1 //===- HexagonGenInsert.cpp -----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Timer.h"
37 #include "llvm/Support/raw_ostream.h"
45 #define DEBUG_TYPE "hexinsert"
49 static cl::opt
<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
50 cl::Hidden
, cl::ZeroOrMore
, cl::desc("Vreg# cutoff for insert generation."));
51 // The distance cutoff is selected based on the precheckin-perf results:
52 // cutoffs 20, 25, 35, and 40 are worse than 30.
53 static cl::opt
<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
54 cl::Hidden
, cl::ZeroOrMore
, cl::desc("Vreg distance cutoff for insert "
57 // Limit the container sizes for extreme cases where we run out of memory.
58 static cl::opt
<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
59 cl::Hidden
, cl::ZeroOrMore
, cl::desc("Maximum size of OrderedRegisterList"));
60 static cl::opt
<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
61 cl::Hidden
, cl::ZeroOrMore
, cl::desc("Maximum size of IFMap"));
63 static cl::opt
<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden
,
64 cl::ZeroOrMore
, cl::desc("Enable timing of insert generation"));
65 static cl::opt
<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
66 cl::Hidden
, cl::ZeroOrMore
, cl::desc("Enable detailed timing of insert "
69 static cl::opt
<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden
,
71 static cl::opt
<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden
,
73 // Whether to construct constant values via "insert". Could eliminate constant
74 // extenders, but often not practical.
75 static cl::opt
<bool> OptConst("insert-const", cl::init(false), cl::Hidden
,
78 // The preprocessor gets confused when the DEBUG macro is passed larger
79 // chunks of code. Use this function to detect debugging.
80 inline static bool isDebug() {
82 return DebugFlag
&& isCurrentDebugType(DEBUG_TYPE
);
90 // Set of virtual registers, based on BitVector.
91 struct RegisterSet
: private BitVector
{
92 RegisterSet() = default;
93 explicit RegisterSet(unsigned s
, bool t
= false) : BitVector(s
, t
) {}
94 RegisterSet(const RegisterSet
&RS
) : BitVector(RS
) {}
96 using BitVector::clear
;
98 unsigned find_first() const {
99 int First
= BitVector::find_first();
105 unsigned find_next(unsigned Prev
) const {
106 int Next
= BitVector::find_next(v2x(Prev
));
112 RegisterSet
&insert(unsigned R
) {
113 unsigned Idx
= v2x(R
);
115 return static_cast<RegisterSet
&>(BitVector::set(Idx
));
117 RegisterSet
&remove(unsigned R
) {
118 unsigned Idx
= v2x(R
);
121 return static_cast<RegisterSet
&>(BitVector::reset(Idx
));
124 RegisterSet
&insert(const RegisterSet
&Rs
) {
125 return static_cast<RegisterSet
&>(BitVector::operator|=(Rs
));
127 RegisterSet
&remove(const RegisterSet
&Rs
) {
128 return static_cast<RegisterSet
&>(BitVector::reset(Rs
));
131 reference
operator[](unsigned R
) {
132 unsigned Idx
= v2x(R
);
134 return BitVector::operator[](Idx
);
136 bool operator[](unsigned R
) const {
137 unsigned Idx
= v2x(R
);
138 assert(Idx
< size());
139 return BitVector::operator[](Idx
);
141 bool has(unsigned R
) const {
142 unsigned Idx
= v2x(R
);
145 return BitVector::test(Idx
);
149 return !BitVector::any();
151 bool includes(const RegisterSet
&Rs
) const {
152 // A.BitVector::test(B) <=> A-B != {}
153 return !Rs
.BitVector::test(*this);
155 bool intersects(const RegisterSet
&Rs
) const {
156 return BitVector::anyCommon(Rs
);
160 void ensure(unsigned Idx
) {
162 resize(std::max(Idx
+1, 32U));
165 static inline unsigned v2x(unsigned v
) {
166 return TargetRegisterInfo::virtReg2Index(v
);
169 static inline unsigned x2v(unsigned x
) {
170 return TargetRegisterInfo::index2VirtReg(x
);
175 PrintRegSet(const RegisterSet
&S
, const TargetRegisterInfo
*RI
)
178 friend raw_ostream
&operator<< (raw_ostream
&OS
,
179 const PrintRegSet
&P
);
182 const RegisterSet
&RS
;
183 const TargetRegisterInfo
*TRI
;
186 raw_ostream
&operator<< (raw_ostream
&OS
, const PrintRegSet
&P
) {
188 for (unsigned R
= P
.RS
.find_first(); R
; R
= P
.RS
.find_next(R
))
189 OS
<< ' ' << printReg(R
, P
.TRI
);
194 // A convenience class to associate unsigned numbers (such as virtual
195 // registers) with unsigned numbers.
196 struct UnsignedMap
: public DenseMap
<unsigned,unsigned> {
197 UnsignedMap() = default;
200 using BaseType
= DenseMap
<unsigned, unsigned>;
203 // A utility to establish an ordering between virtual registers:
204 // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
205 // This is meant as a cache for the ordering of virtual registers defined
206 // by a potentially expensive comparison function, or obtained by a proce-
207 // dure that should not be repeated each time two registers are compared.
208 struct RegisterOrdering
: public UnsignedMap
{
209 RegisterOrdering() = default;
211 unsigned operator[](unsigned VR
) const {
212 const_iterator F
= find(VR
);
217 // Add operator(), so that objects of this class can be used as
218 // comparators in std::sort et al.
219 bool operator() (unsigned VR1
, unsigned VR2
) const {
220 return operator[](VR1
) < operator[](VR2
);
224 // Ordering of bit values. This class does not have operator[], but
225 // is supplies a comparison operator() for use in std:: algorithms.
226 // The order is as follows:
228 // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
229 // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
230 struct BitValueOrdering
{
231 BitValueOrdering(const RegisterOrdering
&RB
) : BaseOrd(RB
) {}
233 bool operator() (const BitTracker::BitValue
&V1
,
234 const BitTracker::BitValue
&V2
) const;
236 const RegisterOrdering
&BaseOrd
;
239 } // end anonymous namespace
241 bool BitValueOrdering::operator() (const BitTracker::BitValue
&V1
,
242 const BitTracker::BitValue
&V2
) const {
245 // V1==0 => true, V2==0 => false
246 if (V1
.is(0) || V2
.is(0))
248 // Neither of V1,V2 is 0, and V1!=V2.
249 // V2==1 => false, V1==1 => true
250 if (V2
.is(1) || V1
.is(1))
252 // Both V1,V2 are refs.
253 unsigned Ind1
= BaseOrd
[V1
.RefI
.Reg
], Ind2
= BaseOrd
[V2
.RefI
.Reg
];
257 assert(V1
.RefI
.Pos
!= V2
.RefI
.Pos
&& "Bit values should be different");
258 return V1
.RefI
.Pos
< V2
.RefI
.Pos
;
263 // Cache for the BitTracker's cell map. Map lookup has a logarithmic
264 // complexity, this class will memoize the lookup results to reduce
265 // the access time for repeated lookups of the same cell.
266 struct CellMapShadow
{
267 CellMapShadow(const BitTracker
&T
) : BT(T
) {}
269 const BitTracker::RegisterCell
&lookup(unsigned VR
) {
270 unsigned RInd
= TargetRegisterInfo::virtReg2Index(VR
);
271 // Grow the vector to at least 32 elements.
272 if (RInd
>= CVect
.size())
273 CVect
.resize(std::max(RInd
+16, 32U), nullptr);
274 const BitTracker::RegisterCell
*CP
= CVect
[RInd
];
276 CP
= CVect
[RInd
] = &BT
.lookup(VR
);
280 const BitTracker
&BT
;
283 using CellVectType
= std::vector
<const BitTracker::RegisterCell
*>;
288 // Comparator class for lexicographic ordering of virtual registers
289 // according to the corresponding BitTracker::RegisterCell objects.
290 struct RegisterCellLexCompare
{
291 RegisterCellLexCompare(const BitValueOrdering
&BO
, CellMapShadow
&M
)
292 : BitOrd(BO
), CM(M
) {}
294 bool operator() (unsigned VR1
, unsigned VR2
) const;
297 const BitValueOrdering
&BitOrd
;
301 // Comparator class for lexicographic ordering of virtual registers
302 // according to the specified bits of the corresponding BitTracker::
303 // RegisterCell objects.
304 // Specifically, this class will be used to compare bit B of a register
305 // cell for a selected virtual register R with bit N of any register
307 struct RegisterCellBitCompareSel
{
308 RegisterCellBitCompareSel(unsigned R
, unsigned B
, unsigned N
,
309 const BitValueOrdering
&BO
, CellMapShadow
&M
)
310 : SelR(R
), SelB(B
), BitN(N
), BitOrd(BO
), CM(M
) {}
312 bool operator() (unsigned VR1
, unsigned VR2
) const;
315 const unsigned SelR
, SelB
;
317 const BitValueOrdering
&BitOrd
;
321 } // end anonymous namespace
323 bool RegisterCellLexCompare::operator() (unsigned VR1
, unsigned VR2
) const {
324 // Ordering of registers, made up from two given orderings:
325 // - the ordering of the register numbers, and
326 // - the ordering of register cells.
328 // - cell(R1) < cell(R2), or
329 // - cell(R1) == cell(R2), and index(R1) < index(R2).
331 // For register cells, the ordering is lexicographic, with index 0 being
332 // the most significant.
336 const BitTracker::RegisterCell
&RC1
= CM
.lookup(VR1
), &RC2
= CM
.lookup(VR2
);
337 uint16_t W1
= RC1
.width(), W2
= RC2
.width();
338 for (uint16_t i
= 0, w
= std::min(W1
, W2
); i
< w
; ++i
) {
339 const BitTracker::BitValue
&V1
= RC1
[i
], &V2
= RC2
[i
];
341 return BitOrd(V1
, V2
);
343 // Cells are equal up until the common length.
347 return BitOrd
.BaseOrd
[VR1
] < BitOrd
.BaseOrd
[VR2
];
350 bool RegisterCellBitCompareSel::operator() (unsigned VR1
, unsigned VR2
) const {
353 const BitTracker::RegisterCell
&RC1
= CM
.lookup(VR1
);
354 const BitTracker::RegisterCell
&RC2
= CM
.lookup(VR2
);
355 uint16_t W1
= RC1
.width(), W2
= RC2
.width();
356 uint16_t Bit1
= (VR1
== SelR
) ? SelB
: BitN
;
357 uint16_t Bit2
= (VR2
== SelR
) ? SelB
: BitN
;
358 // If Bit1 exceeds the width of VR1, then:
359 // - return false, if at the same time Bit2 exceeds VR2, or
360 // - return true, otherwise.
361 // (I.e. "a bit value that does not exist is less than any bit value
362 // that does exist".)
365 // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
369 const BitTracker::BitValue
&V1
= RC1
[Bit1
], V2
= RC2
[Bit2
];
371 return BitOrd(V1
, V2
);
377 class OrderedRegisterList
{
378 using ListType
= std::vector
<unsigned>;
379 const unsigned MaxSize
;
382 OrderedRegisterList(const RegisterOrdering
&RO
)
383 : MaxSize(MaxORLSize
), Ord(RO
) {}
385 void insert(unsigned VR
);
386 void remove(unsigned VR
);
388 unsigned operator[](unsigned Idx
) const {
389 assert(Idx
< Seq
.size());
393 unsigned size() const {
397 using iterator
= ListType::iterator
;
398 using const_iterator
= ListType::const_iterator
;
400 iterator
begin() { return Seq
.begin(); }
401 iterator
end() { return Seq
.end(); }
402 const_iterator
begin() const { return Seq
.begin(); }
403 const_iterator
end() const { return Seq
.end(); }
405 // Convenience function to convert an iterator to the corresponding index.
406 unsigned idx(iterator It
) const { return It
-begin(); }
410 const RegisterOrdering
&Ord
;
414 PrintORL(const OrderedRegisterList
&L
, const TargetRegisterInfo
*RI
)
417 friend raw_ostream
&operator<< (raw_ostream
&OS
, const PrintORL
&P
);
420 const OrderedRegisterList
&RL
;
421 const TargetRegisterInfo
*TRI
;
424 raw_ostream
&operator<< (raw_ostream
&OS
, const PrintORL
&P
) {
426 OrderedRegisterList::const_iterator B
= P
.RL
.begin(), E
= P
.RL
.end();
427 for (OrderedRegisterList::const_iterator I
= B
; I
!= E
; ++I
) {
430 OS
<< printReg(*I
, P
.TRI
);
436 } // end anonymous namespace
438 void OrderedRegisterList::insert(unsigned VR
) {
439 iterator L
= std::lower_bound(Seq
.begin(), Seq
.end(), VR
, Ord
);
445 unsigned S
= Seq
.size();
448 assert(Seq
.size() <= MaxSize
);
451 void OrderedRegisterList::remove(unsigned VR
) {
452 iterator L
= std::lower_bound(Seq
.begin(), Seq
.end(), VR
, Ord
);
459 // A record of the insert form. The fields correspond to the operands
460 // of the "insert" instruction:
461 // ... = insert(SrcR, InsR, #Wdh, #Off)
463 IFRecord(unsigned SR
= 0, unsigned IR
= 0, uint16_t W
= 0, uint16_t O
= 0)
464 : SrcR(SR
), InsR(IR
), Wdh(W
), Off(O
) {}
471 PrintIFR(const IFRecord
&R
, const TargetRegisterInfo
*RI
)
475 friend raw_ostream
&operator<< (raw_ostream
&OS
, const PrintIFR
&P
);
478 const TargetRegisterInfo
*TRI
;
481 raw_ostream
&operator<< (raw_ostream
&OS
, const PrintIFR
&P
) {
482 unsigned SrcR
= P
.IFR
.SrcR
, InsR
= P
.IFR
.InsR
;
483 OS
<< '(' << printReg(SrcR
, P
.TRI
) << ',' << printReg(InsR
, P
.TRI
)
484 << ",#" << P
.IFR
.Wdh
<< ",#" << P
.IFR
.Off
<< ')';
488 using IFRecordWithRegSet
= std::pair
<IFRecord
, RegisterSet
>;
490 } // end anonymous namespace
494 void initializeHexagonGenInsertPass(PassRegistry
&);
495 FunctionPass
*createHexagonGenInsert();
497 } // end namespace llvm
501 class HexagonGenInsert
: public MachineFunctionPass
{
505 HexagonGenInsert() : MachineFunctionPass(ID
) {
506 initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
509 StringRef
getPassName() const override
{
510 return "Hexagon generate \"insert\" instructions";
513 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
514 AU
.addRequired
<MachineDominatorTree
>();
515 AU
.addPreserved
<MachineDominatorTree
>();
516 MachineFunctionPass::getAnalysisUsage(AU
);
519 bool runOnMachineFunction(MachineFunction
&MF
) override
;
522 using PairMapType
= DenseMap
<std::pair
<unsigned, unsigned>, unsigned>;
524 void buildOrderingMF(RegisterOrdering
&RO
) const;
525 void buildOrderingBT(RegisterOrdering
&RB
, RegisterOrdering
&RO
) const;
526 bool isIntClass(const TargetRegisterClass
*RC
) const;
527 bool isConstant(unsigned VR
) const;
528 bool isSmallConstant(unsigned VR
) const;
529 bool isValidInsertForm(unsigned DstR
, unsigned SrcR
, unsigned InsR
,
530 uint16_t L
, uint16_t S
) const;
531 bool findSelfReference(unsigned VR
) const;
532 bool findNonSelfReference(unsigned VR
) const;
533 void getInstrDefs(const MachineInstr
*MI
, RegisterSet
&Defs
) const;
534 void getInstrUses(const MachineInstr
*MI
, RegisterSet
&Uses
) const;
535 unsigned distance(const MachineBasicBlock
*FromB
,
536 const MachineBasicBlock
*ToB
, const UnsignedMap
&RPO
,
537 PairMapType
&M
) const;
538 unsigned distance(MachineBasicBlock::const_iterator FromI
,
539 MachineBasicBlock::const_iterator ToI
, const UnsignedMap
&RPO
,
540 PairMapType
&M
) const;
541 bool findRecordInsertForms(unsigned VR
, OrderedRegisterList
&AVs
);
542 void collectInBlock(MachineBasicBlock
*B
, OrderedRegisterList
&AVs
);
543 void findRemovableRegisters(unsigned VR
, IFRecord IF
,
544 RegisterSet
&RMs
) const;
545 void computeRemovableRegisters();
547 void pruneEmptyLists();
548 void pruneCoveredSets(unsigned VR
);
549 void pruneUsesTooFar(unsigned VR
, const UnsignedMap
&RPO
, PairMapType
&M
);
550 void pruneRegCopies(unsigned VR
);
551 void pruneCandidates();
552 void selectCandidates();
553 bool generateInserts();
555 bool removeDeadCode(MachineDomTreeNode
*N
);
557 // IFRecord coupled with a set of potentially removable registers:
558 using IFListType
= std::vector
<IFRecordWithRegSet
>;
559 using IFMapType
= DenseMap
<unsigned, IFListType
>; // vreg -> IFListType
561 void dump_map() const;
563 const HexagonInstrInfo
*HII
= nullptr;
564 const HexagonRegisterInfo
*HRI
= nullptr;
566 MachineFunction
*MFN
;
567 MachineRegisterInfo
*MRI
;
568 MachineDominatorTree
*MDT
;
571 RegisterOrdering BaseOrd
;
572 RegisterOrdering CellOrd
;
576 } // end anonymous namespace
578 char HexagonGenInsert::ID
= 0;
580 void HexagonGenInsert::dump_map() const {
581 using iterator
= IFMapType::const_iterator
;
583 for (iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
) {
584 dbgs() << " " << printReg(I
->first
, HRI
) << ":\n";
585 const IFListType
&LL
= I
->second
;
586 for (unsigned i
= 0, n
= LL
.size(); i
< n
; ++i
)
587 dbgs() << " " << PrintIFR(LL
[i
].first
, HRI
) << ", "
588 << PrintRegSet(LL
[i
].second
, HRI
) << '\n';
592 void HexagonGenInsert::buildOrderingMF(RegisterOrdering
&RO
) const {
595 using mf_iterator
= MachineFunction::const_iterator
;
597 for (mf_iterator A
= MFN
->begin(), Z
= MFN
->end(); A
!= Z
; ++A
) {
598 const MachineBasicBlock
&B
= *A
;
599 if (!CMS
->BT
.reached(&B
))
602 using mb_iterator
= MachineBasicBlock::const_iterator
;
604 for (mb_iterator I
= B
.begin(), E
= B
.end(); I
!= E
; ++I
) {
605 const MachineInstr
*MI
= &*I
;
606 for (unsigned i
= 0, n
= MI
->getNumOperands(); i
< n
; ++i
) {
607 const MachineOperand
&MO
= MI
->getOperand(i
);
608 if (MO
.isReg() && MO
.isDef()) {
609 unsigned R
= MO
.getReg();
610 assert(MO
.getSubReg() == 0 && "Unexpected subregister in definition");
611 if (TargetRegisterInfo::isVirtualRegister(R
))
612 RO
.insert(std::make_pair(R
, Index
++));
617 // Since some virtual registers may have had their def and uses eliminated,
618 // they are no longer referenced in the code, and so they will not appear
622 void HexagonGenInsert::buildOrderingBT(RegisterOrdering
&RB
,
623 RegisterOrdering
&RO
) const {
624 // Create a vector of all virtual registers (collect them from the base
625 // ordering RB), and then sort it using the RegisterCell comparator.
626 BitValueOrdering
BVO(RB
);
627 RegisterCellLexCompare
LexCmp(BVO
, *CMS
);
629 using SortableVectorType
= std::vector
<unsigned>;
631 SortableVectorType VRs
;
632 for (RegisterOrdering::iterator I
= RB
.begin(), E
= RB
.end(); I
!= E
; ++I
)
633 VRs
.push_back(I
->first
);
634 llvm::sort(VRs
, LexCmp
);
635 // Transfer the results to the outgoing register ordering.
636 for (unsigned i
= 0, n
= VRs
.size(); i
< n
; ++i
)
637 RO
.insert(std::make_pair(VRs
[i
], i
));
640 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass
*RC
) const {
641 return RC
== &Hexagon::IntRegsRegClass
|| RC
== &Hexagon::DoubleRegsRegClass
;
644 bool HexagonGenInsert::isConstant(unsigned VR
) const {
645 const BitTracker::RegisterCell
&RC
= CMS
->lookup(VR
);
646 uint16_t W
= RC
.width();
647 for (uint16_t i
= 0; i
< W
; ++i
) {
648 const BitTracker::BitValue
&BV
= RC
[i
];
649 if (BV
.is(0) || BV
.is(1))
656 bool HexagonGenInsert::isSmallConstant(unsigned VR
) const {
657 const BitTracker::RegisterCell
&RC
= CMS
->lookup(VR
);
658 uint16_t W
= RC
.width();
661 uint64_t V
= 0, B
= 1;
662 for (uint16_t i
= 0; i
< W
; ++i
) {
663 const BitTracker::BitValue
&BV
= RC
[i
];
671 // For 32-bit registers, consider: Rd = #s16.
675 // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
676 return isInt
<8>(Lo_32(V
)) && isInt
<8>(Hi_32(V
));
679 bool HexagonGenInsert::isValidInsertForm(unsigned DstR
, unsigned SrcR
,
680 unsigned InsR
, uint16_t L
, uint16_t S
) const {
681 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstR
);
682 const TargetRegisterClass
*SrcRC
= MRI
->getRegClass(SrcR
);
683 const TargetRegisterClass
*InsRC
= MRI
->getRegClass(InsR
);
684 // Only integet (32-/64-bit) register classes.
685 if (!isIntClass(DstRC
) || !isIntClass(SrcRC
) || !isIntClass(InsRC
))
687 // The "source" register must be of the same class as DstR.
692 // A 64-bit register can only be generated from other 64-bit registers.
693 if (DstRC
== &Hexagon::DoubleRegsRegClass
)
695 // Otherwise, the L and S cannot span 32-bit word boundary.
696 if (S
< 32 && S
+L
> 32)
701 bool HexagonGenInsert::findSelfReference(unsigned VR
) const {
702 const BitTracker::RegisterCell
&RC
= CMS
->lookup(VR
);
703 for (uint16_t i
= 0, w
= RC
.width(); i
< w
; ++i
) {
704 const BitTracker::BitValue
&V
= RC
[i
];
705 if (V
.Type
== BitTracker::BitValue::Ref
&& V
.RefI
.Reg
== VR
)
711 bool HexagonGenInsert::findNonSelfReference(unsigned VR
) const {
712 BitTracker::RegisterCell RC
= CMS
->lookup(VR
);
713 for (uint16_t i
= 0, w
= RC
.width(); i
< w
; ++i
) {
714 const BitTracker::BitValue
&V
= RC
[i
];
715 if (V
.Type
== BitTracker::BitValue::Ref
&& V
.RefI
.Reg
!= VR
)
721 void HexagonGenInsert::getInstrDefs(const MachineInstr
*MI
,
722 RegisterSet
&Defs
) const {
723 for (unsigned i
= 0, n
= MI
->getNumOperands(); i
< n
; ++i
) {
724 const MachineOperand
&MO
= MI
->getOperand(i
);
725 if (!MO
.isReg() || !MO
.isDef())
727 unsigned R
= MO
.getReg();
728 if (!TargetRegisterInfo::isVirtualRegister(R
))
734 void HexagonGenInsert::getInstrUses(const MachineInstr
*MI
,
735 RegisterSet
&Uses
) const {
736 for (unsigned i
= 0, n
= MI
->getNumOperands(); i
< n
; ++i
) {
737 const MachineOperand
&MO
= MI
->getOperand(i
);
738 if (!MO
.isReg() || !MO
.isUse())
740 unsigned R
= MO
.getReg();
741 if (!TargetRegisterInfo::isVirtualRegister(R
))
747 unsigned HexagonGenInsert::distance(const MachineBasicBlock
*FromB
,
748 const MachineBasicBlock
*ToB
, const UnsignedMap
&RPO
,
749 PairMapType
&M
) const {
750 // Forward distance from the end of a block to the beginning of it does
751 // not make sense. This function should not be called with FromB == ToB.
752 assert(FromB
!= ToB
);
754 unsigned FromN
= FromB
->getNumber(), ToN
= ToB
->getNumber();
755 // If we have already computed it, return the cached result.
756 PairMapType::iterator F
= M
.find(std::make_pair(FromN
, ToN
));
759 unsigned ToRPO
= RPO
.lookup(ToN
);
763 using pred_iterator
= MachineBasicBlock::const_pred_iterator
;
765 for (pred_iterator I
= ToB
->pred_begin(), E
= ToB
->pred_end(); I
!= E
; ++I
) {
766 const MachineBasicBlock
*PB
= *I
;
767 // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
768 // along that path will be 0, and we don't need to do any calculations
770 if (PB
== FromB
|| RPO
.lookup(PB
->getNumber()) >= ToRPO
)
772 unsigned D
= PB
->size() + distance(FromB
, PB
, RPO
, M
);
777 // Memoize the result for later lookup.
778 M
.insert(std::make_pair(std::make_pair(FromN
, ToN
), MaxD
));
782 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI
,
783 MachineBasicBlock::const_iterator ToI
, const UnsignedMap
&RPO
,
784 PairMapType
&M
) const {
785 const MachineBasicBlock
*FB
= FromI
->getParent(), *TB
= ToI
->getParent();
787 return std::distance(FromI
, ToI
);
788 unsigned D1
= std::distance(TB
->begin(), ToI
);
789 unsigned D2
= distance(FB
, TB
, RPO
, M
);
790 unsigned D3
= std::distance(FromI
, FB
->end());
794 bool HexagonGenInsert::findRecordInsertForms(unsigned VR
,
795 OrderedRegisterList
&AVs
) {
797 dbgs() << __func__
<< ": " << printReg(VR
, HRI
)
798 << " AVs: " << PrintORL(AVs
, HRI
) << "\n";
803 using iterator
= OrderedRegisterList::iterator
;
805 BitValueOrdering
BVO(BaseOrd
);
806 const BitTracker::RegisterCell
&RC
= CMS
->lookup(VR
);
807 uint16_t W
= RC
.width();
809 using RSRecord
= std::pair
<unsigned, uint16_t>; // (reg,shift)
810 using RSListType
= std::vector
<RSRecord
>;
811 // Have a map, with key being the matching prefix length, and the value
812 // being the list of pairs (R,S), where R's prefix matches VR at S.
813 // (DenseMap<uint16_t,RSListType> fails to instantiate.)
814 using LRSMapType
= DenseMap
<unsigned, RSListType
>;
817 // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
818 // and find matching prefixes from AVs with the rotated RC. Such a prefix
819 // would match a string of bits (of length L) in RC starting at S.
820 for (uint16_t S
= 0; S
< W
; ++S
) {
821 iterator B
= AVs
.begin(), E
= AVs
.end();
822 // The registers in AVs are ordered according to the lexical order of
823 // the corresponding register cells. This means that the range of regis-
824 // ters in AVs that match a prefix of length L+1 will be contained in
825 // the range that matches a prefix of length L. This means that we can
826 // keep narrowing the search space as the prefix length goes up. This
827 // helps reduce the overall complexity of the search.
829 for (L
= 0; L
< W
-S
; ++L
) {
830 // Compare against VR's bits starting at S, which emulates rotation
832 RegisterCellBitCompareSel
RCB(VR
, S
+L
, L
, BVO
, *CMS
);
833 iterator NewB
= std::lower_bound(B
, E
, VR
, RCB
);
834 iterator NewE
= std::upper_bound(NewB
, E
, VR
, RCB
);
835 // For the registers that are eliminated from the next range, L is
836 // the longest prefix matching VR at position S (their prefixes
837 // differ from VR at S+L). If L>0, record this information for later
840 for (iterator I
= B
; I
!= NewB
; ++I
)
841 LM
[L
].push_back(std::make_pair(*I
, S
));
842 for (iterator I
= NewE
; I
!= E
; ++I
)
843 LM
[L
].push_back(std::make_pair(*I
, S
));
849 // Record the final register range. If this range is non-empty, then
851 assert(B
== E
|| L
== W
-S
);
853 for (iterator I
= B
; I
!= E
; ++I
)
854 LM
[L
].push_back(std::make_pair(*I
, S
));
855 // If B!=E, then we found a range of registers whose prefixes cover the
856 // rest of VR from position S. There is no need to further advance S.
862 dbgs() << "Prefixes matching register " << printReg(VR
, HRI
) << "\n";
863 for (LRSMapType::iterator I
= LM
.begin(), E
= LM
.end(); I
!= E
; ++I
) {
864 dbgs() << " L=" << I
->first
<< ':';
865 const RSListType
&LL
= I
->second
;
866 for (unsigned i
= 0, n
= LL
.size(); i
< n
; ++i
)
867 dbgs() << " (" << printReg(LL
[i
].first
, HRI
) << ",@"
868 << LL
[i
].second
<< ')';
873 bool Recorded
= false;
875 for (iterator I
= AVs
.begin(), E
= AVs
.end(); I
!= E
; ++I
) {
877 int FDi
= -1, LDi
= -1; // First/last different bit.
878 const BitTracker::RegisterCell
&AC
= CMS
->lookup(SrcR
);
879 uint16_t AW
= AC
.width();
880 for (uint16_t i
= 0, w
= std::min(W
, AW
); i
< w
; ++i
) {
888 continue; // TODO (future): Record identical registers.
889 // Look for a register whose prefix could patch the range [FD..LD]
890 // where VR and SrcR differ.
891 uint16_t FD
= FDi
, LD
= LDi
; // Switch to unsigned type.
892 uint16_t MinL
= LD
-FD
+1;
893 for (uint16_t L
= MinL
; L
< W
; ++L
) {
894 LRSMapType::iterator F
= LM
.find(L
);
897 RSListType
&LL
= F
->second
;
898 for (unsigned i
= 0, n
= LL
.size(); i
< n
; ++i
) {
899 uint16_t S
= LL
[i
].second
;
900 // MinL is the minimum length of the prefix. Any length above MinL
901 // allows some flexibility as to where the prefix can start:
902 // given the extra length EL=L-MinL, the prefix must start between
903 // max(0,FD-EL) and FD.
904 if (S
> FD
) // Starts too late.
906 uint16_t EL
= L
-MinL
;
907 uint16_t LowS
= (EL
< FD
) ? FD
-EL
: 0;
908 if (S
< LowS
) // Starts too early.
910 unsigned InsR
= LL
[i
].first
;
911 if (!isValidInsertForm(VR
, SrcR
, InsR
, L
, S
))
914 dbgs() << printReg(VR
, HRI
) << " = insert(" << printReg(SrcR
, HRI
)
915 << ',' << printReg(InsR
, HRI
) << ",#" << L
<< ",#"
918 IFRecordWithRegSet
RR(IFRecord(SrcR
, InsR
, L
, S
), RegisterSet());
919 IFMap
[VR
].push_back(RR
);
928 void HexagonGenInsert::collectInBlock(MachineBasicBlock
*B
,
929 OrderedRegisterList
&AVs
) {
931 dbgs() << "visiting block " << printMBBReference(*B
) << "\n";
933 // First, check if this block is reachable at all. If not, the bit tracker
934 // will not have any information about registers in it.
935 if (!CMS
->BT
.reached(B
))
938 bool DoConst
= OptConst
;
939 // Keep a separate set of registers defined in this block, so that we
940 // can remove them from the list of available registers once all DT
941 // successors have been processed.
942 RegisterSet BlockDefs
, InsDefs
;
943 for (MachineBasicBlock::iterator I
= B
->begin(), E
= B
->end(); I
!= E
; ++I
) {
944 MachineInstr
*MI
= &*I
;
946 getInstrDefs(MI
, InsDefs
);
947 // Leave those alone. They are more transparent than "insert".
948 bool Skip
= MI
->isCopy() || MI
->isRegSequence();
951 // Visit all defined registers, and attempt to find the corresponding
952 // "insert" representations.
953 for (unsigned VR
= InsDefs
.find_first(); VR
; VR
= InsDefs
.find_next(VR
)) {
954 // Do not collect registers that are known to be compile-time cons-
955 // tants, unless requested.
956 if (!DoConst
&& isConstant(VR
))
958 // If VR's cell contains a reference to VR, then VR cannot be defined
959 // via "insert". If VR is a constant that can be generated in a single
960 // instruction (without constant extenders), generating it via insert
962 if (findSelfReference(VR
) || isSmallConstant(VR
))
965 findRecordInsertForms(VR
, AVs
);
966 // Stop if the map size is too large.
967 if (IFMap
.size() > MaxIFMSize
)
972 // Insert the defined registers into the list of available registers
973 // after they have been processed.
974 for (unsigned VR
= InsDefs
.find_first(); VR
; VR
= InsDefs
.find_next(VR
))
976 BlockDefs
.insert(InsDefs
);
979 for (auto *DTN
: children
<MachineDomTreeNode
*>(MDT
->getNode(B
))) {
980 MachineBasicBlock
*SB
= DTN
->getBlock();
981 collectInBlock(SB
, AVs
);
984 for (unsigned VR
= BlockDefs
.find_first(); VR
; VR
= BlockDefs
.find_next(VR
))
988 void HexagonGenInsert::findRemovableRegisters(unsigned VR
, IFRecord IF
,
989 RegisterSet
&RMs
) const {
990 // For a given register VR and a insert form, find the registers that are
991 // used by the current definition of VR, and which would no longer be
992 // needed for it after the definition of VR is replaced with the insert
993 // form. These are the registers that could potentially become dead.
996 unsigned S
= 0; // Register set selector.
999 while (!Regs
[S
].empty()) {
1000 // Breadth-first search.
1001 unsigned OtherS
= 1-S
;
1002 Regs
[OtherS
].clear();
1003 for (unsigned R
= Regs
[S
].find_first(); R
; R
= Regs
[S
].find_next(R
)) {
1005 if (R
== IF
.SrcR
|| R
== IF
.InsR
)
1007 // Check if a given register has bits that are references to any other
1008 // registers. This is to detect situations where the instruction that
1009 // defines register R takes register Q as an operand, but R itself does
1010 // not contain any bits from Q. Loads are examples of how this could
1013 // In this case (assuming we do not have any knowledge about the loaded
1014 // value), we must not treat R as a "conveyance" of the bits from Q.
1015 // (The information in BT about R's bits would have them as constants,
1016 // in case of zero-extending loads, or refs to R.)
1017 if (!findNonSelfReference(R
))
1020 const MachineInstr
*DefI
= MRI
->getVRegDef(R
);
1022 // Do not iterate past PHI nodes to avoid infinite loops. This can
1023 // make the final set a bit less accurate, but the removable register
1024 // sets are an approximation anyway.
1027 getInstrUses(DefI
, Regs
[OtherS
]);
1031 // The register VR is added to the list as a side-effect of the algorithm,
1032 // but it is not "potentially removable". A potentially removable register
1033 // is one that may become unused (dead) after conversion to the insert form
1034 // IF, and obviously VR (or its replacement) will not become dead by apply-
1039 void HexagonGenInsert::computeRemovableRegisters() {
1040 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
) {
1041 IFListType
&LL
= I
->second
;
1042 for (unsigned i
= 0, n
= LL
.size(); i
< n
; ++i
)
1043 findRemovableRegisters(I
->first
, LL
[i
].first
, LL
[i
].second
);
1047 void HexagonGenInsert::pruneEmptyLists() {
1048 // Remove all entries from the map, where the register has no insert forms
1049 // associated with it.
1050 using IterListType
= SmallVector
<IFMapType::iterator
, 16>;
1052 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
) {
1053 if (I
->second
.empty())
1056 for (unsigned i
= 0, n
= Prune
.size(); i
< n
; ++i
)
1057 IFMap
.erase(Prune
[i
]);
1060 void HexagonGenInsert::pruneCoveredSets(unsigned VR
) {
1061 IFMapType::iterator F
= IFMap
.find(VR
);
1062 assert(F
!= IFMap
.end());
1063 IFListType
&LL
= F
->second
;
1065 // First, examine the IF candidates for register VR whose removable-regis-
1066 // ter sets are empty. This means that a given candidate will not help eli-
1067 // minate any registers, but since "insert" is not a constant-extendable
1068 // instruction, using such a candidate may reduce code size if the defini-
1069 // tion of VR is constant-extended.
1070 // If there exists a candidate with a non-empty set, the ones with empty
1071 // sets will not be used and can be removed.
1072 MachineInstr
*DefVR
= MRI
->getVRegDef(VR
);
1073 bool DefEx
= HII
->isConstExtended(*DefVR
);
1075 for (unsigned i
= 0, n
= LL
.size(); i
< n
; ++i
) {
1076 if (LL
[i
].second
.empty())
1081 if (!DefEx
|| HasNE
) {
1082 // The definition of VR is not constant-extended, or there is a candidate
1083 // with a non-empty set. Remove all candidates with empty sets.
1084 auto IsEmpty
= [] (const IFRecordWithRegSet
&IR
) -> bool {
1085 return IR
.second
.empty();
1087 auto End
= llvm::remove_if(LL
, IsEmpty
);
1088 if (End
!= LL
.end())
1089 LL
.erase(End
, LL
.end());
1091 // The definition of VR is constant-extended, and all candidates have
1092 // empty removable-register sets. Pick the maximum candidate, and remove
1093 // all others. The "maximum" does not have any special meaning here, it
1094 // is only so that the candidate that will remain on the list is selec-
1095 // ted deterministically.
1096 IFRecord MaxIF
= LL
[0].first
;
1097 for (unsigned i
= 1, n
= LL
.size(); i
< n
; ++i
) {
1098 // If LL[MaxI] < LL[i], then MaxI = i.
1099 const IFRecord
&IF
= LL
[i
].first
;
1100 unsigned M0
= BaseOrd
[MaxIF
.SrcR
], M1
= BaseOrd
[MaxIF
.InsR
];
1101 unsigned R0
= BaseOrd
[IF
.SrcR
], R1
= BaseOrd
[IF
.InsR
];
1108 if (MaxIF
.Wdh
> IF
.Wdh
)
1110 if (MaxIF
.Wdh
== IF
.Wdh
&& MaxIF
.Off
>= IF
.Off
)
1117 // Remove everything except the maximum candidate. All register sets
1118 // are empty, so no need to preserve anything.
1120 LL
.push_back(std::make_pair(MaxIF
, RegisterSet()));
1123 // Now, remove those whose sets of potentially removable registers are
1124 // contained in another IF candidate for VR. For example, given these
1125 // candidates for %45,
1127 // (%44,%41,#9,#8), { %42 }
1128 // (%43,%41,#9,#8), { %42 %44 }
1129 // remove the first one, since it is contained in the second one.
1130 for (unsigned i
= 0, n
= LL
.size(); i
< n
; ) {
1131 const RegisterSet
&RMi
= LL
[i
].second
;
1134 if (j
!= i
&& LL
[j
].second
.includes(RMi
))
1138 if (j
== n
) { // RMi not contained in anything else.
1142 LL
.erase(LL
.begin()+i
);
1147 void HexagonGenInsert::pruneUsesTooFar(unsigned VR
, const UnsignedMap
&RPO
,
1149 IFMapType::iterator F
= IFMap
.find(VR
);
1150 assert(F
!= IFMap
.end());
1151 IFListType
&LL
= F
->second
;
1152 unsigned Cutoff
= VRegDistCutoff
;
1153 const MachineInstr
*DefV
= MRI
->getVRegDef(VR
);
1155 for (unsigned i
= LL
.size(); i
> 0; --i
) {
1156 unsigned SR
= LL
[i
-1].first
.SrcR
, IR
= LL
[i
-1].first
.InsR
;
1157 const MachineInstr
*DefS
= MRI
->getVRegDef(SR
);
1158 const MachineInstr
*DefI
= MRI
->getVRegDef(IR
);
1159 unsigned DSV
= distance(DefS
, DefV
, RPO
, M
);
1161 unsigned DIV
= distance(DefI
, DefV
, RPO
, M
);
1165 LL
.erase(LL
.begin()+(i
-1));
1169 void HexagonGenInsert::pruneRegCopies(unsigned VR
) {
1170 IFMapType::iterator F
= IFMap
.find(VR
);
1171 assert(F
!= IFMap
.end());
1172 IFListType
&LL
= F
->second
;
1174 auto IsCopy
= [] (const IFRecordWithRegSet
&IR
) -> bool {
1175 return IR
.first
.Wdh
== 32 && (IR
.first
.Off
== 0 || IR
.first
.Off
== 32);
1177 auto End
= llvm::remove_if(LL
, IsCopy
);
1178 if (End
!= LL
.end())
1179 LL
.erase(End
, LL
.end());
1182 void HexagonGenInsert::pruneCandidates() {
1183 // Remove candidates that are not beneficial, regardless of the final
1184 // selection method.
1185 // First, remove candidates whose potentially removable set is a subset
1186 // of another candidate's set.
1187 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
)
1188 pruneCoveredSets(I
->first
);
1192 using RPOTType
= ReversePostOrderTraversal
<const MachineFunction
*>;
1196 for (RPOTType::rpo_iterator I
= RPOT
.begin(), E
= RPOT
.end(); I
!= E
; ++I
)
1197 RPO
[(*I
)->getNumber()] = RPON
++;
1199 PairMapType Memo
; // Memoization map for distance calculation.
1200 // Remove candidates that would use registers defined too far away.
1201 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
)
1202 pruneUsesTooFar(I
->first
, RPO
, Memo
);
1206 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
)
1207 pruneRegCopies(I
->first
);
1212 // Class for comparing IF candidates for registers that have multiple of
1213 // them. The smaller the candidate, according to this ordering, the better.
1214 // First, compare the number of zeros in the associated potentially remova-
1215 // ble register sets. "Zero" indicates that the register is very likely to
1216 // become dead after this transformation.
1217 // Second, compare "averages", i.e. use-count per size. The lower wins.
1218 // After that, it does not really matter which one is smaller. Resolve
1219 // the tie in some deterministic way.
1221 IFOrdering(const UnsignedMap
&UC
, const RegisterOrdering
&BO
)
1222 : UseC(UC
), BaseOrd(BO
) {}
1224 bool operator() (const IFRecordWithRegSet
&A
,
1225 const IFRecordWithRegSet
&B
) const;
1228 void stats(const RegisterSet
&Rs
, unsigned &Size
, unsigned &Zero
,
1229 unsigned &Sum
) const;
1231 const UnsignedMap
&UseC
;
1232 const RegisterOrdering
&BaseOrd
;
1235 } // end anonymous namespace
1237 bool IFOrdering::operator() (const IFRecordWithRegSet
&A
,
1238 const IFRecordWithRegSet
&B
) const {
1239 unsigned SizeA
= 0, ZeroA
= 0, SumA
= 0;
1240 unsigned SizeB
= 0, ZeroB
= 0, SumB
= 0;
1241 stats(A
.second
, SizeA
, ZeroA
, SumA
);
1242 stats(B
.second
, SizeB
, ZeroB
, SumB
);
1244 // We will pick the minimum element. The more zeros, the better.
1246 return ZeroA
> ZeroB
;
1247 // Compare SumA/SizeA with SumB/SizeB, lower is better.
1248 uint64_t AvgA
= SumA
*SizeB
, AvgB
= SumB
*SizeA
;
1252 // The sets compare identical so far. Resort to comparing the IF records.
1253 // The actual values don't matter, this is only for determinism.
1254 unsigned OSA
= BaseOrd
[A
.first
.SrcR
], OSB
= BaseOrd
[B
.first
.SrcR
];
1257 unsigned OIA
= BaseOrd
[A
.first
.InsR
], OIB
= BaseOrd
[B
.first
.InsR
];
1260 if (A
.first
.Wdh
!= B
.first
.Wdh
)
1261 return A
.first
.Wdh
< B
.first
.Wdh
;
1262 return A
.first
.Off
< B
.first
.Off
;
1265 void IFOrdering::stats(const RegisterSet
&Rs
, unsigned &Size
, unsigned &Zero
,
1266 unsigned &Sum
) const {
1267 for (unsigned R
= Rs
.find_first(); R
; R
= Rs
.find_next(R
)) {
1268 UnsignedMap::const_iterator F
= UseC
.find(R
);
1269 assert(F
!= UseC
.end());
1270 unsigned UC
= F
->second
;
1278 void HexagonGenInsert::selectCandidates() {
1279 // Some registers may have multiple valid candidates. Pick the best one
1280 // (or decide not to use any).
1282 // Compute the "removability" measure of R:
1283 // For each potentially removable register R, record the number of regis-
1284 // ters with IF candidates, where R appears in at least one set.
1286 UnsignedMap UseC
, RemC
;
1287 IFMapType::iterator End
= IFMap
.end();
1289 for (IFMapType::iterator I
= IFMap
.begin(); I
!= End
; ++I
) {
1290 const IFListType
&LL
= I
->second
;
1292 for (unsigned i
= 0, n
= LL
.size(); i
< n
; ++i
)
1293 TT
.insert(LL
[i
].second
);
1294 for (unsigned R
= TT
.find_first(); R
; R
= TT
.find_next(R
))
1299 for (unsigned R
= AllRMs
.find_first(); R
; R
= AllRMs
.find_next(R
)) {
1300 using use_iterator
= MachineRegisterInfo::use_nodbg_iterator
;
1301 using InstrSet
= SmallSet
<const MachineInstr
*, 16>;
1304 // Count as the number of instructions in which R is used, not the
1305 // number of operands.
1306 use_iterator E
= MRI
->use_nodbg_end();
1307 for (use_iterator I
= MRI
->use_nodbg_begin(R
); I
!= E
; ++I
)
1308 UIs
.insert(I
->getParent());
1309 unsigned C
= UIs
.size();
1310 // Calculate a measure, which is the number of instructions using R,
1311 // minus the "removability" count computed earlier.
1312 unsigned D
= RemC
[R
];
1313 UseC
[R
] = (C
> D
) ? C
-D
: 0; // doz
1316 bool SelectAll0
= OptSelectAll0
, SelectHas0
= OptSelectHas0
;
1317 if (!SelectAll0
&& !SelectHas0
)
1320 // The smaller the number UseC for a given register R, the "less used"
1321 // R is aside from the opportunities for removal offered by generating
1322 // "insert" instructions.
1323 // Iterate over the IF map, and for those registers that have multiple
1324 // candidates, pick the minimum one according to IFOrdering.
1325 IFOrdering
IFO(UseC
, BaseOrd
);
1326 for (IFMapType::iterator I
= IFMap
.begin(); I
!= End
; ++I
) {
1327 IFListType
&LL
= I
->second
;
1330 // Get the minimum element, remember it and clear the list. If the
1331 // element found is adequate, we will put it back on the list, other-
1332 // wise the list will remain empty, and the entry for this register
1333 // will be removed (i.e. this register will not be replaced by insert).
1334 IFListType::iterator MinI
= std::min_element(LL
.begin(), LL
.end(), IFO
);
1335 assert(MinI
!= LL
.end());
1336 IFRecordWithRegSet M
= *MinI
;
1339 // We want to make sure that this replacement will have a chance to be
1340 // beneficial, and that means that we want to have indication that some
1341 // register will be removed. The most likely registers to be eliminated
1342 // are the use operands in the definition of I->first. Accept/reject a
1343 // candidate based on how many of its uses it can potentially eliminate.
1346 const MachineInstr
*DefI
= MRI
->getVRegDef(I
->first
);
1347 getInstrUses(DefI
, Us
);
1348 bool Accept
= false;
1352 for (unsigned R
= Us
.find_first(); R
; R
= Us
.find_next(R
)) {
1359 } else if (SelectHas0
) {
1361 for (unsigned R
= Us
.find_first(); R
; R
= Us
.find_next(R
)) {
1373 // Remove candidates that add uses of removable registers, unless the
1374 // removable registers are among replacement candidates.
1375 // Recompute the removable registers, since some candidates may have
1378 for (IFMapType::iterator I
= IFMap
.begin(); I
!= End
; ++I
) {
1379 const IFListType
&LL
= I
->second
;
1381 AllRMs
.insert(LL
[0].second
);
1383 for (IFMapType::iterator I
= IFMap
.begin(); I
!= End
; ++I
) {
1384 IFListType
&LL
= I
->second
;
1387 unsigned SR
= LL
[0].first
.SrcR
, IR
= LL
[0].first
.InsR
;
1388 if (AllRMs
[SR
] || AllRMs
[IR
])
1395 bool HexagonGenInsert::generateInserts() {
1396 // Create a new register for each one from IFMap, and store them in the
1399 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
) {
1400 unsigned VR
= I
->first
;
1401 const TargetRegisterClass
*RC
= MRI
->getRegClass(VR
);
1402 unsigned NewVR
= MRI
->createVirtualRegister(RC
);
1406 // We can generate the "insert" instructions using potentially stale re-
1407 // gisters: SrcR and InsR for a given VR may be among other registers that
1408 // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1409 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
) {
1410 MachineInstr
*MI
= MRI
->getVRegDef(I
->first
);
1411 MachineBasicBlock
&B
= *MI
->getParent();
1412 DebugLoc DL
= MI
->getDebugLoc();
1413 unsigned NewR
= RegMap
[I
->first
];
1414 bool R32
= MRI
->getRegClass(NewR
) == &Hexagon::IntRegsRegClass
;
1415 const MCInstrDesc
&D
= R32
? HII
->get(Hexagon::S2_insert
)
1416 : HII
->get(Hexagon::S2_insertp
);
1417 IFRecord IF
= I
->second
[0].first
;
1418 unsigned Wdh
= IF
.Wdh
, Off
= IF
.Off
;
1420 if (R32
&& MRI
->getRegClass(IF
.InsR
) == &Hexagon::DoubleRegsRegClass
) {
1421 InsS
= Hexagon::isub_lo
;
1423 InsS
= Hexagon::isub_hi
;
1427 // Advance to the proper location for inserting instructions. This could
1429 MachineBasicBlock::iterator At
= MI
;
1431 At
= B
.getFirstNonPHI();
1433 BuildMI(B
, At
, DL
, D
, NewR
)
1435 .addReg(IF
.InsR
, 0, InsS
)
1439 MRI
->clearKillFlags(IF
.SrcR
);
1440 MRI
->clearKillFlags(IF
.InsR
);
1443 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
) {
1444 MachineInstr
*DefI
= MRI
->getVRegDef(I
->first
);
1445 MRI
->replaceRegWith(I
->first
, RegMap
[I
->first
]);
1446 DefI
->eraseFromParent();
1452 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode
*N
) {
1453 bool Changed
= false;
1455 for (auto *DTN
: children
<MachineDomTreeNode
*>(N
))
1456 Changed
|= removeDeadCode(DTN
);
1458 MachineBasicBlock
*B
= N
->getBlock();
1459 std::vector
<MachineInstr
*> Instrs
;
1460 for (auto I
= B
->rbegin(), E
= B
->rend(); I
!= E
; ++I
)
1461 Instrs
.push_back(&*I
);
1463 for (auto I
= Instrs
.begin(), E
= Instrs
.end(); I
!= E
; ++I
) {
1464 MachineInstr
*MI
= *I
;
1465 unsigned Opc
= MI
->getOpcode();
1466 // Do not touch lifetime markers. This is why the target-independent DCE
1468 if (Opc
== TargetOpcode::LIFETIME_START
||
1469 Opc
== TargetOpcode::LIFETIME_END
)
1472 if (MI
->isInlineAsm() || !MI
->isSafeToMove(nullptr, Store
))
1475 bool AllDead
= true;
1476 SmallVector
<unsigned,2> Regs
;
1477 for (const MachineOperand
&MO
: MI
->operands()) {
1478 if (!MO
.isReg() || !MO
.isDef())
1480 unsigned R
= MO
.getReg();
1481 if (!TargetRegisterInfo::isVirtualRegister(R
) ||
1482 !MRI
->use_nodbg_empty(R
)) {
1492 for (unsigned I
= 0, N
= Regs
.size(); I
!= N
; ++I
)
1493 MRI
->markUsesInDebugValueAsUndef(Regs
[I
]);
1500 bool HexagonGenInsert::runOnMachineFunction(MachineFunction
&MF
) {
1501 if (skipFunction(MF
.getFunction()))
1504 bool Timing
= OptTiming
, TimingDetail
= Timing
&& OptTimingDetail
;
1505 bool Changed
= false;
1507 // Sanity check: one, but not both.
1508 assert(!OptSelectAll0
|| !OptSelectHas0
);
1514 const auto &ST
= MF
.getSubtarget
<HexagonSubtarget
>();
1515 HII
= ST
.getInstrInfo();
1516 HRI
= ST
.getRegisterInfo();
1518 MRI
= &MF
.getRegInfo();
1519 MDT
= &getAnalysis
<MachineDominatorTree
>();
1521 // Clean up before any further processing, so that dead code does not
1522 // get used in a newly generated "insert" instruction. Have a custom
1523 // version of DCE that preserves lifetime markers. Without it, merging
1524 // of stack objects can fail to recognize and merge disjoint objects
1525 // leading to unnecessary stack growth.
1526 Changed
= removeDeadCode(MDT
->getRootNode());
1528 const HexagonEvaluator
HE(*HRI
, *MRI
, *HII
, MF
);
1529 BitTracker
BTLoc(HE
, MF
);
1530 BTLoc
.trace(isDebug());
1532 CellMapShadow
MS(BTLoc
);
1535 buildOrderingMF(BaseOrd
);
1536 buildOrderingBT(BaseOrd
, CellOrd
);
1539 dbgs() << "Cell ordering:\n";
1540 for (RegisterOrdering::iterator I
= CellOrd
.begin(), E
= CellOrd
.end();
1542 unsigned VR
= I
->first
, Pos
= I
->second
;
1543 dbgs() << printReg(VR
, HRI
) << " -> " << Pos
<< "\n";
1547 // Collect candidates for conversion into the insert forms.
1548 MachineBasicBlock
*RootB
= MDT
->getRoot();
1549 OrderedRegisterList
AvailR(CellOrd
);
1551 const char *const TGName
= "hexinsert";
1552 const char *const TGDesc
= "Generate Insert Instructions";
1555 NamedRegionTimer
_T("collection", "collection", TGName
, TGDesc
,
1557 collectInBlock(RootB
, AvailR
);
1558 // Complete the information gathered in IFMap.
1559 computeRemovableRegisters();
1563 dbgs() << "Candidates after collection:\n";
1571 NamedRegionTimer
_T("pruning", "pruning", TGName
, TGDesc
, TimingDetail
);
1576 dbgs() << "Candidates after pruning:\n";
1584 NamedRegionTimer
_T("selection", "selection", TGName
, TGDesc
, TimingDetail
);
1589 dbgs() << "Candidates after selection:\n";
1593 // Filter out vregs beyond the cutoff.
1594 if (VRegIndexCutoff
.getPosition()) {
1595 unsigned Cutoff
= VRegIndexCutoff
;
1597 using IterListType
= SmallVector
<IFMapType::iterator
, 16>;
1600 for (IFMapType::iterator I
= IFMap
.begin(), E
= IFMap
.end(); I
!= E
; ++I
) {
1601 unsigned Idx
= TargetRegisterInfo::virtReg2Index(I
->first
);
1605 for (unsigned i
= 0, n
= Out
.size(); i
< n
; ++i
)
1606 IFMap
.erase(Out
[i
]);
1612 NamedRegionTimer
_T("generation", "generation", TGName
, TGDesc
,
1620 FunctionPass
*llvm::createHexagonGenInsert() {
1621 return new HexagonGenInsert();
1624 //===----------------------------------------------------------------------===//
1625 // Public Constructor Functions
1626 //===----------------------------------------------------------------------===//
1628 INITIALIZE_PASS_BEGIN(HexagonGenInsert
, "hexinsert",
1629 "Hexagon generate \"insert\" instructions", false, false)
1630 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
1631 INITIALIZE_PASS_END(HexagonGenInsert
, "hexinsert",
1632 "Hexagon generate \"insert\" instructions", false, false)