Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / ARM / AsmParser / ARMAsmParser.cpp
blob5682c2a6547da6518e9e446607ba938622346fc0
1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ARMFeatures.h"
10 #include "InstPrinter/ARMInstPrinter.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInst.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/MC/MCObjectFileInfo.h"
33 #include "llvm/MC/MCParser/MCAsmLexer.h"
34 #include "llvm/MC/MCParser/MCAsmParser.h"
35 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
36 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
38 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSubtargetInfo.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/SubtargetFeature.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/ARMEHABI.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/SMLoc.h"
53 #include "llvm/Support/TargetParser.h"
54 #include "llvm/Support/TargetRegistry.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <memory>
63 #include <string>
64 #include <utility>
65 #include <vector>
67 #define DEBUG_TYPE "asm-parser"
69 using namespace llvm;
71 namespace {
73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
75 static cl::opt<ImplicitItModeTy> ImplicitItMode(
76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
77 cl::desc("Allow conditional instructions outdside of an IT block"),
78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
79 "Accept in both ISAs, emit implicit ITs in Thumb"),
80 clEnumValN(ImplicitItModeTy::Never, "never",
81 "Warn in ARM, reject in Thumb"),
82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
83 "Accept in ARM, reject in Thumb"),
84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
85 "Warn in ARM, emit implicit ITs in Thumb")));
87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
88 cl::init(false));
90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
92 class UnwindContext {
93 using Locs = SmallVector<SMLoc, 4>;
95 MCAsmParser &Parser;
96 Locs FnStartLocs;
97 Locs CantUnwindLocs;
98 Locs PersonalityLocs;
99 Locs PersonalityIndexLocs;
100 Locs HandlerDataLocs;
101 int FPReg;
103 public:
104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
106 bool hasFnStart() const { return !FnStartLocs.empty(); }
107 bool cantUnwind() const { return !CantUnwindLocs.empty(); }
108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
110 bool hasPersonality() const {
111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
120 void saveFPReg(int Reg) { FPReg = Reg; }
121 int getFPReg() const { return FPReg; }
123 void emitFnStartLocNotes() const {
124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
125 FI != FE; ++FI)
126 Parser.Note(*FI, ".fnstart was specified here");
129 void emitCantUnwindLocNotes() const {
130 for (Locs::const_iterator UI = CantUnwindLocs.begin(),
131 UE = CantUnwindLocs.end(); UI != UE; ++UI)
132 Parser.Note(*UI, ".cantunwind was specified here");
135 void emitHandlerDataLocNotes() const {
136 for (Locs::const_iterator HI = HandlerDataLocs.begin(),
137 HE = HandlerDataLocs.end(); HI != HE; ++HI)
138 Parser.Note(*HI, ".handlerdata was specified here");
141 void emitPersonalityLocNotes() const {
142 for (Locs::const_iterator PI = PersonalityLocs.begin(),
143 PE = PersonalityLocs.end(),
144 PII = PersonalityIndexLocs.begin(),
145 PIE = PersonalityIndexLocs.end();
146 PI != PE || PII != PIE;) {
147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
148 Parser.Note(*PI++, ".personality was specified here");
149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
150 Parser.Note(*PII++, ".personalityindex was specified here");
151 else
152 llvm_unreachable(".personality and .personalityindex cannot be "
153 "at the same location");
157 void reset() {
158 FnStartLocs = Locs();
159 CantUnwindLocs = Locs();
160 PersonalityLocs = Locs();
161 HandlerDataLocs = Locs();
162 PersonalityIndexLocs = Locs();
163 FPReg = ARM::SP;
167 class ARMAsmParser : public MCTargetAsmParser {
168 const MCRegisterInfo *MRI;
169 UnwindContext UC;
171 ARMTargetStreamer &getTargetStreamer() {
172 assert(getParser().getStreamer().getTargetStreamer() &&
173 "do not have a target streamer");
174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
175 return static_cast<ARMTargetStreamer &>(TS);
178 // Map of register aliases registers via the .req directive.
179 StringMap<unsigned> RegisterReqs;
181 bool NextSymbolIsThumb;
183 bool useImplicitITThumb() const {
184 return ImplicitItMode == ImplicitItModeTy::Always ||
185 ImplicitItMode == ImplicitItModeTy::ThumbOnly;
188 bool useImplicitITARM() const {
189 return ImplicitItMode == ImplicitItModeTy::Always ||
190 ImplicitItMode == ImplicitItModeTy::ARMOnly;
193 struct {
194 ARMCC::CondCodes Cond; // Condition for IT block.
195 unsigned Mask:4; // Condition mask for instructions.
196 // Starting at first 1 (from lsb).
197 // '1' condition as indicated in IT.
198 // '0' inverse of condition (else).
199 // Count of instructions in IT block is
200 // 4 - trailingzeroes(mask)
201 // Note that this does not have the same encoding
202 // as in the IT instruction, which also depends
203 // on the low bit of the condition code.
205 unsigned CurPosition; // Current position in parsing of IT
206 // block. In range [0,4], with 0 being the IT
207 // instruction itself. Initialized according to
208 // count of instructions in block. ~0U if no
209 // active IT block.
211 bool IsExplicit; // true - The IT instruction was present in the
212 // input, we should not modify it.
213 // false - The IT instruction was added
214 // implicitly, we can extend it if that
215 // would be legal.
216 } ITState;
218 SmallVector<MCInst, 4> PendingConditionalInsts;
220 void flushPendingInstructions(MCStreamer &Out) override {
221 if (!inImplicitITBlock()) {
222 assert(PendingConditionalInsts.size() == 0);
223 return;
226 // Emit the IT instruction
227 unsigned Mask = getITMaskEncoding();
228 MCInst ITInst;
229 ITInst.setOpcode(ARM::t2IT);
230 ITInst.addOperand(MCOperand::createImm(ITState.Cond));
231 ITInst.addOperand(MCOperand::createImm(Mask));
232 Out.EmitInstruction(ITInst, getSTI());
234 // Emit the conditonal instructions
235 assert(PendingConditionalInsts.size() <= 4);
236 for (const MCInst &Inst : PendingConditionalInsts) {
237 Out.EmitInstruction(Inst, getSTI());
239 PendingConditionalInsts.clear();
241 // Clear the IT state
242 ITState.Mask = 0;
243 ITState.CurPosition = ~0U;
246 bool inITBlock() { return ITState.CurPosition != ~0U; }
247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
250 bool lastInITBlock() {
251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
254 void forwardITPosition() {
255 if (!inITBlock()) return;
256 // Move to the next instruction in the IT block, if there is one. If not,
257 // mark the block as done, except for implicit IT blocks, which we leave
258 // open until we find an instruction that can't be added to it.
259 unsigned TZ = countTrailingZeros(ITState.Mask);
260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
261 ITState.CurPosition = ~0U; // Done with the IT block after this.
264 // Rewind the state of the current IT block, removing the last slot from it.
265 void rewindImplicitITPosition() {
266 assert(inImplicitITBlock());
267 assert(ITState.CurPosition > 1);
268 ITState.CurPosition--;
269 unsigned TZ = countTrailingZeros(ITState.Mask);
270 unsigned NewMask = 0;
271 NewMask |= ITState.Mask & (0xC << TZ);
272 NewMask |= 0x2 << TZ;
273 ITState.Mask = NewMask;
276 // Rewind the state of the current IT block, removing the last slot from it.
277 // If we were at the first slot, this closes the IT block.
278 void discardImplicitITBlock() {
279 assert(inImplicitITBlock());
280 assert(ITState.CurPosition == 1);
281 ITState.CurPosition = ~0U;
284 // Return the low-subreg of a given Q register.
285 unsigned getDRegFromQReg(unsigned QReg) const {
286 return MRI->getSubReg(QReg, ARM::dsub_0);
289 // Get the encoding of the IT mask, as it will appear in an IT instruction.
290 unsigned getITMaskEncoding() {
291 assert(inITBlock());
292 unsigned Mask = ITState.Mask;
293 unsigned TZ = countTrailingZeros(Mask);
294 if ((ITState.Cond & 1) == 0) {
295 assert(Mask && TZ <= 3 && "illegal IT mask value!");
296 Mask ^= (0xE << TZ) & 0xF;
298 return Mask;
301 // Get the condition code corresponding to the current IT block slot.
302 ARMCC::CondCodes currentITCond() {
303 unsigned MaskBit;
304 if (ITState.CurPosition == 1)
305 MaskBit = 1;
306 else
307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond);
312 // Invert the condition of the current IT block slot without changing any
313 // other slots in the same block.
314 void invertCurrentITCondition() {
315 if (ITState.CurPosition == 1) {
316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
317 } else {
318 ITState.Mask ^= 1 << (5 - ITState.CurPosition);
322 // Returns true if the current IT block is full (all 4 slots used).
323 bool isITBlockFull() {
324 return inITBlock() && (ITState.Mask & 1);
327 // Extend the current implicit IT block to have one more slot with the given
328 // condition code.
329 void extendImplicitITBlock(ARMCC::CondCodes Cond) {
330 assert(inImplicitITBlock());
331 assert(!isITBlockFull());
332 assert(Cond == ITState.Cond ||
333 Cond == ARMCC::getOppositeCondition(ITState.Cond));
334 unsigned TZ = countTrailingZeros(ITState.Mask);
335 unsigned NewMask = 0;
336 // Keep any existing condition bits.
337 NewMask |= ITState.Mask & (0xE << TZ);
338 // Insert the new condition bit.
339 NewMask |= (Cond == ITState.Cond) << TZ;
340 // Move the trailing 1 down one bit.
341 NewMask |= 1 << (TZ - 1);
342 ITState.Mask = NewMask;
345 // Create a new implicit IT block with a dummy condition code.
346 void startImplicitITBlock() {
347 assert(!inITBlock());
348 ITState.Cond = ARMCC::AL;
349 ITState.Mask = 8;
350 ITState.CurPosition = 1;
351 ITState.IsExplicit = false;
354 // Create a new explicit IT block with the given condition and mask. The mask
355 // should be in the parsed format, with a 1 implying 't', regardless of the
356 // low bit of the condition.
357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
358 assert(!inITBlock());
359 ITState.Cond = Cond;
360 ITState.Mask = Mask;
361 ITState.CurPosition = 0;
362 ITState.IsExplicit = true;
365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
366 return getParser().Note(L, Msg, Range);
369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
370 return getParser().Warning(L, Msg, Range);
373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
374 return getParser().Error(L, Msg, Range);
377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
378 unsigned ListNo, bool IsARPop = false);
379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
380 unsigned ListNo);
382 int tryParseRegister();
383 bool tryParseRegisterWithWriteBack(OperandVector &);
384 int tryParseShiftRegister(OperandVector &);
385 bool parseRegisterList(OperandVector &);
386 bool parseMemory(OperandVector &);
387 bool parseOperand(OperandVector &, StringRef Mnemonic);
388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
390 unsigned &ShiftAmount);
391 bool parseLiteralValues(unsigned Size, SMLoc L);
392 bool parseDirectiveThumb(SMLoc L);
393 bool parseDirectiveARM(SMLoc L);
394 bool parseDirectiveThumbFunc(SMLoc L);
395 bool parseDirectiveCode(SMLoc L);
396 bool parseDirectiveSyntax(SMLoc L);
397 bool parseDirectiveReq(StringRef Name, SMLoc L);
398 bool parseDirectiveUnreq(SMLoc L);
399 bool parseDirectiveArch(SMLoc L);
400 bool parseDirectiveEabiAttr(SMLoc L);
401 bool parseDirectiveCPU(SMLoc L);
402 bool parseDirectiveFPU(SMLoc L);
403 bool parseDirectiveFnStart(SMLoc L);
404 bool parseDirectiveFnEnd(SMLoc L);
405 bool parseDirectiveCantUnwind(SMLoc L);
406 bool parseDirectivePersonality(SMLoc L);
407 bool parseDirectiveHandlerData(SMLoc L);
408 bool parseDirectiveSetFP(SMLoc L);
409 bool parseDirectivePad(SMLoc L);
410 bool parseDirectiveRegSave(SMLoc L, bool IsVector);
411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
412 bool parseDirectiveLtorg(SMLoc L);
413 bool parseDirectiveEven(SMLoc L);
414 bool parseDirectivePersonalityIndex(SMLoc L);
415 bool parseDirectiveUnwindRaw(SMLoc L);
416 bool parseDirectiveTLSDescSeq(SMLoc L);
417 bool parseDirectiveMovSP(SMLoc L);
418 bool parseDirectiveObjectArch(SMLoc L);
419 bool parseDirectiveArchExtension(SMLoc L);
420 bool parseDirectiveAlign(SMLoc L);
421 bool parseDirectiveThumbSet(SMLoc L);
423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
424 bool &CarrySetting, unsigned &ProcessorIMod,
425 StringRef &ITMask);
426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
427 bool &CanAcceptCarrySet,
428 bool &CanAcceptPredicationCode);
430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
431 OperandVector &Operands);
432 bool isThumb() const {
433 // FIXME: Can tablegen auto-generate this?
434 return getSTI().getFeatureBits()[ARM::ModeThumb];
437 bool isThumbOne() const {
438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
441 bool isThumbTwo() const {
442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
445 bool hasThumb() const {
446 return getSTI().getFeatureBits()[ARM::HasV4TOps];
449 bool hasThumb2() const {
450 return getSTI().getFeatureBits()[ARM::FeatureThumb2];
453 bool hasV6Ops() const {
454 return getSTI().getFeatureBits()[ARM::HasV6Ops];
457 bool hasV6T2Ops() const {
458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
461 bool hasV6MOps() const {
462 return getSTI().getFeatureBits()[ARM::HasV6MOps];
465 bool hasV7Ops() const {
466 return getSTI().getFeatureBits()[ARM::HasV7Ops];
469 bool hasV8Ops() const {
470 return getSTI().getFeatureBits()[ARM::HasV8Ops];
473 bool hasV8MBaseline() const {
474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
477 bool hasV8MMainline() const {
478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
481 bool has8MSecExt() const {
482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
485 bool hasARM() const {
486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
489 bool hasDSP() const {
490 return getSTI().getFeatureBits()[ARM::FeatureDSP];
493 bool hasD16() const {
494 return getSTI().getFeatureBits()[ARM::FeatureD16];
497 bool hasV8_1aOps() const {
498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
501 bool hasRAS() const {
502 return getSTI().getFeatureBits()[ARM::FeatureRAS];
505 void SwitchMode() {
506 MCSubtargetInfo &STI = copySTI();
507 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
508 setAvailableFeatures(FB);
511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
513 bool isMClass() const {
514 return getSTI().getFeatureBits()[ARM::FeatureMClass];
517 /// @name Auto-generated Match Functions
518 /// {
520 #define GET_ASSEMBLER_HEADER
521 #include "ARMGenAsmMatcher.inc"
523 /// }
525 OperandMatchResultTy parseITCondCode(OperandVector &);
526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
530 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
531 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
532 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
533 OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
534 OperandMatchResultTy parseBankedRegOperand(OperandVector &);
535 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
536 int High);
537 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
538 return parsePKHImm(O, "lsl", 0, 31);
540 OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
541 return parsePKHImm(O, "asr", 1, 32);
543 OperandMatchResultTy parseSetEndImm(OperandVector &);
544 OperandMatchResultTy parseShifterImm(OperandVector &);
545 OperandMatchResultTy parseRotImm(OperandVector &);
546 OperandMatchResultTy parseModImm(OperandVector &);
547 OperandMatchResultTy parseBitfield(OperandVector &);
548 OperandMatchResultTy parsePostIdxReg(OperandVector &);
549 OperandMatchResultTy parseAM3Offset(OperandVector &);
550 OperandMatchResultTy parseFPImm(OperandVector &);
551 OperandMatchResultTy parseVectorList(OperandVector &);
552 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
553 SMLoc &EndLoc);
555 // Asm Match Converter Methods
556 void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
557 void cvtThumbBranches(MCInst &Inst, const OperandVector &);
559 bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
560 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
561 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
562 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
563 bool isITBlockTerminator(MCInst &Inst) const;
564 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
565 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
566 bool Load, bool ARMMode, bool Writeback);
568 public:
569 enum ARMMatchResultTy {
570 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
571 Match_RequiresNotITBlock,
572 Match_RequiresV6,
573 Match_RequiresThumb2,
574 Match_RequiresV8,
575 Match_RequiresFlagSetting,
576 #define GET_OPERAND_DIAGNOSTIC_TYPES
577 #include "ARMGenAsmMatcher.inc"
581 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
582 const MCInstrInfo &MII, const MCTargetOptions &Options)
583 : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
584 MCAsmParserExtension::Initialize(Parser);
586 // Cache the MCRegisterInfo.
587 MRI = getContext().getRegisterInfo();
589 // Initialize the set of available features.
590 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
592 // Add build attributes based on the selected target.
593 if (AddBuildAttributes)
594 getTargetStreamer().emitTargetAttributes(STI);
596 // Not in an ITBlock to start with.
597 ITState.CurPosition = ~0U;
599 NextSymbolIsThumb = false;
602 // Implementation of the MCTargetAsmParser interface:
603 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
604 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
605 SMLoc NameLoc, OperandVector &Operands) override;
606 bool ParseDirective(AsmToken DirectiveID) override;
608 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
609 unsigned Kind) override;
610 unsigned checkTargetMatchPredicate(MCInst &Inst) override;
612 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
613 OperandVector &Operands, MCStreamer &Out,
614 uint64_t &ErrorInfo,
615 bool MatchingInlineAsm) override;
616 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
617 SmallVectorImpl<NearMissInfo> &NearMisses,
618 bool MatchingInlineAsm, bool &EmitInITBlock,
619 MCStreamer &Out);
621 struct NearMissMessage {
622 SMLoc Loc;
623 SmallString<128> Message;
626 const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
628 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
629 SmallVectorImpl<NearMissMessage> &NearMissesOut,
630 SMLoc IDLoc, OperandVector &Operands);
631 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
632 OperandVector &Operands);
634 void doBeforeLabelEmit(MCSymbol *Symbol) override;
636 void onLabelParsed(MCSymbol *Symbol) override;
639 /// ARMOperand - Instances of this class represent a parsed ARM machine
640 /// operand.
641 class ARMOperand : public MCParsedAsmOperand {
642 enum KindTy {
643 k_CondCode,
644 k_CCOut,
645 k_ITCondMask,
646 k_CoprocNum,
647 k_CoprocReg,
648 k_CoprocOption,
649 k_Immediate,
650 k_MemBarrierOpt,
651 k_InstSyncBarrierOpt,
652 k_TraceSyncBarrierOpt,
653 k_Memory,
654 k_PostIndexRegister,
655 k_MSRMask,
656 k_BankedReg,
657 k_ProcIFlags,
658 k_VectorIndex,
659 k_Register,
660 k_RegisterList,
661 k_DPRRegisterList,
662 k_SPRRegisterList,
663 k_VectorList,
664 k_VectorListAllLanes,
665 k_VectorListIndexed,
666 k_ShiftedRegister,
667 k_ShiftedImmediate,
668 k_ShifterImmediate,
669 k_RotateImmediate,
670 k_ModifiedImmediate,
671 k_ConstantPoolImmediate,
672 k_BitfieldDescriptor,
673 k_Token,
674 } Kind;
676 SMLoc StartLoc, EndLoc, AlignmentLoc;
677 SmallVector<unsigned, 8> Registers;
679 struct CCOp {
680 ARMCC::CondCodes Val;
683 struct CopOp {
684 unsigned Val;
687 struct CoprocOptionOp {
688 unsigned Val;
691 struct ITMaskOp {
692 unsigned Mask:4;
695 struct MBOptOp {
696 ARM_MB::MemBOpt Val;
699 struct ISBOptOp {
700 ARM_ISB::InstSyncBOpt Val;
703 struct TSBOptOp {
704 ARM_TSB::TraceSyncBOpt Val;
707 struct IFlagsOp {
708 ARM_PROC::IFlags Val;
711 struct MMaskOp {
712 unsigned Val;
715 struct BankedRegOp {
716 unsigned Val;
719 struct TokOp {
720 const char *Data;
721 unsigned Length;
724 struct RegOp {
725 unsigned RegNum;
728 // A vector register list is a sequential list of 1 to 4 registers.
729 struct VectorListOp {
730 unsigned RegNum;
731 unsigned Count;
732 unsigned LaneIndex;
733 bool isDoubleSpaced;
736 struct VectorIndexOp {
737 unsigned Val;
740 struct ImmOp {
741 const MCExpr *Val;
744 /// Combined record for all forms of ARM address expressions.
745 struct MemoryOp {
746 unsigned BaseRegNum;
747 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
748 // was specified.
749 const MCConstantExpr *OffsetImm; // Offset immediate value
750 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
751 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
752 unsigned ShiftImm; // shift for OffsetReg.
753 unsigned Alignment; // 0 = no alignment specified
754 // n = alignment in bytes (2, 4, 8, 16, or 32)
755 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
758 struct PostIdxRegOp {
759 unsigned RegNum;
760 bool isAdd;
761 ARM_AM::ShiftOpc ShiftTy;
762 unsigned ShiftImm;
765 struct ShifterImmOp {
766 bool isASR;
767 unsigned Imm;
770 struct RegShiftedRegOp {
771 ARM_AM::ShiftOpc ShiftTy;
772 unsigned SrcReg;
773 unsigned ShiftReg;
774 unsigned ShiftImm;
777 struct RegShiftedImmOp {
778 ARM_AM::ShiftOpc ShiftTy;
779 unsigned SrcReg;
780 unsigned ShiftImm;
783 struct RotImmOp {
784 unsigned Imm;
787 struct ModImmOp {
788 unsigned Bits;
789 unsigned Rot;
792 struct BitfieldOp {
793 unsigned LSB;
794 unsigned Width;
797 union {
798 struct CCOp CC;
799 struct CopOp Cop;
800 struct CoprocOptionOp CoprocOption;
801 struct MBOptOp MBOpt;
802 struct ISBOptOp ISBOpt;
803 struct TSBOptOp TSBOpt;
804 struct ITMaskOp ITMask;
805 struct IFlagsOp IFlags;
806 struct MMaskOp MMask;
807 struct BankedRegOp BankedReg;
808 struct TokOp Tok;
809 struct RegOp Reg;
810 struct VectorListOp VectorList;
811 struct VectorIndexOp VectorIndex;
812 struct ImmOp Imm;
813 struct MemoryOp Memory;
814 struct PostIdxRegOp PostIdxReg;
815 struct ShifterImmOp ShifterImm;
816 struct RegShiftedRegOp RegShiftedReg;
817 struct RegShiftedImmOp RegShiftedImm;
818 struct RotImmOp RotImm;
819 struct ModImmOp ModImm;
820 struct BitfieldOp Bitfield;
823 public:
824 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
826 /// getStartLoc - Get the location of the first token of this operand.
827 SMLoc getStartLoc() const override { return StartLoc; }
829 /// getEndLoc - Get the location of the last token of this operand.
830 SMLoc getEndLoc() const override { return EndLoc; }
832 /// getLocRange - Get the range between the first and last token of this
833 /// operand.
834 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
836 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
837 SMLoc getAlignmentLoc() const {
838 assert(Kind == k_Memory && "Invalid access!");
839 return AlignmentLoc;
842 ARMCC::CondCodes getCondCode() const {
843 assert(Kind == k_CondCode && "Invalid access!");
844 return CC.Val;
847 unsigned getCoproc() const {
848 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
849 return Cop.Val;
852 StringRef getToken() const {
853 assert(Kind == k_Token && "Invalid access!");
854 return StringRef(Tok.Data, Tok.Length);
857 unsigned getReg() const override {
858 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
859 return Reg.RegNum;
862 const SmallVectorImpl<unsigned> &getRegList() const {
863 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
864 Kind == k_SPRRegisterList) && "Invalid access!");
865 return Registers;
868 const MCExpr *getImm() const {
869 assert(isImm() && "Invalid access!");
870 return Imm.Val;
873 const MCExpr *getConstantPoolImm() const {
874 assert(isConstantPoolImm() && "Invalid access!");
875 return Imm.Val;
878 unsigned getVectorIndex() const {
879 assert(Kind == k_VectorIndex && "Invalid access!");
880 return VectorIndex.Val;
883 ARM_MB::MemBOpt getMemBarrierOpt() const {
884 assert(Kind == k_MemBarrierOpt && "Invalid access!");
885 return MBOpt.Val;
888 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
889 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
890 return ISBOpt.Val;
893 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
894 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
895 return TSBOpt.Val;
898 ARM_PROC::IFlags getProcIFlags() const {
899 assert(Kind == k_ProcIFlags && "Invalid access!");
900 return IFlags.Val;
903 unsigned getMSRMask() const {
904 assert(Kind == k_MSRMask && "Invalid access!");
905 return MMask.Val;
908 unsigned getBankedReg() const {
909 assert(Kind == k_BankedReg && "Invalid access!");
910 return BankedReg.Val;
913 bool isCoprocNum() const { return Kind == k_CoprocNum; }
914 bool isCoprocReg() const { return Kind == k_CoprocReg; }
915 bool isCoprocOption() const { return Kind == k_CoprocOption; }
916 bool isCondCode() const { return Kind == k_CondCode; }
917 bool isCCOut() const { return Kind == k_CCOut; }
918 bool isITMask() const { return Kind == k_ITCondMask; }
919 bool isITCondCode() const { return Kind == k_CondCode; }
920 bool isImm() const override {
921 return Kind == k_Immediate;
924 bool isARMBranchTarget() const {
925 if (!isImm()) return false;
927 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
928 return CE->getValue() % 4 == 0;
929 return true;
933 bool isThumbBranchTarget() const {
934 if (!isImm()) return false;
936 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
937 return CE->getValue() % 2 == 0;
938 return true;
941 // checks whether this operand is an unsigned offset which fits is a field
942 // of specified width and scaled by a specific number of bits
943 template<unsigned width, unsigned scale>
944 bool isUnsignedOffset() const {
945 if (!isImm()) return false;
946 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
947 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
948 int64_t Val = CE->getValue();
949 int64_t Align = 1LL << scale;
950 int64_t Max = Align * ((1LL << width) - 1);
951 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
953 return false;
956 // checks whether this operand is an signed offset which fits is a field
957 // of specified width and scaled by a specific number of bits
958 template<unsigned width, unsigned scale>
959 bool isSignedOffset() const {
960 if (!isImm()) return false;
961 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
962 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
963 int64_t Val = CE->getValue();
964 int64_t Align = 1LL << scale;
965 int64_t Max = Align * ((1LL << (width-1)) - 1);
966 int64_t Min = -Align * (1LL << (width-1));
967 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
969 return false;
972 // checks whether this operand is a memory operand computed as an offset
973 // applied to PC. the offset may have 8 bits of magnitude and is represented
974 // with two bits of shift. textually it may be either [pc, #imm], #imm or
975 // relocable expression...
976 bool isThumbMemPC() const {
977 int64_t Val = 0;
978 if (isImm()) {
979 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
980 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
981 if (!CE) return false;
982 Val = CE->getValue();
984 else if (isMem()) {
985 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
986 if(Memory.BaseRegNum != ARM::PC) return false;
987 Val = Memory.OffsetImm->getValue();
989 else return false;
990 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
993 bool isFPImm() const {
994 if (!isImm()) return false;
995 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
996 if (!CE) return false;
997 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
998 return Val != -1;
1001 template<int64_t N, int64_t M>
1002 bool isImmediate() const {
1003 if (!isImm()) return false;
1004 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1005 if (!CE) return false;
1006 int64_t Value = CE->getValue();
1007 return Value >= N && Value <= M;
1010 template<int64_t N, int64_t M>
1011 bool isImmediateS4() const {
1012 if (!isImm()) return false;
1013 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1014 if (!CE) return false;
1015 int64_t Value = CE->getValue();
1016 return ((Value & 3) == 0) && Value >= N && Value <= M;
1019 bool isFBits16() const {
1020 return isImmediate<0, 17>();
1022 bool isFBits32() const {
1023 return isImmediate<1, 33>();
1025 bool isImm8s4() const {
1026 return isImmediateS4<-1020, 1020>();
1028 bool isImm0_1020s4() const {
1029 return isImmediateS4<0, 1020>();
1031 bool isImm0_508s4() const {
1032 return isImmediateS4<0, 508>();
1034 bool isImm0_508s4Neg() const {
1035 if (!isImm()) return false;
1036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1037 if (!CE) return false;
1038 int64_t Value = -CE->getValue();
1039 // explicitly exclude zero. we want that to use the normal 0_508 version.
1040 return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1043 bool isImm0_4095Neg() const {
1044 if (!isImm()) return false;
1045 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1046 if (!CE) return false;
1047 // isImm0_4095Neg is used with 32-bit immediates only.
1048 // 32-bit immediates are zero extended to 64-bit when parsed,
1049 // thus simple -CE->getValue() results in a big negative number,
1050 // not a small positive number as intended
1051 if ((CE->getValue() >> 32) > 0) return false;
1052 uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1053 return Value > 0 && Value < 4096;
1056 bool isImm0_7() const {
1057 return isImmediate<0, 7>();
1060 bool isImm1_16() const {
1061 return isImmediate<1, 16>();
1064 bool isImm1_32() const {
1065 return isImmediate<1, 32>();
1068 bool isImm8_255() const {
1069 return isImmediate<8, 255>();
1072 bool isImm256_65535Expr() const {
1073 if (!isImm()) return false;
1074 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1075 // If it's not a constant expression, it'll generate a fixup and be
1076 // handled later.
1077 if (!CE) return true;
1078 int64_t Value = CE->getValue();
1079 return Value >= 256 && Value < 65536;
1082 bool isImm0_65535Expr() const {
1083 if (!isImm()) return false;
1084 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1085 // If it's not a constant expression, it'll generate a fixup and be
1086 // handled later.
1087 if (!CE) return true;
1088 int64_t Value = CE->getValue();
1089 return Value >= 0 && Value < 65536;
1092 bool isImm24bit() const {
1093 return isImmediate<0, 0xffffff + 1>();
1096 bool isImmThumbSR() const {
1097 return isImmediate<1, 33>();
1100 bool isPKHLSLImm() const {
1101 return isImmediate<0, 32>();
1104 bool isPKHASRImm() const {
1105 return isImmediate<0, 33>();
1108 bool isAdrLabel() const {
1109 // If we have an immediate that's not a constant, treat it as a label
1110 // reference needing a fixup.
1111 if (isImm() && !isa<MCConstantExpr>(getImm()))
1112 return true;
1114 // If it is a constant, it must fit into a modified immediate encoding.
1115 if (!isImm()) return false;
1116 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1117 if (!CE) return false;
1118 int64_t Value = CE->getValue();
1119 return (ARM_AM::getSOImmVal(Value) != -1 ||
1120 ARM_AM::getSOImmVal(-Value) != -1);
1123 bool isT2SOImm() const {
1124 // If we have an immediate that's not a constant, treat it as an expression
1125 // needing a fixup.
1126 if (isImm() && !isa<MCConstantExpr>(getImm())) {
1127 // We want to avoid matching :upper16: and :lower16: as we want these
1128 // expressions to match in isImm0_65535Expr()
1129 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1130 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1131 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1133 if (!isImm()) return false;
1134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1135 if (!CE) return false;
1136 int64_t Value = CE->getValue();
1137 return ARM_AM::getT2SOImmVal(Value) != -1;
1140 bool isT2SOImmNot() const {
1141 if (!isImm()) return false;
1142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1143 if (!CE) return false;
1144 int64_t Value = CE->getValue();
1145 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1146 ARM_AM::getT2SOImmVal(~Value) != -1;
1149 bool isT2SOImmNeg() const {
1150 if (!isImm()) return false;
1151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1152 if (!CE) return false;
1153 int64_t Value = CE->getValue();
1154 // Only use this when not representable as a plain so_imm.
1155 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1156 ARM_AM::getT2SOImmVal(-Value) != -1;
1159 bool isSetEndImm() const {
1160 if (!isImm()) return false;
1161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1162 if (!CE) return false;
1163 int64_t Value = CE->getValue();
1164 return Value == 1 || Value == 0;
1167 bool isReg() const override { return Kind == k_Register; }
1168 bool isRegList() const { return Kind == k_RegisterList; }
1169 bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1170 bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1171 bool isToken() const override { return Kind == k_Token; }
1172 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1173 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1174 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1175 bool isMem() const override {
1176 if (Kind != k_Memory)
1177 return false;
1178 if (Memory.BaseRegNum &&
1179 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1180 return false;
1181 if (Memory.OffsetRegNum &&
1182 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1183 return false;
1184 return true;
1186 bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1187 bool isRegShiftedReg() const {
1188 return Kind == k_ShiftedRegister &&
1189 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1190 RegShiftedReg.SrcReg) &&
1191 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1192 RegShiftedReg.ShiftReg);
1194 bool isRegShiftedImm() const {
1195 return Kind == k_ShiftedImmediate &&
1196 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1197 RegShiftedImm.SrcReg);
1199 bool isRotImm() const { return Kind == k_RotateImmediate; }
1200 bool isModImm() const { return Kind == k_ModifiedImmediate; }
1202 bool isModImmNot() const {
1203 if (!isImm()) return false;
1204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1205 if (!CE) return false;
1206 int64_t Value = CE->getValue();
1207 return ARM_AM::getSOImmVal(~Value) != -1;
1210 bool isModImmNeg() const {
1211 if (!isImm()) return false;
1212 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1213 if (!CE) return false;
1214 int64_t Value = CE->getValue();
1215 return ARM_AM::getSOImmVal(Value) == -1 &&
1216 ARM_AM::getSOImmVal(-Value) != -1;
1219 bool isThumbModImmNeg1_7() const {
1220 if (!isImm()) return false;
1221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1222 if (!CE) return false;
1223 int32_t Value = -(int32_t)CE->getValue();
1224 return 0 < Value && Value < 8;
1227 bool isThumbModImmNeg8_255() const {
1228 if (!isImm()) return false;
1229 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1230 if (!CE) return false;
1231 int32_t Value = -(int32_t)CE->getValue();
1232 return 7 < Value && Value < 256;
1235 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1236 bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1237 bool isPostIdxRegShifted() const {
1238 return Kind == k_PostIndexRegister &&
1239 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1241 bool isPostIdxReg() const {
1242 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1244 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1245 if (!isMem())
1246 return false;
1247 // No offset of any kind.
1248 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1249 (alignOK || Memory.Alignment == Alignment);
1251 bool isMemPCRelImm12() const {
1252 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1253 return false;
1254 // Base register must be PC.
1255 if (Memory.BaseRegNum != ARM::PC)
1256 return false;
1257 // Immediate offset in range [-4095, 4095].
1258 if (!Memory.OffsetImm) return true;
1259 int64_t Val = Memory.OffsetImm->getValue();
1260 return (Val > -4096 && Val < 4096) ||
1261 (Val == std::numeric_limits<int32_t>::min());
1264 bool isAlignedMemory() const {
1265 return isMemNoOffset(true);
1268 bool isAlignedMemoryNone() const {
1269 return isMemNoOffset(false, 0);
1272 bool isDupAlignedMemoryNone() const {
1273 return isMemNoOffset(false, 0);
1276 bool isAlignedMemory16() const {
1277 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1278 return true;
1279 return isMemNoOffset(false, 0);
1282 bool isDupAlignedMemory16() const {
1283 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1284 return true;
1285 return isMemNoOffset(false, 0);
1288 bool isAlignedMemory32() const {
1289 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1290 return true;
1291 return isMemNoOffset(false, 0);
1294 bool isDupAlignedMemory32() const {
1295 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1296 return true;
1297 return isMemNoOffset(false, 0);
1300 bool isAlignedMemory64() const {
1301 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1302 return true;
1303 return isMemNoOffset(false, 0);
1306 bool isDupAlignedMemory64() const {
1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1308 return true;
1309 return isMemNoOffset(false, 0);
1312 bool isAlignedMemory64or128() const {
1313 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1314 return true;
1315 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1316 return true;
1317 return isMemNoOffset(false, 0);
1320 bool isDupAlignedMemory64or128() const {
1321 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1322 return true;
1323 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1324 return true;
1325 return isMemNoOffset(false, 0);
1328 bool isAlignedMemory64or128or256() const {
1329 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1330 return true;
1331 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1332 return true;
1333 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1334 return true;
1335 return isMemNoOffset(false, 0);
1338 bool isAddrMode2() const {
1339 if (!isMem() || Memory.Alignment != 0) return false;
1340 // Check for register offset.
1341 if (Memory.OffsetRegNum) return true;
1342 // Immediate offset in range [-4095, 4095].
1343 if (!Memory.OffsetImm) return true;
1344 int64_t Val = Memory.OffsetImm->getValue();
1345 return Val > -4096 && Val < 4096;
1348 bool isAM2OffsetImm() const {
1349 if (!isImm()) return false;
1350 // Immediate offset in range [-4095, 4095].
1351 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1352 if (!CE) return false;
1353 int64_t Val = CE->getValue();
1354 return (Val == std::numeric_limits<int32_t>::min()) ||
1355 (Val > -4096 && Val < 4096);
1358 bool isAddrMode3() const {
1359 // If we have an immediate that's not a constant, treat it as a label
1360 // reference needing a fixup. If it is a constant, it's something else
1361 // and we reject it.
1362 if (isImm() && !isa<MCConstantExpr>(getImm()))
1363 return true;
1364 if (!isMem() || Memory.Alignment != 0) return false;
1365 // No shifts are legal for AM3.
1366 if (Memory.ShiftType != ARM_AM::no_shift) return false;
1367 // Check for register offset.
1368 if (Memory.OffsetRegNum) return true;
1369 // Immediate offset in range [-255, 255].
1370 if (!Memory.OffsetImm) return true;
1371 int64_t Val = Memory.OffsetImm->getValue();
1372 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1373 // have to check for this too.
1374 return (Val > -256 && Val < 256) ||
1375 Val == std::numeric_limits<int32_t>::min();
1378 bool isAM3Offset() const {
1379 if (isPostIdxReg())
1380 return true;
1381 if (!isImm())
1382 return false;
1383 // Immediate offset in range [-255, 255].
1384 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1385 if (!CE) return false;
1386 int64_t Val = CE->getValue();
1387 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1388 return (Val > -256 && Val < 256) ||
1389 Val == std::numeric_limits<int32_t>::min();
1392 bool isAddrMode5() const {
1393 // If we have an immediate that's not a constant, treat it as a label
1394 // reference needing a fixup. If it is a constant, it's something else
1395 // and we reject it.
1396 if (isImm() && !isa<MCConstantExpr>(getImm()))
1397 return true;
1398 if (!isMem() || Memory.Alignment != 0) return false;
1399 // Check for register offset.
1400 if (Memory.OffsetRegNum) return false;
1401 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1402 if (!Memory.OffsetImm) return true;
1403 int64_t Val = Memory.OffsetImm->getValue();
1404 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1405 Val == std::numeric_limits<int32_t>::min();
1408 bool isAddrMode5FP16() const {
1409 // If we have an immediate that's not a constant, treat it as a label
1410 // reference needing a fixup. If it is a constant, it's something else
1411 // and we reject it.
1412 if (isImm() && !isa<MCConstantExpr>(getImm()))
1413 return true;
1414 if (!isMem() || Memory.Alignment != 0) return false;
1415 // Check for register offset.
1416 if (Memory.OffsetRegNum) return false;
1417 // Immediate offset in range [-510, 510] and a multiple of 2.
1418 if (!Memory.OffsetImm) return true;
1419 int64_t Val = Memory.OffsetImm->getValue();
1420 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1421 Val == std::numeric_limits<int32_t>::min();
1424 bool isMemTBB() const {
1425 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1426 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1427 return false;
1428 return true;
1431 bool isMemTBH() const {
1432 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1433 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1434 Memory.Alignment != 0 )
1435 return false;
1436 return true;
1439 bool isMemRegOffset() const {
1440 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1441 return false;
1442 return true;
1445 bool isT2MemRegOffset() const {
1446 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1447 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1448 return false;
1449 // Only lsl #{0, 1, 2, 3} allowed.
1450 if (Memory.ShiftType == ARM_AM::no_shift)
1451 return true;
1452 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1453 return false;
1454 return true;
1457 bool isMemThumbRR() const {
1458 // Thumb reg+reg addressing is simple. Just two registers, a base and
1459 // an offset. No shifts, negations or any other complicating factors.
1460 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1461 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1462 return false;
1463 return isARMLowRegister(Memory.BaseRegNum) &&
1464 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1467 bool isMemThumbRIs4() const {
1468 if (!isMem() || Memory.OffsetRegNum != 0 ||
1469 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1470 return false;
1471 // Immediate offset, multiple of 4 in range [0, 124].
1472 if (!Memory.OffsetImm) return true;
1473 int64_t Val = Memory.OffsetImm->getValue();
1474 return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1477 bool isMemThumbRIs2() const {
1478 if (!isMem() || Memory.OffsetRegNum != 0 ||
1479 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1480 return false;
1481 // Immediate offset, multiple of 4 in range [0, 62].
1482 if (!Memory.OffsetImm) return true;
1483 int64_t Val = Memory.OffsetImm->getValue();
1484 return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1487 bool isMemThumbRIs1() const {
1488 if (!isMem() || Memory.OffsetRegNum != 0 ||
1489 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1490 return false;
1491 // Immediate offset in range [0, 31].
1492 if (!Memory.OffsetImm) return true;
1493 int64_t Val = Memory.OffsetImm->getValue();
1494 return Val >= 0 && Val <= 31;
1497 bool isMemThumbSPI() const {
1498 if (!isMem() || Memory.OffsetRegNum != 0 ||
1499 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1500 return false;
1501 // Immediate offset, multiple of 4 in range [0, 1020].
1502 if (!Memory.OffsetImm) return true;
1503 int64_t Val = Memory.OffsetImm->getValue();
1504 return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1507 bool isMemImm8s4Offset() const {
1508 // If we have an immediate that's not a constant, treat it as a label
1509 // reference needing a fixup. If it is a constant, it's something else
1510 // and we reject it.
1511 if (isImm() && !isa<MCConstantExpr>(getImm()))
1512 return true;
1513 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1514 return false;
1515 // Immediate offset a multiple of 4 in range [-1020, 1020].
1516 if (!Memory.OffsetImm) return true;
1517 int64_t Val = Memory.OffsetImm->getValue();
1518 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1519 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1520 Val == std::numeric_limits<int32_t>::min();
1523 bool isMemImm0_1020s4Offset() const {
1524 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1525 return false;
1526 // Immediate offset a multiple of 4 in range [0, 1020].
1527 if (!Memory.OffsetImm) return true;
1528 int64_t Val = Memory.OffsetImm->getValue();
1529 return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1532 bool isMemImm8Offset() const {
1533 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1534 return false;
1535 // Base reg of PC isn't allowed for these encodings.
1536 if (Memory.BaseRegNum == ARM::PC) return false;
1537 // Immediate offset in range [-255, 255].
1538 if (!Memory.OffsetImm) return true;
1539 int64_t Val = Memory.OffsetImm->getValue();
1540 return (Val == std::numeric_limits<int32_t>::min()) ||
1541 (Val > -256 && Val < 256);
1544 bool isMemPosImm8Offset() const {
1545 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1546 return false;
1547 // Immediate offset in range [0, 255].
1548 if (!Memory.OffsetImm) return true;
1549 int64_t Val = Memory.OffsetImm->getValue();
1550 return Val >= 0 && Val < 256;
1553 bool isMemNegImm8Offset() const {
1554 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1555 return false;
1556 // Base reg of PC isn't allowed for these encodings.
1557 if (Memory.BaseRegNum == ARM::PC) return false;
1558 // Immediate offset in range [-255, -1].
1559 if (!Memory.OffsetImm) return false;
1560 int64_t Val = Memory.OffsetImm->getValue();
1561 return (Val == std::numeric_limits<int32_t>::min()) ||
1562 (Val > -256 && Val < 0);
1565 bool isMemUImm12Offset() const {
1566 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1567 return false;
1568 // Immediate offset in range [0, 4095].
1569 if (!Memory.OffsetImm) return true;
1570 int64_t Val = Memory.OffsetImm->getValue();
1571 return (Val >= 0 && Val < 4096);
1574 bool isMemImm12Offset() const {
1575 // If we have an immediate that's not a constant, treat it as a label
1576 // reference needing a fixup. If it is a constant, it's something else
1577 // and we reject it.
1579 if (isImm() && !isa<MCConstantExpr>(getImm()))
1580 return true;
1582 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1583 return false;
1584 // Immediate offset in range [-4095, 4095].
1585 if (!Memory.OffsetImm) return true;
1586 int64_t Val = Memory.OffsetImm->getValue();
1587 return (Val > -4096 && Val < 4096) ||
1588 (Val == std::numeric_limits<int32_t>::min());
1591 bool isConstPoolAsmImm() const {
1592 // Delay processing of Constant Pool Immediate, this will turn into
1593 // a constant. Match no other operand
1594 return (isConstantPoolImm());
1597 bool isPostIdxImm8() const {
1598 if (!isImm()) return false;
1599 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1600 if (!CE) return false;
1601 int64_t Val = CE->getValue();
1602 return (Val > -256 && Val < 256) ||
1603 (Val == std::numeric_limits<int32_t>::min());
1606 bool isPostIdxImm8s4() const {
1607 if (!isImm()) return false;
1608 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1609 if (!CE) return false;
1610 int64_t Val = CE->getValue();
1611 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1612 (Val == std::numeric_limits<int32_t>::min());
1615 bool isMSRMask() const { return Kind == k_MSRMask; }
1616 bool isBankedReg() const { return Kind == k_BankedReg; }
1617 bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1619 // NEON operands.
1620 bool isSingleSpacedVectorList() const {
1621 return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1624 bool isDoubleSpacedVectorList() const {
1625 return Kind == k_VectorList && VectorList.isDoubleSpaced;
1628 bool isVecListOneD() const {
1629 if (!isSingleSpacedVectorList()) return false;
1630 return VectorList.Count == 1;
1633 bool isVecListDPair() const {
1634 if (!isSingleSpacedVectorList()) return false;
1635 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1636 .contains(VectorList.RegNum));
1639 bool isVecListThreeD() const {
1640 if (!isSingleSpacedVectorList()) return false;
1641 return VectorList.Count == 3;
1644 bool isVecListFourD() const {
1645 if (!isSingleSpacedVectorList()) return false;
1646 return VectorList.Count == 4;
1649 bool isVecListDPairSpaced() const {
1650 if (Kind != k_VectorList) return false;
1651 if (isSingleSpacedVectorList()) return false;
1652 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1653 .contains(VectorList.RegNum));
1656 bool isVecListThreeQ() const {
1657 if (!isDoubleSpacedVectorList()) return false;
1658 return VectorList.Count == 3;
1661 bool isVecListFourQ() const {
1662 if (!isDoubleSpacedVectorList()) return false;
1663 return VectorList.Count == 4;
1666 bool isSingleSpacedVectorAllLanes() const {
1667 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1670 bool isDoubleSpacedVectorAllLanes() const {
1671 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1674 bool isVecListOneDAllLanes() const {
1675 if (!isSingleSpacedVectorAllLanes()) return false;
1676 return VectorList.Count == 1;
1679 bool isVecListDPairAllLanes() const {
1680 if (!isSingleSpacedVectorAllLanes()) return false;
1681 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1682 .contains(VectorList.RegNum));
1685 bool isVecListDPairSpacedAllLanes() const {
1686 if (!isDoubleSpacedVectorAllLanes()) return false;
1687 return VectorList.Count == 2;
1690 bool isVecListThreeDAllLanes() const {
1691 if (!isSingleSpacedVectorAllLanes()) return false;
1692 return VectorList.Count == 3;
1695 bool isVecListThreeQAllLanes() const {
1696 if (!isDoubleSpacedVectorAllLanes()) return false;
1697 return VectorList.Count == 3;
1700 bool isVecListFourDAllLanes() const {
1701 if (!isSingleSpacedVectorAllLanes()) return false;
1702 return VectorList.Count == 4;
1705 bool isVecListFourQAllLanes() const {
1706 if (!isDoubleSpacedVectorAllLanes()) return false;
1707 return VectorList.Count == 4;
1710 bool isSingleSpacedVectorIndexed() const {
1711 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1714 bool isDoubleSpacedVectorIndexed() const {
1715 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1718 bool isVecListOneDByteIndexed() const {
1719 if (!isSingleSpacedVectorIndexed()) return false;
1720 return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1723 bool isVecListOneDHWordIndexed() const {
1724 if (!isSingleSpacedVectorIndexed()) return false;
1725 return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1728 bool isVecListOneDWordIndexed() const {
1729 if (!isSingleSpacedVectorIndexed()) return false;
1730 return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1733 bool isVecListTwoDByteIndexed() const {
1734 if (!isSingleSpacedVectorIndexed()) return false;
1735 return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1738 bool isVecListTwoDHWordIndexed() const {
1739 if (!isSingleSpacedVectorIndexed()) return false;
1740 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1743 bool isVecListTwoQWordIndexed() const {
1744 if (!isDoubleSpacedVectorIndexed()) return false;
1745 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1748 bool isVecListTwoQHWordIndexed() const {
1749 if (!isDoubleSpacedVectorIndexed()) return false;
1750 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1753 bool isVecListTwoDWordIndexed() const {
1754 if (!isSingleSpacedVectorIndexed()) return false;
1755 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1758 bool isVecListThreeDByteIndexed() const {
1759 if (!isSingleSpacedVectorIndexed()) return false;
1760 return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1763 bool isVecListThreeDHWordIndexed() const {
1764 if (!isSingleSpacedVectorIndexed()) return false;
1765 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1768 bool isVecListThreeQWordIndexed() const {
1769 if (!isDoubleSpacedVectorIndexed()) return false;
1770 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1773 bool isVecListThreeQHWordIndexed() const {
1774 if (!isDoubleSpacedVectorIndexed()) return false;
1775 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1778 bool isVecListThreeDWordIndexed() const {
1779 if (!isSingleSpacedVectorIndexed()) return false;
1780 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1783 bool isVecListFourDByteIndexed() const {
1784 if (!isSingleSpacedVectorIndexed()) return false;
1785 return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1788 bool isVecListFourDHWordIndexed() const {
1789 if (!isSingleSpacedVectorIndexed()) return false;
1790 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1793 bool isVecListFourQWordIndexed() const {
1794 if (!isDoubleSpacedVectorIndexed()) return false;
1795 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1798 bool isVecListFourQHWordIndexed() const {
1799 if (!isDoubleSpacedVectorIndexed()) return false;
1800 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1803 bool isVecListFourDWordIndexed() const {
1804 if (!isSingleSpacedVectorIndexed()) return false;
1805 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1808 bool isVectorIndex8() const {
1809 if (Kind != k_VectorIndex) return false;
1810 return VectorIndex.Val < 8;
1813 bool isVectorIndex16() const {
1814 if (Kind != k_VectorIndex) return false;
1815 return VectorIndex.Val < 4;
1818 bool isVectorIndex32() const {
1819 if (Kind != k_VectorIndex) return false;
1820 return VectorIndex.Val < 2;
1822 bool isVectorIndex64() const {
1823 if (Kind != k_VectorIndex) return false;
1824 return VectorIndex.Val < 1;
1827 bool isNEONi8splat() const {
1828 if (!isImm()) return false;
1829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1830 // Must be a constant.
1831 if (!CE) return false;
1832 int64_t Value = CE->getValue();
1833 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1834 // value.
1835 return Value >= 0 && Value < 256;
1838 bool isNEONi16splat() const {
1839 if (isNEONByteReplicate(2))
1840 return false; // Leave that for bytes replication and forbid by default.
1841 if (!isImm())
1842 return false;
1843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1844 // Must be a constant.
1845 if (!CE) return false;
1846 unsigned Value = CE->getValue();
1847 return ARM_AM::isNEONi16splat(Value);
1850 bool isNEONi16splatNot() const {
1851 if (!isImm())
1852 return false;
1853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1854 // Must be a constant.
1855 if (!CE) return false;
1856 unsigned Value = CE->getValue();
1857 return ARM_AM::isNEONi16splat(~Value & 0xffff);
1860 bool isNEONi32splat() const {
1861 if (isNEONByteReplicate(4))
1862 return false; // Leave that for bytes replication and forbid by default.
1863 if (!isImm())
1864 return false;
1865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1866 // Must be a constant.
1867 if (!CE) return false;
1868 unsigned Value = CE->getValue();
1869 return ARM_AM::isNEONi32splat(Value);
1872 bool isNEONi32splatNot() const {
1873 if (!isImm())
1874 return false;
1875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1876 // Must be a constant.
1877 if (!CE) return false;
1878 unsigned Value = CE->getValue();
1879 return ARM_AM::isNEONi32splat(~Value);
1882 static bool isValidNEONi32vmovImm(int64_t Value) {
1883 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1884 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1885 return ((Value & 0xffffffffffffff00) == 0) ||
1886 ((Value & 0xffffffffffff00ff) == 0) ||
1887 ((Value & 0xffffffffff00ffff) == 0) ||
1888 ((Value & 0xffffffff00ffffff) == 0) ||
1889 ((Value & 0xffffffffffff00ff) == 0xff) ||
1890 ((Value & 0xffffffffff00ffff) == 0xffff);
1893 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
1894 assert((Width == 8 || Width == 16 || Width == 32) &&
1895 "Invalid element width");
1896 assert(NumElems * Width <= 64 && "Invalid result width");
1898 if (!isImm())
1899 return false;
1900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1901 // Must be a constant.
1902 if (!CE)
1903 return false;
1904 int64_t Value = CE->getValue();
1905 if (!Value)
1906 return false; // Don't bother with zero.
1907 if (Inv)
1908 Value = ~Value;
1910 uint64_t Mask = (1ull << Width) - 1;
1911 uint64_t Elem = Value & Mask;
1912 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
1913 return false;
1914 if (Width == 32 && !isValidNEONi32vmovImm(Elem))
1915 return false;
1917 for (unsigned i = 1; i < NumElems; ++i) {
1918 Value >>= Width;
1919 if ((Value & Mask) != Elem)
1920 return false;
1922 return true;
1925 bool isNEONByteReplicate(unsigned NumBytes) const {
1926 return isNEONReplicate(8, NumBytes, false);
1929 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
1930 assert((FromW == 8 || FromW == 16 || FromW == 32) &&
1931 "Invalid source width");
1932 assert((ToW == 16 || ToW == 32 || ToW == 64) &&
1933 "Invalid destination width");
1934 assert(FromW < ToW && "ToW is not less than FromW");
1937 template<unsigned FromW, unsigned ToW>
1938 bool isNEONmovReplicate() const {
1939 checkNeonReplicateArgs(FromW, ToW);
1940 if (ToW == 64 && isNEONi64splat())
1941 return false;
1942 return isNEONReplicate(FromW, ToW / FromW, false);
1945 template<unsigned FromW, unsigned ToW>
1946 bool isNEONinvReplicate() const {
1947 checkNeonReplicateArgs(FromW, ToW);
1948 return isNEONReplicate(FromW, ToW / FromW, true);
1951 bool isNEONi32vmov() const {
1952 if (isNEONByteReplicate(4))
1953 return false; // Let it to be classified as byte-replicate case.
1954 if (!isImm())
1955 return false;
1956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1957 // Must be a constant.
1958 if (!CE)
1959 return false;
1960 return isValidNEONi32vmovImm(CE->getValue());
1963 bool isNEONi32vmovNeg() const {
1964 if (!isImm()) return false;
1965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1966 // Must be a constant.
1967 if (!CE) return false;
1968 return isValidNEONi32vmovImm(~CE->getValue());
1971 bool isNEONi64splat() const {
1972 if (!isImm()) return false;
1973 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1974 // Must be a constant.
1975 if (!CE) return false;
1976 uint64_t Value = CE->getValue();
1977 // i64 value with each byte being either 0 or 0xff.
1978 for (unsigned i = 0; i < 8; ++i, Value >>= 8)
1979 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1980 return true;
1983 template<int64_t Angle, int64_t Remainder>
1984 bool isComplexRotation() const {
1985 if (!isImm()) return false;
1987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1988 if (!CE) return false;
1989 uint64_t Value = CE->getValue();
1991 return (Value % Angle == Remainder && Value <= 270);
1994 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1995 // Add as immediates when possible. Null MCExpr = 0.
1996 if (!Expr)
1997 Inst.addOperand(MCOperand::createImm(0));
1998 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1999 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2000 else
2001 Inst.addOperand(MCOperand::createExpr(Expr));
2004 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2005 assert(N == 1 && "Invalid number of operands!");
2006 addExpr(Inst, getImm());
2009 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2010 assert(N == 1 && "Invalid number of operands!");
2011 addExpr(Inst, getImm());
2014 void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2015 assert(N == 2 && "Invalid number of operands!");
2016 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2017 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2018 Inst.addOperand(MCOperand::createReg(RegNum));
2021 void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2022 assert(N == 1 && "Invalid number of operands!");
2023 Inst.addOperand(MCOperand::createImm(getCoproc()));
2026 void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2027 assert(N == 1 && "Invalid number of operands!");
2028 Inst.addOperand(MCOperand::createImm(getCoproc()));
2031 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2032 assert(N == 1 && "Invalid number of operands!");
2033 Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2036 void addITMaskOperands(MCInst &Inst, unsigned N) const {
2037 assert(N == 1 && "Invalid number of operands!");
2038 Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2041 void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2042 assert(N == 1 && "Invalid number of operands!");
2043 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2046 void addCCOutOperands(MCInst &Inst, unsigned N) const {
2047 assert(N == 1 && "Invalid number of operands!");
2048 Inst.addOperand(MCOperand::createReg(getReg()));
2051 void addRegOperands(MCInst &Inst, unsigned N) const {
2052 assert(N == 1 && "Invalid number of operands!");
2053 Inst.addOperand(MCOperand::createReg(getReg()));
2056 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2057 assert(N == 3 && "Invalid number of operands!");
2058 assert(isRegShiftedReg() &&
2059 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2060 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2061 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2062 Inst.addOperand(MCOperand::createImm(
2063 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2066 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2067 assert(N == 2 && "Invalid number of operands!");
2068 assert(isRegShiftedImm() &&
2069 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2070 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2071 // Shift of #32 is encoded as 0 where permitted
2072 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2073 Inst.addOperand(MCOperand::createImm(
2074 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2077 void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2078 assert(N == 1 && "Invalid number of operands!");
2079 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2080 ShifterImm.Imm));
2083 void addRegListOperands(MCInst &Inst, unsigned N) const {
2084 assert(N == 1 && "Invalid number of operands!");
2085 const SmallVectorImpl<unsigned> &RegList = getRegList();
2086 for (SmallVectorImpl<unsigned>::const_iterator
2087 I = RegList.begin(), E = RegList.end(); I != E; ++I)
2088 Inst.addOperand(MCOperand::createReg(*I));
2091 void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2092 addRegListOperands(Inst, N);
2095 void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2096 addRegListOperands(Inst, N);
2099 void addRotImmOperands(MCInst &Inst, unsigned N) const {
2100 assert(N == 1 && "Invalid number of operands!");
2101 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2102 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2105 void addModImmOperands(MCInst &Inst, unsigned N) const {
2106 assert(N == 1 && "Invalid number of operands!");
2108 // Support for fixups (MCFixup)
2109 if (isImm())
2110 return addImmOperands(Inst, N);
2112 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2115 void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2116 assert(N == 1 && "Invalid number of operands!");
2117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2118 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2119 Inst.addOperand(MCOperand::createImm(Enc));
2122 void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2123 assert(N == 1 && "Invalid number of operands!");
2124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2125 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2126 Inst.addOperand(MCOperand::createImm(Enc));
2129 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2130 assert(N == 1 && "Invalid number of operands!");
2131 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2132 uint32_t Val = -CE->getValue();
2133 Inst.addOperand(MCOperand::createImm(Val));
2136 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2137 assert(N == 1 && "Invalid number of operands!");
2138 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2139 uint32_t Val = -CE->getValue();
2140 Inst.addOperand(MCOperand::createImm(Val));
2143 void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2144 assert(N == 1 && "Invalid number of operands!");
2145 // Munge the lsb/width into a bitfield mask.
2146 unsigned lsb = Bitfield.LSB;
2147 unsigned width = Bitfield.Width;
2148 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2149 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2150 (32 - (lsb + width)));
2151 Inst.addOperand(MCOperand::createImm(Mask));
2154 void addImmOperands(MCInst &Inst, unsigned N) const {
2155 assert(N == 1 && "Invalid number of operands!");
2156 addExpr(Inst, getImm());
2159 void addFBits16Operands(MCInst &Inst, unsigned N) const {
2160 assert(N == 1 && "Invalid number of operands!");
2161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2162 Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2165 void addFBits32Operands(MCInst &Inst, unsigned N) const {
2166 assert(N == 1 && "Invalid number of operands!");
2167 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2168 Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2171 void addFPImmOperands(MCInst &Inst, unsigned N) const {
2172 assert(N == 1 && "Invalid number of operands!");
2173 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2174 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2175 Inst.addOperand(MCOperand::createImm(Val));
2178 void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2179 assert(N == 1 && "Invalid number of operands!");
2180 // FIXME: We really want to scale the value here, but the LDRD/STRD
2181 // instruction don't encode operands that way yet.
2182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2183 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2186 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2187 assert(N == 1 && "Invalid number of operands!");
2188 // The immediate is scaled by four in the encoding and is stored
2189 // in the MCInst as such. Lop off the low two bits here.
2190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2191 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2194 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2195 assert(N == 1 && "Invalid number of operands!");
2196 // The immediate is scaled by four in the encoding and is stored
2197 // in the MCInst as such. Lop off the low two bits here.
2198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2199 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2202 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2203 assert(N == 1 && "Invalid number of operands!");
2204 // The immediate is scaled by four in the encoding and is stored
2205 // in the MCInst as such. Lop off the low two bits here.
2206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2207 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2210 void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2211 assert(N == 1 && "Invalid number of operands!");
2212 // The constant encodes as the immediate-1, and we store in the instruction
2213 // the bits as encoded, so subtract off one here.
2214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2215 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2218 void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2219 assert(N == 1 && "Invalid number of operands!");
2220 // The constant encodes as the immediate-1, and we store in the instruction
2221 // the bits as encoded, so subtract off one here.
2222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2223 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2226 void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2227 assert(N == 1 && "Invalid number of operands!");
2228 // The constant encodes as the immediate, except for 32, which encodes as
2229 // zero.
2230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2231 unsigned Imm = CE->getValue();
2232 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2235 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2236 assert(N == 1 && "Invalid number of operands!");
2237 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2238 // the instruction as well.
2239 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2240 int Val = CE->getValue();
2241 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2244 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2245 assert(N == 1 && "Invalid number of operands!");
2246 // The operand is actually a t2_so_imm, but we have its bitwise
2247 // negation in the assembly source, so twiddle it here.
2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2249 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2252 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2253 assert(N == 1 && "Invalid number of operands!");
2254 // The operand is actually a t2_so_imm, but we have its
2255 // negation in the assembly source, so twiddle it here.
2256 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2257 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2260 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2261 assert(N == 1 && "Invalid number of operands!");
2262 // The operand is actually an imm0_4095, but we have its
2263 // negation in the assembly source, so twiddle it here.
2264 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2265 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2268 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2269 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2270 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2271 return;
2274 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2275 assert(SR && "Unknown value type!");
2276 Inst.addOperand(MCOperand::createExpr(SR));
2279 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2280 assert(N == 1 && "Invalid number of operands!");
2281 if (isImm()) {
2282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2283 if (CE) {
2284 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2285 return;
2288 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2290 assert(SR && "Unknown value type!");
2291 Inst.addOperand(MCOperand::createExpr(SR));
2292 return;
2295 assert(isMem() && "Unknown value type!");
2296 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2297 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2300 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2301 assert(N == 1 && "Invalid number of operands!");
2302 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2305 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2306 assert(N == 1 && "Invalid number of operands!");
2307 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2310 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2311 assert(N == 1 && "Invalid number of operands!");
2312 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2315 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2316 assert(N == 1 && "Invalid number of operands!");
2317 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2320 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2321 assert(N == 1 && "Invalid number of operands!");
2322 int32_t Imm = Memory.OffsetImm->getValue();
2323 Inst.addOperand(MCOperand::createImm(Imm));
2326 void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2327 assert(N == 1 && "Invalid number of operands!");
2328 assert(isImm() && "Not an immediate!");
2330 // If we have an immediate that's not a constant, treat it as a label
2331 // reference needing a fixup.
2332 if (!isa<MCConstantExpr>(getImm())) {
2333 Inst.addOperand(MCOperand::createExpr(getImm()));
2334 return;
2337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2338 int Val = CE->getValue();
2339 Inst.addOperand(MCOperand::createImm(Val));
2342 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2343 assert(N == 2 && "Invalid number of operands!");
2344 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2345 Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2348 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2349 addAlignedMemoryOperands(Inst, N);
2352 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2353 addAlignedMemoryOperands(Inst, N);
2356 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2357 addAlignedMemoryOperands(Inst, N);
2360 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2361 addAlignedMemoryOperands(Inst, N);
2364 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2365 addAlignedMemoryOperands(Inst, N);
2368 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2369 addAlignedMemoryOperands(Inst, N);
2372 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2373 addAlignedMemoryOperands(Inst, N);
2376 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2377 addAlignedMemoryOperands(Inst, N);
2380 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2381 addAlignedMemoryOperands(Inst, N);
2384 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2385 addAlignedMemoryOperands(Inst, N);
2388 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2389 addAlignedMemoryOperands(Inst, N);
2392 void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2393 assert(N == 3 && "Invalid number of operands!");
2394 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2395 if (!Memory.OffsetRegNum) {
2396 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2397 // Special case for #-0
2398 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2399 if (Val < 0) Val = -Val;
2400 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2401 } else {
2402 // For register offset, we encode the shift type and negation flag
2403 // here.
2404 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2405 Memory.ShiftImm, Memory.ShiftType);
2407 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2408 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2409 Inst.addOperand(MCOperand::createImm(Val));
2412 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2413 assert(N == 2 && "Invalid number of operands!");
2414 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2415 assert(CE && "non-constant AM2OffsetImm operand!");
2416 int32_t Val = CE->getValue();
2417 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2418 // Special case for #-0
2419 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2420 if (Val < 0) Val = -Val;
2421 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2422 Inst.addOperand(MCOperand::createReg(0));
2423 Inst.addOperand(MCOperand::createImm(Val));
2426 void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2427 assert(N == 3 && "Invalid number of operands!");
2428 // If we have an immediate that's not a constant, treat it as a label
2429 // reference needing a fixup. If it is a constant, it's something else
2430 // and we reject it.
2431 if (isImm()) {
2432 Inst.addOperand(MCOperand::createExpr(getImm()));
2433 Inst.addOperand(MCOperand::createReg(0));
2434 Inst.addOperand(MCOperand::createImm(0));
2435 return;
2438 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2439 if (!Memory.OffsetRegNum) {
2440 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2441 // Special case for #-0
2442 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2443 if (Val < 0) Val = -Val;
2444 Val = ARM_AM::getAM3Opc(AddSub, Val);
2445 } else {
2446 // For register offset, we encode the shift type and negation flag
2447 // here.
2448 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2450 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2451 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2452 Inst.addOperand(MCOperand::createImm(Val));
2455 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2456 assert(N == 2 && "Invalid number of operands!");
2457 if (Kind == k_PostIndexRegister) {
2458 int32_t Val =
2459 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2460 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2461 Inst.addOperand(MCOperand::createImm(Val));
2462 return;
2465 // Constant offset.
2466 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2467 int32_t Val = CE->getValue();
2468 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2469 // Special case for #-0
2470 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2471 if (Val < 0) Val = -Val;
2472 Val = ARM_AM::getAM3Opc(AddSub, Val);
2473 Inst.addOperand(MCOperand::createReg(0));
2474 Inst.addOperand(MCOperand::createImm(Val));
2477 void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2478 assert(N == 2 && "Invalid number of operands!");
2479 // If we have an immediate that's not a constant, treat it as a label
2480 // reference needing a fixup. If it is a constant, it's something else
2481 // and we reject it.
2482 if (isImm()) {
2483 Inst.addOperand(MCOperand::createExpr(getImm()));
2484 Inst.addOperand(MCOperand::createImm(0));
2485 return;
2488 // The lower two bits are always zero and as such are not encoded.
2489 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2490 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2491 // Special case for #-0
2492 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2493 if (Val < 0) Val = -Val;
2494 Val = ARM_AM::getAM5Opc(AddSub, Val);
2495 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2496 Inst.addOperand(MCOperand::createImm(Val));
2499 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2500 assert(N == 2 && "Invalid number of operands!");
2501 // If we have an immediate that's not a constant, treat it as a label
2502 // reference needing a fixup. If it is a constant, it's something else
2503 // and we reject it.
2504 if (isImm()) {
2505 Inst.addOperand(MCOperand::createExpr(getImm()));
2506 Inst.addOperand(MCOperand::createImm(0));
2507 return;
2510 // The lower bit is always zero and as such is not encoded.
2511 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2512 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2513 // Special case for #-0
2514 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2515 if (Val < 0) Val = -Val;
2516 Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2517 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2518 Inst.addOperand(MCOperand::createImm(Val));
2521 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2522 assert(N == 2 && "Invalid number of operands!");
2523 // If we have an immediate that's not a constant, treat it as a label
2524 // reference needing a fixup. If it is a constant, it's something else
2525 // and we reject it.
2526 if (isImm()) {
2527 Inst.addOperand(MCOperand::createExpr(getImm()));
2528 Inst.addOperand(MCOperand::createImm(0));
2529 return;
2532 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2533 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2534 Inst.addOperand(MCOperand::createImm(Val));
2537 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2538 assert(N == 2 && "Invalid number of operands!");
2539 // The lower two bits are always zero and as such are not encoded.
2540 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2541 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2542 Inst.addOperand(MCOperand::createImm(Val));
2545 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2546 assert(N == 2 && "Invalid number of operands!");
2547 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2548 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2549 Inst.addOperand(MCOperand::createImm(Val));
2552 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2553 addMemImm8OffsetOperands(Inst, N);
2556 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2557 addMemImm8OffsetOperands(Inst, N);
2560 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2561 assert(N == 2 && "Invalid number of operands!");
2562 // If this is an immediate, it's a label reference.
2563 if (isImm()) {
2564 addExpr(Inst, getImm());
2565 Inst.addOperand(MCOperand::createImm(0));
2566 return;
2569 // Otherwise, it's a normal memory reg+offset.
2570 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2571 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2572 Inst.addOperand(MCOperand::createImm(Val));
2575 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2576 assert(N == 2 && "Invalid number of operands!");
2577 // If this is an immediate, it's a label reference.
2578 if (isImm()) {
2579 addExpr(Inst, getImm());
2580 Inst.addOperand(MCOperand::createImm(0));
2581 return;
2584 // Otherwise, it's a normal memory reg+offset.
2585 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2586 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2587 Inst.addOperand(MCOperand::createImm(Val));
2590 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
2591 assert(N == 1 && "Invalid number of operands!");
2592 // This is container for the immediate that we will create the constant
2593 // pool from
2594 addExpr(Inst, getConstantPoolImm());
2595 return;
2598 void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2599 assert(N == 2 && "Invalid number of operands!");
2600 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2601 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2604 void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2605 assert(N == 2 && "Invalid number of operands!");
2606 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2607 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2610 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2611 assert(N == 3 && "Invalid number of operands!");
2612 unsigned Val =
2613 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2614 Memory.ShiftImm, Memory.ShiftType);
2615 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2616 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2617 Inst.addOperand(MCOperand::createImm(Val));
2620 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2621 assert(N == 3 && "Invalid number of operands!");
2622 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2623 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2624 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
2627 void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2628 assert(N == 2 && "Invalid number of operands!");
2629 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2630 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2633 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2634 assert(N == 2 && "Invalid number of operands!");
2635 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2636 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2637 Inst.addOperand(MCOperand::createImm(Val));
2640 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2641 assert(N == 2 && "Invalid number of operands!");
2642 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2643 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2644 Inst.addOperand(MCOperand::createImm(Val));
2647 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2648 assert(N == 2 && "Invalid number of operands!");
2649 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2650 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2651 Inst.addOperand(MCOperand::createImm(Val));
2654 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2655 assert(N == 2 && "Invalid number of operands!");
2656 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2657 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2658 Inst.addOperand(MCOperand::createImm(Val));
2661 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2662 assert(N == 1 && "Invalid number of operands!");
2663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2664 assert(CE && "non-constant post-idx-imm8 operand!");
2665 int Imm = CE->getValue();
2666 bool isAdd = Imm >= 0;
2667 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2668 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2669 Inst.addOperand(MCOperand::createImm(Imm));
2672 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2673 assert(N == 1 && "Invalid number of operands!");
2674 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2675 assert(CE && "non-constant post-idx-imm8s4 operand!");
2676 int Imm = CE->getValue();
2677 bool isAdd = Imm >= 0;
2678 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2679 // Immediate is scaled by 4.
2680 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2681 Inst.addOperand(MCOperand::createImm(Imm));
2684 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2685 assert(N == 2 && "Invalid number of operands!");
2686 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2687 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
2690 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2691 assert(N == 2 && "Invalid number of operands!");
2692 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2693 // The sign, shift type, and shift amount are encoded in a single operand
2694 // using the AM2 encoding helpers.
2695 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2696 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2697 PostIdxReg.ShiftTy);
2698 Inst.addOperand(MCOperand::createImm(Imm));
2701 void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2702 assert(N == 1 && "Invalid number of operands!");
2703 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
2706 void addBankedRegOperands(MCInst &Inst, unsigned N) const {
2707 assert(N == 1 && "Invalid number of operands!");
2708 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
2711 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2712 assert(N == 1 && "Invalid number of operands!");
2713 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
2716 void addVecListOperands(MCInst &Inst, unsigned N) const {
2717 assert(N == 1 && "Invalid number of operands!");
2718 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2721 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2722 assert(N == 2 && "Invalid number of operands!");
2723 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2724 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
2727 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2728 assert(N == 1 && "Invalid number of operands!");
2729 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2732 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2733 assert(N == 1 && "Invalid number of operands!");
2734 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2737 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2738 assert(N == 1 && "Invalid number of operands!");
2739 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2742 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
2743 assert(N == 1 && "Invalid number of operands!");
2744 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2747 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2748 assert(N == 1 && "Invalid number of operands!");
2749 // The immediate encodes the type of constant as well as the value.
2750 // Mask in that this is an i8 splat.
2751 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2752 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
2755 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2756 assert(N == 1 && "Invalid number of operands!");
2757 // The immediate encodes the type of constant as well as the value.
2758 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2759 unsigned Value = CE->getValue();
2760 Value = ARM_AM::encodeNEONi16splat(Value);
2761 Inst.addOperand(MCOperand::createImm(Value));
2764 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
2765 assert(N == 1 && "Invalid number of operands!");
2766 // The immediate encodes the type of constant as well as the value.
2767 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2768 unsigned Value = CE->getValue();
2769 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
2770 Inst.addOperand(MCOperand::createImm(Value));
2773 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2774 assert(N == 1 && "Invalid number of operands!");
2775 // The immediate encodes the type of constant as well as the value.
2776 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2777 unsigned Value = CE->getValue();
2778 Value = ARM_AM::encodeNEONi32splat(Value);
2779 Inst.addOperand(MCOperand::createImm(Value));
2782 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
2783 assert(N == 1 && "Invalid number of operands!");
2784 // The immediate encodes the type of constant as well as the value.
2785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2786 unsigned Value = CE->getValue();
2787 Value = ARM_AM::encodeNEONi32splat(~Value);
2788 Inst.addOperand(MCOperand::createImm(Value));
2791 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
2792 // The immediate encodes the type of constant as well as the value.
2793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2794 assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
2795 Inst.getOpcode() == ARM::VMOVv16i8) &&
2796 "All instructions that wants to replicate non-zero byte "
2797 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2798 unsigned Value = CE->getValue();
2799 if (Inv)
2800 Value = ~Value;
2801 unsigned B = Value & 0xff;
2802 B |= 0xe00; // cmode = 0b1110
2803 Inst.addOperand(MCOperand::createImm(B));
2806 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2807 assert(N == 1 && "Invalid number of operands!");
2808 addNEONi8ReplicateOperands(Inst, true);
2811 static unsigned encodeNeonVMOVImmediate(unsigned Value) {
2812 if (Value >= 256 && Value <= 0xffff)
2813 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2814 else if (Value > 0xffff && Value <= 0xffffff)
2815 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2816 else if (Value > 0xffffff)
2817 Value = (Value >> 24) | 0x600;
2818 return Value;
2821 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2822 assert(N == 1 && "Invalid number of operands!");
2823 // The immediate encodes the type of constant as well as the value.
2824 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2825 unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
2826 Inst.addOperand(MCOperand::createImm(Value));
2829 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2830 assert(N == 1 && "Invalid number of operands!");
2831 addNEONi8ReplicateOperands(Inst, false);
2834 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
2835 assert(N == 1 && "Invalid number of operands!");
2836 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2837 assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
2838 Inst.getOpcode() == ARM::VMOVv8i16 ||
2839 Inst.getOpcode() == ARM::VMVNv4i16 ||
2840 Inst.getOpcode() == ARM::VMVNv8i16) &&
2841 "All instructions that want to replicate non-zero half-word "
2842 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
2843 uint64_t Value = CE->getValue();
2844 unsigned Elem = Value & 0xffff;
2845 if (Elem >= 256)
2846 Elem = (Elem >> 8) | 0x200;
2847 Inst.addOperand(MCOperand::createImm(Elem));
2850 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2851 assert(N == 1 && "Invalid number of operands!");
2852 // The immediate encodes the type of constant as well as the value.
2853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2854 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
2855 Inst.addOperand(MCOperand::createImm(Value));
2858 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
2859 assert(N == 1 && "Invalid number of operands!");
2860 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2861 assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
2862 Inst.getOpcode() == ARM::VMOVv4i32 ||
2863 Inst.getOpcode() == ARM::VMVNv2i32 ||
2864 Inst.getOpcode() == ARM::VMVNv4i32) &&
2865 "All instructions that want to replicate non-zero word "
2866 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
2867 uint64_t Value = CE->getValue();
2868 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
2869 Inst.addOperand(MCOperand::createImm(Elem));
2872 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2873 assert(N == 1 && "Invalid number of operands!");
2874 // The immediate encodes the type of constant as well as the value.
2875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2876 uint64_t Value = CE->getValue();
2877 unsigned Imm = 0;
2878 for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2879 Imm |= (Value & 1) << i;
2881 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
2884 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
2885 assert(N == 1 && "Invalid number of operands!");
2886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2887 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
2890 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
2891 assert(N == 1 && "Invalid number of operands!");
2892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2893 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
2896 void print(raw_ostream &OS) const override;
2898 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
2899 auto Op = make_unique<ARMOperand>(k_ITCondMask);
2900 Op->ITMask.Mask = Mask;
2901 Op->StartLoc = S;
2902 Op->EndLoc = S;
2903 return Op;
2906 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
2907 SMLoc S) {
2908 auto Op = make_unique<ARMOperand>(k_CondCode);
2909 Op->CC.Val = CC;
2910 Op->StartLoc = S;
2911 Op->EndLoc = S;
2912 return Op;
2915 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
2916 auto Op = make_unique<ARMOperand>(k_CoprocNum);
2917 Op->Cop.Val = CopVal;
2918 Op->StartLoc = S;
2919 Op->EndLoc = S;
2920 return Op;
2923 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
2924 auto Op = make_unique<ARMOperand>(k_CoprocReg);
2925 Op->Cop.Val = CopVal;
2926 Op->StartLoc = S;
2927 Op->EndLoc = S;
2928 return Op;
2931 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
2932 SMLoc E) {
2933 auto Op = make_unique<ARMOperand>(k_CoprocOption);
2934 Op->Cop.Val = Val;
2935 Op->StartLoc = S;
2936 Op->EndLoc = E;
2937 return Op;
2940 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
2941 auto Op = make_unique<ARMOperand>(k_CCOut);
2942 Op->Reg.RegNum = RegNum;
2943 Op->StartLoc = S;
2944 Op->EndLoc = S;
2945 return Op;
2948 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
2949 auto Op = make_unique<ARMOperand>(k_Token);
2950 Op->Tok.Data = Str.data();
2951 Op->Tok.Length = Str.size();
2952 Op->StartLoc = S;
2953 Op->EndLoc = S;
2954 return Op;
2957 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
2958 SMLoc E) {
2959 auto Op = make_unique<ARMOperand>(k_Register);
2960 Op->Reg.RegNum = RegNum;
2961 Op->StartLoc = S;
2962 Op->EndLoc = E;
2963 return Op;
2966 static std::unique_ptr<ARMOperand>
2967 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2968 unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
2969 SMLoc E) {
2970 auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
2971 Op->RegShiftedReg.ShiftTy = ShTy;
2972 Op->RegShiftedReg.SrcReg = SrcReg;
2973 Op->RegShiftedReg.ShiftReg = ShiftReg;
2974 Op->RegShiftedReg.ShiftImm = ShiftImm;
2975 Op->StartLoc = S;
2976 Op->EndLoc = E;
2977 return Op;
2980 static std::unique_ptr<ARMOperand>
2981 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2982 unsigned ShiftImm, SMLoc S, SMLoc E) {
2983 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
2984 Op->RegShiftedImm.ShiftTy = ShTy;
2985 Op->RegShiftedImm.SrcReg = SrcReg;
2986 Op->RegShiftedImm.ShiftImm = ShiftImm;
2987 Op->StartLoc = S;
2988 Op->EndLoc = E;
2989 return Op;
2992 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
2993 SMLoc S, SMLoc E) {
2994 auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
2995 Op->ShifterImm.isASR = isASR;
2996 Op->ShifterImm.Imm = Imm;
2997 Op->StartLoc = S;
2998 Op->EndLoc = E;
2999 return Op;
3002 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3003 SMLoc E) {
3004 auto Op = make_unique<ARMOperand>(k_RotateImmediate);
3005 Op->RotImm.Imm = Imm;
3006 Op->StartLoc = S;
3007 Op->EndLoc = E;
3008 return Op;
3011 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3012 SMLoc S, SMLoc E) {
3013 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
3014 Op->ModImm.Bits = Bits;
3015 Op->ModImm.Rot = Rot;
3016 Op->StartLoc = S;
3017 Op->EndLoc = E;
3018 return Op;
3021 static std::unique_ptr<ARMOperand>
3022 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3023 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate);
3024 Op->Imm.Val = Val;
3025 Op->StartLoc = S;
3026 Op->EndLoc = E;
3027 return Op;
3030 static std::unique_ptr<ARMOperand>
3031 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3032 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
3033 Op->Bitfield.LSB = LSB;
3034 Op->Bitfield.Width = Width;
3035 Op->StartLoc = S;
3036 Op->EndLoc = E;
3037 return Op;
3040 static std::unique_ptr<ARMOperand>
3041 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3042 SMLoc StartLoc, SMLoc EndLoc) {
3043 assert(Regs.size() > 0 && "RegList contains no registers?");
3044 KindTy Kind = k_RegisterList;
3046 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
3047 Kind = k_DPRRegisterList;
3048 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
3049 contains(Regs.front().second))
3050 Kind = k_SPRRegisterList;
3052 // Sort based on the register encoding values.
3053 array_pod_sort(Regs.begin(), Regs.end());
3055 auto Op = make_unique<ARMOperand>(Kind);
3056 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator
3057 I = Regs.begin(), E = Regs.end(); I != E; ++I)
3058 Op->Registers.push_back(I->second);
3059 Op->StartLoc = StartLoc;
3060 Op->EndLoc = EndLoc;
3061 return Op;
3064 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3065 unsigned Count,
3066 bool isDoubleSpaced,
3067 SMLoc S, SMLoc E) {
3068 auto Op = make_unique<ARMOperand>(k_VectorList);
3069 Op->VectorList.RegNum = RegNum;
3070 Op->VectorList.Count = Count;
3071 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3072 Op->StartLoc = S;
3073 Op->EndLoc = E;
3074 return Op;
3077 static std::unique_ptr<ARMOperand>
3078 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3079 SMLoc S, SMLoc E) {
3080 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
3081 Op->VectorList.RegNum = RegNum;
3082 Op->VectorList.Count = Count;
3083 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3084 Op->StartLoc = S;
3085 Op->EndLoc = E;
3086 return Op;
3089 static std::unique_ptr<ARMOperand>
3090 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3091 bool isDoubleSpaced, SMLoc S, SMLoc E) {
3092 auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
3093 Op->VectorList.RegNum = RegNum;
3094 Op->VectorList.Count = Count;
3095 Op->VectorList.LaneIndex = Index;
3096 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3097 Op->StartLoc = S;
3098 Op->EndLoc = E;
3099 return Op;
3102 static std::unique_ptr<ARMOperand>
3103 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3104 auto Op = make_unique<ARMOperand>(k_VectorIndex);
3105 Op->VectorIndex.Val = Idx;
3106 Op->StartLoc = S;
3107 Op->EndLoc = E;
3108 return Op;
3111 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3112 SMLoc E) {
3113 auto Op = make_unique<ARMOperand>(k_Immediate);
3114 Op->Imm.Val = Val;
3115 Op->StartLoc = S;
3116 Op->EndLoc = E;
3117 return Op;
3120 static std::unique_ptr<ARMOperand>
3121 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3122 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3123 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3124 SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3125 auto Op = make_unique<ARMOperand>(k_Memory);
3126 Op->Memory.BaseRegNum = BaseRegNum;
3127 Op->Memory.OffsetImm = OffsetImm;
3128 Op->Memory.OffsetRegNum = OffsetRegNum;
3129 Op->Memory.ShiftType = ShiftType;
3130 Op->Memory.ShiftImm = ShiftImm;
3131 Op->Memory.Alignment = Alignment;
3132 Op->Memory.isNegative = isNegative;
3133 Op->StartLoc = S;
3134 Op->EndLoc = E;
3135 Op->AlignmentLoc = AlignmentLoc;
3136 return Op;
3139 static std::unique_ptr<ARMOperand>
3140 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3141 unsigned ShiftImm, SMLoc S, SMLoc E) {
3142 auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
3143 Op->PostIdxReg.RegNum = RegNum;
3144 Op->PostIdxReg.isAdd = isAdd;
3145 Op->PostIdxReg.ShiftTy = ShiftTy;
3146 Op->PostIdxReg.ShiftImm = ShiftImm;
3147 Op->StartLoc = S;
3148 Op->EndLoc = E;
3149 return Op;
3152 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3153 SMLoc S) {
3154 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
3155 Op->MBOpt.Val = Opt;
3156 Op->StartLoc = S;
3157 Op->EndLoc = S;
3158 return Op;
3161 static std::unique_ptr<ARMOperand>
3162 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3163 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3164 Op->ISBOpt.Val = Opt;
3165 Op->StartLoc = S;
3166 Op->EndLoc = S;
3167 return Op;
3170 static std::unique_ptr<ARMOperand>
3171 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3172 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3173 Op->TSBOpt.Val = Opt;
3174 Op->StartLoc = S;
3175 Op->EndLoc = S;
3176 return Op;
3179 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3180 SMLoc S) {
3181 auto Op = make_unique<ARMOperand>(k_ProcIFlags);
3182 Op->IFlags.Val = IFlags;
3183 Op->StartLoc = S;
3184 Op->EndLoc = S;
3185 return Op;
3188 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3189 auto Op = make_unique<ARMOperand>(k_MSRMask);
3190 Op->MMask.Val = MMask;
3191 Op->StartLoc = S;
3192 Op->EndLoc = S;
3193 return Op;
3196 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3197 auto Op = make_unique<ARMOperand>(k_BankedReg);
3198 Op->BankedReg.Val = Reg;
3199 Op->StartLoc = S;
3200 Op->EndLoc = S;
3201 return Op;
3205 } // end anonymous namespace.
3207 void ARMOperand::print(raw_ostream &OS) const {
3208 auto RegName = [](unsigned Reg) {
3209 if (Reg)
3210 return ARMInstPrinter::getRegisterName(Reg);
3211 else
3212 return "noreg";
3215 switch (Kind) {
3216 case k_CondCode:
3217 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3218 break;
3219 case k_CCOut:
3220 OS << "<ccout " << RegName(getReg()) << ">";
3221 break;
3222 case k_ITCondMask: {
3223 static const char *const MaskStr[] = {
3224 "(invalid)", "(teee)", "(tee)", "(teet)",
3225 "(te)", "(tete)", "(tet)", "(tett)",
3226 "(t)", "(ttee)", "(tte)", "(ttet)",
3227 "(tt)", "(ttte)", "(ttt)", "(tttt)"
3229 assert((ITMask.Mask & 0xf) == ITMask.Mask);
3230 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3231 break;
3233 case k_CoprocNum:
3234 OS << "<coprocessor number: " << getCoproc() << ">";
3235 break;
3236 case k_CoprocReg:
3237 OS << "<coprocessor register: " << getCoproc() << ">";
3238 break;
3239 case k_CoprocOption:
3240 OS << "<coprocessor option: " << CoprocOption.Val << ">";
3241 break;
3242 case k_MSRMask:
3243 OS << "<mask: " << getMSRMask() << ">";
3244 break;
3245 case k_BankedReg:
3246 OS << "<banked reg: " << getBankedReg() << ">";
3247 break;
3248 case k_Immediate:
3249 OS << *getImm();
3250 break;
3251 case k_MemBarrierOpt:
3252 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3253 break;
3254 case k_InstSyncBarrierOpt:
3255 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3256 break;
3257 case k_TraceSyncBarrierOpt:
3258 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3259 break;
3260 case k_Memory:
3261 OS << "<memory";
3262 if (Memory.BaseRegNum)
3263 OS << " base:" << RegName(Memory.BaseRegNum);
3264 if (Memory.OffsetImm)
3265 OS << " offset-imm:" << *Memory.OffsetImm;
3266 if (Memory.OffsetRegNum)
3267 OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3268 << RegName(Memory.OffsetRegNum);
3269 if (Memory.ShiftType != ARM_AM::no_shift) {
3270 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3271 OS << " shift-imm:" << Memory.ShiftImm;
3273 if (Memory.Alignment)
3274 OS << " alignment:" << Memory.Alignment;
3275 OS << ">";
3276 break;
3277 case k_PostIndexRegister:
3278 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3279 << RegName(PostIdxReg.RegNum);
3280 if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3281 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3282 << PostIdxReg.ShiftImm;
3283 OS << ">";
3284 break;
3285 case k_ProcIFlags: {
3286 OS << "<ARM_PROC::";
3287 unsigned IFlags = getProcIFlags();
3288 for (int i=2; i >= 0; --i)
3289 if (IFlags & (1 << i))
3290 OS << ARM_PROC::IFlagsToString(1 << i);
3291 OS << ">";
3292 break;
3294 case k_Register:
3295 OS << "<register " << RegName(getReg()) << ">";
3296 break;
3297 case k_ShifterImmediate:
3298 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3299 << " #" << ShifterImm.Imm << ">";
3300 break;
3301 case k_ShiftedRegister:
3302 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3303 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3304 << RegName(RegShiftedReg.ShiftReg) << ">";
3305 break;
3306 case k_ShiftedImmediate:
3307 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3308 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3309 << RegShiftedImm.ShiftImm << ">";
3310 break;
3311 case k_RotateImmediate:
3312 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3313 break;
3314 case k_ModifiedImmediate:
3315 OS << "<mod_imm #" << ModImm.Bits << ", #"
3316 << ModImm.Rot << ")>";
3317 break;
3318 case k_ConstantPoolImmediate:
3319 OS << "<constant_pool_imm #" << *getConstantPoolImm();
3320 break;
3321 case k_BitfieldDescriptor:
3322 OS << "<bitfield " << "lsb: " << Bitfield.LSB
3323 << ", width: " << Bitfield.Width << ">";
3324 break;
3325 case k_RegisterList:
3326 case k_DPRRegisterList:
3327 case k_SPRRegisterList: {
3328 OS << "<register_list ";
3330 const SmallVectorImpl<unsigned> &RegList = getRegList();
3331 for (SmallVectorImpl<unsigned>::const_iterator
3332 I = RegList.begin(), E = RegList.end(); I != E; ) {
3333 OS << RegName(*I);
3334 if (++I < E) OS << ", ";
3337 OS << ">";
3338 break;
3340 case k_VectorList:
3341 OS << "<vector_list " << VectorList.Count << " * "
3342 << RegName(VectorList.RegNum) << ">";
3343 break;
3344 case k_VectorListAllLanes:
3345 OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3346 << RegName(VectorList.RegNum) << ">";
3347 break;
3348 case k_VectorListIndexed:
3349 OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3350 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
3351 break;
3352 case k_Token:
3353 OS << "'" << getToken() << "'";
3354 break;
3355 case k_VectorIndex:
3356 OS << "<vectorindex " << getVectorIndex() << ">";
3357 break;
3361 /// @name Auto-generated Match Functions
3362 /// {
3364 static unsigned MatchRegisterName(StringRef Name);
3366 /// }
3368 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3369 SMLoc &StartLoc, SMLoc &EndLoc) {
3370 const AsmToken &Tok = getParser().getTok();
3371 StartLoc = Tok.getLoc();
3372 EndLoc = Tok.getEndLoc();
3373 RegNo = tryParseRegister();
3375 return (RegNo == (unsigned)-1);
3378 /// Try to parse a register name. The token must be an Identifier when called,
3379 /// and if it is a register name the token is eaten and the register number is
3380 /// returned. Otherwise return -1.
3381 int ARMAsmParser::tryParseRegister() {
3382 MCAsmParser &Parser = getParser();
3383 const AsmToken &Tok = Parser.getTok();
3384 if (Tok.isNot(AsmToken::Identifier)) return -1;
3386 std::string lowerCase = Tok.getString().lower();
3387 unsigned RegNum = MatchRegisterName(lowerCase);
3388 if (!RegNum) {
3389 RegNum = StringSwitch<unsigned>(lowerCase)
3390 .Case("r13", ARM::SP)
3391 .Case("r14", ARM::LR)
3392 .Case("r15", ARM::PC)
3393 .Case("ip", ARM::R12)
3394 // Additional register name aliases for 'gas' compatibility.
3395 .Case("a1", ARM::R0)
3396 .Case("a2", ARM::R1)
3397 .Case("a3", ARM::R2)
3398 .Case("a4", ARM::R3)
3399 .Case("v1", ARM::R4)
3400 .Case("v2", ARM::R5)
3401 .Case("v3", ARM::R6)
3402 .Case("v4", ARM::R7)
3403 .Case("v5", ARM::R8)
3404 .Case("v6", ARM::R9)
3405 .Case("v7", ARM::R10)
3406 .Case("v8", ARM::R11)
3407 .Case("sb", ARM::R9)
3408 .Case("sl", ARM::R10)
3409 .Case("fp", ARM::R11)
3410 .Default(0);
3412 if (!RegNum) {
3413 // Check for aliases registered via .req. Canonicalize to lower case.
3414 // That's more consistent since register names are case insensitive, and
3415 // it's how the original entry was passed in from MC/MCParser/AsmParser.
3416 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3417 // If no match, return failure.
3418 if (Entry == RegisterReqs.end())
3419 return -1;
3420 Parser.Lex(); // Eat identifier token.
3421 return Entry->getValue();
3424 // Some FPUs only have 16 D registers, so D16-D31 are invalid
3425 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3426 return -1;
3428 Parser.Lex(); // Eat identifier token.
3430 return RegNum;
3433 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3434 // If a recoverable error occurs, return 1. If an irrecoverable error
3435 // occurs, return -1. An irrecoverable error is one where tokens have been
3436 // consumed in the process of trying to parse the shifter (i.e., when it is
3437 // indeed a shifter operand, but malformed).
3438 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3439 MCAsmParser &Parser = getParser();
3440 SMLoc S = Parser.getTok().getLoc();
3441 const AsmToken &Tok = Parser.getTok();
3442 if (Tok.isNot(AsmToken::Identifier))
3443 return -1;
3445 std::string lowerCase = Tok.getString().lower();
3446 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3447 .Case("asl", ARM_AM::lsl)
3448 .Case("lsl", ARM_AM::lsl)
3449 .Case("lsr", ARM_AM::lsr)
3450 .Case("asr", ARM_AM::asr)
3451 .Case("ror", ARM_AM::ror)
3452 .Case("rrx", ARM_AM::rrx)
3453 .Default(ARM_AM::no_shift);
3455 if (ShiftTy == ARM_AM::no_shift)
3456 return 1;
3458 Parser.Lex(); // Eat the operator.
3460 // The source register for the shift has already been added to the
3461 // operand list, so we need to pop it off and combine it into the shifted
3462 // register operand instead.
3463 std::unique_ptr<ARMOperand> PrevOp(
3464 (ARMOperand *)Operands.pop_back_val().release());
3465 if (!PrevOp->isReg())
3466 return Error(PrevOp->getStartLoc(), "shift must be of a register");
3467 int SrcReg = PrevOp->getReg();
3469 SMLoc EndLoc;
3470 int64_t Imm = 0;
3471 int ShiftReg = 0;
3472 if (ShiftTy == ARM_AM::rrx) {
3473 // RRX Doesn't have an explicit shift amount. The encoder expects
3474 // the shift register to be the same as the source register. Seems odd,
3475 // but OK.
3476 ShiftReg = SrcReg;
3477 } else {
3478 // Figure out if this is shifted by a constant or a register (for non-RRX).
3479 if (Parser.getTok().is(AsmToken::Hash) ||
3480 Parser.getTok().is(AsmToken::Dollar)) {
3481 Parser.Lex(); // Eat hash.
3482 SMLoc ImmLoc = Parser.getTok().getLoc();
3483 const MCExpr *ShiftExpr = nullptr;
3484 if (getParser().parseExpression(ShiftExpr, EndLoc)) {
3485 Error(ImmLoc, "invalid immediate shift value");
3486 return -1;
3488 // The expression must be evaluatable as an immediate.
3489 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
3490 if (!CE) {
3491 Error(ImmLoc, "invalid immediate shift value");
3492 return -1;
3494 // Range check the immediate.
3495 // lsl, ror: 0 <= imm <= 31
3496 // lsr, asr: 0 <= imm <= 32
3497 Imm = CE->getValue();
3498 if (Imm < 0 ||
3499 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
3500 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
3501 Error(ImmLoc, "immediate shift value out of range");
3502 return -1;
3504 // shift by zero is a nop. Always send it through as lsl.
3505 // ('as' compatibility)
3506 if (Imm == 0)
3507 ShiftTy = ARM_AM::lsl;
3508 } else if (Parser.getTok().is(AsmToken::Identifier)) {
3509 SMLoc L = Parser.getTok().getLoc();
3510 EndLoc = Parser.getTok().getEndLoc();
3511 ShiftReg = tryParseRegister();
3512 if (ShiftReg == -1) {
3513 Error(L, "expected immediate or register in shift operand");
3514 return -1;
3516 } else {
3517 Error(Parser.getTok().getLoc(),
3518 "expected immediate or register in shift operand");
3519 return -1;
3523 if (ShiftReg && ShiftTy != ARM_AM::rrx)
3524 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
3525 ShiftReg, Imm,
3526 S, EndLoc));
3527 else
3528 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
3529 S, EndLoc));
3531 return 0;
3534 /// Try to parse a register name. The token must be an Identifier when called.
3535 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3536 /// if there is a "writeback". 'true' if it's not a register.
3538 /// TODO this is likely to change to allow different register types and or to
3539 /// parse for a specific register type.
3540 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
3541 MCAsmParser &Parser = getParser();
3542 SMLoc RegStartLoc = Parser.getTok().getLoc();
3543 SMLoc RegEndLoc = Parser.getTok().getEndLoc();
3544 int RegNo = tryParseRegister();
3545 if (RegNo == -1)
3546 return true;
3548 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
3550 const AsmToken &ExclaimTok = Parser.getTok();
3551 if (ExclaimTok.is(AsmToken::Exclaim)) {
3552 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
3553 ExclaimTok.getLoc()));
3554 Parser.Lex(); // Eat exclaim token
3555 return false;
3558 // Also check for an index operand. This is only legal for vector registers,
3559 // but that'll get caught OK in operand matching, so we don't need to
3560 // explicitly filter everything else out here.
3561 if (Parser.getTok().is(AsmToken::LBrac)) {
3562 SMLoc SIdx = Parser.getTok().getLoc();
3563 Parser.Lex(); // Eat left bracket token.
3565 const MCExpr *ImmVal;
3566 if (getParser().parseExpression(ImmVal))
3567 return true;
3568 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
3569 if (!MCE)
3570 return TokError("immediate value expected for vector index");
3572 if (Parser.getTok().isNot(AsmToken::RBrac))
3573 return Error(Parser.getTok().getLoc(), "']' expected");
3575 SMLoc E = Parser.getTok().getEndLoc();
3576 Parser.Lex(); // Eat right bracket token.
3578 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
3579 SIdx, E,
3580 getContext()));
3583 return false;
3586 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3587 /// instruction with a symbolic operand name.
3588 /// We accept "crN" syntax for GAS compatibility.
3589 /// <operand-name> ::= <prefix><number>
3590 /// If CoprocOp is 'c', then:
3591 /// <prefix> ::= c | cr
3592 /// If CoprocOp is 'p', then :
3593 /// <prefix> ::= p
3594 /// <number> ::= integer in range [0, 15]
3595 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
3596 // Use the same layout as the tablegen'erated register name matcher. Ugly,
3597 // but efficient.
3598 if (Name.size() < 2 || Name[0] != CoprocOp)
3599 return -1;
3600 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
3602 switch (Name.size()) {
3603 default: return -1;
3604 case 1:
3605 switch (Name[0]) {
3606 default: return -1;
3607 case '0': return 0;
3608 case '1': return 1;
3609 case '2': return 2;
3610 case '3': return 3;
3611 case '4': return 4;
3612 case '5': return 5;
3613 case '6': return 6;
3614 case '7': return 7;
3615 case '8': return 8;
3616 case '9': return 9;
3618 case 2:
3619 if (Name[0] != '1')
3620 return -1;
3621 switch (Name[1]) {
3622 default: return -1;
3623 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3624 // However, old cores (v5/v6) did use them in that way.
3625 case '0': return 10;
3626 case '1': return 11;
3627 case '2': return 12;
3628 case '3': return 13;
3629 case '4': return 14;
3630 case '5': return 15;
3635 /// parseITCondCode - Try to parse a condition code for an IT instruction.
3636 OperandMatchResultTy
3637 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
3638 MCAsmParser &Parser = getParser();
3639 SMLoc S = Parser.getTok().getLoc();
3640 const AsmToken &Tok = Parser.getTok();
3641 if (!Tok.is(AsmToken::Identifier))
3642 return MatchOperand_NoMatch;
3643 unsigned CC = ARMCondCodeFromString(Tok.getString());
3644 if (CC == ~0U)
3645 return MatchOperand_NoMatch;
3646 Parser.Lex(); // Eat the token.
3648 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
3650 return MatchOperand_Success;
3653 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3654 /// token must be an Identifier when called, and if it is a coprocessor
3655 /// number, the token is eaten and the operand is added to the operand list.
3656 OperandMatchResultTy
3657 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
3658 MCAsmParser &Parser = getParser();
3659 SMLoc S = Parser.getTok().getLoc();
3660 const AsmToken &Tok = Parser.getTok();
3661 if (Tok.isNot(AsmToken::Identifier))
3662 return MatchOperand_NoMatch;
3664 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
3665 if (Num == -1)
3666 return MatchOperand_NoMatch;
3667 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3668 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
3669 return MatchOperand_NoMatch;
3671 Parser.Lex(); // Eat identifier token.
3672 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
3673 return MatchOperand_Success;
3676 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3677 /// token must be an Identifier when called, and if it is a coprocessor
3678 /// number, the token is eaten and the operand is added to the operand list.
3679 OperandMatchResultTy
3680 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
3681 MCAsmParser &Parser = getParser();
3682 SMLoc S = Parser.getTok().getLoc();
3683 const AsmToken &Tok = Parser.getTok();
3684 if (Tok.isNot(AsmToken::Identifier))
3685 return MatchOperand_NoMatch;
3687 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
3688 if (Reg == -1)
3689 return MatchOperand_NoMatch;
3691 Parser.Lex(); // Eat identifier token.
3692 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
3693 return MatchOperand_Success;
3696 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3697 /// coproc_option : '{' imm0_255 '}'
3698 OperandMatchResultTy
3699 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
3700 MCAsmParser &Parser = getParser();
3701 SMLoc S = Parser.getTok().getLoc();
3703 // If this isn't a '{', this isn't a coprocessor immediate operand.
3704 if (Parser.getTok().isNot(AsmToken::LCurly))
3705 return MatchOperand_NoMatch;
3706 Parser.Lex(); // Eat the '{'
3708 const MCExpr *Expr;
3709 SMLoc Loc = Parser.getTok().getLoc();
3710 if (getParser().parseExpression(Expr)) {
3711 Error(Loc, "illegal expression");
3712 return MatchOperand_ParseFail;
3714 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
3715 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
3716 Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
3717 return MatchOperand_ParseFail;
3719 int Val = CE->getValue();
3721 // Check for and consume the closing '}'
3722 if (Parser.getTok().isNot(AsmToken::RCurly))
3723 return MatchOperand_ParseFail;
3724 SMLoc E = Parser.getTok().getEndLoc();
3725 Parser.Lex(); // Eat the '}'
3727 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
3728 return MatchOperand_Success;
3731 // For register list parsing, we need to map from raw GPR register numbering
3732 // to the enumeration values. The enumeration values aren't sorted by
3733 // register number due to our using "sp", "lr" and "pc" as canonical names.
3734 static unsigned getNextRegister(unsigned Reg) {
3735 // If this is a GPR, we need to do it manually, otherwise we can rely
3736 // on the sort ordering of the enumeration since the other reg-classes
3737 // are sane.
3738 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3739 return Reg + 1;
3740 switch(Reg) {
3741 default: llvm_unreachable("Invalid GPR number!");
3742 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
3743 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
3744 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
3745 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
3746 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
3747 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3748 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
3749 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
3753 /// Parse a register list.
3754 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
3755 MCAsmParser &Parser = getParser();
3756 if (Parser.getTok().isNot(AsmToken::LCurly))
3757 return TokError("Token is not a Left Curly Brace");
3758 SMLoc S = Parser.getTok().getLoc();
3759 Parser.Lex(); // Eat '{' token.
3760 SMLoc RegLoc = Parser.getTok().getLoc();
3762 // Check the first register in the list to see what register class
3763 // this is a list of.
3764 int Reg = tryParseRegister();
3765 if (Reg == -1)
3766 return Error(RegLoc, "register expected");
3768 // The reglist instructions have at most 16 registers, so reserve
3769 // space for that many.
3770 int EReg = 0;
3771 SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3773 // Allow Q regs and just interpret them as the two D sub-registers.
3774 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3775 Reg = getDRegFromQReg(Reg);
3776 EReg = MRI->getEncodingValue(Reg);
3777 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3778 ++Reg;
3780 const MCRegisterClass *RC;
3781 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3782 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3783 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3784 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3785 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3786 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3787 else
3788 return Error(RegLoc, "invalid register in register list");
3790 // Store the register.
3791 EReg = MRI->getEncodingValue(Reg);
3792 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3794 // This starts immediately after the first register token in the list,
3795 // so we can see either a comma or a minus (range separator) as a legal
3796 // next token.
3797 while (Parser.getTok().is(AsmToken::Comma) ||
3798 Parser.getTok().is(AsmToken::Minus)) {
3799 if (Parser.getTok().is(AsmToken::Minus)) {
3800 Parser.Lex(); // Eat the minus.
3801 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3802 int EndReg = tryParseRegister();
3803 if (EndReg == -1)
3804 return Error(AfterMinusLoc, "register expected");
3805 // Allow Q regs and just interpret them as the two D sub-registers.
3806 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3807 EndReg = getDRegFromQReg(EndReg) + 1;
3808 // If the register is the same as the start reg, there's nothing
3809 // more to do.
3810 if (Reg == EndReg)
3811 continue;
3812 // The register must be in the same register class as the first.
3813 if (!RC->contains(EndReg))
3814 return Error(AfterMinusLoc, "invalid register in register list");
3815 // Ranges must go from low to high.
3816 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3817 return Error(AfterMinusLoc, "bad range in register list");
3819 // Add all the registers in the range to the register list.
3820 while (Reg != EndReg) {
3821 Reg = getNextRegister(Reg);
3822 EReg = MRI->getEncodingValue(Reg);
3823 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3825 continue;
3827 Parser.Lex(); // Eat the comma.
3828 RegLoc = Parser.getTok().getLoc();
3829 int OldReg = Reg;
3830 const AsmToken RegTok = Parser.getTok();
3831 Reg = tryParseRegister();
3832 if (Reg == -1)
3833 return Error(RegLoc, "register expected");
3834 // Allow Q regs and just interpret them as the two D sub-registers.
3835 bool isQReg = false;
3836 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3837 Reg = getDRegFromQReg(Reg);
3838 isQReg = true;
3840 // The register must be in the same register class as the first.
3841 if (!RC->contains(Reg))
3842 return Error(RegLoc, "invalid register in register list");
3843 // List must be monotonically increasing.
3844 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3845 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3846 Warning(RegLoc, "register list not in ascending order");
3847 else
3848 return Error(RegLoc, "register list not in ascending order");
3850 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3851 Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3852 ") in register list");
3853 continue;
3855 // VFP register lists must also be contiguous.
3856 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3857 Reg != OldReg + 1)
3858 return Error(RegLoc, "non-contiguous register range");
3859 EReg = MRI->getEncodingValue(Reg);
3860 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3861 if (isQReg) {
3862 EReg = MRI->getEncodingValue(++Reg);
3863 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3867 if (Parser.getTok().isNot(AsmToken::RCurly))
3868 return Error(Parser.getTok().getLoc(), "'}' expected");
3869 SMLoc E = Parser.getTok().getEndLoc();
3870 Parser.Lex(); // Eat '}' token.
3872 // Push the register list operand.
3873 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3875 // The ARM system instruction variants for LDM/STM have a '^' token here.
3876 if (Parser.getTok().is(AsmToken::Caret)) {
3877 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3878 Parser.Lex(); // Eat '^' token.
3881 return false;
3884 // Helper function to parse the lane index for vector lists.
3885 OperandMatchResultTy ARMAsmParser::
3886 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3887 MCAsmParser &Parser = getParser();
3888 Index = 0; // Always return a defined index value.
3889 if (Parser.getTok().is(AsmToken::LBrac)) {
3890 Parser.Lex(); // Eat the '['.
3891 if (Parser.getTok().is(AsmToken::RBrac)) {
3892 // "Dn[]" is the 'all lanes' syntax.
3893 LaneKind = AllLanes;
3894 EndLoc = Parser.getTok().getEndLoc();
3895 Parser.Lex(); // Eat the ']'.
3896 return MatchOperand_Success;
3899 // There's an optional '#' token here. Normally there wouldn't be, but
3900 // inline assemble puts one in, and it's friendly to accept that.
3901 if (Parser.getTok().is(AsmToken::Hash))
3902 Parser.Lex(); // Eat '#' or '$'.
3904 const MCExpr *LaneIndex;
3905 SMLoc Loc = Parser.getTok().getLoc();
3906 if (getParser().parseExpression(LaneIndex)) {
3907 Error(Loc, "illegal expression");
3908 return MatchOperand_ParseFail;
3910 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3911 if (!CE) {
3912 Error(Loc, "lane index must be empty or an integer");
3913 return MatchOperand_ParseFail;
3915 if (Parser.getTok().isNot(AsmToken::RBrac)) {
3916 Error(Parser.getTok().getLoc(), "']' expected");
3917 return MatchOperand_ParseFail;
3919 EndLoc = Parser.getTok().getEndLoc();
3920 Parser.Lex(); // Eat the ']'.
3921 int64_t Val = CE->getValue();
3923 // FIXME: Make this range check context sensitive for .8, .16, .32.
3924 if (Val < 0 || Val > 7) {
3925 Error(Parser.getTok().getLoc(), "lane index out of range");
3926 return MatchOperand_ParseFail;
3928 Index = Val;
3929 LaneKind = IndexedLane;
3930 return MatchOperand_Success;
3932 LaneKind = NoLanes;
3933 return MatchOperand_Success;
3936 // parse a vector register list
3937 OperandMatchResultTy
3938 ARMAsmParser::parseVectorList(OperandVector &Operands) {
3939 MCAsmParser &Parser = getParser();
3940 VectorLaneTy LaneKind;
3941 unsigned LaneIndex;
3942 SMLoc S = Parser.getTok().getLoc();
3943 // As an extension (to match gas), support a plain D register or Q register
3944 // (without encosing curly braces) as a single or double entry list,
3945 // respectively.
3946 if (Parser.getTok().is(AsmToken::Identifier)) {
3947 SMLoc E = Parser.getTok().getEndLoc();
3948 int Reg = tryParseRegister();
3949 if (Reg == -1)
3950 return MatchOperand_NoMatch;
3951 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3952 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3953 if (Res != MatchOperand_Success)
3954 return Res;
3955 switch (LaneKind) {
3956 case NoLanes:
3957 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3958 break;
3959 case AllLanes:
3960 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3961 S, E));
3962 break;
3963 case IndexedLane:
3964 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3965 LaneIndex,
3966 false, S, E));
3967 break;
3969 return MatchOperand_Success;
3971 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3972 Reg = getDRegFromQReg(Reg);
3973 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3974 if (Res != MatchOperand_Success)
3975 return Res;
3976 switch (LaneKind) {
3977 case NoLanes:
3978 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3979 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3980 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3981 break;
3982 case AllLanes:
3983 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3984 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3985 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3986 S, E));
3987 break;
3988 case IndexedLane:
3989 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3990 LaneIndex,
3991 false, S, E));
3992 break;
3994 return MatchOperand_Success;
3996 Error(S, "vector register expected");
3997 return MatchOperand_ParseFail;
4000 if (Parser.getTok().isNot(AsmToken::LCurly))
4001 return MatchOperand_NoMatch;
4003 Parser.Lex(); // Eat '{' token.
4004 SMLoc RegLoc = Parser.getTok().getLoc();
4006 int Reg = tryParseRegister();
4007 if (Reg == -1) {
4008 Error(RegLoc, "register expected");
4009 return MatchOperand_ParseFail;
4011 unsigned Count = 1;
4012 int Spacing = 0;
4013 unsigned FirstReg = Reg;
4014 // The list is of D registers, but we also allow Q regs and just interpret
4015 // them as the two D sub-registers.
4016 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4017 FirstReg = Reg = getDRegFromQReg(Reg);
4018 Spacing = 1; // double-spacing requires explicit D registers, otherwise
4019 // it's ambiguous with four-register single spaced.
4020 ++Reg;
4021 ++Count;
4024 SMLoc E;
4025 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4026 return MatchOperand_ParseFail;
4028 while (Parser.getTok().is(AsmToken::Comma) ||
4029 Parser.getTok().is(AsmToken::Minus)) {
4030 if (Parser.getTok().is(AsmToken::Minus)) {
4031 if (!Spacing)
4032 Spacing = 1; // Register range implies a single spaced list.
4033 else if (Spacing == 2) {
4034 Error(Parser.getTok().getLoc(),
4035 "sequential registers in double spaced list");
4036 return MatchOperand_ParseFail;
4038 Parser.Lex(); // Eat the minus.
4039 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4040 int EndReg = tryParseRegister();
4041 if (EndReg == -1) {
4042 Error(AfterMinusLoc, "register expected");
4043 return MatchOperand_ParseFail;
4045 // Allow Q regs and just interpret them as the two D sub-registers.
4046 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4047 EndReg = getDRegFromQReg(EndReg) + 1;
4048 // If the register is the same as the start reg, there's nothing
4049 // more to do.
4050 if (Reg == EndReg)
4051 continue;
4052 // The register must be in the same register class as the first.
4053 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
4054 Error(AfterMinusLoc, "invalid register in register list");
4055 return MatchOperand_ParseFail;
4057 // Ranges must go from low to high.
4058 if (Reg > EndReg) {
4059 Error(AfterMinusLoc, "bad range in register list");
4060 return MatchOperand_ParseFail;
4062 // Parse the lane specifier if present.
4063 VectorLaneTy NextLaneKind;
4064 unsigned NextLaneIndex;
4065 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4066 MatchOperand_Success)
4067 return MatchOperand_ParseFail;
4068 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4069 Error(AfterMinusLoc, "mismatched lane index in register list");
4070 return MatchOperand_ParseFail;
4073 // Add all the registers in the range to the register list.
4074 Count += EndReg - Reg;
4075 Reg = EndReg;
4076 continue;
4078 Parser.Lex(); // Eat the comma.
4079 RegLoc = Parser.getTok().getLoc();
4080 int OldReg = Reg;
4081 Reg = tryParseRegister();
4082 if (Reg == -1) {
4083 Error(RegLoc, "register expected");
4084 return MatchOperand_ParseFail;
4086 // vector register lists must be contiguous.
4087 // It's OK to use the enumeration values directly here rather, as the
4088 // VFP register classes have the enum sorted properly.
4090 // The list is of D registers, but we also allow Q regs and just interpret
4091 // them as the two D sub-registers.
4092 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4093 if (!Spacing)
4094 Spacing = 1; // Register range implies a single spaced list.
4095 else if (Spacing == 2) {
4096 Error(RegLoc,
4097 "invalid register in double-spaced list (must be 'D' register')");
4098 return MatchOperand_ParseFail;
4100 Reg = getDRegFromQReg(Reg);
4101 if (Reg != OldReg + 1) {
4102 Error(RegLoc, "non-contiguous register range");
4103 return MatchOperand_ParseFail;
4105 ++Reg;
4106 Count += 2;
4107 // Parse the lane specifier if present.
4108 VectorLaneTy NextLaneKind;
4109 unsigned NextLaneIndex;
4110 SMLoc LaneLoc = Parser.getTok().getLoc();
4111 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4112 MatchOperand_Success)
4113 return MatchOperand_ParseFail;
4114 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4115 Error(LaneLoc, "mismatched lane index in register list");
4116 return MatchOperand_ParseFail;
4118 continue;
4120 // Normal D register.
4121 // Figure out the register spacing (single or double) of the list if
4122 // we don't know it already.
4123 if (!Spacing)
4124 Spacing = 1 + (Reg == OldReg + 2);
4126 // Just check that it's contiguous and keep going.
4127 if (Reg != OldReg + Spacing) {
4128 Error(RegLoc, "non-contiguous register range");
4129 return MatchOperand_ParseFail;
4131 ++Count;
4132 // Parse the lane specifier if present.
4133 VectorLaneTy NextLaneKind;
4134 unsigned NextLaneIndex;
4135 SMLoc EndLoc = Parser.getTok().getLoc();
4136 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4137 return MatchOperand_ParseFail;
4138 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4139 Error(EndLoc, "mismatched lane index in register list");
4140 return MatchOperand_ParseFail;
4144 if (Parser.getTok().isNot(AsmToken::RCurly)) {
4145 Error(Parser.getTok().getLoc(), "'}' expected");
4146 return MatchOperand_ParseFail;
4148 E = Parser.getTok().getEndLoc();
4149 Parser.Lex(); // Eat '}' token.
4151 switch (LaneKind) {
4152 case NoLanes:
4153 // Two-register operands have been converted to the
4154 // composite register classes.
4155 if (Count == 2) {
4156 const MCRegisterClass *RC = (Spacing == 1) ?
4157 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4158 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4159 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4161 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
4162 (Spacing == 2), S, E));
4163 break;
4164 case AllLanes:
4165 // Two-register operands have been converted to the
4166 // composite register classes.
4167 if (Count == 2) {
4168 const MCRegisterClass *RC = (Spacing == 1) ?
4169 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4170 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4171 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4173 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
4174 (Spacing == 2),
4175 S, E));
4176 break;
4177 case IndexedLane:
4178 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4179 LaneIndex,
4180 (Spacing == 2),
4181 S, E));
4182 break;
4184 return MatchOperand_Success;
4187 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4188 OperandMatchResultTy
4189 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4190 MCAsmParser &Parser = getParser();
4191 SMLoc S = Parser.getTok().getLoc();
4192 const AsmToken &Tok = Parser.getTok();
4193 unsigned Opt;
4195 if (Tok.is(AsmToken::Identifier)) {
4196 StringRef OptStr = Tok.getString();
4198 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4199 .Case("sy", ARM_MB::SY)
4200 .Case("st", ARM_MB::ST)
4201 .Case("ld", ARM_MB::LD)
4202 .Case("sh", ARM_MB::ISH)
4203 .Case("ish", ARM_MB::ISH)
4204 .Case("shst", ARM_MB::ISHST)
4205 .Case("ishst", ARM_MB::ISHST)
4206 .Case("ishld", ARM_MB::ISHLD)
4207 .Case("nsh", ARM_MB::NSH)
4208 .Case("un", ARM_MB::NSH)
4209 .Case("nshst", ARM_MB::NSHST)
4210 .Case("nshld", ARM_MB::NSHLD)
4211 .Case("unst", ARM_MB::NSHST)
4212 .Case("osh", ARM_MB::OSH)
4213 .Case("oshst", ARM_MB::OSHST)
4214 .Case("oshld", ARM_MB::OSHLD)
4215 .Default(~0U);
4217 // ishld, oshld, nshld and ld are only available from ARMv8.
4218 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4219 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4220 Opt = ~0U;
4222 if (Opt == ~0U)
4223 return MatchOperand_NoMatch;
4225 Parser.Lex(); // Eat identifier token.
4226 } else if (Tok.is(AsmToken::Hash) ||
4227 Tok.is(AsmToken::Dollar) ||
4228 Tok.is(AsmToken::Integer)) {
4229 if (Parser.getTok().isNot(AsmToken::Integer))
4230 Parser.Lex(); // Eat '#' or '$'.
4231 SMLoc Loc = Parser.getTok().getLoc();
4233 const MCExpr *MemBarrierID;
4234 if (getParser().parseExpression(MemBarrierID)) {
4235 Error(Loc, "illegal expression");
4236 return MatchOperand_ParseFail;
4239 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4240 if (!CE) {
4241 Error(Loc, "constant expression expected");
4242 return MatchOperand_ParseFail;
4245 int Val = CE->getValue();
4246 if (Val & ~0xf) {
4247 Error(Loc, "immediate value out of range");
4248 return MatchOperand_ParseFail;
4251 Opt = ARM_MB::RESERVED_0 + Val;
4252 } else
4253 return MatchOperand_ParseFail;
4255 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4256 return MatchOperand_Success;
4259 OperandMatchResultTy
4260 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4261 MCAsmParser &Parser = getParser();
4262 SMLoc S = Parser.getTok().getLoc();
4263 const AsmToken &Tok = Parser.getTok();
4265 if (Tok.isNot(AsmToken::Identifier))
4266 return MatchOperand_NoMatch;
4268 if (!Tok.getString().equals_lower("csync"))
4269 return MatchOperand_NoMatch;
4271 Parser.Lex(); // Eat identifier token.
4273 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4274 return MatchOperand_Success;
4277 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4278 OperandMatchResultTy
4279 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4280 MCAsmParser &Parser = getParser();
4281 SMLoc S = Parser.getTok().getLoc();
4282 const AsmToken &Tok = Parser.getTok();
4283 unsigned Opt;
4285 if (Tok.is(AsmToken::Identifier)) {
4286 StringRef OptStr = Tok.getString();
4288 if (OptStr.equals_lower("sy"))
4289 Opt = ARM_ISB::SY;
4290 else
4291 return MatchOperand_NoMatch;
4293 Parser.Lex(); // Eat identifier token.
4294 } else if (Tok.is(AsmToken::Hash) ||
4295 Tok.is(AsmToken::Dollar) ||
4296 Tok.is(AsmToken::Integer)) {
4297 if (Parser.getTok().isNot(AsmToken::Integer))
4298 Parser.Lex(); // Eat '#' or '$'.
4299 SMLoc Loc = Parser.getTok().getLoc();
4301 const MCExpr *ISBarrierID;
4302 if (getParser().parseExpression(ISBarrierID)) {
4303 Error(Loc, "illegal expression");
4304 return MatchOperand_ParseFail;
4307 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4308 if (!CE) {
4309 Error(Loc, "constant expression expected");
4310 return MatchOperand_ParseFail;
4313 int Val = CE->getValue();
4314 if (Val & ~0xf) {
4315 Error(Loc, "immediate value out of range");
4316 return MatchOperand_ParseFail;
4319 Opt = ARM_ISB::RESERVED_0 + Val;
4320 } else
4321 return MatchOperand_ParseFail;
4323 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4324 (ARM_ISB::InstSyncBOpt)Opt, S));
4325 return MatchOperand_Success;
4329 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4330 OperandMatchResultTy
4331 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4332 MCAsmParser &Parser = getParser();
4333 SMLoc S = Parser.getTok().getLoc();
4334 const AsmToken &Tok = Parser.getTok();
4335 if (!Tok.is(AsmToken::Identifier))
4336 return MatchOperand_NoMatch;
4337 StringRef IFlagsStr = Tok.getString();
4339 // An iflags string of "none" is interpreted to mean that none of the AIF
4340 // bits are set. Not a terribly useful instruction, but a valid encoding.
4341 unsigned IFlags = 0;
4342 if (IFlagsStr != "none") {
4343 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4344 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4345 .Case("a", ARM_PROC::A)
4346 .Case("i", ARM_PROC::I)
4347 .Case("f", ARM_PROC::F)
4348 .Default(~0U);
4350 // If some specific iflag is already set, it means that some letter is
4351 // present more than once, this is not acceptable.
4352 if (Flag == ~0U || (IFlags & Flag))
4353 return MatchOperand_NoMatch;
4355 IFlags |= Flag;
4359 Parser.Lex(); // Eat identifier token.
4360 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4361 return MatchOperand_Success;
4364 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4365 OperandMatchResultTy
4366 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4367 MCAsmParser &Parser = getParser();
4368 SMLoc S = Parser.getTok().getLoc();
4369 const AsmToken &Tok = Parser.getTok();
4371 if (Tok.is(AsmToken::Integer)) {
4372 int64_t Val = Tok.getIntVal();
4373 if (Val > 255 || Val < 0) {
4374 return MatchOperand_NoMatch;
4376 unsigned SYSmvalue = Val & 0xFF;
4377 Parser.Lex();
4378 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4379 return MatchOperand_Success;
4382 if (!Tok.is(AsmToken::Identifier))
4383 return MatchOperand_NoMatch;
4384 StringRef Mask = Tok.getString();
4386 if (isMClass()) {
4387 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4388 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4389 return MatchOperand_NoMatch;
4391 unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4393 Parser.Lex(); // Eat identifier token.
4394 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4395 return MatchOperand_Success;
4398 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4399 size_t Start = 0, Next = Mask.find('_');
4400 StringRef Flags = "";
4401 std::string SpecReg = Mask.slice(Start, Next).lower();
4402 if (Next != StringRef::npos)
4403 Flags = Mask.slice(Next+1, Mask.size());
4405 // FlagsVal contains the complete mask:
4406 // 3-0: Mask
4407 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4408 unsigned FlagsVal = 0;
4410 if (SpecReg == "apsr") {
4411 FlagsVal = StringSwitch<unsigned>(Flags)
4412 .Case("nzcvq", 0x8) // same as CPSR_f
4413 .Case("g", 0x4) // same as CPSR_s
4414 .Case("nzcvqg", 0xc) // same as CPSR_fs
4415 .Default(~0U);
4417 if (FlagsVal == ~0U) {
4418 if (!Flags.empty())
4419 return MatchOperand_NoMatch;
4420 else
4421 FlagsVal = 8; // No flag
4423 } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4424 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4425 if (Flags == "all" || Flags == "")
4426 Flags = "fc";
4427 for (int i = 0, e = Flags.size(); i != e; ++i) {
4428 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
4429 .Case("c", 1)
4430 .Case("x", 2)
4431 .Case("s", 4)
4432 .Case("f", 8)
4433 .Default(~0U);
4435 // If some specific flag is already set, it means that some letter is
4436 // present more than once, this is not acceptable.
4437 if (Flag == ~0U || (FlagsVal & Flag))
4438 return MatchOperand_NoMatch;
4439 FlagsVal |= Flag;
4441 } else // No match for special register.
4442 return MatchOperand_NoMatch;
4444 // Special register without flags is NOT equivalent to "fc" flags.
4445 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
4446 // two lines would enable gas compatibility at the expense of breaking
4447 // round-tripping.
4449 // if (!FlagsVal)
4450 // FlagsVal = 0x9;
4452 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4453 if (SpecReg == "spsr")
4454 FlagsVal |= 16;
4456 Parser.Lex(); // Eat identifier token.
4457 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
4458 return MatchOperand_Success;
4461 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4462 /// use in the MRS/MSR instructions added to support virtualization.
4463 OperandMatchResultTy
4464 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
4465 MCAsmParser &Parser = getParser();
4466 SMLoc S = Parser.getTok().getLoc();
4467 const AsmToken &Tok = Parser.getTok();
4468 if (!Tok.is(AsmToken::Identifier))
4469 return MatchOperand_NoMatch;
4470 StringRef RegName = Tok.getString();
4472 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
4473 if (!TheReg)
4474 return MatchOperand_NoMatch;
4475 unsigned Encoding = TheReg->Encoding;
4477 Parser.Lex(); // Eat identifier token.
4478 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
4479 return MatchOperand_Success;
4482 OperandMatchResultTy
4483 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
4484 int High) {
4485 MCAsmParser &Parser = getParser();
4486 const AsmToken &Tok = Parser.getTok();
4487 if (Tok.isNot(AsmToken::Identifier)) {
4488 Error(Parser.getTok().getLoc(), Op + " operand expected.");
4489 return MatchOperand_ParseFail;
4491 StringRef ShiftName = Tok.getString();
4492 std::string LowerOp = Op.lower();
4493 std::string UpperOp = Op.upper();
4494 if (ShiftName != LowerOp && ShiftName != UpperOp) {
4495 Error(Parser.getTok().getLoc(), Op + " operand expected.");
4496 return MatchOperand_ParseFail;
4498 Parser.Lex(); // Eat shift type token.
4500 // There must be a '#' and a shift amount.
4501 if (Parser.getTok().isNot(AsmToken::Hash) &&
4502 Parser.getTok().isNot(AsmToken::Dollar)) {
4503 Error(Parser.getTok().getLoc(), "'#' expected");
4504 return MatchOperand_ParseFail;
4506 Parser.Lex(); // Eat hash token.
4508 const MCExpr *ShiftAmount;
4509 SMLoc Loc = Parser.getTok().getLoc();
4510 SMLoc EndLoc;
4511 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4512 Error(Loc, "illegal expression");
4513 return MatchOperand_ParseFail;
4515 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4516 if (!CE) {
4517 Error(Loc, "constant expression expected");
4518 return MatchOperand_ParseFail;
4520 int Val = CE->getValue();
4521 if (Val < Low || Val > High) {
4522 Error(Loc, "immediate value out of range");
4523 return MatchOperand_ParseFail;
4526 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
4528 return MatchOperand_Success;
4531 OperandMatchResultTy
4532 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
4533 MCAsmParser &Parser = getParser();
4534 const AsmToken &Tok = Parser.getTok();
4535 SMLoc S = Tok.getLoc();
4536 if (Tok.isNot(AsmToken::Identifier)) {
4537 Error(S, "'be' or 'le' operand expected");
4538 return MatchOperand_ParseFail;
4540 int Val = StringSwitch<int>(Tok.getString().lower())
4541 .Case("be", 1)
4542 .Case("le", 0)
4543 .Default(-1);
4544 Parser.Lex(); // Eat the token.
4546 if (Val == -1) {
4547 Error(S, "'be' or 'le' operand expected");
4548 return MatchOperand_ParseFail;
4550 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
4551 getContext()),
4552 S, Tok.getEndLoc()));
4553 return MatchOperand_Success;
4556 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4557 /// instructions. Legal values are:
4558 /// lsl #n 'n' in [0,31]
4559 /// asr #n 'n' in [1,32]
4560 /// n == 32 encoded as n == 0.
4561 OperandMatchResultTy
4562 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
4563 MCAsmParser &Parser = getParser();
4564 const AsmToken &Tok = Parser.getTok();
4565 SMLoc S = Tok.getLoc();
4566 if (Tok.isNot(AsmToken::Identifier)) {
4567 Error(S, "shift operator 'asr' or 'lsl' expected");
4568 return MatchOperand_ParseFail;
4570 StringRef ShiftName = Tok.getString();
4571 bool isASR;
4572 if (ShiftName == "lsl" || ShiftName == "LSL")
4573 isASR = false;
4574 else if (ShiftName == "asr" || ShiftName == "ASR")
4575 isASR = true;
4576 else {
4577 Error(S, "shift operator 'asr' or 'lsl' expected");
4578 return MatchOperand_ParseFail;
4580 Parser.Lex(); // Eat the operator.
4582 // A '#' and a shift amount.
4583 if (Parser.getTok().isNot(AsmToken::Hash) &&
4584 Parser.getTok().isNot(AsmToken::Dollar)) {
4585 Error(Parser.getTok().getLoc(), "'#' expected");
4586 return MatchOperand_ParseFail;
4588 Parser.Lex(); // Eat hash token.
4589 SMLoc ExLoc = Parser.getTok().getLoc();
4591 const MCExpr *ShiftAmount;
4592 SMLoc EndLoc;
4593 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4594 Error(ExLoc, "malformed shift expression");
4595 return MatchOperand_ParseFail;
4597 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4598 if (!CE) {
4599 Error(ExLoc, "shift amount must be an immediate");
4600 return MatchOperand_ParseFail;
4603 int64_t Val = CE->getValue();
4604 if (isASR) {
4605 // Shift amount must be in [1,32]
4606 if (Val < 1 || Val > 32) {
4607 Error(ExLoc, "'asr' shift amount must be in range [1,32]");
4608 return MatchOperand_ParseFail;
4610 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4611 if (isThumb() && Val == 32) {
4612 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
4613 return MatchOperand_ParseFail;
4615 if (Val == 32) Val = 0;
4616 } else {
4617 // Shift amount must be in [1,32]
4618 if (Val < 0 || Val > 31) {
4619 Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
4620 return MatchOperand_ParseFail;
4624 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
4626 return MatchOperand_Success;
4629 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4630 /// of instructions. Legal values are:
4631 /// ror #n 'n' in {0, 8, 16, 24}
4632 OperandMatchResultTy
4633 ARMAsmParser::parseRotImm(OperandVector &Operands) {
4634 MCAsmParser &Parser = getParser();
4635 const AsmToken &Tok = Parser.getTok();
4636 SMLoc S = Tok.getLoc();
4637 if (Tok.isNot(AsmToken::Identifier))
4638 return MatchOperand_NoMatch;
4639 StringRef ShiftName = Tok.getString();
4640 if (ShiftName != "ror" && ShiftName != "ROR")
4641 return MatchOperand_NoMatch;
4642 Parser.Lex(); // Eat the operator.
4644 // A '#' and a rotate amount.
4645 if (Parser.getTok().isNot(AsmToken::Hash) &&
4646 Parser.getTok().isNot(AsmToken::Dollar)) {
4647 Error(Parser.getTok().getLoc(), "'#' expected");
4648 return MatchOperand_ParseFail;
4650 Parser.Lex(); // Eat hash token.
4651 SMLoc ExLoc = Parser.getTok().getLoc();
4653 const MCExpr *ShiftAmount;
4654 SMLoc EndLoc;
4655 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4656 Error(ExLoc, "malformed rotate expression");
4657 return MatchOperand_ParseFail;
4659 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4660 if (!CE) {
4661 Error(ExLoc, "rotate amount must be an immediate");
4662 return MatchOperand_ParseFail;
4665 int64_t Val = CE->getValue();
4666 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4667 // normally, zero is represented in asm by omitting the rotate operand
4668 // entirely.
4669 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
4670 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
4671 return MatchOperand_ParseFail;
4674 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
4676 return MatchOperand_Success;
4679 OperandMatchResultTy
4680 ARMAsmParser::parseModImm(OperandVector &Operands) {
4681 MCAsmParser &Parser = getParser();
4682 MCAsmLexer &Lexer = getLexer();
4683 int64_t Imm1, Imm2;
4685 SMLoc S = Parser.getTok().getLoc();
4687 // 1) A mod_imm operand can appear in the place of a register name:
4688 // add r0, #mod_imm
4689 // add r0, r0, #mod_imm
4690 // to correctly handle the latter, we bail out as soon as we see an
4691 // identifier.
4693 // 2) Similarly, we do not want to parse into complex operands:
4694 // mov r0, #mod_imm
4695 // mov r0, :lower16:(_foo)
4696 if (Parser.getTok().is(AsmToken::Identifier) ||
4697 Parser.getTok().is(AsmToken::Colon))
4698 return MatchOperand_NoMatch;
4700 // Hash (dollar) is optional as per the ARMARM
4701 if (Parser.getTok().is(AsmToken::Hash) ||
4702 Parser.getTok().is(AsmToken::Dollar)) {
4703 // Avoid parsing into complex operands (#:)
4704 if (Lexer.peekTok().is(AsmToken::Colon))
4705 return MatchOperand_NoMatch;
4707 // Eat the hash (dollar)
4708 Parser.Lex();
4711 SMLoc Sx1, Ex1;
4712 Sx1 = Parser.getTok().getLoc();
4713 const MCExpr *Imm1Exp;
4714 if (getParser().parseExpression(Imm1Exp, Ex1)) {
4715 Error(Sx1, "malformed expression");
4716 return MatchOperand_ParseFail;
4719 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
4721 if (CE) {
4722 // Immediate must fit within 32-bits
4723 Imm1 = CE->getValue();
4724 int Enc = ARM_AM::getSOImmVal(Imm1);
4725 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
4726 // We have a match!
4727 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
4728 (Enc & 0xF00) >> 7,
4729 Sx1, Ex1));
4730 return MatchOperand_Success;
4733 // We have parsed an immediate which is not for us, fallback to a plain
4734 // immediate. This can happen for instruction aliases. For an example,
4735 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4736 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4737 // instruction with a mod_imm operand. The alias is defined such that the
4738 // parser method is shared, that's why we have to do this here.
4739 if (Parser.getTok().is(AsmToken::EndOfStatement)) {
4740 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4741 return MatchOperand_Success;
4743 } else {
4744 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4745 // MCFixup). Fallback to a plain immediate.
4746 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4747 return MatchOperand_Success;
4750 // From this point onward, we expect the input to be a (#bits, #rot) pair
4751 if (Parser.getTok().isNot(AsmToken::Comma)) {
4752 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
4753 return MatchOperand_ParseFail;
4756 if (Imm1 & ~0xFF) {
4757 Error(Sx1, "immediate operand must a number in the range [0, 255]");
4758 return MatchOperand_ParseFail;
4761 // Eat the comma
4762 Parser.Lex();
4764 // Repeat for #rot
4765 SMLoc Sx2, Ex2;
4766 Sx2 = Parser.getTok().getLoc();
4768 // Eat the optional hash (dollar)
4769 if (Parser.getTok().is(AsmToken::Hash) ||
4770 Parser.getTok().is(AsmToken::Dollar))
4771 Parser.Lex();
4773 const MCExpr *Imm2Exp;
4774 if (getParser().parseExpression(Imm2Exp, Ex2)) {
4775 Error(Sx2, "malformed expression");
4776 return MatchOperand_ParseFail;
4779 CE = dyn_cast<MCConstantExpr>(Imm2Exp);
4781 if (CE) {
4782 Imm2 = CE->getValue();
4783 if (!(Imm2 & ~0x1E)) {
4784 // We have a match!
4785 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
4786 return MatchOperand_Success;
4788 Error(Sx2, "immediate operand must an even number in the range [0, 30]");
4789 return MatchOperand_ParseFail;
4790 } else {
4791 Error(Sx2, "constant expression expected");
4792 return MatchOperand_ParseFail;
4796 OperandMatchResultTy
4797 ARMAsmParser::parseBitfield(OperandVector &Operands) {
4798 MCAsmParser &Parser = getParser();
4799 SMLoc S = Parser.getTok().getLoc();
4800 // The bitfield descriptor is really two operands, the LSB and the width.
4801 if (Parser.getTok().isNot(AsmToken::Hash) &&
4802 Parser.getTok().isNot(AsmToken::Dollar)) {
4803 Error(Parser.getTok().getLoc(), "'#' expected");
4804 return MatchOperand_ParseFail;
4806 Parser.Lex(); // Eat hash token.
4808 const MCExpr *LSBExpr;
4809 SMLoc E = Parser.getTok().getLoc();
4810 if (getParser().parseExpression(LSBExpr)) {
4811 Error(E, "malformed immediate expression");
4812 return MatchOperand_ParseFail;
4814 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
4815 if (!CE) {
4816 Error(E, "'lsb' operand must be an immediate");
4817 return MatchOperand_ParseFail;
4820 int64_t LSB = CE->getValue();
4821 // The LSB must be in the range [0,31]
4822 if (LSB < 0 || LSB > 31) {
4823 Error(E, "'lsb' operand must be in the range [0,31]");
4824 return MatchOperand_ParseFail;
4826 E = Parser.getTok().getLoc();
4828 // Expect another immediate operand.
4829 if (Parser.getTok().isNot(AsmToken::Comma)) {
4830 Error(Parser.getTok().getLoc(), "too few operands");
4831 return MatchOperand_ParseFail;
4833 Parser.Lex(); // Eat hash token.
4834 if (Parser.getTok().isNot(AsmToken::Hash) &&
4835 Parser.getTok().isNot(AsmToken::Dollar)) {
4836 Error(Parser.getTok().getLoc(), "'#' expected");
4837 return MatchOperand_ParseFail;
4839 Parser.Lex(); // Eat hash token.
4841 const MCExpr *WidthExpr;
4842 SMLoc EndLoc;
4843 if (getParser().parseExpression(WidthExpr, EndLoc)) {
4844 Error(E, "malformed immediate expression");
4845 return MatchOperand_ParseFail;
4847 CE = dyn_cast<MCConstantExpr>(WidthExpr);
4848 if (!CE) {
4849 Error(E, "'width' operand must be an immediate");
4850 return MatchOperand_ParseFail;
4853 int64_t Width = CE->getValue();
4854 // The LSB must be in the range [1,32-lsb]
4855 if (Width < 1 || Width > 32 - LSB) {
4856 Error(E, "'width' operand must be in the range [1,32-lsb]");
4857 return MatchOperand_ParseFail;
4860 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4862 return MatchOperand_Success;
4865 OperandMatchResultTy
4866 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
4867 // Check for a post-index addressing register operand. Specifically:
4868 // postidx_reg := '+' register {, shift}
4869 // | '-' register {, shift}
4870 // | register {, shift}
4872 // This method must return MatchOperand_NoMatch without consuming any tokens
4873 // in the case where there is no match, as other alternatives take other
4874 // parse methods.
4875 MCAsmParser &Parser = getParser();
4876 AsmToken Tok = Parser.getTok();
4877 SMLoc S = Tok.getLoc();
4878 bool haveEaten = false;
4879 bool isAdd = true;
4880 if (Tok.is(AsmToken::Plus)) {
4881 Parser.Lex(); // Eat the '+' token.
4882 haveEaten = true;
4883 } else if (Tok.is(AsmToken::Minus)) {
4884 Parser.Lex(); // Eat the '-' token.
4885 isAdd = false;
4886 haveEaten = true;
4889 SMLoc E = Parser.getTok().getEndLoc();
4890 int Reg = tryParseRegister();
4891 if (Reg == -1) {
4892 if (!haveEaten)
4893 return MatchOperand_NoMatch;
4894 Error(Parser.getTok().getLoc(), "register expected");
4895 return MatchOperand_ParseFail;
4898 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4899 unsigned ShiftImm = 0;
4900 if (Parser.getTok().is(AsmToken::Comma)) {
4901 Parser.Lex(); // Eat the ','.
4902 if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4903 return MatchOperand_ParseFail;
4905 // FIXME: Only approximates end...may include intervening whitespace.
4906 E = Parser.getTok().getLoc();
4909 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4910 ShiftImm, S, E));
4912 return MatchOperand_Success;
4915 OperandMatchResultTy
4916 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
4917 // Check for a post-index addressing register operand. Specifically:
4918 // am3offset := '+' register
4919 // | '-' register
4920 // | register
4921 // | # imm
4922 // | # + imm
4923 // | # - imm
4925 // This method must return MatchOperand_NoMatch without consuming any tokens
4926 // in the case where there is no match, as other alternatives take other
4927 // parse methods.
4928 MCAsmParser &Parser = getParser();
4929 AsmToken Tok = Parser.getTok();
4930 SMLoc S = Tok.getLoc();
4932 // Do immediates first, as we always parse those if we have a '#'.
4933 if (Parser.getTok().is(AsmToken::Hash) ||
4934 Parser.getTok().is(AsmToken::Dollar)) {
4935 Parser.Lex(); // Eat '#' or '$'.
4936 // Explicitly look for a '-', as we need to encode negative zero
4937 // differently.
4938 bool isNegative = Parser.getTok().is(AsmToken::Minus);
4939 const MCExpr *Offset;
4940 SMLoc E;
4941 if (getParser().parseExpression(Offset, E))
4942 return MatchOperand_ParseFail;
4943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4944 if (!CE) {
4945 Error(S, "constant expression expected");
4946 return MatchOperand_ParseFail;
4948 // Negative zero is encoded as the flag value
4949 // std::numeric_limits<int32_t>::min().
4950 int32_t Val = CE->getValue();
4951 if (isNegative && Val == 0)
4952 Val = std::numeric_limits<int32_t>::min();
4954 Operands.push_back(
4955 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
4957 return MatchOperand_Success;
4960 bool haveEaten = false;
4961 bool isAdd = true;
4962 if (Tok.is(AsmToken::Plus)) {
4963 Parser.Lex(); // Eat the '+' token.
4964 haveEaten = true;
4965 } else if (Tok.is(AsmToken::Minus)) {
4966 Parser.Lex(); // Eat the '-' token.
4967 isAdd = false;
4968 haveEaten = true;
4971 Tok = Parser.getTok();
4972 int Reg = tryParseRegister();
4973 if (Reg == -1) {
4974 if (!haveEaten)
4975 return MatchOperand_NoMatch;
4976 Error(Tok.getLoc(), "register expected");
4977 return MatchOperand_ParseFail;
4980 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4981 0, S, Tok.getEndLoc()));
4983 return MatchOperand_Success;
4986 /// Convert parsed operands to MCInst. Needed here because this instruction
4987 /// only has two register operands, but multiplication is commutative so
4988 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4989 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
4990 const OperandVector &Operands) {
4991 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
4992 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
4993 // If we have a three-operand form, make sure to set Rn to be the operand
4994 // that isn't the same as Rd.
4995 unsigned RegOp = 4;
4996 if (Operands.size() == 6 &&
4997 ((ARMOperand &)*Operands[4]).getReg() ==
4998 ((ARMOperand &)*Operands[3]).getReg())
4999 RegOp = 5;
5000 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5001 Inst.addOperand(Inst.getOperand(0));
5002 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5005 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5006 const OperandVector &Operands) {
5007 int CondOp = -1, ImmOp = -1;
5008 switch(Inst.getOpcode()) {
5009 case ARM::tB:
5010 case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
5012 case ARM::t2B:
5013 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5015 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5017 // first decide whether or not the branch should be conditional
5018 // by looking at it's location relative to an IT block
5019 if(inITBlock()) {
5020 // inside an IT block we cannot have any conditional branches. any
5021 // such instructions needs to be converted to unconditional form
5022 switch(Inst.getOpcode()) {
5023 case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5024 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5026 } else {
5027 // outside IT blocks we can only have unconditional branches with AL
5028 // condition code or conditional branches with non-AL condition code
5029 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5030 switch(Inst.getOpcode()) {
5031 case ARM::tB:
5032 case ARM::tBcc:
5033 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5034 break;
5035 case ARM::t2B:
5036 case ARM::t2Bcc:
5037 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5038 break;
5042 // now decide on encoding size based on branch target range
5043 switch(Inst.getOpcode()) {
5044 // classify tB as either t2B or t1B based on range of immediate operand
5045 case ARM::tB: {
5046 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5047 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5048 Inst.setOpcode(ARM::t2B);
5049 break;
5051 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5052 case ARM::tBcc: {
5053 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5054 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5055 Inst.setOpcode(ARM::t2Bcc);
5056 break;
5059 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5060 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5063 /// Parse an ARM memory expression, return false if successful else return true
5064 /// or an error. The first token must be a '[' when called.
5065 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5066 MCAsmParser &Parser = getParser();
5067 SMLoc S, E;
5068 if (Parser.getTok().isNot(AsmToken::LBrac))
5069 return TokError("Token is not a Left Bracket");
5070 S = Parser.getTok().getLoc();
5071 Parser.Lex(); // Eat left bracket token.
5073 const AsmToken &BaseRegTok = Parser.getTok();
5074 int BaseRegNum = tryParseRegister();
5075 if (BaseRegNum == -1)
5076 return Error(BaseRegTok.getLoc(), "register expected");
5078 // The next token must either be a comma, a colon or a closing bracket.
5079 const AsmToken &Tok = Parser.getTok();
5080 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5081 !Tok.is(AsmToken::RBrac))
5082 return Error(Tok.getLoc(), "malformed memory operand");
5084 if (Tok.is(AsmToken::RBrac)) {
5085 E = Tok.getEndLoc();
5086 Parser.Lex(); // Eat right bracket token.
5088 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5089 ARM_AM::no_shift, 0, 0, false,
5090 S, E));
5092 // If there's a pre-indexing writeback marker, '!', just add it as a token
5093 // operand. It's rather odd, but syntactically valid.
5094 if (Parser.getTok().is(AsmToken::Exclaim)) {
5095 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5096 Parser.Lex(); // Eat the '!'.
5099 return false;
5102 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5103 "Lost colon or comma in memory operand?!");
5104 if (Tok.is(AsmToken::Comma)) {
5105 Parser.Lex(); // Eat the comma.
5108 // If we have a ':', it's an alignment specifier.
5109 if (Parser.getTok().is(AsmToken::Colon)) {
5110 Parser.Lex(); // Eat the ':'.
5111 E = Parser.getTok().getLoc();
5112 SMLoc AlignmentLoc = Tok.getLoc();
5114 const MCExpr *Expr;
5115 if (getParser().parseExpression(Expr))
5116 return true;
5118 // The expression has to be a constant. Memory references with relocations
5119 // don't come through here, as they use the <label> forms of the relevant
5120 // instructions.
5121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5122 if (!CE)
5123 return Error (E, "constant expression expected");
5125 unsigned Align = 0;
5126 switch (CE->getValue()) {
5127 default:
5128 return Error(E,
5129 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5130 case 16: Align = 2; break;
5131 case 32: Align = 4; break;
5132 case 64: Align = 8; break;
5133 case 128: Align = 16; break;
5134 case 256: Align = 32; break;
5137 // Now we should have the closing ']'
5138 if (Parser.getTok().isNot(AsmToken::RBrac))
5139 return Error(Parser.getTok().getLoc(), "']' expected");
5140 E = Parser.getTok().getEndLoc();
5141 Parser.Lex(); // Eat right bracket token.
5143 // Don't worry about range checking the value here. That's handled by
5144 // the is*() predicates.
5145 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5146 ARM_AM::no_shift, 0, Align,
5147 false, S, E, AlignmentLoc));
5149 // If there's a pre-indexing writeback marker, '!', just add it as a token
5150 // operand.
5151 if (Parser.getTok().is(AsmToken::Exclaim)) {
5152 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5153 Parser.Lex(); // Eat the '!'.
5156 return false;
5159 // If we have a '#', it's an immediate offset, else assume it's a register
5160 // offset. Be friendly and also accept a plain integer (without a leading
5161 // hash) for gas compatibility.
5162 if (Parser.getTok().is(AsmToken::Hash) ||
5163 Parser.getTok().is(AsmToken::Dollar) ||
5164 Parser.getTok().is(AsmToken::Integer)) {
5165 if (Parser.getTok().isNot(AsmToken::Integer))
5166 Parser.Lex(); // Eat '#' or '$'.
5167 E = Parser.getTok().getLoc();
5169 bool isNegative = getParser().getTok().is(AsmToken::Minus);
5170 const MCExpr *Offset;
5171 if (getParser().parseExpression(Offset))
5172 return true;
5174 // The expression has to be a constant. Memory references with relocations
5175 // don't come through here, as they use the <label> forms of the relevant
5176 // instructions.
5177 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5178 if (!CE)
5179 return Error (E, "constant expression expected");
5181 // If the constant was #-0, represent it as
5182 // std::numeric_limits<int32_t>::min().
5183 int32_t Val = CE->getValue();
5184 if (isNegative && Val == 0)
5185 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5186 getContext());
5188 // Now we should have the closing ']'
5189 if (Parser.getTok().isNot(AsmToken::RBrac))
5190 return Error(Parser.getTok().getLoc(), "']' expected");
5191 E = Parser.getTok().getEndLoc();
5192 Parser.Lex(); // Eat right bracket token.
5194 // Don't worry about range checking the value here. That's handled by
5195 // the is*() predicates.
5196 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5197 ARM_AM::no_shift, 0, 0,
5198 false, S, E));
5200 // If there's a pre-indexing writeback marker, '!', just add it as a token
5201 // operand.
5202 if (Parser.getTok().is(AsmToken::Exclaim)) {
5203 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5204 Parser.Lex(); // Eat the '!'.
5207 return false;
5210 // The register offset is optionally preceded by a '+' or '-'
5211 bool isNegative = false;
5212 if (Parser.getTok().is(AsmToken::Minus)) {
5213 isNegative = true;
5214 Parser.Lex(); // Eat the '-'.
5215 } else if (Parser.getTok().is(AsmToken::Plus)) {
5216 // Nothing to do.
5217 Parser.Lex(); // Eat the '+'.
5220 E = Parser.getTok().getLoc();
5221 int OffsetRegNum = tryParseRegister();
5222 if (OffsetRegNum == -1)
5223 return Error(E, "register expected");
5225 // If there's a shift operator, handle it.
5226 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5227 unsigned ShiftImm = 0;
5228 if (Parser.getTok().is(AsmToken::Comma)) {
5229 Parser.Lex(); // Eat the ','.
5230 if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5231 return true;
5234 // Now we should have the closing ']'
5235 if (Parser.getTok().isNot(AsmToken::RBrac))
5236 return Error(Parser.getTok().getLoc(), "']' expected");
5237 E = Parser.getTok().getEndLoc();
5238 Parser.Lex(); // Eat right bracket token.
5240 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5241 ShiftType, ShiftImm, 0, isNegative,
5242 S, E));
5244 // If there's a pre-indexing writeback marker, '!', just add it as a token
5245 // operand.
5246 if (Parser.getTok().is(AsmToken::Exclaim)) {
5247 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5248 Parser.Lex(); // Eat the '!'.
5251 return false;
5254 /// parseMemRegOffsetShift - one of these two:
5255 /// ( lsl | lsr | asr | ror ) , # shift_amount
5256 /// rrx
5257 /// return true if it parses a shift otherwise it returns false.
5258 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5259 unsigned &Amount) {
5260 MCAsmParser &Parser = getParser();
5261 SMLoc Loc = Parser.getTok().getLoc();
5262 const AsmToken &Tok = Parser.getTok();
5263 if (Tok.isNot(AsmToken::Identifier))
5264 return Error(Loc, "illegal shift operator");
5265 StringRef ShiftName = Tok.getString();
5266 if (ShiftName == "lsl" || ShiftName == "LSL" ||
5267 ShiftName == "asl" || ShiftName == "ASL")
5268 St = ARM_AM::lsl;
5269 else if (ShiftName == "lsr" || ShiftName == "LSR")
5270 St = ARM_AM::lsr;
5271 else if (ShiftName == "asr" || ShiftName == "ASR")
5272 St = ARM_AM::asr;
5273 else if (ShiftName == "ror" || ShiftName == "ROR")
5274 St = ARM_AM::ror;
5275 else if (ShiftName == "rrx" || ShiftName == "RRX")
5276 St = ARM_AM::rrx;
5277 else
5278 return Error(Loc, "illegal shift operator");
5279 Parser.Lex(); // Eat shift type token.
5281 // rrx stands alone.
5282 Amount = 0;
5283 if (St != ARM_AM::rrx) {
5284 Loc = Parser.getTok().getLoc();
5285 // A '#' and a shift amount.
5286 const AsmToken &HashTok = Parser.getTok();
5287 if (HashTok.isNot(AsmToken::Hash) &&
5288 HashTok.isNot(AsmToken::Dollar))
5289 return Error(HashTok.getLoc(), "'#' expected");
5290 Parser.Lex(); // Eat hash token.
5292 const MCExpr *Expr;
5293 if (getParser().parseExpression(Expr))
5294 return true;
5295 // Range check the immediate.
5296 // lsl, ror: 0 <= imm <= 31
5297 // lsr, asr: 0 <= imm <= 32
5298 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5299 if (!CE)
5300 return Error(Loc, "shift amount must be an immediate");
5301 int64_t Imm = CE->getValue();
5302 if (Imm < 0 ||
5303 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5304 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5305 return Error(Loc, "immediate shift value out of range");
5306 // If <ShiftTy> #0, turn it into a no_shift.
5307 if (Imm == 0)
5308 St = ARM_AM::lsl;
5309 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5310 if (Imm == 32)
5311 Imm = 0;
5312 Amount = Imm;
5315 return false;
5318 /// parseFPImm - A floating point immediate expression operand.
5319 OperandMatchResultTy
5320 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5321 MCAsmParser &Parser = getParser();
5322 // Anything that can accept a floating point constant as an operand
5323 // needs to go through here, as the regular parseExpression is
5324 // integer only.
5326 // This routine still creates a generic Immediate operand, containing
5327 // a bitcast of the 64-bit floating point value. The various operands
5328 // that accept floats can check whether the value is valid for them
5329 // via the standard is*() predicates.
5331 SMLoc S = Parser.getTok().getLoc();
5333 if (Parser.getTok().isNot(AsmToken::Hash) &&
5334 Parser.getTok().isNot(AsmToken::Dollar))
5335 return MatchOperand_NoMatch;
5337 // Disambiguate the VMOV forms that can accept an FP immediate.
5338 // vmov.f32 <sreg>, #imm
5339 // vmov.f64 <dreg>, #imm
5340 // vmov.f32 <dreg>, #imm @ vector f32x2
5341 // vmov.f32 <qreg>, #imm @ vector f32x4
5343 // There are also the NEON VMOV instructions which expect an
5344 // integer constant. Make sure we don't try to parse an FPImm
5345 // for these:
5346 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5347 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5348 bool isVmovf = TyOp.isToken() &&
5349 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5350 TyOp.getToken() == ".f16");
5351 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5352 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5353 Mnemonic.getToken() == "fconsts");
5354 if (!(isVmovf || isFconst))
5355 return MatchOperand_NoMatch;
5357 Parser.Lex(); // Eat '#' or '$'.
5359 // Handle negation, as that still comes through as a separate token.
5360 bool isNegative = false;
5361 if (Parser.getTok().is(AsmToken::Minus)) {
5362 isNegative = true;
5363 Parser.Lex();
5365 const AsmToken &Tok = Parser.getTok();
5366 SMLoc Loc = Tok.getLoc();
5367 if (Tok.is(AsmToken::Real) && isVmovf) {
5368 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5369 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5370 // If we had a '-' in front, toggle the sign bit.
5371 IntVal ^= (uint64_t)isNegative << 31;
5372 Parser.Lex(); // Eat the token.
5373 Operands.push_back(ARMOperand::CreateImm(
5374 MCConstantExpr::create(IntVal, getContext()),
5375 S, Parser.getTok().getLoc()));
5376 return MatchOperand_Success;
5378 // Also handle plain integers. Instructions which allow floating point
5379 // immediates also allow a raw encoded 8-bit value.
5380 if (Tok.is(AsmToken::Integer) && isFconst) {
5381 int64_t Val = Tok.getIntVal();
5382 Parser.Lex(); // Eat the token.
5383 if (Val > 255 || Val < 0) {
5384 Error(Loc, "encoded floating point value out of range");
5385 return MatchOperand_ParseFail;
5387 float RealVal = ARM_AM::getFPImmFloat(Val);
5388 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5390 Operands.push_back(ARMOperand::CreateImm(
5391 MCConstantExpr::create(Val, getContext()), S,
5392 Parser.getTok().getLoc()));
5393 return MatchOperand_Success;
5396 Error(Loc, "invalid floating point immediate");
5397 return MatchOperand_ParseFail;
5400 /// Parse a arm instruction operand. For now this parses the operand regardless
5401 /// of the mnemonic.
5402 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5403 MCAsmParser &Parser = getParser();
5404 SMLoc S, E;
5406 // Check if the current operand has a custom associated parser, if so, try to
5407 // custom parse the operand, or fallback to the general approach.
5408 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5409 if (ResTy == MatchOperand_Success)
5410 return false;
5411 // If there wasn't a custom match, try the generic matcher below. Otherwise,
5412 // there was a match, but an error occurred, in which case, just return that
5413 // the operand parsing failed.
5414 if (ResTy == MatchOperand_ParseFail)
5415 return true;
5417 switch (getLexer().getKind()) {
5418 default:
5419 Error(Parser.getTok().getLoc(), "unexpected token in operand");
5420 return true;
5421 case AsmToken::Identifier: {
5422 // If we've seen a branch mnemonic, the next operand must be a label. This
5423 // is true even if the label is a register name. So "br r1" means branch to
5424 // label "r1".
5425 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
5426 if (!ExpectLabel) {
5427 if (!tryParseRegisterWithWriteBack(Operands))
5428 return false;
5429 int Res = tryParseShiftRegister(Operands);
5430 if (Res == 0) // success
5431 return false;
5432 else if (Res == -1) // irrecoverable error
5433 return true;
5434 // If this is VMRS, check for the apsr_nzcv operand.
5435 if (Mnemonic == "vmrs" &&
5436 Parser.getTok().getString().equals_lower("apsr_nzcv")) {
5437 S = Parser.getTok().getLoc();
5438 Parser.Lex();
5439 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
5440 return false;
5444 // Fall though for the Identifier case that is not a register or a
5445 // special name.
5446 LLVM_FALLTHROUGH;
5448 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
5449 case AsmToken::Integer: // things like 1f and 2b as a branch targets
5450 case AsmToken::String: // quoted label names.
5451 case AsmToken::Dot: { // . as a branch target
5452 // This was not a register so parse other operands that start with an
5453 // identifier (like labels) as expressions and create them as immediates.
5454 const MCExpr *IdVal;
5455 S = Parser.getTok().getLoc();
5456 if (getParser().parseExpression(IdVal))
5457 return true;
5458 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5459 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
5460 return false;
5462 case AsmToken::LBrac:
5463 return parseMemory(Operands);
5464 case AsmToken::LCurly:
5465 return parseRegisterList(Operands);
5466 case AsmToken::Dollar:
5467 case AsmToken::Hash:
5468 // #42 -> immediate.
5469 S = Parser.getTok().getLoc();
5470 Parser.Lex();
5472 if (Parser.getTok().isNot(AsmToken::Colon)) {
5473 bool isNegative = Parser.getTok().is(AsmToken::Minus);
5474 const MCExpr *ImmVal;
5475 if (getParser().parseExpression(ImmVal))
5476 return true;
5477 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
5478 if (CE) {
5479 int32_t Val = CE->getValue();
5480 if (isNegative && Val == 0)
5481 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5482 getContext());
5484 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5485 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
5487 // There can be a trailing '!' on operands that we want as a separate
5488 // '!' Token operand. Handle that here. For example, the compatibility
5489 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5490 if (Parser.getTok().is(AsmToken::Exclaim)) {
5491 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
5492 Parser.getTok().getLoc()));
5493 Parser.Lex(); // Eat exclaim token
5495 return false;
5497 // w/ a ':' after the '#', it's just like a plain ':'.
5498 LLVM_FALLTHROUGH;
5500 case AsmToken::Colon: {
5501 S = Parser.getTok().getLoc();
5502 // ":lower16:" and ":upper16:" expression prefixes
5503 // FIXME: Check it's an expression prefix,
5504 // e.g. (FOO - :lower16:BAR) isn't legal.
5505 ARMMCExpr::VariantKind RefKind;
5506 if (parsePrefix(RefKind))
5507 return true;
5509 const MCExpr *SubExprVal;
5510 if (getParser().parseExpression(SubExprVal))
5511 return true;
5513 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
5514 getContext());
5515 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5516 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
5517 return false;
5519 case AsmToken::Equal: {
5520 S = Parser.getTok().getLoc();
5521 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5522 return Error(S, "unexpected token in operand");
5523 Parser.Lex(); // Eat '='
5524 const MCExpr *SubExprVal;
5525 if (getParser().parseExpression(SubExprVal))
5526 return true;
5527 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5529 // execute-only: we assume that assembly programmers know what they are
5530 // doing and allow literal pool creation here
5531 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
5532 return false;
5537 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5538 // :lower16: and :upper16:.
5539 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
5540 MCAsmParser &Parser = getParser();
5541 RefKind = ARMMCExpr::VK_ARM_None;
5543 // consume an optional '#' (GNU compatibility)
5544 if (getLexer().is(AsmToken::Hash))
5545 Parser.Lex();
5547 // :lower16: and :upper16: modifiers
5548 assert(getLexer().is(AsmToken::Colon) && "expected a :");
5549 Parser.Lex(); // Eat ':'
5551 if (getLexer().isNot(AsmToken::Identifier)) {
5552 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
5553 return true;
5556 enum {
5557 COFF = (1 << MCObjectFileInfo::IsCOFF),
5558 ELF = (1 << MCObjectFileInfo::IsELF),
5559 MACHO = (1 << MCObjectFileInfo::IsMachO),
5560 WASM = (1 << MCObjectFileInfo::IsWasm),
5562 static const struct PrefixEntry {
5563 const char *Spelling;
5564 ARMMCExpr::VariantKind VariantKind;
5565 uint8_t SupportedFormats;
5566 } PrefixEntries[] = {
5567 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
5568 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
5571 StringRef IDVal = Parser.getTok().getIdentifier();
5573 const auto &Prefix =
5574 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
5575 [&IDVal](const PrefixEntry &PE) {
5576 return PE.Spelling == IDVal;
5578 if (Prefix == std::end(PrefixEntries)) {
5579 Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
5580 return true;
5583 uint8_t CurrentFormat;
5584 switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5585 case MCObjectFileInfo::IsMachO:
5586 CurrentFormat = MACHO;
5587 break;
5588 case MCObjectFileInfo::IsELF:
5589 CurrentFormat = ELF;
5590 break;
5591 case MCObjectFileInfo::IsCOFF:
5592 CurrentFormat = COFF;
5593 break;
5594 case MCObjectFileInfo::IsWasm:
5595 CurrentFormat = WASM;
5596 break;
5599 if (~Prefix->SupportedFormats & CurrentFormat) {
5600 Error(Parser.getTok().getLoc(),
5601 "cannot represent relocation in the current file format");
5602 return true;
5605 RefKind = Prefix->VariantKind;
5606 Parser.Lex();
5608 if (getLexer().isNot(AsmToken::Colon)) {
5609 Error(Parser.getTok().getLoc(), "unexpected token after prefix");
5610 return true;
5612 Parser.Lex(); // Eat the last ':'
5614 return false;
5617 /// Given a mnemonic, split out possible predication code and carry
5618 /// setting letters to form a canonical mnemonic and flags.
5620 // FIXME: Would be nice to autogen this.
5621 // FIXME: This is a bit of a maze of special cases.
5622 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
5623 unsigned &PredicationCode,
5624 bool &CarrySetting,
5625 unsigned &ProcessorIMod,
5626 StringRef &ITMask) {
5627 PredicationCode = ARMCC::AL;
5628 CarrySetting = false;
5629 ProcessorIMod = 0;
5631 // Ignore some mnemonics we know aren't predicated forms.
5633 // FIXME: Would be nice to autogen this.
5634 if ((Mnemonic == "movs" && isThumb()) ||
5635 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
5636 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
5637 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
5638 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
5639 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
5640 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
5641 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
5642 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
5643 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
5644 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
5645 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
5646 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
5647 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
5648 Mnemonic == "bxns" || Mnemonic == "blxns" ||
5649 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5650 Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5651 Mnemonic == "vfmal" || Mnemonic == "vfmsl")
5652 return Mnemonic;
5654 // First, split out any predication code. Ignore mnemonics we know aren't
5655 // predicated but do have a carry-set and so weren't caught above.
5656 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
5657 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
5658 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
5659 Mnemonic != "sbcs" && Mnemonic != "rscs") {
5660 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
5661 if (CC != ~0U) {
5662 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
5663 PredicationCode = CC;
5667 // Next, determine if we have a carry setting bit. We explicitly ignore all
5668 // the instructions we know end in 's'.
5669 if (Mnemonic.endswith("s") &&
5670 !(Mnemonic == "cps" || Mnemonic == "mls" ||
5671 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
5672 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
5673 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
5674 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
5675 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
5676 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
5677 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
5678 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
5679 Mnemonic == "bxns" || Mnemonic == "blxns" ||
5680 (Mnemonic == "movs" && isThumb()))) {
5681 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
5682 CarrySetting = true;
5685 // The "cps" instruction can have a interrupt mode operand which is glued into
5686 // the mnemonic. Check if this is the case, split it and parse the imod op
5687 if (Mnemonic.startswith("cps")) {
5688 // Split out any imod code.
5689 unsigned IMod =
5690 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
5691 .Case("ie", ARM_PROC::IE)
5692 .Case("id", ARM_PROC::ID)
5693 .Default(~0U);
5694 if (IMod != ~0U) {
5695 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
5696 ProcessorIMod = IMod;
5700 // The "it" instruction has the condition mask on the end of the mnemonic.
5701 if (Mnemonic.startswith("it")) {
5702 ITMask = Mnemonic.slice(2, Mnemonic.size());
5703 Mnemonic = Mnemonic.slice(0, 2);
5706 return Mnemonic;
5709 /// Given a canonical mnemonic, determine if the instruction ever allows
5710 /// inclusion of carry set or predication code operands.
5712 // FIXME: It would be nice to autogen this.
5713 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
5714 bool &CanAcceptCarrySet,
5715 bool &CanAcceptPredicationCode) {
5716 CanAcceptCarrySet =
5717 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5718 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
5719 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
5720 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
5721 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
5722 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
5723 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
5724 (!isThumb() &&
5725 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
5726 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
5728 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
5729 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
5730 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
5731 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
5732 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
5733 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
5734 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
5735 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
5736 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
5737 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
5738 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
5739 Mnemonic == "vmovx" || Mnemonic == "vins" ||
5740 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5741 Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5742 Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
5743 Mnemonic == "sb" || Mnemonic == "ssbb" ||
5744 Mnemonic == "pssbb") {
5745 // These mnemonics are never predicable
5746 CanAcceptPredicationCode = false;
5747 } else if (!isThumb()) {
5748 // Some instructions are only predicable in Thumb mode
5749 CanAcceptPredicationCode =
5750 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
5751 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
5752 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
5753 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
5754 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
5755 Mnemonic != "stc2" && Mnemonic != "stc2l" &&
5756 Mnemonic != "tsb" &&
5757 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
5758 } else if (isThumbOne()) {
5759 if (hasV6MOps())
5760 CanAcceptPredicationCode = Mnemonic != "movs";
5761 else
5762 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
5763 } else
5764 CanAcceptPredicationCode = true;
5767 // Some Thumb instructions have two operand forms that are not
5768 // available as three operand, convert to two operand form if possible.
5770 // FIXME: We would really like to be able to tablegen'erate this.
5771 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
5772 bool CarrySetting,
5773 OperandVector &Operands) {
5774 if (Operands.size() != 6)
5775 return;
5777 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5778 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
5779 if (!Op3.isReg() || !Op4.isReg())
5780 return;
5782 auto Op3Reg = Op3.getReg();
5783 auto Op4Reg = Op4.getReg();
5785 // For most Thumb2 cases we just generate the 3 operand form and reduce
5786 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
5787 // won't accept SP or PC so we do the transformation here taking care
5788 // with immediate range in the 'add sp, sp #imm' case.
5789 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
5790 if (isThumbTwo()) {
5791 if (Mnemonic != "add")
5792 return;
5793 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
5794 (Op5.isReg() && Op5.getReg() == ARM::PC);
5795 if (!TryTransform) {
5796 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
5797 (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
5798 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
5799 Op5.isImm() && !Op5.isImm0_508s4());
5801 if (!TryTransform)
5802 return;
5803 } else if (!isThumbOne())
5804 return;
5806 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
5807 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5808 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
5809 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
5810 return;
5812 // If first 2 operands of a 3 operand instruction are the same
5813 // then transform to 2 operand version of the same instruction
5814 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5815 bool Transform = Op3Reg == Op4Reg;
5817 // For communtative operations, we might be able to transform if we swap
5818 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
5819 // as tADDrsp.
5820 const ARMOperand *LastOp = &Op5;
5821 bool Swap = false;
5822 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
5823 ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
5824 Mnemonic == "and" || Mnemonic == "eor" ||
5825 Mnemonic == "adc" || Mnemonic == "orr")) {
5826 Swap = true;
5827 LastOp = &Op4;
5828 Transform = true;
5831 // If both registers are the same then remove one of them from
5832 // the operand list, with certain exceptions.
5833 if (Transform) {
5834 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
5835 // 2 operand forms don't exist.
5836 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
5837 LastOp->isReg())
5838 Transform = false;
5840 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
5841 // 3-bits because the ARMARM says not to.
5842 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
5843 Transform = false;
5846 if (Transform) {
5847 if (Swap)
5848 std::swap(Op4, Op5);
5849 Operands.erase(Operands.begin() + 3);
5853 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
5854 OperandVector &Operands) {
5855 // FIXME: This is all horribly hacky. We really need a better way to deal
5856 // with optional operands like this in the matcher table.
5858 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5859 // another does not. Specifically, the MOVW instruction does not. So we
5860 // special case it here and remove the defaulted (non-setting) cc_out
5861 // operand if that's the instruction we're trying to match.
5863 // We do this as post-processing of the explicit operands rather than just
5864 // conditionally adding the cc_out in the first place because we need
5865 // to check the type of the parsed immediate operand.
5866 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
5867 !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
5868 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
5869 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5870 return true;
5872 // Register-register 'add' for thumb does not have a cc_out operand
5873 // when there are only two register operands.
5874 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
5875 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5876 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5877 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5878 return true;
5879 // Register-register 'add' for thumb does not have a cc_out operand
5880 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5881 // have to check the immediate range here since Thumb2 has a variant
5882 // that can handle a different range and has a cc_out operand.
5883 if (((isThumb() && Mnemonic == "add") ||
5884 (isThumbTwo() && Mnemonic == "sub")) &&
5885 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5886 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5887 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
5888 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5889 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
5890 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
5891 return true;
5892 // For Thumb2, add/sub immediate does not have a cc_out operand for the
5893 // imm0_4095 variant. That's the least-preferred variant when
5894 // selecting via the generic "add" mnemonic, so to know that we
5895 // should remove the cc_out operand, we have to explicitly check that
5896 // it's not one of the other variants. Ugh.
5897 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5898 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5899 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5900 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
5901 // Nest conditions rather than one big 'if' statement for readability.
5903 // If both registers are low, we're in an IT block, and the immediate is
5904 // in range, we should use encoding T1 instead, which has a cc_out.
5905 if (inITBlock() &&
5906 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
5907 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
5908 static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
5909 return false;
5910 // Check against T3. If the second register is the PC, this is an
5911 // alternate form of ADR, which uses encoding T4, so check for that too.
5912 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
5913 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
5914 return false;
5916 // Otherwise, we use encoding T4, which does not have a cc_out
5917 // operand.
5918 return true;
5921 // The thumb2 multiply instruction doesn't have a CCOut register, so
5922 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5923 // use the 16-bit encoding or not.
5924 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5925 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5926 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5927 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5928 static_cast<ARMOperand &>(*Operands[5]).isReg() &&
5929 // If the registers aren't low regs, the destination reg isn't the
5930 // same as one of the source regs, or the cc_out operand is zero
5931 // outside of an IT block, we have to use the 32-bit encoding, so
5932 // remove the cc_out operand.
5933 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5934 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5935 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
5936 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5937 static_cast<ARMOperand &>(*Operands[5]).getReg() &&
5938 static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5939 static_cast<ARMOperand &>(*Operands[4]).getReg())))
5940 return true;
5942 // Also check the 'mul' syntax variant that doesn't specify an explicit
5943 // destination register.
5944 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5945 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5946 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5947 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5948 // If the registers aren't low regs or the cc_out operand is zero
5949 // outside of an IT block, we have to use the 32-bit encoding, so
5950 // remove the cc_out operand.
5951 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5952 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5953 !inITBlock()))
5954 return true;
5956 // Register-register 'add/sub' for thumb does not have a cc_out operand
5957 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5958 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5959 // right, this will result in better diagnostics (which operand is off)
5960 // anyway.
5961 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5962 (Operands.size() == 5 || Operands.size() == 6) &&
5963 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5964 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
5965 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5966 (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
5967 (Operands.size() == 6 &&
5968 static_cast<ARMOperand &>(*Operands[5]).isImm())))
5969 return true;
5971 return false;
5974 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
5975 OperandVector &Operands) {
5976 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
5977 unsigned RegIdx = 3;
5978 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") &&
5979 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
5980 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
5981 if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
5982 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
5983 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
5984 RegIdx = 4;
5986 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
5987 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
5988 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
5989 ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
5990 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
5991 return true;
5993 return false;
5996 static bool isDataTypeToken(StringRef Tok) {
5997 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5998 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
5999 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6000 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6001 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6002 Tok == ".f" || Tok == ".d";
6005 // FIXME: This bit should probably be handled via an explicit match class
6006 // in the .td files that matches the suffix instead of having it be
6007 // a literal string token the way it is now.
6008 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6009 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6012 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
6013 unsigned VariantID);
6015 // The GNU assembler has aliases of ldrd and strd with the second register
6016 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6018 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6019 // the assmebly parser could then generate confusing diagnostics refering to
6020 // it. If we do find anything that prevents us from doing the transformation we
6021 // bail out, and let the assembly parser report an error on the instruction as
6022 // it is written.
6023 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6024 OperandVector &Operands) {
6025 if (Mnemonic != "ldrd" && Mnemonic != "strd")
6026 return;
6027 if (Operands.size() < 4)
6028 return;
6030 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6031 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6033 if (!Op2.isReg())
6034 return;
6035 if (!Op3.isMem())
6036 return;
6038 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6039 if (!GPR.contains(Op2.getReg()))
6040 return;
6042 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6043 if (!isThumb() && (RtEncoding & 1)) {
6044 // In ARM mode, the registers must be from an aligned pair, this
6045 // restriction does not apply in Thumb mode.
6046 return;
6048 if (Op2.getReg() == ARM::PC)
6049 return;
6050 unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6051 if (!PairedReg || PairedReg == ARM::PC ||
6052 (PairedReg == ARM::SP && !hasV8Ops()))
6053 return;
6055 Operands.insert(
6056 Operands.begin() + 3,
6057 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6060 /// Parse an arm instruction mnemonic followed by its operands.
6061 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6062 SMLoc NameLoc, OperandVector &Operands) {
6063 MCAsmParser &Parser = getParser();
6065 // Apply mnemonic aliases before doing anything else, as the destination
6066 // mnemonic may include suffices and we want to handle them normally.
6067 // The generic tblgen'erated code does this later, at the start of
6068 // MatchInstructionImpl(), but that's too late for aliases that include
6069 // any sort of suffix.
6070 uint64_t AvailableFeatures = getAvailableFeatures();
6071 unsigned AssemblerDialect = getParser().getAssemblerDialect();
6072 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6074 // First check for the ARM-specific .req directive.
6075 if (Parser.getTok().is(AsmToken::Identifier) &&
6076 Parser.getTok().getIdentifier() == ".req") {
6077 parseDirectiveReq(Name, NameLoc);
6078 // We always return 'error' for this, as we're done with this
6079 // statement and don't need to match the 'instruction."
6080 return true;
6083 // Create the leading tokens for the mnemonic, split by '.' characters.
6084 size_t Start = 0, Next = Name.find('.');
6085 StringRef Mnemonic = Name.slice(Start, Next);
6087 // Split out the predication code and carry setting flag from the mnemonic.
6088 unsigned PredicationCode;
6089 unsigned ProcessorIMod;
6090 bool CarrySetting;
6091 StringRef ITMask;
6092 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
6093 ProcessorIMod, ITMask);
6095 // In Thumb1, only the branch (B) instruction can be predicated.
6096 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6097 return Error(NameLoc, "conditional execution not supported in Thumb1");
6100 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6102 // Handle the IT instruction ITMask. Convert it to a bitmask. This
6103 // is the mask as it will be for the IT encoding if the conditional
6104 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
6105 // where the conditional bit0 is zero, the instruction post-processing
6106 // will adjust the mask accordingly.
6107 if (Mnemonic == "it") {
6108 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
6109 if (ITMask.size() > 3) {
6110 return Error(Loc, "too many conditions on IT instruction");
6112 unsigned Mask = 8;
6113 for (unsigned i = ITMask.size(); i != 0; --i) {
6114 char pos = ITMask[i - 1];
6115 if (pos != 't' && pos != 'e') {
6116 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6118 Mask >>= 1;
6119 if (ITMask[i - 1] == 't')
6120 Mask |= 8;
6122 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6125 // FIXME: This is all a pretty gross hack. We should automatically handle
6126 // optional operands like this via tblgen.
6128 // Next, add the CCOut and ConditionCode operands, if needed.
6130 // For mnemonics which can ever incorporate a carry setting bit or predication
6131 // code, our matching model involves us always generating CCOut and
6132 // ConditionCode operands to match the mnemonic "as written" and then we let
6133 // the matcher deal with finding the right instruction or generating an
6134 // appropriate error.
6135 bool CanAcceptCarrySet, CanAcceptPredicationCode;
6136 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
6138 // If we had a carry-set on an instruction that can't do that, issue an
6139 // error.
6140 if (!CanAcceptCarrySet && CarrySetting) {
6141 return Error(NameLoc, "instruction '" + Mnemonic +
6142 "' can not set flags, but 's' suffix specified");
6144 // If we had a predication code on an instruction that can't do that, issue an
6145 // error.
6146 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6147 return Error(NameLoc, "instruction '" + Mnemonic +
6148 "' is not predicable, but condition code specified");
6151 // Add the carry setting operand, if necessary.
6152 if (CanAcceptCarrySet) {
6153 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6154 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6155 Loc));
6158 // Add the predication code operand, if necessary.
6159 if (CanAcceptPredicationCode) {
6160 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6161 CarrySetting);
6162 Operands.push_back(ARMOperand::CreateCondCode(
6163 ARMCC::CondCodes(PredicationCode), Loc));
6166 // Add the processor imod operand, if necessary.
6167 if (ProcessorIMod) {
6168 Operands.push_back(ARMOperand::CreateImm(
6169 MCConstantExpr::create(ProcessorIMod, getContext()),
6170 NameLoc, NameLoc));
6171 } else if (Mnemonic == "cps" && isMClass()) {
6172 return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6175 // Add the remaining tokens in the mnemonic.
6176 while (Next != StringRef::npos) {
6177 Start = Next;
6178 Next = Name.find('.', Start + 1);
6179 StringRef ExtraToken = Name.slice(Start, Next);
6181 // Some NEON instructions have an optional datatype suffix that is
6182 // completely ignored. Check for that.
6183 if (isDataTypeToken(ExtraToken) &&
6184 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6185 continue;
6187 // For for ARM mode generate an error if the .n qualifier is used.
6188 if (ExtraToken == ".n" && !isThumb()) {
6189 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6190 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6191 "arm mode");
6194 // The .n qualifier is always discarded as that is what the tables
6195 // and matcher expect. In ARM mode the .w qualifier has no effect,
6196 // so discard it to avoid errors that can be caused by the matcher.
6197 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6198 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6199 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6203 // Read the remaining operands.
6204 if (getLexer().isNot(AsmToken::EndOfStatement)) {
6205 // Read the first operand.
6206 if (parseOperand(Operands, Mnemonic)) {
6207 return true;
6210 while (parseOptionalToken(AsmToken::Comma)) {
6211 // Parse and remember the operand.
6212 if (parseOperand(Operands, Mnemonic)) {
6213 return true;
6218 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6219 return true;
6221 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6223 // Some instructions, mostly Thumb, have forms for the same mnemonic that
6224 // do and don't have a cc_out optional-def operand. With some spot-checks
6225 // of the operand list, we can figure out which variant we're trying to
6226 // parse and adjust accordingly before actually matching. We shouldn't ever
6227 // try to remove a cc_out operand that was explicitly set on the
6228 // mnemonic, of course (CarrySetting == true). Reason number #317 the
6229 // table driven matcher doesn't fit well with the ARM instruction set.
6230 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6231 Operands.erase(Operands.begin() + 1);
6233 // Some instructions have the same mnemonic, but don't always
6234 // have a predicate. Distinguish them here and delete the
6235 // predicate if needed.
6236 if (PredicationCode == ARMCC::AL &&
6237 shouldOmitPredicateOperand(Mnemonic, Operands))
6238 Operands.erase(Operands.begin() + 1);
6240 // ARM mode 'blx' need special handling, as the register operand version
6241 // is predicable, but the label operand version is not. So, we can't rely
6242 // on the Mnemonic based checking to correctly figure out when to put
6243 // a k_CondCode operand in the list. If we're trying to match the label
6244 // version, remove the k_CondCode operand here.
6245 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
6246 static_cast<ARMOperand &>(*Operands[2]).isImm())
6247 Operands.erase(Operands.begin() + 1);
6249 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
6250 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
6251 // a single GPRPair reg operand is used in the .td file to replace the two
6252 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
6253 // expressed as a GPRPair, so we have to manually merge them.
6254 // FIXME: We would really like to be able to tablegen'erate this.
6255 if (!isThumb() && Operands.size() > 4 &&
6256 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
6257 Mnemonic == "stlexd")) {
6258 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
6259 unsigned Idx = isLoad ? 2 : 3;
6260 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
6261 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
6263 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
6264 // Adjust only if Op1 and Op2 are GPRs.
6265 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
6266 MRC.contains(Op2.getReg())) {
6267 unsigned Reg1 = Op1.getReg();
6268 unsigned Reg2 = Op2.getReg();
6269 unsigned Rt = MRI->getEncodingValue(Reg1);
6270 unsigned Rt2 = MRI->getEncodingValue(Reg2);
6272 // Rt2 must be Rt + 1 and Rt must be even.
6273 if (Rt + 1 != Rt2 || (Rt & 1)) {
6274 return Error(Op2.getStartLoc(),
6275 isLoad ? "destination operands must be sequential"
6276 : "source operands must be sequential");
6278 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
6279 &(MRI->getRegClass(ARM::GPRPairRegClassID)));
6280 Operands[Idx] =
6281 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
6282 Operands.erase(Operands.begin() + Idx + 1);
6286 // GNU Assembler extension (compatibility).
6287 fixupGNULDRDAlias(Mnemonic, Operands);
6289 // FIXME: As said above, this is all a pretty gross hack. This instruction
6290 // does not fit with other "subs" and tblgen.
6291 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
6292 // so the Mnemonic is the original name "subs" and delete the predicate
6293 // operand so it will match the table entry.
6294 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
6295 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6296 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
6297 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6298 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
6299 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6300 Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
6301 Operands.erase(Operands.begin() + 1);
6303 return false;
6306 // Validate context-sensitive operand constraints.
6308 // return 'true' if register list contains non-low GPR registers,
6309 // 'false' otherwise. If Reg is in the register list or is HiReg, set
6310 // 'containsReg' to true.
6311 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
6312 unsigned Reg, unsigned HiReg,
6313 bool &containsReg) {
6314 containsReg = false;
6315 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
6316 unsigned OpReg = Inst.getOperand(i).getReg();
6317 if (OpReg == Reg)
6318 containsReg = true;
6319 // Anything other than a low register isn't legal here.
6320 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
6321 return true;
6323 return false;
6326 // Check if the specified regisgter is in the register list of the inst,
6327 // starting at the indicated operand number.
6328 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
6329 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
6330 unsigned OpReg = Inst.getOperand(i).getReg();
6331 if (OpReg == Reg)
6332 return true;
6334 return false;
6337 // Return true if instruction has the interesting property of being
6338 // allowed in IT blocks, but not being predicable.
6339 static bool instIsBreakpoint(const MCInst &Inst) {
6340 return Inst.getOpcode() == ARM::tBKPT ||
6341 Inst.getOpcode() == ARM::BKPT ||
6342 Inst.getOpcode() == ARM::tHLT ||
6343 Inst.getOpcode() == ARM::HLT;
6346 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
6347 const OperandVector &Operands,
6348 unsigned ListNo, bool IsARPop) {
6349 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6350 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6352 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6353 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
6354 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6356 if (!IsARPop && ListContainsSP)
6357 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6358 "SP may not be in the register list");
6359 else if (ListContainsPC && ListContainsLR)
6360 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6361 "PC and LR may not be in the register list simultaneously");
6362 return false;
6365 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
6366 const OperandVector &Operands,
6367 unsigned ListNo) {
6368 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6369 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6371 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6372 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6374 if (ListContainsSP && ListContainsPC)
6375 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6376 "SP and PC may not be in the register list");
6377 else if (ListContainsSP)
6378 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6379 "SP may not be in the register list");
6380 else if (ListContainsPC)
6381 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6382 "PC may not be in the register list");
6383 return false;
6386 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
6387 const OperandVector &Operands,
6388 bool Load, bool ARMMode, bool Writeback) {
6389 unsigned RtIndex = Load || !Writeback ? 0 : 1;
6390 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
6391 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
6393 if (ARMMode) {
6394 // Rt can't be R14.
6395 if (Rt == 14)
6396 return Error(Operands[3]->getStartLoc(),
6397 "Rt can't be R14");
6399 // Rt must be even-numbered.
6400 if ((Rt & 1) == 1)
6401 return Error(Operands[3]->getStartLoc(),
6402 "Rt must be even-numbered");
6404 // Rt2 must be Rt + 1.
6405 if (Rt2 != Rt + 1) {
6406 if (Load)
6407 return Error(Operands[3]->getStartLoc(),
6408 "destination operands must be sequential");
6409 else
6410 return Error(Operands[3]->getStartLoc(),
6411 "source operands must be sequential");
6414 // FIXME: Diagnose m == 15
6415 // FIXME: Diagnose ldrd with m == t || m == t2.
6418 if (!ARMMode && Load) {
6419 if (Rt2 == Rt)
6420 return Error(Operands[3]->getStartLoc(),
6421 "destination operands can't be identical");
6424 if (Writeback) {
6425 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6427 if (Rn == Rt || Rn == Rt2) {
6428 if (Load)
6429 return Error(Operands[3]->getStartLoc(),
6430 "base register needs to be different from destination "
6431 "registers");
6432 else
6433 return Error(Operands[3]->getStartLoc(),
6434 "source register and base register can't be identical");
6437 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
6438 // (Except the immediate form of ldrd?)
6441 return false;
6445 // FIXME: We would really like to be able to tablegen'erate this.
6446 bool ARMAsmParser::validateInstruction(MCInst &Inst,
6447 const OperandVector &Operands) {
6448 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
6449 SMLoc Loc = Operands[0]->getStartLoc();
6451 // Check the IT block state first.
6452 // NOTE: BKPT and HLT instructions have the interesting property of being
6453 // allowed in IT blocks, but not being predicable. They just always execute.
6454 if (inITBlock() && !instIsBreakpoint(Inst)) {
6455 // The instruction must be predicable.
6456 if (!MCID.isPredicable())
6457 return Error(Loc, "instructions in IT block must be predicable");
6458 ARMCC::CondCodes Cond = ARMCC::CondCodes(
6459 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
6460 if (Cond != currentITCond()) {
6461 // Find the condition code Operand to get its SMLoc information.
6462 SMLoc CondLoc;
6463 for (unsigned I = 1; I < Operands.size(); ++I)
6464 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
6465 CondLoc = Operands[I]->getStartLoc();
6466 return Error(CondLoc, "incorrect condition in IT block; got '" +
6467 StringRef(ARMCondCodeToString(Cond)) +
6468 "', but expected '" +
6469 ARMCondCodeToString(currentITCond()) + "'");
6471 // Check for non-'al' condition codes outside of the IT block.
6472 } else if (isThumbTwo() && MCID.isPredicable() &&
6473 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6474 ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
6475 Inst.getOpcode() != ARM::t2Bcc) {
6476 return Error(Loc, "predicated instructions must be in IT block");
6477 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
6478 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6479 ARMCC::AL) {
6480 return Warning(Loc, "predicated instructions should be in IT block");
6483 // PC-setting instructions in an IT block, but not the last instruction of
6484 // the block, are UNPREDICTABLE.
6485 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
6486 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
6489 const unsigned Opcode = Inst.getOpcode();
6490 switch (Opcode) {
6491 case ARM::t2IT: {
6492 // Encoding is unpredictable if it ever results in a notional 'NV'
6493 // predicate. Since we don't parse 'NV' directly this means an 'AL'
6494 // predicate with an "else" mask bit.
6495 unsigned Cond = Inst.getOperand(0).getImm();
6496 unsigned Mask = Inst.getOperand(1).getImm();
6498 // Mask hasn't been modified to the IT instruction encoding yet so
6499 // conditions only allowing a 't' are a block of 1s starting at bit 3
6500 // followed by all 0s. Easiest way is to just list the 4 possibilities.
6501 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 &&
6502 Mask != 15)
6503 return Error(Loc, "unpredictable IT predicate sequence");
6504 break;
6506 case ARM::LDRD:
6507 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6508 /*Writeback*/false))
6509 return true;
6510 break;
6511 case ARM::LDRD_PRE:
6512 case ARM::LDRD_POST:
6513 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6514 /*Writeback*/true))
6515 return true;
6516 break;
6517 case ARM::t2LDRDi8:
6518 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6519 /*Writeback*/false))
6520 return true;
6521 break;
6522 case ARM::t2LDRD_PRE:
6523 case ARM::t2LDRD_POST:
6524 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6525 /*Writeback*/true))
6526 return true;
6527 break;
6528 case ARM::t2BXJ: {
6529 const unsigned RmReg = Inst.getOperand(0).getReg();
6530 // Rm = SP is no longer unpredictable in v8-A
6531 if (RmReg == ARM::SP && !hasV8Ops())
6532 return Error(Operands[2]->getStartLoc(),
6533 "r13 (SP) is an unpredictable operand to BXJ");
6534 return false;
6536 case ARM::STRD:
6537 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6538 /*Writeback*/false))
6539 return true;
6540 break;
6541 case ARM::STRD_PRE:
6542 case ARM::STRD_POST:
6543 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6544 /*Writeback*/true))
6545 return true;
6546 break;
6547 case ARM::t2STRD_PRE:
6548 case ARM::t2STRD_POST:
6549 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
6550 /*Writeback*/true))
6551 return true;
6552 break;
6553 case ARM::STR_PRE_IMM:
6554 case ARM::STR_PRE_REG:
6555 case ARM::t2STR_PRE:
6556 case ARM::STR_POST_IMM:
6557 case ARM::STR_POST_REG:
6558 case ARM::t2STR_POST:
6559 case ARM::STRH_PRE:
6560 case ARM::t2STRH_PRE:
6561 case ARM::STRH_POST:
6562 case ARM::t2STRH_POST:
6563 case ARM::STRB_PRE_IMM:
6564 case ARM::STRB_PRE_REG:
6565 case ARM::t2STRB_PRE:
6566 case ARM::STRB_POST_IMM:
6567 case ARM::STRB_POST_REG:
6568 case ARM::t2STRB_POST: {
6569 // Rt must be different from Rn.
6570 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6571 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6573 if (Rt == Rn)
6574 return Error(Operands[3]->getStartLoc(),
6575 "source register and base register can't be identical");
6576 return false;
6578 case ARM::LDR_PRE_IMM:
6579 case ARM::LDR_PRE_REG:
6580 case ARM::t2LDR_PRE:
6581 case ARM::LDR_POST_IMM:
6582 case ARM::LDR_POST_REG:
6583 case ARM::t2LDR_POST:
6584 case ARM::LDRH_PRE:
6585 case ARM::t2LDRH_PRE:
6586 case ARM::LDRH_POST:
6587 case ARM::t2LDRH_POST:
6588 case ARM::LDRSH_PRE:
6589 case ARM::t2LDRSH_PRE:
6590 case ARM::LDRSH_POST:
6591 case ARM::t2LDRSH_POST:
6592 case ARM::LDRB_PRE_IMM:
6593 case ARM::LDRB_PRE_REG:
6594 case ARM::t2LDRB_PRE:
6595 case ARM::LDRB_POST_IMM:
6596 case ARM::LDRB_POST_REG:
6597 case ARM::t2LDRB_POST:
6598 case ARM::LDRSB_PRE:
6599 case ARM::t2LDRSB_PRE:
6600 case ARM::LDRSB_POST:
6601 case ARM::t2LDRSB_POST: {
6602 // Rt must be different from Rn.
6603 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6604 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6606 if (Rt == Rn)
6607 return Error(Operands[3]->getStartLoc(),
6608 "destination register and base register can't be identical");
6609 return false;
6611 case ARM::SBFX:
6612 case ARM::t2SBFX:
6613 case ARM::UBFX:
6614 case ARM::t2UBFX: {
6615 // Width must be in range [1, 32-lsb].
6616 unsigned LSB = Inst.getOperand(2).getImm();
6617 unsigned Widthm1 = Inst.getOperand(3).getImm();
6618 if (Widthm1 >= 32 - LSB)
6619 return Error(Operands[5]->getStartLoc(),
6620 "bitfield width must be in range [1,32-lsb]");
6621 return false;
6623 // Notionally handles ARM::tLDMIA_UPD too.
6624 case ARM::tLDMIA: {
6625 // If we're parsing Thumb2, the .w variant is available and handles
6626 // most cases that are normally illegal for a Thumb1 LDM instruction.
6627 // We'll make the transformation in processInstruction() if necessary.
6629 // Thumb LDM instructions are writeback iff the base register is not
6630 // in the register list.
6631 unsigned Rn = Inst.getOperand(0).getReg();
6632 bool HasWritebackToken =
6633 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6634 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
6635 bool ListContainsBase;
6636 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
6637 return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
6638 "registers must be in range r0-r7");
6639 // If we should have writeback, then there should be a '!' token.
6640 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
6641 return Error(Operands[2]->getStartLoc(),
6642 "writeback operator '!' expected");
6643 // If we should not have writeback, there must not be a '!'. This is
6644 // true even for the 32-bit wide encodings.
6645 if (ListContainsBase && HasWritebackToken)
6646 return Error(Operands[3]->getStartLoc(),
6647 "writeback operator '!' not allowed when base register "
6648 "in register list");
6650 if (validatetLDMRegList(Inst, Operands, 3))
6651 return true;
6652 break;
6654 case ARM::LDMIA_UPD:
6655 case ARM::LDMDB_UPD:
6656 case ARM::LDMIB_UPD:
6657 case ARM::LDMDA_UPD:
6658 // ARM variants loading and updating the same register are only officially
6659 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6660 if (!hasV7Ops())
6661 break;
6662 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6663 return Error(Operands.back()->getStartLoc(),
6664 "writeback register not allowed in register list");
6665 break;
6666 case ARM::t2LDMIA:
6667 case ARM::t2LDMDB:
6668 if (validatetLDMRegList(Inst, Operands, 3))
6669 return true;
6670 break;
6671 case ARM::t2STMIA:
6672 case ARM::t2STMDB:
6673 if (validatetSTMRegList(Inst, Operands, 3))
6674 return true;
6675 break;
6676 case ARM::t2LDMIA_UPD:
6677 case ARM::t2LDMDB_UPD:
6678 case ARM::t2STMIA_UPD:
6679 case ARM::t2STMDB_UPD:
6680 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6681 return Error(Operands.back()->getStartLoc(),
6682 "writeback register not allowed in register list");
6684 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
6685 if (validatetLDMRegList(Inst, Operands, 3))
6686 return true;
6687 } else {
6688 if (validatetSTMRegList(Inst, Operands, 3))
6689 return true;
6691 break;
6693 case ARM::sysLDMIA_UPD:
6694 case ARM::sysLDMDA_UPD:
6695 case ARM::sysLDMDB_UPD:
6696 case ARM::sysLDMIB_UPD:
6697 if (!listContainsReg(Inst, 3, ARM::PC))
6698 return Error(Operands[4]->getStartLoc(),
6699 "writeback register only allowed on system LDM "
6700 "if PC in register-list");
6701 break;
6702 case ARM::sysSTMIA_UPD:
6703 case ARM::sysSTMDA_UPD:
6704 case ARM::sysSTMDB_UPD:
6705 case ARM::sysSTMIB_UPD:
6706 return Error(Operands[2]->getStartLoc(),
6707 "system STM cannot have writeback register");
6708 case ARM::tMUL:
6709 // The second source operand must be the same register as the destination
6710 // operand.
6712 // In this case, we must directly check the parsed operands because the
6713 // cvtThumbMultiply() function is written in such a way that it guarantees
6714 // this first statement is always true for the new Inst. Essentially, the
6715 // destination is unconditionally copied into the second source operand
6716 // without checking to see if it matches what we actually parsed.
6717 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
6718 ((ARMOperand &)*Operands[5]).getReg()) &&
6719 (((ARMOperand &)*Operands[3]).getReg() !=
6720 ((ARMOperand &)*Operands[4]).getReg())) {
6721 return Error(Operands[3]->getStartLoc(),
6722 "destination register must match source register");
6724 break;
6726 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6727 // so only issue a diagnostic for thumb1. The instructions will be
6728 // switched to the t2 encodings in processInstruction() if necessary.
6729 case ARM::tPOP: {
6730 bool ListContainsBase;
6731 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
6732 !isThumbTwo())
6733 return Error(Operands[2]->getStartLoc(),
6734 "registers must be in range r0-r7 or pc");
6735 if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
6736 return true;
6737 break;
6739 case ARM::tPUSH: {
6740 bool ListContainsBase;
6741 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
6742 !isThumbTwo())
6743 return Error(Operands[2]->getStartLoc(),
6744 "registers must be in range r0-r7 or lr");
6745 if (validatetSTMRegList(Inst, Operands, 2))
6746 return true;
6747 break;
6749 case ARM::tSTMIA_UPD: {
6750 bool ListContainsBase, InvalidLowList;
6751 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
6752 0, ListContainsBase);
6753 if (InvalidLowList && !isThumbTwo())
6754 return Error(Operands[4]->getStartLoc(),
6755 "registers must be in range r0-r7");
6757 // This would be converted to a 32-bit stm, but that's not valid if the
6758 // writeback register is in the list.
6759 if (InvalidLowList && ListContainsBase)
6760 return Error(Operands[4]->getStartLoc(),
6761 "writeback operator '!' not allowed when base register "
6762 "in register list");
6764 if (validatetSTMRegList(Inst, Operands, 4))
6765 return true;
6766 break;
6768 case ARM::tADDrSP:
6769 // If the non-SP source operand and the destination operand are not the
6770 // same, we need thumb2 (for the wide encoding), or we have an error.
6771 if (!isThumbTwo() &&
6772 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
6773 return Error(Operands[4]->getStartLoc(),
6774 "source register must be the same as destination");
6776 break;
6778 // Final range checking for Thumb unconditional branch instructions.
6779 case ARM::tB:
6780 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
6781 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6782 break;
6783 case ARM::t2B: {
6784 int op = (Operands[2]->isImm()) ? 2 : 3;
6785 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
6786 return Error(Operands[op]->getStartLoc(), "branch target out of range");
6787 break;
6789 // Final range checking for Thumb conditional branch instructions.
6790 case ARM::tBcc:
6791 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
6792 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6793 break;
6794 case ARM::t2Bcc: {
6795 int Op = (Operands[2]->isImm()) ? 2 : 3;
6796 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
6797 return Error(Operands[Op]->getStartLoc(), "branch target out of range");
6798 break;
6800 case ARM::tCBZ:
6801 case ARM::tCBNZ: {
6802 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
6803 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6804 break;
6806 case ARM::MOVi16:
6807 case ARM::MOVTi16:
6808 case ARM::t2MOVi16:
6809 case ARM::t2MOVTi16:
6811 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6812 // especially when we turn it into a movw and the expression <symbol> does
6813 // not have a :lower16: or :upper16 as part of the expression. We don't
6814 // want the behavior of silently truncating, which can be unexpected and
6815 // lead to bugs that are difficult to find since this is an easy mistake
6816 // to make.
6817 int i = (Operands[3]->isImm()) ? 3 : 4;
6818 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
6819 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
6820 if (CE) break;
6821 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
6822 if (!E) break;
6823 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
6824 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
6825 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
6826 return Error(
6827 Op.getStartLoc(),
6828 "immediate expression for mov requires :lower16: or :upper16");
6829 break;
6831 case ARM::HINT:
6832 case ARM::t2HINT: {
6833 unsigned Imm8 = Inst.getOperand(0).getImm();
6834 unsigned Pred = Inst.getOperand(1).getImm();
6835 // ESB is not predicable (pred must be AL). Without the RAS extension, this
6836 // behaves as any other unallocated hint.
6837 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
6838 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
6839 "predicable, but condition "
6840 "code specified");
6841 if (Imm8 == 0x14 && Pred != ARMCC::AL)
6842 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
6843 "predicable, but condition "
6844 "code specified");
6845 break;
6847 case ARM::DSB:
6848 case ARM::t2DSB: {
6850 if (Inst.getNumOperands() < 2)
6851 break;
6853 unsigned Option = Inst.getOperand(0).getImm();
6854 unsigned Pred = Inst.getOperand(1).getImm();
6856 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
6857 if (Option == 0 && Pred != ARMCC::AL)
6858 return Error(Operands[1]->getStartLoc(),
6859 "instruction 'ssbb' is not predicable, but condition code "
6860 "specified");
6861 if (Option == 4 && Pred != ARMCC::AL)
6862 return Error(Operands[1]->getStartLoc(),
6863 "instruction 'pssbb' is not predicable, but condition code "
6864 "specified");
6865 break;
6867 case ARM::VMOVRRS: {
6868 // Source registers must be sequential.
6869 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6870 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6871 if (Sm1 != Sm + 1)
6872 return Error(Operands[5]->getStartLoc(),
6873 "source operands must be sequential");
6874 break;
6876 case ARM::VMOVSRR: {
6877 // Destination registers must be sequential.
6878 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6879 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6880 if (Sm1 != Sm + 1)
6881 return Error(Operands[3]->getStartLoc(),
6882 "destination operands must be sequential");
6883 break;
6885 case ARM::VLDMDIA:
6886 case ARM::VSTMDIA: {
6887 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
6888 auto &RegList = Op.getRegList();
6889 if (RegList.size() < 1 || RegList.size() > 16)
6890 return Error(Operands[3]->getStartLoc(),
6891 "list of registers must be at least 1 and at most 16");
6892 break;
6896 return false;
6899 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
6900 switch(Opc) {
6901 default: llvm_unreachable("unexpected opcode!");
6902 // VST1LN
6903 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6904 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6905 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6906 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6907 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6908 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6909 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
6910 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
6911 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
6913 // VST2LN
6914 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6915 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6916 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6917 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6918 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6920 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6921 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6922 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6923 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6924 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6926 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
6927 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
6928 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
6929 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
6930 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
6932 // VST3LN
6933 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6934 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6935 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6936 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
6937 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6938 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6939 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6940 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6941 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
6942 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6943 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
6944 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
6945 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
6946 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
6947 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
6949 // VST3
6950 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6951 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6952 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6953 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6954 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6955 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6956 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6957 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6958 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6959 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6960 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6961 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6962 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
6963 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
6964 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
6965 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
6966 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
6967 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
6969 // VST4LN
6970 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6971 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6972 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6973 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
6974 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6975 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6976 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6977 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6978 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
6979 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6980 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
6981 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
6982 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
6983 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
6984 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
6986 // VST4
6987 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6988 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6989 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6990 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6991 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6992 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6993 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6994 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6995 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6996 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6997 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6998 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6999 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
7000 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
7001 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
7002 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
7003 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
7004 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
7008 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
7009 switch(Opc) {
7010 default: llvm_unreachable("unexpected opcode!");
7011 // VLD1LN
7012 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
7013 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
7014 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
7015 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
7016 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
7017 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
7018 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
7019 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
7020 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
7022 // VLD2LN
7023 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
7024 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
7025 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
7026 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
7027 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
7028 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
7029 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
7030 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
7031 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
7032 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
7033 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
7034 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
7035 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
7036 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
7037 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
7039 // VLD3DUP
7040 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
7041 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
7042 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
7043 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
7044 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7045 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7046 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
7047 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
7048 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
7049 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
7050 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7051 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7052 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
7053 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
7054 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
7055 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
7056 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
7057 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
7059 // VLD3LN
7060 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7061 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7062 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7063 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
7064 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7065 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7066 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7067 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7068 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
7069 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7070 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
7071 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
7072 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
7073 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
7074 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
7076 // VLD3
7077 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7078 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7079 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7080 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7081 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7082 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7083 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7084 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7085 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7086 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7087 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7088 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7089 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
7090 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
7091 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
7092 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
7093 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
7094 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
7096 // VLD4LN
7097 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7098 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7099 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7100 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7101 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7102 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7103 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7104 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7105 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7106 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7107 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
7108 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
7109 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
7110 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
7111 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
7113 // VLD4DUP
7114 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7115 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7116 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7117 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
7118 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
7119 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7120 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7121 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7122 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7123 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
7124 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
7125 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7126 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
7127 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
7128 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
7129 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
7130 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
7131 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
7133 // VLD4
7134 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7135 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7136 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7137 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7138 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7139 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7140 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7141 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7142 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7143 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7144 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7145 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7146 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
7147 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
7148 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
7149 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
7150 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
7151 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
7155 bool ARMAsmParser::processInstruction(MCInst &Inst,
7156 const OperandVector &Operands,
7157 MCStreamer &Out) {
7158 // Check if we have the wide qualifier, because if it's present we
7159 // must avoid selecting a 16-bit thumb instruction.
7160 bool HasWideQualifier = false;
7161 for (auto &Op : Operands) {
7162 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
7163 if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
7164 HasWideQualifier = true;
7165 break;
7169 switch (Inst.getOpcode()) {
7170 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
7171 case ARM::LDRT_POST:
7172 case ARM::LDRBT_POST: {
7173 const unsigned Opcode =
7174 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
7175 : ARM::LDRBT_POST_IMM;
7176 MCInst TmpInst;
7177 TmpInst.setOpcode(Opcode);
7178 TmpInst.addOperand(Inst.getOperand(0));
7179 TmpInst.addOperand(Inst.getOperand(1));
7180 TmpInst.addOperand(Inst.getOperand(1));
7181 TmpInst.addOperand(MCOperand::createReg(0));
7182 TmpInst.addOperand(MCOperand::createImm(0));
7183 TmpInst.addOperand(Inst.getOperand(2));
7184 TmpInst.addOperand(Inst.getOperand(3));
7185 Inst = TmpInst;
7186 return true;
7188 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
7189 case ARM::STRT_POST:
7190 case ARM::STRBT_POST: {
7191 const unsigned Opcode =
7192 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
7193 : ARM::STRBT_POST_IMM;
7194 MCInst TmpInst;
7195 TmpInst.setOpcode(Opcode);
7196 TmpInst.addOperand(Inst.getOperand(1));
7197 TmpInst.addOperand(Inst.getOperand(0));
7198 TmpInst.addOperand(Inst.getOperand(1));
7199 TmpInst.addOperand(MCOperand::createReg(0));
7200 TmpInst.addOperand(MCOperand::createImm(0));
7201 TmpInst.addOperand(Inst.getOperand(2));
7202 TmpInst.addOperand(Inst.getOperand(3));
7203 Inst = TmpInst;
7204 return true;
7206 // Alias for alternate form of 'ADR Rd, #imm' instruction.
7207 case ARM::ADDri: {
7208 if (Inst.getOperand(1).getReg() != ARM::PC ||
7209 Inst.getOperand(5).getReg() != 0 ||
7210 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
7211 return false;
7212 MCInst TmpInst;
7213 TmpInst.setOpcode(ARM::ADR);
7214 TmpInst.addOperand(Inst.getOperand(0));
7215 if (Inst.getOperand(2).isImm()) {
7216 // Immediate (mod_imm) will be in its encoded form, we must unencode it
7217 // before passing it to the ADR instruction.
7218 unsigned Enc = Inst.getOperand(2).getImm();
7219 TmpInst.addOperand(MCOperand::createImm(
7220 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
7221 } else {
7222 // Turn PC-relative expression into absolute expression.
7223 // Reading PC provides the start of the current instruction + 8 and
7224 // the transform to adr is biased by that.
7225 MCSymbol *Dot = getContext().createTempSymbol();
7226 Out.EmitLabel(Dot);
7227 const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
7228 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
7229 MCSymbolRefExpr::VK_None,
7230 getContext());
7231 const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
7232 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
7233 getContext());
7234 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
7235 getContext());
7236 TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
7238 TmpInst.addOperand(Inst.getOperand(3));
7239 TmpInst.addOperand(Inst.getOperand(4));
7240 Inst = TmpInst;
7241 return true;
7243 // Aliases for alternate PC+imm syntax of LDR instructions.
7244 case ARM::t2LDRpcrel:
7245 // Select the narrow version if the immediate will fit.
7246 if (Inst.getOperand(1).getImm() > 0 &&
7247 Inst.getOperand(1).getImm() <= 0xff &&
7248 !HasWideQualifier)
7249 Inst.setOpcode(ARM::tLDRpci);
7250 else
7251 Inst.setOpcode(ARM::t2LDRpci);
7252 return true;
7253 case ARM::t2LDRBpcrel:
7254 Inst.setOpcode(ARM::t2LDRBpci);
7255 return true;
7256 case ARM::t2LDRHpcrel:
7257 Inst.setOpcode(ARM::t2LDRHpci);
7258 return true;
7259 case ARM::t2LDRSBpcrel:
7260 Inst.setOpcode(ARM::t2LDRSBpci);
7261 return true;
7262 case ARM::t2LDRSHpcrel:
7263 Inst.setOpcode(ARM::t2LDRSHpci);
7264 return true;
7265 case ARM::LDRConstPool:
7266 case ARM::tLDRConstPool:
7267 case ARM::t2LDRConstPool: {
7268 // Pseudo instruction ldr rt, =immediate is converted to a
7269 // MOV rt, immediate if immediate is known and representable
7270 // otherwise we create a constant pool entry that we load from.
7271 MCInst TmpInst;
7272 if (Inst.getOpcode() == ARM::LDRConstPool)
7273 TmpInst.setOpcode(ARM::LDRi12);
7274 else if (Inst.getOpcode() == ARM::tLDRConstPool)
7275 TmpInst.setOpcode(ARM::tLDRpci);
7276 else if (Inst.getOpcode() == ARM::t2LDRConstPool)
7277 TmpInst.setOpcode(ARM::t2LDRpci);
7278 const ARMOperand &PoolOperand =
7279 (HasWideQualifier ?
7280 static_cast<ARMOperand &>(*Operands[4]) :
7281 static_cast<ARMOperand &>(*Operands[3]));
7282 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
7283 // If SubExprVal is a constant we may be able to use a MOV
7284 if (isa<MCConstantExpr>(SubExprVal) &&
7285 Inst.getOperand(0).getReg() != ARM::PC &&
7286 Inst.getOperand(0).getReg() != ARM::SP) {
7287 int64_t Value =
7288 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
7289 bool UseMov = true;
7290 bool MovHasS = true;
7291 if (Inst.getOpcode() == ARM::LDRConstPool) {
7292 // ARM Constant
7293 if (ARM_AM::getSOImmVal(Value) != -1) {
7294 Value = ARM_AM::getSOImmVal(Value);
7295 TmpInst.setOpcode(ARM::MOVi);
7297 else if (ARM_AM::getSOImmVal(~Value) != -1) {
7298 Value = ARM_AM::getSOImmVal(~Value);
7299 TmpInst.setOpcode(ARM::MVNi);
7301 else if (hasV6T2Ops() &&
7302 Value >=0 && Value < 65536) {
7303 TmpInst.setOpcode(ARM::MOVi16);
7304 MovHasS = false;
7306 else
7307 UseMov = false;
7309 else {
7310 // Thumb/Thumb2 Constant
7311 if (hasThumb2() &&
7312 ARM_AM::getT2SOImmVal(Value) != -1)
7313 TmpInst.setOpcode(ARM::t2MOVi);
7314 else if (hasThumb2() &&
7315 ARM_AM::getT2SOImmVal(~Value) != -1) {
7316 TmpInst.setOpcode(ARM::t2MVNi);
7317 Value = ~Value;
7319 else if (hasV8MBaseline() &&
7320 Value >=0 && Value < 65536) {
7321 TmpInst.setOpcode(ARM::t2MOVi16);
7322 MovHasS = false;
7324 else
7325 UseMov = false;
7327 if (UseMov) {
7328 TmpInst.addOperand(Inst.getOperand(0)); // Rt
7329 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate
7330 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7331 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7332 if (MovHasS)
7333 TmpInst.addOperand(MCOperand::createReg(0)); // S
7334 Inst = TmpInst;
7335 return true;
7338 // No opportunity to use MOV/MVN create constant pool
7339 const MCExpr *CPLoc =
7340 getTargetStreamer().addConstantPoolEntry(SubExprVal,
7341 PoolOperand.getStartLoc());
7342 TmpInst.addOperand(Inst.getOperand(0)); // Rt
7343 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
7344 if (TmpInst.getOpcode() == ARM::LDRi12)
7345 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset
7346 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7347 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7348 Inst = TmpInst;
7349 return true;
7351 // Handle NEON VST complex aliases.
7352 case ARM::VST1LNdWB_register_Asm_8:
7353 case ARM::VST1LNdWB_register_Asm_16:
7354 case ARM::VST1LNdWB_register_Asm_32: {
7355 MCInst TmpInst;
7356 // Shuffle the operands around so the lane index operand is in the
7357 // right place.
7358 unsigned Spacing;
7359 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7360 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7361 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7362 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7363 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7364 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7365 TmpInst.addOperand(Inst.getOperand(1)); // lane
7366 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7367 TmpInst.addOperand(Inst.getOperand(6));
7368 Inst = TmpInst;
7369 return true;
7372 case ARM::VST2LNdWB_register_Asm_8:
7373 case ARM::VST2LNdWB_register_Asm_16:
7374 case ARM::VST2LNdWB_register_Asm_32:
7375 case ARM::VST2LNqWB_register_Asm_16:
7376 case ARM::VST2LNqWB_register_Asm_32: {
7377 MCInst TmpInst;
7378 // Shuffle the operands around so the lane index operand is in the
7379 // right place.
7380 unsigned Spacing;
7381 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7382 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7383 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7384 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7385 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7386 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7387 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7388 Spacing));
7389 TmpInst.addOperand(Inst.getOperand(1)); // lane
7390 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7391 TmpInst.addOperand(Inst.getOperand(6));
7392 Inst = TmpInst;
7393 return true;
7396 case ARM::VST3LNdWB_register_Asm_8:
7397 case ARM::VST3LNdWB_register_Asm_16:
7398 case ARM::VST3LNdWB_register_Asm_32:
7399 case ARM::VST3LNqWB_register_Asm_16:
7400 case ARM::VST3LNqWB_register_Asm_32: {
7401 MCInst TmpInst;
7402 // Shuffle the operands around so the lane index operand is in the
7403 // right place.
7404 unsigned Spacing;
7405 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7406 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7407 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7408 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7409 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7410 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7411 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7412 Spacing));
7413 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7414 Spacing * 2));
7415 TmpInst.addOperand(Inst.getOperand(1)); // lane
7416 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7417 TmpInst.addOperand(Inst.getOperand(6));
7418 Inst = TmpInst;
7419 return true;
7422 case ARM::VST4LNdWB_register_Asm_8:
7423 case ARM::VST4LNdWB_register_Asm_16:
7424 case ARM::VST4LNdWB_register_Asm_32:
7425 case ARM::VST4LNqWB_register_Asm_16:
7426 case ARM::VST4LNqWB_register_Asm_32: {
7427 MCInst TmpInst;
7428 // Shuffle the operands around so the lane index operand is in the
7429 // right place.
7430 unsigned Spacing;
7431 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7432 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7433 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7434 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7435 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7436 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7437 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7438 Spacing));
7439 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7440 Spacing * 2));
7441 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7442 Spacing * 3));
7443 TmpInst.addOperand(Inst.getOperand(1)); // lane
7444 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7445 TmpInst.addOperand(Inst.getOperand(6));
7446 Inst = TmpInst;
7447 return true;
7450 case ARM::VST1LNdWB_fixed_Asm_8:
7451 case ARM::VST1LNdWB_fixed_Asm_16:
7452 case ARM::VST1LNdWB_fixed_Asm_32: {
7453 MCInst TmpInst;
7454 // Shuffle the operands around so the lane index operand is in the
7455 // right place.
7456 unsigned Spacing;
7457 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7458 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7459 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7460 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7461 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7462 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7463 TmpInst.addOperand(Inst.getOperand(1)); // lane
7464 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7465 TmpInst.addOperand(Inst.getOperand(5));
7466 Inst = TmpInst;
7467 return true;
7470 case ARM::VST2LNdWB_fixed_Asm_8:
7471 case ARM::VST2LNdWB_fixed_Asm_16:
7472 case ARM::VST2LNdWB_fixed_Asm_32:
7473 case ARM::VST2LNqWB_fixed_Asm_16:
7474 case ARM::VST2LNqWB_fixed_Asm_32: {
7475 MCInst TmpInst;
7476 // Shuffle the operands around so the lane index operand is in the
7477 // right place.
7478 unsigned Spacing;
7479 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7480 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7481 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7482 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7483 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7484 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7485 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7486 Spacing));
7487 TmpInst.addOperand(Inst.getOperand(1)); // lane
7488 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7489 TmpInst.addOperand(Inst.getOperand(5));
7490 Inst = TmpInst;
7491 return true;
7494 case ARM::VST3LNdWB_fixed_Asm_8:
7495 case ARM::VST3LNdWB_fixed_Asm_16:
7496 case ARM::VST3LNdWB_fixed_Asm_32:
7497 case ARM::VST3LNqWB_fixed_Asm_16:
7498 case ARM::VST3LNqWB_fixed_Asm_32: {
7499 MCInst TmpInst;
7500 // Shuffle the operands around so the lane index operand is in the
7501 // right place.
7502 unsigned Spacing;
7503 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7504 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7505 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7506 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7507 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7508 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7509 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7510 Spacing));
7511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7512 Spacing * 2));
7513 TmpInst.addOperand(Inst.getOperand(1)); // lane
7514 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7515 TmpInst.addOperand(Inst.getOperand(5));
7516 Inst = TmpInst;
7517 return true;
7520 case ARM::VST4LNdWB_fixed_Asm_8:
7521 case ARM::VST4LNdWB_fixed_Asm_16:
7522 case ARM::VST4LNdWB_fixed_Asm_32:
7523 case ARM::VST4LNqWB_fixed_Asm_16:
7524 case ARM::VST4LNqWB_fixed_Asm_32: {
7525 MCInst TmpInst;
7526 // Shuffle the operands around so the lane index operand is in the
7527 // right place.
7528 unsigned Spacing;
7529 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7530 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7531 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7532 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7533 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7534 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7535 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7536 Spacing));
7537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7538 Spacing * 2));
7539 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7540 Spacing * 3));
7541 TmpInst.addOperand(Inst.getOperand(1)); // lane
7542 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7543 TmpInst.addOperand(Inst.getOperand(5));
7544 Inst = TmpInst;
7545 return true;
7548 case ARM::VST1LNdAsm_8:
7549 case ARM::VST1LNdAsm_16:
7550 case ARM::VST1LNdAsm_32: {
7551 MCInst TmpInst;
7552 // Shuffle the operands around so the lane index operand is in the
7553 // right place.
7554 unsigned Spacing;
7555 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7556 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7557 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7558 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7559 TmpInst.addOperand(Inst.getOperand(1)); // lane
7560 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7561 TmpInst.addOperand(Inst.getOperand(5));
7562 Inst = TmpInst;
7563 return true;
7566 case ARM::VST2LNdAsm_8:
7567 case ARM::VST2LNdAsm_16:
7568 case ARM::VST2LNdAsm_32:
7569 case ARM::VST2LNqAsm_16:
7570 case ARM::VST2LNqAsm_32: {
7571 MCInst TmpInst;
7572 // Shuffle the operands around so the lane index operand is in the
7573 // right place.
7574 unsigned Spacing;
7575 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7576 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7577 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7578 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7579 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7580 Spacing));
7581 TmpInst.addOperand(Inst.getOperand(1)); // lane
7582 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7583 TmpInst.addOperand(Inst.getOperand(5));
7584 Inst = TmpInst;
7585 return true;
7588 case ARM::VST3LNdAsm_8:
7589 case ARM::VST3LNdAsm_16:
7590 case ARM::VST3LNdAsm_32:
7591 case ARM::VST3LNqAsm_16:
7592 case ARM::VST3LNqAsm_32: {
7593 MCInst TmpInst;
7594 // Shuffle the operands around so the lane index operand is in the
7595 // right place.
7596 unsigned Spacing;
7597 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7598 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7599 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7600 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7601 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7602 Spacing));
7603 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7604 Spacing * 2));
7605 TmpInst.addOperand(Inst.getOperand(1)); // lane
7606 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7607 TmpInst.addOperand(Inst.getOperand(5));
7608 Inst = TmpInst;
7609 return true;
7612 case ARM::VST4LNdAsm_8:
7613 case ARM::VST4LNdAsm_16:
7614 case ARM::VST4LNdAsm_32:
7615 case ARM::VST4LNqAsm_16:
7616 case ARM::VST4LNqAsm_32: {
7617 MCInst TmpInst;
7618 // Shuffle the operands around so the lane index operand is in the
7619 // right place.
7620 unsigned Spacing;
7621 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7622 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7623 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7624 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7625 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7626 Spacing));
7627 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7628 Spacing * 2));
7629 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7630 Spacing * 3));
7631 TmpInst.addOperand(Inst.getOperand(1)); // lane
7632 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7633 TmpInst.addOperand(Inst.getOperand(5));
7634 Inst = TmpInst;
7635 return true;
7638 // Handle NEON VLD complex aliases.
7639 case ARM::VLD1LNdWB_register_Asm_8:
7640 case ARM::VLD1LNdWB_register_Asm_16:
7641 case ARM::VLD1LNdWB_register_Asm_32: {
7642 MCInst TmpInst;
7643 // Shuffle the operands around so the lane index operand is in the
7644 // right place.
7645 unsigned Spacing;
7646 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7647 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7648 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7649 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7650 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7651 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7652 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7653 TmpInst.addOperand(Inst.getOperand(1)); // lane
7654 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7655 TmpInst.addOperand(Inst.getOperand(6));
7656 Inst = TmpInst;
7657 return true;
7660 case ARM::VLD2LNdWB_register_Asm_8:
7661 case ARM::VLD2LNdWB_register_Asm_16:
7662 case ARM::VLD2LNdWB_register_Asm_32:
7663 case ARM::VLD2LNqWB_register_Asm_16:
7664 case ARM::VLD2LNqWB_register_Asm_32: {
7665 MCInst TmpInst;
7666 // Shuffle the operands around so the lane index operand is in the
7667 // right place.
7668 unsigned Spacing;
7669 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7670 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7671 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7672 Spacing));
7673 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7674 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7675 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7676 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7677 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7678 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7679 Spacing));
7680 TmpInst.addOperand(Inst.getOperand(1)); // lane
7681 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7682 TmpInst.addOperand(Inst.getOperand(6));
7683 Inst = TmpInst;
7684 return true;
7687 case ARM::VLD3LNdWB_register_Asm_8:
7688 case ARM::VLD3LNdWB_register_Asm_16:
7689 case ARM::VLD3LNdWB_register_Asm_32:
7690 case ARM::VLD3LNqWB_register_Asm_16:
7691 case ARM::VLD3LNqWB_register_Asm_32: {
7692 MCInst TmpInst;
7693 // Shuffle the operands around so the lane index operand is in the
7694 // right place.
7695 unsigned Spacing;
7696 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7697 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7698 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7699 Spacing));
7700 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7701 Spacing * 2));
7702 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7703 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7704 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7705 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7706 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7707 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7708 Spacing));
7709 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7710 Spacing * 2));
7711 TmpInst.addOperand(Inst.getOperand(1)); // lane
7712 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7713 TmpInst.addOperand(Inst.getOperand(6));
7714 Inst = TmpInst;
7715 return true;
7718 case ARM::VLD4LNdWB_register_Asm_8:
7719 case ARM::VLD4LNdWB_register_Asm_16:
7720 case ARM::VLD4LNdWB_register_Asm_32:
7721 case ARM::VLD4LNqWB_register_Asm_16:
7722 case ARM::VLD4LNqWB_register_Asm_32: {
7723 MCInst TmpInst;
7724 // Shuffle the operands around so the lane index operand is in the
7725 // right place.
7726 unsigned Spacing;
7727 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7728 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7729 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7730 Spacing));
7731 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7732 Spacing * 2));
7733 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7734 Spacing * 3));
7735 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7736 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7737 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7738 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7739 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7740 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7741 Spacing));
7742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7743 Spacing * 2));
7744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7745 Spacing * 3));
7746 TmpInst.addOperand(Inst.getOperand(1)); // lane
7747 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7748 TmpInst.addOperand(Inst.getOperand(6));
7749 Inst = TmpInst;
7750 return true;
7753 case ARM::VLD1LNdWB_fixed_Asm_8:
7754 case ARM::VLD1LNdWB_fixed_Asm_16:
7755 case ARM::VLD1LNdWB_fixed_Asm_32: {
7756 MCInst TmpInst;
7757 // Shuffle the operands around so the lane index operand is in the
7758 // right place.
7759 unsigned Spacing;
7760 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7761 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7762 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7763 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7764 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7765 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7766 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7767 TmpInst.addOperand(Inst.getOperand(1)); // lane
7768 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7769 TmpInst.addOperand(Inst.getOperand(5));
7770 Inst = TmpInst;
7771 return true;
7774 case ARM::VLD2LNdWB_fixed_Asm_8:
7775 case ARM::VLD2LNdWB_fixed_Asm_16:
7776 case ARM::VLD2LNdWB_fixed_Asm_32:
7777 case ARM::VLD2LNqWB_fixed_Asm_16:
7778 case ARM::VLD2LNqWB_fixed_Asm_32: {
7779 MCInst TmpInst;
7780 // Shuffle the operands around so the lane index operand is in the
7781 // right place.
7782 unsigned Spacing;
7783 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7784 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7786 Spacing));
7787 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7788 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7789 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7790 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7791 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7793 Spacing));
7794 TmpInst.addOperand(Inst.getOperand(1)); // lane
7795 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7796 TmpInst.addOperand(Inst.getOperand(5));
7797 Inst = TmpInst;
7798 return true;
7801 case ARM::VLD3LNdWB_fixed_Asm_8:
7802 case ARM::VLD3LNdWB_fixed_Asm_16:
7803 case ARM::VLD3LNdWB_fixed_Asm_32:
7804 case ARM::VLD3LNqWB_fixed_Asm_16:
7805 case ARM::VLD3LNqWB_fixed_Asm_32: {
7806 MCInst TmpInst;
7807 // Shuffle the operands around so the lane index operand is in the
7808 // right place.
7809 unsigned Spacing;
7810 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7811 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7812 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7813 Spacing));
7814 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7815 Spacing * 2));
7816 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7817 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7818 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7819 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7820 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7821 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7822 Spacing));
7823 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7824 Spacing * 2));
7825 TmpInst.addOperand(Inst.getOperand(1)); // lane
7826 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7827 TmpInst.addOperand(Inst.getOperand(5));
7828 Inst = TmpInst;
7829 return true;
7832 case ARM::VLD4LNdWB_fixed_Asm_8:
7833 case ARM::VLD4LNdWB_fixed_Asm_16:
7834 case ARM::VLD4LNdWB_fixed_Asm_32:
7835 case ARM::VLD4LNqWB_fixed_Asm_16:
7836 case ARM::VLD4LNqWB_fixed_Asm_32: {
7837 MCInst TmpInst;
7838 // Shuffle the operands around so the lane index operand is in the
7839 // right place.
7840 unsigned Spacing;
7841 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7842 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7843 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7844 Spacing));
7845 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7846 Spacing * 2));
7847 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7848 Spacing * 3));
7849 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7850 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7851 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7852 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7853 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7854 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7855 Spacing));
7856 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7857 Spacing * 2));
7858 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7859 Spacing * 3));
7860 TmpInst.addOperand(Inst.getOperand(1)); // lane
7861 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7862 TmpInst.addOperand(Inst.getOperand(5));
7863 Inst = TmpInst;
7864 return true;
7867 case ARM::VLD1LNdAsm_8:
7868 case ARM::VLD1LNdAsm_16:
7869 case ARM::VLD1LNdAsm_32: {
7870 MCInst TmpInst;
7871 // Shuffle the operands around so the lane index operand is in the
7872 // right place.
7873 unsigned Spacing;
7874 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7875 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7876 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7877 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7878 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7879 TmpInst.addOperand(Inst.getOperand(1)); // lane
7880 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7881 TmpInst.addOperand(Inst.getOperand(5));
7882 Inst = TmpInst;
7883 return true;
7886 case ARM::VLD2LNdAsm_8:
7887 case ARM::VLD2LNdAsm_16:
7888 case ARM::VLD2LNdAsm_32:
7889 case ARM::VLD2LNqAsm_16:
7890 case ARM::VLD2LNqAsm_32: {
7891 MCInst TmpInst;
7892 // Shuffle the operands around so the lane index operand is in the
7893 // right place.
7894 unsigned Spacing;
7895 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7896 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7897 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7898 Spacing));
7899 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7900 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7901 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7902 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7903 Spacing));
7904 TmpInst.addOperand(Inst.getOperand(1)); // lane
7905 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7906 TmpInst.addOperand(Inst.getOperand(5));
7907 Inst = TmpInst;
7908 return true;
7911 case ARM::VLD3LNdAsm_8:
7912 case ARM::VLD3LNdAsm_16:
7913 case ARM::VLD3LNdAsm_32:
7914 case ARM::VLD3LNqAsm_16:
7915 case ARM::VLD3LNqAsm_32: {
7916 MCInst TmpInst;
7917 // Shuffle the operands around so the lane index operand is in the
7918 // right place.
7919 unsigned Spacing;
7920 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7921 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7922 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7923 Spacing));
7924 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7925 Spacing * 2));
7926 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7927 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7928 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7929 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7930 Spacing));
7931 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7932 Spacing * 2));
7933 TmpInst.addOperand(Inst.getOperand(1)); // lane
7934 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7935 TmpInst.addOperand(Inst.getOperand(5));
7936 Inst = TmpInst;
7937 return true;
7940 case ARM::VLD4LNdAsm_8:
7941 case ARM::VLD4LNdAsm_16:
7942 case ARM::VLD4LNdAsm_32:
7943 case ARM::VLD4LNqAsm_16:
7944 case ARM::VLD4LNqAsm_32: {
7945 MCInst TmpInst;
7946 // Shuffle the operands around so the lane index operand is in the
7947 // right place.
7948 unsigned Spacing;
7949 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7950 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7951 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7952 Spacing));
7953 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7954 Spacing * 2));
7955 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7956 Spacing * 3));
7957 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7958 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7959 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7960 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7961 Spacing));
7962 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7963 Spacing * 2));
7964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7965 Spacing * 3));
7966 TmpInst.addOperand(Inst.getOperand(1)); // lane
7967 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7968 TmpInst.addOperand(Inst.getOperand(5));
7969 Inst = TmpInst;
7970 return true;
7973 // VLD3DUP single 3-element structure to all lanes instructions.
7974 case ARM::VLD3DUPdAsm_8:
7975 case ARM::VLD3DUPdAsm_16:
7976 case ARM::VLD3DUPdAsm_32:
7977 case ARM::VLD3DUPqAsm_8:
7978 case ARM::VLD3DUPqAsm_16:
7979 case ARM::VLD3DUPqAsm_32: {
7980 MCInst TmpInst;
7981 unsigned Spacing;
7982 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7983 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7984 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7985 Spacing));
7986 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7987 Spacing * 2));
7988 TmpInst.addOperand(Inst.getOperand(1)); // Rn
7989 TmpInst.addOperand(Inst.getOperand(2)); // alignment
7990 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7991 TmpInst.addOperand(Inst.getOperand(4));
7992 Inst = TmpInst;
7993 return true;
7996 case ARM::VLD3DUPdWB_fixed_Asm_8:
7997 case ARM::VLD3DUPdWB_fixed_Asm_16:
7998 case ARM::VLD3DUPdWB_fixed_Asm_32:
7999 case ARM::VLD3DUPqWB_fixed_Asm_8:
8000 case ARM::VLD3DUPqWB_fixed_Asm_16:
8001 case ARM::VLD3DUPqWB_fixed_Asm_32: {
8002 MCInst TmpInst;
8003 unsigned Spacing;
8004 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8005 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8006 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8007 Spacing));
8008 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8009 Spacing * 2));
8010 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8011 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8012 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8013 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8014 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8015 TmpInst.addOperand(Inst.getOperand(4));
8016 Inst = TmpInst;
8017 return true;
8020 case ARM::VLD3DUPdWB_register_Asm_8:
8021 case ARM::VLD3DUPdWB_register_Asm_16:
8022 case ARM::VLD3DUPdWB_register_Asm_32:
8023 case ARM::VLD3DUPqWB_register_Asm_8:
8024 case ARM::VLD3DUPqWB_register_Asm_16:
8025 case ARM::VLD3DUPqWB_register_Asm_32: {
8026 MCInst TmpInst;
8027 unsigned Spacing;
8028 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8029 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8030 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8031 Spacing));
8032 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8033 Spacing * 2));
8034 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8035 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8036 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8037 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8038 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8039 TmpInst.addOperand(Inst.getOperand(5));
8040 Inst = TmpInst;
8041 return true;
8044 // VLD3 multiple 3-element structure instructions.
8045 case ARM::VLD3dAsm_8:
8046 case ARM::VLD3dAsm_16:
8047 case ARM::VLD3dAsm_32:
8048 case ARM::VLD3qAsm_8:
8049 case ARM::VLD3qAsm_16:
8050 case ARM::VLD3qAsm_32: {
8051 MCInst TmpInst;
8052 unsigned Spacing;
8053 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8054 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8055 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8056 Spacing));
8057 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8058 Spacing * 2));
8059 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8060 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8061 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8062 TmpInst.addOperand(Inst.getOperand(4));
8063 Inst = TmpInst;
8064 return true;
8067 case ARM::VLD3dWB_fixed_Asm_8:
8068 case ARM::VLD3dWB_fixed_Asm_16:
8069 case ARM::VLD3dWB_fixed_Asm_32:
8070 case ARM::VLD3qWB_fixed_Asm_8:
8071 case ARM::VLD3qWB_fixed_Asm_16:
8072 case ARM::VLD3qWB_fixed_Asm_32: {
8073 MCInst TmpInst;
8074 unsigned Spacing;
8075 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8076 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8077 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8078 Spacing));
8079 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8080 Spacing * 2));
8081 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8082 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8083 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8084 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8085 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8086 TmpInst.addOperand(Inst.getOperand(4));
8087 Inst = TmpInst;
8088 return true;
8091 case ARM::VLD3dWB_register_Asm_8:
8092 case ARM::VLD3dWB_register_Asm_16:
8093 case ARM::VLD3dWB_register_Asm_32:
8094 case ARM::VLD3qWB_register_Asm_8:
8095 case ARM::VLD3qWB_register_Asm_16:
8096 case ARM::VLD3qWB_register_Asm_32: {
8097 MCInst TmpInst;
8098 unsigned Spacing;
8099 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8100 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8101 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8102 Spacing));
8103 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8104 Spacing * 2));
8105 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8106 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8107 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8108 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8109 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8110 TmpInst.addOperand(Inst.getOperand(5));
8111 Inst = TmpInst;
8112 return true;
8115 // VLD4DUP single 3-element structure to all lanes instructions.
8116 case ARM::VLD4DUPdAsm_8:
8117 case ARM::VLD4DUPdAsm_16:
8118 case ARM::VLD4DUPdAsm_32:
8119 case ARM::VLD4DUPqAsm_8:
8120 case ARM::VLD4DUPqAsm_16:
8121 case ARM::VLD4DUPqAsm_32: {
8122 MCInst TmpInst;
8123 unsigned Spacing;
8124 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8125 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8126 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8127 Spacing));
8128 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8129 Spacing * 2));
8130 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8131 Spacing * 3));
8132 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8133 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8134 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8135 TmpInst.addOperand(Inst.getOperand(4));
8136 Inst = TmpInst;
8137 return true;
8140 case ARM::VLD4DUPdWB_fixed_Asm_8:
8141 case ARM::VLD4DUPdWB_fixed_Asm_16:
8142 case ARM::VLD4DUPdWB_fixed_Asm_32:
8143 case ARM::VLD4DUPqWB_fixed_Asm_8:
8144 case ARM::VLD4DUPqWB_fixed_Asm_16:
8145 case ARM::VLD4DUPqWB_fixed_Asm_32: {
8146 MCInst TmpInst;
8147 unsigned Spacing;
8148 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8149 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8150 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8151 Spacing));
8152 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8153 Spacing * 2));
8154 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8155 Spacing * 3));
8156 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8157 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8158 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8159 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8160 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8161 TmpInst.addOperand(Inst.getOperand(4));
8162 Inst = TmpInst;
8163 return true;
8166 case ARM::VLD4DUPdWB_register_Asm_8:
8167 case ARM::VLD4DUPdWB_register_Asm_16:
8168 case ARM::VLD4DUPdWB_register_Asm_32:
8169 case ARM::VLD4DUPqWB_register_Asm_8:
8170 case ARM::VLD4DUPqWB_register_Asm_16:
8171 case ARM::VLD4DUPqWB_register_Asm_32: {
8172 MCInst TmpInst;
8173 unsigned Spacing;
8174 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8175 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8176 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8177 Spacing));
8178 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8179 Spacing * 2));
8180 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8181 Spacing * 3));
8182 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8183 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8184 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8185 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8186 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8187 TmpInst.addOperand(Inst.getOperand(5));
8188 Inst = TmpInst;
8189 return true;
8192 // VLD4 multiple 4-element structure instructions.
8193 case ARM::VLD4dAsm_8:
8194 case ARM::VLD4dAsm_16:
8195 case ARM::VLD4dAsm_32:
8196 case ARM::VLD4qAsm_8:
8197 case ARM::VLD4qAsm_16:
8198 case ARM::VLD4qAsm_32: {
8199 MCInst TmpInst;
8200 unsigned Spacing;
8201 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8202 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8204 Spacing));
8205 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8206 Spacing * 2));
8207 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8208 Spacing * 3));
8209 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8210 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8211 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8212 TmpInst.addOperand(Inst.getOperand(4));
8213 Inst = TmpInst;
8214 return true;
8217 case ARM::VLD4dWB_fixed_Asm_8:
8218 case ARM::VLD4dWB_fixed_Asm_16:
8219 case ARM::VLD4dWB_fixed_Asm_32:
8220 case ARM::VLD4qWB_fixed_Asm_8:
8221 case ARM::VLD4qWB_fixed_Asm_16:
8222 case ARM::VLD4qWB_fixed_Asm_32: {
8223 MCInst TmpInst;
8224 unsigned Spacing;
8225 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8226 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8227 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8228 Spacing));
8229 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8230 Spacing * 2));
8231 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8232 Spacing * 3));
8233 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8234 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8235 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8236 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8237 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8238 TmpInst.addOperand(Inst.getOperand(4));
8239 Inst = TmpInst;
8240 return true;
8243 case ARM::VLD4dWB_register_Asm_8:
8244 case ARM::VLD4dWB_register_Asm_16:
8245 case ARM::VLD4dWB_register_Asm_32:
8246 case ARM::VLD4qWB_register_Asm_8:
8247 case ARM::VLD4qWB_register_Asm_16:
8248 case ARM::VLD4qWB_register_Asm_32: {
8249 MCInst TmpInst;
8250 unsigned Spacing;
8251 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8252 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8253 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8254 Spacing));
8255 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8256 Spacing * 2));
8257 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8258 Spacing * 3));
8259 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8260 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8261 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8262 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8263 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8264 TmpInst.addOperand(Inst.getOperand(5));
8265 Inst = TmpInst;
8266 return true;
8269 // VST3 multiple 3-element structure instructions.
8270 case ARM::VST3dAsm_8:
8271 case ARM::VST3dAsm_16:
8272 case ARM::VST3dAsm_32:
8273 case ARM::VST3qAsm_8:
8274 case ARM::VST3qAsm_16:
8275 case ARM::VST3qAsm_32: {
8276 MCInst TmpInst;
8277 unsigned Spacing;
8278 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8279 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8280 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8281 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8282 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8283 Spacing));
8284 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8285 Spacing * 2));
8286 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8287 TmpInst.addOperand(Inst.getOperand(4));
8288 Inst = TmpInst;
8289 return true;
8292 case ARM::VST3dWB_fixed_Asm_8:
8293 case ARM::VST3dWB_fixed_Asm_16:
8294 case ARM::VST3dWB_fixed_Asm_32:
8295 case ARM::VST3qWB_fixed_Asm_8:
8296 case ARM::VST3qWB_fixed_Asm_16:
8297 case ARM::VST3qWB_fixed_Asm_32: {
8298 MCInst TmpInst;
8299 unsigned Spacing;
8300 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8301 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8302 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8303 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8304 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8305 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8306 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8307 Spacing));
8308 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8309 Spacing * 2));
8310 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8311 TmpInst.addOperand(Inst.getOperand(4));
8312 Inst = TmpInst;
8313 return true;
8316 case ARM::VST3dWB_register_Asm_8:
8317 case ARM::VST3dWB_register_Asm_16:
8318 case ARM::VST3dWB_register_Asm_32:
8319 case ARM::VST3qWB_register_Asm_8:
8320 case ARM::VST3qWB_register_Asm_16:
8321 case ARM::VST3qWB_register_Asm_32: {
8322 MCInst TmpInst;
8323 unsigned Spacing;
8324 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8325 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8326 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8327 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8328 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8329 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8330 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8331 Spacing));
8332 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8333 Spacing * 2));
8334 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8335 TmpInst.addOperand(Inst.getOperand(5));
8336 Inst = TmpInst;
8337 return true;
8340 // VST4 multiple 3-element structure instructions.
8341 case ARM::VST4dAsm_8:
8342 case ARM::VST4dAsm_16:
8343 case ARM::VST4dAsm_32:
8344 case ARM::VST4qAsm_8:
8345 case ARM::VST4qAsm_16:
8346 case ARM::VST4qAsm_32: {
8347 MCInst TmpInst;
8348 unsigned Spacing;
8349 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8350 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8351 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8352 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8353 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8354 Spacing));
8355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8356 Spacing * 2));
8357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8358 Spacing * 3));
8359 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8360 TmpInst.addOperand(Inst.getOperand(4));
8361 Inst = TmpInst;
8362 return true;
8365 case ARM::VST4dWB_fixed_Asm_8:
8366 case ARM::VST4dWB_fixed_Asm_16:
8367 case ARM::VST4dWB_fixed_Asm_32:
8368 case ARM::VST4qWB_fixed_Asm_8:
8369 case ARM::VST4qWB_fixed_Asm_16:
8370 case ARM::VST4qWB_fixed_Asm_32: {
8371 MCInst TmpInst;
8372 unsigned Spacing;
8373 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8374 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8375 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8376 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8377 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8378 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8379 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8380 Spacing));
8381 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8382 Spacing * 2));
8383 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8384 Spacing * 3));
8385 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8386 TmpInst.addOperand(Inst.getOperand(4));
8387 Inst = TmpInst;
8388 return true;
8391 case ARM::VST4dWB_register_Asm_8:
8392 case ARM::VST4dWB_register_Asm_16:
8393 case ARM::VST4dWB_register_Asm_32:
8394 case ARM::VST4qWB_register_Asm_8:
8395 case ARM::VST4qWB_register_Asm_16:
8396 case ARM::VST4qWB_register_Asm_32: {
8397 MCInst TmpInst;
8398 unsigned Spacing;
8399 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8400 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8401 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8402 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8403 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8404 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8405 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8406 Spacing));
8407 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8408 Spacing * 2));
8409 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8410 Spacing * 3));
8411 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8412 TmpInst.addOperand(Inst.getOperand(5));
8413 Inst = TmpInst;
8414 return true;
8417 // Handle encoding choice for the shift-immediate instructions.
8418 case ARM::t2LSLri:
8419 case ARM::t2LSRri:
8420 case ARM::t2ASRri:
8421 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8422 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8423 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8424 !HasWideQualifier) {
8425 unsigned NewOpc;
8426 switch (Inst.getOpcode()) {
8427 default: llvm_unreachable("unexpected opcode");
8428 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
8429 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
8430 case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
8432 // The Thumb1 operands aren't in the same order. Awesome, eh?
8433 MCInst TmpInst;
8434 TmpInst.setOpcode(NewOpc);
8435 TmpInst.addOperand(Inst.getOperand(0));
8436 TmpInst.addOperand(Inst.getOperand(5));
8437 TmpInst.addOperand(Inst.getOperand(1));
8438 TmpInst.addOperand(Inst.getOperand(2));
8439 TmpInst.addOperand(Inst.getOperand(3));
8440 TmpInst.addOperand(Inst.getOperand(4));
8441 Inst = TmpInst;
8442 return true;
8444 return false;
8446 // Handle the Thumb2 mode MOV complex aliases.
8447 case ARM::t2MOVsr:
8448 case ARM::t2MOVSsr: {
8449 // Which instruction to expand to depends on the CCOut operand and
8450 // whether we're in an IT block if the register operands are low
8451 // registers.
8452 bool isNarrow = false;
8453 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8454 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8455 isARMLowRegister(Inst.getOperand(2).getReg()) &&
8456 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8457 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
8458 !HasWideQualifier)
8459 isNarrow = true;
8460 MCInst TmpInst;
8461 unsigned newOpc;
8462 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
8463 default: llvm_unreachable("unexpected opcode!");
8464 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
8465 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
8466 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
8467 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
8469 TmpInst.setOpcode(newOpc);
8470 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8471 if (isNarrow)
8472 TmpInst.addOperand(MCOperand::createReg(
8473 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8474 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8475 TmpInst.addOperand(Inst.getOperand(2)); // Rm
8476 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8477 TmpInst.addOperand(Inst.getOperand(5));
8478 if (!isNarrow)
8479 TmpInst.addOperand(MCOperand::createReg(
8480 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8481 Inst = TmpInst;
8482 return true;
8484 case ARM::t2MOVsi:
8485 case ARM::t2MOVSsi: {
8486 // Which instruction to expand to depends on the CCOut operand and
8487 // whether we're in an IT block if the register operands are low
8488 // registers.
8489 bool isNarrow = false;
8490 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8491 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8492 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
8493 !HasWideQualifier)
8494 isNarrow = true;
8495 MCInst TmpInst;
8496 unsigned newOpc;
8497 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8498 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
8499 bool isMov = false;
8500 // MOV rd, rm, LSL #0 is actually a MOV instruction
8501 if (Shift == ARM_AM::lsl && Amount == 0) {
8502 isMov = true;
8503 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
8504 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
8505 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
8506 // instead.
8507 if (inITBlock()) {
8508 isNarrow = false;
8510 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
8511 } else {
8512 switch(Shift) {
8513 default: llvm_unreachable("unexpected opcode!");
8514 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
8515 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
8516 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
8517 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
8518 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
8521 if (Amount == 32) Amount = 0;
8522 TmpInst.setOpcode(newOpc);
8523 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8524 if (isNarrow && !isMov)
8525 TmpInst.addOperand(MCOperand::createReg(
8526 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8527 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8528 if (newOpc != ARM::t2RRX && !isMov)
8529 TmpInst.addOperand(MCOperand::createImm(Amount));
8530 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8531 TmpInst.addOperand(Inst.getOperand(4));
8532 if (!isNarrow)
8533 TmpInst.addOperand(MCOperand::createReg(
8534 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8535 Inst = TmpInst;
8536 return true;
8538 // Handle the ARM mode MOV complex aliases.
8539 case ARM::ASRr:
8540 case ARM::LSRr:
8541 case ARM::LSLr:
8542 case ARM::RORr: {
8543 ARM_AM::ShiftOpc ShiftTy;
8544 switch(Inst.getOpcode()) {
8545 default: llvm_unreachable("unexpected opcode!");
8546 case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
8547 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
8548 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
8549 case ARM::RORr: ShiftTy = ARM_AM::ror; break;
8551 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
8552 MCInst TmpInst;
8553 TmpInst.setOpcode(ARM::MOVsr);
8554 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8555 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8556 TmpInst.addOperand(Inst.getOperand(2)); // Rm
8557 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8558 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8559 TmpInst.addOperand(Inst.getOperand(4));
8560 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8561 Inst = TmpInst;
8562 return true;
8564 case ARM::ASRi:
8565 case ARM::LSRi:
8566 case ARM::LSLi:
8567 case ARM::RORi: {
8568 ARM_AM::ShiftOpc ShiftTy;
8569 switch(Inst.getOpcode()) {
8570 default: llvm_unreachable("unexpected opcode!");
8571 case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
8572 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
8573 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
8574 case ARM::RORi: ShiftTy = ARM_AM::ror; break;
8576 // A shift by zero is a plain MOVr, not a MOVsi.
8577 unsigned Amt = Inst.getOperand(2).getImm();
8578 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
8579 // A shift by 32 should be encoded as 0 when permitted
8580 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
8581 Amt = 0;
8582 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
8583 MCInst TmpInst;
8584 TmpInst.setOpcode(Opc);
8585 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8586 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8587 if (Opc == ARM::MOVsi)
8588 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8589 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8590 TmpInst.addOperand(Inst.getOperand(4));
8591 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8592 Inst = TmpInst;
8593 return true;
8595 case ARM::RRXi: {
8596 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
8597 MCInst TmpInst;
8598 TmpInst.setOpcode(ARM::MOVsi);
8599 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8600 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8601 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8602 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8603 TmpInst.addOperand(Inst.getOperand(3));
8604 TmpInst.addOperand(Inst.getOperand(4)); // cc_out
8605 Inst = TmpInst;
8606 return true;
8608 case ARM::t2LDMIA_UPD: {
8609 // If this is a load of a single register, then we should use
8610 // a post-indexed LDR instruction instead, per the ARM ARM.
8611 if (Inst.getNumOperands() != 5)
8612 return false;
8613 MCInst TmpInst;
8614 TmpInst.setOpcode(ARM::t2LDR_POST);
8615 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8616 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8617 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8618 TmpInst.addOperand(MCOperand::createImm(4));
8619 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8620 TmpInst.addOperand(Inst.getOperand(3));
8621 Inst = TmpInst;
8622 return true;
8624 case ARM::t2STMDB_UPD: {
8625 // If this is a store of a single register, then we should use
8626 // a pre-indexed STR instruction instead, per the ARM ARM.
8627 if (Inst.getNumOperands() != 5)
8628 return false;
8629 MCInst TmpInst;
8630 TmpInst.setOpcode(ARM::t2STR_PRE);
8631 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8632 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8633 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8634 TmpInst.addOperand(MCOperand::createImm(-4));
8635 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8636 TmpInst.addOperand(Inst.getOperand(3));
8637 Inst = TmpInst;
8638 return true;
8640 case ARM::LDMIA_UPD:
8641 // If this is a load of a single register via a 'pop', then we should use
8642 // a post-indexed LDR instruction instead, per the ARM ARM.
8643 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
8644 Inst.getNumOperands() == 5) {
8645 MCInst TmpInst;
8646 TmpInst.setOpcode(ARM::LDR_POST_IMM);
8647 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8648 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8649 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8650 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset
8651 TmpInst.addOperand(MCOperand::createImm(4));
8652 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8653 TmpInst.addOperand(Inst.getOperand(3));
8654 Inst = TmpInst;
8655 return true;
8657 break;
8658 case ARM::STMDB_UPD:
8659 // If this is a store of a single register via a 'push', then we should use
8660 // a pre-indexed STR instruction instead, per the ARM ARM.
8661 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
8662 Inst.getNumOperands() == 5) {
8663 MCInst TmpInst;
8664 TmpInst.setOpcode(ARM::STR_PRE_IMM);
8665 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8666 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8667 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
8668 TmpInst.addOperand(MCOperand::createImm(-4));
8669 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8670 TmpInst.addOperand(Inst.getOperand(3));
8671 Inst = TmpInst;
8673 break;
8674 case ARM::t2ADDri12:
8675 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8676 // mnemonic was used (not "addw"), encoding T3 is preferred.
8677 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
8678 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8679 break;
8680 Inst.setOpcode(ARM::t2ADDri);
8681 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8682 break;
8683 case ARM::t2SUBri12:
8684 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8685 // mnemonic was used (not "subw"), encoding T3 is preferred.
8686 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
8687 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8688 break;
8689 Inst.setOpcode(ARM::t2SUBri);
8690 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8691 break;
8692 case ARM::tADDi8:
8693 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8694 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8695 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8696 // to encoding T1 if <Rd> is omitted."
8697 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8698 Inst.setOpcode(ARM::tADDi3);
8699 return true;
8701 break;
8702 case ARM::tSUBi8:
8703 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8704 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8705 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8706 // to encoding T1 if <Rd> is omitted."
8707 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8708 Inst.setOpcode(ARM::tSUBi3);
8709 return true;
8711 break;
8712 case ARM::t2ADDri:
8713 case ARM::t2SUBri: {
8714 // If the destination and first source operand are the same, and
8715 // the flags are compatible with the current IT status, use encoding T2
8716 // instead of T3. For compatibility with the system 'as'. Make sure the
8717 // wide encoding wasn't explicit.
8718 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
8719 !isARMLowRegister(Inst.getOperand(0).getReg()) ||
8720 (Inst.getOperand(2).isImm() &&
8721 (unsigned)Inst.getOperand(2).getImm() > 255) ||
8722 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
8723 HasWideQualifier)
8724 break;
8725 MCInst TmpInst;
8726 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
8727 ARM::tADDi8 : ARM::tSUBi8);
8728 TmpInst.addOperand(Inst.getOperand(0));
8729 TmpInst.addOperand(Inst.getOperand(5));
8730 TmpInst.addOperand(Inst.getOperand(0));
8731 TmpInst.addOperand(Inst.getOperand(2));
8732 TmpInst.addOperand(Inst.getOperand(3));
8733 TmpInst.addOperand(Inst.getOperand(4));
8734 Inst = TmpInst;
8735 return true;
8737 case ARM::t2ADDrr: {
8738 // If the destination and first source operand are the same, and
8739 // there's no setting of the flags, use encoding T2 instead of T3.
8740 // Note that this is only for ADD, not SUB. This mirrors the system
8741 // 'as' behaviour. Also take advantage of ADD being commutative.
8742 // Make sure the wide encoding wasn't explicit.
8743 bool Swap = false;
8744 auto DestReg = Inst.getOperand(0).getReg();
8745 bool Transform = DestReg == Inst.getOperand(1).getReg();
8746 if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
8747 Transform = true;
8748 Swap = true;
8750 if (!Transform ||
8751 Inst.getOperand(5).getReg() != 0 ||
8752 HasWideQualifier)
8753 break;
8754 MCInst TmpInst;
8755 TmpInst.setOpcode(ARM::tADDhirr);
8756 TmpInst.addOperand(Inst.getOperand(0));
8757 TmpInst.addOperand(Inst.getOperand(0));
8758 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
8759 TmpInst.addOperand(Inst.getOperand(3));
8760 TmpInst.addOperand(Inst.getOperand(4));
8761 Inst = TmpInst;
8762 return true;
8764 case ARM::tADDrSP:
8765 // If the non-SP source operand and the destination operand are not the
8766 // same, we need to use the 32-bit encoding if it's available.
8767 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8768 Inst.setOpcode(ARM::t2ADDrr);
8769 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8770 return true;
8772 break;
8773 case ARM::tB:
8774 // A Thumb conditional branch outside of an IT block is a tBcc.
8775 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
8776 Inst.setOpcode(ARM::tBcc);
8777 return true;
8779 break;
8780 case ARM::t2B:
8781 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8782 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
8783 Inst.setOpcode(ARM::t2Bcc);
8784 return true;
8786 break;
8787 case ARM::t2Bcc:
8788 // If the conditional is AL or we're in an IT block, we really want t2B.
8789 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
8790 Inst.setOpcode(ARM::t2B);
8791 return true;
8793 break;
8794 case ARM::tBcc:
8795 // If the conditional is AL, we really want tB.
8796 if (Inst.getOperand(1).getImm() == ARMCC::AL) {
8797 Inst.setOpcode(ARM::tB);
8798 return true;
8800 break;
8801 case ARM::tLDMIA: {
8802 // If the register list contains any high registers, or if the writeback
8803 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8804 // instead if we're in Thumb2. Otherwise, this should have generated
8805 // an error in validateInstruction().
8806 unsigned Rn = Inst.getOperand(0).getReg();
8807 bool hasWritebackToken =
8808 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8809 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
8810 bool listContainsBase;
8811 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
8812 (!listContainsBase && !hasWritebackToken) ||
8813 (listContainsBase && hasWritebackToken)) {
8814 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8815 assert(isThumbTwo());
8816 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
8817 // If we're switching to the updating version, we need to insert
8818 // the writeback tied operand.
8819 if (hasWritebackToken)
8820 Inst.insert(Inst.begin(),
8821 MCOperand::createReg(Inst.getOperand(0).getReg()));
8822 return true;
8824 break;
8826 case ARM::tSTMIA_UPD: {
8827 // If the register list contains any high registers, we need to use
8828 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8829 // should have generated an error in validateInstruction().
8830 unsigned Rn = Inst.getOperand(0).getReg();
8831 bool listContainsBase;
8832 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
8833 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8834 assert(isThumbTwo());
8835 Inst.setOpcode(ARM::t2STMIA_UPD);
8836 return true;
8838 break;
8840 case ARM::tPOP: {
8841 bool listContainsBase;
8842 // If the register list contains any high registers, we need to use
8843 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8844 // should have generated an error in validateInstruction().
8845 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
8846 return false;
8847 assert(isThumbTwo());
8848 Inst.setOpcode(ARM::t2LDMIA_UPD);
8849 // Add the base register and writeback operands.
8850 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8851 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8852 return true;
8854 case ARM::tPUSH: {
8855 bool listContainsBase;
8856 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
8857 return false;
8858 assert(isThumbTwo());
8859 Inst.setOpcode(ARM::t2STMDB_UPD);
8860 // Add the base register and writeback operands.
8861 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8862 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8863 return true;
8865 case ARM::t2MOVi:
8866 // If we can use the 16-bit encoding and the user didn't explicitly
8867 // request the 32-bit variant, transform it here.
8868 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8869 (Inst.getOperand(1).isImm() &&
8870 (unsigned)Inst.getOperand(1).getImm() <= 255) &&
8871 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8872 !HasWideQualifier) {
8873 // The operands aren't in the same order for tMOVi8...
8874 MCInst TmpInst;
8875 TmpInst.setOpcode(ARM::tMOVi8);
8876 TmpInst.addOperand(Inst.getOperand(0));
8877 TmpInst.addOperand(Inst.getOperand(4));
8878 TmpInst.addOperand(Inst.getOperand(1));
8879 TmpInst.addOperand(Inst.getOperand(2));
8880 TmpInst.addOperand(Inst.getOperand(3));
8881 Inst = TmpInst;
8882 return true;
8884 break;
8886 case ARM::t2MOVr:
8887 // If we can use the 16-bit encoding and the user didn't explicitly
8888 // request the 32-bit variant, transform it here.
8889 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8890 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8891 Inst.getOperand(2).getImm() == ARMCC::AL &&
8892 Inst.getOperand(4).getReg() == ARM::CPSR &&
8893 !HasWideQualifier) {
8894 // The operands aren't the same for tMOV[S]r... (no cc_out)
8895 MCInst TmpInst;
8896 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
8897 TmpInst.addOperand(Inst.getOperand(0));
8898 TmpInst.addOperand(Inst.getOperand(1));
8899 TmpInst.addOperand(Inst.getOperand(2));
8900 TmpInst.addOperand(Inst.getOperand(3));
8901 Inst = TmpInst;
8902 return true;
8904 break;
8906 case ARM::t2SXTH:
8907 case ARM::t2SXTB:
8908 case ARM::t2UXTH:
8909 case ARM::t2UXTB:
8910 // If we can use the 16-bit encoding and the user didn't explicitly
8911 // request the 32-bit variant, transform it here.
8912 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8913 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8914 Inst.getOperand(2).getImm() == 0 &&
8915 !HasWideQualifier) {
8916 unsigned NewOpc;
8917 switch (Inst.getOpcode()) {
8918 default: llvm_unreachable("Illegal opcode!");
8919 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
8920 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
8921 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
8922 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
8924 // The operands aren't the same for thumb1 (no rotate operand).
8925 MCInst TmpInst;
8926 TmpInst.setOpcode(NewOpc);
8927 TmpInst.addOperand(Inst.getOperand(0));
8928 TmpInst.addOperand(Inst.getOperand(1));
8929 TmpInst.addOperand(Inst.getOperand(3));
8930 TmpInst.addOperand(Inst.getOperand(4));
8931 Inst = TmpInst;
8932 return true;
8934 break;
8936 case ARM::MOVsi: {
8937 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8938 // rrx shifts and asr/lsr of #32 is encoded as 0
8939 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
8940 return false;
8941 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
8942 // Shifting by zero is accepted as a vanilla 'MOVr'
8943 MCInst TmpInst;
8944 TmpInst.setOpcode(ARM::MOVr);
8945 TmpInst.addOperand(Inst.getOperand(0));
8946 TmpInst.addOperand(Inst.getOperand(1));
8947 TmpInst.addOperand(Inst.getOperand(3));
8948 TmpInst.addOperand(Inst.getOperand(4));
8949 TmpInst.addOperand(Inst.getOperand(5));
8950 Inst = TmpInst;
8951 return true;
8953 return false;
8955 case ARM::ANDrsi:
8956 case ARM::ORRrsi:
8957 case ARM::EORrsi:
8958 case ARM::BICrsi:
8959 case ARM::SUBrsi:
8960 case ARM::ADDrsi: {
8961 unsigned newOpc;
8962 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
8963 if (SOpc == ARM_AM::rrx) return false;
8964 switch (Inst.getOpcode()) {
8965 default: llvm_unreachable("unexpected opcode!");
8966 case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
8967 case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
8968 case ARM::EORrsi: newOpc = ARM::EORrr; break;
8969 case ARM::BICrsi: newOpc = ARM::BICrr; break;
8970 case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
8971 case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
8973 // If the shift is by zero, use the non-shifted instruction definition.
8974 // The exception is for right shifts, where 0 == 32
8975 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
8976 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
8977 MCInst TmpInst;
8978 TmpInst.setOpcode(newOpc);
8979 TmpInst.addOperand(Inst.getOperand(0));
8980 TmpInst.addOperand(Inst.getOperand(1));
8981 TmpInst.addOperand(Inst.getOperand(2));
8982 TmpInst.addOperand(Inst.getOperand(4));
8983 TmpInst.addOperand(Inst.getOperand(5));
8984 TmpInst.addOperand(Inst.getOperand(6));
8985 Inst = TmpInst;
8986 return true;
8988 return false;
8990 case ARM::ITasm:
8991 case ARM::t2IT: {
8992 MCOperand &MO = Inst.getOperand(1);
8993 unsigned Mask = MO.getImm();
8994 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
8996 // Set up the IT block state according to the IT instruction we just
8997 // matched.
8998 assert(!inITBlock() && "nested IT blocks?!");
8999 startExplicitITBlock(Cond, Mask);
9000 MO.setImm(getITMaskEncoding());
9001 break;
9003 case ARM::t2LSLrr:
9004 case ARM::t2LSRrr:
9005 case ARM::t2ASRrr:
9006 case ARM::t2SBCrr:
9007 case ARM::t2RORrr:
9008 case ARM::t2BICrr:
9009 // Assemblers should use the narrow encodings of these instructions when permissible.
9010 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
9011 isARMLowRegister(Inst.getOperand(2).getReg())) &&
9012 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
9013 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9014 !HasWideQualifier) {
9015 unsigned NewOpc;
9016 switch (Inst.getOpcode()) {
9017 default: llvm_unreachable("unexpected opcode");
9018 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
9019 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
9020 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
9021 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
9022 case ARM::t2RORrr: NewOpc = ARM::tROR; break;
9023 case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
9025 MCInst TmpInst;
9026 TmpInst.setOpcode(NewOpc);
9027 TmpInst.addOperand(Inst.getOperand(0));
9028 TmpInst.addOperand(Inst.getOperand(5));
9029 TmpInst.addOperand(Inst.getOperand(1));
9030 TmpInst.addOperand(Inst.getOperand(2));
9031 TmpInst.addOperand(Inst.getOperand(3));
9032 TmpInst.addOperand(Inst.getOperand(4));
9033 Inst = TmpInst;
9034 return true;
9036 return false;
9038 case ARM::t2ANDrr:
9039 case ARM::t2EORrr:
9040 case ARM::t2ADCrr:
9041 case ARM::t2ORRrr:
9042 // Assemblers should use the narrow encodings of these instructions when permissible.
9043 // These instructions are special in that they are commutable, so shorter encodings
9044 // are available more often.
9045 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
9046 isARMLowRegister(Inst.getOperand(2).getReg())) &&
9047 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
9048 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
9049 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9050 !HasWideQualifier) {
9051 unsigned NewOpc;
9052 switch (Inst.getOpcode()) {
9053 default: llvm_unreachable("unexpected opcode");
9054 case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
9055 case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
9056 case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
9057 case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
9059 MCInst TmpInst;
9060 TmpInst.setOpcode(NewOpc);
9061 TmpInst.addOperand(Inst.getOperand(0));
9062 TmpInst.addOperand(Inst.getOperand(5));
9063 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
9064 TmpInst.addOperand(Inst.getOperand(1));
9065 TmpInst.addOperand(Inst.getOperand(2));
9066 } else {
9067 TmpInst.addOperand(Inst.getOperand(2));
9068 TmpInst.addOperand(Inst.getOperand(1));
9070 TmpInst.addOperand(Inst.getOperand(3));
9071 TmpInst.addOperand(Inst.getOperand(4));
9072 Inst = TmpInst;
9073 return true;
9075 return false;
9077 return false;
9080 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
9081 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
9082 // suffix depending on whether they're in an IT block or not.
9083 unsigned Opc = Inst.getOpcode();
9084 const MCInstrDesc &MCID = MII.get(Opc);
9085 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
9086 assert(MCID.hasOptionalDef() &&
9087 "optionally flag setting instruction missing optional def operand");
9088 assert(MCID.NumOperands == Inst.getNumOperands() &&
9089 "operand count mismatch!");
9090 // Find the optional-def operand (cc_out).
9091 unsigned OpNo;
9092 for (OpNo = 0;
9093 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
9094 ++OpNo)
9096 // If we're parsing Thumb1, reject it completely.
9097 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
9098 return Match_RequiresFlagSetting;
9099 // If we're parsing Thumb2, which form is legal depends on whether we're
9100 // in an IT block.
9101 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
9102 !inITBlock())
9103 return Match_RequiresITBlock;
9104 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
9105 inITBlock())
9106 return Match_RequiresNotITBlock;
9107 // LSL with zero immediate is not allowed in an IT block
9108 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
9109 return Match_RequiresNotITBlock;
9110 } else if (isThumbOne()) {
9111 // Some high-register supporting Thumb1 encodings only allow both registers
9112 // to be from r0-r7 when in Thumb2.
9113 if (Opc == ARM::tADDhirr && !hasV6MOps() &&
9114 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9115 isARMLowRegister(Inst.getOperand(2).getReg()))
9116 return Match_RequiresThumb2;
9117 // Others only require ARMv6 or later.
9118 else if (Opc == ARM::tMOVr && !hasV6Ops() &&
9119 isARMLowRegister(Inst.getOperand(0).getReg()) &&
9120 isARMLowRegister(Inst.getOperand(1).getReg()))
9121 return Match_RequiresV6;
9124 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
9125 // than the loop below can handle, so it uses the GPRnopc register class and
9126 // we do SP handling here.
9127 if (Opc == ARM::t2MOVr && !hasV8Ops())
9129 // SP as both source and destination is not allowed
9130 if (Inst.getOperand(0).getReg() == ARM::SP &&
9131 Inst.getOperand(1).getReg() == ARM::SP)
9132 return Match_RequiresV8;
9133 // When flags-setting SP as either source or destination is not allowed
9134 if (Inst.getOperand(4).getReg() == ARM::CPSR &&
9135 (Inst.getOperand(0).getReg() == ARM::SP ||
9136 Inst.getOperand(1).getReg() == ARM::SP))
9137 return Match_RequiresV8;
9140 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
9141 // ARMv8-A.
9142 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) &&
9143 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops()))
9144 return Match_InvalidOperand;
9146 for (unsigned I = 0; I < MCID.NumOperands; ++I)
9147 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
9148 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
9149 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops())
9150 return Match_RequiresV8;
9151 else if (Inst.getOperand(I).getReg() == ARM::PC)
9152 return Match_InvalidOperand;
9155 return Match_Success;
9158 namespace llvm {
9160 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
9161 return true; // In an assembly source, no need to second-guess
9164 } // end namespace llvm
9166 // Returns true if Inst is unpredictable if it is in and IT block, but is not
9167 // the last instruction in the block.
9168 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
9169 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9171 // All branch & call instructions terminate IT blocks with the exception of
9172 // SVC.
9173 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
9174 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
9175 return true;
9177 // Any arithmetic instruction which writes to the PC also terminates the IT
9178 // block.
9179 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
9180 return true;
9182 return false;
9185 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
9186 SmallVectorImpl<NearMissInfo> &NearMisses,
9187 bool MatchingInlineAsm,
9188 bool &EmitInITBlock,
9189 MCStreamer &Out) {
9190 // If we can't use an implicit IT block here, just match as normal.
9191 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
9192 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9194 // Try to match the instruction in an extension of the current IT block (if
9195 // there is one).
9196 if (inImplicitITBlock()) {
9197 extendImplicitITBlock(ITState.Cond);
9198 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9199 Match_Success) {
9200 // The match succeded, but we still have to check that the instruction is
9201 // valid in this implicit IT block.
9202 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9203 if (MCID.isPredicable()) {
9204 ARMCC::CondCodes InstCond =
9205 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9206 .getImm();
9207 ARMCC::CondCodes ITCond = currentITCond();
9208 if (InstCond == ITCond) {
9209 EmitInITBlock = true;
9210 return Match_Success;
9211 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
9212 invertCurrentITCondition();
9213 EmitInITBlock = true;
9214 return Match_Success;
9218 rewindImplicitITPosition();
9221 // Finish the current IT block, and try to match outside any IT block.
9222 flushPendingInstructions(Out);
9223 unsigned PlainMatchResult =
9224 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9225 if (PlainMatchResult == Match_Success) {
9226 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9227 if (MCID.isPredicable()) {
9228 ARMCC::CondCodes InstCond =
9229 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9230 .getImm();
9231 // Some forms of the branch instruction have their own condition code
9232 // fields, so can be conditionally executed without an IT block.
9233 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
9234 EmitInITBlock = false;
9235 return Match_Success;
9237 if (InstCond == ARMCC::AL) {
9238 EmitInITBlock = false;
9239 return Match_Success;
9241 } else {
9242 EmitInITBlock = false;
9243 return Match_Success;
9247 // Try to match in a new IT block. The matcher doesn't check the actual
9248 // condition, so we create an IT block with a dummy condition, and fix it up
9249 // once we know the actual condition.
9250 startImplicitITBlock();
9251 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9252 Match_Success) {
9253 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9254 if (MCID.isPredicable()) {
9255 ITState.Cond =
9256 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9257 .getImm();
9258 EmitInITBlock = true;
9259 return Match_Success;
9262 discardImplicitITBlock();
9264 // If none of these succeed, return the error we got when trying to match
9265 // outside any IT blocks.
9266 EmitInITBlock = false;
9267 return PlainMatchResult;
9270 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS,
9271 unsigned VariantID = 0);
9273 static const char *getSubtargetFeatureName(uint64_t Val);
9274 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
9275 OperandVector &Operands,
9276 MCStreamer &Out, uint64_t &ErrorInfo,
9277 bool MatchingInlineAsm) {
9278 MCInst Inst;
9279 unsigned MatchResult;
9280 bool PendConditionalInstruction = false;
9282 SmallVector<NearMissInfo, 4> NearMisses;
9283 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
9284 PendConditionalInstruction, Out);
9286 switch (MatchResult) {
9287 case Match_Success:
9288 LLVM_DEBUG(dbgs() << "Parsed as: ";
9289 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
9290 dbgs() << "\n");
9292 // Context sensitive operand constraints aren't handled by the matcher,
9293 // so check them here.
9294 if (validateInstruction(Inst, Operands)) {
9295 // Still progress the IT block, otherwise one wrong condition causes
9296 // nasty cascading errors.
9297 forwardITPosition();
9298 return true;
9301 { // processInstruction() updates inITBlock state, we need to save it away
9302 bool wasInITBlock = inITBlock();
9304 // Some instructions need post-processing to, for example, tweak which
9305 // encoding is selected. Loop on it while changes happen so the
9306 // individual transformations can chain off each other. E.g.,
9307 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
9308 while (processInstruction(Inst, Operands, Out))
9309 LLVM_DEBUG(dbgs() << "Changed to: ";
9310 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
9311 dbgs() << "\n");
9313 // Only after the instruction is fully processed, we can validate it
9314 if (wasInITBlock && hasV8Ops() && isThumb() &&
9315 !isV8EligibleForIT(&Inst)) {
9316 Warning(IDLoc, "deprecated instruction in IT block");
9320 // Only move forward at the very end so that everything in validate
9321 // and process gets a consistent answer about whether we're in an IT
9322 // block.
9323 forwardITPosition();
9325 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
9326 // doesn't actually encode.
9327 if (Inst.getOpcode() == ARM::ITasm)
9328 return false;
9330 Inst.setLoc(IDLoc);
9331 if (PendConditionalInstruction) {
9332 PendingConditionalInsts.push_back(Inst);
9333 if (isITBlockFull() || isITBlockTerminator(Inst))
9334 flushPendingInstructions(Out);
9335 } else {
9336 Out.EmitInstruction(Inst, getSTI());
9338 return false;
9339 case Match_NearMisses:
9340 ReportNearMisses(NearMisses, IDLoc, Operands);
9341 return true;
9342 case Match_MnemonicFail: {
9343 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
9344 std::string Suggestion = ARMMnemonicSpellCheck(
9345 ((ARMOperand &)*Operands[0]).getToken(), FBS);
9346 return Error(IDLoc, "invalid instruction" + Suggestion,
9347 ((ARMOperand &)*Operands[0]).getLocRange());
9351 llvm_unreachable("Implement any new match types added!");
9354 /// parseDirective parses the arm specific directives
9355 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
9356 const MCObjectFileInfo::Environment Format =
9357 getContext().getObjectFileInfo()->getObjectFileType();
9358 bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9359 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
9361 StringRef IDVal = DirectiveID.getIdentifier();
9362 if (IDVal == ".word")
9363 parseLiteralValues(4, DirectiveID.getLoc());
9364 else if (IDVal == ".short" || IDVal == ".hword")
9365 parseLiteralValues(2, DirectiveID.getLoc());
9366 else if (IDVal == ".thumb")
9367 parseDirectiveThumb(DirectiveID.getLoc());
9368 else if (IDVal == ".arm")
9369 parseDirectiveARM(DirectiveID.getLoc());
9370 else if (IDVal == ".thumb_func")
9371 parseDirectiveThumbFunc(DirectiveID.getLoc());
9372 else if (IDVal == ".code")
9373 parseDirectiveCode(DirectiveID.getLoc());
9374 else if (IDVal == ".syntax")
9375 parseDirectiveSyntax(DirectiveID.getLoc());
9376 else if (IDVal == ".unreq")
9377 parseDirectiveUnreq(DirectiveID.getLoc());
9378 else if (IDVal == ".fnend")
9379 parseDirectiveFnEnd(DirectiveID.getLoc());
9380 else if (IDVal == ".cantunwind")
9381 parseDirectiveCantUnwind(DirectiveID.getLoc());
9382 else if (IDVal == ".personality")
9383 parseDirectivePersonality(DirectiveID.getLoc());
9384 else if (IDVal == ".handlerdata")
9385 parseDirectiveHandlerData(DirectiveID.getLoc());
9386 else if (IDVal == ".setfp")
9387 parseDirectiveSetFP(DirectiveID.getLoc());
9388 else if (IDVal == ".pad")
9389 parseDirectivePad(DirectiveID.getLoc());
9390 else if (IDVal == ".save")
9391 parseDirectiveRegSave(DirectiveID.getLoc(), false);
9392 else if (IDVal == ".vsave")
9393 parseDirectiveRegSave(DirectiveID.getLoc(), true);
9394 else if (IDVal == ".ltorg" || IDVal == ".pool")
9395 parseDirectiveLtorg(DirectiveID.getLoc());
9396 else if (IDVal == ".even")
9397 parseDirectiveEven(DirectiveID.getLoc());
9398 else if (IDVal == ".personalityindex")
9399 parseDirectivePersonalityIndex(DirectiveID.getLoc());
9400 else if (IDVal == ".unwind_raw")
9401 parseDirectiveUnwindRaw(DirectiveID.getLoc());
9402 else if (IDVal == ".movsp")
9403 parseDirectiveMovSP(DirectiveID.getLoc());
9404 else if (IDVal == ".arch_extension")
9405 parseDirectiveArchExtension(DirectiveID.getLoc());
9406 else if (IDVal == ".align")
9407 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
9408 else if (IDVal == ".thumb_set")
9409 parseDirectiveThumbSet(DirectiveID.getLoc());
9410 else if (IDVal == ".inst")
9411 parseDirectiveInst(DirectiveID.getLoc());
9412 else if (IDVal == ".inst.n")
9413 parseDirectiveInst(DirectiveID.getLoc(), 'n');
9414 else if (IDVal == ".inst.w")
9415 parseDirectiveInst(DirectiveID.getLoc(), 'w');
9416 else if (!IsMachO && !IsCOFF) {
9417 if (IDVal == ".arch")
9418 parseDirectiveArch(DirectiveID.getLoc());
9419 else if (IDVal == ".cpu")
9420 parseDirectiveCPU(DirectiveID.getLoc());
9421 else if (IDVal == ".eabi_attribute")
9422 parseDirectiveEabiAttr(DirectiveID.getLoc());
9423 else if (IDVal == ".fpu")
9424 parseDirectiveFPU(DirectiveID.getLoc());
9425 else if (IDVal == ".fnstart")
9426 parseDirectiveFnStart(DirectiveID.getLoc());
9427 else if (IDVal == ".object_arch")
9428 parseDirectiveObjectArch(DirectiveID.getLoc());
9429 else if (IDVal == ".tlsdescseq")
9430 parseDirectiveTLSDescSeq(DirectiveID.getLoc());
9431 else
9432 return true;
9433 } else
9434 return true;
9435 return false;
9438 /// parseLiteralValues
9439 /// ::= .hword expression [, expression]*
9440 /// ::= .short expression [, expression]*
9441 /// ::= .word expression [, expression]*
9442 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
9443 auto parseOne = [&]() -> bool {
9444 const MCExpr *Value;
9445 if (getParser().parseExpression(Value))
9446 return true;
9447 getParser().getStreamer().EmitValue(Value, Size, L);
9448 return false;
9450 return (parseMany(parseOne));
9453 /// parseDirectiveThumb
9454 /// ::= .thumb
9455 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
9456 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9457 check(!hasThumb(), L, "target does not support Thumb mode"))
9458 return true;
9460 if (!isThumb())
9461 SwitchMode();
9463 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9464 return false;
9467 /// parseDirectiveARM
9468 /// ::= .arm
9469 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
9470 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9471 check(!hasARM(), L, "target does not support ARM mode"))
9472 return true;
9474 if (isThumb())
9475 SwitchMode();
9476 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9477 return false;
9480 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
9481 // We need to flush the current implicit IT block on a label, because it is
9482 // not legal to branch into an IT block.
9483 flushPendingInstructions(getStreamer());
9486 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
9487 if (NextSymbolIsThumb) {
9488 getParser().getStreamer().EmitThumbFunc(Symbol);
9489 NextSymbolIsThumb = false;
9493 /// parseDirectiveThumbFunc
9494 /// ::= .thumbfunc symbol_name
9495 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
9496 MCAsmParser &Parser = getParser();
9497 const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
9498 bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9500 // Darwin asm has (optionally) function name after .thumb_func direction
9501 // ELF doesn't
9503 if (IsMachO) {
9504 if (Parser.getTok().is(AsmToken::Identifier) ||
9505 Parser.getTok().is(AsmToken::String)) {
9506 MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
9507 Parser.getTok().getIdentifier());
9508 getParser().getStreamer().EmitThumbFunc(Func);
9509 Parser.Lex();
9510 if (parseToken(AsmToken::EndOfStatement,
9511 "unexpected token in '.thumb_func' directive"))
9512 return true;
9513 return false;
9517 if (parseToken(AsmToken::EndOfStatement,
9518 "unexpected token in '.thumb_func' directive"))
9519 return true;
9521 NextSymbolIsThumb = true;
9522 return false;
9525 /// parseDirectiveSyntax
9526 /// ::= .syntax unified | divided
9527 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
9528 MCAsmParser &Parser = getParser();
9529 const AsmToken &Tok = Parser.getTok();
9530 if (Tok.isNot(AsmToken::Identifier)) {
9531 Error(L, "unexpected token in .syntax directive");
9532 return false;
9535 StringRef Mode = Tok.getString();
9536 Parser.Lex();
9537 if (check(Mode == "divided" || Mode == "DIVIDED", L,
9538 "'.syntax divided' arm assembly not supported") ||
9539 check(Mode != "unified" && Mode != "UNIFIED", L,
9540 "unrecognized syntax mode in .syntax directive") ||
9541 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9542 return true;
9544 // TODO tell the MC streamer the mode
9545 // getParser().getStreamer().Emit???();
9546 return false;
9549 /// parseDirectiveCode
9550 /// ::= .code 16 | 32
9551 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
9552 MCAsmParser &Parser = getParser();
9553 const AsmToken &Tok = Parser.getTok();
9554 if (Tok.isNot(AsmToken::Integer))
9555 return Error(L, "unexpected token in .code directive");
9556 int64_t Val = Parser.getTok().getIntVal();
9557 if (Val != 16 && Val != 32) {
9558 Error(L, "invalid operand to .code directive");
9559 return false;
9561 Parser.Lex();
9563 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9564 return true;
9566 if (Val == 16) {
9567 if (!hasThumb())
9568 return Error(L, "target does not support Thumb mode");
9570 if (!isThumb())
9571 SwitchMode();
9572 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9573 } else {
9574 if (!hasARM())
9575 return Error(L, "target does not support ARM mode");
9577 if (isThumb())
9578 SwitchMode();
9579 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9582 return false;
9585 /// parseDirectiveReq
9586 /// ::= name .req registername
9587 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
9588 MCAsmParser &Parser = getParser();
9589 Parser.Lex(); // Eat the '.req' token.
9590 unsigned Reg;
9591 SMLoc SRegLoc, ERegLoc;
9592 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
9593 "register name expected") ||
9594 parseToken(AsmToken::EndOfStatement,
9595 "unexpected input in .req directive."))
9596 return true;
9598 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
9599 return Error(SRegLoc,
9600 "redefinition of '" + Name + "' does not match original.");
9602 return false;
9605 /// parseDirectiveUneq
9606 /// ::= .unreq registername
9607 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
9608 MCAsmParser &Parser = getParser();
9609 if (Parser.getTok().isNot(AsmToken::Identifier))
9610 return Error(L, "unexpected input in .unreq directive.");
9611 RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
9612 Parser.Lex(); // Eat the identifier.
9613 if (parseToken(AsmToken::EndOfStatement,
9614 "unexpected input in '.unreq' directive"))
9615 return true;
9616 return false;
9619 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
9620 // before, if supported by the new target, or emit mapping symbols for the mode
9621 // switch.
9622 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
9623 if (WasThumb != isThumb()) {
9624 if (WasThumb && hasThumb()) {
9625 // Stay in Thumb mode
9626 SwitchMode();
9627 } else if (!WasThumb && hasARM()) {
9628 // Stay in ARM mode
9629 SwitchMode();
9630 } else {
9631 // Mode switch forced, because the new arch doesn't support the old mode.
9632 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
9633 : MCAF_Code32);
9634 // Warn about the implcit mode switch. GAS does not switch modes here,
9635 // but instead stays in the old mode, reporting an error on any following
9636 // instructions as the mode does not exist on the target.
9637 Warning(Loc, Twine("new target does not support ") +
9638 (WasThumb ? "thumb" : "arm") + " mode, switching to " +
9639 (!WasThumb ? "thumb" : "arm") + " mode");
9644 /// parseDirectiveArch
9645 /// ::= .arch token
9646 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
9647 StringRef Arch = getParser().parseStringToEndOfStatement().trim();
9648 ARM::ArchKind ID = ARM::parseArch(Arch);
9650 if (ID == ARM::ArchKind::INVALID)
9651 return Error(L, "Unknown arch name");
9653 bool WasThumb = isThumb();
9654 Triple T;
9655 MCSubtargetInfo &STI = copySTI();
9656 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
9657 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9658 FixModeAfterArchChange(WasThumb, L);
9660 getTargetStreamer().emitArch(ID);
9661 return false;
9664 /// parseDirectiveEabiAttr
9665 /// ::= .eabi_attribute int, int [, "str"]
9666 /// ::= .eabi_attribute Tag_name, int [, "str"]
9667 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
9668 MCAsmParser &Parser = getParser();
9669 int64_t Tag;
9670 SMLoc TagLoc;
9671 TagLoc = Parser.getTok().getLoc();
9672 if (Parser.getTok().is(AsmToken::Identifier)) {
9673 StringRef Name = Parser.getTok().getIdentifier();
9674 Tag = ARMBuildAttrs::AttrTypeFromString(Name);
9675 if (Tag == -1) {
9676 Error(TagLoc, "attribute name not recognised: " + Name);
9677 return false;
9679 Parser.Lex();
9680 } else {
9681 const MCExpr *AttrExpr;
9683 TagLoc = Parser.getTok().getLoc();
9684 if (Parser.parseExpression(AttrExpr))
9685 return true;
9687 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
9688 if (check(!CE, TagLoc, "expected numeric constant"))
9689 return true;
9691 Tag = CE->getValue();
9694 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9695 return true;
9697 StringRef StringValue = "";
9698 bool IsStringValue = false;
9700 int64_t IntegerValue = 0;
9701 bool IsIntegerValue = false;
9703 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
9704 IsStringValue = true;
9705 else if (Tag == ARMBuildAttrs::compatibility) {
9706 IsStringValue = true;
9707 IsIntegerValue = true;
9708 } else if (Tag < 32 || Tag % 2 == 0)
9709 IsIntegerValue = true;
9710 else if (Tag % 2 == 1)
9711 IsStringValue = true;
9712 else
9713 llvm_unreachable("invalid tag type");
9715 if (IsIntegerValue) {
9716 const MCExpr *ValueExpr;
9717 SMLoc ValueExprLoc = Parser.getTok().getLoc();
9718 if (Parser.parseExpression(ValueExpr))
9719 return true;
9721 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
9722 if (!CE)
9723 return Error(ValueExprLoc, "expected numeric constant");
9724 IntegerValue = CE->getValue();
9727 if (Tag == ARMBuildAttrs::compatibility) {
9728 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9729 return true;
9732 if (IsStringValue) {
9733 if (Parser.getTok().isNot(AsmToken::String))
9734 return Error(Parser.getTok().getLoc(), "bad string constant");
9736 StringValue = Parser.getTok().getStringContents();
9737 Parser.Lex();
9740 if (Parser.parseToken(AsmToken::EndOfStatement,
9741 "unexpected token in '.eabi_attribute' directive"))
9742 return true;
9744 if (IsIntegerValue && IsStringValue) {
9745 assert(Tag == ARMBuildAttrs::compatibility);
9746 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
9747 } else if (IsIntegerValue)
9748 getTargetStreamer().emitAttribute(Tag, IntegerValue);
9749 else if (IsStringValue)
9750 getTargetStreamer().emitTextAttribute(Tag, StringValue);
9751 return false;
9754 /// parseDirectiveCPU
9755 /// ::= .cpu str
9756 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
9757 StringRef CPU = getParser().parseStringToEndOfStatement().trim();
9758 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
9760 // FIXME: This is using table-gen data, but should be moved to
9761 // ARMTargetParser once that is table-gen'd.
9762 if (!getSTI().isCPUStringValid(CPU))
9763 return Error(L, "Unknown CPU name");
9765 bool WasThumb = isThumb();
9766 MCSubtargetInfo &STI = copySTI();
9767 STI.setDefaultFeatures(CPU, "");
9768 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9769 FixModeAfterArchChange(WasThumb, L);
9771 return false;
9774 /// parseDirectiveFPU
9775 /// ::= .fpu str
9776 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
9777 SMLoc FPUNameLoc = getTok().getLoc();
9778 StringRef FPU = getParser().parseStringToEndOfStatement().trim();
9780 unsigned ID = ARM::parseFPU(FPU);
9781 std::vector<StringRef> Features;
9782 if (!ARM::getFPUFeatures(ID, Features))
9783 return Error(FPUNameLoc, "Unknown FPU name");
9785 MCSubtargetInfo &STI = copySTI();
9786 for (auto Feature : Features)
9787 STI.ApplyFeatureFlag(Feature);
9788 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9790 getTargetStreamer().emitFPU(ID);
9791 return false;
9794 /// parseDirectiveFnStart
9795 /// ::= .fnstart
9796 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
9797 if (parseToken(AsmToken::EndOfStatement,
9798 "unexpected token in '.fnstart' directive"))
9799 return true;
9801 if (UC.hasFnStart()) {
9802 Error(L, ".fnstart starts before the end of previous one");
9803 UC.emitFnStartLocNotes();
9804 return true;
9807 // Reset the unwind directives parser state
9808 UC.reset();
9810 getTargetStreamer().emitFnStart();
9812 UC.recordFnStart(L);
9813 return false;
9816 /// parseDirectiveFnEnd
9817 /// ::= .fnend
9818 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
9819 if (parseToken(AsmToken::EndOfStatement,
9820 "unexpected token in '.fnend' directive"))
9821 return true;
9822 // Check the ordering of unwind directives
9823 if (!UC.hasFnStart())
9824 return Error(L, ".fnstart must precede .fnend directive");
9826 // Reset the unwind directives parser state
9827 getTargetStreamer().emitFnEnd();
9829 UC.reset();
9830 return false;
9833 /// parseDirectiveCantUnwind
9834 /// ::= .cantunwind
9835 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
9836 if (parseToken(AsmToken::EndOfStatement,
9837 "unexpected token in '.cantunwind' directive"))
9838 return true;
9840 UC.recordCantUnwind(L);
9841 // Check the ordering of unwind directives
9842 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
9843 return true;
9845 if (UC.hasHandlerData()) {
9846 Error(L, ".cantunwind can't be used with .handlerdata directive");
9847 UC.emitHandlerDataLocNotes();
9848 return true;
9850 if (UC.hasPersonality()) {
9851 Error(L, ".cantunwind can't be used with .personality directive");
9852 UC.emitPersonalityLocNotes();
9853 return true;
9856 getTargetStreamer().emitCantUnwind();
9857 return false;
9860 /// parseDirectivePersonality
9861 /// ::= .personality name
9862 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
9863 MCAsmParser &Parser = getParser();
9864 bool HasExistingPersonality = UC.hasPersonality();
9866 // Parse the name of the personality routine
9867 if (Parser.getTok().isNot(AsmToken::Identifier))
9868 return Error(L, "unexpected input in .personality directive.");
9869 StringRef Name(Parser.getTok().getIdentifier());
9870 Parser.Lex();
9872 if (parseToken(AsmToken::EndOfStatement,
9873 "unexpected token in '.personality' directive"))
9874 return true;
9876 UC.recordPersonality(L);
9878 // Check the ordering of unwind directives
9879 if (!UC.hasFnStart())
9880 return Error(L, ".fnstart must precede .personality directive");
9881 if (UC.cantUnwind()) {
9882 Error(L, ".personality can't be used with .cantunwind directive");
9883 UC.emitCantUnwindLocNotes();
9884 return true;
9886 if (UC.hasHandlerData()) {
9887 Error(L, ".personality must precede .handlerdata directive");
9888 UC.emitHandlerDataLocNotes();
9889 return true;
9891 if (HasExistingPersonality) {
9892 Error(L, "multiple personality directives");
9893 UC.emitPersonalityLocNotes();
9894 return true;
9897 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
9898 getTargetStreamer().emitPersonality(PR);
9899 return false;
9902 /// parseDirectiveHandlerData
9903 /// ::= .handlerdata
9904 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
9905 if (parseToken(AsmToken::EndOfStatement,
9906 "unexpected token in '.handlerdata' directive"))
9907 return true;
9909 UC.recordHandlerData(L);
9910 // Check the ordering of unwind directives
9911 if (!UC.hasFnStart())
9912 return Error(L, ".fnstart must precede .personality directive");
9913 if (UC.cantUnwind()) {
9914 Error(L, ".handlerdata can't be used with .cantunwind directive");
9915 UC.emitCantUnwindLocNotes();
9916 return true;
9919 getTargetStreamer().emitHandlerData();
9920 return false;
9923 /// parseDirectiveSetFP
9924 /// ::= .setfp fpreg, spreg [, offset]
9925 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
9926 MCAsmParser &Parser = getParser();
9927 // Check the ordering of unwind directives
9928 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
9929 check(UC.hasHandlerData(), L,
9930 ".setfp must precede .handlerdata directive"))
9931 return true;
9933 // Parse fpreg
9934 SMLoc FPRegLoc = Parser.getTok().getLoc();
9935 int FPReg = tryParseRegister();
9937 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
9938 Parser.parseToken(AsmToken::Comma, "comma expected"))
9939 return true;
9941 // Parse spreg
9942 SMLoc SPRegLoc = Parser.getTok().getLoc();
9943 int SPReg = tryParseRegister();
9944 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
9945 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
9946 "register should be either $sp or the latest fp register"))
9947 return true;
9949 // Update the frame pointer register
9950 UC.saveFPReg(FPReg);
9952 // Parse offset
9953 int64_t Offset = 0;
9954 if (Parser.parseOptionalToken(AsmToken::Comma)) {
9955 if (Parser.getTok().isNot(AsmToken::Hash) &&
9956 Parser.getTok().isNot(AsmToken::Dollar))
9957 return Error(Parser.getTok().getLoc(), "'#' expected");
9958 Parser.Lex(); // skip hash token.
9960 const MCExpr *OffsetExpr;
9961 SMLoc ExLoc = Parser.getTok().getLoc();
9962 SMLoc EndLoc;
9963 if (getParser().parseExpression(OffsetExpr, EndLoc))
9964 return Error(ExLoc, "malformed setfp offset");
9965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9966 if (check(!CE, ExLoc, "setfp offset must be an immediate"))
9967 return true;
9968 Offset = CE->getValue();
9971 if (Parser.parseToken(AsmToken::EndOfStatement))
9972 return true;
9974 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
9975 static_cast<unsigned>(SPReg), Offset);
9976 return false;
9979 /// parseDirective
9980 /// ::= .pad offset
9981 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
9982 MCAsmParser &Parser = getParser();
9983 // Check the ordering of unwind directives
9984 if (!UC.hasFnStart())
9985 return Error(L, ".fnstart must precede .pad directive");
9986 if (UC.hasHandlerData())
9987 return Error(L, ".pad must precede .handlerdata directive");
9989 // Parse the offset
9990 if (Parser.getTok().isNot(AsmToken::Hash) &&
9991 Parser.getTok().isNot(AsmToken::Dollar))
9992 return Error(Parser.getTok().getLoc(), "'#' expected");
9993 Parser.Lex(); // skip hash token.
9995 const MCExpr *OffsetExpr;
9996 SMLoc ExLoc = Parser.getTok().getLoc();
9997 SMLoc EndLoc;
9998 if (getParser().parseExpression(OffsetExpr, EndLoc))
9999 return Error(ExLoc, "malformed pad offset");
10000 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10001 if (!CE)
10002 return Error(ExLoc, "pad offset must be an immediate");
10004 if (parseToken(AsmToken::EndOfStatement,
10005 "unexpected token in '.pad' directive"))
10006 return true;
10008 getTargetStreamer().emitPad(CE->getValue());
10009 return false;
10012 /// parseDirectiveRegSave
10013 /// ::= .save { registers }
10014 /// ::= .vsave { registers }
10015 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
10016 // Check the ordering of unwind directives
10017 if (!UC.hasFnStart())
10018 return Error(L, ".fnstart must precede .save or .vsave directives");
10019 if (UC.hasHandlerData())
10020 return Error(L, ".save or .vsave must precede .handlerdata directive");
10022 // RAII object to make sure parsed operands are deleted.
10023 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
10025 // Parse the register list
10026 if (parseRegisterList(Operands) ||
10027 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10028 return true;
10029 ARMOperand &Op = (ARMOperand &)*Operands[0];
10030 if (!IsVector && !Op.isRegList())
10031 return Error(L, ".save expects GPR registers");
10032 if (IsVector && !Op.isDPRRegList())
10033 return Error(L, ".vsave expects DPR registers");
10035 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
10036 return false;
10039 /// parseDirectiveInst
10040 /// ::= .inst opcode [, ...]
10041 /// ::= .inst.n opcode [, ...]
10042 /// ::= .inst.w opcode [, ...]
10043 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
10044 int Width = 4;
10046 if (isThumb()) {
10047 switch (Suffix) {
10048 case 'n':
10049 Width = 2;
10050 break;
10051 case 'w':
10052 break;
10053 default:
10054 Width = 0;
10055 break;
10057 } else {
10058 if (Suffix)
10059 return Error(Loc, "width suffixes are invalid in ARM mode");
10062 auto parseOne = [&]() -> bool {
10063 const MCExpr *Expr;
10064 if (getParser().parseExpression(Expr))
10065 return true;
10066 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
10067 if (!Value) {
10068 return Error(Loc, "expected constant expression");
10071 char CurSuffix = Suffix;
10072 switch (Width) {
10073 case 2:
10074 if (Value->getValue() > 0xffff)
10075 return Error(Loc, "inst.n operand is too big, use inst.w instead");
10076 break;
10077 case 4:
10078 if (Value->getValue() > 0xffffffff)
10079 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
10080 " operand is too big");
10081 break;
10082 case 0:
10083 // Thumb mode, no width indicated. Guess from the opcode, if possible.
10084 if (Value->getValue() < 0xe800)
10085 CurSuffix = 'n';
10086 else if (Value->getValue() >= 0xe8000000)
10087 CurSuffix = 'w';
10088 else
10089 return Error(Loc, "cannot determine Thumb instruction size, "
10090 "use inst.n/inst.w instead");
10091 break;
10092 default:
10093 llvm_unreachable("only supported widths are 2 and 4");
10096 getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
10097 return false;
10100 if (parseOptionalToken(AsmToken::EndOfStatement))
10101 return Error(Loc, "expected expression following directive");
10102 if (parseMany(parseOne))
10103 return true;
10104 return false;
10107 /// parseDirectiveLtorg
10108 /// ::= .ltorg | .pool
10109 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
10110 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10111 return true;
10112 getTargetStreamer().emitCurrentConstantPool();
10113 return false;
10116 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
10117 const MCSection *Section = getStreamer().getCurrentSectionOnly();
10119 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10120 return true;
10122 if (!Section) {
10123 getStreamer().InitSections(false);
10124 Section = getStreamer().getCurrentSectionOnly();
10127 assert(Section && "must have section to emit alignment");
10128 if (Section->UseCodeAlign())
10129 getStreamer().EmitCodeAlignment(2);
10130 else
10131 getStreamer().EmitValueToAlignment(2);
10133 return false;
10136 /// parseDirectivePersonalityIndex
10137 /// ::= .personalityindex index
10138 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
10139 MCAsmParser &Parser = getParser();
10140 bool HasExistingPersonality = UC.hasPersonality();
10142 const MCExpr *IndexExpression;
10143 SMLoc IndexLoc = Parser.getTok().getLoc();
10144 if (Parser.parseExpression(IndexExpression) ||
10145 parseToken(AsmToken::EndOfStatement,
10146 "unexpected token in '.personalityindex' directive")) {
10147 return true;
10150 UC.recordPersonalityIndex(L);
10152 if (!UC.hasFnStart()) {
10153 return Error(L, ".fnstart must precede .personalityindex directive");
10155 if (UC.cantUnwind()) {
10156 Error(L, ".personalityindex cannot be used with .cantunwind");
10157 UC.emitCantUnwindLocNotes();
10158 return true;
10160 if (UC.hasHandlerData()) {
10161 Error(L, ".personalityindex must precede .handlerdata directive");
10162 UC.emitHandlerDataLocNotes();
10163 return true;
10165 if (HasExistingPersonality) {
10166 Error(L, "multiple personality directives");
10167 UC.emitPersonalityLocNotes();
10168 return true;
10171 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
10172 if (!CE)
10173 return Error(IndexLoc, "index must be a constant number");
10174 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
10175 return Error(IndexLoc,
10176 "personality routine index should be in range [0-3]");
10178 getTargetStreamer().emitPersonalityIndex(CE->getValue());
10179 return false;
10182 /// parseDirectiveUnwindRaw
10183 /// ::= .unwind_raw offset, opcode [, opcode...]
10184 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
10185 MCAsmParser &Parser = getParser();
10186 int64_t StackOffset;
10187 const MCExpr *OffsetExpr;
10188 SMLoc OffsetLoc = getLexer().getLoc();
10190 if (!UC.hasFnStart())
10191 return Error(L, ".fnstart must precede .unwind_raw directives");
10192 if (getParser().parseExpression(OffsetExpr))
10193 return Error(OffsetLoc, "expected expression");
10195 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10196 if (!CE)
10197 return Error(OffsetLoc, "offset must be a constant");
10199 StackOffset = CE->getValue();
10201 if (Parser.parseToken(AsmToken::Comma, "expected comma"))
10202 return true;
10204 SmallVector<uint8_t, 16> Opcodes;
10206 auto parseOne = [&]() -> bool {
10207 const MCExpr *OE;
10208 SMLoc OpcodeLoc = getLexer().getLoc();
10209 if (check(getLexer().is(AsmToken::EndOfStatement) ||
10210 Parser.parseExpression(OE),
10211 OpcodeLoc, "expected opcode expression"))
10212 return true;
10213 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
10214 if (!OC)
10215 return Error(OpcodeLoc, "opcode value must be a constant");
10216 const int64_t Opcode = OC->getValue();
10217 if (Opcode & ~0xff)
10218 return Error(OpcodeLoc, "invalid opcode");
10219 Opcodes.push_back(uint8_t(Opcode));
10220 return false;
10223 // Must have at least 1 element
10224 SMLoc OpcodeLoc = getLexer().getLoc();
10225 if (parseOptionalToken(AsmToken::EndOfStatement))
10226 return Error(OpcodeLoc, "expected opcode expression");
10227 if (parseMany(parseOne))
10228 return true;
10230 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
10231 return false;
10234 /// parseDirectiveTLSDescSeq
10235 /// ::= .tlsdescseq tls-variable
10236 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
10237 MCAsmParser &Parser = getParser();
10239 if (getLexer().isNot(AsmToken::Identifier))
10240 return TokError("expected variable after '.tlsdescseq' directive");
10242 const MCSymbolRefExpr *SRE =
10243 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
10244 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
10245 Lex();
10247 if (parseToken(AsmToken::EndOfStatement,
10248 "unexpected token in '.tlsdescseq' directive"))
10249 return true;
10251 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
10252 return false;
10255 /// parseDirectiveMovSP
10256 /// ::= .movsp reg [, #offset]
10257 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
10258 MCAsmParser &Parser = getParser();
10259 if (!UC.hasFnStart())
10260 return Error(L, ".fnstart must precede .movsp directives");
10261 if (UC.getFPReg() != ARM::SP)
10262 return Error(L, "unexpected .movsp directive");
10264 SMLoc SPRegLoc = Parser.getTok().getLoc();
10265 int SPReg = tryParseRegister();
10266 if (SPReg == -1)
10267 return Error(SPRegLoc, "register expected");
10268 if (SPReg == ARM::SP || SPReg == ARM::PC)
10269 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
10271 int64_t Offset = 0;
10272 if (Parser.parseOptionalToken(AsmToken::Comma)) {
10273 if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
10274 return true;
10276 const MCExpr *OffsetExpr;
10277 SMLoc OffsetLoc = Parser.getTok().getLoc();
10279 if (Parser.parseExpression(OffsetExpr))
10280 return Error(OffsetLoc, "malformed offset expression");
10282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10283 if (!CE)
10284 return Error(OffsetLoc, "offset must be an immediate constant");
10286 Offset = CE->getValue();
10289 if (parseToken(AsmToken::EndOfStatement,
10290 "unexpected token in '.movsp' directive"))
10291 return true;
10293 getTargetStreamer().emitMovSP(SPReg, Offset);
10294 UC.saveFPReg(SPReg);
10296 return false;
10299 /// parseDirectiveObjectArch
10300 /// ::= .object_arch name
10301 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
10302 MCAsmParser &Parser = getParser();
10303 if (getLexer().isNot(AsmToken::Identifier))
10304 return Error(getLexer().getLoc(), "unexpected token");
10306 StringRef Arch = Parser.getTok().getString();
10307 SMLoc ArchLoc = Parser.getTok().getLoc();
10308 Lex();
10310 ARM::ArchKind ID = ARM::parseArch(Arch);
10312 if (ID == ARM::ArchKind::INVALID)
10313 return Error(ArchLoc, "unknown architecture '" + Arch + "'");
10314 if (parseToken(AsmToken::EndOfStatement))
10315 return true;
10317 getTargetStreamer().emitObjectArch(ID);
10318 return false;
10321 /// parseDirectiveAlign
10322 /// ::= .align
10323 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
10324 // NOTE: if this is not the end of the statement, fall back to the target
10325 // agnostic handling for this directive which will correctly handle this.
10326 if (parseOptionalToken(AsmToken::EndOfStatement)) {
10327 // '.align' is target specifically handled to mean 2**2 byte alignment.
10328 const MCSection *Section = getStreamer().getCurrentSectionOnly();
10329 assert(Section && "must have section to emit alignment");
10330 if (Section->UseCodeAlign())
10331 getStreamer().EmitCodeAlignment(4, 0);
10332 else
10333 getStreamer().EmitValueToAlignment(4, 0, 1, 0);
10334 return false;
10336 return true;
10339 /// parseDirectiveThumbSet
10340 /// ::= .thumb_set name, value
10341 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
10342 MCAsmParser &Parser = getParser();
10344 StringRef Name;
10345 if (check(Parser.parseIdentifier(Name),
10346 "expected identifier after '.thumb_set'") ||
10347 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
10348 return true;
10350 MCSymbol *Sym;
10351 const MCExpr *Value;
10352 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
10353 Parser, Sym, Value))
10354 return true;
10356 getTargetStreamer().emitThumbSet(Sym, Value);
10357 return false;
10360 /// Force static initialization.
10361 extern "C" void LLVMInitializeARMAsmParser() {
10362 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
10363 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
10364 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
10365 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
10368 #define GET_REGISTER_MATCHER
10369 #define GET_SUBTARGET_FEATURE_NAME
10370 #define GET_MATCHER_IMPLEMENTATION
10371 #define GET_MNEMONIC_SPELL_CHECKER
10372 #include "ARMGenAsmMatcher.inc"
10374 // Some diagnostics need to vary with subtarget features, so they are handled
10375 // here. For example, the DPR class has either 16 or 32 registers, depending
10376 // on the FPU available.
10377 const char *
10378 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
10379 switch (MatchError) {
10380 // rGPR contains sp starting with ARMv8.
10381 case Match_rGPR:
10382 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
10383 : "operand must be a register in range [r0, r12] or r14";
10384 // DPR contains 16 registers for some FPUs, and 32 for others.
10385 case Match_DPR:
10386 return hasD16() ? "operand must be a register in range [d0, d15]"
10387 : "operand must be a register in range [d0, d31]";
10388 case Match_DPR_RegList:
10389 return hasD16() ? "operand must be a list of registers in range [d0, d15]"
10390 : "operand must be a list of registers in range [d0, d31]";
10392 // For all other diags, use the static string from tablegen.
10393 default:
10394 return getMatchKindDiag(MatchError);
10398 // Process the list of near-misses, throwing away ones we don't want to report
10399 // to the user, and converting the rest to a source location and string that
10400 // should be reported.
10401 void
10402 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
10403 SmallVectorImpl<NearMissMessage> &NearMissesOut,
10404 SMLoc IDLoc, OperandVector &Operands) {
10405 // TODO: If operand didn't match, sub in a dummy one and run target
10406 // predicate, so that we can avoid reporting near-misses that are invalid?
10407 // TODO: Many operand types dont have SuperClasses set, so we report
10408 // redundant ones.
10409 // TODO: Some operands are superclasses of registers (e.g.
10410 // MCK_RegShiftedImm), we don't have any way to represent that currently.
10411 // TODO: This is not all ARM-specific, can some of it be factored out?
10413 // Record some information about near-misses that we have already seen, so
10414 // that we can avoid reporting redundant ones. For example, if there are
10415 // variants of an instruction that take 8- and 16-bit immediates, we want
10416 // to only report the widest one.
10417 std::multimap<unsigned, unsigned> OperandMissesSeen;
10418 SmallSet<uint64_t, 4> FeatureMissesSeen;
10419 bool ReportedTooFewOperands = false;
10421 // Process the near-misses in reverse order, so that we see more general ones
10422 // first, and so can avoid emitting more specific ones.
10423 for (NearMissInfo &I : reverse(NearMissesIn)) {
10424 switch (I.getKind()) {
10425 case NearMissInfo::NearMissOperand: {
10426 SMLoc OperandLoc =
10427 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
10428 const char *OperandDiag =
10429 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
10431 // If we have already emitted a message for a superclass, don't also report
10432 // the sub-class. We consider all operand classes that we don't have a
10433 // specialised diagnostic for to be equal for the propose of this check,
10434 // so that we don't report the generic error multiple times on the same
10435 // operand.
10436 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
10437 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
10438 if (std::any_of(PrevReports.first, PrevReports.second,
10439 [DupCheckMatchClass](
10440 const std::pair<unsigned, unsigned> Pair) {
10441 if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
10442 return Pair.second == DupCheckMatchClass;
10443 else
10444 return isSubclass((MatchClassKind)DupCheckMatchClass,
10445 (MatchClassKind)Pair.second);
10447 break;
10448 OperandMissesSeen.insert(
10449 std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
10451 NearMissMessage Message;
10452 Message.Loc = OperandLoc;
10453 if (OperandDiag) {
10454 Message.Message = OperandDiag;
10455 } else if (I.getOperandClass() == InvalidMatchClass) {
10456 Message.Message = "too many operands for instruction";
10457 } else {
10458 Message.Message = "invalid operand for instruction";
10459 LLVM_DEBUG(
10460 dbgs() << "Missing diagnostic string for operand class "
10461 << getMatchClassName((MatchClassKind)I.getOperandClass())
10462 << I.getOperandClass() << ", error " << I.getOperandError()
10463 << ", opcode " << MII.getName(I.getOpcode()) << "\n");
10465 NearMissesOut.emplace_back(Message);
10466 break;
10468 case NearMissInfo::NearMissFeature: {
10469 uint64_t MissingFeatures = I.getFeatures();
10470 // Don't report the same set of features twice.
10471 if (FeatureMissesSeen.count(MissingFeatures))
10472 break;
10473 FeatureMissesSeen.insert(MissingFeatures);
10475 // Special case: don't report a feature set which includes arm-mode for
10476 // targets that don't have ARM mode.
10477 if ((MissingFeatures & Feature_IsARM) && !hasARM())
10478 break;
10479 // Don't report any near-misses that both require switching instruction
10480 // set, and adding other subtarget features.
10481 if (isThumb() && (MissingFeatures & Feature_IsARM) &&
10482 (MissingFeatures & ~Feature_IsARM))
10483 break;
10484 if (!isThumb() && (MissingFeatures & Feature_IsThumb) &&
10485 (MissingFeatures & ~Feature_IsThumb))
10486 break;
10487 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) &&
10488 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb)))
10489 break;
10490 if (isMClass() && (MissingFeatures & Feature_HasNEON))
10491 break;
10493 NearMissMessage Message;
10494 Message.Loc = IDLoc;
10495 raw_svector_ostream OS(Message.Message);
10497 OS << "instruction requires:";
10498 uint64_t Mask = 1;
10499 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1);
10500 ++MaskPos) {
10501 if (MissingFeatures & Mask) {
10502 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask);
10504 Mask <<= 1;
10506 NearMissesOut.emplace_back(Message);
10508 break;
10510 case NearMissInfo::NearMissPredicate: {
10511 NearMissMessage Message;
10512 Message.Loc = IDLoc;
10513 switch (I.getPredicateError()) {
10514 case Match_RequiresNotITBlock:
10515 Message.Message = "flag setting instruction only valid outside IT block";
10516 break;
10517 case Match_RequiresITBlock:
10518 Message.Message = "instruction only valid inside IT block";
10519 break;
10520 case Match_RequiresV6:
10521 Message.Message = "instruction variant requires ARMv6 or later";
10522 break;
10523 case Match_RequiresThumb2:
10524 Message.Message = "instruction variant requires Thumb2";
10525 break;
10526 case Match_RequiresV8:
10527 Message.Message = "instruction variant requires ARMv8 or later";
10528 break;
10529 case Match_RequiresFlagSetting:
10530 Message.Message = "no flag-preserving variant of this instruction available";
10531 break;
10532 case Match_InvalidOperand:
10533 Message.Message = "invalid operand for instruction";
10534 break;
10535 default:
10536 llvm_unreachable("Unhandled target predicate error");
10537 break;
10539 NearMissesOut.emplace_back(Message);
10540 break;
10542 case NearMissInfo::NearMissTooFewOperands: {
10543 if (!ReportedTooFewOperands) {
10544 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
10545 NearMissesOut.emplace_back(NearMissMessage{
10546 EndLoc, StringRef("too few operands for instruction")});
10547 ReportedTooFewOperands = true;
10549 break;
10551 case NearMissInfo::NoNearMiss:
10552 // This should never leave the matcher.
10553 llvm_unreachable("not a near-miss");
10554 break;
10559 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
10560 SMLoc IDLoc, OperandVector &Operands) {
10561 SmallVector<NearMissMessage, 4> Messages;
10562 FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
10564 if (Messages.size() == 0) {
10565 // No near-misses were found, so the best we can do is "invalid
10566 // instruction".
10567 Error(IDLoc, "invalid instruction");
10568 } else if (Messages.size() == 1) {
10569 // One near miss was found, report it as the sole error.
10570 Error(Messages[0].Loc, Messages[0].Message);
10571 } else {
10572 // More than one near miss, so report a generic "invalid instruction"
10573 // error, followed by notes for each of the near-misses.
10574 Error(IDLoc, "invalid instruction, any one of the following would fix this:");
10575 for (auto &M : Messages) {
10576 Note(M.Loc, M.Message);
10581 // FIXME: This structure should be moved inside ARMTargetParser
10582 // when we start to table-generate them, and we can use the ARM
10583 // flags below, that were generated by table-gen.
10584 static const struct {
10585 const unsigned Kind;
10586 const uint64_t ArchCheck;
10587 const FeatureBitset Features;
10588 } Extensions[] = {
10589 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} },
10590 { ARM::AEK_CRYPTO, Feature_HasV8,
10591 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10592 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} },
10593 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass,
10594 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
10595 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} },
10596 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10597 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} },
10598 // FIXME: Only available in A-class, isel not predicated
10599 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} },
10600 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
10601 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} },
10602 // FIXME: Unsupported extensions.
10603 { ARM::AEK_OS, Feature_None, {} },
10604 { ARM::AEK_IWMMXT, Feature_None, {} },
10605 { ARM::AEK_IWMMXT2, Feature_None, {} },
10606 { ARM::AEK_MAVERICK, Feature_None, {} },
10607 { ARM::AEK_XSCALE, Feature_None, {} },
10610 /// parseDirectiveArchExtension
10611 /// ::= .arch_extension [no]feature
10612 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
10613 MCAsmParser &Parser = getParser();
10615 if (getLexer().isNot(AsmToken::Identifier))
10616 return Error(getLexer().getLoc(), "expected architecture extension name");
10618 StringRef Name = Parser.getTok().getString();
10619 SMLoc ExtLoc = Parser.getTok().getLoc();
10620 Lex();
10622 if (parseToken(AsmToken::EndOfStatement,
10623 "unexpected token in '.arch_extension' directive"))
10624 return true;
10626 bool EnableFeature = true;
10627 if (Name.startswith_lower("no")) {
10628 EnableFeature = false;
10629 Name = Name.substr(2);
10631 unsigned FeatureKind = ARM::parseArchExt(Name);
10632 if (FeatureKind == ARM::AEK_INVALID)
10633 return Error(ExtLoc, "unknown architectural extension: " + Name);
10635 for (const auto &Extension : Extensions) {
10636 if (Extension.Kind != FeatureKind)
10637 continue;
10639 if (Extension.Features.none())
10640 return Error(ExtLoc, "unsupported architectural extension: " + Name);
10642 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
10643 return Error(ExtLoc, "architectural extension '" + Name +
10644 "' is not "
10645 "allowed for the current base architecture");
10647 MCSubtargetInfo &STI = copySTI();
10648 FeatureBitset ToggleFeatures = EnableFeature
10649 ? (~STI.getFeatureBits() & Extension.Features)
10650 : ( STI.getFeatureBits() & Extension.Features);
10652 uint64_t Features =
10653 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
10654 setAvailableFeatures(Features);
10655 return false;
10658 return Error(ExtLoc, "unknown architectural extension: " + Name);
10661 // Define this matcher function after the auto-generated include so we
10662 // have the match class enum definitions.
10663 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
10664 unsigned Kind) {
10665 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
10666 // If the kind is a token for a literal immediate, check if our asm
10667 // operand matches. This is for InstAliases which have a fixed-value
10668 // immediate in the syntax.
10669 switch (Kind) {
10670 default: break;
10671 case MCK__35_0:
10672 if (Op.isImm())
10673 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
10674 if (CE->getValue() == 0)
10675 return Match_Success;
10676 break;
10677 case MCK_ModImm:
10678 if (Op.isImm()) {
10679 const MCExpr *SOExpr = Op.getImm();
10680 int64_t Value;
10681 if (!SOExpr->evaluateAsAbsolute(Value))
10682 return Match_Success;
10683 assert((Value >= std::numeric_limits<int32_t>::min() &&
10684 Value <= std::numeric_limits<uint32_t>::max()) &&
10685 "expression value must be representable in 32 bits");
10687 break;
10688 case MCK_rGPR:
10689 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
10690 return Match_Success;
10691 return Match_rGPR;
10692 case MCK_GPRPair:
10693 if (Op.isReg() &&
10694 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
10695 return Match_Success;
10696 break;
10698 return Match_InvalidOperand;