else if (isThumbOne()) {
5760 CanAcceptPredicationCode
= Mnemonic
!= "movs";
5762 CanAcceptPredicationCode
= Mnemonic
!= "nop" && Mnemonic
!= "movs";
5764 CanAcceptPredicationCode
= true;
5767 // Some Thumb instructions have two operand forms that are not
5768 // available as three operand, convert to two operand form if possible.
5770 // FIXME: We would really like to be able to tablegen'erate this.
5771 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic
,
5773 OperandVector
&Operands
) {
5774 if (Operands
.size() != 6)
5777 const auto &Op3
= static_cast<ARMOperand
&>(*Operands
[3]);
5778 auto &Op4
= static_cast<ARMOperand
&>(*Operands
[4]);
5779 if (!Op3
.isReg() || !Op4
.isReg())
5782 auto Op3Reg
= Op3
.getReg();
5783 auto Op4Reg
= Op4
.getReg();
5785 // For most Thumb2 cases we just generate the 3 operand form and reduce
5786 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
5787 // won't accept SP or PC so we do the transformation here taking care
5788 // with immediate range in the 'add sp, sp #imm' case.
5789 auto &Op5
= static_cast<ARMOperand
&>(*Operands
[5]);
5791 if (Mnemonic
!= "add")
5793 bool TryTransform
= Op3Reg
== ARM::PC
|| Op4Reg
== ARM::PC
||
5794 (Op5
.isReg() && Op5
.getReg() == ARM::PC
);
5795 if (!TryTransform
) {
5796 TryTransform
= (Op3Reg
== ARM::SP
|| Op4Reg
== ARM::SP
||
5797 (Op5
.isReg() && Op5
.getReg() == ARM::SP
)) &&
5798 !(Op3Reg
== ARM::SP
&& Op4Reg
== ARM::SP
&&
5799 Op5
.isImm() && !Op5
.isImm0_508s4());
5803 } else if (!isThumbOne())
5806 if (!(Mnemonic
== "add" || Mnemonic
== "sub" || Mnemonic
== "and" ||
5807 Mnemonic
== "eor" || Mnemonic
== "lsl" || Mnemonic
== "lsr" ||
5808 Mnemonic
== "asr" || Mnemonic
== "adc" || Mnemonic
== "sbc" ||
5809 Mnemonic
== "ror" || Mnemonic
== "orr" || Mnemonic
== "bic"))
5812 // If first 2 operands of a 3 operand instruction are the same
5813 // then transform to 2 operand version of the same instruction
5814 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5815 bool Transform
= Op3Reg
== Op4Reg
;
5817 // For communtative operations, we might be able to transform if we swap
5818 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
5820 const ARMOperand
*LastOp
= &Op5
;
5822 if (!Transform
&& Op5
.isReg() && Op3Reg
== Op5
.getReg() &&
5823 ((Mnemonic
== "add" && Op4Reg
!= ARM::SP
) ||
5824 Mnemonic
== "and" || Mnemonic
== "eor" ||
5825 Mnemonic
== "adc" || Mnemonic
== "orr")) {
5831 // If both registers are the same then remove one of them from
5832 // the operand list, with certain exceptions.
5834 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
5835 // 2 operand forms don't exist.
5836 if (((Mnemonic
== "add" && CarrySetting
) || Mnemonic
== "sub") &&
5840 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
5841 // 3-bits because the ARMARM says not to.
5842 if ((Mnemonic
== "add" || Mnemonic
== "sub") && LastOp
->isImm0_7())
5848 std::swap(Op4
, Op5
);
5849 Operands
.erase(Operands
.begin() + 3);
5853 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic
,
5854 OperandVector
&Operands
) {
5855 // FIXME: This is all horribly hacky. We really need a better way to deal
5856 // with optional operands like this in the matcher table.
5858 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5859 // another does not. Specifically, the MOVW instruction does not. So we
5860 // special case it here and remove the defaulted (non-setting) cc_out
5861 // operand if that's the instruction we're trying to match.
5863 // We do this as post-processing of the explicit operands rather than just
5864 // conditionally adding the cc_out in the first place because we need
5865 // to check the type of the parsed immediate operand.
5866 if (Mnemonic
== "mov" && Operands
.size() > 4 && !isThumb() &&
5867 !static_cast<ARMOperand
&>(*Operands
[4]).isModImm() &&
5868 static_cast<ARMOperand
&>(*Operands
[4]).isImm0_65535Expr() &&
5869 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0)
5872 // Register-register 'add' for thumb does not have a cc_out operand
5873 // when there are only two register operands.
5874 if (isThumb() && Mnemonic
== "add" && Operands
.size() == 5 &&
5875 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5876 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5877 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0)
5879 // Register-register 'add' for thumb does not have a cc_out operand
5880 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5881 // have to check the immediate range here since Thumb2 has a variant
5882 // that can handle a different range and has a cc_out operand.
5883 if (((isThumb() && Mnemonic
== "add") ||
5884 (isThumbTwo() && Mnemonic
== "sub")) &&
5885 Operands
.size() == 6 && static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5886 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5887 static_cast<ARMOperand
&>(*Operands
[4]).getReg() == ARM::SP
&&
5888 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
5889 ((Mnemonic
== "add" && static_cast<ARMOperand
&>(*Operands
[5]).isReg()) ||
5890 static_cast<ARMOperand
&>(*Operands
[5]).isImm0_1020s4()))
5892 // For Thumb2, add/sub immediate does not have a cc_out operand for the
5893 // imm0_4095 variant. That's the least-preferred variant when
5894 // selecting via the generic "add" mnemonic, so to know that we
5895 // should remove the cc_out operand, we have to explicitly check that
5896 // it's not one of the other variants. Ugh.
5897 if (isThumbTwo() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
5898 Operands
.size() == 6 && static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5899 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5900 static_cast<ARMOperand
&>(*Operands
[5]).isImm()) {
5901 // Nest conditions rather than one big 'if' statement for readability.
5903 // If both registers are low, we're in an IT block, and the immediate is
5904 // in range, we should use encoding T1 instead, which has a cc_out.
5906 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) &&
5907 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) &&
5908 static_cast<ARMOperand
&>(*Operands
[5]).isImm0_7())
5910 // Check against T3. If the second register is the PC, this is an
5911 // alternate form of ADR, which uses encoding T4, so check for that too.
5912 if (static_cast<ARMOperand
&>(*Operands
[4]).getReg() != ARM::PC
&&
5913 static_cast<ARMOperand
&>(*Operands
[5]).isT2SOImm())
5916 // Otherwise, we use encoding T4, which does not have a cc_out
5921 // The thumb2 multiply instruction doesn't have a CCOut register, so
5922 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5923 // use the 16-bit encoding or not.
5924 if (isThumbTwo() && Mnemonic
== "mul" && Operands
.size() == 6 &&
5925 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
5926 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5927 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5928 static_cast<ARMOperand
&>(*Operands
[5]).isReg() &&
5929 // If the registers aren't low regs, the destination reg isn't the
5930 // same as one of the source regs, or the cc_out operand is zero
5931 // outside of an IT block, we have to use the 32-bit encoding, so
5932 // remove the cc_out operand.
5933 (!isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) ||
5934 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) ||
5935 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[5]).getReg()) ||
5936 !inITBlock() || (static_cast<ARMOperand
&>(*Operands
[3]).getReg() !=
5937 static_cast<ARMOperand
&>(*Operands
[5]).getReg() &&
5938 static_cast<ARMOperand
&>(*Operands
[3]).getReg() !=
5939 static_cast<ARMOperand
&>(*Operands
[4]).getReg())))
5942 // Also check the 'mul' syntax variant that doesn't specify an explicit
5943 // destination register.
5944 if (isThumbTwo() && Mnemonic
== "mul" && Operands
.size() == 5 &&
5945 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
5946 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5947 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5948 // If the registers aren't low regs or the cc_out operand is zero
5949 // outside of an IT block, we have to use the 32-bit encoding, so
5950 // remove the cc_out operand.
5951 (!isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) ||
5952 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) ||
5956 // Register-register 'add/sub' for thumb does not have a cc_out operand
5957 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5958 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5959 // right, this will result in better diagnostics (which operand is off)
5961 if (isThumb() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
5962 (Operands
.size() == 5 || Operands
.size() == 6) &&
5963 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5964 static_cast<ARMOperand
&>(*Operands
[3]).getReg() == ARM::SP
&&
5965 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
5966 (static_cast<ARMOperand
&>(*Operands
[4]).isImm() ||
5967 (Operands
.size() == 6 &&
5968 static_cast<ARMOperand
&>(*Operands
[5]).isImm())))
5974 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic
,
5975 OperandVector
&Operands
) {
5976 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
5977 unsigned RegIdx
= 3;
5978 if ((Mnemonic
== "vrintz" || Mnemonic
== "vrintx") &&
5979 (static_cast<ARMOperand
&>(*Operands
[2]).getToken() == ".f32" ||
5980 static_cast<ARMOperand
&>(*Operands
[2]).getToken() == ".f16")) {
5981 if (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
5982 (static_cast<ARMOperand
&>(*Operands
[3]).getToken() == ".f32" ||
5983 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == ".f16"))
5986 if (static_cast<ARMOperand
&>(*Operands
[RegIdx
]).isReg() &&
5987 (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(
5988 static_cast<ARMOperand
&>(*Operands
[RegIdx
]).getReg()) ||
5989 ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(
5990 static_cast<ARMOperand
&>(*Operands
[RegIdx
]).getReg())))
5996 static bool isDataTypeToken(StringRef Tok
) {
5997 return Tok
== ".8" || Tok
== ".16" || Tok
== ".32" || Tok
== ".64" ||
5998 Tok
== ".i8" || Tok
== ".i16" || Tok
== ".i32" || Tok
== ".i64" ||
5999 Tok
== ".u8" || Tok
== ".u16" || Tok
== ".u32" || Tok
== ".u64" ||
6000 Tok
== ".s8" || Tok
== ".s16" || Tok
== ".s32" || Tok
== ".s64" ||
6001 Tok
== ".p8" || Tok
== ".p16" || Tok
== ".f32" || Tok
== ".f64" ||
6002 Tok
== ".f" || Tok
== ".d";
6005 // FIXME: This bit should probably be handled via an explicit match class
6006 // in the .td files that matches the suffix instead of having it be
6007 // a literal string token the way it is now.
6008 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic
, StringRef DT
) {
6009 return Mnemonic
.startswith("vldm") || Mnemonic
.startswith("vstm");
6012 static void applyMnemonicAliases(StringRef
&Mnemonic
, uint64_t Features
,
6013 unsigned VariantID
);
6015 // The GNU assembler has aliases of ldrd and strd with the second register
6016 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6018 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6019 // the assmebly parser could then generate confusing diagnostics refering to
6020 // it. If we do find anything that prevents us from doing the transformation we
6021 // bail out, and let the assembly parser report an error on the instruction as
6023 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic
,
6024 OperandVector
&Operands
) {
6025 if (Mnemonic
!= "ldrd" && Mnemonic
!= "strd")
6027 if (Operands
.size() < 4)
6030 ARMOperand
&Op2
= static_cast<ARMOperand
&>(*Operands
[2]);
6031 ARMOperand
&Op3
= static_cast<ARMOperand
&>(*Operands
[3]);
6038 const MCRegisterClass
&GPR
= MRI
->getRegClass(ARM::GPRRegClassID
);
6039 if (!GPR
.contains(Op2
.getReg()))
6042 unsigned RtEncoding
= MRI
->getEncodingValue(Op2
.getReg());
6043 if (!isThumb() && (RtEncoding
& 1)) {
6044 // In ARM mode, the registers must be from an aligned pair, this
6045 // restriction does not apply in Thumb mode.
6048 if (Op2
.getReg() == ARM::PC
)
6050 unsigned PairedReg
= GPR
.getRegister(RtEncoding
+ 1);
6051 if (!PairedReg
|| PairedReg
== ARM::PC
||
6052 (PairedReg
== ARM::SP
&& !hasV8Ops()))
6056 Operands
.begin() + 3,
6057 ARMOperand::CreateReg(PairedReg
, Op2
.getStartLoc(), Op2
.getEndLoc()));
6060 /// Parse an arm instruction mnemonic followed by its operands.
6061 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo
&Info
, StringRef Name
,
6062 SMLoc NameLoc
, OperandVector
&Operands
) {
6063 MCAsmParser
&Parser
= getParser();
6065 // Apply mnemonic aliases before doing anything else, as the destination
6066 // mnemonic may include suffices and we want to handle them normally.
6067 // The generic tblgen'erated code does this later, at the start of
6068 // MatchInstructionImpl(), but that's too late for aliases that include
6069 // any sort of suffix.
6070 uint64_t AvailableFeatures
= getAvailableFeatures();
6071 unsigned AssemblerDialect
= getParser().getAssemblerDialect();
6072 applyMnemonicAliases(Name
, AvailableFeatures
, AssemblerDialect
);
6074 // First check for the ARM-specific .req directive.
6075 if (Parser
.getTok().is(AsmToken::Identifier
) &&
6076 Parser
.getTok().getIdentifier() == ".req") {
6077 parseDirectiveReq(Name
, NameLoc
);
6078 // We always return 'error' for this, as we're done with this
6079 // statement and don't need to match the 'instruction."
6083 // Create the leading tokens for the mnemonic, split by '.' characters.
6084 size_t Start
= 0, Next
= Name
.find('.');
6085 StringRef Mnemonic
= Name
.slice(Start
, Next
);
6087 // Split out the predication code and carry setting flag from the mnemonic.
6088 unsigned PredicationCode
;
6089 unsigned ProcessorIMod
;
6092 Mnemonic
= splitMnemonic(Mnemonic
, PredicationCode
, CarrySetting
,
6093 ProcessorIMod
, ITMask
);
6095 // In Thumb1, only the branch (B) instruction can be predicated.
6096 if (isThumbOne() && PredicationCode
!= ARMCC::AL
&& Mnemonic
!= "b") {
6097 return Error(NameLoc
, "conditional execution not supported in Thumb1");
6100 Operands
.push_back(ARMOperand::CreateToken(Mnemonic
, NameLoc
));
6102 // Handle the IT instruction ITMask. Convert it to a bitmask. This
6103 // is the mask as it will be for the IT encoding if the conditional
6104 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
6105 // where the conditional bit0 is zero, the instruction post-processing
6106 // will adjust the mask accordingly.
6107 if (Mnemonic
== "it") {
6108 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + 2);
6109 if (ITMask
.size() > 3) {
6110 return Error(Loc
, "too many conditions on IT instruction");
6113 for (unsigned i
= ITMask
.size(); i
!= 0; --i
) {
6114 char pos
= ITMask
[i
- 1];
6115 if (pos
!= 't' && pos
!= 'e') {
6116 return Error(Loc
, "illegal IT block condition mask '" + ITMask
+ "'");
6119 if (ITMask
[i
- 1] == 't')
6122 Operands
.push_back(ARMOperand::CreateITMask(Mask
, Loc
));
6125 // FIXME: This is all a pretty gross hack. We should automatically handle
6126 // optional operands like this via tblgen.
6128 // Next, add the CCOut and ConditionCode operands, if needed.
6130 // For mnemonics which can ever incorporate a carry setting bit or predication
6131 // code, our matching model involves us always generating CCOut and
6132 // ConditionCode operands to match the mnemonic "as written" and then we let
6133 // the matcher deal with finding the right instruction or generating an
6134 // appropriate error.
6135 bool CanAcceptCarrySet
, CanAcceptPredicationCode
;
6136 getMnemonicAcceptInfo(Mnemonic
, Name
, CanAcceptCarrySet
, CanAcceptPredicationCode
);
6138 // If we had a carry-set on an instruction that can't do that, issue an
6140 if (!CanAcceptCarrySet
&& CarrySetting
) {
6141 return Error(NameLoc
, "instruction '" + Mnemonic
+
6142 "' can not set flags, but 's' suffix specified");
6144 // If we had a predication code on an instruction that can't do that, issue an
6146 if (!CanAcceptPredicationCode
&& PredicationCode
!= ARMCC::AL
) {
6147 return Error(NameLoc
, "instruction '" + Mnemonic
+
6148 "' is not predicable, but condition code specified");
6151 // Add the carry setting operand, if necessary.
6152 if (CanAcceptCarrySet
) {
6153 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size());
6154 Operands
.push_back(ARMOperand::CreateCCOut(CarrySetting
? ARM::CPSR
: 0,
6158 // Add the predication code operand, if necessary.
6159 if (CanAcceptPredicationCode
) {
6160 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size() +
6162 Operands
.push_back(ARMOperand::CreateCondCode(
6163 ARMCC::CondCodes(PredicationCode
), Loc
));
6166 // Add the processor imod operand, if necessary.
6167 if (ProcessorIMod
) {
6168 Operands
.push_back(ARMOperand::CreateImm(
6169 MCConstantExpr::create(ProcessorIMod
, getContext()),
6171 } else if (Mnemonic
== "cps" && isMClass()) {
6172 return Error(NameLoc
, "instruction 'cps' requires effect for M-class");
6175 // Add the remaining tokens in the mnemonic.
6176 while (Next
!= StringRef::npos
) {
6178 Next
= Name
.find('.', Start
+ 1);
6179 StringRef ExtraToken
= Name
.slice(Start
, Next
);
6181 // Some NEON instructions have an optional datatype suffix that is
6182 // completely ignored. Check for that.
6183 if (isDataTypeToken(ExtraToken
) &&
6184 doesIgnoreDataTypeSuffix(Mnemonic
, ExtraToken
))
6187 // For for ARM mode generate an error if the .n qualifier is used.
6188 if (ExtraToken
== ".n" && !isThumb()) {
6189 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Start
);
6190 return Error(Loc
, "instruction with .n (narrow) qualifier not allowed in "
6194 // The .n qualifier is always discarded as that is what the tables
6195 // and matcher expect. In ARM mode the .w qualifier has no effect,
6196 // so discard it to avoid errors that can be caused by the matcher.
6197 if (ExtraToken
!= ".n" && (isThumb() || ExtraToken
!= ".w")) {
6198 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Start
);
6199 Operands
.push_back(ARMOperand::CreateToken(ExtraToken
, Loc
));
6203 // Read the remaining operands.
6204 if (getLexer().isNot(AsmToken::EndOfStatement
)) {
6205 // Read the first operand.
6206 if (parseOperand(Operands
, Mnemonic
)) {
6210 while (parseOptionalToken(AsmToken::Comma
)) {
6211 // Parse and remember the operand.
6212 if (parseOperand(Operands
, Mnemonic
)) {
6218 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in argument list"))
6221 tryConvertingToTwoOperandForm(Mnemonic
, CarrySetting
, Operands
);
6223 // Some instructions, mostly Thumb, have forms for the same mnemonic that
6224 // do and don't have a cc_out optional-def operand. With some spot-checks
6225 // of the operand list, we can figure out which variant we're trying to
6226 // parse and adjust accordingly before actually matching. We shouldn't ever
6227 // try to remove a cc_out operand that was explicitly set on the
6228 // mnemonic, of course (CarrySetting == true). Reason number #317 the
6229 // table driven matcher doesn't fit well with the ARM instruction set.
6230 if (!CarrySetting
&& shouldOmitCCOutOperand(Mnemonic
, Operands
))
6231 Operands
.erase(Operands
.begin() + 1);
6233 // Some instructions have the same mnemonic, but don't always
6234 // have a predicate. Distinguish them here and delete the
6235 // predicate if needed.
6236 if (PredicationCode
== ARMCC::AL
&&
6237 shouldOmitPredicateOperand(Mnemonic
, Operands
))
6238 Operands
.erase(Operands
.begin() + 1);
6240 // ARM mode 'blx' need special handling, as the register operand version
6241 // is predicable, but the label operand version is not. So, we can't rely
6242 // on the Mnemonic based checking to correctly figure out when to put
6243 // a k_CondCode operand in the list. If we're trying to match the label
6244 // version, remove the k_CondCode operand here.
6245 if (!isThumb() && Mnemonic
== "blx" && Operands
.size() == 3 &&
6246 static_cast<ARMOperand
&>(*Operands
[2]).isImm())
6247 Operands
.erase(Operands
.begin() + 1);
6249 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
6250 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
6251 // a single GPRPair reg operand is used in the .td file to replace the two
6252 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
6253 // expressed as a GPRPair, so we have to manually merge them.
6254 // FIXME: We would really like to be able to tablegen'erate this.
6255 if (!isThumb() && Operands
.size() > 4 &&
6256 (Mnemonic
== "ldrexd" || Mnemonic
== "strexd" || Mnemonic
== "ldaexd" ||
6257 Mnemonic
== "stlexd")) {
6258 bool isLoad
= (Mnemonic
== "ldrexd" || Mnemonic
== "ldaexd");
6259 unsigned Idx
= isLoad
? 2 : 3;
6260 ARMOperand
&Op1
= static_cast<ARMOperand
&>(*Operands
[Idx
]);
6261 ARMOperand
&Op2
= static_cast<ARMOperand
&>(*Operands
[Idx
+ 1]);
6263 const MCRegisterClass
& MRC
= MRI
->getRegClass(ARM::GPRRegClassID
);
6264 // Adjust only if Op1 and Op2 are GPRs.
6265 if (Op1
.isReg() && Op2
.isReg() && MRC
.contains(Op1
.getReg()) &&
6266 MRC
.contains(Op2
.getReg())) {
6267 unsigned Reg1
= Op1
.getReg();
6268 unsigned Reg2
= Op2
.getReg();
6269 unsigned Rt
= MRI
->getEncodingValue(Reg1
);
6270 unsigned Rt2
= MRI
->getEncodingValue(Reg2
);
6272 // Rt2 must be Rt + 1 and Rt must be even.
6273 if (Rt
+ 1 != Rt2
|| (Rt
& 1)) {
6274 return Error(Op2
.getStartLoc(),
6275 isLoad
? "destination operands must be sequential"
6276 : "source operands must be sequential");
6278 unsigned NewReg
= MRI
->getMatchingSuperReg(Reg1
, ARM::gsub_0
,
6279 &(MRI
->getRegClass(ARM::GPRPairRegClassID
)));
6281 ARMOperand::CreateReg(NewReg
, Op1
.getStartLoc(), Op2
.getEndLoc());
6282 Operands
.erase(Operands
.begin() + Idx
+ 1);
6286 // GNU Assembler extension (compatibility).
6287 fixupGNULDRDAlias(Mnemonic
, Operands
);
6289 // FIXME: As said above, this is all a pretty gross hack. This instruction
6290 // does not fit with other "subs" and tblgen.
6291 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
6292 // so the Mnemonic is the original name "subs" and delete the predicate
6293 // operand so it will match the table entry.
6294 if (isThumbTwo() && Mnemonic
== "sub" && Operands
.size() == 6 &&
6295 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6296 static_cast<ARMOperand
&>(*Operands
[3]).getReg() == ARM::PC
&&
6297 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6298 static_cast<ARMOperand
&>(*Operands
[4]).getReg() == ARM::LR
&&
6299 static_cast<ARMOperand
&>(*Operands
[5]).isImm()) {
6300 Operands
.front() = ARMOperand::CreateToken(Name
, NameLoc
);
6301 Operands
.erase(Operands
.begin() + 1);
6306 // Validate context-sensitive operand constraints.
6308 // return 'true' if register list contains non-low GPR registers,
6309 // 'false' otherwise. If Reg is in the register list or is HiReg, set
6310 // 'containsReg' to true.
6311 static bool checkLowRegisterList(const MCInst
&Inst
, unsigned OpNo
,
6312 unsigned Reg
, unsigned HiReg
,
6313 bool &containsReg
) {
6314 containsReg
= false;
6315 for (unsigned i
= OpNo
; i
< Inst
.getNumOperands(); ++i
) {
6316 unsigned OpReg
= Inst
.getOperand(i
).getReg();
6319 // Anything other than a low register isn't legal here.
6320 if (!isARMLowRegister(OpReg
) && (!HiReg
|| OpReg
!= HiReg
))
6326 // Check if the specified regisgter is in the register list of the inst,
6327 // starting at the indicated operand number.
6328 static bool listContainsReg(const MCInst
&Inst
, unsigned OpNo
, unsigned Reg
) {
6329 for (unsigned i
= OpNo
, e
= Inst
.getNumOperands(); i
< e
; ++i
) {
6330 unsigned OpReg
= Inst
.getOperand(i
).getReg();
6337 // Return true if instruction has the interesting property of being
6338 // allowed in IT blocks, but not being predicable.
6339 static bool instIsBreakpoint(const MCInst
&Inst
) {
6340 return Inst
.getOpcode() == ARM::tBKPT
||
6341 Inst
.getOpcode() == ARM::BKPT
||
6342 Inst
.getOpcode() == ARM::tHLT
||
6343 Inst
.getOpcode() == ARM::HLT
;
6346 bool ARMAsmParser::validatetLDMRegList(const MCInst
&Inst
,
6347 const OperandVector
&Operands
,
6348 unsigned ListNo
, bool IsARPop
) {
6349 const ARMOperand
&Op
= static_cast<const ARMOperand
&>(*Operands
[ListNo
]);
6350 bool HasWritebackToken
= Op
.isToken() && Op
.getToken() == "!";
6352 bool ListContainsSP
= listContainsReg(Inst
, ListNo
, ARM::SP
);
6353 bool ListContainsLR
= listContainsReg(Inst
, ListNo
, ARM::LR
);
6354 bool ListContainsPC
= listContainsReg(Inst
, ListNo
, ARM::PC
);
6356 if (!IsARPop
&& ListContainsSP
)
6357 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6358 "SP may not be in the register list");
6359 else if (ListContainsPC
&& ListContainsLR
)
6360 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6361 "PC and LR may not be in the register list simultaneously");
6365 bool ARMAsmParser::validatetSTMRegList(const MCInst
&Inst
,
6366 const OperandVector
&Operands
,
6368 const ARMOperand
&Op
= static_cast<const ARMOperand
&>(*Operands
[ListNo
]);
6369 bool HasWritebackToken
= Op
.isToken() && Op
.getToken() == "!";
6371 bool ListContainsSP
= listContainsReg(Inst
, ListNo
, ARM::SP
);
6372 bool ListContainsPC
= listContainsReg(Inst
, ListNo
, ARM::PC
);
6374 if (ListContainsSP
&& ListContainsPC
)
6375 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6376 "SP and PC may not be in the register list");
6377 else if (ListContainsSP
)
6378 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6379 "SP may not be in the register list");
6380 else if (ListContainsPC
)
6381 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6382 "PC may not be in the register list");
6386 bool ARMAsmParser::validateLDRDSTRD(MCInst
&Inst
,
6387 const OperandVector
&Operands
,
6388 bool Load
, bool ARMMode
, bool Writeback
) {
6389 unsigned RtIndex
= Load
|| !Writeback
? 0 : 1;
6390 unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(RtIndex
).getReg());
6391 unsigned Rt2
= MRI
->getEncodingValue(Inst
.getOperand(RtIndex
+ 1).getReg());
6396 return Error(Operands
[3]->getStartLoc(),
6399 // Rt must be even-numbered.
6401 return Error(Operands
[3]->getStartLoc(),
6402 "Rt must be even-numbered");
6404 // Rt2 must be Rt + 1.
6405 if (Rt2
!= Rt
+ 1) {
6407 return Error(Operands
[3]->getStartLoc(),
6408 "destination operands must be sequential");
6410 return Error(Operands
[3]->getStartLoc(),
6411 "source operands must be sequential");
6414 // FIXME: Diagnose m == 15
6415 // FIXME: Diagnose ldrd with m == t || m == t2.
6418 if (!ARMMode
&& Load
) {
6420 return Error(Operands
[3]->getStartLoc(),
6421 "destination operands can't be identical");
6425 unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(3).getReg());
6427 if (Rn
== Rt
|| Rn
== Rt2
) {
6429 return Error(Operands
[3]->getStartLoc(),
6430 "base register needs to be different from destination "
6433 return Error(Operands
[3]->getStartLoc(),
6434 "source register and base register can't be identical");
6437 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
6438 // (Except the immediate form of ldrd?)
6445 // FIXME: We would really like to be able to tablegen'erate this.
6446 bool ARMAsmParser::validateInstruction(MCInst
&Inst
,
6447 const OperandVector
&Operands
) {
6448 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
6449 SMLoc Loc
= Operands
[0]->getStartLoc();
6451 // Check the IT block state first.
6452 // NOTE: BKPT and HLT instructions have the interesting property of being
6453 // allowed in IT blocks, but not being predicable. They just always execute.
6454 if (inITBlock() && !instIsBreakpoint(Inst
)) {
6455 // The instruction must be predicable.
6456 if (!MCID
.isPredicable())
6457 return Error(Loc
, "instructions in IT block must be predicable");
6458 ARMCC::CondCodes Cond
= ARMCC::CondCodes(
6459 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm());
6460 if (Cond
!= currentITCond()) {
6461 // Find the condition code Operand to get its SMLoc information.
6463 for (unsigned I
= 1; I
< Operands
.size(); ++I
)
6464 if (static_cast<ARMOperand
&>(*Operands
[I
]).isCondCode())
6465 CondLoc
= Operands
[I
]->getStartLoc();
6466 return Error(CondLoc
, "incorrect condition in IT block; got '" +
6467 StringRef(ARMCondCodeToString(Cond
)) +
6468 "', but expected '" +
6469 ARMCondCodeToString(currentITCond()) + "'");
6471 // Check for non-'al' condition codes outside of the IT block.
6472 } else if (isThumbTwo() && MCID
.isPredicable() &&
6473 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm() !=
6474 ARMCC::AL
&& Inst
.getOpcode() != ARM::tBcc
&&
6475 Inst
.getOpcode() != ARM::t2Bcc
) {
6476 return Error(Loc
, "predicated instructions must be in IT block");
6477 } else if (!isThumb() && !useImplicitITARM() && MCID
.isPredicable() &&
6478 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm() !=
6480 return Warning(Loc
, "predicated instructions should be in IT block");
6483 // PC-setting instructions in an IT block, but not the last instruction of
6484 // the block, are UNPREDICTABLE.
6485 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst
)) {
6486 return Error(Loc
, "instruction must be outside of IT block or the last instruction in an IT block");
6489 const unsigned Opcode
= Inst
.getOpcode();
6492 // Encoding is unpredictable if it ever results in a notional 'NV'
6493 // predicate. Since we don't parse 'NV' directly this means an 'AL'
6494 // predicate with an "else" mask bit.
6495 unsigned Cond
= Inst
.getOperand(0).getImm();
6496 unsigned Mask
= Inst
.getOperand(1).getImm();
6498 // Mask hasn't been modified to the IT instruction encoding yet so
6499 // conditions only allowing a 't' are a block of 1s starting at bit 3
6500 // followed by all 0s. Easiest way is to just list the 4 possibilities.
6501 if (Cond
== ARMCC::AL
&& Mask
!= 8 && Mask
!= 12 && Mask
!= 14 &&
6503 return Error(Loc
, "unpredictable IT predicate sequence");
6507 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/true,
6508 /*Writeback*/false))
6512 case ARM::LDRD_POST
:
6513 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/true,
6518 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/false,
6519 /*Writeback*/false))
6522 case ARM::t2LDRD_PRE
:
6523 case ARM::t2LDRD_POST
:
6524 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/false,
6529 const unsigned RmReg
= Inst
.getOperand(0).getReg();
6530 // Rm = SP is no longer unpredictable in v8-A
6531 if (RmReg
== ARM::SP
&& !hasV8Ops())
6532 return Error(Operands
[2]->getStartLoc(),
6533 "r13 (SP) is an unpredictable operand to BXJ");
6537 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/true,
6538 /*Writeback*/false))
6542 case ARM::STRD_POST
:
6543 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/true,
6547 case ARM::t2STRD_PRE
:
6548 case ARM::t2STRD_POST
:
6549 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/false,
6553 case ARM::STR_PRE_IMM
:
6554 case ARM::STR_PRE_REG
:
6555 case ARM::t2STR_PRE
:
6556 case ARM::STR_POST_IMM
:
6557 case ARM::STR_POST_REG
:
6558 case ARM::t2STR_POST
:
6560 case ARM::t2STRH_PRE
:
6561 case ARM::STRH_POST
:
6562 case ARM::t2STRH_POST
:
6563 case ARM::STRB_PRE_IMM
:
6564 case ARM::STRB_PRE_REG
:
6565 case ARM::t2STRB_PRE
:
6566 case ARM::STRB_POST_IMM
:
6567 case ARM::STRB_POST_REG
:
6568 case ARM::t2STRB_POST
: {
6569 // Rt must be different from Rn.
6570 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
6571 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
6574 return Error(Operands
[3]->getStartLoc(),
6575 "source register and base register can't be identical");
6578 case ARM::LDR_PRE_IMM
:
6579 case ARM::LDR_PRE_REG
:
6580 case ARM::t2LDR_PRE
:
6581 case ARM::LDR_POST_IMM
:
6582 case ARM::LDR_POST_REG
:
6583 case ARM::t2LDR_POST
:
6585 case ARM::t2LDRH_PRE
:
6586 case ARM::LDRH_POST
:
6587 case ARM::t2LDRH_POST
:
6588 case ARM::LDRSH_PRE
:
6589 case ARM::t2LDRSH_PRE
:
6590 case ARM::LDRSH_POST
:
6591 case ARM::t2LDRSH_POST
:
6592 case ARM::LDRB_PRE_IMM
:
6593 case ARM::LDRB_PRE_REG
:
6594 case ARM::t2LDRB_PRE
:
6595 case ARM::LDRB_POST_IMM
:
6596 case ARM::LDRB_POST_REG
:
6597 case ARM::t2LDRB_POST
:
6598 case ARM::LDRSB_PRE
:
6599 case ARM::t2LDRSB_PRE
:
6600 case ARM::LDRSB_POST
:
6601 case ARM::t2LDRSB_POST
: {
6602 // Rt must be different from Rn.
6603 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
6604 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
6607 return Error(Operands
[3]->getStartLoc(),
6608 "destination register and base register can't be identical");
6615 // Width must be in range [1, 32-lsb].
6616 unsigned LSB
= Inst
.getOperand(2).getImm();
6617 unsigned Widthm1
= Inst
.getOperand(3).getImm();
6618 if (Widthm1
>= 32 - LSB
)
6619 return Error(Operands
[5]->getStartLoc(),
6620 "bitfield width must be in range [1,32-lsb]");
6623 // Notionally handles ARM::tLDMIA_UPD too.
6625 // If we're parsing Thumb2, the .w variant is available and handles
6626 // most cases that are normally illegal for a Thumb1 LDM instruction.
6627 // We'll make the transformation in processInstruction() if necessary.
6629 // Thumb LDM instructions are writeback iff the base register is not
6630 // in the register list.
6631 unsigned Rn
= Inst
.getOperand(0).getReg();
6632 bool HasWritebackToken
=
6633 (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
6634 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == "!");
6635 bool ListContainsBase
;
6636 if (checkLowRegisterList(Inst
, 3, Rn
, 0, ListContainsBase
) && !isThumbTwo())
6637 return Error(Operands
[3 + HasWritebackToken
]->getStartLoc(),
6638 "registers must be in range r0-r7");
6639 // If we should have writeback, then there should be a '!' token.
6640 if (!ListContainsBase
&& !HasWritebackToken
&& !isThumbTwo())
6641 return Error(Operands
[2]->getStartLoc(),
6642 "writeback operator '!' expected");
6643 // If we should not have writeback, there must not be a '!'. This is
6644 // true even for the 32-bit wide encodings.
6645 if (ListContainsBase
&& HasWritebackToken
)
6646 return Error(Operands
[3]->getStartLoc(),
6647 "writeback operator '!' not allowed when base register "
6648 "in register list");
6650 if (validatetLDMRegList(Inst
, Operands
, 3))
6654 case ARM::LDMIA_UPD
:
6655 case ARM::LDMDB_UPD
:
6656 case ARM::LDMIB_UPD
:
6657 case ARM::LDMDA_UPD
:
6658 // ARM variants loading and updating the same register are only officially
6659 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6662 if (listContainsReg(Inst
, 3, Inst
.getOperand(0).getReg()))
6663 return Error(Operands
.back()->getStartLoc(),
6664 "writeback register not allowed in register list");
6668 if (validatetLDMRegList(Inst
, Operands
, 3))
6673 if (validatetSTMRegList(Inst
, Operands
, 3))
6676 case ARM::t2LDMIA_UPD
:
6677 case ARM::t2LDMDB_UPD
:
6678 case ARM::t2STMIA_UPD
:
6679 case ARM::t2STMDB_UPD
:
6680 if (listContainsReg(Inst
, 3, Inst
.getOperand(0).getReg()))
6681 return Error(Operands
.back()->getStartLoc(),
6682 "writeback register not allowed in register list");
6684 if (Opcode
== ARM::t2LDMIA_UPD
|| Opcode
== ARM::t2LDMDB_UPD
) {
6685 if (validatetLDMRegList(Inst
, Operands
, 3))
6688 if (validatetSTMRegList(Inst
, Operands
, 3))
6693 case ARM::sysLDMIA_UPD
:
6694 case ARM::sysLDMDA_UPD
:
6695 case ARM::sysLDMDB_UPD
:
6696 case ARM::sysLDMIB_UPD
:
6697 if (!listContainsReg(Inst
, 3, ARM::PC
))
6698 return Error(Operands
[4]->getStartLoc(),
6699 "writeback register only allowed on system LDM "
6700 "if PC in register-list");
6702 case ARM::sysSTMIA_UPD
:
6703 case ARM::sysSTMDA_UPD
:
6704 case ARM::sysSTMDB_UPD
:
6705 case ARM::sysSTMIB_UPD
:
6706 return Error(Operands
[2]->getStartLoc(),
6707 "system STM cannot have writeback register");
6709 // The second source operand must be the same register as the destination
6712 // In this case, we must directly check the parsed operands because the
6713 // cvtThumbMultiply() function is written in such a way that it guarantees
6714 // this first statement is always true for the new Inst. Essentially, the
6715 // destination is unconditionally copied into the second source operand
6716 // without checking to see if it matches what we actually parsed.
6717 if (Operands
.size() == 6 && (((ARMOperand
&)*Operands
[3]).getReg() !=
6718 ((ARMOperand
&)*Operands
[5]).getReg()) &&
6719 (((ARMOperand
&)*Operands
[3]).getReg() !=
6720 ((ARMOperand
&)*Operands
[4]).getReg())) {
6721 return Error(Operands
[3]->getStartLoc(),
6722 "destination register must match source register");
6726 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6727 // so only issue a diagnostic for thumb1. The instructions will be
6728 // switched to the t2 encodings in processInstruction() if necessary.
6730 bool ListContainsBase
;
6731 if (checkLowRegisterList(Inst
, 2, 0, ARM::PC
, ListContainsBase
) &&
6733 return Error(Operands
[2]->getStartLoc(),
6734 "registers must be in range r0-r7 or pc");
6735 if (validatetLDMRegList(Inst
, Operands
, 2, !isMClass()))
6740 bool ListContainsBase
;
6741 if (checkLowRegisterList(Inst
, 2, 0, ARM::LR
, ListContainsBase
) &&
6743 return Error(Operands
[2]->getStartLoc(),
6744 "registers must be in range r0-r7 or lr");
6745 if (validatetSTMRegList(Inst
, Operands
, 2))
6749 case ARM::tSTMIA_UPD
: {
6750 bool ListContainsBase
, InvalidLowList
;
6751 InvalidLowList
= checkLowRegisterList(Inst
, 4, Inst
.getOperand(0).getReg(),
6752 0, ListContainsBase
);
6753 if (InvalidLowList
&& !isThumbTwo())
6754 return Error(Operands
[4]->getStartLoc(),
6755 "registers must be in range r0-r7");
6757 // This would be converted to a 32-bit stm, but that's not valid if the
6758 // writeback register is in the list.
6759 if (InvalidLowList
&& ListContainsBase
)
6760 return Error(Operands
[4]->getStartLoc(),
6761 "writeback operator '!' not allowed when base register "
6762 "in register list");
6764 if (validatetSTMRegList(Inst
, Operands
, 4))
6769 // If the non-SP source operand and the destination operand are not the
6770 // same, we need thumb2 (for the wide encoding), or we have an error.
6771 if (!isThumbTwo() &&
6772 Inst
.getOperand(0).getReg() != Inst
.getOperand(2).getReg()) {
6773 return Error(Operands
[4]->getStartLoc(),
6774 "source register must be the same as destination");
6778 // Final range checking for Thumb unconditional branch instructions.
6780 if (!(static_cast<ARMOperand
&>(*Operands
[2])).isSignedOffset
<11, 1>())
6781 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
6784 int op
= (Operands
[2]->isImm()) ? 2 : 3;
6785 if (!static_cast<ARMOperand
&>(*Operands
[op
]).isSignedOffset
<24, 1>())
6786 return Error(Operands
[op
]->getStartLoc(), "branch target out of range");
6789 // Final range checking for Thumb conditional branch instructions.
6791 if (!static_cast<ARMOperand
&>(*Operands
[2]).isSignedOffset
<8, 1>())
6792 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
6795 int Op
= (Operands
[2]->isImm()) ? 2 : 3;
6796 if (!static_cast<ARMOperand
&>(*Operands
[Op
]).isSignedOffset
<20, 1>())
6797 return Error(Operands
[Op
]->getStartLoc(), "branch target out of range");
6802 if (!static_cast<ARMOperand
&>(*Operands
[2]).isUnsignedOffset
<6, 1>())
6803 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
6809 case ARM::t2MOVTi16
:
6811 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6812 // especially when we turn it into a movw and the expression <symbol> does
6813 // not have a :lower16: or :upper16 as part of the expression. We don't
6814 // want the behavior of silently truncating, which can be unexpected and
6815 // lead to bugs that are difficult to find since this is an easy mistake
6817 int i
= (Operands
[3]->isImm()) ? 3 : 4;
6818 ARMOperand
&Op
= static_cast<ARMOperand
&>(*Operands
[i
]);
6819 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm());
6821 const MCExpr
*E
= dyn_cast
<MCExpr
>(Op
.getImm());
6823 const ARMMCExpr
*ARM16Expr
= dyn_cast
<ARMMCExpr
>(E
);
6824 if (!ARM16Expr
|| (ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_HI16
&&
6825 ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_LO16
))
6828 "immediate expression for mov requires :lower16: or :upper16");
6833 unsigned Imm8
= Inst
.getOperand(0).getImm();
6834 unsigned Pred
= Inst
.getOperand(1).getImm();
6835 // ESB is not predicable (pred must be AL). Without the RAS extension, this
6836 // behaves as any other unallocated hint.
6837 if (Imm8
== 0x10 && Pred
!= ARMCC::AL
&& hasRAS())
6838 return Error(Operands
[1]->getStartLoc(), "instruction 'esb' is not "
6839 "predicable, but condition "
6841 if (Imm8
== 0x14 && Pred
!= ARMCC::AL
)
6842 return Error(Operands
[1]->getStartLoc(), "instruction 'csdb' is not "
6843 "predicable, but condition "
6850 if (Inst
.getNumOperands() < 2)
6853 unsigned Option
= Inst
.getOperand(0).getImm();
6854 unsigned Pred
= Inst
.getOperand(1).getImm();
6856 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
6857 if (Option
== 0 && Pred
!= ARMCC::AL
)
6858 return Error(Operands
[1]->getStartLoc(),
6859 "instruction 'ssbb' is not predicable, but condition code "
6861 if (Option
== 4 && Pred
!= ARMCC::AL
)
6862 return Error(Operands
[1]->getStartLoc(),
6863 "instruction 'pssbb' is not predicable, but condition code "
6867 case ARM::VMOVRRS
: {
6868 // Source registers must be sequential.
6869 const unsigned Sm
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
6870 const unsigned Sm1
= MRI
->getEncodingValue(Inst
.getOperand(3).getReg());
6872 return Error(Operands
[5]->getStartLoc(),
6873 "source operands must be sequential");
6876 case ARM::VMOVSRR
: {
6877 // Destination registers must be sequential.
6878 const unsigned Sm
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
6879 const unsigned Sm1
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
6881 return Error(Operands
[3]->getStartLoc(),
6882 "destination operands must be sequential");
6886 case ARM::VSTMDIA
: {
6887 ARMOperand
&Op
= static_cast<ARMOperand
&>(*Operands
[3]);
6888 auto &RegList
= Op
.getRegList();
6889 if (RegList
.size() < 1 || RegList
.size() > 16)
6890 return Error(Operands
[3]->getStartLoc(),
6891 "list of registers must be at least 1 and at most 16");
6899 static unsigned getRealVSTOpcode(unsigned Opc
, unsigned &Spacing
) {
6901 default: llvm_unreachable("unexpected opcode!");
6903 case ARM::VST1LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST1LNd8_UPD
;
6904 case ARM::VST1LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST1LNd16_UPD
;
6905 case ARM::VST1LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST1LNd32_UPD
;
6906 case ARM::VST1LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST1LNd8_UPD
;
6907 case ARM::VST1LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST1LNd16_UPD
;
6908 case ARM::VST1LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST1LNd32_UPD
;
6909 case ARM::VST1LNdAsm_8
: Spacing
= 1; return ARM::VST1LNd8
;
6910 case ARM::VST1LNdAsm_16
: Spacing
= 1; return ARM::VST1LNd16
;
6911 case ARM::VST1LNdAsm_32
: Spacing
= 1; return ARM::VST1LNd32
;
6914 case ARM::VST2LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST2LNd8_UPD
;
6915 case ARM::VST2LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST2LNd16_UPD
;
6916 case ARM::VST2LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST2LNd32_UPD
;
6917 case ARM::VST2LNqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST2LNq16_UPD
;
6918 case ARM::VST2LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST2LNq32_UPD
;
6920 case ARM::VST2LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST2LNd8_UPD
;
6921 case ARM::VST2LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST2LNd16_UPD
;
6922 case ARM::VST2LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST2LNd32_UPD
;
6923 case ARM::VST2LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST2LNq16_UPD
;
6924 case ARM::VST2LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST2LNq32_UPD
;
6926 case ARM::VST2LNdAsm_8
: Spacing
= 1; return ARM::VST2LNd8
;
6927 case ARM::VST2LNdAsm_16
: Spacing
= 1; return ARM::VST2LNd16
;
6928 case ARM::VST2LNdAsm_32
: Spacing
= 1; return ARM::VST2LNd32
;
6929 case ARM::VST2LNqAsm_16
: Spacing
= 2; return ARM::VST2LNq16
;
6930 case ARM::VST2LNqAsm_32
: Spacing
= 2; return ARM::VST2LNq32
;
6933 case ARM::VST3LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST3LNd8_UPD
;
6934 case ARM::VST3LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3LNd16_UPD
;
6935 case ARM::VST3LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST3LNd32_UPD
;
6936 case ARM::VST3LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3LNq16_UPD
;
6937 case ARM::VST3LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST3LNq32_UPD
;
6938 case ARM::VST3LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST3LNd8_UPD
;
6939 case ARM::VST3LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST3LNd16_UPD
;
6940 case ARM::VST3LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST3LNd32_UPD
;
6941 case ARM::VST3LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST3LNq16_UPD
;
6942 case ARM::VST3LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST3LNq32_UPD
;
6943 case ARM::VST3LNdAsm_8
: Spacing
= 1; return ARM::VST3LNd8
;
6944 case ARM::VST3LNdAsm_16
: Spacing
= 1; return ARM::VST3LNd16
;
6945 case ARM::VST3LNdAsm_32
: Spacing
= 1; return ARM::VST3LNd32
;
6946 case ARM::VST3LNqAsm_16
: Spacing
= 2; return ARM::VST3LNq16
;
6947 case ARM::VST3LNqAsm_32
: Spacing
= 2; return ARM::VST3LNq32
;
6950 case ARM::VST3dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST3d8_UPD
;
6951 case ARM::VST3dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3d16_UPD
;
6952 case ARM::VST3dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST3d32_UPD
;
6953 case ARM::VST3qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VST3q8_UPD
;
6954 case ARM::VST3qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST3q16_UPD
;
6955 case ARM::VST3qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST3q32_UPD
;
6956 case ARM::VST3dWB_register_Asm_8
: Spacing
= 1; return ARM::VST3d8_UPD
;
6957 case ARM::VST3dWB_register_Asm_16
: Spacing
= 1; return ARM::VST3d16_UPD
;
6958 case ARM::VST3dWB_register_Asm_32
: Spacing
= 1; return ARM::VST3d32_UPD
;
6959 case ARM::VST3qWB_register_Asm_8
: Spacing
= 2; return ARM::VST3q8_UPD
;
6960 case ARM::VST3qWB_register_Asm_16
: Spacing
= 2; return ARM::VST3q16_UPD
;
6961 case ARM::VST3qWB_register_Asm_32
: Spacing
= 2; return ARM::VST3q32_UPD
;
6962 case ARM::VST3dAsm_8
: Spacing
= 1; return ARM::VST3d8
;
6963 case ARM::VST3dAsm_16
: Spacing
= 1; return ARM::VST3d16
;
6964 case ARM::VST3dAsm_32
: Spacing
= 1; return ARM::VST3d32
;
6965 case ARM::VST3qAsm_8
: Spacing
= 2; return ARM::VST3q8
;
6966 case ARM::VST3qAsm_16
: Spacing
= 2; return ARM::VST3q16
;
6967 case ARM::VST3qAsm_32
: Spacing
= 2; return ARM::VST3q32
;
6970 case ARM::VST4LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST4LNd8_UPD
;
6971 case ARM::VST4LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4LNd16_UPD
;
6972 case ARM::VST4LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST4LNd32_UPD
;
6973 case ARM::VST4LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4LNq16_UPD
;
6974 case ARM::VST4LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST4LNq32_UPD
;
6975 case ARM::VST4LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST4LNd8_UPD
;
6976 case ARM::VST4LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST4LNd16_UPD
;
6977 case ARM::VST4LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST4LNd32_UPD
;
6978 case ARM::VST4LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST4LNq16_UPD
;
6979 case ARM::VST4LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST4LNq32_UPD
;
6980 case ARM::VST4LNdAsm_8
: Spacing
= 1; return ARM::VST4LNd8
;
6981 case ARM::VST4LNdAsm_16
: Spacing
= 1; return ARM::VST4LNd16
;
6982 case ARM::VST4LNdAsm_32
: Spacing
= 1; return ARM::VST4LNd32
;
6983 case ARM::VST4LNqAsm_16
: Spacing
= 2; return ARM::VST4LNq16
;
6984 case ARM::VST4LNqAsm_32
: Spacing
= 2; return ARM::VST4LNq32
;
6987 case ARM::VST4dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST4d8_UPD
;
6988 case ARM::VST4dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4d16_UPD
;
6989 case ARM::VST4dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST4d32_UPD
;
6990 case ARM::VST4qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VST4q8_UPD
;
6991 case ARM::VST4qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST4q16_UPD
;
6992 case ARM::VST4qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST4q32_UPD
;
6993 case ARM::VST4dWB_register_Asm_8
: Spacing
= 1; return ARM::VST4d8_UPD
;
6994 case ARM::VST4dWB_register_Asm_16
: Spacing
= 1; return ARM::VST4d16_UPD
;
6995 case ARM::VST4dWB_register_Asm_32
: Spacing
= 1; return ARM::VST4d32_UPD
;
6996 case ARM::VST4qWB_register_Asm_8
: Spacing
= 2; return ARM::VST4q8_UPD
;
6997 case ARM::VST4qWB_register_Asm_16
: Spacing
= 2; return ARM::VST4q16_UPD
;
6998 case ARM::VST4qWB_register_Asm_32
: Spacing
= 2; return ARM::VST4q32_UPD
;
6999 case ARM::VST4dAsm_8
: Spacing
= 1; return ARM::VST4d8
;
7000 case ARM::VST4dAsm_16
: Spacing
= 1; return ARM::VST4d16
;
7001 case ARM::VST4dAsm_32
: Spacing
= 1; return ARM::VST4d32
;
7002 case ARM::VST4qAsm_8
: Spacing
= 2; return ARM::VST4q8
;
7003 case ARM::VST4qAsm_16
: Spacing
= 2; return ARM::VST4q16
;
7004 case ARM::VST4qAsm_32
: Spacing
= 2; return ARM::VST4q32
;
7008 static unsigned getRealVLDOpcode(unsigned Opc
, unsigned &Spacing
) {
7010 default: llvm_unreachable("unexpected opcode!");
7012 case ARM::VLD1LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD1LNd8_UPD
;
7013 case ARM::VLD1LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD1LNd16_UPD
;
7014 case ARM::VLD1LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD1LNd32_UPD
;
7015 case ARM::VLD1LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD1LNd8_UPD
;
7016 case ARM::VLD1LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD1LNd16_UPD
;
7017 case ARM::VLD1LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD1LNd32_UPD
;
7018 case ARM::VLD1LNdAsm_8
: Spacing
= 1; return ARM::VLD1LNd8
;
7019 case ARM::VLD1LNdAsm_16
: Spacing
= 1; return ARM::VLD1LNd16
;
7020 case ARM::VLD1LNdAsm_32
: Spacing
= 1; return ARM::VLD1LNd32
;
7023 case ARM::VLD2LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD2LNd8_UPD
;
7024 case ARM::VLD2LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD2LNd16_UPD
;
7025 case ARM::VLD2LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD2LNd32_UPD
;
7026 case ARM::VLD2LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD2LNq16_UPD
;
7027 case ARM::VLD2LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD2LNq32_UPD
;
7028 case ARM::VLD2LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD2LNd8_UPD
;
7029 case ARM::VLD2LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD2LNd16_UPD
;
7030 case ARM::VLD2LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD2LNd32_UPD
;
7031 case ARM::VLD2LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD2LNq16_UPD
;
7032 case ARM::VLD2LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD2LNq32_UPD
;
7033 case ARM::VLD2LNdAsm_8
: Spacing
= 1; return ARM::VLD2LNd8
;
7034 case ARM::VLD2LNdAsm_16
: Spacing
= 1; return ARM::VLD2LNd16
;
7035 case ARM::VLD2LNdAsm_32
: Spacing
= 1; return ARM::VLD2LNd32
;
7036 case ARM::VLD2LNqAsm_16
: Spacing
= 2; return ARM::VLD2LNq16
;
7037 case ARM::VLD2LNqAsm_32
: Spacing
= 2; return ARM::VLD2LNq32
;
7040 case ARM::VLD3DUPdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3DUPd8_UPD
;
7041 case ARM::VLD3DUPdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3DUPd16_UPD
;
7042 case ARM::VLD3DUPdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3DUPd32_UPD
;
7043 case ARM::VLD3DUPqWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3DUPq8_UPD
;
7044 case ARM::VLD3DUPqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD3DUPq16_UPD
;
7045 case ARM::VLD3DUPqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3DUPq32_UPD
;
7046 case ARM::VLD3DUPdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3DUPd8_UPD
;
7047 case ARM::VLD3DUPdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3DUPd16_UPD
;
7048 case ARM::VLD3DUPdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3DUPd32_UPD
;
7049 case ARM::VLD3DUPqWB_register_Asm_8
: Spacing
= 2; return ARM::VLD3DUPq8_UPD
;
7050 case ARM::VLD3DUPqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3DUPq16_UPD
;
7051 case ARM::VLD3DUPqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3DUPq32_UPD
;
7052 case ARM::VLD3DUPdAsm_8
: Spacing
= 1; return ARM::VLD3DUPd8
;
7053 case ARM::VLD3DUPdAsm_16
: Spacing
= 1; return ARM::VLD3DUPd16
;
7054 case ARM::VLD3DUPdAsm_32
: Spacing
= 1; return ARM::VLD3DUPd32
;
7055 case ARM::VLD3DUPqAsm_8
: Spacing
= 2; return ARM::VLD3DUPq8
;
7056 case ARM::VLD3DUPqAsm_16
: Spacing
= 2; return ARM::VLD3DUPq16
;
7057 case ARM::VLD3DUPqAsm_32
: Spacing
= 2; return ARM::VLD3DUPq32
;
7060 case ARM::VLD3LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3LNd8_UPD
;
7061 case ARM::VLD3LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3LNd16_UPD
;
7062 case ARM::VLD3LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3LNd32_UPD
;
7063 case ARM::VLD3LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3LNq16_UPD
;
7064 case ARM::VLD3LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3LNq32_UPD
;
7065 case ARM::VLD3LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3LNd8_UPD
;
7066 case ARM::VLD3LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3LNd16_UPD
;
7067 case ARM::VLD3LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3LNd32_UPD
;
7068 case ARM::VLD3LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3LNq16_UPD
;
7069 case ARM::VLD3LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3LNq32_UPD
;
7070 case ARM::VLD3LNdAsm_8
: Spacing
= 1; return ARM::VLD3LNd8
;
7071 case ARM::VLD3LNdAsm_16
: Spacing
= 1; return ARM::VLD3LNd16
;
7072 case ARM::VLD3LNdAsm_32
: Spacing
= 1; return ARM::VLD3LNd32
;
7073 case ARM::VLD3LNqAsm_16
: Spacing
= 2; return ARM::VLD3LNq16
;
7074 case ARM::VLD3LNqAsm_32
: Spacing
= 2; return ARM::VLD3LNq32
;
7077 case ARM::VLD3dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3d8_UPD
;
7078 case ARM::VLD3dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3d16_UPD
;
7079 case ARM::VLD3dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3d32_UPD
;
7080 case ARM::VLD3qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VLD3q8_UPD
;
7081 case ARM::VLD3qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD3q16_UPD
;
7082 case ARM::VLD3qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3q32_UPD
;
7083 case ARM::VLD3dWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3d8_UPD
;
7084 case ARM::VLD3dWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3d16_UPD
;
7085 case ARM::VLD3dWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3d32_UPD
;
7086 case ARM::VLD3qWB_register_Asm_8
: Spacing
= 2; return ARM::VLD3q8_UPD
;
7087 case ARM::VLD3qWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3q16_UPD
;
7088 case ARM::VLD3qWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3q32_UPD
;
7089 case ARM::VLD3dAsm_8
: Spacing
= 1; return ARM::VLD3d8
;
7090 case ARM::VLD3dAsm_16
: Spacing
= 1; return ARM::VLD3d16
;
7091 case ARM::VLD3dAsm_32
: Spacing
= 1; return ARM::VLD3d32
;
7092 case ARM::VLD3qAsm_8
: Spacing
= 2; return ARM::VLD3q8
;
7093 case ARM::VLD3qAsm_16
: Spacing
= 2; return ARM::VLD3q16
;
7094 case ARM::VLD3qAsm_32
: Spacing
= 2; return ARM::VLD3q32
;
7097 case ARM::VLD4LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4LNd8_UPD
;
7098 case ARM::VLD4LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4LNd16_UPD
;
7099 case ARM::VLD4LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4LNd32_UPD
;
7100 case ARM::VLD4LNqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD4LNq16_UPD
;
7101 case ARM::VLD4LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4LNq32_UPD
;
7102 case ARM::VLD4LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4LNd8_UPD
;
7103 case ARM::VLD4LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4LNd16_UPD
;
7104 case ARM::VLD4LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4LNd32_UPD
;
7105 case ARM::VLD4LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4LNq16_UPD
;
7106 case ARM::VLD4LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4LNq32_UPD
;
7107 case ARM::VLD4LNdAsm_8
: Spacing
= 1; return ARM::VLD4LNd8
;
7108 case ARM::VLD4LNdAsm_16
: Spacing
= 1; return ARM::VLD4LNd16
;
7109 case ARM::VLD4LNdAsm_32
: Spacing
= 1; return ARM::VLD4LNd32
;
7110 case ARM::VLD4LNqAsm_16
: Spacing
= 2; return ARM::VLD4LNq16
;
7111 case ARM::VLD4LNqAsm_32
: Spacing
= 2; return ARM::VLD4LNq32
;
7114 case ARM::VLD4DUPdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4DUPd8_UPD
;
7115 case ARM::VLD4DUPdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4DUPd16_UPD
;
7116 case ARM::VLD4DUPdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4DUPd32_UPD
;
7117 case ARM::VLD4DUPqWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4DUPq8_UPD
;
7118 case ARM::VLD4DUPqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4DUPq16_UPD
;
7119 case ARM::VLD4DUPqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4DUPq32_UPD
;
7120 case ARM::VLD4DUPdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4DUPd8_UPD
;
7121 case ARM::VLD4DUPdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4DUPd16_UPD
;
7122 case ARM::VLD4DUPdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4DUPd32_UPD
;
7123 case ARM::VLD4DUPqWB_register_Asm_8
: Spacing
= 2; return ARM::VLD4DUPq8_UPD
;
7124 case ARM::VLD4DUPqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4DUPq16_UPD
;
7125 case ARM::VLD4DUPqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4DUPq32_UPD
;
7126 case ARM::VLD4DUPdAsm_8
: Spacing
= 1; return ARM::VLD4DUPd8
;
7127 case ARM::VLD4DUPdAsm_16
: Spacing
= 1; return ARM::VLD4DUPd16
;
7128 case ARM::VLD4DUPdAsm_32
: Spacing
= 1; return ARM::VLD4DUPd32
;
7129 case ARM::VLD4DUPqAsm_8
: Spacing
= 2; return ARM::VLD4DUPq8
;
7130 case ARM::VLD4DUPqAsm_16
: Spacing
= 2; return ARM::VLD4DUPq16
;
7131 case ARM::VLD4DUPqAsm_32
: Spacing
= 2; return ARM::VLD4DUPq32
;
7134 case ARM::VLD4dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4d8_UPD
;
7135 case ARM::VLD4dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4d16_UPD
;
7136 case ARM::VLD4dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4d32_UPD
;
7137 case ARM::VLD4qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VLD4q8_UPD
;
7138 case ARM::VLD4qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD4q16_UPD
;
7139 case ARM::VLD4qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4q32_UPD
;
7140 case ARM::VLD4dWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4d8_UPD
;
7141 case ARM::VLD4dWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4d16_UPD
;
7142 case ARM::VLD4dWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4d32_UPD
;
7143 case ARM::VLD4qWB_register_Asm_8
: Spacing
= 2; return ARM::VLD4q8_UPD
;
7144 case ARM::VLD4qWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4q16_UPD
;
7145 case ARM::VLD4qWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4q32_UPD
;
7146 case ARM::VLD4dAsm_8
: Spacing
= 1; return ARM::VLD4d8
;
7147 case ARM::VLD4dAsm_16
: Spacing
= 1; return ARM::VLD4d16
;
7148 case ARM::VLD4dAsm_32
: Spacing
= 1; return ARM::VLD4d32
;
7149 case ARM::VLD4qAsm_8
: Spacing
= 2; return ARM::VLD4q8
;
7150 case ARM::VLD4qAsm_16
: Spacing
= 2; return ARM::VLD4q16
;
7151 case ARM::VLD4qAsm_32
: Spacing
= 2; return ARM::VLD4q32
;
7155 bool ARMAsmParser::processInstruction(MCInst
&Inst
,
7156 const OperandVector
&Operands
,
7158 // Check if we have the wide qualifier, because if it's present we
7159 // must avoid selecting a 16-bit thumb instruction.
7160 bool HasWideQualifier
= false;
7161 for (auto &Op
: Operands
) {
7162 ARMOperand
&ARMOp
= static_cast<ARMOperand
&>(*Op
);
7163 if (ARMOp
.isToken() && ARMOp
.getToken() == ".w") {
7164 HasWideQualifier
= true;
7169 switch (Inst
.getOpcode()) {
7170 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
7171 case ARM::LDRT_POST
:
7172 case ARM::LDRBT_POST
: {
7173 const unsigned Opcode
=
7174 (Inst
.getOpcode() == ARM::LDRT_POST
) ? ARM::LDRT_POST_IMM
7175 : ARM::LDRBT_POST_IMM
;
7177 TmpInst
.setOpcode(Opcode
);
7178 TmpInst
.addOperand(Inst
.getOperand(0));
7179 TmpInst
.addOperand(Inst
.getOperand(1));
7180 TmpInst
.addOperand(Inst
.getOperand(1));
7181 TmpInst
.addOperand(MCOperand::createReg(0));
7182 TmpInst
.addOperand(MCOperand::createImm(0));
7183 TmpInst
.addOperand(Inst
.getOperand(2));
7184 TmpInst
.addOperand(Inst
.getOperand(3));
7188 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
7189 case ARM::STRT_POST
:
7190 case ARM::STRBT_POST
: {
7191 const unsigned Opcode
=
7192 (Inst
.getOpcode() == ARM::STRT_POST
) ? ARM::STRT_POST_IMM
7193 : ARM::STRBT_POST_IMM
;
7195 TmpInst
.setOpcode(Opcode
);
7196 TmpInst
.addOperand(Inst
.getOperand(1));
7197 TmpInst
.addOperand(Inst
.getOperand(0));
7198 TmpInst
.addOperand(Inst
.getOperand(1));
7199 TmpInst
.addOperand(MCOperand::createReg(0));
7200 TmpInst
.addOperand(MCOperand::createImm(0));
7201 TmpInst
.addOperand(Inst
.getOperand(2));
7202 TmpInst
.addOperand(Inst
.getOperand(3));
7206 // Alias for alternate form of 'ADR Rd, #imm' instruction.
7208 if (Inst
.getOperand(1).getReg() != ARM::PC
||
7209 Inst
.getOperand(5).getReg() != 0 ||
7210 !(Inst
.getOperand(2).isExpr() || Inst
.getOperand(2).isImm()))
7213 TmpInst
.setOpcode(ARM::ADR
);
7214 TmpInst
.addOperand(Inst
.getOperand(0));
7215 if (Inst
.getOperand(2).isImm()) {
7216 // Immediate (mod_imm) will be in its encoded form, we must unencode it
7217 // before passing it to the ADR instruction.
7218 unsigned Enc
= Inst
.getOperand(2).getImm();
7219 TmpInst
.addOperand(MCOperand::createImm(
7220 ARM_AM::rotr32(Enc
& 0xFF, (Enc
& 0xF00) >> 7)));
7222 // Turn PC-relative expression into absolute expression.
7223 // Reading PC provides the start of the current instruction + 8 and
7224 // the transform to adr is biased by that.
7225 MCSymbol
*Dot
= getContext().createTempSymbol();
7227 const MCExpr
*OpExpr
= Inst
.getOperand(2).getExpr();
7228 const MCExpr
*InstPC
= MCSymbolRefExpr::create(Dot
,
7229 MCSymbolRefExpr::VK_None
,
7231 const MCExpr
*Const8
= MCConstantExpr::create(8, getContext());
7232 const MCExpr
*ReadPC
= MCBinaryExpr::createAdd(InstPC
, Const8
,
7234 const MCExpr
*FixupAddr
= MCBinaryExpr::createAdd(ReadPC
, OpExpr
,
7236 TmpInst
.addOperand(MCOperand::createExpr(FixupAddr
));
7238 TmpInst
.addOperand(Inst
.getOperand(3));
7239 TmpInst
.addOperand(Inst
.getOperand(4));
7243 // Aliases for alternate PC+imm syntax of LDR instructions.
7244 case ARM::t2LDRpcrel
:
7245 // Select the narrow version if the immediate will fit.
7246 if (Inst
.getOperand(1).getImm() > 0 &&
7247 Inst
.getOperand(1).getImm() <= 0xff &&
7249 Inst
.setOpcode(ARM::tLDRpci
);
7251 Inst
.setOpcode(ARM::t2LDRpci
);
7253 case ARM::t2LDRBpcrel
:
7254 Inst
.setOpcode(ARM::t2LDRBpci
);
7256 case ARM::t2LDRHpcrel
:
7257 Inst
.setOpcode(ARM::t2LDRHpci
);
7259 case ARM::t2LDRSBpcrel
:
7260 Inst
.setOpcode(ARM::t2LDRSBpci
);
7262 case ARM::t2LDRSHpcrel
:
7263 Inst
.setOpcode(ARM::t2LDRSHpci
);
7265 case ARM::LDRConstPool
:
7266 case ARM::tLDRConstPool
:
7267 case ARM::t2LDRConstPool
: {
7268 // Pseudo instruction ldr rt, =immediate is converted to a
7269 // MOV rt, immediate if immediate is known and representable
7270 // otherwise we create a constant pool entry that we load from.
7272 if (Inst
.getOpcode() == ARM::LDRConstPool
)
7273 TmpInst
.setOpcode(ARM::LDRi12
);
7274 else if (Inst
.getOpcode() == ARM::tLDRConstPool
)
7275 TmpInst
.setOpcode(ARM::tLDRpci
);
7276 else if (Inst
.getOpcode() == ARM::t2LDRConstPool
)
7277 TmpInst
.setOpcode(ARM::t2LDRpci
);
7278 const ARMOperand
&PoolOperand
=
7280 static_cast<ARMOperand
&>(*Operands
[4]) :
7281 static_cast<ARMOperand
&>(*Operands
[3]));
7282 const MCExpr
*SubExprVal
= PoolOperand
.getConstantPoolImm();
7283 // If SubExprVal is a constant we may be able to use a MOV
7284 if (isa
<MCConstantExpr
>(SubExprVal
) &&
7285 Inst
.getOperand(0).getReg() != ARM::PC
&&
7286 Inst
.getOperand(0).getReg() != ARM::SP
) {
7288 (int64_t) (cast
<MCConstantExpr
>(SubExprVal
))->getValue();
7290 bool MovHasS
= true;
7291 if (Inst
.getOpcode() == ARM::LDRConstPool
) {
7293 if (ARM_AM::getSOImmVal(Value
) != -1) {
7294 Value
= ARM_AM::getSOImmVal(Value
);
7295 TmpInst
.setOpcode(ARM::MOVi
);
7297 else if (ARM_AM::getSOImmVal(~Value
) != -1) {
7298 Value
= ARM_AM::getSOImmVal(~Value
);
7299 TmpInst
.setOpcode(ARM::MVNi
);
7301 else if (hasV6T2Ops() &&
7302 Value
>=0 && Value
< 65536) {
7303 TmpInst
.setOpcode(ARM::MOVi16
);
7310 // Thumb/Thumb2 Constant
7312 ARM_AM::getT2SOImmVal(Value
) != -1)
7313 TmpInst
.setOpcode(ARM::t2MOVi
);
7314 else if (hasThumb2() &&
7315 ARM_AM::getT2SOImmVal(~Value
) != -1) {
7316 TmpInst
.setOpcode(ARM::t2MVNi
);
7319 else if (hasV8MBaseline() &&
7320 Value
>=0 && Value
< 65536) {
7321 TmpInst
.setOpcode(ARM::t2MOVi16
);
7328 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
7329 TmpInst
.addOperand(MCOperand::createImm(Value
)); // Immediate
7330 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
7331 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
7333 TmpInst
.addOperand(MCOperand::createReg(0)); // S
7338 // No opportunity to use MOV/MVN create constant pool
7339 const MCExpr
*CPLoc
=
7340 getTargetStreamer().addConstantPoolEntry(SubExprVal
,
7341 PoolOperand
.getStartLoc());
7342 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
7343 TmpInst
.addOperand(MCOperand::createExpr(CPLoc
)); // offset to constpool
7344 if (TmpInst
.getOpcode() == ARM::LDRi12
)
7345 TmpInst
.addOperand(MCOperand::createImm(0)); // unused offset
7346 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
7347 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
7351 // Handle NEON VST complex aliases.
7352 case ARM::VST1LNdWB_register_Asm_8
:
7353 case ARM::VST1LNdWB_register_Asm_16
:
7354 case ARM::VST1LNdWB_register_Asm_32
: {
7356 // Shuffle the operands around so the lane index operand is in the
7359 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7360 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7361 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7362 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7363 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7364 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7365 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7366 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7367 TmpInst
.addOperand(Inst
.getOperand(6));
7372 case ARM::VST2LNdWB_register_Asm_8
:
7373 case ARM::VST2LNdWB_register_Asm_16
:
7374 case ARM::VST2LNdWB_register_Asm_32
:
7375 case ARM::VST2LNqWB_register_Asm_16
:
7376 case ARM::VST2LNqWB_register_Asm_32
: {
7378 // Shuffle the operands around so the lane index operand is in the
7381 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7382 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7383 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7384 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7385 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7386 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7387 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7389 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7390 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7391 TmpInst
.addOperand(Inst
.getOperand(6));
7396 case ARM::VST3LNdWB_register_Asm_8
:
7397 case ARM::VST3LNdWB_register_Asm_16
:
7398 case ARM::VST3LNdWB_register_Asm_32
:
7399 case ARM::VST3LNqWB_register_Asm_16
:
7400 case ARM::VST3LNqWB_register_Asm_32
: {
7402 // Shuffle the operands around so the lane index operand is in the
7405 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7406 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7407 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7408 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7409 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7410 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7411 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7413 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7415 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7416 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7417 TmpInst
.addOperand(Inst
.getOperand(6));
7422 case ARM::VST4LNdWB_register_Asm_8
:
7423 case ARM::VST4LNdWB_register_Asm_16
:
7424 case ARM::VST4LNdWB_register_Asm_32
:
7425 case ARM::VST4LNqWB_register_Asm_16
:
7426 case ARM::VST4LNqWB_register_Asm_32
: {
7428 // Shuffle the operands around so the lane index operand is in the
7431 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7432 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7433 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7434 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7435 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7436 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7437 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7439 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7441 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7443 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7444 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7445 TmpInst
.addOperand(Inst
.getOperand(6));
7450 case ARM::VST1LNdWB_fixed_Asm_8
:
7451 case ARM::VST1LNdWB_fixed_Asm_16
:
7452 case ARM::VST1LNdWB_fixed_Asm_32
: {
7454 // Shuffle the operands around so the lane index operand is in the
7457 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7458 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7459 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7460 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7461 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7462 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7463 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7464 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7465 TmpInst
.addOperand(Inst
.getOperand(5));
7470 case ARM::VST2LNdWB_fixed_Asm_8
:
7471 case ARM::VST2LNdWB_fixed_Asm_16
:
7472 case ARM::VST2LNdWB_fixed_Asm_32
:
7473 case ARM::VST2LNqWB_fixed_Asm_16
:
7474 case ARM::VST2LNqWB_fixed_Asm_32
: {
7476 // Shuffle the operands around so the lane index operand is in the
7479 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7480 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7481 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7482 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7483 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7484 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7485 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7487 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7488 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7489 TmpInst
.addOperand(Inst
.getOperand(5));
7494 case ARM::VST3LNdWB_fixed_Asm_8
:
7495 case ARM::VST3LNdWB_fixed_Asm_16
:
7496 case ARM::VST3LNdWB_fixed_Asm_32
:
7497 case ARM::VST3LNqWB_fixed_Asm_16
:
7498 case ARM::VST3LNqWB_fixed_Asm_32
: {
7500 // Shuffle the operands around so the lane index operand is in the
7503 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7504 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7505 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7506 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7507 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7508 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7509 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7511 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7513 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7514 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7515 TmpInst
.addOperand(Inst
.getOperand(5));
7520 case ARM::VST4LNdWB_fixed_Asm_8
:
7521 case ARM::VST4LNdWB_fixed_Asm_16
:
7522 case ARM::VST4LNdWB_fixed_Asm_32
:
7523 case ARM::VST4LNqWB_fixed_Asm_16
:
7524 case ARM::VST4LNqWB_fixed_Asm_32
: {
7526 // Shuffle the operands around so the lane index operand is in the
7529 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7530 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7531 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7532 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7533 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7534 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7535 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7537 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7539 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7541 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7542 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7543 TmpInst
.addOperand(Inst
.getOperand(5));
7548 case ARM::VST1LNdAsm_8
:
7549 case ARM::VST1LNdAsm_16
:
7550 case ARM::VST1LNdAsm_32
: {
7552 // Shuffle the operands around so the lane index operand is in the
7555 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7556 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7557 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7558 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7559 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7560 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7561 TmpInst
.addOperand(Inst
.getOperand(5));
7566 case ARM::VST2LNdAsm_8
:
7567 case ARM::VST2LNdAsm_16
:
7568 case ARM::VST2LNdAsm_32
:
7569 case ARM::VST2LNqAsm_16
:
7570 case ARM::VST2LNqAsm_32
: {
7572 // Shuffle the operands around so the lane index operand is in the
7575 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7576 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7577 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7578 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7579 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7581 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7582 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7583 TmpInst
.addOperand(Inst
.getOperand(5));
7588 case ARM::VST3LNdAsm_8
:
7589 case ARM::VST3LNdAsm_16
:
7590 case ARM::VST3LNdAsm_32
:
7591 case ARM::VST3LNqAsm_16
:
7592 case ARM::VST3LNqAsm_32
: {
7594 // Shuffle the operands around so the lane index operand is in the
7597 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7598 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7599 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7600 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7601 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7603 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7605 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7606 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7607 TmpInst
.addOperand(Inst
.getOperand(5));
7612 case ARM::VST4LNdAsm_8
:
7613 case ARM::VST4LNdAsm_16
:
7614 case ARM::VST4LNdAsm_32
:
7615 case ARM::VST4LNqAsm_16
:
7616 case ARM::VST4LNqAsm_32
: {
7618 // Shuffle the operands around so the lane index operand is in the
7621 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7622 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7623 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7624 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7625 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7627 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7629 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7631 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7632 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7633 TmpInst
.addOperand(Inst
.getOperand(5));
7638 // Handle NEON VLD complex aliases.
7639 case ARM::VLD1LNdWB_register_Asm_8
:
7640 case ARM::VLD1LNdWB_register_Asm_16
:
7641 case ARM::VLD1LNdWB_register_Asm_32
: {
7643 // Shuffle the operands around so the lane index operand is in the
7646 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7647 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7648 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7649 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7650 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7651 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7652 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7653 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7654 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7655 TmpInst
.addOperand(Inst
.getOperand(6));
7660 case ARM::VLD2LNdWB_register_Asm_8
:
7661 case ARM::VLD2LNdWB_register_Asm_16
:
7662 case ARM::VLD2LNdWB_register_Asm_32
:
7663 case ARM::VLD2LNqWB_register_Asm_16
:
7664 case ARM::VLD2LNqWB_register_Asm_32
: {
7666 // Shuffle the operands around so the lane index operand is in the
7669 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7670 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7671 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7673 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7674 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7675 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7676 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7677 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7678 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7680 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7681 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7682 TmpInst
.addOperand(Inst
.getOperand(6));
7687 case ARM::VLD3LNdWB_register_Asm_8
:
7688 case ARM::VLD3LNdWB_register_Asm_16
:
7689 case ARM::VLD3LNdWB_register_Asm_32
:
7690 case ARM::VLD3LNqWB_register_Asm_16
:
7691 case ARM::VLD3LNqWB_register_Asm_32
: {
7693 // Shuffle the operands around so the lane index operand is in the
7696 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7697 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7698 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7700 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7702 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7703 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7704 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7705 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7706 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7707 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7709 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7711 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7712 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7713 TmpInst
.addOperand(Inst
.getOperand(6));
7718 case ARM::VLD4LNdWB_register_Asm_8
:
7719 case ARM::VLD4LNdWB_register_Asm_16
:
7720 case ARM::VLD4LNdWB_register_Asm_32
:
7721 case ARM::VLD4LNqWB_register_Asm_16
:
7722 case ARM::VLD4LNqWB_register_Asm_32
: {
7724 // Shuffle the operands around so the lane index operand is in the
7727 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7728 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7729 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7731 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7733 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7735 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7736 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7737 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7738 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7739 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7740 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7742 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7744 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7746 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7747 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7748 TmpInst
.addOperand(Inst
.getOperand(6));
7753 case ARM::VLD1LNdWB_fixed_Asm_8
:
7754 case ARM::VLD1LNdWB_fixed_Asm_16
:
7755 case ARM::VLD1LNdWB_fixed_Asm_32
: {
7757 // Shuffle the operands around so the lane index operand is in the
7760 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7761 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7762 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7763 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7764 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7765 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7766 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7767 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7768 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7769 TmpInst
.addOperand(Inst
.getOperand(5));
7774 case ARM::VLD2LNdWB_fixed_Asm_8
:
7775 case ARM::VLD2LNdWB_fixed_Asm_16
:
7776 case ARM::VLD2LNdWB_fixed_Asm_32
:
7777 case ARM::VLD2LNqWB_fixed_Asm_16
:
7778 case ARM::VLD2LNqWB_fixed_Asm_32
: {
7780 // Shuffle the operands around so the lane index operand is in the
7783 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7784 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7785 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7787 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7788 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7789 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7790 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7791 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7792 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7794 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7795 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7796 TmpInst
.addOperand(Inst
.getOperand(5));
7801 case ARM::VLD3LNdWB_fixed_Asm_8
:
7802 case ARM::VLD3LNdWB_fixed_Asm_16
:
7803 case ARM::VLD3LNdWB_fixed_Asm_32
:
7804 case ARM::VLD3LNqWB_fixed_Asm_16
:
7805 case ARM::VLD3LNqWB_fixed_Asm_32
: {
7807 // Shuffle the operands around so the lane index operand is in the
7810 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7811 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7812 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7814 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7816 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7817 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7818 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7819 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7820 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7821 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7823 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7825 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7826 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7827 TmpInst
.addOperand(Inst
.getOperand(5));
7832 case ARM::VLD4LNdWB_fixed_Asm_8
:
7833 case ARM::VLD4LNdWB_fixed_Asm_16
:
7834 case ARM::VLD4LNdWB_fixed_Asm_32
:
7835 case ARM::VLD4LNqWB_fixed_Asm_16
:
7836 case ARM::VLD4LNqWB_fixed_Asm_32
: {
7838 // Shuffle the operands around so the lane index operand is in the
7841 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7842 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7843 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7845 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7847 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7849 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7850 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7851 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7852 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7853 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7854 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7856 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7858 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7860 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7861 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7862 TmpInst
.addOperand(Inst
.getOperand(5));
7867 case ARM::VLD1LNdAsm_8
:
7868 case ARM::VLD1LNdAsm_16
:
7869 case ARM::VLD1LNdAsm_32
: {
7871 // Shuffle the operands around so the lane index operand is in the
7874 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7875 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7876 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7877 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7878 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7879 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7880 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7881 TmpInst
.addOperand(Inst
.getOperand(5));
7886 case ARM::VLD2LNdAsm_8
:
7887 case ARM::VLD2LNdAsm_16
:
7888 case ARM::VLD2LNdAsm_32
:
7889 case ARM::VLD2LNqAsm_16
:
7890 case ARM::VLD2LNqAsm_32
: {
7892 // Shuffle the operands around so the lane index operand is in the
7895 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7896 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7897 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7899 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7900 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7901 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7902 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7904 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7905 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7906 TmpInst
.addOperand(Inst
.getOperand(5));
7911 case ARM::VLD3LNdAsm_8
:
7912 case ARM::VLD3LNdAsm_16
:
7913 case ARM::VLD3LNdAsm_32
:
7914 case ARM::VLD3LNqAsm_16
:
7915 case ARM::VLD3LNqAsm_32
: {
7917 // Shuffle the operands around so the lane index operand is in the
7920 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7921 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7922 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7924 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7926 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7927 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7928 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7929 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7931 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7933 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7934 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7935 TmpInst
.addOperand(Inst
.getOperand(5));
7940 case ARM::VLD4LNdAsm_8
:
7941 case ARM::VLD4LNdAsm_16
:
7942 case ARM::VLD4LNdAsm_32
:
7943 case ARM::VLD4LNqAsm_16
:
7944 case ARM::VLD4LNqAsm_32
: {
7946 // Shuffle the operands around so the lane index operand is in the
7949 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7950 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7951 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7953 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7955 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7957 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7958 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7959 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7960 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7962 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7964 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7966 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7967 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7968 TmpInst
.addOperand(Inst
.getOperand(5));
7973 // VLD3DUP single 3-element structure to all lanes instructions.
7974 case ARM::VLD3DUPdAsm_8
:
7975 case ARM::VLD3DUPdAsm_16
:
7976 case ARM::VLD3DUPdAsm_32
:
7977 case ARM::VLD3DUPqAsm_8
:
7978 case ARM::VLD3DUPqAsm_16
:
7979 case ARM::VLD3DUPqAsm_32
: {
7982 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7983 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7984 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7986 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7988 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
7989 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
7990 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
7991 TmpInst
.addOperand(Inst
.getOperand(4));
7996 case ARM::VLD3DUPdWB_fixed_Asm_8
:
7997 case ARM::VLD3DUPdWB_fixed_Asm_16
:
7998 case ARM::VLD3DUPdWB_fixed_Asm_32
:
7999 case ARM::VLD3DUPqWB_fixed_Asm_8
:
8000 case ARM::VLD3DUPqWB_fixed_Asm_16
:
8001 case ARM::VLD3DUPqWB_fixed_Asm_32
: {
8004 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8005 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8006 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8008 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8010 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8011 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8012 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8013 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8014 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8015 TmpInst
.addOperand(Inst
.getOperand(4));
8020 case ARM::VLD3DUPdWB_register_Asm_8
:
8021 case ARM::VLD3DUPdWB_register_Asm_16
:
8022 case ARM::VLD3DUPdWB_register_Asm_32
:
8023 case ARM::VLD3DUPqWB_register_Asm_8
:
8024 case ARM::VLD3DUPqWB_register_Asm_16
:
8025 case ARM::VLD3DUPqWB_register_Asm_32
: {
8028 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8029 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8030 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8032 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8034 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8035 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8036 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8037 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8038 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8039 TmpInst
.addOperand(Inst
.getOperand(5));
8044 // VLD3 multiple 3-element structure instructions.
8045 case ARM::VLD3dAsm_8
:
8046 case ARM::VLD3dAsm_16
:
8047 case ARM::VLD3dAsm_32
:
8048 case ARM::VLD3qAsm_8
:
8049 case ARM::VLD3qAsm_16
:
8050 case ARM::VLD3qAsm_32
: {
8053 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8054 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8055 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8057 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8059 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8060 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8061 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8062 TmpInst
.addOperand(Inst
.getOperand(4));
8067 case ARM::VLD3dWB_fixed_Asm_8
:
8068 case ARM::VLD3dWB_fixed_Asm_16
:
8069 case ARM::VLD3dWB_fixed_Asm_32
:
8070 case ARM::VLD3qWB_fixed_Asm_8
:
8071 case ARM::VLD3qWB_fixed_Asm_16
:
8072 case ARM::VLD3qWB_fixed_Asm_32
: {
8075 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8076 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8077 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8079 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8081 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8082 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8083 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8084 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8085 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8086 TmpInst
.addOperand(Inst
.getOperand(4));
8091 case ARM::VLD3dWB_register_Asm_8
:
8092 case ARM::VLD3dWB_register_Asm_16
:
8093 case ARM::VLD3dWB_register_Asm_32
:
8094 case ARM::VLD3qWB_register_Asm_8
:
8095 case ARM::VLD3qWB_register_Asm_16
:
8096 case ARM::VLD3qWB_register_Asm_32
: {
8099 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8100 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8101 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8103 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8105 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8106 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8107 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8108 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8109 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8110 TmpInst
.addOperand(Inst
.getOperand(5));
8115 // VLD4DUP single 3-element structure to all lanes instructions.
8116 case ARM::VLD4DUPdAsm_8
:
8117 case ARM::VLD4DUPdAsm_16
:
8118 case ARM::VLD4DUPdAsm_32
:
8119 case ARM::VLD4DUPqAsm_8
:
8120 case ARM::VLD4DUPqAsm_16
:
8121 case ARM::VLD4DUPqAsm_32
: {
8124 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8125 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8126 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8128 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8130 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8132 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8133 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8134 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8135 TmpInst
.addOperand(Inst
.getOperand(4));
8140 case ARM::VLD4DUPdWB_fixed_Asm_8
:
8141 case ARM::VLD4DUPdWB_fixed_Asm_16
:
8142 case ARM::VLD4DUPdWB_fixed_Asm_32
:
8143 case ARM::VLD4DUPqWB_fixed_Asm_8
:
8144 case ARM::VLD4DUPqWB_fixed_Asm_16
:
8145 case ARM::VLD4DUPqWB_fixed_Asm_32
: {
8148 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8149 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8150 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8152 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8154 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8156 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8157 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8158 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8159 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8160 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8161 TmpInst
.addOperand(Inst
.getOperand(4));
8166 case ARM::VLD4DUPdWB_register_Asm_8
:
8167 case ARM::VLD4DUPdWB_register_Asm_16
:
8168 case ARM::VLD4DUPdWB_register_Asm_32
:
8169 case ARM::VLD4DUPqWB_register_Asm_8
:
8170 case ARM::VLD4DUPqWB_register_Asm_16
:
8171 case ARM::VLD4DUPqWB_register_Asm_32
: {
8174 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8175 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8176 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8178 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8180 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8182 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8183 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8184 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8185 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8186 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8187 TmpInst
.addOperand(Inst
.getOperand(5));
8192 // VLD4 multiple 4-element structure instructions.
8193 case ARM::VLD4dAsm_8
:
8194 case ARM::VLD4dAsm_16
:
8195 case ARM::VLD4dAsm_32
:
8196 case ARM::VLD4qAsm_8
:
8197 case ARM::VLD4qAsm_16
:
8198 case ARM::VLD4qAsm_32
: {
8201 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8202 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8203 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8205 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8207 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8209 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8210 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8211 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8212 TmpInst
.addOperand(Inst
.getOperand(4));
8217 case ARM::VLD4dWB_fixed_Asm_8
:
8218 case ARM::VLD4dWB_fixed_Asm_16
:
8219 case ARM::VLD4dWB_fixed_Asm_32
:
8220 case ARM::VLD4qWB_fixed_Asm_8
:
8221 case ARM::VLD4qWB_fixed_Asm_16
:
8222 case ARM::VLD4qWB_fixed_Asm_32
: {
8225 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8226 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8227 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8229 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8231 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8233 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8234 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8235 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8236 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8237 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8238 TmpInst
.addOperand(Inst
.getOperand(4));
8243 case ARM::VLD4dWB_register_Asm_8
:
8244 case ARM::VLD4dWB_register_Asm_16
:
8245 case ARM::VLD4dWB_register_Asm_32
:
8246 case ARM::VLD4qWB_register_Asm_8
:
8247 case ARM::VLD4qWB_register_Asm_16
:
8248 case ARM::VLD4qWB_register_Asm_32
: {
8251 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8252 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8253 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8255 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8257 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8259 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8260 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8261 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8262 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8263 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8264 TmpInst
.addOperand(Inst
.getOperand(5));
8269 // VST3 multiple 3-element structure instructions.
8270 case ARM::VST3dAsm_8
:
8271 case ARM::VST3dAsm_16
:
8272 case ARM::VST3dAsm_32
:
8273 case ARM::VST3qAsm_8
:
8274 case ARM::VST3qAsm_16
:
8275 case ARM::VST3qAsm_32
: {
8278 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8279 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8280 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8281 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8282 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8284 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8286 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8287 TmpInst
.addOperand(Inst
.getOperand(4));
8292 case ARM::VST3dWB_fixed_Asm_8
:
8293 case ARM::VST3dWB_fixed_Asm_16
:
8294 case ARM::VST3dWB_fixed_Asm_32
:
8295 case ARM::VST3qWB_fixed_Asm_8
:
8296 case ARM::VST3qWB_fixed_Asm_16
:
8297 case ARM::VST3qWB_fixed_Asm_32
: {
8300 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8301 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8302 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8303 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8304 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8305 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8306 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8308 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8310 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8311 TmpInst
.addOperand(Inst
.getOperand(4));
8316 case ARM::VST3dWB_register_Asm_8
:
8317 case ARM::VST3dWB_register_Asm_16
:
8318 case ARM::VST3dWB_register_Asm_32
:
8319 case ARM::VST3qWB_register_Asm_8
:
8320 case ARM::VST3qWB_register_Asm_16
:
8321 case ARM::VST3qWB_register_Asm_32
: {
8324 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8325 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8326 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8327 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8328 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8329 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8330 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8332 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8334 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8335 TmpInst
.addOperand(Inst
.getOperand(5));
8340 // VST4 multiple 3-element structure instructions.
8341 case ARM::VST4dAsm_8
:
8342 case ARM::VST4dAsm_16
:
8343 case ARM::VST4dAsm_32
:
8344 case ARM::VST4qAsm_8
:
8345 case ARM::VST4qAsm_16
:
8346 case ARM::VST4qAsm_32
: {
8349 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8350 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8351 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8352 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8353 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8355 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8357 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8359 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8360 TmpInst
.addOperand(Inst
.getOperand(4));
8365 case ARM::VST4dWB_fixed_Asm_8
:
8366 case ARM::VST4dWB_fixed_Asm_16
:
8367 case ARM::VST4dWB_fixed_Asm_32
:
8368 case ARM::VST4qWB_fixed_Asm_8
:
8369 case ARM::VST4qWB_fixed_Asm_16
:
8370 case ARM::VST4qWB_fixed_Asm_32
: {
8373 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8374 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8375 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8376 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8377 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8378 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8379 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8381 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8383 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8385 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8386 TmpInst
.addOperand(Inst
.getOperand(4));
8391 case ARM::VST4dWB_register_Asm_8
:
8392 case ARM::VST4dWB_register_Asm_16
:
8393 case ARM::VST4dWB_register_Asm_32
:
8394 case ARM::VST4qWB_register_Asm_8
:
8395 case ARM::VST4qWB_register_Asm_16
:
8396 case ARM::VST4qWB_register_Asm_32
: {
8399 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8400 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8401 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8402 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8403 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8404 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8405 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8407 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8409 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8411 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8412 TmpInst
.addOperand(Inst
.getOperand(5));
8417 // Handle encoding choice for the shift-immediate instructions.
8421 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8422 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8423 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
8424 !HasWideQualifier
) {
8426 switch (Inst
.getOpcode()) {
8427 default: llvm_unreachable("unexpected opcode");
8428 case ARM::t2LSLri
: NewOpc
= ARM::tLSLri
; break;
8429 case ARM::t2LSRri
: NewOpc
= ARM::tLSRri
; break;
8430 case ARM::t2ASRri
: NewOpc
= ARM::tASRri
; break;
8432 // The Thumb1 operands aren't in the same order. Awesome, eh?
8434 TmpInst
.setOpcode(NewOpc
);
8435 TmpInst
.addOperand(Inst
.getOperand(0));
8436 TmpInst
.addOperand(Inst
.getOperand(5));
8437 TmpInst
.addOperand(Inst
.getOperand(1));
8438 TmpInst
.addOperand(Inst
.getOperand(2));
8439 TmpInst
.addOperand(Inst
.getOperand(3));
8440 TmpInst
.addOperand(Inst
.getOperand(4));
8446 // Handle the Thumb2 mode MOV complex aliases.
8448 case ARM::t2MOVSsr
: {
8449 // Which instruction to expand to depends on the CCOut operand and
8450 // whether we're in an IT block if the register operands are low
8452 bool isNarrow
= false;
8453 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8454 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8455 isARMLowRegister(Inst
.getOperand(2).getReg()) &&
8456 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() &&
8457 inITBlock() == (Inst
.getOpcode() == ARM::t2MOVsr
) &&
8462 switch(ARM_AM::getSORegShOp(Inst
.getOperand(3).getImm())) {
8463 default: llvm_unreachable("unexpected opcode!");
8464 case ARM_AM::asr
: newOpc
= isNarrow
? ARM::tASRrr
: ARM::t2ASRrr
; break;
8465 case ARM_AM::lsr
: newOpc
= isNarrow
? ARM::tLSRrr
: ARM::t2LSRrr
; break;
8466 case ARM_AM::lsl
: newOpc
= isNarrow
? ARM::tLSLrr
: ARM::t2LSLrr
; break;
8467 case ARM_AM::ror
: newOpc
= isNarrow
? ARM::tROR
: ARM::t2RORrr
; break;
8469 TmpInst
.setOpcode(newOpc
);
8470 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8472 TmpInst
.addOperand(MCOperand::createReg(
8473 Inst
.getOpcode() == ARM::t2MOVSsr
? ARM::CPSR
: 0));
8474 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8475 TmpInst
.addOperand(Inst
.getOperand(2)); // Rm
8476 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8477 TmpInst
.addOperand(Inst
.getOperand(5));
8479 TmpInst
.addOperand(MCOperand::createReg(
8480 Inst
.getOpcode() == ARM::t2MOVSsr
? ARM::CPSR
: 0));
8485 case ARM::t2MOVSsi
: {
8486 // Which instruction to expand to depends on the CCOut operand and
8487 // whether we're in an IT block if the register operands are low
8489 bool isNarrow
= false;
8490 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8491 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8492 inITBlock() == (Inst
.getOpcode() == ARM::t2MOVsi
) &&
8497 unsigned Shift
= ARM_AM::getSORegShOp(Inst
.getOperand(2).getImm());
8498 unsigned Amount
= ARM_AM::getSORegOffset(Inst
.getOperand(2).getImm());
8500 // MOV rd, rm, LSL #0 is actually a MOV instruction
8501 if (Shift
== ARM_AM::lsl
&& Amount
== 0) {
8503 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
8504 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
8505 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
8510 newOpc
= isNarrow
? ARM::tMOVSr
: ARM::t2MOVr
;
8513 default: llvm_unreachable("unexpected opcode!");
8514 case ARM_AM::asr
: newOpc
= isNarrow
? ARM::tASRri
: ARM::t2ASRri
; break;
8515 case ARM_AM::lsr
: newOpc
= isNarrow
? ARM::tLSRri
: ARM::t2LSRri
; break;
8516 case ARM_AM::lsl
: newOpc
= isNarrow
? ARM::tLSLri
: ARM::t2LSLri
; break;
8517 case ARM_AM::ror
: newOpc
= ARM::t2RORri
; isNarrow
= false; break;
8518 case ARM_AM::rrx
: isNarrow
= false; newOpc
= ARM::t2RRX
; break;
8521 if (Amount
== 32) Amount
= 0;
8522 TmpInst
.setOpcode(newOpc
);
8523 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8524 if (isNarrow
&& !isMov
)
8525 TmpInst
.addOperand(MCOperand::createReg(
8526 Inst
.getOpcode() == ARM::t2MOVSsi
? ARM::CPSR
: 0));
8527 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8528 if (newOpc
!= ARM::t2RRX
&& !isMov
)
8529 TmpInst
.addOperand(MCOperand::createImm(Amount
));
8530 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8531 TmpInst
.addOperand(Inst
.getOperand(4));
8533 TmpInst
.addOperand(MCOperand::createReg(
8534 Inst
.getOpcode() == ARM::t2MOVSsi
? ARM::CPSR
: 0));
8538 // Handle the ARM mode MOV complex aliases.
8543 ARM_AM::ShiftOpc ShiftTy
;
8544 switch(Inst
.getOpcode()) {
8545 default: llvm_unreachable("unexpected opcode!");
8546 case ARM::ASRr
: ShiftTy
= ARM_AM::asr
; break;
8547 case ARM::LSRr
: ShiftTy
= ARM_AM::lsr
; break;
8548 case ARM::LSLr
: ShiftTy
= ARM_AM::lsl
; break;
8549 case ARM::RORr
: ShiftTy
= ARM_AM::ror
; break;
8551 unsigned Shifter
= ARM_AM::getSORegOpc(ShiftTy
, 0);
8553 TmpInst
.setOpcode(ARM::MOVsr
);
8554 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8555 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8556 TmpInst
.addOperand(Inst
.getOperand(2)); // Rm
8557 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
8558 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8559 TmpInst
.addOperand(Inst
.getOperand(4));
8560 TmpInst
.addOperand(Inst
.getOperand(5)); // cc_out
8568 ARM_AM::ShiftOpc ShiftTy
;
8569 switch(Inst
.getOpcode()) {
8570 default: llvm_unreachable("unexpected opcode!");
8571 case ARM::ASRi
: ShiftTy
= ARM_AM::asr
; break;
8572 case ARM::LSRi
: ShiftTy
= ARM_AM::lsr
; break;
8573 case ARM::LSLi
: ShiftTy
= ARM_AM::lsl
; break;
8574 case ARM::RORi
: ShiftTy
= ARM_AM::ror
; break;
8576 // A shift by zero is a plain MOVr, not a MOVsi.
8577 unsigned Amt
= Inst
.getOperand(2).getImm();
8578 unsigned Opc
= Amt
== 0 ? ARM::MOVr
: ARM::MOVsi
;
8579 // A shift by 32 should be encoded as 0 when permitted
8580 if (Amt
== 32 && (ShiftTy
== ARM_AM::lsr
|| ShiftTy
== ARM_AM::asr
))
8582 unsigned Shifter
= ARM_AM::getSORegOpc(ShiftTy
, Amt
);
8584 TmpInst
.setOpcode(Opc
);
8585 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8586 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8587 if (Opc
== ARM::MOVsi
)
8588 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
8589 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8590 TmpInst
.addOperand(Inst
.getOperand(4));
8591 TmpInst
.addOperand(Inst
.getOperand(5)); // cc_out
8596 unsigned Shifter
= ARM_AM::getSORegOpc(ARM_AM::rrx
, 0);
8598 TmpInst
.setOpcode(ARM::MOVsi
);
8599 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8600 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8601 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
8602 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8603 TmpInst
.addOperand(Inst
.getOperand(3));
8604 TmpInst
.addOperand(Inst
.getOperand(4)); // cc_out
8608 case ARM::t2LDMIA_UPD
: {
8609 // If this is a load of a single register, then we should use
8610 // a post-indexed LDR instruction instead, per the ARM ARM.
8611 if (Inst
.getNumOperands() != 5)
8614 TmpInst
.setOpcode(ARM::t2LDR_POST
);
8615 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
8616 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
8617 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8618 TmpInst
.addOperand(MCOperand::createImm(4));
8619 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8620 TmpInst
.addOperand(Inst
.getOperand(3));
8624 case ARM::t2STMDB_UPD
: {
8625 // If this is a store of a single register, then we should use
8626 // a pre-indexed STR instruction instead, per the ARM ARM.
8627 if (Inst
.getNumOperands() != 5)
8630 TmpInst
.setOpcode(ARM::t2STR_PRE
);
8631 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
8632 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
8633 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8634 TmpInst
.addOperand(MCOperand::createImm(-4));
8635 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8636 TmpInst
.addOperand(Inst
.getOperand(3));
8640 case ARM::LDMIA_UPD
:
8641 // If this is a load of a single register via a 'pop', then we should use
8642 // a post-indexed LDR instruction instead, per the ARM ARM.
8643 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() == "pop" &&
8644 Inst
.getNumOperands() == 5) {
8646 TmpInst
.setOpcode(ARM::LDR_POST_IMM
);
8647 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
8648 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
8649 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8650 TmpInst
.addOperand(MCOperand::createReg(0)); // am2offset
8651 TmpInst
.addOperand(MCOperand::createImm(4));
8652 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8653 TmpInst
.addOperand(Inst
.getOperand(3));
8658 case ARM::STMDB_UPD
:
8659 // If this is a store of a single register via a 'push', then we should use
8660 // a pre-indexed STR instruction instead, per the ARM ARM.
8661 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() == "push" &&
8662 Inst
.getNumOperands() == 5) {
8664 TmpInst
.setOpcode(ARM::STR_PRE_IMM
);
8665 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
8666 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
8667 TmpInst
.addOperand(Inst
.getOperand(1)); // addrmode_imm12
8668 TmpInst
.addOperand(MCOperand::createImm(-4));
8669 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8670 TmpInst
.addOperand(Inst
.getOperand(3));
8674 case ARM::t2ADDri12
:
8675 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8676 // mnemonic was used (not "addw"), encoding T3 is preferred.
8677 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() != "add" ||
8678 ARM_AM::getT2SOImmVal(Inst
.getOperand(2).getImm()) == -1)
8680 Inst
.setOpcode(ARM::t2ADDri
);
8681 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
8683 case ARM::t2SUBri12
:
8684 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8685 // mnemonic was used (not "subw"), encoding T3 is preferred.
8686 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() != "sub" ||
8687 ARM_AM::getT2SOImmVal(Inst
.getOperand(2).getImm()) == -1)
8689 Inst
.setOpcode(ARM::t2SUBri
);
8690 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
8693 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8694 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8695 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8696 // to encoding T1 if <Rd> is omitted."
8697 if ((unsigned)Inst
.getOperand(3).getImm() < 8 && Operands
.size() == 6) {
8698 Inst
.setOpcode(ARM::tADDi3
);
8703 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8704 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8705 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8706 // to encoding T1 if <Rd> is omitted."
8707 if ((unsigned)Inst
.getOperand(3).getImm() < 8 && Operands
.size() == 6) {
8708 Inst
.setOpcode(ARM::tSUBi3
);
8713 case ARM::t2SUBri
: {
8714 // If the destination and first source operand are the same, and
8715 // the flags are compatible with the current IT status, use encoding T2
8716 // instead of T3. For compatibility with the system 'as'. Make sure the
8717 // wide encoding wasn't explicit.
8718 if (Inst
.getOperand(0).getReg() != Inst
.getOperand(1).getReg() ||
8719 !isARMLowRegister(Inst
.getOperand(0).getReg()) ||
8720 (Inst
.getOperand(2).isImm() &&
8721 (unsigned)Inst
.getOperand(2).getImm() > 255) ||
8722 Inst
.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR
) ||
8726 TmpInst
.setOpcode(Inst
.getOpcode() == ARM::t2ADDri
?
8727 ARM::tADDi8
: ARM::tSUBi8
);
8728 TmpInst
.addOperand(Inst
.getOperand(0));
8729 TmpInst
.addOperand(Inst
.getOperand(5));
8730 TmpInst
.addOperand(Inst
.getOperand(0));
8731 TmpInst
.addOperand(Inst
.getOperand(2));
8732 TmpInst
.addOperand(Inst
.getOperand(3));
8733 TmpInst
.addOperand(Inst
.getOperand(4));
8737 case ARM::t2ADDrr
: {
8738 // If the destination and first source operand are the same, and
8739 // there's no setting of the flags, use encoding T2 instead of T3.
8740 // Note that this is only for ADD, not SUB. This mirrors the system
8741 // 'as' behaviour. Also take advantage of ADD being commutative.
8742 // Make sure the wide encoding wasn't explicit.
8744 auto DestReg
= Inst
.getOperand(0).getReg();
8745 bool Transform
= DestReg
== Inst
.getOperand(1).getReg();
8746 if (!Transform
&& DestReg
== Inst
.getOperand(2).getReg()) {
8751 Inst
.getOperand(5).getReg() != 0 ||
8755 TmpInst
.setOpcode(ARM::tADDhirr
);
8756 TmpInst
.addOperand(Inst
.getOperand(0));
8757 TmpInst
.addOperand(Inst
.getOperand(0));
8758 TmpInst
.addOperand(Inst
.getOperand(Swap
? 1 : 2));
8759 TmpInst
.addOperand(Inst
.getOperand(3));
8760 TmpInst
.addOperand(Inst
.getOperand(4));
8765 // If the non-SP source operand and the destination operand are not the
8766 // same, we need to use the 32-bit encoding if it's available.
8767 if (Inst
.getOperand(0).getReg() != Inst
.getOperand(2).getReg()) {
8768 Inst
.setOpcode(ARM::t2ADDrr
);
8769 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
8774 // A Thumb conditional branch outside of an IT block is a tBcc.
8775 if (Inst
.getOperand(1).getImm() != ARMCC::AL
&& !inITBlock()) {
8776 Inst
.setOpcode(ARM::tBcc
);
8781 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8782 if (Inst
.getOperand(1).getImm() != ARMCC::AL
&& !inITBlock()){
8783 Inst
.setOpcode(ARM::t2Bcc
);
8788 // If the conditional is AL or we're in an IT block, we really want t2B.
8789 if (Inst
.getOperand(1).getImm() == ARMCC::AL
|| inITBlock()) {
8790 Inst
.setOpcode(ARM::t2B
);
8795 // If the conditional is AL, we really want tB.
8796 if (Inst
.getOperand(1).getImm() == ARMCC::AL
) {
8797 Inst
.setOpcode(ARM::tB
);
8802 // If the register list contains any high registers, or if the writeback
8803 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8804 // instead if we're in Thumb2. Otherwise, this should have generated
8805 // an error in validateInstruction().
8806 unsigned Rn
= Inst
.getOperand(0).getReg();
8807 bool hasWritebackToken
=
8808 (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
8809 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == "!");
8810 bool listContainsBase
;
8811 if (checkLowRegisterList(Inst
, 3, Rn
, 0, listContainsBase
) ||
8812 (!listContainsBase
&& !hasWritebackToken
) ||
8813 (listContainsBase
&& hasWritebackToken
)) {
8814 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8815 assert(isThumbTwo());
8816 Inst
.setOpcode(hasWritebackToken
? ARM::t2LDMIA_UPD
: ARM::t2LDMIA
);
8817 // If we're switching to the updating version, we need to insert
8818 // the writeback tied operand.
8819 if (hasWritebackToken
)
8820 Inst
.insert(Inst
.begin(),
8821 MCOperand::createReg(Inst
.getOperand(0).getReg()));
8826 case ARM::tSTMIA_UPD
: {
8827 // If the register list contains any high registers, we need to use
8828 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8829 // should have generated an error in validateInstruction().
8830 unsigned Rn
= Inst
.getOperand(0).getReg();
8831 bool listContainsBase
;
8832 if (checkLowRegisterList(Inst
, 4, Rn
, 0, listContainsBase
)) {
8833 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8834 assert(isThumbTwo());
8835 Inst
.setOpcode(ARM::t2STMIA_UPD
);
8841 bool listContainsBase
;
8842 // If the register list contains any high registers, we need to use
8843 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8844 // should have generated an error in validateInstruction().
8845 if (!checkLowRegisterList(Inst
, 2, 0, ARM::PC
, listContainsBase
))
8847 assert(isThumbTwo());
8848 Inst
.setOpcode(ARM::t2LDMIA_UPD
);
8849 // Add the base register and writeback operands.
8850 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
8851 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
8855 bool listContainsBase
;
8856 if (!checkLowRegisterList(Inst
, 2, 0, ARM::LR
, listContainsBase
))
8858 assert(isThumbTwo());
8859 Inst
.setOpcode(ARM::t2STMDB_UPD
);
8860 // Add the base register and writeback operands.
8861 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
8862 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
8866 // If we can use the 16-bit encoding and the user didn't explicitly
8867 // request the 32-bit variant, transform it here.
8868 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8869 (Inst
.getOperand(1).isImm() &&
8870 (unsigned)Inst
.getOperand(1).getImm() <= 255) &&
8871 Inst
.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
8872 !HasWideQualifier
) {
8873 // The operands aren't in the same order for tMOVi8...
8875 TmpInst
.setOpcode(ARM::tMOVi8
);
8876 TmpInst
.addOperand(Inst
.getOperand(0));
8877 TmpInst
.addOperand(Inst
.getOperand(4));
8878 TmpInst
.addOperand(Inst
.getOperand(1));
8879 TmpInst
.addOperand(Inst
.getOperand(2));
8880 TmpInst
.addOperand(Inst
.getOperand(3));
8887 // If we can use the 16-bit encoding and the user didn't explicitly
8888 // request the 32-bit variant, transform it here.
8889 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8890 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8891 Inst
.getOperand(2).getImm() == ARMCC::AL
&&
8892 Inst
.getOperand(4).getReg() == ARM::CPSR
&&
8893 !HasWideQualifier
) {
8894 // The operands aren't the same for tMOV[S]r... (no cc_out)
8896 TmpInst
.setOpcode(Inst
.getOperand(4).getReg() ? ARM::tMOVSr
: ARM::tMOVr
);
8897 TmpInst
.addOperand(Inst
.getOperand(0));
8898 TmpInst
.addOperand(Inst
.getOperand(1));
8899 TmpInst
.addOperand(Inst
.getOperand(2));
8900 TmpInst
.addOperand(Inst
.getOperand(3));
8910 // If we can use the 16-bit encoding and the user didn't explicitly
8911 // request the 32-bit variant, transform it here.
8912 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8913 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8914 Inst
.getOperand(2).getImm() == 0 &&
8915 !HasWideQualifier
) {
8917 switch (Inst
.getOpcode()) {
8918 default: llvm_unreachable("Illegal opcode!");
8919 case ARM::t2SXTH
: NewOpc
= ARM::tSXTH
; break;
8920 case ARM::t2SXTB
: NewOpc
= ARM::tSXTB
; break;
8921 case ARM::t2UXTH
: NewOpc
= ARM::tUXTH
; break;
8922 case ARM::t2UXTB
: NewOpc
= ARM::tUXTB
; break;
8924 // The operands aren't the same for thumb1 (no rotate operand).
8926 TmpInst
.setOpcode(NewOpc
);
8927 TmpInst
.addOperand(Inst
.getOperand(0));
8928 TmpInst
.addOperand(Inst
.getOperand(1));
8929 TmpInst
.addOperand(Inst
.getOperand(3));
8930 TmpInst
.addOperand(Inst
.getOperand(4));
8937 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(Inst
.getOperand(2).getImm());
8938 // rrx shifts and asr/lsr of #32 is encoded as 0
8939 if (SOpc
== ARM_AM::rrx
|| SOpc
== ARM_AM::asr
|| SOpc
== ARM_AM::lsr
)
8941 if (ARM_AM::getSORegOffset(Inst
.getOperand(2).getImm()) == 0) {
8942 // Shifting by zero is accepted as a vanilla 'MOVr'
8944 TmpInst
.setOpcode(ARM::MOVr
);
8945 TmpInst
.addOperand(Inst
.getOperand(0));
8946 TmpInst
.addOperand(Inst
.getOperand(1));
8947 TmpInst
.addOperand(Inst
.getOperand(3));
8948 TmpInst
.addOperand(Inst
.getOperand(4));
8949 TmpInst
.addOperand(Inst
.getOperand(5));
8962 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(Inst
.getOperand(3).getImm());
8963 if (SOpc
== ARM_AM::rrx
) return false;
8964 switch (Inst
.getOpcode()) {
8965 default: llvm_unreachable("unexpected opcode!");
8966 case ARM::ANDrsi
: newOpc
= ARM::ANDrr
; break;
8967 case ARM::ORRrsi
: newOpc
= ARM::ORRrr
; break;
8968 case ARM::EORrsi
: newOpc
= ARM::EORrr
; break;
8969 case ARM::BICrsi
: newOpc
= ARM::BICrr
; break;
8970 case ARM::SUBrsi
: newOpc
= ARM::SUBrr
; break;
8971 case ARM::ADDrsi
: newOpc
= ARM::ADDrr
; break;
8973 // If the shift is by zero, use the non-shifted instruction definition.
8974 // The exception is for right shifts, where 0 == 32
8975 if (ARM_AM::getSORegOffset(Inst
.getOperand(3).getImm()) == 0 &&
8976 !(SOpc
== ARM_AM::lsr
|| SOpc
== ARM_AM::asr
)) {
8978 TmpInst
.setOpcode(newOpc
);
8979 TmpInst
.addOperand(Inst
.getOperand(0));
8980 TmpInst
.addOperand(Inst
.getOperand(1));
8981 TmpInst
.addOperand(Inst
.getOperand(2));
8982 TmpInst
.addOperand(Inst
.getOperand(4));
8983 TmpInst
.addOperand(Inst
.getOperand(5));
8984 TmpInst
.addOperand(Inst
.getOperand(6));
8992 MCOperand
&MO
= Inst
.getOperand(1);
8993 unsigned Mask
= MO
.getImm();
8994 ARMCC::CondCodes Cond
= ARMCC::CondCodes(Inst
.getOperand(0).getImm());
8996 // Set up the IT block state according to the IT instruction we just
8998 assert(!inITBlock() && "nested IT blocks?!");
8999 startExplicitITBlock(Cond
, Mask
);
9000 MO
.setImm(getITMaskEncoding());
9009 // Assemblers should use the narrow encodings of these instructions when permissible.
9010 if ((isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9011 isARMLowRegister(Inst
.getOperand(2).getReg())) &&
9012 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() &&
9013 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
9014 !HasWideQualifier
) {
9016 switch (Inst
.getOpcode()) {
9017 default: llvm_unreachable("unexpected opcode");
9018 case ARM::t2LSLrr
: NewOpc
= ARM::tLSLrr
; break;
9019 case ARM::t2LSRrr
: NewOpc
= ARM::tLSRrr
; break;
9020 case ARM::t2ASRrr
: NewOpc
= ARM::tASRrr
; break;
9021 case ARM::t2SBCrr
: NewOpc
= ARM::tSBC
; break;
9022 case ARM::t2RORrr
: NewOpc
= ARM::tROR
; break;
9023 case ARM::t2BICrr
: NewOpc
= ARM::tBIC
; break;
9026 TmpInst
.setOpcode(NewOpc
);
9027 TmpInst
.addOperand(Inst
.getOperand(0));
9028 TmpInst
.addOperand(Inst
.getOperand(5));
9029 TmpInst
.addOperand(Inst
.getOperand(1));
9030 TmpInst
.addOperand(Inst
.getOperand(2));
9031 TmpInst
.addOperand(Inst
.getOperand(3));
9032 TmpInst
.addOperand(Inst
.getOperand(4));
9042 // Assemblers should use the narrow encodings of these instructions when permissible.
9043 // These instructions are special in that they are commutable, so shorter encodings
9044 // are available more often.
9045 if ((isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9046 isARMLowRegister(Inst
.getOperand(2).getReg())) &&
9047 (Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() ||
9048 Inst
.getOperand(0).getReg() == Inst
.getOperand(2).getReg()) &&
9049 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
9050 !HasWideQualifier
) {
9052 switch (Inst
.getOpcode()) {
9053 default: llvm_unreachable("unexpected opcode");
9054 case ARM::t2ADCrr
: NewOpc
= ARM::tADC
; break;
9055 case ARM::t2ANDrr
: NewOpc
= ARM::tAND
; break;
9056 case ARM::t2EORrr
: NewOpc
= ARM::tEOR
; break;
9057 case ARM::t2ORRrr
: NewOpc
= ARM::tORR
; break;
9060 TmpInst
.setOpcode(NewOpc
);
9061 TmpInst
.addOperand(Inst
.getOperand(0));
9062 TmpInst
.addOperand(Inst
.getOperand(5));
9063 if (Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg()) {
9064 TmpInst
.addOperand(Inst
.getOperand(1));
9065 TmpInst
.addOperand(Inst
.getOperand(2));
9067 TmpInst
.addOperand(Inst
.getOperand(2));
9068 TmpInst
.addOperand(Inst
.getOperand(1));
9070 TmpInst
.addOperand(Inst
.getOperand(3));
9071 TmpInst
.addOperand(Inst
.getOperand(4));
9080 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst
&Inst
) {
9081 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
9082 // suffix depending on whether they're in an IT block or not.
9083 unsigned Opc
= Inst
.getOpcode();
9084 const MCInstrDesc
&MCID
= MII
.get(Opc
);
9085 if (MCID
.TSFlags
& ARMII::ThumbArithFlagSetting
) {
9086 assert(MCID
.hasOptionalDef() &&
9087 "optionally flag setting instruction missing optional def operand");
9088 assert(MCID
.NumOperands
== Inst
.getNumOperands() &&
9089 "operand count mismatch!");
9090 // Find the optional-def operand (cc_out).
9093 !MCID
.OpInfo
[OpNo
].isOptionalDef() && OpNo
< MCID
.NumOperands
;
9096 // If we're parsing Thumb1, reject it completely.
9097 if (isThumbOne() && Inst
.getOperand(OpNo
).getReg() != ARM::CPSR
)
9098 return Match_RequiresFlagSetting
;
9099 // If we're parsing Thumb2, which form is legal depends on whether we're
9101 if (isThumbTwo() && Inst
.getOperand(OpNo
).getReg() != ARM::CPSR
&&
9103 return Match_RequiresITBlock
;
9104 if (isThumbTwo() && Inst
.getOperand(OpNo
).getReg() == ARM::CPSR
&&
9106 return Match_RequiresNotITBlock
;
9107 // LSL with zero immediate is not allowed in an IT block
9108 if (Opc
== ARM::tLSLri
&& Inst
.getOperand(3).getImm() == 0 && inITBlock())
9109 return Match_RequiresNotITBlock
;
9110 } else if (isThumbOne()) {
9111 // Some high-register supporting Thumb1 encodings only allow both registers
9112 // to be from r0-r7 when in Thumb2.
9113 if (Opc
== ARM::tADDhirr
&& !hasV6MOps() &&
9114 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9115 isARMLowRegister(Inst
.getOperand(2).getReg()))
9116 return Match_RequiresThumb2
;
9117 // Others only require ARMv6 or later.
9118 else if (Opc
== ARM::tMOVr
&& !hasV6Ops() &&
9119 isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9120 isARMLowRegister(Inst
.getOperand(1).getReg()))
9121 return Match_RequiresV6
;
9124 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
9125 // than the loop below can handle, so it uses the GPRnopc register class and
9126 // we do SP handling here.
9127 if (Opc
== ARM::t2MOVr
&& !hasV8Ops())
9129 // SP as both source and destination is not allowed
9130 if (Inst
.getOperand(0).getReg() == ARM::SP
&&
9131 Inst
.getOperand(1).getReg() == ARM::SP
)
9132 return Match_RequiresV8
;
9133 // When flags-setting SP as either source or destination is not allowed
9134 if (Inst
.getOperand(4).getReg() == ARM::CPSR
&&
9135 (Inst
.getOperand(0).getReg() == ARM::SP
||
9136 Inst
.getOperand(1).getReg() == ARM::SP
))
9137 return Match_RequiresV8
;
9140 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
9142 if ((Inst
.getOpcode() == ARM::VMRS
|| Inst
.getOpcode() == ARM::VMSR
) &&
9143 Inst
.getOperand(0).getReg() == ARM::SP
&& (isThumb() && !hasV8Ops()))
9144 return Match_InvalidOperand
;
9146 for (unsigned I
= 0; I
< MCID
.NumOperands
; ++I
)
9147 if (MCID
.OpInfo
[I
].RegClass
== ARM::rGPRRegClassID
) {
9148 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
9149 if ((Inst
.getOperand(I
).getReg() == ARM::SP
) && !hasV8Ops())
9150 return Match_RequiresV8
;
9151 else if (Inst
.getOperand(I
).getReg() == ARM::PC
)
9152 return Match_InvalidOperand
;
9155 return Match_Success
;
9160 template <> inline bool IsCPSRDead
<MCInst
>(const MCInst
*Instr
) {
9161 return true; // In an assembly source, no need to second-guess
9164 } // end namespace llvm
9166 // Returns true if Inst is unpredictable if it is in and IT block, but is not
9167 // the last instruction in the block.
9168 bool ARMAsmParser::isITBlockTerminator(MCInst
&Inst
) const {
9169 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
9171 // All branch & call instructions terminate IT blocks with the exception of
9173 if (MCID
.isTerminator() || (MCID
.isCall() && Inst
.getOpcode() != ARM::tSVC
) ||
9174 MCID
.isReturn() || MCID
.isBranch() || MCID
.isIndirectBranch())
9177 // Any arithmetic instruction which writes to the PC also terminates the IT
9179 if (MCID
.hasDefOfPhysReg(Inst
, ARM::PC
, *MRI
))
9185 unsigned ARMAsmParser::MatchInstruction(OperandVector
&Operands
, MCInst
&Inst
,
9186 SmallVectorImpl
<NearMissInfo
> &NearMisses
,
9187 bool MatchingInlineAsm
,
9188 bool &EmitInITBlock
,
9190 // If we can't use an implicit IT block here, just match as normal.
9191 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
9192 return MatchInstructionImpl(Operands
, Inst
, &NearMisses
, MatchingInlineAsm
);
9194 // Try to match the instruction in an extension of the current IT block (if
9196 if (inImplicitITBlock()) {
9197 extendImplicitITBlock(ITState
.Cond
);
9198 if (MatchInstructionImpl(Operands
, Inst
, nullptr, MatchingInlineAsm
) ==
9200 // The match succeded, but we still have to check that the instruction is
9201 // valid in this implicit IT block.
9202 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
9203 if (MCID
.isPredicable()) {
9204 ARMCC::CondCodes InstCond
=
9205 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
9207 ARMCC::CondCodes ITCond
= currentITCond();
9208 if (InstCond
== ITCond
) {
9209 EmitInITBlock
= true;
9210 return Match_Success
;
9211 } else if (InstCond
== ARMCC::getOppositeCondition(ITCond
)) {
9212 invertCurrentITCondition();
9213 EmitInITBlock
= true;
9214 return Match_Success
;
9218 rewindImplicitITPosition();
9221 // Finish the current IT block, and try to match outside any IT block.
9222 flushPendingInstructions(Out
);
9223 unsigned PlainMatchResult
=
9224 MatchInstructionImpl(Operands
, Inst
, &NearMisses
, MatchingInlineAsm
);
9225 if (PlainMatchResult
== Match_Success
) {
9226 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
9227 if (MCID
.isPredicable()) {
9228 ARMCC::CondCodes InstCond
=
9229 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
9231 // Some forms of the branch instruction have their own condition code
9232 // fields, so can be conditionally executed without an IT block.
9233 if (Inst
.getOpcode() == ARM::tBcc
|| Inst
.getOpcode() == ARM::t2Bcc
) {
9234 EmitInITBlock
= false;
9235 return Match_Success
;
9237 if (InstCond
== ARMCC::AL
) {
9238 EmitInITBlock
= false;
9239 return Match_Success
;
9242 EmitInITBlock
= false;
9243 return Match_Success
;
9247 // Try to match in a new IT block. The matcher doesn't check the actual
9248 // condition, so we create an IT block with a dummy condition, and fix it up
9249 // once we know the actual condition.
9250 startImplicitITBlock();
9251 if (MatchInstructionImpl(Operands
, Inst
, nullptr, MatchingInlineAsm
) ==
9253 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
9254 if (MCID
.isPredicable()) {
9256 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
9258 EmitInITBlock
= true;
9259 return Match_Success
;
9262 discardImplicitITBlock();
9264 // If none of these succeed, return the error we got when trying to match
9265 // outside any IT blocks.
9266 EmitInITBlock
= false;
9267 return PlainMatchResult
;
9270 static std::string
ARMMnemonicSpellCheck(StringRef S
, uint64_t FBS
,
9271 unsigned VariantID
= 0);
9273 static const char *getSubtargetFeatureName(uint64_t Val
);
9274 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc
, unsigned &Opcode
,
9275 OperandVector
&Operands
,
9276 MCStreamer
&Out
, uint64_t &ErrorInfo
,
9277 bool MatchingInlineAsm
) {
9279 unsigned MatchResult
;
9280 bool PendConditionalInstruction
= false;
9282 SmallVector
<NearMissInfo
, 4> NearMisses
;
9283 MatchResult
= MatchInstruction(Operands
, Inst
, NearMisses
, MatchingInlineAsm
,
9284 PendConditionalInstruction
, Out
);
9286 switch (MatchResult
) {
9288 LLVM_DEBUG(dbgs() << "Parsed as: ";
9289 Inst
.dump_pretty(dbgs(), MII
.getName(Inst
.getOpcode()));
9292 // Context sensitive operand constraints aren't handled by the matcher,
9293 // so check them here.
9294 if (validateInstruction(Inst
, Operands
)) {
9295 // Still progress the IT block, otherwise one wrong condition causes
9296 // nasty cascading errors.
9297 forwardITPosition();
9301 { // processInstruction() updates inITBlock state, we need to save it away
9302 bool wasInITBlock
= inITBlock();
9304 // Some instructions need post-processing to, for example, tweak which
9305 // encoding is selected. Loop on it while changes happen so the
9306 // individual transformations can chain off each other. E.g.,
9307 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
9308 while (processInstruction(Inst
, Operands
, Out
))
9309 LLVM_DEBUG(dbgs() << "Changed to: ";
9310 Inst
.dump_pretty(dbgs(), MII
.getName(Inst
.getOpcode()));
9313 // Only after the instruction is fully processed, we can validate it
9314 if (wasInITBlock
&& hasV8Ops() && isThumb() &&
9315 !isV8EligibleForIT(&Inst
)) {
9316 Warning(IDLoc
, "deprecated instruction in IT block");
9320 // Only move forward at the very end so that everything in validate
9321 // and process gets a consistent answer about whether we're in an IT
9323 forwardITPosition();
9325 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
9326 // doesn't actually encode.
9327 if (Inst
.getOpcode() == ARM::ITasm
)
9331 if (PendConditionalInstruction
) {
9332 PendingConditionalInsts
.push_back(Inst
);
9333 if (isITBlockFull() || isITBlockTerminator(Inst
))
9334 flushPendingInstructions(Out
);
9336 Out
.EmitInstruction(Inst
, getSTI());
9339 case Match_NearMisses
:
9340 ReportNearMisses(NearMisses
, IDLoc
, Operands
);
9342 case Match_MnemonicFail
: {
9343 uint64_t FBS
= ComputeAvailableFeatures(getSTI().getFeatureBits());
9344 std::string Suggestion
= ARMMnemonicSpellCheck(
9345 ((ARMOperand
&)*Operands
[0]).getToken(), FBS
);
9346 return Error(IDLoc
, "invalid instruction" + Suggestion
,
9347 ((ARMOperand
&)*Operands
[0]).getLocRange());
9351 llvm_unreachable("Implement any new match types added!");
9354 /// parseDirective parses the arm specific directives
9355 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID
) {
9356 const MCObjectFileInfo::Environment Format
=
9357 getContext().getObjectFileInfo()->getObjectFileType();
9358 bool IsMachO
= Format
== MCObjectFileInfo::IsMachO
;
9359 bool IsCOFF
= Format
== MCObjectFileInfo::IsCOFF
;
9361 StringRef IDVal
= DirectiveID
.getIdentifier();
9362 if (IDVal
== ".word")
9363 parseLiteralValues(4, DirectiveID
.getLoc());
9364 else if (IDVal
== ".short" || IDVal
== ".hword")
9365 parseLiteralValues(2, DirectiveID
.getLoc());
9366 else if (IDVal
== ".thumb")
9367 parseDirectiveThumb(DirectiveID
.getLoc());
9368 else if (IDVal
== ".arm")
9369 parseDirectiveARM(DirectiveID
.getLoc());
9370 else if (IDVal
== ".thumb_func")
9371 parseDirectiveThumbFunc(DirectiveID
.getLoc());
9372 else if (IDVal
== ".code")
9373 parseDirectiveCode(DirectiveID
.getLoc());
9374 else if (IDVal
== ".syntax")
9375 parseDirectiveSyntax(DirectiveID
.getLoc());
9376 else if (IDVal
== ".unreq")
9377 parseDirectiveUnreq(DirectiveID
.getLoc());
9378 else if (IDVal
== ".fnend")
9379 parseDirectiveFnEnd(DirectiveID
.getLoc());
9380 else if (IDVal
== ".cantunwind")
9381 parseDirectiveCantUnwind(DirectiveID
.getLoc());
9382 else if (IDVal
== ".personality")
9383 parseDirectivePersonality(DirectiveID
.getLoc());
9384 else if (IDVal
== ".handlerdata")
9385 parseDirectiveHandlerData(DirectiveID
.getLoc());
9386 else if (IDVal
== ".setfp")
9387 parseDirectiveSetFP(DirectiveID
.getLoc());
9388 else if (IDVal
== ".pad")
9389 parseDirectivePad(DirectiveID
.getLoc());
9390 else if (IDVal
== ".save")
9391 parseDirectiveRegSave(DirectiveID
.getLoc(), false);
9392 else if (IDVal
== ".vsave")
9393 parseDirectiveRegSave(DirectiveID
.getLoc(), true);
9394 else if (IDVal
== ".ltorg" || IDVal
== ".pool")
9395 parseDirectiveLtorg(DirectiveID
.getLoc());
9396 else if (IDVal
== ".even")
9397 parseDirectiveEven(DirectiveID
.getLoc());
9398 else if (IDVal
== ".personalityindex")
9399 parseDirectivePersonalityIndex(DirectiveID
.getLoc());
9400 else if (IDVal
== ".unwind_raw")
9401 parseDirectiveUnwindRaw(DirectiveID
.getLoc());
9402 else if (IDVal
== ".movsp")
9403 parseDirectiveMovSP(DirectiveID
.getLoc());
9404 else if (IDVal
== ".arch_extension")
9405 parseDirectiveArchExtension(DirectiveID
.getLoc());
9406 else if (IDVal
== ".align")
9407 return parseDirectiveAlign(DirectiveID
.getLoc()); // Use Generic on failure.
9408 else if (IDVal
== ".thumb_set")
9409 parseDirectiveThumbSet(DirectiveID
.getLoc());
9410 else if (IDVal
== ".inst")
9411 parseDirectiveInst(DirectiveID
.getLoc());
9412 else if (IDVal
== ".inst.n")
9413 parseDirectiveInst(DirectiveID
.getLoc(), 'n');
9414 else if (IDVal
== ".inst.w")
9415 parseDirectiveInst(DirectiveID
.getLoc(), 'w');
9416 else if (!IsMachO
&& !IsCOFF
) {
9417 if (IDVal
== ".arch")
9418 parseDirectiveArch(DirectiveID
.getLoc());
9419 else if (IDVal
== ".cpu")
9420 parseDirectiveCPU(DirectiveID
.getLoc());
9421 else if (IDVal
== ".eabi_attribute")
9422 parseDirectiveEabiAttr(DirectiveID
.getLoc());
9423 else if (IDVal
== ".fpu")
9424 parseDirectiveFPU(DirectiveID
.getLoc());
9425 else if (IDVal
== ".fnstart")
9426 parseDirectiveFnStart(DirectiveID
.getLoc());
9427 else if (IDVal
== ".object_arch")
9428 parseDirectiveObjectArch(DirectiveID
.getLoc());
9429 else if (IDVal
== ".tlsdescseq")
9430 parseDirectiveTLSDescSeq(DirectiveID
.getLoc());
9438 /// parseLiteralValues
9439 /// ::= .hword expression [, expression]*
9440 /// ::= .short expression [, expression]*
9441 /// ::= .word expression [, expression]*
9442 bool ARMAsmParser::parseLiteralValues(unsigned Size
, SMLoc L
) {
9443 auto parseOne
= [&]() -> bool {
9444 const MCExpr
*Value
;
9445 if (getParser().parseExpression(Value
))
9447 getParser().getStreamer().EmitValue(Value
, Size
, L
);
9450 return (parseMany(parseOne
));
9453 /// parseDirectiveThumb
9455 bool ARMAsmParser::parseDirectiveThumb(SMLoc L
) {
9456 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive") ||
9457 check(!hasThumb(), L
, "target does not support Thumb mode"))
9463 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16
);
9467 /// parseDirectiveARM
9469 bool ARMAsmParser::parseDirectiveARM(SMLoc L
) {
9470 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive") ||
9471 check(!hasARM(), L
, "target does not support ARM mode"))
9476 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32
);
9480 void ARMAsmParser::doBeforeLabelEmit(MCSymbol
*Symbol
) {
9481 // We need to flush the current implicit IT block on a label, because it is
9482 // not legal to branch into an IT block.
9483 flushPendingInstructions(getStreamer());
9486 void ARMAsmParser::onLabelParsed(MCSymbol
*Symbol
) {
9487 if (NextSymbolIsThumb
) {
9488 getParser().getStreamer().EmitThumbFunc(Symbol
);
9489 NextSymbolIsThumb
= false;
9493 /// parseDirectiveThumbFunc
9494 /// ::= .thumbfunc symbol_name
9495 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L
) {
9496 MCAsmParser
&Parser
= getParser();
9497 const auto Format
= getContext().getObjectFileInfo()->getObjectFileType();
9498 bool IsMachO
= Format
== MCObjectFileInfo::IsMachO
;
9500 // Darwin asm has (optionally) function name after .thumb_func direction
9504 if (Parser
.getTok().is(AsmToken::Identifier
) ||
9505 Parser
.getTok().is(AsmToken::String
)) {
9506 MCSymbol
*Func
= getParser().getContext().getOrCreateSymbol(
9507 Parser
.getTok().getIdentifier());
9508 getParser().getStreamer().EmitThumbFunc(Func
);
9510 if (parseToken(AsmToken::EndOfStatement
,
9511 "unexpected token in '.thumb_func' directive"))
9517 if (parseToken(AsmToken::EndOfStatement
,
9518 "unexpected token in '.thumb_func' directive"))
9521 NextSymbolIsThumb
= true;
9525 /// parseDirectiveSyntax
9526 /// ::= .syntax unified | divided
9527 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L
) {
9528 MCAsmParser
&Parser
= getParser();
9529 const AsmToken
&Tok
= Parser
.getTok();
9530 if (Tok
.isNot(AsmToken::Identifier
)) {
9531 Error(L
, "unexpected token in .syntax directive");
9535 StringRef Mode
= Tok
.getString();
9537 if (check(Mode
== "divided" || Mode
== "DIVIDED", L
,
9538 "'.syntax divided' arm assembly not supported") ||
9539 check(Mode
!= "unified" && Mode
!= "UNIFIED", L
,
9540 "unrecognized syntax mode in .syntax directive") ||
9541 parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
9544 // TODO tell the MC streamer the mode
9545 // getParser().getStreamer().Emit???();
9549 /// parseDirectiveCode
9550 /// ::= .code 16 | 32
9551 bool ARMAsmParser::parseDirectiveCode(SMLoc L
) {
9552 MCAsmParser
&Parser
= getParser();
9553 const AsmToken
&Tok
= Parser
.getTok();
9554 if (Tok
.isNot(AsmToken::Integer
))
9555 return Error(L
, "unexpected token in .code directive");
9556 int64_t Val
= Parser
.getTok().getIntVal();
9557 if (Val
!= 16 && Val
!= 32) {
9558 Error(L
, "invalid operand to .code directive");
9563 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
9568 return Error(L
, "target does not support Thumb mode");
9572 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16
);
9575 return Error(L
, "target does not support ARM mode");
9579 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32
);
9585 /// parseDirectiveReq
9586 /// ::= name .req registername
9587 bool ARMAsmParser::parseDirectiveReq(StringRef Name
, SMLoc L
) {
9588 MCAsmParser
&Parser
= getParser();
9589 Parser
.Lex(); // Eat the '.req' token.
9591 SMLoc SRegLoc
, ERegLoc
;
9592 if (check(ParseRegister(Reg
, SRegLoc
, ERegLoc
), SRegLoc
,
9593 "register name expected") ||
9594 parseToken(AsmToken::EndOfStatement
,
9595 "unexpected input in .req directive."))
9598 if (RegisterReqs
.insert(std::make_pair(Name
, Reg
)).first
->second
!= Reg
)
9599 return Error(SRegLoc
,
9600 "redefinition of '" + Name
+ "' does not match original.");
9605 /// parseDirectiveUneq
9606 /// ::= .unreq registername
9607 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L
) {
9608 MCAsmParser
&Parser
= getParser();
9609 if (Parser
.getTok().isNot(AsmToken::Identifier
))
9610 return Error(L
, "unexpected input in .unreq directive.");
9611 RegisterReqs
.erase(Parser
.getTok().getIdentifier().lower());
9612 Parser
.Lex(); // Eat the identifier.
9613 if (parseToken(AsmToken::EndOfStatement
,
9614 "unexpected input in '.unreq' directive"))
9619 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
9620 // before, if supported by the new target, or emit mapping symbols for the mode
9622 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb
, SMLoc Loc
) {
9623 if (WasThumb
!= isThumb()) {
9624 if (WasThumb
&& hasThumb()) {
9625 // Stay in Thumb mode
9627 } else if (!WasThumb
&& hasARM()) {
9631 // Mode switch forced, because the new arch doesn't support the old mode.
9632 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
9634 // Warn about the implcit mode switch. GAS does not switch modes here,
9635 // but instead stays in the old mode, reporting an error on any following
9636 // instructions as the mode does not exist on the target.
9637 Warning(Loc
, Twine("new target does not support ") +
9638 (WasThumb
? "thumb" : "arm") + " mode, switching to " +
9639 (!WasThumb
? "thumb" : "arm") + " mode");
9644 /// parseDirectiveArch
9646 bool ARMAsmParser::parseDirectiveArch(SMLoc L
) {
9647 StringRef Arch
= getParser().parseStringToEndOfStatement().trim();
9648 ARM::ArchKind ID
= ARM::parseArch(Arch
);
9650 if (ID
== ARM::ArchKind::INVALID
)
9651 return Error(L
, "Unknown arch name");
9653 bool WasThumb
= isThumb();
9655 MCSubtargetInfo
&STI
= copySTI();
9656 STI
.setDefaultFeatures("", ("+" + ARM::getArchName(ID
)).str());
9657 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
9658 FixModeAfterArchChange(WasThumb
, L
);
9660 getTargetStreamer().emitArch(ID
);
9664 /// parseDirectiveEabiAttr
9665 /// ::= .eabi_attribute int, int [, "str"]
9666 /// ::= .eabi_attribute Tag_name, int [, "str"]
9667 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L
) {
9668 MCAsmParser
&Parser
= getParser();
9671 TagLoc
= Parser
.getTok().getLoc();
9672 if (Parser
.getTok().is(AsmToken::Identifier
)) {
9673 StringRef Name
= Parser
.getTok().getIdentifier();
9674 Tag
= ARMBuildAttrs::AttrTypeFromString(Name
);
9676 Error(TagLoc
, "attribute name not recognised: " + Name
);
9681 const MCExpr
*AttrExpr
;
9683 TagLoc
= Parser
.getTok().getLoc();
9684 if (Parser
.parseExpression(AttrExpr
))
9687 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(AttrExpr
);
9688 if (check(!CE
, TagLoc
, "expected numeric constant"))
9691 Tag
= CE
->getValue();
9694 if (Parser
.parseToken(AsmToken::Comma
, "comma expected"))
9697 StringRef StringValue
= "";
9698 bool IsStringValue
= false;
9700 int64_t IntegerValue
= 0;
9701 bool IsIntegerValue
= false;
9703 if (Tag
== ARMBuildAttrs::CPU_raw_name
|| Tag
== ARMBuildAttrs::CPU_name
)
9704 IsStringValue
= true;
9705 else if (Tag
== ARMBuildAttrs::compatibility
) {
9706 IsStringValue
= true;
9707 IsIntegerValue
= true;
9708 } else if (Tag
< 32 || Tag
% 2 == 0)
9709 IsIntegerValue
= true;
9710 else if (Tag
% 2 == 1)
9711 IsStringValue
= true;
9713 llvm_unreachable("invalid tag type");
9715 if (IsIntegerValue
) {
9716 const MCExpr
*ValueExpr
;
9717 SMLoc ValueExprLoc
= Parser
.getTok().getLoc();
9718 if (Parser
.parseExpression(ValueExpr
))
9721 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ValueExpr
);
9723 return Error(ValueExprLoc
, "expected numeric constant");
9724 IntegerValue
= CE
->getValue();
9727 if (Tag
== ARMBuildAttrs::compatibility
) {
9728 if (Parser
.parseToken(AsmToken::Comma
, "comma expected"))
9732 if (IsStringValue
) {
9733 if (Parser
.getTok().isNot(AsmToken::String
))
9734 return Error(Parser
.getTok().getLoc(), "bad string constant");
9736 StringValue
= Parser
.getTok().getStringContents();
9740 if (Parser
.parseToken(AsmToken::EndOfStatement
,
9741 "unexpected token in '.eabi_attribute' directive"))
9744 if (IsIntegerValue
&& IsStringValue
) {
9745 assert(Tag
== ARMBuildAttrs::compatibility
);
9746 getTargetStreamer().emitIntTextAttribute(Tag
, IntegerValue
, StringValue
);
9747 } else if (IsIntegerValue
)
9748 getTargetStreamer().emitAttribute(Tag
, IntegerValue
);
9749 else if (IsStringValue
)
9750 getTargetStreamer().emitTextAttribute(Tag
, StringValue
);
9754 /// parseDirectiveCPU
9756 bool ARMAsmParser::parseDirectiveCPU(SMLoc L
) {
9757 StringRef CPU
= getParser().parseStringToEndOfStatement().trim();
9758 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name
, CPU
);
9760 // FIXME: This is using table-gen data, but should be moved to
9761 // ARMTargetParser once that is table-gen'd.
9762 if (!getSTI().isCPUStringValid(CPU
))
9763 return Error(L
, "Unknown CPU name");
9765 bool WasThumb
= isThumb();
9766 MCSubtargetInfo
&STI
= copySTI();
9767 STI
.setDefaultFeatures(CPU
, "");
9768 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
9769 FixModeAfterArchChange(WasThumb
, L
);
9774 /// parseDirectiveFPU
9776 bool ARMAsmParser::parseDirectiveFPU(SMLoc L
) {
9777 SMLoc FPUNameLoc
= getTok().getLoc();
9778 StringRef FPU
= getParser().parseStringToEndOfStatement().trim();
9780 unsigned ID
= ARM::parseFPU(FPU
);
9781 std::vector
<StringRef
> Features
;
9782 if (!ARM::getFPUFeatures(ID
, Features
))
9783 return Error(FPUNameLoc
, "Unknown FPU name");
9785 MCSubtargetInfo
&STI
= copySTI();
9786 for (auto Feature
: Features
)
9787 STI
.ApplyFeatureFlag(Feature
);
9788 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
9790 getTargetStreamer().emitFPU(ID
);
9794 /// parseDirectiveFnStart
9796 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L
) {
9797 if (parseToken(AsmToken::EndOfStatement
,
9798 "unexpected token in '.fnstart' directive"))
9801 if (UC
.hasFnStart()) {
9802 Error(L
, ".fnstart starts before the end of previous one");
9803 UC
.emitFnStartLocNotes();
9807 // Reset the unwind directives parser state
9810 getTargetStreamer().emitFnStart();
9812 UC
.recordFnStart(L
);
9816 /// parseDirectiveFnEnd
9818 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L
) {
9819 if (parseToken(AsmToken::EndOfStatement
,
9820 "unexpected token in '.fnend' directive"))
9822 // Check the ordering of unwind directives
9823 if (!UC
.hasFnStart())
9824 return Error(L
, ".fnstart must precede .fnend directive");
9826 // Reset the unwind directives parser state
9827 getTargetStreamer().emitFnEnd();
9833 /// parseDirectiveCantUnwind
9835 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L
) {
9836 if (parseToken(AsmToken::EndOfStatement
,
9837 "unexpected token in '.cantunwind' directive"))
9840 UC
.recordCantUnwind(L
);
9841 // Check the ordering of unwind directives
9842 if (check(!UC
.hasFnStart(), L
, ".fnstart must precede .cantunwind directive"))
9845 if (UC
.hasHandlerData()) {
9846 Error(L
, ".cantunwind can't be used with .handlerdata directive");
9847 UC
.emitHandlerDataLocNotes();
9850 if (UC
.hasPersonality()) {
9851 Error(L
, ".cantunwind can't be used with .personality directive");
9852 UC
.emitPersonalityLocNotes();
9856 getTargetStreamer().emitCantUnwind();
9860 /// parseDirectivePersonality
9861 /// ::= .personality name
9862 bool ARMAsmParser::parseDirectivePersonality(SMLoc L
) {
9863 MCAsmParser
&Parser
= getParser();
9864 bool HasExistingPersonality
= UC
.hasPersonality();
9866 // Parse the name of the personality routine
9867 if (Parser
.getTok().isNot(AsmToken::Identifier
))
9868 return Error(L
, "unexpected input in .personality directive.");
9869 StringRef
Name(Parser
.getTok().getIdentifier());
9872 if (parseToken(AsmToken::EndOfStatement
,
9873 "unexpected token in '.personality' directive"))
9876 UC
.recordPersonality(L
);
9878 // Check the ordering of unwind directives
9879 if (!UC
.hasFnStart())
9880 return Error(L
, ".fnstart must precede .personality directive");
9881 if (UC
.cantUnwind()) {
9882 Error(L
, ".personality can't be used with .cantunwind directive");
9883 UC
.emitCantUnwindLocNotes();
9886 if (UC
.hasHandlerData()) {
9887 Error(L
, ".personality must precede .handlerdata directive");
9888 UC
.emitHandlerDataLocNotes();
9891 if (HasExistingPersonality
) {
9892 Error(L
, "multiple personality directives");
9893 UC
.emitPersonalityLocNotes();
9897 MCSymbol
*PR
= getParser().getContext().getOrCreateSymbol(Name
);
9898 getTargetStreamer().emitPersonality(PR
);
9902 /// parseDirectiveHandlerData
9903 /// ::= .handlerdata
9904 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L
) {
9905 if (parseToken(AsmToken::EndOfStatement
,
9906 "unexpected token in '.handlerdata' directive"))
9909 UC
.recordHandlerData(L
);
9910 // Check the ordering of unwind directives
9911 if (!UC
.hasFnStart())
9912 return Error(L
, ".fnstart must precede .personality directive");
9913 if (UC
.cantUnwind()) {
9914 Error(L
, ".handlerdata can't be used with .cantunwind directive");
9915 UC
.emitCantUnwindLocNotes();
9919 getTargetStreamer().emitHandlerData();
9923 /// parseDirectiveSetFP
9924 /// ::= .setfp fpreg, spreg [, offset]
9925 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L
) {
9926 MCAsmParser
&Parser
= getParser();
9927 // Check the ordering of unwind directives
9928 if (check(!UC
.hasFnStart(), L
, ".fnstart must precede .setfp directive") ||
9929 check(UC
.hasHandlerData(), L
,
9930 ".setfp must precede .handlerdata directive"))
9934 SMLoc FPRegLoc
= Parser
.getTok().getLoc();
9935 int FPReg
= tryParseRegister();
9937 if (check(FPReg
== -1, FPRegLoc
, "frame pointer register expected") ||
9938 Parser
.parseToken(AsmToken::Comma
, "comma expected"))
9942 SMLoc SPRegLoc
= Parser
.getTok().getLoc();
9943 int SPReg
= tryParseRegister();
9944 if (check(SPReg
== -1, SPRegLoc
, "stack pointer register expected") ||
9945 check(SPReg
!= ARM::SP
&& SPReg
!= UC
.getFPReg(), SPRegLoc
,
9946 "register should be either $sp or the latest fp register"))
9949 // Update the frame pointer register
9950 UC
.saveFPReg(FPReg
);
9954 if (Parser
.parseOptionalToken(AsmToken::Comma
)) {
9955 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
9956 Parser
.getTok().isNot(AsmToken::Dollar
))
9957 return Error(Parser
.getTok().getLoc(), "'#' expected");
9958 Parser
.Lex(); // skip hash token.
9960 const MCExpr
*OffsetExpr
;
9961 SMLoc ExLoc
= Parser
.getTok().getLoc();
9963 if (getParser().parseExpression(OffsetExpr
, EndLoc
))
9964 return Error(ExLoc
, "malformed setfp offset");
9965 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
9966 if (check(!CE
, ExLoc
, "setfp offset must be an immediate"))
9968 Offset
= CE
->getValue();
9971 if (Parser
.parseToken(AsmToken::EndOfStatement
))
9974 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg
),
9975 static_cast<unsigned>(SPReg
), Offset
);
9981 bool ARMAsmParser::parseDirectivePad(SMLoc L
) {
9982 MCAsmParser
&Parser
= getParser();
9983 // Check the ordering of unwind directives
9984 if (!UC
.hasFnStart())
9985 return Error(L
, ".fnstart must precede .pad directive");
9986 if (UC
.hasHandlerData())
9987 return Error(L
, ".pad must precede .handlerdata directive");
9990 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
9991 Parser
.getTok().isNot(AsmToken::Dollar
))
9992 return Error(Parser
.getTok().getLoc(), "'#' expected");
9993 Parser
.Lex(); // skip hash token.
9995 const MCExpr
*OffsetExpr
;
9996 SMLoc ExLoc
= Parser
.getTok().getLoc();
9998 if (getParser().parseExpression(OffsetExpr
, EndLoc
))
9999 return Error(ExLoc
, "malformed pad offset");
10000 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
10002 return Error(ExLoc
, "pad offset must be an immediate");
10004 if (parseToken(AsmToken::EndOfStatement
,
10005 "unexpected token in '.pad' directive"))
10008 getTargetStreamer().emitPad(CE
->getValue());
10012 /// parseDirectiveRegSave
10013 /// ::= .save { registers }
10014 /// ::= .vsave { registers }
10015 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L
, bool IsVector
) {
10016 // Check the ordering of unwind directives
10017 if (!UC
.hasFnStart())
10018 return Error(L
, ".fnstart must precede .save or .vsave directives");
10019 if (UC
.hasHandlerData())
10020 return Error(L
, ".save or .vsave must precede .handlerdata directive");
10022 // RAII object to make sure parsed operands are deleted.
10023 SmallVector
<std::unique_ptr
<MCParsedAsmOperand
>, 1> Operands
;
10025 // Parse the register list
10026 if (parseRegisterList(Operands
) ||
10027 parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
10029 ARMOperand
&Op
= (ARMOperand
&)*Operands
[0];
10030 if (!IsVector
&& !Op
.isRegList())
10031 return Error(L
, ".save expects GPR registers");
10032 if (IsVector
&& !Op
.isDPRRegList())
10033 return Error(L
, ".vsave expects DPR registers");
10035 getTargetStreamer().emitRegSave(Op
.getRegList(), IsVector
);
10039 /// parseDirectiveInst
10040 /// ::= .inst opcode [, ...]
10041 /// ::= .inst.n opcode [, ...]
10042 /// ::= .inst.w opcode [, ...]
10043 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc
, char Suffix
) {
10059 return Error(Loc
, "width suffixes are invalid in ARM mode");
10062 auto parseOne
= [&]() -> bool {
10063 const MCExpr
*Expr
;
10064 if (getParser().parseExpression(Expr
))
10066 const MCConstantExpr
*Value
= dyn_cast_or_null
<MCConstantExpr
>(Expr
);
10068 return Error(Loc
, "expected constant expression");
10071 char CurSuffix
= Suffix
;
10074 if (Value
->getValue() > 0xffff)
10075 return Error(Loc
, "inst.n operand is too big, use inst.w instead");
10078 if (Value
->getValue() > 0xffffffff)
10079 return Error(Loc
, StringRef(Suffix
? "inst.w" : "inst") +
10080 " operand is too big");
10083 // Thumb mode, no width indicated. Guess from the opcode, if possible.
10084 if (Value
->getValue() < 0xe800)
10086 else if (Value
->getValue() >= 0xe8000000)
10089 return Error(Loc
, "cannot determine Thumb instruction size, "
10090 "use inst.n/inst.w instead");
10093 llvm_unreachable("only supported widths are 2 and 4");
10096 getTargetStreamer().emitInst(Value
->getValue(), CurSuffix
);
10100 if (parseOptionalToken(AsmToken::EndOfStatement
))
10101 return Error(Loc
, "expected expression following directive");
10102 if (parseMany(parseOne
))
10107 /// parseDirectiveLtorg
10108 /// ::= .ltorg | .pool
10109 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L
) {
10110 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
10112 getTargetStreamer().emitCurrentConstantPool();
10116 bool ARMAsmParser::parseDirectiveEven(SMLoc L
) {
10117 const MCSection
*Section
= getStreamer().getCurrentSectionOnly();
10119 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
10123 getStreamer().InitSections(false);
10124 Section
= getStreamer().getCurrentSectionOnly();
10127 assert(Section
&& "must have section to emit alignment");
10128 if (Section
->UseCodeAlign())
10129 getStreamer().EmitCodeAlignment(2);
10131 getStreamer().EmitValueToAlignment(2);
10136 /// parseDirectivePersonalityIndex
10137 /// ::= .personalityindex index
10138 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L
) {
10139 MCAsmParser
&Parser
= getParser();
10140 bool HasExistingPersonality
= UC
.hasPersonality();
10142 const MCExpr
*IndexExpression
;
10143 SMLoc IndexLoc
= Parser
.getTok().getLoc();
10144 if (Parser
.parseExpression(IndexExpression
) ||
10145 parseToken(AsmToken::EndOfStatement
,
10146 "unexpected token in '.personalityindex' directive")) {
10150 UC
.recordPersonalityIndex(L
);
10152 if (!UC
.hasFnStart()) {
10153 return Error(L
, ".fnstart must precede .personalityindex directive");
10155 if (UC
.cantUnwind()) {
10156 Error(L
, ".personalityindex cannot be used with .cantunwind");
10157 UC
.emitCantUnwindLocNotes();
10160 if (UC
.hasHandlerData()) {
10161 Error(L
, ".personalityindex must precede .handlerdata directive");
10162 UC
.emitHandlerDataLocNotes();
10165 if (HasExistingPersonality
) {
10166 Error(L
, "multiple personality directives");
10167 UC
.emitPersonalityLocNotes();
10171 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(IndexExpression
);
10173 return Error(IndexLoc
, "index must be a constant number");
10174 if (CE
->getValue() < 0 || CE
->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX
)
10175 return Error(IndexLoc
,
10176 "personality routine index should be in range [0-3]");
10178 getTargetStreamer().emitPersonalityIndex(CE
->getValue());
10182 /// parseDirectiveUnwindRaw
10183 /// ::= .unwind_raw offset, opcode [, opcode...]
10184 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L
) {
10185 MCAsmParser
&Parser
= getParser();
10186 int64_t StackOffset
;
10187 const MCExpr
*OffsetExpr
;
10188 SMLoc OffsetLoc
= getLexer().getLoc();
10190 if (!UC
.hasFnStart())
10191 return Error(L
, ".fnstart must precede .unwind_raw directives");
10192 if (getParser().parseExpression(OffsetExpr
))
10193 return Error(OffsetLoc
, "expected expression");
10195 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
10197 return Error(OffsetLoc
, "offset must be a constant");
10199 StackOffset
= CE
->getValue();
10201 if (Parser
.parseToken(AsmToken::Comma
, "expected comma"))
10204 SmallVector
<uint8_t, 16> Opcodes
;
10206 auto parseOne
= [&]() -> bool {
10208 SMLoc OpcodeLoc
= getLexer().getLoc();
10209 if (check(getLexer().is(AsmToken::EndOfStatement
) ||
10210 Parser
.parseExpression(OE
),
10211 OpcodeLoc
, "expected opcode expression"))
10213 const MCConstantExpr
*OC
= dyn_cast
<MCConstantExpr
>(OE
);
10215 return Error(OpcodeLoc
, "opcode value must be a constant");
10216 const int64_t Opcode
= OC
->getValue();
10217 if (Opcode
& ~0xff)
10218 return Error(OpcodeLoc
, "invalid opcode");
10219 Opcodes
.push_back(uint8_t(Opcode
));
10223 // Must have at least 1 element
10224 SMLoc OpcodeLoc
= getLexer().getLoc();
10225 if (parseOptionalToken(AsmToken::EndOfStatement
))
10226 return Error(OpcodeLoc
, "expected opcode expression");
10227 if (parseMany(parseOne
))
10230 getTargetStreamer().emitUnwindRaw(StackOffset
, Opcodes
);
10234 /// parseDirectiveTLSDescSeq
10235 /// ::= .tlsdescseq tls-variable
10236 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L
) {
10237 MCAsmParser
&Parser
= getParser();
10239 if (getLexer().isNot(AsmToken::Identifier
))
10240 return TokError("expected variable after '.tlsdescseq' directive");
10242 const MCSymbolRefExpr
*SRE
=
10243 MCSymbolRefExpr::create(Parser
.getTok().getIdentifier(),
10244 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ
, getContext());
10247 if (parseToken(AsmToken::EndOfStatement
,
10248 "unexpected token in '.tlsdescseq' directive"))
10251 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE
);
10255 /// parseDirectiveMovSP
10256 /// ::= .movsp reg [, #offset]
10257 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L
) {
10258 MCAsmParser
&Parser
= getParser();
10259 if (!UC
.hasFnStart())
10260 return Error(L
, ".fnstart must precede .movsp directives");
10261 if (UC
.getFPReg() != ARM::SP
)
10262 return Error(L
, "unexpected .movsp directive");
10264 SMLoc SPRegLoc
= Parser
.getTok().getLoc();
10265 int SPReg
= tryParseRegister();
10267 return Error(SPRegLoc
, "register expected");
10268 if (SPReg
== ARM::SP
|| SPReg
== ARM::PC
)
10269 return Error(SPRegLoc
, "sp and pc are not permitted in .movsp directive");
10271 int64_t Offset
= 0;
10272 if (Parser
.parseOptionalToken(AsmToken::Comma
)) {
10273 if (Parser
.parseToken(AsmToken::Hash
, "expected #constant"))
10276 const MCExpr
*OffsetExpr
;
10277 SMLoc OffsetLoc
= Parser
.getTok().getLoc();
10279 if (Parser
.parseExpression(OffsetExpr
))
10280 return Error(OffsetLoc
, "malformed offset expression");
10282 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
10284 return Error(OffsetLoc
, "offset must be an immediate constant");
10286 Offset
= CE
->getValue();
10289 if (parseToken(AsmToken::EndOfStatement
,
10290 "unexpected token in '.movsp' directive"))
10293 getTargetStreamer().emitMovSP(SPReg
, Offset
);
10294 UC
.saveFPReg(SPReg
);
10299 /// parseDirectiveObjectArch
10300 /// ::= .object_arch name
10301 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L
) {
10302 MCAsmParser
&Parser
= getParser();
10303 if (getLexer().isNot(AsmToken::Identifier
))
10304 return Error(getLexer().getLoc(), "unexpected token");
10306 StringRef Arch
= Parser
.getTok().getString();
10307 SMLoc ArchLoc
= Parser
.getTok().getLoc();
10310 ARM::ArchKind ID
= ARM::parseArch(Arch
);
10312 if (ID
== ARM::ArchKind::INVALID
)
10313 return Error(ArchLoc
, "unknown architecture '" + Arch
+ "'");
10314 if (parseToken(AsmToken::EndOfStatement
))
10317 getTargetStreamer().emitObjectArch(ID
);
10321 /// parseDirectiveAlign
10323 bool ARMAsmParser::parseDirectiveAlign(SMLoc L
) {
10324 // NOTE: if this is not the end of the statement, fall back to the target
10325 // agnostic handling for this directive which will correctly handle this.
10326 if (parseOptionalToken(AsmToken::EndOfStatement
)) {
10327 // '.align' is target specifically handled to mean 2**2 byte alignment.
10328 const MCSection
*Section
= getStreamer().getCurrentSectionOnly();
10329 assert(Section
&& "must have section to emit alignment");
10330 if (Section
->UseCodeAlign())
10331 getStreamer().EmitCodeAlignment(4, 0);
10333 getStreamer().EmitValueToAlignment(4, 0, 1, 0);
10339 /// parseDirectiveThumbSet
10340 /// ::= .thumb_set name, value
10341 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L
) {
10342 MCAsmParser
&Parser
= getParser();
10345 if (check(Parser
.parseIdentifier(Name
),
10346 "expected identifier after '.thumb_set'") ||
10347 parseToken(AsmToken::Comma
, "expected comma after name '" + Name
+ "'"))
10351 const MCExpr
*Value
;
10352 if (MCParserUtils::parseAssignmentExpression(Name
, /* allow_redef */ true,
10353 Parser
, Sym
, Value
))
10356 getTargetStreamer().emitThumbSet(Sym
, Value
);
10360 /// Force static initialization.
10361 extern "C" void LLVMInitializeARMAsmParser() {
10362 RegisterMCAsmParser
<ARMAsmParser
> X(getTheARMLETarget());
10363 RegisterMCAsmParser
<ARMAsmParser
> Y(getTheARMBETarget());
10364 RegisterMCAsmParser
<ARMAsmParser
> A(getTheThumbLETarget());
10365 RegisterMCAsmParser
<ARMAsmParser
> B(getTheThumbBETarget());
10368 #define GET_REGISTER_MATCHER
10369 #define GET_SUBTARGET_FEATURE_NAME
10370 #define GET_MATCHER_IMPLEMENTATION
10371 #define GET_MNEMONIC_SPELL_CHECKER
10372 #include "ARMGenAsmMatcher.inc"
10374 // Some diagnostics need to vary with subtarget features, so they are handled
10375 // here. For example, the DPR class has either 16 or 32 registers, depending
10376 // on the FPU available.
10378 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError
) {
10379 switch (MatchError
) {
10380 // rGPR contains sp starting with ARMv8.
10382 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
10383 : "operand must be a register in range [r0, r12] or r14";
10384 // DPR contains 16 registers for some FPUs, and 32 for others.
10386 return hasD16() ? "operand must be a register in range [d0, d15]"
10387 : "operand must be a register in range [d0, d31]";
10388 case Match_DPR_RegList
:
10389 return hasD16() ? "operand must be a list of registers in range [d0, d15]"
10390 : "operand must be a list of registers in range [d0, d31]";
10392 // For all other diags, use the static string from tablegen.
10394 return getMatchKindDiag(MatchError
);
10398 // Process the list of near-misses, throwing away ones we don't want to report
10399 // to the user, and converting the rest to a source location and string that
10400 // should be reported.
10402 ARMAsmParser::FilterNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMissesIn
,
10403 SmallVectorImpl
<NearMissMessage
> &NearMissesOut
,
10404 SMLoc IDLoc
, OperandVector
&Operands
) {
10405 // TODO: If operand didn't match, sub in a dummy one and run target
10406 // predicate, so that we can avoid reporting near-misses that are invalid?
10407 // TODO: Many operand types dont have SuperClasses set, so we report
10409 // TODO: Some operands are superclasses of registers (e.g.
10410 // MCK_RegShiftedImm), we don't have any way to represent that currently.
10411 // TODO: This is not all ARM-specific, can some of it be factored out?
10413 // Record some information about near-misses that we have already seen, so
10414 // that we can avoid reporting redundant ones. For example, if there are
10415 // variants of an instruction that take 8- and 16-bit immediates, we want
10416 // to only report the widest one.
10417 std::multimap
<unsigned, unsigned> OperandMissesSeen
;
10418 SmallSet
<uint64_t, 4> FeatureMissesSeen
;
10419 bool ReportedTooFewOperands
= false;
10421 // Process the near-misses in reverse order, so that we see more general ones
10422 // first, and so can avoid emitting more specific ones.
10423 for (NearMissInfo
&I
: reverse(NearMissesIn
)) {
10424 switch (I
.getKind()) {
10425 case NearMissInfo::NearMissOperand
: {
10427 ((ARMOperand
&)*Operands
[I
.getOperandIndex()]).getStartLoc();
10428 const char *OperandDiag
=
10429 getCustomOperandDiag((ARMMatchResultTy
)I
.getOperandError());
10431 // If we have already emitted a message for a superclass, don't also report
10432 // the sub-class. We consider all operand classes that we don't have a
10433 // specialised diagnostic for to be equal for the propose of this check,
10434 // so that we don't report the generic error multiple times on the same
10436 unsigned DupCheckMatchClass
= OperandDiag
? I
.getOperandClass() : ~0U;
10437 auto PrevReports
= OperandMissesSeen
.equal_range(I
.getOperandIndex());
10438 if (std::any_of(PrevReports
.first
, PrevReports
.second
,
10439 [DupCheckMatchClass
](
10440 const std::pair
<unsigned, unsigned> Pair
) {
10441 if (DupCheckMatchClass
== ~0U || Pair
.second
== ~0U)
10442 return Pair
.second
== DupCheckMatchClass
;
10444 return isSubclass((MatchClassKind
)DupCheckMatchClass
,
10445 (MatchClassKind
)Pair
.second
);
10448 OperandMissesSeen
.insert(
10449 std::make_pair(I
.getOperandIndex(), DupCheckMatchClass
));
10451 NearMissMessage Message
;
10452 Message
.Loc
= OperandLoc
;
10454 Message
.Message
= OperandDiag
;
10455 } else if (I
.getOperandClass() == InvalidMatchClass
) {
10456 Message
.Message
= "too many operands for instruction";
10458 Message
.Message
= "invalid operand for instruction";
10460 dbgs() << "Missing diagnostic string for operand class "
10461 << getMatchClassName((MatchClassKind
)I
.getOperandClass())
10462 << I
.getOperandClass() << ", error " << I
.getOperandError()
10463 << ", opcode " << MII
.getName(I
.getOpcode()) << "\n");
10465 NearMissesOut
.emplace_back(Message
);
10468 case NearMissInfo::NearMissFeature
: {
10469 uint64_t MissingFeatures
= I
.getFeatures();
10470 // Don't report the same set of features twice.
10471 if (FeatureMissesSeen
.count(MissingFeatures
))
10473 FeatureMissesSeen
.insert(MissingFeatures
);
10475 // Special case: don't report a feature set which includes arm-mode for
10476 // targets that don't have ARM mode.
10477 if ((MissingFeatures
& Feature_IsARM
) && !hasARM())
10479 // Don't report any near-misses that both require switching instruction
10480 // set, and adding other subtarget features.
10481 if (isThumb() && (MissingFeatures
& Feature_IsARM
) &&
10482 (MissingFeatures
& ~Feature_IsARM
))
10484 if (!isThumb() && (MissingFeatures
& Feature_IsThumb
) &&
10485 (MissingFeatures
& ~Feature_IsThumb
))
10487 if (!isThumb() && (MissingFeatures
& Feature_IsThumb2
) &&
10488 (MissingFeatures
& ~(Feature_IsThumb2
| Feature_IsThumb
)))
10490 if (isMClass() && (MissingFeatures
& Feature_HasNEON
))
10493 NearMissMessage Message
;
10494 Message
.Loc
= IDLoc
;
10495 raw_svector_ostream
OS(Message
.Message
);
10497 OS
<< "instruction requires:";
10499 for (unsigned MaskPos
= 0; MaskPos
< (sizeof(MissingFeatures
) * 8 - 1);
10501 if (MissingFeatures
& Mask
) {
10502 OS
<< " " << getSubtargetFeatureName(MissingFeatures
& Mask
);
10506 NearMissesOut
.emplace_back(Message
);
10510 case NearMissInfo::NearMissPredicate
: {
10511 NearMissMessage Message
;
10512 Message
.Loc
= IDLoc
;
10513 switch (I
.getPredicateError()) {
10514 case Match_RequiresNotITBlock
:
10515 Message
.Message
= "flag setting instruction only valid outside IT block";
10517 case Match_RequiresITBlock
:
10518 Message
.Message
= "instruction only valid inside IT block";
10520 case Match_RequiresV6
:
10521 Message
.Message
= "instruction variant requires ARMv6 or later";
10523 case Match_RequiresThumb2
:
10524 Message
.Message
= "instruction variant requires Thumb2";
10526 case Match_RequiresV8
:
10527 Message
.Message
= "instruction variant requires ARMv8 or later";
10529 case Match_RequiresFlagSetting
:
10530 Message
.Message
= "no flag-preserving variant of this instruction available";
10532 case Match_InvalidOperand
:
10533 Message
.Message
= "invalid operand for instruction";
10536 llvm_unreachable("Unhandled target predicate error");
10539 NearMissesOut
.emplace_back(Message
);
10542 case NearMissInfo::NearMissTooFewOperands
: {
10543 if (!ReportedTooFewOperands
) {
10544 SMLoc EndLoc
= ((ARMOperand
&)*Operands
.back()).getEndLoc();
10545 NearMissesOut
.emplace_back(NearMissMessage
{
10546 EndLoc
, StringRef("too few operands for instruction")});
10547 ReportedTooFewOperands
= true;
10551 case NearMissInfo::NoNearMiss
:
10552 // This should never leave the matcher.
10553 llvm_unreachable("not a near-miss");
10559 void ARMAsmParser::ReportNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMisses
,
10560 SMLoc IDLoc
, OperandVector
&Operands
) {
10561 SmallVector
<NearMissMessage
, 4> Messages
;
10562 FilterNearMisses(NearMisses
, Messages
, IDLoc
, Operands
);
10564 if (Messages
.size() == 0) {
10565 // No near-misses were found, so the best we can do is "invalid
10567 Error(IDLoc
, "invalid instruction");
10568 } else if (Messages
.size() == 1) {
10569 // One near miss was found, report it as the sole error.
10570 Error(Messages
[0].Loc
, Messages
[0].Message
);
10572 // More than one near miss, so report a generic "invalid instruction"
10573 // error, followed by notes for each of the near-misses.
10574 Error(IDLoc
, "invalid instruction, any one of the following would fix this:");
10575 for (auto &M
: Messages
) {
10576 Note(M
.Loc
, M
.Message
);
10581 // FIXME: This structure should be moved inside ARMTargetParser
10582 // when we start to table-generate them, and we can use the ARM
10583 // flags below, that were generated by table-gen.
10584 static const struct {
10585 const unsigned Kind
;
10586 const uint64_t ArchCheck
;
10587 const FeatureBitset Features
;
10589 { ARM::AEK_CRC
, Feature_HasV8
, {ARM::FeatureCRC
} },
10590 { ARM::AEK_CRYPTO
, Feature_HasV8
,
10591 {ARM::FeatureCrypto
, ARM::FeatureNEON
, ARM::FeatureFPARMv8
} },
10592 { ARM::AEK_FP
, Feature_HasV8
, {ARM::FeatureFPARMv8
} },
10593 { (ARM::AEK_HWDIVTHUMB
| ARM::AEK_HWDIVARM
), Feature_HasV7
| Feature_IsNotMClass
,
10594 {ARM::FeatureHWDivThumb
, ARM::FeatureHWDivARM
} },
10595 { ARM::AEK_MP
, Feature_HasV7
| Feature_IsNotMClass
, {ARM::FeatureMP
} },
10596 { ARM::AEK_SIMD
, Feature_HasV8
, {ARM::FeatureNEON
, ARM::FeatureFPARMv8
} },
10597 { ARM::AEK_SEC
, Feature_HasV6K
, {ARM::FeatureTrustZone
} },
10598 // FIXME: Only available in A-class, isel not predicated
10599 { ARM::AEK_VIRT
, Feature_HasV7
, {ARM::FeatureVirtualization
} },
10600 { ARM::AEK_FP16
, Feature_HasV8_2a
, {ARM::FeatureFPARMv8
, ARM::FeatureFullFP16
} },
10601 { ARM::AEK_RAS
, Feature_HasV8
, {ARM::FeatureRAS
} },
10602 // FIXME: Unsupported extensions.
10603 { ARM::AEK_OS
, Feature_None
, {} },
10604 { ARM::AEK_IWMMXT
, Feature_None
, {} },
10605 { ARM::AEK_IWMMXT2
, Feature_None
, {} },
10606 { ARM::AEK_MAVERICK
, Feature_None
, {} },
10607 { ARM::AEK_XSCALE
, Feature_None
, {} },
10610 /// parseDirectiveArchExtension
10611 /// ::= .arch_extension [no]feature
10612 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L
) {
10613 MCAsmParser
&Parser
= getParser();
10615 if (getLexer().isNot(AsmToken::Identifier
))
10616 return Error(getLexer().getLoc(), "expected architecture extension name");
10618 StringRef Name
= Parser
.getTok().getString();
10619 SMLoc ExtLoc
= Parser
.getTok().getLoc();
10622 if (parseToken(AsmToken::EndOfStatement
,
10623 "unexpected token in '.arch_extension' directive"))
10626 bool EnableFeature
= true;
10627 if (Name
.startswith_lower("no")) {
10628 EnableFeature
= false;
10629 Name
= Name
.substr(2);
10631 unsigned FeatureKind
= ARM::parseArchExt(Name
);
10632 if (FeatureKind
== ARM::AEK_INVALID
)
10633 return Error(ExtLoc
, "unknown architectural extension: " + Name
);
10635 for (const auto &Extension
: Extensions
) {
10636 if (Extension
.Kind
!= FeatureKind
)
10639 if (Extension
.Features
.none())
10640 return Error(ExtLoc
, "unsupported architectural extension: " + Name
);
10642 if ((getAvailableFeatures() & Extension
.ArchCheck
) != Extension
.ArchCheck
)
10643 return Error(ExtLoc
, "architectural extension '" + Name
+
10645 "allowed for the current base architecture");
10647 MCSubtargetInfo
&STI
= copySTI();
10648 FeatureBitset ToggleFeatures
= EnableFeature
10649 ? (~STI
.getFeatureBits() & Extension
.Features
)
10650 : ( STI
.getFeatureBits() & Extension
.Features
);
10652 uint64_t Features
=
10653 ComputeAvailableFeatures(STI
.ToggleFeature(ToggleFeatures
));
10654 setAvailableFeatures(Features
);
10658 return Error(ExtLoc
, "unknown architectural extension: " + Name
);
10661 // Define this matcher function after the auto-generated include so we
10662 // have the match class enum definitions.
10663 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand
&AsmOp
,
10665 ARMOperand
&Op
= static_cast<ARMOperand
&>(AsmOp
);
10666 // If the kind is a token for a literal immediate, check if our asm
10667 // operand matches. This is for InstAliases which have a fixed-value
10668 // immediate in the syntax.
10673 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm()))
10674 if (CE
->getValue() == 0)
10675 return Match_Success
;
10679 const MCExpr
*SOExpr
= Op
.getImm();
10681 if (!SOExpr
->evaluateAsAbsolute(Value
))
10682 return Match_Success
;
10683 assert((Value
>= std::numeric_limits
<int32_t>::min() &&
10684 Value
<= std::numeric_limits
<uint32_t>::max()) &&
10685 "expression value must be representable in 32 bits");
10689 if (hasV8Ops() && Op
.isReg() && Op
.getReg() == ARM::SP
)
10690 return Match_Success
;
10694 MRI
->getRegClass(ARM::GPRRegClassID
).contains(Op
.getReg()))
10695 return Match_Success
;
10698 return Match_InvalidOperand
;