1 //===- BitTracker.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // SSA-based bit propagation.
11 // The purpose of this code is, for a given virtual register, to provide
12 // information about the value of each bit in the register. The values
13 // of bits are represented by the class BitValue, and take one of four
14 // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
15 // "ref" value means that the bit is a copy of another bit (which itself
16 // cannot be a copy of yet another bit---such chains are not allowed).
17 // A "ref" value is associated with a BitRef structure, which indicates
18 // which virtual register, and which bit in that register is the origin
19 // of the value. For example, given an instruction
21 // assuming that nothing is known about bits of %1, bit 1 of %2
22 // will be a "ref" to (%1, 0). If there is a subsequent instruction
24 // then bit 3 of %3 will be a "ref" to (%1, 0) as well.
25 // The "bottom" case means that the bit's value cannot be determined,
26 // and that this virtual register actually defines it. The "bottom" case
27 // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
28 // to self", so for the %1 above, the bit 0 of it will be a "ref" to
29 // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
31 // The tracker implements the Wegman-Zadeck algorithm, originally developed
32 // for SSA-based constant propagation. Each register is represented as
33 // a sequence of bits, with the convention that bit 0 is the least signi-
34 // ficant bit. Each bit is propagated individually. The class RegisterCell
35 // implements the register's representation, and is also the subject of
36 // the lattice operations in the tracker.
38 // The intended usage of the bit tracker is to create a target-specific
39 // machine instruction evaluator, pass the evaluator to the BitTracker
40 // object, and run the tracker. The tracker will then collect the bit
41 // value information for a given machine function. After that, it can be
42 // queried for the cells for each virtual register.
44 // const TargetSpecificEvaluator TSE(TRI, MRI);
45 // BitTracker BT(TSE, MF);
48 // unsigned Reg = interestingRegister();
49 // RegisterCell RC = BT.get(Reg);
53 // The code below is intended to be fully target-independent.
55 #include "BitTracker.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/BitVector.h"
58 #include "llvm/CodeGen/MachineBasicBlock.h"
59 #include "llvm/CodeGen/MachineFunction.h"
60 #include "llvm/CodeGen/MachineInstr.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
73 using BT
= BitTracker
;
77 // Local trickery to pretty print a register (without the whole "%number"
80 printv(unsigned r
) : R(r
) {}
85 raw_ostream
&operator<< (raw_ostream
&OS
, const printv
&PV
) {
87 OS
<< 'v' << TargetRegisterInfo::virtReg2Index(PV
.R
);
93 } // end anonymous namespace
97 raw_ostream
&operator<<(raw_ostream
&OS
, const BT::BitValue
&BV
) {
99 case BT::BitValue::Top
:
102 case BT::BitValue::Zero
:
105 case BT::BitValue::One
:
108 case BT::BitValue::Ref
:
109 OS
<< printv(BV
.RefI
.Reg
) << '[' << BV
.RefI
.Pos
<< ']';
115 raw_ostream
&operator<<(raw_ostream
&OS
, const BT::RegisterCell
&RC
) {
116 unsigned n
= RC
.Bits
.size();
118 // Instead of printing each bit value individually, try to group them
119 // into logical segments, such as sequences of 0 or 1 bits or references
120 // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
121 // "Start" will be the index of the beginning of the most recent segment.
123 bool SeqRef
= false; // A sequence of refs to consecutive bits.
124 bool ConstRef
= false; // A sequence of refs to the same bit.
126 for (unsigned i
= 1, n
= RC
.Bits
.size(); i
< n
; ++i
) {
127 const BT::BitValue
&V
= RC
[i
];
128 const BT::BitValue
&SV
= RC
[Start
];
129 bool IsRef
= (V
.Type
== BT::BitValue::Ref
);
130 // If the current value is the same as Start, skip to the next one.
131 if (!IsRef
&& V
== SV
)
133 if (IsRef
&& SV
.Type
== BT::BitValue::Ref
&& V
.RefI
.Reg
== SV
.RefI
.Reg
) {
135 SeqRef
= (V
.RefI
.Pos
== SV
.RefI
.Pos
+1);
136 ConstRef
= (V
.RefI
.Pos
== SV
.RefI
.Pos
);
138 if (SeqRef
&& V
.RefI
.Pos
== SV
.RefI
.Pos
+(i
-Start
))
140 if (ConstRef
&& V
.RefI
.Pos
== SV
.RefI
.Pos
)
144 // The current value is different. Print the previous one and reset
147 unsigned Count
= i
- Start
;
151 OS
<< '-' << i
-1 << "]:";
152 if (SV
.Type
== BT::BitValue::Ref
&& SeqRef
)
153 OS
<< printv(SV
.RefI
.Reg
) << '[' << SV
.RefI
.Pos
<< '-'
154 << SV
.RefI
.Pos
+(Count
-1) << ']';
159 SeqRef
= ConstRef
= false;
163 unsigned Count
= n
- Start
;
165 OS
<< "]:" << RC
[Start
];
167 OS
<< '-' << n
-1 << "]:";
168 const BT::BitValue
&SV
= RC
[Start
];
169 if (SV
.Type
== BT::BitValue::Ref
&& SeqRef
)
170 OS
<< printv(SV
.RefI
.Reg
) << '[' << SV
.RefI
.Pos
<< '-'
171 << SV
.RefI
.Pos
+(Count
-1) << ']';
180 } // end namespace llvm
182 void BitTracker::print_cells(raw_ostream
&OS
) const {
183 for (const std::pair
<unsigned, RegisterCell
> P
: Map
)
184 dbgs() << printReg(P
.first
, &ME
.TRI
) << " -> " << P
.second
<< "\n";
187 BitTracker::BitTracker(const MachineEvaluator
&E
, MachineFunction
&F
)
188 : ME(E
), MF(F
), MRI(F
.getRegInfo()), Map(*new CellMapType
), Trace(false) {
191 BitTracker::~BitTracker() {
195 // If we were allowed to update a cell for a part of a register, the meet
196 // operation would need to be parametrized by the register number and the
197 // exact part of the register, so that the computer BitRefs correspond to
198 // the actual bits of the "self" register.
199 // While this cannot happen in the current implementation, I'm not sure
200 // if this should be ruled out in the future.
201 bool BT::RegisterCell::meet(const RegisterCell
&RC
, unsigned SelfR
) {
202 // An example when "meet" can be invoked with SelfR == 0 is a phi node
203 // with a physical register as an operand.
204 assert(SelfR
== 0 || TargetRegisterInfo::isVirtualRegister(SelfR
));
205 bool Changed
= false;
206 for (uint16_t i
= 0, n
= Bits
.size(); i
< n
; ++i
) {
207 const BitValue
&RCV
= RC
[i
];
208 Changed
|= Bits
[i
].meet(RCV
, BitRef(SelfR
, i
));
213 // Insert the entire cell RC into the current cell at position given by M.
214 BT::RegisterCell
&BT::RegisterCell::insert(const BT::RegisterCell
&RC
,
216 uint16_t B
= M
.first(), E
= M
.last(), W
= width();
217 // Sanity: M must be a valid mask for *this.
218 assert(B
< W
&& E
< W
);
219 // Sanity: the masked part of *this must have the same number of bits
221 assert(B
> E
|| E
-B
+1 == RC
.width()); // B <= E => E-B+1 = |RC|.
222 assert(B
<= E
|| E
+(W
-B
)+1 == RC
.width()); // E < B => E+(W-B)+1 = |RC|.
224 for (uint16_t i
= 0; i
<= E
-B
; ++i
)
227 for (uint16_t i
= 0; i
< W
-B
; ++i
)
229 for (uint16_t i
= 0; i
<= E
; ++i
)
230 Bits
[i
] = RC
[i
+(W
-B
)];
235 BT::RegisterCell
BT::RegisterCell::extract(const BitMask
&M
) const {
236 uint16_t B
= M
.first(), E
= M
.last(), W
= width();
237 assert(B
< W
&& E
< W
);
239 RegisterCell
RC(E
-B
+1);
240 for (uint16_t i
= B
; i
<= E
; ++i
)
241 RC
.Bits
[i
-B
] = Bits
[i
];
245 RegisterCell
RC(E
+(W
-B
)+1);
246 for (uint16_t i
= 0; i
< W
-B
; ++i
)
247 RC
.Bits
[i
] = Bits
[i
+B
];
248 for (uint16_t i
= 0; i
<= E
; ++i
)
249 RC
.Bits
[i
+(W
-B
)] = Bits
[i
];
253 BT::RegisterCell
&BT::RegisterCell::rol(uint16_t Sh
) {
254 // Rotate left (i.e. towards increasing bit indices).
255 // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1]
256 uint16_t W
= width();
261 RegisterCell
Tmp(W
-Sh
);
262 // Tmp = [0..W-Sh-1].
263 for (uint16_t i
= 0; i
< W
-Sh
; ++i
)
265 // Shift [W-Sh..W-1] to [0..Sh-1].
266 for (uint16_t i
= 0; i
< Sh
; ++i
)
267 Bits
[i
] = Bits
[W
-Sh
+i
];
268 // Copy Tmp to [Sh..W-1].
269 for (uint16_t i
= 0; i
< W
-Sh
; ++i
)
270 Bits
[i
+Sh
] = Tmp
.Bits
[i
];
274 BT::RegisterCell
&BT::RegisterCell::fill(uint16_t B
, uint16_t E
,
282 BT::RegisterCell
&BT::RegisterCell::cat(const RegisterCell
&RC
) {
283 // Append the cell given as the argument to the "this" cell.
284 // Bit 0 of RC becomes bit W of the result, where W is this->width().
285 uint16_t W
= width(), WRC
= RC
.width();
287 for (uint16_t i
= 0; i
< WRC
; ++i
)
288 Bits
[i
+W
] = RC
.Bits
[i
];
292 uint16_t BT::RegisterCell::ct(bool B
) const {
293 uint16_t W
= width();
296 while (C
< W
&& Bits
[C
] == V
)
301 uint16_t BT::RegisterCell::cl(bool B
) const {
302 uint16_t W
= width();
305 while (C
< W
&& Bits
[W
-(C
+1)] == V
)
310 bool BT::RegisterCell::operator== (const RegisterCell
&RC
) const {
311 uint16_t W
= Bits
.size();
312 if (RC
.Bits
.size() != W
)
314 for (uint16_t i
= 0; i
< W
; ++i
)
315 if (Bits
[i
] != RC
[i
])
320 BT::RegisterCell
&BT::RegisterCell::regify(unsigned R
) {
321 for (unsigned i
= 0, n
= width(); i
< n
; ++i
) {
322 const BitValue
&V
= Bits
[i
];
323 if (V
.Type
== BitValue::Ref
&& V
.RefI
.Reg
== 0)
324 Bits
[i
].RefI
= BitRef(R
, i
);
329 uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef
&RR
) const {
330 // The general problem is with finding a register class that corresponds
331 // to a given reference reg:sub. There can be several such classes, and
332 // since we only care about the register size, it does not matter which
333 // such class we would find.
334 // The easiest way to accomplish what we want is to
335 // 1. find a physical register PhysR from the same class as RR.Reg,
336 // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
337 // 3. find a register class that contains PhysS.
338 if (TargetRegisterInfo::isVirtualRegister(RR
.Reg
)) {
339 const auto &VC
= composeWithSubRegIndex(*MRI
.getRegClass(RR
.Reg
), RR
.Sub
);
340 return TRI
.getRegSizeInBits(VC
);
342 assert(TargetRegisterInfo::isPhysicalRegister(RR
.Reg
));
343 unsigned PhysR
= (RR
.Sub
== 0) ? RR
.Reg
: TRI
.getSubReg(RR
.Reg
, RR
.Sub
);
344 return getPhysRegBitWidth(PhysR
);
347 BT::RegisterCell
BT::MachineEvaluator::getCell(const RegisterRef
&RR
,
348 const CellMapType
&M
) const {
349 uint16_t BW
= getRegBitWidth(RR
);
351 // Physical registers are assumed to be present in the map with an unknown
352 // value. Don't actually insert anything in the map, just return the cell.
353 if (TargetRegisterInfo::isPhysicalRegister(RR
.Reg
))
354 return RegisterCell::self(0, BW
);
356 assert(TargetRegisterInfo::isVirtualRegister(RR
.Reg
));
357 // For virtual registers that belong to a class that is not tracked,
358 // generate an "unknown" value as well.
359 const TargetRegisterClass
*C
= MRI
.getRegClass(RR
.Reg
);
361 return RegisterCell::self(0, BW
);
363 CellMapType::const_iterator F
= M
.find(RR
.Reg
);
367 BitMask M
= mask(RR
.Reg
, RR
.Sub
);
368 return F
->second
.extract(M
);
370 // If not found, create a "top" entry, but do not insert it in the map.
371 return RegisterCell::top(BW
);
374 void BT::MachineEvaluator::putCell(const RegisterRef
&RR
, RegisterCell RC
,
375 CellMapType
&M
) const {
376 // While updating the cell map can be done in a meaningful way for
377 // a part of a register, it makes little sense to implement it as the
378 // SSA representation would never contain such "partial definitions".
379 if (!TargetRegisterInfo::isVirtualRegister(RR
.Reg
))
381 assert(RR
.Sub
== 0 && "Unexpected sub-register in definition");
382 // Eliminate all ref-to-reg-0 bit values: replace them with "self".
383 M
[RR
.Reg
] = RC
.regify(RR
.Reg
);
386 // Check if the cell represents a compile-time integer value.
387 bool BT::MachineEvaluator::isInt(const RegisterCell
&A
) const {
388 uint16_t W
= A
.width();
389 for (uint16_t i
= 0; i
< W
; ++i
)
390 if (!A
[i
].is(0) && !A
[i
].is(1))
395 // Convert a cell to the integer value. The result must fit in uint64_t.
396 uint64_t BT::MachineEvaluator::toInt(const RegisterCell
&A
) const {
399 uint16_t W
= A
.width();
400 for (uint16_t i
= 0; i
< W
; ++i
) {
407 // Evaluator helper functions. These implement some common operation on
408 // register cells that can be used to implement target-specific instructions
409 // in a target-specific evaluator.
411 BT::RegisterCell
BT::MachineEvaluator::eIMM(int64_t V
, uint16_t W
) const {
413 // For bits beyond the 63rd, this will generate the sign bit of V.
414 for (uint16_t i
= 0; i
< W
; ++i
) {
415 Res
[i
] = BitValue(V
& 1);
421 BT::RegisterCell
BT::MachineEvaluator::eIMM(const ConstantInt
*CI
) const {
422 const APInt
&A
= CI
->getValue();
423 uint16_t BW
= A
.getBitWidth();
424 assert((unsigned)BW
== A
.getBitWidth() && "BitWidth overflow");
425 RegisterCell
Res(BW
);
426 for (uint16_t i
= 0; i
< BW
; ++i
)
431 BT::RegisterCell
BT::MachineEvaluator::eADD(const RegisterCell
&A1
,
432 const RegisterCell
&A2
) const {
433 uint16_t W
= A1
.width();
434 assert(W
== A2
.width());
438 for (I
= 0; I
< W
; ++I
) {
439 const BitValue
&V1
= A1
[I
];
440 const BitValue
&V2
= A2
[I
];
441 if (!V1
.num() || !V2
.num())
443 unsigned S
= bool(V1
) + bool(V2
) + Carry
;
444 Res
[I
] = BitValue(S
& 1);
448 const BitValue
&V1
= A1
[I
];
449 const BitValue
&V2
= A2
[I
];
450 // If the next bit is same as Carry, the result will be 0 plus the
451 // other bit. The Carry bit will remain unchanged.
453 Res
[I
] = BitValue::ref(V2
);
454 else if (V2
.is(Carry
))
455 Res
[I
] = BitValue::ref(V1
);
460 Res
[I
] = BitValue::self();
464 BT::RegisterCell
BT::MachineEvaluator::eSUB(const RegisterCell
&A1
,
465 const RegisterCell
&A2
) const {
466 uint16_t W
= A1
.width();
467 assert(W
== A2
.width());
471 for (I
= 0; I
< W
; ++I
) {
472 const BitValue
&V1
= A1
[I
];
473 const BitValue
&V2
= A2
[I
];
474 if (!V1
.num() || !V2
.num())
476 unsigned S
= bool(V1
) - bool(V2
) - Borrow
;
477 Res
[I
] = BitValue(S
& 1);
481 const BitValue
&V1
= A1
[I
];
482 const BitValue
&V2
= A2
[I
];
484 Res
[I
] = BitValue::ref(V2
);
488 Res
[I
] = BitValue::ref(V1
);
493 Res
[I
] = BitValue::self();
497 BT::RegisterCell
BT::MachineEvaluator::eMLS(const RegisterCell
&A1
,
498 const RegisterCell
&A2
) const {
499 uint16_t W
= A1
.width() + A2
.width();
500 uint16_t Z
= A1
.ct(false) + A2
.ct(false);
502 Res
.fill(0, Z
, BitValue::Zero
);
503 Res
.fill(Z
, W
, BitValue::self());
507 BT::RegisterCell
BT::MachineEvaluator::eMLU(const RegisterCell
&A1
,
508 const RegisterCell
&A2
) const {
509 uint16_t W
= A1
.width() + A2
.width();
510 uint16_t Z
= A1
.ct(false) + A2
.ct(false);
512 Res
.fill(0, Z
, BitValue::Zero
);
513 Res
.fill(Z
, W
, BitValue::self());
517 BT::RegisterCell
BT::MachineEvaluator::eASL(const RegisterCell
&A1
,
519 assert(Sh
<= A1
.width());
520 RegisterCell Res
= RegisterCell::ref(A1
);
522 Res
.fill(0, Sh
, BitValue::Zero
);
526 BT::RegisterCell
BT::MachineEvaluator::eLSR(const RegisterCell
&A1
,
528 uint16_t W
= A1
.width();
530 RegisterCell Res
= RegisterCell::ref(A1
);
532 Res
.fill(W
-Sh
, W
, BitValue::Zero
);
536 BT::RegisterCell
BT::MachineEvaluator::eASR(const RegisterCell
&A1
,
538 uint16_t W
= A1
.width();
540 RegisterCell Res
= RegisterCell::ref(A1
);
541 BitValue Sign
= Res
[W
-1];
543 Res
.fill(W
-Sh
, W
, Sign
);
547 BT::RegisterCell
BT::MachineEvaluator::eAND(const RegisterCell
&A1
,
548 const RegisterCell
&A2
) const {
549 uint16_t W
= A1
.width();
550 assert(W
== A2
.width());
552 for (uint16_t i
= 0; i
< W
; ++i
) {
553 const BitValue
&V1
= A1
[i
];
554 const BitValue
&V2
= A2
[i
];
556 Res
[i
] = BitValue::ref(V2
);
558 Res
[i
] = BitValue::ref(V1
);
559 else if (V1
.is(0) || V2
.is(0))
560 Res
[i
] = BitValue::Zero
;
564 Res
[i
] = BitValue::self();
569 BT::RegisterCell
BT::MachineEvaluator::eORL(const RegisterCell
&A1
,
570 const RegisterCell
&A2
) const {
571 uint16_t W
= A1
.width();
572 assert(W
== A2
.width());
574 for (uint16_t i
= 0; i
< W
; ++i
) {
575 const BitValue
&V1
= A1
[i
];
576 const BitValue
&V2
= A2
[i
];
577 if (V1
.is(1) || V2
.is(1))
578 Res
[i
] = BitValue::One
;
580 Res
[i
] = BitValue::ref(V2
);
582 Res
[i
] = BitValue::ref(V1
);
586 Res
[i
] = BitValue::self();
591 BT::RegisterCell
BT::MachineEvaluator::eXOR(const RegisterCell
&A1
,
592 const RegisterCell
&A2
) const {
593 uint16_t W
= A1
.width();
594 assert(W
== A2
.width());
596 for (uint16_t i
= 0; i
< W
; ++i
) {
597 const BitValue
&V1
= A1
[i
];
598 const BitValue
&V2
= A2
[i
];
600 Res
[i
] = BitValue::ref(V2
);
602 Res
[i
] = BitValue::ref(V1
);
604 Res
[i
] = BitValue::Zero
;
606 Res
[i
] = BitValue::self();
611 BT::RegisterCell
BT::MachineEvaluator::eNOT(const RegisterCell
&A1
) const {
612 uint16_t W
= A1
.width();
614 for (uint16_t i
= 0; i
< W
; ++i
) {
615 const BitValue
&V
= A1
[i
];
617 Res
[i
] = BitValue::One
;
619 Res
[i
] = BitValue::Zero
;
621 Res
[i
] = BitValue::self();
626 BT::RegisterCell
BT::MachineEvaluator::eSET(const RegisterCell
&A1
,
627 uint16_t BitN
) const {
628 assert(BitN
< A1
.width());
629 RegisterCell Res
= RegisterCell::ref(A1
);
630 Res
[BitN
] = BitValue::One
;
634 BT::RegisterCell
BT::MachineEvaluator::eCLR(const RegisterCell
&A1
,
635 uint16_t BitN
) const {
636 assert(BitN
< A1
.width());
637 RegisterCell Res
= RegisterCell::ref(A1
);
638 Res
[BitN
] = BitValue::Zero
;
642 BT::RegisterCell
BT::MachineEvaluator::eCLB(const RegisterCell
&A1
, bool B
,
644 uint16_t C
= A1
.cl(B
), AW
= A1
.width();
645 // If the last leading non-B bit is not a constant, then we don't know
647 if ((C
< AW
&& A1
[AW
-1-C
].num()) || C
== AW
)
649 return RegisterCell::self(0, W
);
652 BT::RegisterCell
BT::MachineEvaluator::eCTB(const RegisterCell
&A1
, bool B
,
654 uint16_t C
= A1
.ct(B
), AW
= A1
.width();
655 // If the last trailing non-B bit is not a constant, then we don't know
657 if ((C
< AW
&& A1
[C
].num()) || C
== AW
)
659 return RegisterCell::self(0, W
);
662 BT::RegisterCell
BT::MachineEvaluator::eSXT(const RegisterCell
&A1
,
663 uint16_t FromN
) const {
664 uint16_t W
= A1
.width();
666 RegisterCell Res
= RegisterCell::ref(A1
);
667 BitValue Sign
= Res
[FromN
-1];
668 // Sign-extend "inreg".
669 Res
.fill(FromN
, W
, Sign
);
673 BT::RegisterCell
BT::MachineEvaluator::eZXT(const RegisterCell
&A1
,
674 uint16_t FromN
) const {
675 uint16_t W
= A1
.width();
677 RegisterCell Res
= RegisterCell::ref(A1
);
678 Res
.fill(FromN
, W
, BitValue::Zero
);
682 BT::RegisterCell
BT::MachineEvaluator::eXTR(const RegisterCell
&A1
,
683 uint16_t B
, uint16_t E
) const {
684 uint16_t W
= A1
.width();
685 assert(B
< W
&& E
<= W
);
687 return RegisterCell(0);
688 uint16_t Last
= (E
> 0) ? E
-1 : W
-1;
689 RegisterCell Res
= RegisterCell::ref(A1
).extract(BT::BitMask(B
, Last
));
690 // Return shorter cell.
694 BT::RegisterCell
BT::MachineEvaluator::eINS(const RegisterCell
&A1
,
695 const RegisterCell
&A2
, uint16_t AtN
) const {
696 uint16_t W1
= A1
.width(), W2
= A2
.width();
698 assert(AtN
< W1
&& AtN
+W2
<= W1
);
699 // Copy bits from A1, insert A2 at position AtN.
700 RegisterCell Res
= RegisterCell::ref(A1
);
702 Res
.insert(RegisterCell::ref(A2
), BT::BitMask(AtN
, AtN
+W2
-1));
706 BT::BitMask
BT::MachineEvaluator::mask(unsigned Reg
, unsigned Sub
) const {
707 assert(Sub
== 0 && "Generic BitTracker::mask called for Sub != 0");
708 uint16_t W
= getRegBitWidth(Reg
);
709 assert(W
> 0 && "Cannot generate mask for empty register");
710 return BitMask(0, W
-1);
713 uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg
) const {
714 assert(TargetRegisterInfo::isPhysicalRegister(Reg
));
715 const TargetRegisterClass
&PC
= *TRI
.getMinimalPhysRegClass(Reg
);
716 return TRI
.getRegSizeInBits(PC
);
719 bool BT::MachineEvaluator::evaluate(const MachineInstr
&MI
,
720 const CellMapType
&Inputs
,
721 CellMapType
&Outputs
) const {
722 unsigned Opc
= MI
.getOpcode();
724 case TargetOpcode::REG_SEQUENCE
: {
725 RegisterRef RD
= MI
.getOperand(0);
727 RegisterRef RS
= MI
.getOperand(1);
728 unsigned SS
= MI
.getOperand(2).getImm();
729 RegisterRef RT
= MI
.getOperand(3);
730 unsigned ST
= MI
.getOperand(4).getImm();
733 uint16_t W
= getRegBitWidth(RD
);
735 Res
.insert(RegisterCell::ref(getCell(RS
, Inputs
)), mask(RD
.Reg
, SS
));
736 Res
.insert(RegisterCell::ref(getCell(RT
, Inputs
)), mask(RD
.Reg
, ST
));
737 putCell(RD
, Res
, Outputs
);
741 case TargetOpcode::COPY
: {
742 // COPY can transfer a smaller register into a wider one.
743 // If that is the case, fill the remaining high bits with 0.
744 RegisterRef RD
= MI
.getOperand(0);
745 RegisterRef RS
= MI
.getOperand(1);
747 uint16_t WD
= getRegBitWidth(RD
);
748 uint16_t WS
= getRegBitWidth(RS
);
750 RegisterCell Src
= getCell(RS
, Inputs
);
751 RegisterCell
Res(WD
);
752 Res
.insert(Src
, BitMask(0, WS
-1));
753 Res
.fill(WS
, WD
, BitValue::Zero
);
754 putCell(RD
, Res
, Outputs
);
765 bool BT::UseQueueType::Cmp::operator()(const MachineInstr
*InstA
,
766 const MachineInstr
*InstB
) const {
767 // This is a comparison function for a priority queue: give higher priority
768 // to earlier instructions.
769 // This operator is used as "less", so returning "true" gives InstB higher
770 // priority (because then InstA < InstB).
773 const MachineBasicBlock
*BA
= InstA
->getParent();
774 const MachineBasicBlock
*BB
= InstB
->getParent();
776 // If the blocks are different, ideally the dominating block would
777 // have a higher priority, but it may be too expensive to check.
778 return BA
->getNumber() > BB
->getNumber();
781 auto getDist
= [this] (const MachineInstr
*MI
) {
782 auto F
= Dist
.find(MI
);
785 MachineBasicBlock::const_iterator I
= MI
->getParent()->begin();
786 MachineBasicBlock::const_iterator E
= MI
->getIterator();
787 unsigned D
= std::distance(I
, E
);
788 Dist
.insert(std::make_pair(MI
, D
));
792 return getDist(InstA
) > getDist(InstB
);
795 // Main W-Z implementation.
797 void BT::visitPHI(const MachineInstr
&PI
) {
798 int ThisN
= PI
.getParent()->getNumber();
800 dbgs() << "Visit FI(" << printMBBReference(*PI
.getParent()) << "): " << PI
;
802 const MachineOperand
&MD
= PI
.getOperand(0);
803 assert(MD
.getSubReg() == 0 && "Unexpected sub-register in definition");
804 RegisterRef
DefRR(MD
);
805 uint16_t DefBW
= ME
.getRegBitWidth(DefRR
);
807 RegisterCell DefC
= ME
.getCell(DefRR
, Map
);
808 if (DefC
== RegisterCell::self(DefRR
.Reg
, DefBW
)) // XXX slow
811 bool Changed
= false;
813 for (unsigned i
= 1, n
= PI
.getNumOperands(); i
< n
; i
+= 2) {
814 const MachineBasicBlock
*PB
= PI
.getOperand(i
+ 1).getMBB();
815 int PredN
= PB
->getNumber();
817 dbgs() << " edge " << printMBBReference(*PB
) << "->"
818 << printMBBReference(*PI
.getParent());
819 if (!EdgeExec
.count(CFGEdge(PredN
, ThisN
))) {
821 dbgs() << " not executable\n";
825 RegisterRef RU
= PI
.getOperand(i
);
826 RegisterCell ResC
= ME
.getCell(RU
, Map
);
828 dbgs() << " input reg: " << printReg(RU
.Reg
, &ME
.TRI
, RU
.Sub
)
829 << " cell: " << ResC
<< "\n";
830 Changed
|= DefC
.meet(ResC
, DefRR
.Reg
);
835 dbgs() << "Output: " << printReg(DefRR
.Reg
, &ME
.TRI
, DefRR
.Sub
)
836 << " cell: " << DefC
<< "\n";
837 ME
.putCell(DefRR
, DefC
, Map
);
838 visitUsesOf(DefRR
.Reg
);
842 void BT::visitNonBranch(const MachineInstr
&MI
) {
844 dbgs() << "Visit MI(" << printMBBReference(*MI
.getParent()) << "): " << MI
;
845 if (MI
.isDebugInstr())
847 assert(!MI
.isBranch() && "Unexpected branch instruction");
850 bool Eval
= ME
.evaluate(MI
, Map
, ResMap
);
853 for (unsigned i
= 0, n
= MI
.getNumOperands(); i
< n
; ++i
) {
854 const MachineOperand
&MO
= MI
.getOperand(i
);
855 if (!MO
.isReg() || !MO
.isUse())
858 dbgs() << " input reg: " << printReg(RU
.Reg
, &ME
.TRI
, RU
.Sub
)
859 << " cell: " << ME
.getCell(RU
, Map
) << "\n";
861 dbgs() << "Outputs:\n";
862 for (const std::pair
<unsigned, RegisterCell
> &P
: ResMap
) {
863 RegisterRef
RD(P
.first
);
864 dbgs() << " " << printReg(P
.first
, &ME
.TRI
) << " cell: "
865 << ME
.getCell(RD
, ResMap
) << "\n";
869 // Iterate over all definitions of the instruction, and update the
870 // cells accordingly.
871 for (const MachineOperand
&MO
: MI
.operands()) {
872 // Visit register defs only.
873 if (!MO
.isReg() || !MO
.isDef())
876 assert(RD
.Sub
== 0 && "Unexpected sub-register in definition");
877 if (!TargetRegisterInfo::isVirtualRegister(RD
.Reg
))
880 bool Changed
= false;
881 if (!Eval
|| ResMap
.count(RD
.Reg
) == 0) {
882 // Set to "ref" (aka "bottom").
883 uint16_t DefBW
= ME
.getRegBitWidth(RD
);
884 RegisterCell RefC
= RegisterCell::self(RD
.Reg
, DefBW
);
885 if (RefC
!= ME
.getCell(RD
, Map
)) {
886 ME
.putCell(RD
, RefC
, Map
);
890 RegisterCell DefC
= ME
.getCell(RD
, Map
);
891 RegisterCell ResC
= ME
.getCell(RD
, ResMap
);
892 // This is a non-phi instruction, so the values of the inputs come
893 // from the same registers each time this instruction is evaluated.
894 // During the propagation, the values of the inputs can become lowered
895 // in the sense of the lattice operation, which may cause different
896 // results to be calculated in subsequent evaluations. This should
897 // not cause the bottoming of the result in the map, since the new
898 // result is already reflecting the lowered inputs.
899 for (uint16_t i
= 0, w
= DefC
.width(); i
< w
; ++i
) {
900 BitValue
&V
= DefC
[i
];
901 // Bits that are already "bottom" should not be updated.
902 if (V
.Type
== BitValue::Ref
&& V
.RefI
.Reg
== RD
.Reg
)
904 // Same for those that are identical in DefC and ResC.
911 ME
.putCell(RD
, DefC
, Map
);
918 void BT::visitBranchesFrom(const MachineInstr
&BI
) {
919 const MachineBasicBlock
&B
= *BI
.getParent();
920 MachineBasicBlock::const_iterator It
= BI
, End
= B
.end();
921 BranchTargetList Targets
, BTs
;
922 bool FallsThrough
= true, DefaultToAll
= false;
923 int ThisN
= B
.getNumber();
927 const MachineInstr
&MI
= *It
;
929 dbgs() << "Visit BR(" << printMBBReference(B
) << "): " << MI
;
930 assert(MI
.isBranch() && "Expecting branch instruction");
931 InstrExec
.insert(&MI
);
932 bool Eval
= ME
.evaluate(MI
, Map
, BTs
, FallsThrough
);
934 // If the evaluation failed, we will add all targets. Keep going in
935 // the loop to mark all executable branches as such.
939 dbgs() << " failed to evaluate: will add all CFG successors\n";
940 } else if (!DefaultToAll
) {
941 // If evaluated successfully add the targets to the cumulative list.
943 dbgs() << " adding targets:";
944 for (unsigned i
= 0, n
= BTs
.size(); i
< n
; ++i
)
945 dbgs() << " " << printMBBReference(*BTs
[i
]);
947 dbgs() << "\n falls through\n";
949 dbgs() << "\n does not fall through\n";
951 Targets
.insert(BTs
.begin(), BTs
.end());
954 } while (FallsThrough
&& It
!= End
);
957 // Need to add all CFG successors that lead to EH landing pads.
958 // There won't be explicit branches to these blocks, but they must
960 for (const MachineBasicBlock
*SB
: B
.successors()) {
965 MachineFunction::const_iterator BIt
= B
.getIterator();
966 MachineFunction::const_iterator Next
= std::next(BIt
);
967 if (Next
!= MF
.end())
968 Targets
.insert(&*Next
);
971 for (const MachineBasicBlock
*SB
: B
.successors())
975 for (const MachineBasicBlock
*TB
: Targets
)
976 FlowQ
.push(CFGEdge(ThisN
, TB
->getNumber()));
979 void BT::visitUsesOf(unsigned Reg
) {
981 dbgs() << "queuing uses of modified reg " << printReg(Reg
, &ME
.TRI
)
982 << " cell: " << ME
.getCell(Reg
, Map
) << '\n';
984 for (MachineInstr
&UseI
: MRI
.use_nodbg_instructions(Reg
))
988 BT::RegisterCell
BT::get(RegisterRef RR
) const {
989 return ME
.getCell(RR
, Map
);
992 void BT::put(RegisterRef RR
, const RegisterCell
&RC
) {
993 ME
.putCell(RR
, RC
, Map
);
996 // Replace all references to bits from OldRR with the corresponding bits
998 void BT::subst(RegisterRef OldRR
, RegisterRef NewRR
) {
999 assert(Map
.count(OldRR
.Reg
) > 0 && "OldRR not present in map");
1000 BitMask OM
= ME
.mask(OldRR
.Reg
, OldRR
.Sub
);
1001 BitMask NM
= ME
.mask(NewRR
.Reg
, NewRR
.Sub
);
1002 uint16_t OMB
= OM
.first(), OME
= OM
.last();
1003 uint16_t NMB
= NM
.first(), NME
= NM
.last();
1005 assert((OME
-OMB
== NME
-NMB
) &&
1006 "Substituting registers of different lengths");
1007 for (std::pair
<const unsigned, RegisterCell
> &P
: Map
) {
1008 RegisterCell
&RC
= P
.second
;
1009 for (uint16_t i
= 0, w
= RC
.width(); i
< w
; ++i
) {
1010 BitValue
&V
= RC
[i
];
1011 if (V
.Type
!= BitValue::Ref
|| V
.RefI
.Reg
!= OldRR
.Reg
)
1013 if (V
.RefI
.Pos
< OMB
|| V
.RefI
.Pos
> OME
)
1015 V
.RefI
.Reg
= NewRR
.Reg
;
1016 V
.RefI
.Pos
+= NMB
-OMB
;
1021 // Check if the block has been "executed" during propagation. (If not, the
1022 // block is dead, but it may still appear to be reachable.)
1023 bool BT::reached(const MachineBasicBlock
*B
) const {
1024 int BN
= B
->getNumber();
1026 return ReachedBB
.count(BN
);
1029 // Visit an individual instruction. This could be a newly added instruction,
1030 // or one that has been modified by an optimization.
1031 void BT::visit(const MachineInstr
&MI
) {
1032 assert(!MI
.isBranch() && "Only non-branches are allowed");
1033 InstrExec
.insert(&MI
);
1035 // Make sure to flush all the pending use updates.
1037 // The call to visitNonBranch could propagate the changes until a branch
1038 // is actually visited. This could result in adding CFG edges to the flow
1039 // queue. Since the queue won't be processed, clear it.
1040 while (!FlowQ
.empty())
1049 ReachedBB
.reserve(MF
.size());
1052 void BT::runEdgeQueue(BitVector
&BlockScanned
) {
1053 while (!FlowQ
.empty()) {
1054 CFGEdge Edge
= FlowQ
.front();
1057 if (EdgeExec
.count(Edge
))
1059 EdgeExec
.insert(Edge
);
1060 ReachedBB
.insert(Edge
.second
);
1062 const MachineBasicBlock
&B
= *MF
.getBlockNumbered(Edge
.second
);
1063 MachineBasicBlock::const_iterator It
= B
.begin(), End
= B
.end();
1064 // Visit PHI nodes first.
1065 while (It
!= End
&& It
->isPHI()) {
1066 const MachineInstr
&PI
= *It
++;
1067 InstrExec
.insert(&PI
);
1071 // If this block has already been visited through a flow graph edge,
1072 // then the instructions have already been processed. Any updates to
1073 // the cells would now only happen through visitUsesOf...
1074 if (BlockScanned
[Edge
.second
])
1076 BlockScanned
[Edge
.second
] = true;
1078 // Visit non-branch instructions.
1079 while (It
!= End
&& !It
->isBranch()) {
1080 const MachineInstr
&MI
= *It
++;
1081 InstrExec
.insert(&MI
);
1084 // If block end has been reached, add the fall-through edge to the queue.
1086 MachineFunction::const_iterator BIt
= B
.getIterator();
1087 MachineFunction::const_iterator Next
= std::next(BIt
);
1088 if (Next
!= MF
.end() && B
.isSuccessor(&*Next
)) {
1089 int ThisN
= B
.getNumber();
1090 int NextN
= Next
->getNumber();
1091 FlowQ
.push(CFGEdge(ThisN
, NextN
));
1094 // Handle the remaining sequence of branches. This function will update
1096 visitBranchesFrom(*It
);
1098 } // while (!FlowQ->empty())
1101 void BT::runUseQueue() {
1102 while (!UseQ
.empty()) {
1103 MachineInstr
&UseI
= *UseQ
.front();
1106 if (!InstrExec
.count(&UseI
))
1110 else if (!UseI
.isBranch())
1111 visitNonBranch(UseI
);
1113 visitBranchesFrom(UseI
);
1119 assert(FlowQ
.empty());
1121 using MachineFlowGraphTraits
= GraphTraits
<const MachineFunction
*>;
1122 const MachineBasicBlock
*Entry
= MachineFlowGraphTraits::getEntryNode(&MF
);
1125 for (const MachineBasicBlock
&B
: MF
) {
1126 assert(B
.getNumber() >= 0 && "Disconnected block");
1127 unsigned BN
= B
.getNumber();
1132 // Keep track of visited blocks.
1133 BitVector
BlockScanned(MaxBN
+1);
1135 int EntryN
= Entry
->getNumber();
1136 // Generate a fake edge to get something to start with.
1137 FlowQ
.push(CFGEdge(-1, EntryN
));
1139 while (!FlowQ
.empty() || !UseQ
.empty()) {
1140 runEdgeQueue(BlockScanned
);
1146 print_cells(dbgs() << "Cells after propagation:\n");