1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines an instruction selector for the Hexagon target.
11 //===----------------------------------------------------------------------===//
14 #include "HexagonISelDAGToDAG.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
26 #define DEBUG_TYPE "hexagon-isel"
30 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden
, cl::init(true),
31 cl::desc("Rebalance address calculation trees to improve "
32 "instruction selection"));
34 // Rebalance only if this allows e.g. combining a GA with an offset or
35 // factoring out a shift.
38 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden
, cl::init(false),
39 cl::desc("Rebalance address tree only if this allows optimizations"));
43 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden
,
44 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
46 static cl::opt
<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden
,
47 cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
49 //===----------------------------------------------------------------------===//
50 // Instruction Selector Implementation
51 //===----------------------------------------------------------------------===//
53 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
54 #include "HexagonGenDAGISel.inc"
56 /// createHexagonISelDag - This pass converts a legalized DAG into a
57 /// Hexagon-specific DAG, ready for instruction scheduling.
60 FunctionPass
*createHexagonISelDag(HexagonTargetMachine
&TM
,
61 CodeGenOpt::Level OptLevel
) {
62 return new HexagonDAGToDAGISel(TM
, OptLevel
);
66 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode
*LD
, const SDLoc
&dl
) {
67 SDValue Chain
= LD
->getChain();
68 SDValue Base
= LD
->getBasePtr();
69 SDValue Offset
= LD
->getOffset();
70 int32_t Inc
= cast
<ConstantSDNode
>(Offset
.getNode())->getSExtValue();
71 EVT LoadedVT
= LD
->getMemoryVT();
74 // Check for zero extended loads. Treat any-extend loads as zero extended
76 ISD::LoadExtType ExtType
= LD
->getExtensionType();
77 bool IsZeroExt
= (ExtType
== ISD::ZEXTLOAD
|| ExtType
== ISD::EXTLOAD
);
78 bool IsValidInc
= HII
->isValidAutoIncImm(LoadedVT
, Inc
);
80 assert(LoadedVT
.isSimple());
81 switch (LoadedVT
.getSimpleVT().SimpleTy
) {
84 Opcode
= IsValidInc
? Hexagon::L2_loadrub_pi
: Hexagon::L2_loadrub_io
;
86 Opcode
= IsValidInc
? Hexagon::L2_loadrb_pi
: Hexagon::L2_loadrb_io
;
90 Opcode
= IsValidInc
? Hexagon::L2_loadruh_pi
: Hexagon::L2_loadruh_io
;
92 Opcode
= IsValidInc
? Hexagon::L2_loadrh_pi
: Hexagon::L2_loadrh_io
;
98 Opcode
= IsValidInc
? Hexagon::L2_loadri_pi
: Hexagon::L2_loadri_io
;
105 Opcode
= IsValidInc
? Hexagon::L2_loadrd_pi
: Hexagon::L2_loadrd_io
;
115 if (isAlignedMemNode(LD
)) {
116 if (LD
->isNonTemporal())
117 Opcode
= IsValidInc
? Hexagon::V6_vL32b_nt_pi
: Hexagon::V6_vL32b_nt_ai
;
119 Opcode
= IsValidInc
? Hexagon::V6_vL32b_pi
: Hexagon::V6_vL32b_ai
;
121 Opcode
= IsValidInc
? Hexagon::V6_vL32Ub_pi
: Hexagon::V6_vL32Ub_ai
;
125 llvm_unreachable("Unexpected memory type in indexed load");
128 SDValue IncV
= CurDAG
->getTargetConstant(Inc
, dl
, MVT::i32
);
129 MachineMemOperand
*MemOp
= LD
->getMemOperand();
131 auto getExt64
= [this,ExtType
] (MachineSDNode
*N
, const SDLoc
&dl
)
133 if (ExtType
== ISD::ZEXTLOAD
|| ExtType
== ISD::EXTLOAD
) {
134 SDValue Zero
= CurDAG
->getTargetConstant(0, dl
, MVT::i32
);
135 return CurDAG
->getMachineNode(Hexagon::A4_combineir
, dl
, MVT::i64
,
136 Zero
, SDValue(N
, 0));
138 if (ExtType
== ISD::SEXTLOAD
)
139 return CurDAG
->getMachineNode(Hexagon::A2_sxtw
, dl
, MVT::i64
,
144 // Loaded value Next address Chain
145 SDValue From
[3] = { SDValue(LD
,0), SDValue(LD
,1), SDValue(LD
,2) };
148 EVT ValueVT
= LD
->getValueType(0);
149 if (ValueVT
== MVT::i64
&& ExtType
!= ISD::NON_EXTLOAD
) {
150 // A load extending to i64 will actually produce i32, which will then
151 // need to be extended to i64.
152 assert(LoadedVT
.getSizeInBits() <= 32);
157 MachineSDNode
*L
= CurDAG
->getMachineNode(Opcode
, dl
, ValueVT
,
158 MVT::i32
, MVT::Other
, Base
,
160 CurDAG
->setNodeMemRefs(L
, {MemOp
});
161 To
[1] = SDValue(L
, 1); // Next address.
162 To
[2] = SDValue(L
, 2); // Chain.
163 // Handle special case for extension to i64.
164 if (LD
->getValueType(0) == MVT::i64
)
166 To
[0] = SDValue(L
, 0); // Loaded (extended) value.
168 SDValue Zero
= CurDAG
->getTargetConstant(0, dl
, MVT::i32
);
169 MachineSDNode
*L
= CurDAG
->getMachineNode(Opcode
, dl
, ValueVT
, MVT::Other
,
171 CurDAG
->setNodeMemRefs(L
, {MemOp
});
172 To
[2] = SDValue(L
, 1); // Chain.
173 MachineSDNode
*A
= CurDAG
->getMachineNode(Hexagon::A2_addi
, dl
, MVT::i32
,
175 To
[1] = SDValue(A
, 0); // Next address.
176 // Handle special case for extension to i64.
177 if (LD
->getValueType(0) == MVT::i64
)
179 To
[0] = SDValue(L
, 0); // Loaded (extended) value.
181 ReplaceUses(From
, To
, 3);
182 CurDAG
->RemoveDeadNode(LD
);
185 MachineSDNode
*HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode
*IntN
) {
186 if (IntN
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
190 unsigned IntNo
= cast
<ConstantSDNode
>(IntN
->getOperand(1))->getZExtValue();
192 static std::map
<unsigned,unsigned> LoadPciMap
= {
193 { Intrinsic::hexagon_circ_ldb
, Hexagon::L2_loadrb_pci
},
194 { Intrinsic::hexagon_circ_ldub
, Hexagon::L2_loadrub_pci
},
195 { Intrinsic::hexagon_circ_ldh
, Hexagon::L2_loadrh_pci
},
196 { Intrinsic::hexagon_circ_lduh
, Hexagon::L2_loadruh_pci
},
197 { Intrinsic::hexagon_circ_ldw
, Hexagon::L2_loadri_pci
},
198 { Intrinsic::hexagon_circ_ldd
, Hexagon::L2_loadrd_pci
},
200 auto FLC
= LoadPciMap
.find(IntNo
);
201 if (FLC
!= LoadPciMap
.end()) {
202 EVT ValTy
= (IntNo
== Intrinsic::hexagon_circ_ldd
) ? MVT::i64
: MVT::i32
;
203 EVT RTys
[] = { ValTy
, MVT::i32
, MVT::Other
};
204 // Operands: { Base, Increment, Modifier, Chain }
205 auto Inc
= cast
<ConstantSDNode
>(IntN
->getOperand(5));
206 SDValue I
= CurDAG
->getTargetConstant(Inc
->getSExtValue(), dl
, MVT::i32
);
207 MachineSDNode
*Res
= CurDAG
->getMachineNode(FLC
->second
, dl
, RTys
,
208 { IntN
->getOperand(2), I
, IntN
->getOperand(4),
209 IntN
->getOperand(0) });
216 SDNode
*HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode
*LoadN
,
218 // The "LoadN" is just a machine load instruction. The intrinsic also
219 // involves storing it. Generate an appropriate store to the location
220 // given in the intrinsic's operand(3).
221 uint64_t F
= HII
->get(LoadN
->getMachineOpcode()).TSFlags
;
222 unsigned SizeBits
= (F
>> HexagonII::MemAccessSizePos
) &
223 HexagonII::MemAccesSizeMask
;
224 unsigned Size
= 1U << (SizeBits
-1);
227 MachinePointerInfo PI
;
229 SDValue Loc
= IntN
->getOperand(3);
232 TS
= CurDAG
->getStore(SDValue(LoadN
, 2), dl
, SDValue(LoadN
, 0), Loc
, PI
,
235 TS
= CurDAG
->getTruncStore(SDValue(LoadN
, 2), dl
, SDValue(LoadN
, 0), Loc
,
236 PI
, MVT::getIntegerVT(Size
* 8), Size
);
240 HandleSDNode
Handle(TS
);
241 SelectStore(TS
.getNode());
242 StoreN
= Handle
.getValue().getNode();
245 // Load's results are { Loaded value, Updated pointer, Chain }
246 ReplaceUses(SDValue(IntN
, 0), SDValue(LoadN
, 1));
247 ReplaceUses(SDValue(IntN
, 1), SDValue(StoreN
, 0));
251 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode
*N
) {
252 // The intrinsics for load circ/brev perform two operations:
253 // 1. Load a value V from the specified location, using the addressing
254 // mode corresponding to the intrinsic.
255 // 2. Store V into a specified location. This location is typically a
256 // local, temporary object.
257 // In many cases, the program using these intrinsics will immediately
258 // load V again from the local object. In those cases, when certain
259 // conditions are met, the last load can be removed.
260 // This function identifies and optimizes this pattern. If the pattern
261 // cannot be optimized, it returns nullptr, which will cause the load
262 // to be selected separately from the intrinsic (which will be handled
263 // in SelectIntrinsicWChain).
265 SDValue Ch
= N
->getOperand(0);
266 SDValue Loc
= N
->getOperand(1);
268 // Assume that the load and the intrinsic are connected directly with a
270 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
271 // t2: i32,ch = load t1:1, Loc, ...
272 SDNode
*C
= Ch
.getNode();
274 if (C
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
277 // The second load can only be eliminated if its extension type matches
278 // that of the load instruction corresponding to the intrinsic. The user
279 // can provide an address of an unsigned variable to store the result of
280 // a sign-extending intrinsic into (or the other way around).
281 ISD::LoadExtType IntExt
;
282 switch (cast
<ConstantSDNode
>(C
->getOperand(1))->getZExtValue()) {
283 case Intrinsic::hexagon_circ_ldub
:
284 case Intrinsic::hexagon_circ_lduh
:
285 IntExt
= ISD::ZEXTLOAD
;
287 case Intrinsic::hexagon_circ_ldw
:
288 case Intrinsic::hexagon_circ_ldd
:
289 IntExt
= ISD::NON_EXTLOAD
;
292 IntExt
= ISD::SEXTLOAD
;
295 if (N
->getExtensionType() != IntExt
)
298 // Make sure the target location for the loaded value in the load intrinsic
299 // is the location from which LD (or N) is loading.
300 if (C
->getNumOperands() < 4 || Loc
.getNode() != C
->getOperand(3).getNode())
303 if (MachineSDNode
*L
= LoadInstrForLoadIntrinsic(C
)) {
304 SDNode
*S
= StoreInstrForLoadIntrinsic(L
, C
);
305 SDValue F
[] = { SDValue(N
,0), SDValue(N
,1), SDValue(C
,0), SDValue(C
,1) };
306 SDValue T
[] = { SDValue(L
,0), SDValue(S
,0), SDValue(L
,1), SDValue(S
,0) };
307 ReplaceUses(F
, T
, array_lengthof(T
));
308 // This transformation will leave the intrinsic dead. If it remains in
309 // the DAG, the selection code will see it again, but without the load,
310 // and it will generate a store that is normally required for it.
311 CurDAG
->RemoveDeadNode(C
);
317 // Convert the bit-reverse load intrinsic to appropriate target instruction.
318 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode
*IntN
) {
319 if (IntN
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
322 const SDLoc
&dl(IntN
);
323 unsigned IntNo
= cast
<ConstantSDNode
>(IntN
->getOperand(1))->getZExtValue();
325 static const std::map
<unsigned, unsigned> LoadBrevMap
= {
326 { Intrinsic::hexagon_L2_loadrb_pbr
, Hexagon::L2_loadrb_pbr
},
327 { Intrinsic::hexagon_L2_loadrub_pbr
, Hexagon::L2_loadrub_pbr
},
328 { Intrinsic::hexagon_L2_loadrh_pbr
, Hexagon::L2_loadrh_pbr
},
329 { Intrinsic::hexagon_L2_loadruh_pbr
, Hexagon::L2_loadruh_pbr
},
330 { Intrinsic::hexagon_L2_loadri_pbr
, Hexagon::L2_loadri_pbr
},
331 { Intrinsic::hexagon_L2_loadrd_pbr
, Hexagon::L2_loadrd_pbr
}
333 auto FLI
= LoadBrevMap
.find(IntNo
);
334 if (FLI
!= LoadBrevMap
.end()) {
336 (IntNo
== Intrinsic::hexagon_L2_loadrd_pbr
) ? MVT::i64
: MVT::i32
;
337 EVT RTys
[] = { ValTy
, MVT::i32
, MVT::Other
};
338 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
340 // Operands of target instruction: { Base, Modifier, Chain }.
341 MachineSDNode
*Res
= CurDAG
->getMachineNode(
342 FLI
->second
, dl
, RTys
,
343 {IntN
->getOperand(2), IntN
->getOperand(3), IntN
->getOperand(0)});
345 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(IntN
)->getMemOperand();
346 CurDAG
->setNodeMemRefs(Res
, {MemOp
});
348 ReplaceUses(SDValue(IntN
, 0), SDValue(Res
, 0));
349 ReplaceUses(SDValue(IntN
, 1), SDValue(Res
, 1));
350 ReplaceUses(SDValue(IntN
, 2), SDValue(Res
, 2));
351 CurDAG
->RemoveDeadNode(IntN
);
357 /// Generate a machine instruction node for the new circlar buffer intrinsics.
358 /// The new versions use a CSx register instead of the K field.
359 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode
*IntN
) {
360 if (IntN
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
364 unsigned IntNo
= cast
<ConstantSDNode
>(IntN
->getOperand(1))->getZExtValue();
365 SmallVector
<SDValue
, 7> Ops
;
367 static std::map
<unsigned,unsigned> LoadNPcMap
= {
368 { Intrinsic::hexagon_L2_loadrub_pci
, Hexagon::PS_loadrub_pci
},
369 { Intrinsic::hexagon_L2_loadrb_pci
, Hexagon::PS_loadrb_pci
},
370 { Intrinsic::hexagon_L2_loadruh_pci
, Hexagon::PS_loadruh_pci
},
371 { Intrinsic::hexagon_L2_loadrh_pci
, Hexagon::PS_loadrh_pci
},
372 { Intrinsic::hexagon_L2_loadri_pci
, Hexagon::PS_loadri_pci
},
373 { Intrinsic::hexagon_L2_loadrd_pci
, Hexagon::PS_loadrd_pci
},
374 { Intrinsic::hexagon_L2_loadrub_pcr
, Hexagon::PS_loadrub_pcr
},
375 { Intrinsic::hexagon_L2_loadrb_pcr
, Hexagon::PS_loadrb_pcr
},
376 { Intrinsic::hexagon_L2_loadruh_pcr
, Hexagon::PS_loadruh_pcr
},
377 { Intrinsic::hexagon_L2_loadrh_pcr
, Hexagon::PS_loadrh_pcr
},
378 { Intrinsic::hexagon_L2_loadri_pcr
, Hexagon::PS_loadri_pcr
},
379 { Intrinsic::hexagon_L2_loadrd_pcr
, Hexagon::PS_loadrd_pcr
}
381 auto FLI
= LoadNPcMap
.find (IntNo
);
382 if (FLI
!= LoadNPcMap
.end()) {
383 EVT ValTy
= MVT::i32
;
384 if (IntNo
== Intrinsic::hexagon_L2_loadrd_pci
||
385 IntNo
== Intrinsic::hexagon_L2_loadrd_pcr
)
387 EVT RTys
[] = { ValTy
, MVT::i32
, MVT::Other
};
388 // Handle load.*_pci case which has 6 operands.
389 if (IntN
->getNumOperands() == 6) {
390 auto Inc
= cast
<ConstantSDNode
>(IntN
->getOperand(3));
391 SDValue I
= CurDAG
->getTargetConstant(Inc
->getSExtValue(), DL
, MVT::i32
);
392 // Operands: { Base, Increment, Modifier, Start, Chain }.
393 Ops
= { IntN
->getOperand(2), I
, IntN
->getOperand(4), IntN
->getOperand(5),
394 IntN
->getOperand(0) };
396 // Handle load.*_pcr case which has 5 operands.
397 // Operands: { Base, Modifier, Start, Chain }.
398 Ops
= { IntN
->getOperand(2), IntN
->getOperand(3), IntN
->getOperand(4),
399 IntN
->getOperand(0) };
400 MachineSDNode
*Res
= CurDAG
->getMachineNode(FLI
->second
, DL
, RTys
, Ops
);
401 ReplaceUses(SDValue(IntN
, 0), SDValue(Res
, 0));
402 ReplaceUses(SDValue(IntN
, 1), SDValue(Res
, 1));
403 ReplaceUses(SDValue(IntN
, 2), SDValue(Res
, 2));
404 CurDAG
->RemoveDeadNode(IntN
);
408 static std::map
<unsigned,unsigned> StoreNPcMap
= {
409 { Intrinsic::hexagon_S2_storerb_pci
, Hexagon::PS_storerb_pci
},
410 { Intrinsic::hexagon_S2_storerh_pci
, Hexagon::PS_storerh_pci
},
411 { Intrinsic::hexagon_S2_storerf_pci
, Hexagon::PS_storerf_pci
},
412 { Intrinsic::hexagon_S2_storeri_pci
, Hexagon::PS_storeri_pci
},
413 { Intrinsic::hexagon_S2_storerd_pci
, Hexagon::PS_storerd_pci
},
414 { Intrinsic::hexagon_S2_storerb_pcr
, Hexagon::PS_storerb_pcr
},
415 { Intrinsic::hexagon_S2_storerh_pcr
, Hexagon::PS_storerh_pcr
},
416 { Intrinsic::hexagon_S2_storerf_pcr
, Hexagon::PS_storerf_pcr
},
417 { Intrinsic::hexagon_S2_storeri_pcr
, Hexagon::PS_storeri_pcr
},
418 { Intrinsic::hexagon_S2_storerd_pcr
, Hexagon::PS_storerd_pcr
}
420 auto FSI
= StoreNPcMap
.find (IntNo
);
421 if (FSI
!= StoreNPcMap
.end()) {
422 EVT RTys
[] = { MVT::i32
, MVT::Other
};
423 // Handle store.*_pci case which has 7 operands.
424 if (IntN
->getNumOperands() == 7) {
425 auto Inc
= cast
<ConstantSDNode
>(IntN
->getOperand(3));
426 SDValue I
= CurDAG
->getTargetConstant(Inc
->getSExtValue(), DL
, MVT::i32
);
427 // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
428 Ops
= { IntN
->getOperand(2), I
, IntN
->getOperand(4), IntN
->getOperand(5),
429 IntN
->getOperand(6), IntN
->getOperand(0) };
431 // Handle store.*_pcr case which has 6 operands.
432 // Operands: { Base, Modifier, Value, Start, Chain }.
433 Ops
= { IntN
->getOperand(2), IntN
->getOperand(3), IntN
->getOperand(4),
434 IntN
->getOperand(5), IntN
->getOperand(0) };
435 MachineSDNode
*Res
= CurDAG
->getMachineNode(FSI
->second
, DL
, RTys
, Ops
);
436 ReplaceUses(SDValue(IntN
, 0), SDValue(Res
, 0));
437 ReplaceUses(SDValue(IntN
, 1), SDValue(Res
, 1));
438 CurDAG
->RemoveDeadNode(IntN
);
445 void HexagonDAGToDAGISel::SelectLoad(SDNode
*N
) {
447 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
449 // Handle indexed loads.
450 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
451 if (AM
!= ISD::UNINDEXED
) {
452 SelectIndexedLoad(LD
, dl
);
456 // Handle patterns using circ/brev load intrinsics.
457 if (tryLoadOfLoadIntrinsic(LD
))
463 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode
*ST
, const SDLoc
&dl
) {
464 SDValue Chain
= ST
->getChain();
465 SDValue Base
= ST
->getBasePtr();
466 SDValue Offset
= ST
->getOffset();
467 SDValue Value
= ST
->getValue();
468 // Get the constant value.
469 int32_t Inc
= cast
<ConstantSDNode
>(Offset
.getNode())->getSExtValue();
470 EVT StoredVT
= ST
->getMemoryVT();
471 EVT ValueVT
= Value
.getValueType();
473 bool IsValidInc
= HII
->isValidAutoIncImm(StoredVT
, Inc
);
476 assert(StoredVT
.isSimple());
477 switch (StoredVT
.getSimpleVT().SimpleTy
) {
479 Opcode
= IsValidInc
? Hexagon::S2_storerb_pi
: Hexagon::S2_storerb_io
;
482 Opcode
= IsValidInc
? Hexagon::S2_storerh_pi
: Hexagon::S2_storerh_io
;
488 Opcode
= IsValidInc
? Hexagon::S2_storeri_pi
: Hexagon::S2_storeri_io
;
495 Opcode
= IsValidInc
? Hexagon::S2_storerd_pi
: Hexagon::S2_storerd_io
;
505 if (isAlignedMemNode(ST
)) {
506 if (ST
->isNonTemporal())
507 Opcode
= IsValidInc
? Hexagon::V6_vS32b_nt_pi
: Hexagon::V6_vS32b_nt_ai
;
509 Opcode
= IsValidInc
? Hexagon::V6_vS32b_pi
: Hexagon::V6_vS32b_ai
;
511 Opcode
= IsValidInc
? Hexagon::V6_vS32Ub_pi
: Hexagon::V6_vS32Ub_ai
;
515 llvm_unreachable("Unexpected memory type in indexed store");
518 if (ST
->isTruncatingStore() && ValueVT
.getSizeInBits() == 64) {
519 assert(StoredVT
.getSizeInBits() < 64 && "Not a truncating store");
520 Value
= CurDAG
->getTargetExtractSubreg(Hexagon::isub_lo
,
521 dl
, MVT::i32
, Value
);
524 SDValue IncV
= CurDAG
->getTargetConstant(Inc
, dl
, MVT::i32
);
525 MachineMemOperand
*MemOp
= ST
->getMemOperand();
527 // Next address Chain
528 SDValue From
[2] = { SDValue(ST
,0), SDValue(ST
,1) };
532 // Build post increment store.
533 SDValue Ops
[] = { Base
, IncV
, Value
, Chain
};
534 MachineSDNode
*S
= CurDAG
->getMachineNode(Opcode
, dl
, MVT::i32
, MVT::Other
,
536 CurDAG
->setNodeMemRefs(S
, {MemOp
});
537 To
[0] = SDValue(S
, 0);
538 To
[1] = SDValue(S
, 1);
540 SDValue Zero
= CurDAG
->getTargetConstant(0, dl
, MVT::i32
);
541 SDValue Ops
[] = { Base
, Zero
, Value
, Chain
};
542 MachineSDNode
*S
= CurDAG
->getMachineNode(Opcode
, dl
, MVT::Other
, Ops
);
543 CurDAG
->setNodeMemRefs(S
, {MemOp
});
544 To
[1] = SDValue(S
, 0);
545 MachineSDNode
*A
= CurDAG
->getMachineNode(Hexagon::A2_addi
, dl
, MVT::i32
,
547 To
[0] = SDValue(A
, 0);
550 ReplaceUses(From
, To
, 2);
551 CurDAG
->RemoveDeadNode(ST
);
554 void HexagonDAGToDAGISel::SelectStore(SDNode
*N
) {
556 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
558 // Handle indexed stores.
559 ISD::MemIndexedMode AM
= ST
->getAddressingMode();
560 if (AM
!= ISD::UNINDEXED
) {
561 SelectIndexedStore(ST
, dl
);
568 void HexagonDAGToDAGISel::SelectSHL(SDNode
*N
) {
570 SDValue Shl_0
= N
->getOperand(0);
571 SDValue Shl_1
= N
->getOperand(1);
573 auto Default
= [this,N
] () -> void { SelectCode(N
); };
575 if (N
->getValueType(0) != MVT::i32
|| Shl_1
.getOpcode() != ISD::Constant
)
579 int32_t ShlConst
= cast
<ConstantSDNode
>(Shl_1
)->getSExtValue();
581 if (Shl_0
.getOpcode() == ISD::MUL
) {
582 SDValue Mul_0
= Shl_0
.getOperand(0); // Val
583 SDValue Mul_1
= Shl_0
.getOperand(1); // Const
584 // RHS of mul is const.
585 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Mul_1
)) {
586 int32_t ValConst
= C
->getSExtValue() << ShlConst
;
587 if (isInt
<9>(ValConst
)) {
588 SDValue Val
= CurDAG
->getTargetConstant(ValConst
, dl
, MVT::i32
);
589 SDNode
*Result
= CurDAG
->getMachineNode(Hexagon::M2_mpysmi
, dl
,
590 MVT::i32
, Mul_0
, Val
);
591 ReplaceNode(N
, Result
);
598 if (Shl_0
.getOpcode() == ISD::SUB
) {
599 SDValue Sub_0
= Shl_0
.getOperand(0); // Const 0
600 SDValue Sub_1
= Shl_0
.getOperand(1); // Val
601 if (ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(Sub_0
)) {
602 if (C1
->getSExtValue() != 0 || Sub_1
.getOpcode() != ISD::SHL
)
604 SDValue Shl2_0
= Sub_1
.getOperand(0); // Val
605 SDValue Shl2_1
= Sub_1
.getOperand(1); // Const
606 if (ConstantSDNode
*C2
= dyn_cast
<ConstantSDNode
>(Shl2_1
)) {
607 int32_t ValConst
= 1 << (ShlConst
+ C2
->getSExtValue());
608 if (isInt
<9>(-ValConst
)) {
609 SDValue Val
= CurDAG
->getTargetConstant(-ValConst
, dl
, MVT::i32
);
610 SDNode
*Result
= CurDAG
->getMachineNode(Hexagon::M2_mpysmi
, dl
,
611 MVT::i32
, Shl2_0
, Val
);
612 ReplaceNode(N
, Result
);
623 // Handling intrinsics for circular load and bitreverse load.
625 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode
*N
) {
626 if (MachineSDNode
*L
= LoadInstrForLoadIntrinsic(N
)) {
627 StoreInstrForLoadIntrinsic(L
, N
);
628 CurDAG
->RemoveDeadNode(N
);
632 // Handle bit-reverse load intrinsics.
633 if (SelectBrevLdIntrinsic(N
))
636 if (SelectNewCircIntrinsic(N
))
639 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
640 if (IntNo
== Intrinsic::hexagon_V6_vgathermw
||
641 IntNo
== Intrinsic::hexagon_V6_vgathermw_128B
||
642 IntNo
== Intrinsic::hexagon_V6_vgathermh
||
643 IntNo
== Intrinsic::hexagon_V6_vgathermh_128B
||
644 IntNo
== Intrinsic::hexagon_V6_vgathermhw
||
645 IntNo
== Intrinsic::hexagon_V6_vgathermhw_128B
) {
649 if (IntNo
== Intrinsic::hexagon_V6_vgathermwq
||
650 IntNo
== Intrinsic::hexagon_V6_vgathermwq_128B
||
651 IntNo
== Intrinsic::hexagon_V6_vgathermhq
||
652 IntNo
== Intrinsic::hexagon_V6_vgathermhq_128B
||
653 IntNo
== Intrinsic::hexagon_V6_vgathermhwq
||
654 IntNo
== Intrinsic::hexagon_V6_vgathermhwq_128B
) {
655 SelectV65GatherPred(N
);
662 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode
*N
) {
663 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
666 case Intrinsic::hexagon_S2_vsplatrb
:
669 case Intrinsic::hexagon_S2_vsplatrh
:
672 case Intrinsic::hexagon_V6_vaddcarry
:
673 case Intrinsic::hexagon_V6_vaddcarry_128B
:
674 case Intrinsic::hexagon_V6_vsubcarry
:
675 case Intrinsic::hexagon_V6_vsubcarry_128B
:
676 SelectHVXDualOutput(N
);
683 SDValue V
= N
->getOperand(1);
685 if (keepsLowBits(V
, Bits
, U
)) {
686 SDValue R
= CurDAG
->getNode(N
->getOpcode(), SDLoc(N
), N
->getValueType(0),
687 N
->getOperand(0), U
);
688 ReplaceNode(N
, R
.getNode());
689 SelectCode(R
.getNode());
696 // Map floating point constant values.
698 void HexagonDAGToDAGISel::SelectConstantFP(SDNode
*N
) {
700 ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
);
701 APInt A
= CN
->getValueAPF().bitcastToAPInt();
702 if (N
->getValueType(0) == MVT::f32
) {
703 SDValue V
= CurDAG
->getTargetConstant(A
.getZExtValue(), dl
, MVT::i32
);
704 ReplaceNode(N
, CurDAG
->getMachineNode(Hexagon::A2_tfrsi
, dl
, MVT::f32
, V
));
707 if (N
->getValueType(0) == MVT::f64
) {
708 SDValue V
= CurDAG
->getTargetConstant(A
.getZExtValue(), dl
, MVT::i64
);
709 ReplaceNode(N
, CurDAG
->getMachineNode(Hexagon::CONST64
, dl
, MVT::f64
, V
));
717 // Map boolean values.
719 void HexagonDAGToDAGISel::SelectConstant(SDNode
*N
) {
720 if (N
->getValueType(0) == MVT::i1
) {
721 assert(!(cast
<ConstantSDNode
>(N
)->getZExtValue() >> 1));
722 unsigned Opc
= (cast
<ConstantSDNode
>(N
)->getSExtValue() != 0)
725 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, SDLoc(N
), MVT::i1
));
732 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode
*N
) {
733 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
734 const HexagonFrameLowering
*HFI
= HST
->getFrameLowering();
735 int FX
= cast
<FrameIndexSDNode
>(N
)->getIndex();
736 unsigned StkA
= HFI
->getStackAlignment();
737 unsigned MaxA
= MFI
.getMaxAlignment();
738 SDValue FI
= CurDAG
->getTargetFrameIndex(FX
, MVT::i32
);
740 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
744 // - the object is fixed, or
745 // - there are no objects with higher-than-default alignment, or
746 // - there are no dynamically allocated objects.
747 // Otherwise, use PS_fia.
748 if (FX
< 0 || MaxA
<= StkA
|| !MFI
.hasVarSizedObjects()) {
749 R
= CurDAG
->getMachineNode(Hexagon::PS_fi
, DL
, MVT::i32
, FI
, Zero
);
751 auto &HMFI
= *MF
->getInfo
<HexagonMachineFunctionInfo
>();
752 unsigned AR
= HMFI
.getStackAlignBaseVReg();
753 SDValue CH
= CurDAG
->getEntryNode();
754 SDValue Ops
[] = { CurDAG
->getCopyFromReg(CH
, DL
, AR
, MVT::i32
), FI
, Zero
};
755 R
= CurDAG
->getMachineNode(Hexagon::PS_fia
, DL
, MVT::i32
, Ops
);
761 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode
*N
) {
762 unsigned OpcCarry
= N
->getOpcode() == HexagonISD::ADDC
? Hexagon::A4_addp_c
763 : Hexagon::A4_subp_c
;
764 SDNode
*C
= CurDAG
->getMachineNode(OpcCarry
, SDLoc(N
), N
->getVTList(),
765 { N
->getOperand(0), N
->getOperand(1),
770 void HexagonDAGToDAGISel::SelectVAlign(SDNode
*N
) {
771 MVT ResTy
= N
->getValueType(0).getSimpleVT();
772 if (HST
->isHVXVectorType(ResTy
, true))
773 return SelectHvxVAlign(N
);
776 unsigned VecLen
= ResTy
.getSizeInBits();
779 CurDAG
->getTargetConstant(Hexagon::DoubleRegsRegClassID
, dl
, MVT::i32
),
781 CurDAG
->getTargetConstant(Hexagon::isub_hi
, dl
, MVT::i32
),
783 CurDAG
->getTargetConstant(Hexagon::isub_lo
, dl
, MVT::i32
)
785 SDNode
*R
= CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
,
788 // Shift right by "(Addr & 0x3) * 8" bytes.
789 SDValue M0
= CurDAG
->getTargetConstant(0x18, dl
, MVT::i32
);
790 SDValue M1
= CurDAG
->getTargetConstant(0x03, dl
, MVT::i32
);
791 SDNode
*C
= CurDAG
->getMachineNode(Hexagon::S4_andi_asl_ri
, dl
, MVT::i32
,
792 M0
, N
->getOperand(2), M1
);
793 SDNode
*S
= CurDAG
->getMachineNode(Hexagon::S2_lsr_r_p
, dl
, MVT::i64
,
794 SDValue(R
, 0), SDValue(C
, 0));
795 SDValue E
= CurDAG
->getTargetExtractSubreg(Hexagon::isub_lo
, dl
, ResTy
,
797 ReplaceNode(N
, E
.getNode());
799 assert(VecLen
== 64);
800 SDNode
*Pu
= CurDAG
->getMachineNode(Hexagon::C2_tfrrp
, dl
, MVT::v8i1
,
802 SDNode
*VA
= CurDAG
->getMachineNode(Hexagon::S2_valignrb
, dl
, ResTy
,
803 N
->getOperand(0), N
->getOperand(1),
809 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode
*N
) {
811 SDValue A
= N
->getOperand(1);
812 int Mask
= -cast
<ConstantSDNode
>(A
.getNode())->getSExtValue();
813 assert(isPowerOf2_32(-Mask
));
815 SDValue M
= CurDAG
->getTargetConstant(Mask
, dl
, MVT::i32
);
816 SDNode
*AA
= CurDAG
->getMachineNode(Hexagon::A2_andir
, dl
, MVT::i32
,
817 N
->getOperand(0), M
);
821 // Handle these nodes here to avoid having to write patterns for all
822 // combinations of input/output types. In all cases, the resulting
823 // instruction is the same.
824 void HexagonDAGToDAGISel::SelectTypecast(SDNode
*N
) {
825 SDValue Op
= N
->getOperand(0);
826 MVT OpTy
= Op
.getValueType().getSimpleVT();
827 SDNode
*T
= CurDAG
->MorphNodeTo(N
, N
->getOpcode(),
828 CurDAG
->getVTList(OpTy
), {Op
});
829 ReplaceNode(T
, Op
.getNode());
832 void HexagonDAGToDAGISel::SelectP2D(SDNode
*N
) {
833 MVT ResTy
= N
->getValueType(0).getSimpleVT();
834 SDNode
*T
= CurDAG
->getMachineNode(Hexagon::C2_mask
, SDLoc(N
), ResTy
,
839 void HexagonDAGToDAGISel::SelectD2P(SDNode
*N
) {
841 MVT ResTy
= N
->getValueType(0).getSimpleVT();
842 SDValue Zero
= CurDAG
->getTargetConstant(0, dl
, MVT::i32
);
843 SDNode
*T
= CurDAG
->getMachineNode(Hexagon::A4_vcmpbgtui
, dl
, ResTy
,
844 N
->getOperand(0), Zero
);
848 void HexagonDAGToDAGISel::SelectV2Q(SDNode
*N
) {
850 MVT ResTy
= N
->getValueType(0).getSimpleVT();
852 SDValue C
= CurDAG
->getTargetConstant(-1, dl
, MVT::i32
);
853 SDNode
*R
= CurDAG
->getMachineNode(Hexagon::A2_tfrsi
, dl
, MVT::i32
, C
);
854 SDNode
*T
= CurDAG
->getMachineNode(Hexagon::V6_vandvrt
, dl
, ResTy
,
855 N
->getOperand(0), SDValue(R
,0));
859 void HexagonDAGToDAGISel::SelectQ2V(SDNode
*N
) {
861 MVT ResTy
= N
->getValueType(0).getSimpleVT();
863 SDValue C
= CurDAG
->getTargetConstant(-1, dl
, MVT::i32
);
864 SDNode
*R
= CurDAG
->getMachineNode(Hexagon::A2_tfrsi
, dl
, MVT::i32
, C
);
865 SDNode
*T
= CurDAG
->getMachineNode(Hexagon::V6_vandqrt
, dl
, ResTy
,
866 N
->getOperand(0), SDValue(R
,0));
870 void HexagonDAGToDAGISel::Select(SDNode
*N
) {
871 if (N
->isMachineOpcode())
872 return N
->setNodeId(-1); // Already selected.
874 switch (N
->getOpcode()) {
875 case ISD::Constant
: return SelectConstant(N
);
876 case ISD::ConstantFP
: return SelectConstantFP(N
);
877 case ISD::FrameIndex
: return SelectFrameIndex(N
);
878 case ISD::SHL
: return SelectSHL(N
);
879 case ISD::LOAD
: return SelectLoad(N
);
880 case ISD::STORE
: return SelectStore(N
);
881 case ISD::INTRINSIC_W_CHAIN
: return SelectIntrinsicWChain(N
);
882 case ISD::INTRINSIC_WO_CHAIN
: return SelectIntrinsicWOChain(N
);
884 case HexagonISD::ADDC
:
885 case HexagonISD::SUBC
: return SelectAddSubCarry(N
);
886 case HexagonISD::VALIGN
: return SelectVAlign(N
);
887 case HexagonISD::VALIGNADDR
: return SelectVAlignAddr(N
);
888 case HexagonISD::TYPECAST
: return SelectTypecast(N
);
889 case HexagonISD::P2D
: return SelectP2D(N
);
890 case HexagonISD::D2P
: return SelectD2P(N
);
891 case HexagonISD::Q2V
: return SelectQ2V(N
);
892 case HexagonISD::V2Q
: return SelectV2Q(N
);
895 if (HST
->useHVXOps()) {
896 switch (N
->getOpcode()) {
897 case ISD::VECTOR_SHUFFLE
: return SelectHvxShuffle(N
);
898 case HexagonISD::VROR
: return SelectHvxRor(N
);
905 bool HexagonDAGToDAGISel::
906 SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
907 std::vector
<SDValue
> &OutOps
) {
908 SDValue Inp
= Op
, Res
;
910 switch (ConstraintID
) {
913 case InlineAsm::Constraint_i
:
914 case InlineAsm::Constraint_o
: // Offsetable.
915 case InlineAsm::Constraint_v
: // Not offsetable.
916 case InlineAsm::Constraint_m
: // Memory.
917 if (SelectAddrFI(Inp
, Res
))
918 OutOps
.push_back(Res
);
920 OutOps
.push_back(Inp
);
924 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
929 static bool isMemOPCandidate(SDNode
*I
, SDNode
*U
) {
930 // I is an operand of U. Check if U is an arithmetic (binary) operation
931 // usable in a memop, where the other operand is a loaded value, and the
932 // result of U is stored in the same location.
936 unsigned Opc
= U
->getOpcode();
947 SDValue S0
= U
->getOperand(0);
948 SDValue S1
= U
->getOperand(1);
949 SDValue SY
= (S0
.getNode() == I
) ? S1
: S0
;
951 SDNode
*UUse
= *U
->use_begin();
952 if (UUse
->getNumValues() != 1)
955 // Check if one of the inputs to U is a load instruction and the output
956 // is used by a store instruction. If so and they also have the same
957 // base pointer, then don't preoprocess this node sequence as it
958 // can be matched to a memop.
959 SDNode
*SYNode
= SY
.getNode();
960 if (UUse
->getOpcode() == ISD::STORE
&& SYNode
->getOpcode() == ISD::LOAD
) {
961 SDValue LDBasePtr
= cast
<MemSDNode
>(SYNode
)->getBasePtr();
962 SDValue STBasePtr
= cast
<MemSDNode
>(UUse
)->getBasePtr();
963 if (LDBasePtr
== STBasePtr
)
970 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
971 // (or (select c 0 y) z) -> (select c z (or y z))
972 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector
<SDNode
*> &&Nodes
) {
973 SelectionDAG
&DAG
= *CurDAG
;
975 for (auto I
: Nodes
) {
976 if (I
->getOpcode() != ISD::OR
)
979 auto IsZero
= [] (const SDValue
&V
) -> bool {
980 if (ConstantSDNode
*SC
= dyn_cast
<ConstantSDNode
>(V
.getNode()))
981 return SC
->isNullValue();
984 auto IsSelect0
= [IsZero
] (const SDValue
&Op
) -> bool {
985 if (Op
.getOpcode() != ISD::SELECT
)
987 return IsZero(Op
.getOperand(1)) || IsZero(Op
.getOperand(2));
990 SDValue N0
= I
->getOperand(0), N1
= I
->getOperand(1);
991 EVT VT
= I
->getValueType(0);
992 bool SelN0
= IsSelect0(N0
);
993 SDValue SOp
= SelN0
? N0
: N1
;
994 SDValue VOp
= SelN0
? N1
: N0
;
996 if (SOp
.getOpcode() == ISD::SELECT
&& SOp
.getNode()->hasOneUse()) {
997 SDValue SC
= SOp
.getOperand(0);
998 SDValue SX
= SOp
.getOperand(1);
999 SDValue SY
= SOp
.getOperand(2);
1002 SDValue NewOr
= DAG
.getNode(ISD::OR
, DLS
, VT
, SX
, VOp
);
1003 SDValue NewSel
= DAG
.getNode(ISD::SELECT
, DLS
, VT
, SC
, NewOr
, VOp
);
1004 DAG
.ReplaceAllUsesWith(I
, NewSel
.getNode());
1005 } else if (IsZero(SX
)) {
1006 SDValue NewOr
= DAG
.getNode(ISD::OR
, DLS
, VT
, SY
, VOp
);
1007 SDValue NewSel
= DAG
.getNode(ISD::SELECT
, DLS
, VT
, SC
, VOp
, NewOr
);
1008 DAG
.ReplaceAllUsesWith(I
, NewSel
.getNode());
1014 // Transform: (store ch val (add x (add (shl y c) e)))
1015 // to: (store ch val (add x (shl (add y d) c))),
1016 // where e = (shl d c) for some integer d.
1017 // The purpose of this is to enable generation of loads/stores with
1018 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1019 // value c must be 0, 1 or 2.
1020 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector
<SDNode
*> &&Nodes
) {
1021 SelectionDAG
&DAG
= *CurDAG
;
1023 for (auto I
: Nodes
) {
1024 if (I
->getOpcode() != ISD::STORE
)
1027 // I matched: (store ch val Off)
1028 SDValue Off
= I
->getOperand(2);
1029 // Off needs to match: (add x (add (shl y c) (shl d c))))
1030 if (Off
.getOpcode() != ISD::ADD
)
1032 // Off matched: (add x T0)
1033 SDValue T0
= Off
.getOperand(1);
1034 // T0 needs to match: (add T1 T2):
1035 if (T0
.getOpcode() != ISD::ADD
)
1037 // T0 matched: (add T1 T2)
1038 SDValue T1
= T0
.getOperand(0);
1039 SDValue T2
= T0
.getOperand(1);
1040 // T1 needs to match: (shl y c)
1041 if (T1
.getOpcode() != ISD::SHL
)
1043 SDValue C
= T1
.getOperand(1);
1044 ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(C
.getNode());
1047 unsigned CV
= CN
->getZExtValue();
1050 // T2 needs to match e, where e = (shl d c) for some d.
1051 ConstantSDNode
*EN
= dyn_cast
<ConstantSDNode
>(T2
.getNode());
1054 unsigned EV
= EN
->getZExtValue();
1055 if (EV
% (1 << CV
) != 0)
1057 unsigned DV
= EV
/ (1 << CV
);
1059 // Replace T0 with: (shl (add y d) c)
1060 SDLoc DL
= SDLoc(I
);
1061 EVT VT
= T0
.getValueType();
1062 SDValue D
= DAG
.getConstant(DV
, DL
, VT
);
1063 // NewAdd = (add y d)
1064 SDValue NewAdd
= DAG
.getNode(ISD::ADD
, DL
, VT
, T1
.getOperand(0), D
);
1065 // NewShl = (shl NewAdd c)
1066 SDValue NewShl
= DAG
.getNode(ISD::SHL
, DL
, VT
, NewAdd
, C
);
1067 ReplaceNode(T0
.getNode(), NewShl
.getNode());
1071 // Transform: (load ch (add x (and (srl y c) Mask)))
1072 // to: (load ch (add x (shl (srl y d) d-c)))
1074 // Mask = 00..0 111..1 0.0
1075 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1077 // +-------------- at most c 0s
1078 // Motivating example:
1079 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1080 // to (add x (and (srl y 3) 1FFFFFFC))
1081 // which results in a constant-extended and(##...,lsr). This transformation
1082 // undoes this simplification for cases where the shl can be folded into
1083 // an addressing mode.
1084 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector
<SDNode
*> &&Nodes
) {
1085 SelectionDAG
&DAG
= *CurDAG
;
1087 for (SDNode
*N
: Nodes
) {
1088 unsigned Opc
= N
->getOpcode();
1089 if (Opc
!= ISD::LOAD
&& Opc
!= ISD::STORE
)
1091 SDValue Addr
= Opc
== ISD::LOAD
? N
->getOperand(1) : N
->getOperand(2);
1092 // Addr must match: (add x T0)
1093 if (Addr
.getOpcode() != ISD::ADD
)
1095 SDValue T0
= Addr
.getOperand(1);
1096 // T0 must match: (and T1 Mask)
1097 if (T0
.getOpcode() != ISD::AND
)
1102 // Check the first operand. It must be: (srl y c).
1103 SDValue S
= T0
.getOperand(0);
1104 if (S
.getOpcode() != ISD::SRL
)
1106 ConstantSDNode
*SN
= dyn_cast
<ConstantSDNode
>(S
.getOperand(1).getNode());
1109 if (SN
->getAPIntValue().getBitWidth() != 32)
1111 uint32_t CV
= SN
->getZExtValue();
1113 // Check the second operand: the supposed mask.
1114 ConstantSDNode
*MN
= dyn_cast
<ConstantSDNode
>(T0
.getOperand(1).getNode());
1117 if (MN
->getAPIntValue().getBitWidth() != 32)
1119 uint32_t Mask
= MN
->getZExtValue();
1120 // Examine the mask.
1121 uint32_t TZ
= countTrailingZeros(Mask
);
1122 uint32_t M1
= countTrailingOnes(Mask
>> TZ
);
1123 uint32_t LZ
= countLeadingZeros(Mask
);
1124 // Trailing zeros + middle ones + leading zeros must equal the width.
1125 if (TZ
+ M1
+ LZ
!= 32)
1127 // The number of trailing zeros will be encoded in the addressing mode.
1130 // The number of leading zeros must be at most c.
1135 SDValue Y
= S
.getOperand(0);
1136 EVT VT
= Addr
.getValueType();
1138 // TZ = D-C, so D = TZ+C.
1139 SDValue D
= DAG
.getConstant(TZ
+CV
, dl
, VT
);
1140 SDValue DC
= DAG
.getConstant(TZ
, dl
, VT
);
1141 SDValue NewSrl
= DAG
.getNode(ISD::SRL
, dl
, VT
, Y
, D
);
1142 SDValue NewShl
= DAG
.getNode(ISD::SHL
, dl
, VT
, NewSrl
, DC
);
1143 ReplaceNode(T0
.getNode(), NewShl
.getNode());
1147 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1149 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector
<SDNode
*> &&Nodes
) {
1150 SelectionDAG
&DAG
= *CurDAG
;
1152 for (SDNode
*N
: Nodes
) {
1153 unsigned Opc
= N
->getOpcode();
1154 if (Opc
!= ISD::ZERO_EXTEND
)
1156 SDValue OpI1
= N
->getOperand(0);
1157 EVT OpVT
= OpI1
.getValueType();
1158 if (!OpVT
.isSimple() || OpVT
.getSimpleVT() != MVT::i1
)
1160 for (auto I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
1162 if (U
->getNumValues() != 1)
1164 EVT UVT
= U
->getValueType(0);
1165 if (!UVT
.isSimple() || !UVT
.isInteger() || UVT
.getSimpleVT() == MVT::i1
)
1167 if (isMemOPCandidate(N
, U
))
1170 // Potentially simplifiable operation.
1171 unsigned I1N
= I
.getOperandNo();
1172 SmallVector
<SDValue
,2> Ops(U
->getNumOperands());
1173 for (unsigned i
= 0, n
= U
->getNumOperands(); i
!= n
; ++i
)
1174 Ops
[i
] = U
->getOperand(i
);
1175 EVT BVT
= Ops
[I1N
].getValueType();
1178 SDValue C0
= DAG
.getConstant(0, dl
, BVT
);
1179 SDValue C1
= DAG
.getConstant(1, dl
, BVT
);
1182 if (isa
<MachineSDNode
>(U
)) {
1183 unsigned UseOpc
= U
->getMachineOpcode();
1185 If0
= SDValue(DAG
.getMachineNode(UseOpc
, dl
, UVT
, Ops
), 0);
1187 If1
= SDValue(DAG
.getMachineNode(UseOpc
, dl
, UVT
, Ops
), 0);
1189 unsigned UseOpc
= U
->getOpcode();
1191 If0
= DAG
.getNode(UseOpc
, dl
, UVT
, Ops
);
1193 If1
= DAG
.getNode(UseOpc
, dl
, UVT
, Ops
);
1195 SDValue Sel
= DAG
.getNode(ISD::SELECT
, dl
, UVT
, OpI1
, If1
, If0
);
1196 DAG
.ReplaceAllUsesWith(U
, Sel
.getNode());
1201 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1202 // Repack all nodes before calling each preprocessing function,
1203 // because each of them can modify the set of nodes.
1204 auto getNodes
= [this] () -> std::vector
<SDNode
*> {
1205 std::vector
<SDNode
*> T
;
1206 T
.reserve(CurDAG
->allnodes_size());
1207 for (SDNode
&N
: CurDAG
->allnodes())
1212 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
1213 // (or (select c 0 y) z) -> (select c z (or y z))
1214 ppSimplifyOrSelect0(getNodes());
1216 // Transform: (store ch val (add x (add (shl y c) e)))
1217 // to: (store ch val (add x (shl (add y d) c))),
1218 // where e = (shl d c) for some integer d.
1219 // The purpose of this is to enable generation of loads/stores with
1220 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1221 // value c must be 0, 1 or 2.
1222 ppAddrReorderAddShl(getNodes());
1224 // Transform: (load ch (add x (and (srl y c) Mask)))
1225 // to: (load ch (add x (shl (srl y d) d-c)))
1227 // Mask = 00..0 111..1 0.0
1228 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1230 // +-------------- at most c 0s
1231 // Motivating example:
1232 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1233 // to (add x (and (srl y 3) 1FFFFFFC))
1234 // which results in a constant-extended and(##...,lsr). This transformation
1235 // undoes this simplification for cases where the shl can be folded into
1236 // an addressing mode.
1237 ppAddrRewriteAndSrl(getNodes());
1239 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1241 ppHoistZextI1(getNodes());
1243 DEBUG_WITH_TYPE("isel", {
1244 dbgs() << "Preprocessed (Hexagon) selection DAG:";
1248 if (EnableAddressRebalancing
) {
1249 rebalanceAddressTrees();
1251 DEBUG_WITH_TYPE("isel", {
1252 dbgs() << "Address tree balanced selection DAG:";
1258 void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
1259 auto &HST
= static_cast<const HexagonSubtarget
&>(MF
->getSubtarget());
1260 auto &HFI
= *HST
.getFrameLowering();
1261 if (!HFI
.needsAligna(*MF
))
1264 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1265 MachineBasicBlock
*EntryBB
= &MF
->front();
1266 unsigned AR
= FuncInfo
->CreateReg(MVT::i32
);
1267 unsigned MaxA
= MFI
.getMaxAlignment();
1268 BuildMI(EntryBB
, DebugLoc(), HII
->get(Hexagon::PS_aligna
), AR
)
1270 MF
->getInfo
<HexagonMachineFunctionInfo
>()->setStackAlignBaseVReg(AR
);
1273 // Match a frame index that can be used in an addressing mode.
1274 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue
&N
, SDValue
&R
) {
1275 if (N
.getOpcode() != ISD::FrameIndex
)
1277 auto &HFI
= *HST
->getFrameLowering();
1278 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1279 int FX
= cast
<FrameIndexSDNode
>(N
)->getIndex();
1280 if (!MFI
.isFixedObjectIndex(FX
) && HFI
.needsAligna(*MF
))
1282 R
= CurDAG
->getTargetFrameIndex(FX
, MVT::i32
);
1286 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue
&N
, SDValue
&R
) {
1287 return SelectGlobalAddress(N
, R
, false, 0);
1290 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue
&N
, SDValue
&R
) {
1291 return SelectGlobalAddress(N
, R
, true, 0);
1294 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue
&N
, SDValue
&R
) {
1295 return SelectAnyImmediate(N
, R
, 0);
1298 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue
&N
, SDValue
&R
) {
1299 return SelectAnyImmediate(N
, R
, 0);
1301 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue
&N
, SDValue
&R
) {
1302 return SelectAnyImmediate(N
, R
, 1);
1304 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue
&N
, SDValue
&R
) {
1305 return SelectAnyImmediate(N
, R
, 2);
1307 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue
&N
, SDValue
&R
) {
1308 return SelectAnyImmediate(N
, R
, 3);
1311 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue
&N
, SDValue
&R
) {
1312 EVT T
= N
.getValueType();
1313 if (!T
.isInteger() || T
.getSizeInBits() != 32 || !isa
<ConstantSDNode
>(N
))
1319 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue
&N
, SDValue
&R
,
1320 uint32_t LogAlign
) {
1321 auto IsAligned
= [LogAlign
] (uint64_t V
) -> bool {
1322 return alignTo(V
, (uint64_t)1 << LogAlign
) == V
;
1325 switch (N
.getOpcode()) {
1326 case ISD::Constant
: {
1327 if (N
.getValueType() != MVT::i32
)
1329 int32_t V
= cast
<const ConstantSDNode
>(N
)->getZExtValue();
1332 R
= CurDAG
->getTargetConstant(V
, SDLoc(N
), N
.getValueType());
1335 case HexagonISD::JT
:
1336 case HexagonISD::CP
:
1337 // These are assumed to always be aligned at least 8-byte boundary.
1340 R
= N
.getOperand(0);
1342 case ISD::ExternalSymbol
:
1343 // Symbols may be aligned at any boundary.
1348 case ISD::BlockAddress
:
1349 // Block address is always aligned at least 4-byte boundary.
1350 if (LogAlign
> 2 || !IsAligned(cast
<BlockAddressSDNode
>(N
)->getOffset()))
1356 if (SelectGlobalAddress(N
, R
, false, LogAlign
) ||
1357 SelectGlobalAddress(N
, R
, true, LogAlign
))
1363 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue
&N
, SDValue
&R
,
1364 bool UseGP
, uint32_t LogAlign
) {
1365 auto IsAligned
= [LogAlign
] (uint64_t V
) -> bool {
1366 return alignTo(V
, (uint64_t)1 << LogAlign
) == V
;
1369 switch (N
.getOpcode()) {
1371 SDValue N0
= N
.getOperand(0);
1372 SDValue N1
= N
.getOperand(1);
1373 unsigned GAOpc
= N0
.getOpcode();
1374 if (UseGP
&& GAOpc
!= HexagonISD::CONST32_GP
)
1376 if (!UseGP
&& GAOpc
!= HexagonISD::CONST32
)
1378 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N1
)) {
1379 SDValue Addr
= N0
.getOperand(0);
1380 // For the purpose of alignment, sextvalue and zextvalue are the same.
1381 if (!IsAligned(Const
->getZExtValue()))
1383 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Addr
)) {
1384 if (GA
->getOpcode() == ISD::TargetGlobalAddress
) {
1385 uint64_t NewOff
= GA
->getOffset() + (uint64_t)Const
->getSExtValue();
1386 R
= CurDAG
->getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Const
),
1387 N
.getValueType(), NewOff
);
1394 case HexagonISD::CP
:
1395 case HexagonISD::JT
:
1396 case HexagonISD::CONST32
:
1397 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1398 // want in the instruction.
1400 R
= N
.getOperand(0);
1402 case HexagonISD::CONST32_GP
:
1404 R
= N
.getOperand(0);
1413 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue
&N
, SDValue
&R
) {
1414 // This (complex pattern) function is meant to detect a sign-extension
1415 // i32->i64 on a per-operand basis. This would allow writing single
1416 // patterns that would cover a number of combinations of different ways
1417 // a sign-extensions could be written. For example:
1418 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1419 // could match either one of these:
1420 // (mul (sext x) (sext_inreg y))
1421 // (mul (sext-load *p) (sext_inreg y))
1422 // (mul (sext_inreg x) (sext y))
1425 // The returned value will have type i64 and its low word will
1426 // contain the value being extended. The high bits are not specified.
1427 // The returned type is i64 because the original type of N was i64,
1428 // but the users of this function should only use the low-word of the
1430 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1432 if (N
.getValueType() != MVT::i64
)
1434 unsigned Opc
= N
.getOpcode();
1436 case ISD::SIGN_EXTEND
:
1437 case ISD::SIGN_EXTEND_INREG
: {
1438 // sext_inreg has the source type as a separate operand.
1439 EVT T
= Opc
== ISD::SIGN_EXTEND
1440 ? N
.getOperand(0).getValueType()
1441 : cast
<VTSDNode
>(N
.getOperand(1))->getVT();
1442 unsigned SW
= T
.getSizeInBits();
1444 R
= N
.getOperand(0);
1452 LoadSDNode
*L
= cast
<LoadSDNode
>(N
);
1453 if (L
->getExtensionType() != ISD::SEXTLOAD
)
1455 // All extending loads extend to i32, so even if the value in
1456 // memory is shorter than 32 bits, it will be i32 after the load.
1457 if (L
->getMemoryVT().getSizeInBits() > 32)
1463 auto *S
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
1464 if (!S
|| S
->getZExtValue() != 32)
1472 EVT RT
= R
.getValueType();
1475 assert(RT
== MVT::i32
);
1476 // This is only to produce a value of type i64. Do not rely on the
1477 // high bits produced by this.
1480 CurDAG
->getTargetConstant(Hexagon::DoubleRegsRegClassID
, dl
, MVT::i32
),
1481 R
, CurDAG
->getTargetConstant(Hexagon::isub_hi
, dl
, MVT::i32
),
1482 R
, CurDAG
->getTargetConstant(Hexagon::isub_lo
, dl
, MVT::i32
)
1484 SDNode
*T
= CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
,
1490 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue
&Val
, unsigned NumBits
,
1492 unsigned Opc
= Val
.getOpcode();
1494 case ISD::SIGN_EXTEND
:
1495 case ISD::ZERO_EXTEND
:
1496 case ISD::ANY_EXTEND
: {
1497 const SDValue
&Op0
= Val
.getOperand(0);
1498 EVT T
= Op0
.getValueType();
1499 if (T
.isInteger() && T
.getSizeInBits() == NumBits
) {
1505 case ISD::SIGN_EXTEND_INREG
:
1506 case ISD::AssertSext
:
1507 case ISD::AssertZext
:
1508 if (Val
.getOperand(0).getValueType().isInteger()) {
1509 VTSDNode
*T
= cast
<VTSDNode
>(Val
.getOperand(1));
1510 if (T
->getVT().getSizeInBits() == NumBits
) {
1511 Src
= Val
.getOperand(0);
1517 // Check if this is an AND with NumBits of lower bits set to 1.
1518 uint64_t Mask
= (1 << NumBits
) - 1;
1519 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
.getOperand(0))) {
1520 if (C
->getZExtValue() == Mask
) {
1521 Src
= Val
.getOperand(1);
1525 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
.getOperand(1))) {
1526 if (C
->getZExtValue() == Mask
) {
1527 Src
= Val
.getOperand(0);
1535 // OR/XOR with the lower NumBits bits set to 0.
1536 uint64_t Mask
= (1 << NumBits
) - 1;
1537 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
.getOperand(0))) {
1538 if ((C
->getZExtValue() & Mask
) == 0) {
1539 Src
= Val
.getOperand(1);
1543 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
.getOperand(1))) {
1544 if ((C
->getZExtValue() & Mask
) == 0) {
1545 Src
= Val
.getOperand(0);
1557 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode
*N
) const {
1558 return N
->getAlignment() >= N
->getMemoryVT().getStoreSize();
1561 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode
*N
) const {
1562 unsigned StackSize
= MF
->getFrameInfo().estimateStackSize(*MF
);
1563 switch (N
->getMemoryVT().getStoreSize()) {
1565 return StackSize
<= 56; // 1*2^6 - 8
1567 return StackSize
<= 120; // 2*2^6 - 8
1569 return StackSize
<= 248; // 4*2^6 - 8
1575 // Return true when the given node fits in a positive half word.
1576 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode
*N
) const {
1577 if (const ConstantSDNode
*CN
= dyn_cast
<const ConstantSDNode
>(N
)) {
1578 int64_t V
= CN
->getSExtValue();
1579 return V
> 0 && isInt
<16>(V
);
1581 if (N
->getOpcode() == ISD::SIGN_EXTEND_INREG
) {
1582 const VTSDNode
*VN
= dyn_cast
<const VTSDNode
>(N
->getOperand(1));
1583 return VN
->getVT().getSizeInBits() <= 16;
1588 bool HexagonDAGToDAGISel::hasOneUse(const SDNode
*N
) const {
1589 return !CheckSingleUse
|| N
->hasOneUse();
1592 ////////////////////////////////////////////////////////////////////////////////
1593 // Rebalancing of address calculation trees
1595 static bool isOpcodeHandled(const SDNode
*N
) {
1596 switch (N
->getOpcode()) {
1601 // We only handle constant shifts because these can be easily flattened
1602 // into multiplications by 2^Op1.
1603 return isa
<ConstantSDNode
>(N
->getOperand(1).getNode());
1609 /// Return the weight of an SDNode
1610 int HexagonDAGToDAGISel::getWeight(SDNode
*N
) {
1611 if (!isOpcodeHandled(N
))
1613 assert(RootWeights
.count(N
) && "Cannot get weight of unseen root!");
1614 assert(RootWeights
[N
] != -1 && "Cannot get weight of unvisited root!");
1615 assert(RootWeights
[N
] != -2 && "Cannot get weight of RAWU'd root!");
1616 return RootWeights
[N
];
1619 int HexagonDAGToDAGISel::getHeight(SDNode
*N
) {
1620 if (!isOpcodeHandled(N
))
1622 assert(RootWeights
.count(N
) && RootWeights
[N
] >= 0 &&
1623 "Cannot query height of unvisited/RAUW'd node!");
1624 return RootHeights
[N
];
1628 struct WeightedLeaf
{
1633 WeightedLeaf() : Value(SDValue()) { }
1635 WeightedLeaf(SDValue Value
, int Weight
, int InsertionOrder
) :
1636 Value(Value
), Weight(Weight
), InsertionOrder(InsertionOrder
) {
1637 assert(Weight
>= 0 && "Weight must be >= 0");
1640 static bool Compare(const WeightedLeaf
&A
, const WeightedLeaf
&B
) {
1641 assert(A
.Value
.getNode() && B
.Value
.getNode());
1642 return A
.Weight
== B
.Weight
?
1643 (A
.InsertionOrder
> B
.InsertionOrder
) :
1644 (A
.Weight
> B
.Weight
);
1648 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1649 /// constants and allows removal of non-top elements while maintaining the
1651 class LeafPrioQueue
{
1652 SmallVector
<WeightedLeaf
, 8> Q
;
1654 WeightedLeaf ConstElt
;
1659 return (!HaveConst
&& Q
.empty());
1663 return Q
.size() + HaveConst
;
1670 const WeightedLeaf
&top() {
1676 WeightedLeaf
pop() {
1681 std::pop_heap(Q
.begin(), Q
.end(), WeightedLeaf::Compare
);
1682 return Q
.pop_back_val();
1685 void push(WeightedLeaf L
, bool SeparateConst
=true) {
1686 if (!HaveConst
&& SeparateConst
&& isa
<ConstantSDNode
>(L
.Value
)) {
1687 if (Opcode
== ISD::MUL
&&
1688 cast
<ConstantSDNode
>(L
.Value
)->getSExtValue() == 1)
1690 if (Opcode
== ISD::ADD
&&
1691 cast
<ConstantSDNode
>(L
.Value
)->getSExtValue() == 0)
1698 std::push_heap(Q
.begin(), Q
.end(), WeightedLeaf::Compare
);
1702 /// Push L to the bottom of the queue regardless of its weight. If L is
1703 /// constant, it will not be folded with other constants in the queue.
1704 void pushToBottom(WeightedLeaf L
) {
1709 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1710 /// lowest weight and remove it from the queue.
1711 WeightedLeaf
findSHL(uint64_t MaxAmount
);
1713 WeightedLeaf
findMULbyConst();
1715 LeafPrioQueue(unsigned Opcode
) :
1716 HaveConst(false), Opcode(Opcode
) { }
1718 } // end anonymous namespace
1720 WeightedLeaf
LeafPrioQueue::findSHL(uint64_t MaxAmount
) {
1722 WeightedLeaf Result
;
1724 for (int Pos
= 0, End
= Q
.size(); Pos
!= End
; ++Pos
) {
1725 const WeightedLeaf
&L
= Q
[Pos
];
1726 const SDValue
&Val
= L
.Value
;
1727 if (Val
.getOpcode() != ISD::SHL
||
1728 !isa
<ConstantSDNode
>(Val
.getOperand(1)) ||
1729 Val
.getConstantOperandVal(1) > MaxAmount
)
1731 if (!Result
.Value
.getNode() || Result
.Weight
> L
.Weight
||
1732 (Result
.Weight
== L
.Weight
&& Result
.InsertionOrder
> L
.InsertionOrder
))
1739 if (Result
.Value
.getNode()) {
1740 Q
.erase(&Q
[ResultPos
]);
1741 std::make_heap(Q
.begin(), Q
.end(), WeightedLeaf::Compare
);
1747 WeightedLeaf
LeafPrioQueue::findMULbyConst() {
1749 WeightedLeaf Result
;
1751 for (int Pos
= 0, End
= Q
.size(); Pos
!= End
; ++Pos
) {
1752 const WeightedLeaf
&L
= Q
[Pos
];
1753 const SDValue
&Val
= L
.Value
;
1754 if (Val
.getOpcode() != ISD::MUL
||
1755 !isa
<ConstantSDNode
>(Val
.getOperand(1)) ||
1756 Val
.getConstantOperandVal(1) > 127)
1758 if (!Result
.Value
.getNode() || Result
.Weight
> L
.Weight
||
1759 (Result
.Weight
== L
.Weight
&& Result
.InsertionOrder
> L
.InsertionOrder
))
1766 if (Result
.Value
.getNode()) {
1767 Q
.erase(&Q
[ResultPos
]);
1768 std::make_heap(Q
.begin(), Q
.end(), WeightedLeaf::Compare
);
1774 SDValue
HexagonDAGToDAGISel::getMultiplierForSHL(SDNode
*N
) {
1775 uint64_t MulFactor
= 1ull << N
->getConstantOperandVal(1);
1776 return CurDAG
->getConstant(MulFactor
, SDLoc(N
),
1777 N
->getOperand(1).getValueType());
1780 /// @returns the value x for which 2^x is a factor of Val
1781 static unsigned getPowerOf2Factor(SDValue Val
) {
1782 if (Val
.getOpcode() == ISD::MUL
) {
1783 unsigned MaxFactor
= 0;
1784 for (int i
= 0; i
< 2; ++i
) {
1785 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
.getOperand(i
));
1788 const APInt
&CInt
= C
->getAPIntValue();
1789 if (CInt
.getBoolValue())
1790 MaxFactor
= CInt
.countTrailingZeros();
1794 if (Val
.getOpcode() == ISD::SHL
) {
1795 if (!isa
<ConstantSDNode
>(Val
.getOperand(1).getNode()))
1797 return (unsigned) Val
.getConstantOperandVal(1);
1803 /// @returns true if V>>Amount will eliminate V's operation on its child
1804 static bool willShiftRightEliminate(SDValue V
, unsigned Amount
) {
1805 if (V
.getOpcode() == ISD::MUL
) {
1806 SDValue Ops
[] = { V
.getOperand(0), V
.getOperand(1) };
1807 for (int i
= 0; i
< 2; ++i
)
1808 if (isa
<ConstantSDNode
>(Ops
[i
].getNode()) &&
1809 V
.getConstantOperandVal(i
) % (1ULL << Amount
) == 0) {
1810 uint64_t NewConst
= V
.getConstantOperandVal(i
) >> Amount
;
1811 return (NewConst
== 1);
1813 } else if (V
.getOpcode() == ISD::SHL
) {
1814 return (Amount
== V
.getConstantOperandVal(1));
1820 SDValue
HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V
, unsigned Power
) {
1821 SDValue Ops
[] = { V
.getOperand(0), V
.getOperand(1) };
1822 if (V
.getOpcode() == ISD::MUL
) {
1823 for (int i
=0; i
< 2; ++i
) {
1824 if (isa
<ConstantSDNode
>(Ops
[i
].getNode()) &&
1825 V
.getConstantOperandVal(i
) % ((uint64_t)1 << Power
) == 0) {
1826 uint64_t NewConst
= V
.getConstantOperandVal(i
) >> Power
;
1829 Ops
[i
] = CurDAG
->getConstant(NewConst
,
1830 SDLoc(V
), V
.getValueType());
1834 } else if (V
.getOpcode() == ISD::SHL
) {
1835 uint64_t ShiftAmount
= V
.getConstantOperandVal(1);
1836 if (ShiftAmount
== Power
)
1838 Ops
[1] = CurDAG
->getConstant(ShiftAmount
- Power
,
1839 SDLoc(V
), V
.getValueType());
1842 return CurDAG
->getNode(V
.getOpcode(), SDLoc(V
), V
.getValueType(), Ops
);
1845 static bool isTargetConstant(const SDValue
&V
) {
1846 return V
.getOpcode() == HexagonISD::CONST32
||
1847 V
.getOpcode() == HexagonISD::CONST32_GP
;
1850 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value
*V
) {
1851 if (GAUsesInFunction
.count(V
))
1852 return GAUsesInFunction
[V
];
1854 unsigned Result
= 0;
1855 const Function
&CurF
= CurDAG
->getMachineFunction().getFunction();
1856 for (const User
*U
: V
->users()) {
1857 if (isa
<Instruction
>(U
) &&
1858 cast
<Instruction
>(U
)->getParent()->getParent() == &CurF
)
1862 GAUsesInFunction
[V
] = Result
;
1867 /// Note - After calling this, N may be dead. It may have been replaced by a
1868 /// new node, so always use the returned value in place of N.
1870 /// @returns The SDValue taking the place of N (which could be N if it is
1872 SDValue
HexagonDAGToDAGISel::balanceSubTree(SDNode
*N
, bool TopLevel
) {
1873 assert(RootWeights
.count(N
) && "Cannot balance non-root node.");
1874 assert(RootWeights
[N
] != -2 && "This node was RAUW'd!");
1875 assert(!TopLevel
|| N
->getOpcode() == ISD::ADD
);
1877 // Return early if this node was already visited
1878 if (RootWeights
[N
] != -1)
1879 return SDValue(N
, 0);
1881 assert(isOpcodeHandled(N
));
1883 SDValue Op0
= N
->getOperand(0);
1884 SDValue Op1
= N
->getOperand(1);
1886 // Return early if the operands will remain unchanged or are all roots
1887 if ((!isOpcodeHandled(Op0
.getNode()) || RootWeights
.count(Op0
.getNode())) &&
1888 (!isOpcodeHandled(Op1
.getNode()) || RootWeights
.count(Op1
.getNode()))) {
1889 SDNode
*Op0N
= Op0
.getNode();
1891 if (isOpcodeHandled(Op0N
) && RootWeights
[Op0N
] == -1) {
1892 Weight
= getWeight(balanceSubTree(Op0N
).getNode());
1893 // Weight = calculateWeight(Op0N);
1895 Weight
= getWeight(Op0N
);
1897 SDNode
*Op1N
= N
->getOperand(1).getNode(); // Op1 may have been RAUWd
1898 if (isOpcodeHandled(Op1N
) && RootWeights
[Op1N
] == -1) {
1899 Weight
+= getWeight(balanceSubTree(Op1N
).getNode());
1900 // Weight += calculateWeight(Op1N);
1902 Weight
+= getWeight(Op1N
);
1904 RootWeights
[N
] = Weight
;
1905 RootHeights
[N
] = std::max(getHeight(N
->getOperand(0).getNode()),
1906 getHeight(N
->getOperand(1).getNode())) + 1;
1908 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1909 << " Height=" << RootHeights
[N
] << "): ");
1910 LLVM_DEBUG(N
->dump(CurDAG
));
1912 return SDValue(N
, 0);
1915 LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1916 LLVM_DEBUG(N
->dump(CurDAG
));
1918 unsigned NOpcode
= N
->getOpcode();
1920 LeafPrioQueue
Leaves(NOpcode
);
1921 SmallVector
<SDValue
, 4> Worklist
;
1922 Worklist
.push_back(SDValue(N
, 0));
1924 // SHL nodes will be converted to MUL nodes
1925 if (NOpcode
== ISD::SHL
)
1928 bool CanFactorize
= false;
1929 WeightedLeaf Mul1
, Mul2
;
1930 unsigned MaxPowerOf2
= 0;
1933 // Do not try to factor out a shift if there is already a shift at the tip of
1935 bool HaveTopLevelShift
= false;
1937 ((isOpcodeHandled(Op0
.getNode()) && Op0
.getOpcode() == ISD::SHL
&&
1938 Op0
.getConstantOperandVal(1) < 4) ||
1939 (isOpcodeHandled(Op1
.getNode()) && Op1
.getOpcode() == ISD::SHL
&&
1940 Op1
.getConstantOperandVal(1) < 4)))
1941 HaveTopLevelShift
= true;
1943 // Flatten the subtree into an ordered list of leaves; at the same time
1944 // determine whether the tree is already balanced.
1945 int InsertionOrder
= 0;
1946 SmallDenseMap
<SDValue
, int> NodeHeights
;
1947 bool Imbalanced
= false;
1948 int CurrentWeight
= 0;
1949 while (!Worklist
.empty()) {
1950 SDValue Child
= Worklist
.pop_back_val();
1952 if (Child
.getNode() != N
&& RootWeights
.count(Child
.getNode())) {
1953 // CASE 1: Child is a root note
1955 int Weight
= RootWeights
[Child
.getNode()];
1957 Child
= balanceSubTree(Child
.getNode());
1958 // calculateWeight(Child.getNode());
1959 Weight
= getWeight(Child
.getNode());
1960 } else if (Weight
== -2) {
1961 // Whoops, this node was RAUWd by one of the balanceSubTree calls we
1962 // made. Our worklist isn't up to date anymore.
1963 // Restart the whole process.
1964 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
1965 return balanceSubTree(N
, TopLevel
);
1968 NodeHeights
[Child
] = 1;
1969 CurrentWeight
+= Weight
;
1972 if (TopLevel
&& !CanFactorize
&& !HaveTopLevelShift
&&
1973 (Child
.getOpcode() == ISD::MUL
|| Child
.getOpcode() == ISD::SHL
) &&
1974 Child
.hasOneUse() && (PowerOf2
= getPowerOf2Factor(Child
))) {
1975 // Try to identify two factorizable MUL/SHL children greedily. Leave
1976 // them out of the priority queue for now so we can deal with them
1978 if (!Mul1
.Value
.getNode()) {
1979 Mul1
= WeightedLeaf(Child
, Weight
, InsertionOrder
++);
1980 MaxPowerOf2
= PowerOf2
;
1982 Mul2
= WeightedLeaf(Child
, Weight
, InsertionOrder
++);
1983 MaxPowerOf2
= std::min(MaxPowerOf2
, PowerOf2
);
1985 // Our addressing modes can only shift by a maximum of 3
1986 if (MaxPowerOf2
> 3)
1989 CanFactorize
= true;
1992 Leaves
.push(WeightedLeaf(Child
, Weight
, InsertionOrder
++));
1993 } else if (!isOpcodeHandled(Child
.getNode())) {
1994 // CASE 2: Child is an unhandled kind of node (e.g. constant)
1995 int Weight
= getWeight(Child
.getNode());
1997 NodeHeights
[Child
] = getHeight(Child
.getNode());
1998 CurrentWeight
+= Weight
;
2000 if (isTargetConstant(Child
) && !GA
.Value
.getNode())
2001 GA
= WeightedLeaf(Child
, Weight
, InsertionOrder
++);
2003 Leaves
.push(WeightedLeaf(Child
, Weight
, InsertionOrder
++));
2005 // CASE 3: Child is a subtree of same opcode
2006 // Visit children first, then flatten.
2007 unsigned ChildOpcode
= Child
.getOpcode();
2008 assert(ChildOpcode
== NOpcode
||
2009 (NOpcode
== ISD::MUL
&& ChildOpcode
== ISD::SHL
));
2011 // Convert SHL to MUL
2013 if (ChildOpcode
== ISD::SHL
)
2014 Op1
= getMultiplierForSHL(Child
.getNode());
2016 Op1
= Child
->getOperand(1);
2018 if (!NodeHeights
.count(Op1
) || !NodeHeights
.count(Child
->getOperand(0))) {
2019 assert(!NodeHeights
.count(Child
) && "Parent visited before children?");
2020 // Visit children first, then re-visit this node
2021 Worklist
.push_back(Child
);
2022 Worklist
.push_back(Op1
);
2023 Worklist
.push_back(Child
->getOperand(0));
2025 // Back at this node after visiting the children
2026 if (std::abs(NodeHeights
[Op1
] - NodeHeights
[Child
->getOperand(0)]) > 1)
2029 NodeHeights
[Child
] = std::max(NodeHeights
[Op1
],
2030 NodeHeights
[Child
->getOperand(0)]) + 1;
2035 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights
[SDValue(N
, 0)]
2036 << " weight=" << CurrentWeight
2037 << " imbalanced=" << Imbalanced
<< "\n");
2039 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2040 // This factors out a shift in order to match memw(a<<Y+b).
2041 if (CanFactorize
&& (willShiftRightEliminate(Mul1
.Value
, MaxPowerOf2
) ||
2042 willShiftRightEliminate(Mul2
.Value
, MaxPowerOf2
))) {
2043 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2044 int Weight
= Mul1
.Weight
+ Mul2
.Weight
;
2045 int Height
= std::max(NodeHeights
[Mul1
.Value
], NodeHeights
[Mul2
.Value
]) + 1;
2046 SDValue Mul1Factored
= factorOutPowerOf2(Mul1
.Value
, MaxPowerOf2
);
2047 SDValue Mul2Factored
= factorOutPowerOf2(Mul2
.Value
, MaxPowerOf2
);
2048 SDValue Sum
= CurDAG
->getNode(ISD::ADD
, SDLoc(N
), Mul1
.Value
.getValueType(),
2049 Mul1Factored
, Mul2Factored
);
2050 SDValue Const
= CurDAG
->getConstant(MaxPowerOf2
, SDLoc(N
),
2051 Mul1
.Value
.getValueType());
2052 SDValue New
= CurDAG
->getNode(ISD::SHL
, SDLoc(N
), Mul1
.Value
.getValueType(),
2054 NodeHeights
[New
] = Height
;
2055 Leaves
.push(WeightedLeaf(New
, Weight
, Mul1
.InsertionOrder
));
2056 } else if (Mul1
.Value
.getNode()) {
2057 // We failed to factorize two MULs, so now the Muls are left outside the
2058 // queue... add them back.
2060 if (Mul2
.Value
.getNode())
2062 CanFactorize
= false;
2065 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2066 // and the root node itself is not used more than twice. This reduces the
2067 // amount of additional constant extenders introduced by this optimization.
2068 bool CombinedGA
= false;
2069 if (NOpcode
== ISD::ADD
&& GA
.Value
.getNode() && Leaves
.hasConst() &&
2070 GA
.Value
.hasOneUse() && N
->use_size() < 3) {
2071 GlobalAddressSDNode
*GANode
=
2072 cast
<GlobalAddressSDNode
>(GA
.Value
.getOperand(0));
2073 ConstantSDNode
*Offset
= cast
<ConstantSDNode
>(Leaves
.top().Value
);
2075 if (getUsesInFunction(GANode
->getGlobal()) == 1 && Offset
->hasOneUse() &&
2076 getTargetLowering()->isOffsetFoldingLegal(GANode
)) {
2077 LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2078 << Offset
->getSExtValue() << "): ");
2079 LLVM_DEBUG(GANode
->dump(CurDAG
));
2082 CurDAG
->getTargetGlobalAddress(GANode
->getGlobal(), SDLoc(GA
.Value
),
2083 GANode
->getValueType(0),
2084 GANode
->getOffset() + (uint64_t)Offset
->getSExtValue());
2085 GA
.Value
= CurDAG
->getNode(GA
.Value
.getOpcode(), SDLoc(GA
.Value
),
2086 GA
.Value
.getValueType(), NewTGA
);
2087 GA
.Weight
+= Leaves
.top().Weight
;
2089 NodeHeights
[GA
.Value
] = getHeight(GA
.Value
.getNode());
2092 Leaves
.pop(); // Remove the offset constant from the queue
2096 if ((RebalanceOnlyForOptimizations
&& !CanFactorize
&& !CombinedGA
) ||
2097 (RebalanceOnlyImbalancedTrees
&& !Imbalanced
)) {
2098 RootWeights
[N
] = CurrentWeight
;
2099 RootHeights
[N
] = NodeHeights
[SDValue(N
, 0)];
2101 return SDValue(N
, 0);
2104 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2105 if (NOpcode
== ISD::ADD
&& GA
.Value
.getNode()) {
2106 WeightedLeaf SHL
= Leaves
.findSHL(31);
2107 if (SHL
.Value
.getNode()) {
2108 int Height
= std::max(NodeHeights
[GA
.Value
], NodeHeights
[SHL
.Value
]) + 1;
2109 GA
.Value
= CurDAG
->getNode(ISD::ADD
, SDLoc(GA
.Value
),
2110 GA
.Value
.getValueType(),
2111 GA
.Value
, SHL
.Value
);
2112 GA
.Weight
= SHL
.Weight
; // Specifically ignore the GA weight here
2113 NodeHeights
[GA
.Value
] = Height
;
2117 if (GA
.Value
.getNode())
2120 // If this is the top level and we haven't factored out a shift, we should try
2121 // to move a constant to the bottom to match addressing modes like memw(rX+C)
2122 if (TopLevel
&& !CanFactorize
&& Leaves
.hasConst()) {
2123 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2124 Leaves
.pushToBottom(Leaves
.pop());
2127 const DataLayout
&DL
= CurDAG
->getDataLayout();
2128 const TargetLowering
&TLI
= *getTargetLowering();
2130 // Rebuild the tree using Huffman's algorithm
2131 while (Leaves
.size() > 1) {
2132 WeightedLeaf L0
= Leaves
.pop();
2134 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2135 // otherwise just get the next leaf
2136 WeightedLeaf L1
= Leaves
.findMULbyConst();
2137 if (!L1
.Value
.getNode())
2140 assert(L0
.Weight
<= L1
.Weight
&& "Priority queue is broken!");
2142 SDValue V0
= L0
.Value
;
2143 int V0Weight
= L0
.Weight
;
2144 SDValue V1
= L1
.Value
;
2145 int V1Weight
= L1
.Weight
;
2147 // Make sure that none of these nodes have been RAUW'd
2148 if ((RootWeights
.count(V0
.getNode()) && RootWeights
[V0
.getNode()] == -2) ||
2149 (RootWeights
.count(V1
.getNode()) && RootWeights
[V1
.getNode()] == -2)) {
2150 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2151 return balanceSubTree(N
, TopLevel
);
2154 ConstantSDNode
*V0C
= dyn_cast
<ConstantSDNode
>(V0
);
2155 ConstantSDNode
*V1C
= dyn_cast
<ConstantSDNode
>(V1
);
2156 EVT VT
= N
->getValueType(0);
2161 std::swap(V0C
, V1C
);
2164 // Calculate height of this node
2165 assert(NodeHeights
.count(V0
) && NodeHeights
.count(V1
) &&
2166 "Children must have been visited before re-combining them!");
2167 int Height
= std::max(NodeHeights
[V0
], NodeHeights
[V1
]) + 1;
2169 // Rebuild this node (and restore SHL from MUL if needed)
2170 if (V1C
&& NOpcode
== ISD::MUL
&& V1C
->getAPIntValue().isPowerOf2())
2171 NewNode
= CurDAG
->getNode(
2172 ISD::SHL
, SDLoc(V0
), VT
, V0
,
2173 CurDAG
->getConstant(
2174 V1C
->getAPIntValue().logBase2(), SDLoc(N
),
2175 TLI
.getScalarShiftAmountTy(DL
, V0
.getValueType())));
2177 NewNode
= CurDAG
->getNode(NOpcode
, SDLoc(N
), VT
, V0
, V1
);
2179 NodeHeights
[NewNode
] = Height
;
2181 int Weight
= V0Weight
+ V1Weight
;
2182 Leaves
.push(WeightedLeaf(NewNode
, Weight
, L0
.InsertionOrder
));
2184 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2185 << ",Height=" << Height
<< "):\n");
2186 LLVM_DEBUG(NewNode
.dump());
2189 assert(Leaves
.size() == 1);
2190 SDValue NewRoot
= Leaves
.top().Value
;
2192 assert(NodeHeights
.count(NewRoot
));
2193 int Height
= NodeHeights
[NewRoot
];
2195 // Restore SHL if we earlier converted it to a MUL
2196 if (NewRoot
.getOpcode() == ISD::MUL
) {
2197 ConstantSDNode
*V1C
= dyn_cast
<ConstantSDNode
>(NewRoot
.getOperand(1));
2198 if (V1C
&& V1C
->getAPIntValue().isPowerOf2()) {
2199 EVT VT
= NewRoot
.getValueType();
2200 SDValue V0
= NewRoot
.getOperand(0);
2201 NewRoot
= CurDAG
->getNode(
2202 ISD::SHL
, SDLoc(NewRoot
), VT
, V0
,
2203 CurDAG
->getConstant(
2204 V1C
->getAPIntValue().logBase2(), SDLoc(NewRoot
),
2205 TLI
.getScalarShiftAmountTy(DL
, V0
.getValueType())));
2209 if (N
!= NewRoot
.getNode()) {
2210 LLVM_DEBUG(dbgs() << "--> Root is now: ");
2211 LLVM_DEBUG(NewRoot
.dump());
2213 // Replace all uses of old root by new root
2214 CurDAG
->ReplaceAllUsesWith(N
, NewRoot
.getNode());
2215 // Mark that we have RAUW'd N
2216 RootWeights
[N
] = -2;
2218 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2221 RootWeights
[NewRoot
.getNode()] = Leaves
.top().Weight
;
2222 RootHeights
[NewRoot
.getNode()] = Height
;
2227 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2228 for (auto I
= CurDAG
->allnodes_begin(), E
= CurDAG
->allnodes_end(); I
!= E
;) {
2230 if (N
->getOpcode() != ISD::LOAD
&& N
->getOpcode() != ISD::STORE
)
2233 SDValue BasePtr
= cast
<MemSDNode
>(N
)->getBasePtr();
2234 if (BasePtr
.getOpcode() != ISD::ADD
)
2237 // We've already processed this node
2238 if (RootWeights
.count(BasePtr
.getNode()))
2241 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2242 LLVM_DEBUG(N
->dump(CurDAG
));
2245 SmallVector
<SDNode
*, 4> Worklist
;
2247 Worklist
.push_back(BasePtr
.getOperand(0).getNode());
2248 Worklist
.push_back(BasePtr
.getOperand(1).getNode());
2250 while (!Worklist
.empty()) {
2251 SDNode
*N
= Worklist
.pop_back_val();
2252 unsigned Opcode
= N
->getOpcode();
2254 if (!isOpcodeHandled(N
))
2257 Worklist
.push_back(N
->getOperand(0).getNode());
2258 Worklist
.push_back(N
->getOperand(1).getNode());
2260 // Not a root if it has only one use and same opcode as its parent
2261 if (N
->hasOneUse() && Opcode
== N
->use_begin()->getOpcode())
2264 // This root node has already been processed
2265 if (RootWeights
.count(N
))
2268 RootWeights
[N
] = -1;
2271 // Balance node itself
2272 RootWeights
[BasePtr
.getNode()] = -1;
2273 SDValue NewBasePtr
= balanceSubTree(BasePtr
.getNode(), /*TopLevel=*/ true);
2275 if (N
->getOpcode() == ISD::LOAD
)
2276 N
= CurDAG
->UpdateNodeOperands(N
, N
->getOperand(0),
2277 NewBasePtr
, N
->getOperand(2));
2279 N
= CurDAG
->UpdateNodeOperands(N
, N
->getOperand(0), N
->getOperand(1),
2280 NewBasePtr
, N
->getOperand(3));
2282 LLVM_DEBUG(dbgs() << "--> Final node: ");
2283 LLVM_DEBUG(N
->dump(CurDAG
));
2286 CurDAG
->RemoveDeadNodes();
2287 GAUsesInFunction
.clear();
2288 RootHeights
.clear();
2289 RootWeights
.clear();