Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / Hexagon / HexagonConstExtenders.cpp
blobcfed0ecef2720934b3427d40dd7b7d3104ba090d
1 //===- HexagonConstExtenders.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "HexagonInstrInfo.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/CodeGen/MachineDominators.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/Support/CommandLine.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include "llvm/Pass.h"
20 #include <map>
21 #include <set>
22 #include <utility>
23 #include <vector>
25 #define DEBUG_TYPE "hexagon-cext-opt"
27 using namespace llvm;
29 static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold",
30 cl::init(3), cl::Hidden, cl::ZeroOrMore,
31 cl::desc("Minimum number of extenders to trigger replacement"));
33 static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0),
34 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements"));
36 namespace llvm {
37 void initializeHexagonConstExtendersPass(PassRegistry&);
38 FunctionPass *createHexagonConstExtenders();
41 static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) {
42 assert(isPowerOf2_32(A));
43 int32_t U = (V & -A) + O;
44 return U >= V ? U : U+A;
47 static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) {
48 assert(isPowerOf2_32(A));
49 int32_t U = (V & -A) + O;
50 return U <= V ? U : U-A;
53 namespace {
54 struct OffsetRange {
55 // The range of values between Min and Max that are of form Align*N+Offset,
56 // for some integer N. Min and Max are required to be of that form as well,
57 // except in the case of an empty range.
58 int32_t Min = INT_MIN, Max = INT_MAX;
59 uint8_t Align = 1;
60 uint8_t Offset = 0;
62 OffsetRange() = default;
63 OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0)
64 : Min(L), Max(H), Align(A), Offset(O) {}
65 OffsetRange &intersect(OffsetRange A) {
66 if (Align < A.Align)
67 std::swap(*this, A);
69 // Align >= A.Align.
70 if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) {
71 Min = adjustUp(std::max(Min, A.Min), Align, Offset);
72 Max = adjustDown(std::min(Max, A.Max), Align, Offset);
73 } else {
74 // Make an empty range.
75 Min = 0;
76 Max = -1;
78 // Canonicalize empty ranges.
79 if (Min > Max)
80 std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1);
81 return *this;
83 OffsetRange &shift(int32_t S) {
84 Min += S;
85 Max += S;
86 Offset = (Offset+S) % Align;
87 return *this;
89 OffsetRange &extendBy(int32_t D) {
90 // If D < 0, extend Min, otherwise extend Max.
91 assert(D % Align == 0);
92 if (D < 0)
93 Min = (INT_MIN-D < Min) ? Min+D : INT_MIN;
94 else
95 Max = (INT_MAX-D > Max) ? Max+D : INT_MAX;
96 return *this;
98 bool empty() const {
99 return Min > Max;
101 bool contains(int32_t V) const {
102 return Min <= V && V <= Max && (V-Offset) % Align == 0;
104 bool operator==(const OffsetRange &R) const {
105 return Min == R.Min && Max == R.Max && Align == R.Align;
107 bool operator!=(const OffsetRange &R) const {
108 return !operator==(R);
110 bool operator<(const OffsetRange &R) const {
111 if (Min != R.Min)
112 return Min < R.Min;
113 if (Max != R.Max)
114 return Max < R.Max;
115 return Align < R.Align;
117 static OffsetRange zero() { return {0, 0, 1}; }
120 struct RangeTree {
121 struct Node {
122 Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {}
123 unsigned Height = 1;
124 unsigned Count = 1;
125 int32_t MaxEnd;
126 const OffsetRange &Range;
127 Node *Left = nullptr, *Right = nullptr;
130 Node *Root = nullptr;
132 void add(const OffsetRange &R) {
133 Root = add(Root, R);
135 void erase(const Node *N) {
136 Root = remove(Root, N);
137 delete N;
139 void order(SmallVectorImpl<Node*> &Seq) const {
140 order(Root, Seq);
142 SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) {
143 SmallVector<Node*,8> Nodes;
144 nodesWith(Root, P, CheckAlign, Nodes);
145 return Nodes;
147 void dump() const;
148 ~RangeTree() {
149 SmallVector<Node*,8> Nodes;
150 order(Nodes);
151 for (Node *N : Nodes)
152 delete N;
155 private:
156 void dump(const Node *N) const;
157 void order(Node *N, SmallVectorImpl<Node*> &Seq) const;
158 void nodesWith(Node *N, int32_t P, bool CheckA,
159 SmallVectorImpl<Node*> &Seq) const;
161 Node *add(Node *N, const OffsetRange &R);
162 Node *remove(Node *N, const Node *D);
163 Node *rotateLeft(Node *Lower, Node *Higher);
164 Node *rotateRight(Node *Lower, Node *Higher);
165 unsigned height(Node *N) {
166 return N != nullptr ? N->Height : 0;
168 Node *update(Node *N) {
169 assert(N != nullptr);
170 N->Height = 1 + std::max(height(N->Left), height(N->Right));
171 if (N->Left)
172 N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd);
173 if (N->Right)
174 N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd);
175 return N;
177 Node *rebalance(Node *N) {
178 assert(N != nullptr);
179 int32_t Balance = height(N->Right) - height(N->Left);
180 if (Balance < -1)
181 return rotateRight(N->Left, N);
182 if (Balance > 1)
183 return rotateLeft(N->Right, N);
184 return N;
188 struct Loc {
189 MachineBasicBlock *Block = nullptr;
190 MachineBasicBlock::iterator At;
192 Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It)
193 : Block(B), At(It) {
194 if (B->end() == It) {
195 Pos = -1;
196 } else {
197 assert(It->getParent() == B);
198 Pos = std::distance(B->begin(), It);
201 bool operator<(Loc A) const {
202 if (Block != A.Block)
203 return Block->getNumber() < A.Block->getNumber();
204 if (A.Pos == -1)
205 return Pos != A.Pos;
206 return Pos != -1 && Pos < A.Pos;
208 private:
209 int Pos = 0;
212 struct HexagonConstExtenders : public MachineFunctionPass {
213 static char ID;
214 HexagonConstExtenders() : MachineFunctionPass(ID) {}
216 void getAnalysisUsage(AnalysisUsage &AU) const override {
217 AU.addRequired<MachineDominatorTree>();
218 AU.addPreserved<MachineDominatorTree>();
219 MachineFunctionPass::getAnalysisUsage(AU);
222 StringRef getPassName() const override {
223 return "Hexagon constant-extender optimization";
225 bool runOnMachineFunction(MachineFunction &MF) override;
227 private:
228 struct Register {
229 Register() = default;
230 Register(unsigned R, unsigned S) : Reg(R), Sub(S) {}
231 Register(const MachineOperand &Op)
232 : Reg(Op.getReg()), Sub(Op.getSubReg()) {}
233 Register &operator=(const MachineOperand &Op) {
234 if (Op.isReg()) {
235 Reg = Op.getReg();
236 Sub = Op.getSubReg();
237 } else if (Op.isFI()) {
238 Reg = TargetRegisterInfo::index2StackSlot(Op.getIndex());
240 return *this;
242 bool isVReg() const {
243 return Reg != 0 && !TargetRegisterInfo::isStackSlot(Reg) &&
244 TargetRegisterInfo::isVirtualRegister(Reg);
246 bool isSlot() const {
247 return Reg != 0 && TargetRegisterInfo::isStackSlot(Reg);
249 operator MachineOperand() const {
250 if (isVReg())
251 return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false,
252 /*Kill*/false, /*Dead*/false, /*Undef*/false,
253 /*EarlyClobber*/false, Sub);
254 if (TargetRegisterInfo::isStackSlot(Reg)) {
255 int FI = TargetRegisterInfo::stackSlot2Index(Reg);
256 return MachineOperand::CreateFI(FI);
258 llvm_unreachable("Cannot create MachineOperand");
260 bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; }
261 bool operator!=(Register R) const { return !operator==(R); }
262 bool operator<(Register R) const {
263 // For std::map.
264 return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
266 unsigned Reg = 0, Sub = 0;
269 struct ExtExpr {
270 // A subexpression in which the extender is used. In general, this
271 // represents an expression where adding D to the extender will be
272 // equivalent to adding D to the expression as a whole. In other
273 // words, expr(add(##V,D) = add(expr(##V),D).
275 // The original motivation for this are the io/ur addressing modes,
276 // where the offset is extended. Consider the io example:
277 // In memw(Rs+##V), the ##V could be replaced by a register Rt to
278 // form the rr mode: memw(Rt+Rs<<0). In such case, however, the
279 // register Rt must have exactly the value of ##V. If there was
280 // another instruction memw(Rs+##V+4), it would need a different Rt.
281 // Now, if Rt was initialized as "##V+Rs<<0", both of these
282 // instructions could use the same Rt, just with different offsets.
283 // Here it's clear that "initializer+4" should be the same as if
284 // the offset 4 was added to the ##V in the initializer.
286 // The only kinds of expressions that support the requirement of
287 // commuting with addition are addition and subtraction from ##V.
288 // Include shifting the Rs to account for the ur addressing mode:
289 // ##Val + Rs << S
290 // ##Val - Rs
291 Register Rs;
292 unsigned S = 0;
293 bool Neg = false;
295 ExtExpr() = default;
296 ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {}
297 // Expression is trivial if it does not modify the extender.
298 bool trivial() const {
299 return Rs.Reg == 0;
301 bool operator==(const ExtExpr &Ex) const {
302 return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg;
304 bool operator!=(const ExtExpr &Ex) const {
305 return !operator==(Ex);
307 bool operator<(const ExtExpr &Ex) const {
308 if (Rs != Ex.Rs)
309 return Rs < Ex.Rs;
310 if (S != Ex.S)
311 return S < Ex.S;
312 return !Neg && Ex.Neg;
316 struct ExtDesc {
317 MachineInstr *UseMI = nullptr;
318 unsigned OpNum = -1u;
319 // The subexpression in which the extender is used (e.g. address
320 // computation).
321 ExtExpr Expr;
322 // Optional register that is assigned the value of Expr.
323 Register Rd;
324 // Def means that the output of the instruction may differ from the
325 // original by a constant c, and that the difference can be corrected
326 // by adding/subtracting c in all users of the defined register.
327 bool IsDef = false;
329 MachineOperand &getOp() {
330 return UseMI->getOperand(OpNum);
332 const MachineOperand &getOp() const {
333 return UseMI->getOperand(OpNum);
337 struct ExtRoot {
338 union {
339 const ConstantFP *CFP; // MO_FPImmediate
340 const char *SymbolName; // MO_ExternalSymbol
341 const GlobalValue *GV; // MO_GlobalAddress
342 const BlockAddress *BA; // MO_BlockAddress
343 int64_t ImmVal; // MO_Immediate, MO_TargetIndex,
344 // and MO_ConstantPoolIndex
345 } V;
346 unsigned Kind; // Same as in MachineOperand.
347 unsigned char TF; // TargetFlags.
349 ExtRoot(const MachineOperand &Op);
350 bool operator==(const ExtRoot &ER) const {
351 return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal;
353 bool operator!=(const ExtRoot &ER) const {
354 return !operator==(ER);
356 bool operator<(const ExtRoot &ER) const;
359 struct ExtValue : public ExtRoot {
360 int32_t Offset;
362 ExtValue(const MachineOperand &Op);
363 ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {}
364 ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {}
365 bool operator<(const ExtValue &EV) const;
366 bool operator==(const ExtValue &EV) const {
367 return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset;
369 bool operator!=(const ExtValue &EV) const {
370 return !operator==(EV);
372 explicit operator MachineOperand() const;
375 using IndexList = SetVector<unsigned>;
376 using ExtenderInit = std::pair<ExtValue, ExtExpr>;
377 using AssignmentMap = std::map<ExtenderInit, IndexList>;
378 using LocDefList = std::vector<std::pair<Loc, IndexList>>;
380 const HexagonInstrInfo *HII = nullptr;
381 const HexagonRegisterInfo *HRI = nullptr;
382 MachineDominatorTree *MDT = nullptr;
383 MachineRegisterInfo *MRI = nullptr;
384 std::vector<ExtDesc> Extenders;
385 std::vector<unsigned> NewRegs;
387 bool isStoreImmediate(unsigned Opc) const;
388 bool isRegOffOpcode(unsigned ExtOpc) const ;
389 unsigned getRegOffOpcode(unsigned ExtOpc) const;
390 unsigned getDirectRegReplacement(unsigned ExtOpc) const;
391 OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const;
392 OffsetRange getOffsetRange(const ExtDesc &ED) const;
393 OffsetRange getOffsetRange(Register Rd) const;
395 void recordExtender(MachineInstr &MI, unsigned OpNum);
396 void collectInstr(MachineInstr &MI);
397 void collect(MachineFunction &MF);
398 void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
399 AssignmentMap &IMap);
400 void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
401 LocDefList &Defs);
402 Register insertInitializer(Loc DefL, const ExtenderInit &ExtI);
403 bool replaceInstrExact(const ExtDesc &ED, Register ExtR);
404 bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
405 Register ExtR, int32_t &Diff);
406 bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI);
407 bool replaceExtenders(const AssignmentMap &IMap);
409 unsigned getOperandIndex(const MachineInstr &MI,
410 const MachineOperand &Op) const;
411 const MachineOperand &getPredicateOp(const MachineInstr &MI) const;
412 const MachineOperand &getLoadResultOp(const MachineInstr &MI) const;
413 const MachineOperand &getStoredValueOp(const MachineInstr &MI) const;
415 friend struct PrintRegister;
416 friend struct PrintExpr;
417 friend struct PrintInit;
418 friend struct PrintIMap;
419 friend raw_ostream &operator<< (raw_ostream &OS,
420 const struct PrintRegister &P);
421 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P);
422 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P);
423 friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED);
424 friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER);
425 friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV);
426 friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR);
427 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P);
430 using HCE = HexagonConstExtenders;
432 LLVM_ATTRIBUTE_UNUSED
433 raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) {
434 if (OR.Min > OR.Max)
435 OS << '!';
436 OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align)
437 << '+' << unsigned(OR.Offset);
438 return OS;
441 struct PrintRegister {
442 PrintRegister(HCE::Register R, const HexagonRegisterInfo &I)
443 : Rs(R), HRI(I) {}
444 HCE::Register Rs;
445 const HexagonRegisterInfo &HRI;
448 LLVM_ATTRIBUTE_UNUSED
449 raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
450 if (P.Rs.Reg != 0)
451 OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub);
452 else
453 OS << "noreg";
454 return OS;
457 struct PrintExpr {
458 PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I)
459 : Ex(E), HRI(I) {}
460 const HCE::ExtExpr &Ex;
461 const HexagonRegisterInfo &HRI;
464 LLVM_ATTRIBUTE_UNUSED
465 raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) {
466 OS << "## " << (P.Ex.Neg ? "- " : "+ ");
467 if (P.Ex.Rs.Reg != 0)
468 OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub);
469 else
470 OS << "__";
471 OS << " << " << P.Ex.S;
472 return OS;
475 struct PrintInit {
476 PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I)
477 : ExtI(EI), HRI(I) {}
478 const HCE::ExtenderInit &ExtI;
479 const HexagonRegisterInfo &HRI;
482 LLVM_ATTRIBUTE_UNUSED
483 raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) {
484 OS << '[' << P.ExtI.first << ", "
485 << PrintExpr(P.ExtI.second, P.HRI) << ']';
486 return OS;
489 LLVM_ATTRIBUTE_UNUSED
490 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
491 assert(ED.OpNum != -1u);
492 const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent();
493 const MachineFunction &MF = *MBB.getParent();
494 const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
495 OS << "bb#" << MBB.getNumber() << ": ";
496 if (ED.Rd.Reg != 0)
497 OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub);
498 else
499 OS << "__";
500 OS << " = " << PrintExpr(ED.Expr, HRI);
501 if (ED.IsDef)
502 OS << ", def";
503 return OS;
506 LLVM_ATTRIBUTE_UNUSED
507 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) {
508 switch (ER.Kind) {
509 case MachineOperand::MO_Immediate:
510 OS << "imm:" << ER.V.ImmVal;
511 break;
512 case MachineOperand::MO_FPImmediate:
513 OS << "fpi:" << *ER.V.CFP;
514 break;
515 case MachineOperand::MO_ExternalSymbol:
516 OS << "sym:" << *ER.V.SymbolName;
517 break;
518 case MachineOperand::MO_GlobalAddress:
519 OS << "gad:" << ER.V.GV->getName();
520 break;
521 case MachineOperand::MO_BlockAddress:
522 OS << "blk:" << *ER.V.BA;
523 break;
524 case MachineOperand::MO_TargetIndex:
525 OS << "tgi:" << ER.V.ImmVal;
526 break;
527 case MachineOperand::MO_ConstantPoolIndex:
528 OS << "cpi:" << ER.V.ImmVal;
529 break;
530 case MachineOperand::MO_JumpTableIndex:
531 OS << "jti:" << ER.V.ImmVal;
532 break;
533 default:
534 OS << "???:" << ER.V.ImmVal;
535 break;
537 return OS;
540 LLVM_ATTRIBUTE_UNUSED
541 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) {
542 OS << HCE::ExtRoot(EV) << " off:" << EV.Offset;
543 return OS;
546 struct PrintIMap {
547 PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I)
548 : IMap(M), HRI(I) {}
549 const HCE::AssignmentMap &IMap;
550 const HexagonRegisterInfo &HRI;
553 LLVM_ATTRIBUTE_UNUSED
554 raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
555 OS << "{\n";
556 for (const std::pair<HCE::ExtenderInit,HCE::IndexList> &Q : P.IMap) {
557 OS << " " << PrintInit(Q.first, P.HRI) << " -> {";
558 for (unsigned I : Q.second)
559 OS << ' ' << I;
560 OS << " }\n";
562 OS << "}\n";
563 return OS;
567 INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt",
568 "Hexagon constant-extender optimization", false, false)
569 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
570 INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt",
571 "Hexagon constant-extender optimization", false, false)
573 static unsigned ReplaceCounter = 0;
575 char HCE::ID = 0;
577 #ifndef NDEBUG
578 LLVM_DUMP_METHOD void RangeTree::dump() const {
579 dbgs() << "Root: " << Root << '\n';
580 if (Root)
581 dump(Root);
584 LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const {
585 dbgs() << "Node: " << N << '\n';
586 dbgs() << " Height: " << N->Height << '\n';
587 dbgs() << " Count: " << N->Count << '\n';
588 dbgs() << " MaxEnd: " << N->MaxEnd << '\n';
589 dbgs() << " Range: " << N->Range << '\n';
590 dbgs() << " Left: " << N->Left << '\n';
591 dbgs() << " Right: " << N->Right << "\n\n";
593 if (N->Left)
594 dump(N->Left);
595 if (N->Right)
596 dump(N->Right);
598 #endif
600 void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const {
601 if (N == nullptr)
602 return;
603 order(N->Left, Seq);
604 Seq.push_back(N);
605 order(N->Right, Seq);
608 void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA,
609 SmallVectorImpl<Node*> &Seq) const {
610 if (N == nullptr || N->MaxEnd < P)
611 return;
612 nodesWith(N->Left, P, CheckA, Seq);
613 if (N->Range.Min <= P) {
614 if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max))
615 Seq.push_back(N);
616 nodesWith(N->Right, P, CheckA, Seq);
620 RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) {
621 if (N == nullptr)
622 return new Node(R);
624 if (N->Range == R) {
625 N->Count++;
626 return N;
629 if (R < N->Range)
630 N->Left = add(N->Left, R);
631 else
632 N->Right = add(N->Right, R);
633 return rebalance(update(N));
636 RangeTree::Node *RangeTree::remove(Node *N, const Node *D) {
637 assert(N != nullptr);
639 if (N != D) {
640 assert(N->Range != D->Range && "N and D should not be equal");
641 if (D->Range < N->Range)
642 N->Left = remove(N->Left, D);
643 else
644 N->Right = remove(N->Right, D);
645 return rebalance(update(N));
648 // We got to the node we need to remove. If any of its children are
649 // missing, simply replace it with the other child.
650 if (N->Left == nullptr || N->Right == nullptr)
651 return (N->Left == nullptr) ? N->Right : N->Left;
653 // Find the rightmost child of N->Left, remove it and plug it in place
654 // of N.
655 Node *M = N->Left;
656 while (M->Right)
657 M = M->Right;
658 M->Left = remove(N->Left, M);
659 M->Right = N->Right;
660 return rebalance(update(M));
663 RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) {
664 assert(Higher->Right == Lower);
665 // The Lower node is on the right from Higher. Make sure that Lower's
666 // balance is greater to the right. Otherwise the rotation will create
667 // an unbalanced tree again.
668 if (height(Lower->Left) > height(Lower->Right))
669 Lower = rotateRight(Lower->Left, Lower);
670 assert(height(Lower->Left) <= height(Lower->Right));
671 Higher->Right = Lower->Left;
672 update(Higher);
673 Lower->Left = Higher;
674 update(Lower);
675 return Lower;
678 RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) {
679 assert(Higher->Left == Lower);
680 // The Lower node is on the left from Higher. Make sure that Lower's
681 // balance is greater to the left. Otherwise the rotation will create
682 // an unbalanced tree again.
683 if (height(Lower->Left) < height(Lower->Right))
684 Lower = rotateLeft(Lower->Right, Lower);
685 assert(height(Lower->Left) >= height(Lower->Right));
686 Higher->Left = Lower->Right;
687 update(Higher);
688 Lower->Right = Higher;
689 update(Lower);
690 return Lower;
694 HCE::ExtRoot::ExtRoot(const MachineOperand &Op) {
695 // Always store ImmVal, since it's the field used for comparisons.
696 V.ImmVal = 0;
697 if (Op.isImm())
698 ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root).
699 else if (Op.isFPImm())
700 V.CFP = Op.getFPImm();
701 else if (Op.isSymbol())
702 V.SymbolName = Op.getSymbolName();
703 else if (Op.isGlobal())
704 V.GV = Op.getGlobal();
705 else if (Op.isBlockAddress())
706 V.BA = Op.getBlockAddress();
707 else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI())
708 V.ImmVal = Op.getIndex();
709 else
710 llvm_unreachable("Unexpected operand type");
712 Kind = Op.getType();
713 TF = Op.getTargetFlags();
716 bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const {
717 if (Kind != ER.Kind)
718 return Kind < ER.Kind;
719 switch (Kind) {
720 case MachineOperand::MO_Immediate:
721 case MachineOperand::MO_TargetIndex:
722 case MachineOperand::MO_ConstantPoolIndex:
723 case MachineOperand::MO_JumpTableIndex:
724 return V.ImmVal < ER.V.ImmVal;
725 case MachineOperand::MO_FPImmediate: {
726 const APFloat &ThisF = V.CFP->getValueAPF();
727 const APFloat &OtherF = ER.V.CFP->getValueAPF();
728 return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt());
730 case MachineOperand::MO_ExternalSymbol:
731 return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName);
732 case MachineOperand::MO_GlobalAddress:
733 // Do not use GUIDs, since they depend on the source path. Moving the
734 // source file to a different directory could cause different GUID
735 // values for a pair of given symbols. These symbols could then compare
736 // "less" in one directory, but "greater" in another.
737 assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty());
738 return V.GV->getName() < ER.V.GV->getName();
739 case MachineOperand::MO_BlockAddress: {
740 const BasicBlock *ThisB = V.BA->getBasicBlock();
741 const BasicBlock *OtherB = ER.V.BA->getBasicBlock();
742 assert(ThisB->getParent() == OtherB->getParent());
743 const Function &F = *ThisB->getParent();
744 return std::distance(F.begin(), ThisB->getIterator()) <
745 std::distance(F.begin(), OtherB->getIterator());
748 return V.ImmVal < ER.V.ImmVal;
751 HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) {
752 if (Op.isImm())
753 Offset = Op.getImm();
754 else if (Op.isFPImm() || Op.isJTI())
755 Offset = 0;
756 else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() ||
757 Op.isCPI() || Op.isTargetIndex())
758 Offset = Op.getOffset();
759 else
760 llvm_unreachable("Unexpected operand type");
763 bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const {
764 const ExtRoot &ER = *this;
765 if (!(ER == ExtRoot(EV)))
766 return ER < EV;
767 return Offset < EV.Offset;
770 HCE::ExtValue::operator MachineOperand() const {
771 switch (Kind) {
772 case MachineOperand::MO_Immediate:
773 return MachineOperand::CreateImm(V.ImmVal + Offset);
774 case MachineOperand::MO_FPImmediate:
775 assert(Offset == 0);
776 return MachineOperand::CreateFPImm(V.CFP);
777 case MachineOperand::MO_ExternalSymbol:
778 assert(Offset == 0);
779 return MachineOperand::CreateES(V.SymbolName, TF);
780 case MachineOperand::MO_GlobalAddress:
781 return MachineOperand::CreateGA(V.GV, Offset, TF);
782 case MachineOperand::MO_BlockAddress:
783 return MachineOperand::CreateBA(V.BA, Offset, TF);
784 case MachineOperand::MO_TargetIndex:
785 return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF);
786 case MachineOperand::MO_ConstantPoolIndex:
787 return MachineOperand::CreateCPI(V.ImmVal, Offset, TF);
788 case MachineOperand::MO_JumpTableIndex:
789 assert(Offset == 0);
790 return MachineOperand::CreateJTI(V.ImmVal, TF);
791 default:
792 llvm_unreachable("Unhandled kind");
796 bool HCE::isStoreImmediate(unsigned Opc) const {
797 switch (Opc) {
798 case Hexagon::S4_storeirbt_io:
799 case Hexagon::S4_storeirbf_io:
800 case Hexagon::S4_storeirht_io:
801 case Hexagon::S4_storeirhf_io:
802 case Hexagon::S4_storeirit_io:
803 case Hexagon::S4_storeirif_io:
804 case Hexagon::S4_storeirb_io:
805 case Hexagon::S4_storeirh_io:
806 case Hexagon::S4_storeiri_io:
807 return true;
808 default:
809 break;
811 return false;
814 bool HCE::isRegOffOpcode(unsigned Opc) const {
815 switch (Opc) {
816 case Hexagon::L2_loadrub_io:
817 case Hexagon::L2_loadrb_io:
818 case Hexagon::L2_loadruh_io:
819 case Hexagon::L2_loadrh_io:
820 case Hexagon::L2_loadri_io:
821 case Hexagon::L2_loadrd_io:
822 case Hexagon::L2_loadbzw2_io:
823 case Hexagon::L2_loadbzw4_io:
824 case Hexagon::L2_loadbsw2_io:
825 case Hexagon::L2_loadbsw4_io:
826 case Hexagon::L2_loadalignh_io:
827 case Hexagon::L2_loadalignb_io:
828 case Hexagon::L2_ploadrubt_io:
829 case Hexagon::L2_ploadrubf_io:
830 case Hexagon::L2_ploadrbt_io:
831 case Hexagon::L2_ploadrbf_io:
832 case Hexagon::L2_ploadruht_io:
833 case Hexagon::L2_ploadruhf_io:
834 case Hexagon::L2_ploadrht_io:
835 case Hexagon::L2_ploadrhf_io:
836 case Hexagon::L2_ploadrit_io:
837 case Hexagon::L2_ploadrif_io:
838 case Hexagon::L2_ploadrdt_io:
839 case Hexagon::L2_ploadrdf_io:
840 case Hexagon::S2_storerb_io:
841 case Hexagon::S2_storerh_io:
842 case Hexagon::S2_storerf_io:
843 case Hexagon::S2_storeri_io:
844 case Hexagon::S2_storerd_io:
845 case Hexagon::S2_pstorerbt_io:
846 case Hexagon::S2_pstorerbf_io:
847 case Hexagon::S2_pstorerht_io:
848 case Hexagon::S2_pstorerhf_io:
849 case Hexagon::S2_pstorerft_io:
850 case Hexagon::S2_pstorerff_io:
851 case Hexagon::S2_pstorerit_io:
852 case Hexagon::S2_pstorerif_io:
853 case Hexagon::S2_pstorerdt_io:
854 case Hexagon::S2_pstorerdf_io:
855 case Hexagon::A2_addi:
856 return true;
857 default:
858 break;
860 return false;
863 unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const {
864 // If there exists an instruction that takes a register and offset,
865 // that corresponds to the ExtOpc, return it, otherwise return 0.
866 using namespace Hexagon;
867 switch (ExtOpc) {
868 case A2_tfrsi: return A2_addi;
869 default:
870 break;
872 const MCInstrDesc &D = HII->get(ExtOpc);
873 if (D.mayLoad() || D.mayStore()) {
874 uint64_t F = D.TSFlags;
875 unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
876 switch (AM) {
877 case HexagonII::Absolute:
878 case HexagonII::AbsoluteSet:
879 case HexagonII::BaseLongOffset:
880 switch (ExtOpc) {
881 case PS_loadrubabs:
882 case L4_loadrub_ap:
883 case L4_loadrub_ur: return L2_loadrub_io;
884 case PS_loadrbabs:
885 case L4_loadrb_ap:
886 case L4_loadrb_ur: return L2_loadrb_io;
887 case PS_loadruhabs:
888 case L4_loadruh_ap:
889 case L4_loadruh_ur: return L2_loadruh_io;
890 case PS_loadrhabs:
891 case L4_loadrh_ap:
892 case L4_loadrh_ur: return L2_loadrh_io;
893 case PS_loadriabs:
894 case L4_loadri_ap:
895 case L4_loadri_ur: return L2_loadri_io;
896 case PS_loadrdabs:
897 case L4_loadrd_ap:
898 case L4_loadrd_ur: return L2_loadrd_io;
899 case L4_loadbzw2_ap:
900 case L4_loadbzw2_ur: return L2_loadbzw2_io;
901 case L4_loadbzw4_ap:
902 case L4_loadbzw4_ur: return L2_loadbzw4_io;
903 case L4_loadbsw2_ap:
904 case L4_loadbsw2_ur: return L2_loadbsw2_io;
905 case L4_loadbsw4_ap:
906 case L4_loadbsw4_ur: return L2_loadbsw4_io;
907 case L4_loadalignh_ap:
908 case L4_loadalignh_ur: return L2_loadalignh_io;
909 case L4_loadalignb_ap:
910 case L4_loadalignb_ur: return L2_loadalignb_io;
911 case L4_ploadrubt_abs: return L2_ploadrubt_io;
912 case L4_ploadrubf_abs: return L2_ploadrubf_io;
913 case L4_ploadrbt_abs: return L2_ploadrbt_io;
914 case L4_ploadrbf_abs: return L2_ploadrbf_io;
915 case L4_ploadruht_abs: return L2_ploadruht_io;
916 case L4_ploadruhf_abs: return L2_ploadruhf_io;
917 case L4_ploadrht_abs: return L2_ploadrht_io;
918 case L4_ploadrhf_abs: return L2_ploadrhf_io;
919 case L4_ploadrit_abs: return L2_ploadrit_io;
920 case L4_ploadrif_abs: return L2_ploadrif_io;
921 case L4_ploadrdt_abs: return L2_ploadrdt_io;
922 case L4_ploadrdf_abs: return L2_ploadrdf_io;
923 case PS_storerbabs:
924 case S4_storerb_ap:
925 case S4_storerb_ur: return S2_storerb_io;
926 case PS_storerhabs:
927 case S4_storerh_ap:
928 case S4_storerh_ur: return S2_storerh_io;
929 case PS_storerfabs:
930 case S4_storerf_ap:
931 case S4_storerf_ur: return S2_storerf_io;
932 case PS_storeriabs:
933 case S4_storeri_ap:
934 case S4_storeri_ur: return S2_storeri_io;
935 case PS_storerdabs:
936 case S4_storerd_ap:
937 case S4_storerd_ur: return S2_storerd_io;
938 case S4_pstorerbt_abs: return S2_pstorerbt_io;
939 case S4_pstorerbf_abs: return S2_pstorerbf_io;
940 case S4_pstorerht_abs: return S2_pstorerht_io;
941 case S4_pstorerhf_abs: return S2_pstorerhf_io;
942 case S4_pstorerft_abs: return S2_pstorerft_io;
943 case S4_pstorerff_abs: return S2_pstorerff_io;
944 case S4_pstorerit_abs: return S2_pstorerit_io;
945 case S4_pstorerif_abs: return S2_pstorerif_io;
946 case S4_pstorerdt_abs: return S2_pstorerdt_io;
947 case S4_pstorerdf_abs: return S2_pstorerdf_io;
948 default:
949 break;
951 break;
952 case HexagonII::BaseImmOffset:
953 if (!isStoreImmediate(ExtOpc))
954 return ExtOpc;
955 break;
956 default:
957 break;
960 return 0;
963 unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const {
964 switch (ExtOpc) {
965 case Hexagon::A2_addi: return Hexagon::A2_add;
966 case Hexagon::A2_andir: return Hexagon::A2_and;
967 case Hexagon::A2_combineii: return Hexagon::A4_combineri;
968 case Hexagon::A2_orir: return Hexagon::A2_or;
969 case Hexagon::A2_paddif: return Hexagon::A2_paddf;
970 case Hexagon::A2_paddit: return Hexagon::A2_paddt;
971 case Hexagon::A2_subri: return Hexagon::A2_sub;
972 case Hexagon::A2_tfrsi: return TargetOpcode::COPY;
973 case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq;
974 case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt;
975 case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu;
976 case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq;
977 case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt;
978 case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu;
979 case Hexagon::A4_combineii: return Hexagon::A4_combineir;
980 case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE;
981 case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE;
982 case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq;
983 case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq;
984 case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf;
985 case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt;
986 case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq;
987 case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt;
988 case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu;
989 case Hexagon::C2_muxii: return Hexagon::C2_muxir;
990 case Hexagon::C2_muxir: return Hexagon::C2_mux;
991 case Hexagon::C2_muxri: return Hexagon::C2_mux;
992 case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte;
993 case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu;
994 case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq;
995 case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T
996 /* No M2_macsin */
997 case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T
998 case Hexagon::M2_mpysin: return Hexagon::M2_mpyi;
999 case Hexagon::M2_mpysip: return Hexagon::M2_mpyi;
1000 case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi;
1001 case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T
1002 case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr;
1003 case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T
1004 case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T
1005 case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T
1006 case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T
1007 case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T
1008 case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T
1009 case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T
1010 case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T
1011 case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T
1012 case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T
1013 case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T
1014 case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T
1016 // Store-immediates:
1017 case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io;
1018 case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io;
1019 case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io;
1020 case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io;
1021 case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io;
1022 case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io;
1023 case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io;
1024 case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io;
1025 case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io;
1027 default:
1028 break;
1030 return 0;
1033 // Return the allowable deviation from the current value of Rb (i.e. the
1034 // range of values that can be added to the current value) which the
1035 // instruction MI can accommodate.
1036 // The instruction MI is a user of register Rb, which is defined via an
1037 // extender. It may be possible for MI to be tweaked to work for a register
1038 // defined with a slightly different value. For example
1039 // ... = L2_loadrub_io Rb, 1
1040 // can be modifed to be
1041 // ... = L2_loadrub_io Rb', 0
1042 // if Rb' = Rb+1.
1043 // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range
1044 // for L2_loadrub with offset 0. That means that Rb could be replaced with
1045 // Rc, where Rc-Rb belongs to [Min+1, Max+1].
1046 OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const {
1047 unsigned Opc = MI.getOpcode();
1048 // Instructions that are constant-extended may be replaced with something
1049 // else that no longer offers the same range as the original.
1050 if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI))
1051 return OffsetRange::zero();
1053 if (Opc == Hexagon::A2_addi) {
1054 const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2);
1055 if (Rb != Register(Op1) || !Op2.isImm())
1056 return OffsetRange::zero();
1057 OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 };
1058 return R.shift(Op2.getImm());
1061 // HII::getBaseAndOffsetPosition returns the increment position as "offset".
1062 if (HII->isPostIncrement(MI))
1063 return OffsetRange::zero();
1065 const MCInstrDesc &D = HII->get(Opc);
1066 assert(D.mayLoad() || D.mayStore());
1068 unsigned BaseP, OffP;
1069 if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) ||
1070 Rb != Register(MI.getOperand(BaseP)) ||
1071 !MI.getOperand(OffP).isImm())
1072 return OffsetRange::zero();
1074 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1075 HexagonII::MemAccesSizeMask;
1076 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1077 unsigned L = Log2_32(A);
1078 unsigned S = 10+L; // sint11_L
1079 int32_t Min = -alignDown((1<<S)-1, A);
1081 // The range will be shifted by Off. To prefer non-negative offsets,
1082 // adjust Max accordingly.
1083 int32_t Off = MI.getOperand(OffP).getImm();
1084 int32_t Max = Off >= 0 ? 0 : -Off;
1086 OffsetRange R = { Min, Max, A };
1087 return R.shift(Off);
1090 // Return the allowable deviation from the current value of the extender ED,
1091 // for which the instruction corresponding to ED can be modified without
1092 // using an extender.
1093 // The instruction uses the extender directly. It will be replaced with
1094 // another instruction, say MJ, where the extender will be replaced with a
1095 // register. MJ can allow some variability with respect to the value of
1096 // that register, as is the case with indexed memory instructions.
1097 OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const {
1098 // The only way that there can be a non-zero range available is if
1099 // the instruction using ED will be converted to an indexed memory
1100 // instruction.
1101 unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode());
1102 switch (IdxOpc) {
1103 case 0:
1104 return OffsetRange::zero();
1105 case Hexagon::A2_addi: // s16
1106 return { -32767, 32767, 1 };
1107 case Hexagon::A2_subri: // s10
1108 return { -511, 511, 1 };
1111 if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore())
1112 return OffsetRange::zero();
1113 const MCInstrDesc &D = HII->get(IdxOpc);
1114 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1115 HexagonII::MemAccesSizeMask;
1116 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1117 unsigned L = Log2_32(A);
1118 unsigned S = 10+L; // sint11_L
1119 int32_t Min = -alignDown((1<<S)-1, A);
1120 int32_t Max = 0; // Force non-negative offsets.
1121 return { Min, Max, A };
1124 // Get the allowable deviation from the current value of Rd by checking
1125 // all uses of Rd.
1126 OffsetRange HCE::getOffsetRange(Register Rd) const {
1127 OffsetRange Range;
1128 for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) {
1129 // Make sure that the register being used by this operand is identical
1130 // to the register that was defined: using a different subregister
1131 // precludes any non-trivial range.
1132 if (Rd != Register(Op))
1133 return OffsetRange::zero();
1134 Range.intersect(getOffsetRange(Rd, *Op.getParent()));
1136 return Range;
1139 void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) {
1140 unsigned Opc = MI.getOpcode();
1141 ExtDesc ED;
1142 ED.OpNum = OpNum;
1144 bool IsLoad = MI.mayLoad();
1145 bool IsStore = MI.mayStore();
1147 // Fixed stack slots have negative indexes, and they cannot be used
1148 // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat
1149 // unfortunate, but should not be a frequent thing.
1150 for (MachineOperand &Op : MI.operands())
1151 if (Op.isFI() && Op.getIndex() < 0)
1152 return;
1154 if (IsLoad || IsStore) {
1155 unsigned AM = HII->getAddrMode(MI);
1156 switch (AM) {
1157 // (Re: ##Off + Rb<<S) = Rd: ##Val
1158 case HexagonII::Absolute: // (__: ## + __<<_)
1159 break;
1160 case HexagonII::AbsoluteSet: // (Rd: ## + __<<_)
1161 ED.Rd = MI.getOperand(OpNum-1);
1162 ED.IsDef = true;
1163 break;
1164 case HexagonII::BaseImmOffset: // (__: ## + Rs<<0)
1165 // Store-immediates are treated as non-memory operations, since
1166 // it's the value being stored that is extended (as opposed to
1167 // a part of the address).
1168 if (!isStoreImmediate(Opc))
1169 ED.Expr.Rs = MI.getOperand(OpNum-1);
1170 break;
1171 case HexagonII::BaseLongOffset: // (__: ## + Rs<<S)
1172 ED.Expr.Rs = MI.getOperand(OpNum-2);
1173 ED.Expr.S = MI.getOperand(OpNum-1).getImm();
1174 break;
1175 default:
1176 llvm_unreachable("Unhandled memory instruction");
1178 } else {
1179 switch (Opc) {
1180 case Hexagon::A2_tfrsi: // (Rd: ## + __<<_)
1181 ED.Rd = MI.getOperand(0);
1182 ED.IsDef = true;
1183 break;
1184 case Hexagon::A2_combineii: // (Rd: ## + __<<_)
1185 case Hexagon::A4_combineir:
1186 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi };
1187 ED.IsDef = true;
1188 break;
1189 case Hexagon::A4_combineri: // (Rd: ## + __<<_)
1190 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo };
1191 ED.IsDef = true;
1192 break;
1193 case Hexagon::A2_addi: // (Rd: ## + Rs<<0)
1194 ED.Rd = MI.getOperand(0);
1195 ED.Expr.Rs = MI.getOperand(OpNum-1);
1196 break;
1197 case Hexagon::M2_accii: // (__: ## + Rs<<0)
1198 case Hexagon::M2_naccii:
1199 case Hexagon::S4_addaddi:
1200 ED.Expr.Rs = MI.getOperand(OpNum-1);
1201 break;
1202 case Hexagon::A2_subri: // (Rd: ## - Rs<<0)
1203 ED.Rd = MI.getOperand(0);
1204 ED.Expr.Rs = MI.getOperand(OpNum+1);
1205 ED.Expr.Neg = true;
1206 break;
1207 case Hexagon::S4_subaddi: // (__: ## - Rs<<0)
1208 ED.Expr.Rs = MI.getOperand(OpNum+1);
1209 ED.Expr.Neg = true;
1210 break;
1211 default: // (__: ## + __<<_)
1212 break;
1216 ED.UseMI = &MI;
1218 // Ignore unnamed globals.
1219 ExtRoot ER(ED.getOp());
1220 if (ER.Kind == MachineOperand::MO_GlobalAddress)
1221 if (ER.V.GV->getName().empty())
1222 return;
1223 Extenders.push_back(ED);
1226 void HCE::collectInstr(MachineInstr &MI) {
1227 if (!HII->isConstExtended(MI))
1228 return;
1230 // Skip some non-convertible instructions.
1231 unsigned Opc = MI.getOpcode();
1232 switch (Opc) {
1233 case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt).
1234 case Hexagon::C4_addipc:
1235 case Hexagon::S4_or_andi:
1236 case Hexagon::S4_or_andix:
1237 case Hexagon::S4_or_ori:
1238 return;
1240 recordExtender(MI, HII->getCExtOpNum(MI));
1243 void HCE::collect(MachineFunction &MF) {
1244 Extenders.clear();
1245 for (MachineBasicBlock &MBB : MF) {
1246 // Skip unreachable blocks.
1247 if (MBB.getNumber() == -1)
1248 continue;
1249 for (MachineInstr &MI : MBB)
1250 collectInstr(MI);
1254 void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
1255 AssignmentMap &IMap) {
1256 // Sanity check: make sure that all extenders in the range [Begin..End)
1257 // share the same root ER.
1258 for (unsigned I = Begin; I != End; ++I)
1259 assert(ER == ExtRoot(Extenders[I].getOp()));
1261 // Construct the list of ranges, such that for each P in Ranges[I],
1262 // a register Reg = ER+P can be used in place of Extender[I]. If the
1263 // instruction allows, uses in the form of Reg+Off are considered
1264 // (here, Off = required_value - P).
1265 std::vector<OffsetRange> Ranges(End-Begin);
1267 // For each extender that is a def, visit all uses of the defined register,
1268 // and produce an offset range that works for all uses. The def doesn't
1269 // have to be checked, because it can become dead if all uses can be updated
1270 // to use a different reg/offset.
1271 for (unsigned I = Begin; I != End; ++I) {
1272 const ExtDesc &ED = Extenders[I];
1273 if (!ED.IsDef)
1274 continue;
1275 ExtValue EV(ED);
1276 LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n');
1277 assert(ED.Rd.Reg != 0);
1278 Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset);
1279 // A2_tfrsi is a special case: it will be replaced with A2_addi, which
1280 // has a 16-bit signed offset. This means that A2_tfrsi not only has a
1281 // range coming from its uses, but also from the fact that its replacement
1282 // has a range as well.
1283 if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) {
1284 int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded
1285 Ranges[I-Begin].extendBy(-D).extendBy(D);
1289 // Visit all non-def extenders. For each one, determine the offset range
1290 // available for it.
1291 for (unsigned I = Begin; I != End; ++I) {
1292 const ExtDesc &ED = Extenders[I];
1293 if (ED.IsDef)
1294 continue;
1295 ExtValue EV(ED);
1296 LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n');
1297 OffsetRange Dev = getOffsetRange(ED);
1298 Ranges[I-Begin].intersect(Dev.shift(EV.Offset));
1301 // Here for each I there is a corresponding Range[I]. Construct the
1302 // inverse map, that to each range will assign the set of indexes in
1303 // [Begin..End) that this range corresponds to.
1304 std::map<OffsetRange, IndexList> RangeMap;
1305 for (unsigned I = Begin; I != End; ++I)
1306 RangeMap[Ranges[I-Begin]].insert(I);
1308 LLVM_DEBUG({
1309 dbgs() << "Ranges\n";
1310 for (unsigned I = Begin; I != End; ++I)
1311 dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n';
1312 dbgs() << "RangeMap\n";
1313 for (auto &P : RangeMap) {
1314 dbgs() << " " << P.first << " ->";
1315 for (unsigned I : P.second)
1316 dbgs() << ' ' << I;
1317 dbgs() << '\n';
1321 // Select the definition points, and generate the assignment between
1322 // these points and the uses.
1324 // For each candidate offset, keep a pair CandData consisting of
1325 // the total number of ranges containing that candidate, and the
1326 // vector of corresponding RangeTree nodes.
1327 using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>;
1328 std::map<int32_t, CandData> CandMap;
1330 RangeTree Tree;
1331 for (const OffsetRange &R : Ranges)
1332 Tree.add(R);
1333 SmallVector<RangeTree::Node*,8> Nodes;
1334 Tree.order(Nodes);
1336 auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes,
1337 uint8_t Align, uint8_t Offset) {
1338 for (RangeTree::Node *N : Nodes) {
1339 if (N->Range.Align <= Align || N->Range.Offset < Offset)
1340 continue;
1341 if ((N->Range.Offset - Offset) % Align != 0)
1342 continue;
1343 Align = N->Range.Align;
1344 Offset = N->Range.Offset;
1346 return std::make_pair(Align, Offset);
1349 // Construct the set of all potential definition points from the endpoints
1350 // of the ranges. If a given endpoint also belongs to a different range,
1351 // but with a higher alignment, also consider the more-highly-aligned
1352 // value of this endpoint.
1353 std::set<int32_t> CandSet;
1354 for (RangeTree::Node *N : Nodes) {
1355 const OffsetRange &R = N->Range;
1356 auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset);
1357 CandSet.insert(R.Min);
1358 if (R.Align < P0.first)
1359 CandSet.insert(adjustUp(R.Min, P0.first, P0.second));
1360 auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset);
1361 CandSet.insert(R.Max);
1362 if (R.Align < P1.first)
1363 CandSet.insert(adjustDown(R.Max, P1.first, P1.second));
1366 // Build the assignment map: candidate C -> { list of extender indexes }.
1367 // This has to be done iteratively:
1368 // - pick the candidate that covers the maximum number of extenders,
1369 // - add the candidate to the map,
1370 // - remove the extenders from the pool.
1371 while (true) {
1372 using CMap = std::map<int32_t,unsigned>;
1373 CMap Counts;
1374 for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) {
1375 auto &&V = Tree.nodesWith(*It);
1376 unsigned N = std::accumulate(V.begin(), V.end(), 0u,
1377 [](unsigned Acc, const RangeTree::Node *N) {
1378 return Acc + N->Count;
1380 if (N != 0)
1381 Counts.insert({*It, N});
1382 It = (N != 0) ? std::next(It) : CandSet.erase(It);
1384 if (Counts.empty())
1385 break;
1387 // Find the best candidate with respect to the number of extenders covered.
1388 auto BestIt = std::max_element(Counts.begin(), Counts.end(),
1389 [](const CMap::value_type &A, const CMap::value_type &B) {
1390 return A.second < B.second ||
1391 (A.second == B.second && A < B);
1393 int32_t Best = BestIt->first;
1394 ExtValue BestV(ER, Best);
1395 for (RangeTree::Node *N : Tree.nodesWith(Best)) {
1396 for (unsigned I : RangeMap[N->Range])
1397 IMap[{BestV,Extenders[I].Expr}].insert(I);
1398 Tree.erase(N);
1402 LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI));
1404 // There is some ambiguity in what initializer should be used, if the
1405 // descriptor's subexpression is non-trivial: it can be the entire
1406 // subexpression (which is what has been done so far), or it can be
1407 // the extender's value itself, if all corresponding extenders have the
1408 // exact value of the initializer (i.e. require offset of 0).
1410 // To reduce the number of initializers, merge such special cases.
1411 for (std::pair<const ExtenderInit,IndexList> &P : IMap) {
1412 // Skip trivial initializers.
1413 if (P.first.second.trivial())
1414 continue;
1415 // If the corresponding trivial initializer does not exist, skip this
1416 // entry.
1417 const ExtValue &EV = P.first.first;
1418 AssignmentMap::iterator F = IMap.find({EV, ExtExpr()});
1419 if (F == IMap.end())
1420 continue;
1422 // Finally, check if all extenders have the same value as the initializer.
1423 // Make sure that extenders that are a part of a stack address are not
1424 // merged with those that aren't. Stack addresses need an offset field
1425 // (to be used by frame index elimination), while non-stack expressions
1426 // can be replaced with forms (such as rr) that do not have such a field.
1427 // Example:
1429 // Collected 3 extenders
1430 // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def
1431 // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0
1432 // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0
1433 // Ranges
1434 // 0. [-756,267]a1+0
1435 // 1. [-756,267]a1+0
1436 // 2. [201,65735]a1+0
1437 // RangeMap
1438 // [-756,267]a1+0 -> 0 1
1439 // [201,65735]a1+0 -> 2
1440 // IMap (before fixup) = {
1441 // [imm:0 off:267, ## + __ << 0] -> { 2 }
1442 // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 }
1443 // }
1444 // IMap (after fixup) = {
1445 // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 }
1446 // [imm:0 off:267, ## + SS#1 << 0] -> { }
1447 // }
1448 // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0]
1449 // %12:intregs = A2_tfrsi 267
1451 // The result was
1452 // %12:intregs = A2_tfrsi 267
1453 // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4
1454 // Which became
1455 // r0 = #267
1456 // if (p0.new) memb(r0+r29<<#4) = r2
1458 bool IsStack = any_of(F->second, [this](unsigned I) {
1459 return Extenders[I].Expr.Rs.isSlot();
1461 auto SameValue = [&EV,this,IsStack](unsigned I) {
1462 const ExtDesc &ED = Extenders[I];
1463 return ED.Expr.Rs.isSlot() == IsStack &&
1464 ExtValue(ED).Offset == EV.Offset;
1466 if (all_of(P.second, SameValue)) {
1467 F->second.insert(P.second.begin(), P.second.end());
1468 P.second.clear();
1472 LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI));
1475 void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
1476 LocDefList &Defs) {
1477 if (Refs.empty())
1478 return;
1480 // The placement calculation is somewhat simple right now: it finds a
1481 // single location for the def that dominates all refs. Since this may
1482 // place the def far from the uses, producing several locations for
1483 // defs that collectively dominate all refs could be better.
1484 // For now only do the single one.
1485 DenseSet<MachineBasicBlock*> Blocks;
1486 DenseSet<MachineInstr*> RefMIs;
1487 const ExtDesc &ED0 = Extenders[Refs[0]];
1488 MachineBasicBlock *DomB = ED0.UseMI->getParent();
1489 RefMIs.insert(ED0.UseMI);
1490 Blocks.insert(DomB);
1491 for (unsigned i = 1, e = Refs.size(); i != e; ++i) {
1492 const ExtDesc &ED = Extenders[Refs[i]];
1493 MachineBasicBlock *MBB = ED.UseMI->getParent();
1494 RefMIs.insert(ED.UseMI);
1495 DomB = MDT->findNearestCommonDominator(DomB, MBB);
1496 Blocks.insert(MBB);
1499 #ifndef NDEBUG
1500 // The block DomB should be dominated by the def of each register used
1501 // in the initializer.
1502 Register Rs = ExtI.second.Rs; // Only one reg allowed now.
1503 const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr;
1505 // This should be guaranteed given that the entire expression is used
1506 // at each instruction in Refs. Add an assertion just in case.
1507 assert(!DefI || MDT->dominates(DefI->getParent(), DomB));
1508 #endif
1510 MachineBasicBlock::iterator It;
1511 if (Blocks.count(DomB)) {
1512 // Try to find the latest possible location for the def.
1513 MachineBasicBlock::iterator End = DomB->end();
1514 for (It = DomB->begin(); It != End; ++It)
1515 if (RefMIs.count(&*It))
1516 break;
1517 assert(It != End && "Should have found a ref in DomB");
1518 } else {
1519 // DomB does not contain any refs.
1520 It = DomB->getFirstTerminator();
1522 Loc DefLoc(DomB, It);
1523 Defs.emplace_back(DefLoc, Refs);
1526 HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) {
1527 unsigned DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1528 MachineBasicBlock &MBB = *DefL.Block;
1529 MachineBasicBlock::iterator At = DefL.At;
1530 DebugLoc dl = DefL.Block->findDebugLoc(DefL.At);
1531 const ExtValue &EV = ExtI.first;
1532 MachineOperand ExtOp(EV);
1534 const ExtExpr &Ex = ExtI.second;
1535 const MachineInstr *InitI = nullptr;
1537 if (Ex.Rs.isSlot()) {
1538 assert(Ex.S == 0 && "Cannot have a shift of a stack slot");
1539 assert(!Ex.Neg && "Cannot subtract a stack slot");
1540 // DefR = PS_fi Rb,##EV
1541 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR)
1542 .add(MachineOperand(Ex.Rs))
1543 .add(ExtOp);
1544 } else {
1545 assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register");
1546 if (Ex.trivial()) {
1547 // DefR = ##EV
1548 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR)
1549 .add(ExtOp);
1550 } else if (Ex.S == 0) {
1551 if (Ex.Neg) {
1552 // DefR = sub(##EV,Rb)
1553 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
1554 .add(ExtOp)
1555 .add(MachineOperand(Ex.Rs));
1556 } else {
1557 // DefR = add(Rb,##EV)
1558 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
1559 .add(MachineOperand(Ex.Rs))
1560 .add(ExtOp);
1562 } else {
1563 unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri
1564 : Hexagon::S4_addi_asl_ri;
1565 // DefR = add(##EV,asl(Rb,S))
1566 InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR)
1567 .add(ExtOp)
1568 .add(MachineOperand(Ex.Rs))
1569 .addImm(Ex.S);
1573 assert(InitI);
1574 (void)InitI;
1575 LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber()
1576 << " for initializer: " << PrintInit(ExtI, *HRI) << "\n "
1577 << *InitI);
1578 return { DefR, 0 };
1581 // Replace the extender at index Idx with the register ExtR.
1582 bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) {
1583 MachineInstr &MI = *ED.UseMI;
1584 MachineBasicBlock &MBB = *MI.getParent();
1585 MachineBasicBlock::iterator At = MI.getIterator();
1586 DebugLoc dl = MI.getDebugLoc();
1587 unsigned ExtOpc = MI.getOpcode();
1589 // With a few exceptions, direct replacement amounts to creating an
1590 // instruction with a corresponding register opcode, with all operands
1591 // the same, except for the register used in place of the extender.
1592 unsigned RegOpc = getDirectRegReplacement(ExtOpc);
1594 if (RegOpc == TargetOpcode::REG_SEQUENCE) {
1595 if (ExtOpc == Hexagon::A4_combineri)
1596 BuildMI(MBB, At, dl, HII->get(RegOpc))
1597 .add(MI.getOperand(0))
1598 .add(MI.getOperand(1))
1599 .addImm(Hexagon::isub_hi)
1600 .add(MachineOperand(ExtR))
1601 .addImm(Hexagon::isub_lo);
1602 else if (ExtOpc == Hexagon::A4_combineir)
1603 BuildMI(MBB, At, dl, HII->get(RegOpc))
1604 .add(MI.getOperand(0))
1605 .add(MachineOperand(ExtR))
1606 .addImm(Hexagon::isub_hi)
1607 .add(MI.getOperand(2))
1608 .addImm(Hexagon::isub_lo);
1609 else
1610 llvm_unreachable("Unexpected opcode became REG_SEQUENCE");
1611 MBB.erase(MI);
1612 return true;
1614 if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) {
1615 unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt
1616 : Hexagon::C2_cmpltu;
1617 BuildMI(MBB, At, dl, HII->get(NewOpc))
1618 .add(MI.getOperand(0))
1619 .add(MachineOperand(ExtR))
1620 .add(MI.getOperand(1));
1621 MBB.erase(MI);
1622 return true;
1625 if (RegOpc != 0) {
1626 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1627 unsigned RegN = ED.OpNum;
1628 // Copy all operands except the one that has the extender.
1629 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1630 if (i != RegN)
1631 MIB.add(MI.getOperand(i));
1632 else
1633 MIB.add(MachineOperand(ExtR));
1635 MIB.cloneMemRefs(MI);
1636 MBB.erase(MI);
1637 return true;
1640 if ((MI.mayLoad() || MI.mayStore()) && !isStoreImmediate(ExtOpc)) {
1641 // For memory instructions, there is an asymmetry in the addressing
1642 // modes. Addressing modes allowing extenders can be replaced with
1643 // addressing modes that use registers, but the order of operands
1644 // (or even their number) may be different.
1645 // Replacements:
1646 // BaseImmOffset (io) -> BaseRegOffset (rr)
1647 // BaseLongOffset (ur) -> BaseRegOffset (rr)
1648 unsigned RegOpc, Shift;
1649 unsigned AM = HII->getAddrMode(MI);
1650 if (AM == HexagonII::BaseImmOffset) {
1651 RegOpc = HII->changeAddrMode_io_rr(ExtOpc);
1652 Shift = 0;
1653 } else if (AM == HexagonII::BaseLongOffset) {
1654 // Loads: Rd = L4_loadri_ur Rs, S, ##
1655 // Stores: S4_storeri_ur Rs, S, ##, Rt
1656 RegOpc = HII->changeAddrMode_ur_rr(ExtOpc);
1657 Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm();
1658 } else {
1659 llvm_unreachable("Unexpected addressing mode");
1661 #ifndef NDEBUG
1662 if (RegOpc == -1u) {
1663 dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n";
1664 llvm_unreachable("No corresponding rr instruction");
1666 #endif
1668 unsigned BaseP, OffP;
1669 HII->getBaseAndOffsetPosition(MI, BaseP, OffP);
1671 // Build an rr instruction: (RegOff + RegBase<<0)
1672 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1673 // First, add the def for loads.
1674 if (MI.mayLoad())
1675 MIB.add(getLoadResultOp(MI));
1676 // Handle possible predication.
1677 if (HII->isPredicated(MI))
1678 MIB.add(getPredicateOp(MI));
1679 // Build the address.
1680 MIB.add(MachineOperand(ExtR)); // RegOff
1681 MIB.add(MI.getOperand(BaseP)); // RegBase
1682 MIB.addImm(Shift); // << Shift
1683 // Add the stored value for stores.
1684 if (MI.mayStore())
1685 MIB.add(getStoredValueOp(MI));
1686 MIB.cloneMemRefs(MI);
1687 MBB.erase(MI);
1688 return true;
1691 #ifndef NDEBUG
1692 dbgs() << '\n' << MI;
1693 #endif
1694 llvm_unreachable("Unhandled exact replacement");
1695 return false;
1698 // Replace the extender ED with a form corresponding to the initializer ExtI.
1699 bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
1700 Register ExtR, int32_t &Diff) {
1701 MachineInstr &MI = *ED.UseMI;
1702 MachineBasicBlock &MBB = *MI.getParent();
1703 MachineBasicBlock::iterator At = MI.getIterator();
1704 DebugLoc dl = MI.getDebugLoc();
1705 unsigned ExtOpc = MI.getOpcode();
1707 if (ExtOpc == Hexagon::A2_tfrsi) {
1708 // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces
1709 // another range. One range is the one that's common to all tfrsi's uses,
1710 // this one is the range of immediates in A2_addi. When calculating ranges,
1711 // the addi's 16-bit argument was included, so now we need to make it such
1712 // that the produced value is in the range for the uses alone.
1713 // Most of the time, simply adding Diff will make the addi produce exact
1714 // result, but if Diff is outside of the 16-bit range, some adjustment
1715 // will be needed.
1716 unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1717 assert(IdxOpc == Hexagon::A2_addi);
1719 // Clamp Diff to the 16 bit range.
1720 int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768);
1721 if (Diff > 32767) {
1722 // Split Diff into two values: one that is close to min/max int16,
1723 // and the other being the rest, and such that both have the same
1724 // "alignment" as Diff.
1725 uint32_t UD = Diff;
1726 OffsetRange R = getOffsetRange(MI.getOperand(0));
1727 uint32_t A = std::min<uint32_t>(R.Align, 1u << countTrailingZeros(UD));
1728 D &= ~(A-1);
1730 BuildMI(MBB, At, dl, HII->get(IdxOpc))
1731 .add(MI.getOperand(0))
1732 .add(MachineOperand(ExtR))
1733 .addImm(D);
1734 Diff -= D;
1735 #ifndef NDEBUG
1736 // Make sure the output is within allowable range for uses.
1737 // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV,
1738 // not DefV - Ext, as the getOffsetRange would calculate.
1739 OffsetRange Uses = getOffsetRange(MI.getOperand(0));
1740 if (!Uses.contains(-Diff))
1741 dbgs() << "Diff: " << -Diff << " out of range " << Uses
1742 << " for " << MI;
1743 assert(Uses.contains(-Diff));
1744 #endif
1745 MBB.erase(MI);
1746 return true;
1749 const ExtValue &EV = ExtI.first; (void)EV;
1750 const ExtExpr &Ex = ExtI.second; (void)Ex;
1752 if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) {
1753 // If addi/subri are replaced with the exactly matching initializer,
1754 // they amount to COPY.
1755 // Check that the initializer is an exact match (for simplicity).
1756 #ifndef NDEBUG
1757 bool IsAddi = ExtOpc == Hexagon::A2_addi;
1758 const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2);
1759 const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1);
1760 assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi &&
1761 "Initializer mismatch");
1762 #endif
1763 BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY))
1764 .add(MI.getOperand(0))
1765 .add(MachineOperand(ExtR));
1766 Diff = 0;
1767 MBB.erase(MI);
1768 return true;
1770 if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii ||
1771 ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) {
1772 // M2_accii: add(Rt,add(Rs,V)) (tied)
1773 // M2_naccii: sub(Rt,add(Rs,V))
1774 // S4_addaddi: add(Rt,add(Rs,V))
1775 // S4_subaddi: add(Rt,sub(V,Rs))
1776 // Check that Rs and V match the initializer expression. The Rs+V is the
1777 // combination that is considered "subexpression" for V, although Rx+V
1778 // would also be valid.
1779 #ifndef NDEBUG
1780 bool IsSub = ExtOpc == Hexagon::S4_subaddi;
1781 Register Rs = MI.getOperand(IsSub ? 3 : 2);
1782 ExtValue V = MI.getOperand(IsSub ? 2 : 3);
1783 assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch");
1784 #endif
1785 unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub
1786 : Hexagon::A2_add;
1787 BuildMI(MBB, At, dl, HII->get(NewOpc))
1788 .add(MI.getOperand(0))
1789 .add(MI.getOperand(1))
1790 .add(MachineOperand(ExtR));
1791 MBB.erase(MI);
1792 return true;
1795 if (MI.mayLoad() || MI.mayStore()) {
1796 unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1797 assert(IdxOpc && "Expecting indexed opcode");
1798 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc));
1799 // Construct the new indexed instruction.
1800 // First, add the def for loads.
1801 if (MI.mayLoad())
1802 MIB.add(getLoadResultOp(MI));
1803 // Handle possible predication.
1804 if (HII->isPredicated(MI))
1805 MIB.add(getPredicateOp(MI));
1806 // Build the address.
1807 MIB.add(MachineOperand(ExtR));
1808 MIB.addImm(Diff);
1809 // Add the stored value for stores.
1810 if (MI.mayStore())
1811 MIB.add(getStoredValueOp(MI));
1812 MIB.cloneMemRefs(MI);
1813 MBB.erase(MI);
1814 return true;
1817 #ifndef NDEBUG
1818 dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI;
1819 #endif
1820 llvm_unreachable("Unhandled expr replacement");
1821 return false;
1824 bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) {
1825 if (ReplaceLimit.getNumOccurrences()) {
1826 if (ReplaceLimit <= ReplaceCounter)
1827 return false;
1828 ++ReplaceCounter;
1830 const ExtDesc &ED = Extenders[Idx];
1831 assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def");
1832 const ExtValue &DefV = ExtI.first;
1833 assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch");
1834 const ExtExpr &DefEx = ExtI.second;
1836 ExtValue EV(ED);
1837 int32_t Diff = EV.Offset - DefV.Offset;
1838 const MachineInstr &MI = *ED.UseMI;
1839 LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:"
1840 << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n');
1842 // These two addressing modes must be converted into indexed forms
1843 // regardless of what the initializer looks like.
1844 bool IsAbs = false, IsAbsSet = false;
1845 if (MI.mayLoad() || MI.mayStore()) {
1846 unsigned AM = HII->getAddrMode(MI);
1847 IsAbs = AM == HexagonII::Absolute;
1848 IsAbsSet = AM == HexagonII::AbsoluteSet;
1851 // If it's a def, remember all operands that need to be updated.
1852 // If ED is a def, and Diff is not 0, then all uses of the register Rd
1853 // defined by ED must be in the form (Rd, imm), i.e. the immediate offset
1854 // must follow the Rd in the operand list.
1855 std::vector<std::pair<MachineInstr*,unsigned>> RegOps;
1856 if (ED.IsDef && Diff != 0) {
1857 for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) {
1858 MachineInstr &UI = *Op.getParent();
1859 RegOps.push_back({&UI, getOperandIndex(UI, Op)});
1863 // Replace the instruction.
1864 bool Replaced = false;
1865 if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet)
1866 Replaced = replaceInstrExact(ED, ExtR);
1867 else
1868 Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff);
1870 if (Diff != 0 && Replaced && ED.IsDef) {
1871 // Update offsets of the def's uses.
1872 for (std::pair<MachineInstr*,unsigned> P : RegOps) {
1873 unsigned J = P.second;
1874 assert(P.first->getNumOperands() > J+1 &&
1875 P.first->getOperand(J+1).isImm());
1876 MachineOperand &ImmOp = P.first->getOperand(J+1);
1877 ImmOp.setImm(ImmOp.getImm() + Diff);
1879 // If it was an absolute-set instruction, the "set" part has been removed.
1880 // ExtR will now be the register with the extended value, and since all
1881 // users of Rd have been updated, all that needs to be done is to replace
1882 // Rd with ExtR.
1883 if (IsAbsSet) {
1884 assert(ED.Rd.Sub == 0 && ExtR.Sub == 0);
1885 MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg);
1889 return Replaced;
1892 bool HCE::replaceExtenders(const AssignmentMap &IMap) {
1893 LocDefList Defs;
1894 bool Changed = false;
1896 for (const std::pair<ExtenderInit,IndexList> &P : IMap) {
1897 const IndexList &Idxs = P.second;
1898 if (Idxs.size() < CountThreshold)
1899 continue;
1901 Defs.clear();
1902 calculatePlacement(P.first, Idxs, Defs);
1903 for (const std::pair<Loc,IndexList> &Q : Defs) {
1904 Register DefR = insertInitializer(Q.first, P.first);
1905 NewRegs.push_back(DefR.Reg);
1906 for (unsigned I : Q.second)
1907 Changed |= replaceInstr(I, DefR, P.first);
1910 return Changed;
1913 unsigned HCE::getOperandIndex(const MachineInstr &MI,
1914 const MachineOperand &Op) const {
1915 for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i)
1916 if (&MI.getOperand(i) == &Op)
1917 return i;
1918 llvm_unreachable("Not an operand of MI");
1921 const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const {
1922 assert(HII->isPredicated(MI));
1923 for (const MachineOperand &Op : MI.operands()) {
1924 if (!Op.isReg() || !Op.isUse() ||
1925 MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass)
1926 continue;
1927 assert(Op.getSubReg() == 0 && "Predicate register with a subregister");
1928 return Op;
1930 llvm_unreachable("Predicate operand not found");
1933 const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const {
1934 assert(MI.mayLoad());
1935 return MI.getOperand(0);
1938 const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const {
1939 assert(MI.mayStore());
1940 return MI.getOperand(MI.getNumExplicitOperands()-1);
1943 bool HCE::runOnMachineFunction(MachineFunction &MF) {
1944 if (skipFunction(MF.getFunction()))
1945 return false;
1946 if (MF.getFunction().hasPersonalityFn()) {
1947 LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName()
1948 << " due to exception handling\n");
1949 return false;
1951 LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr));
1953 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
1954 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1955 MDT = &getAnalysis<MachineDominatorTree>();
1956 MRI = &MF.getRegInfo();
1957 AssignmentMap IMap;
1959 collect(MF);
1960 llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) {
1961 ExtValue VA(A), VB(B);
1962 if (VA != VB)
1963 return VA < VB;
1964 const MachineInstr *MA = A.UseMI;
1965 const MachineInstr *MB = B.UseMI;
1966 if (MA == MB) {
1967 // If it's the same instruction, compare operand numbers.
1968 return A.OpNum < B.OpNum;
1971 const MachineBasicBlock *BA = MA->getParent();
1972 const MachineBasicBlock *BB = MB->getParent();
1973 assert(BA->getNumber() != -1 && BB->getNumber() != -1);
1974 if (BA != BB)
1975 return BA->getNumber() < BB->getNumber();
1976 return MDT->dominates(MA, MB);
1979 bool Changed = false;
1980 LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n");
1981 for (unsigned I = 0, E = Extenders.size(); I != E; ) {
1982 unsigned B = I;
1983 const ExtRoot &T = Extenders[B].getOp();
1984 while (I != E && ExtRoot(Extenders[I].getOp()) == T)
1985 ++I;
1987 IMap.clear();
1988 assignInits(T, B, I, IMap);
1989 Changed |= replaceExtenders(IMap);
1992 LLVM_DEBUG({
1993 if (Changed)
1994 MF.print(dbgs() << "After " << getPassName() << '\n', nullptr);
1995 else
1996 dbgs() << "No changes\n";
1998 return Changed;
2001 FunctionPass *llvm::createHexagonConstExtenders() {
2002 return new HexagonConstExtenders();