Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / Hexagon / HexagonISelLoweringHVX.cpp
blob6ab35c39bd477f50e64f47686d3179bc784ec35c
1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "HexagonISelLowering.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/Support/CommandLine.h"
14 using namespace llvm;
16 static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 };
17 static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
18 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
19 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
22 void
23 HexagonTargetLowering::initializeHVXLowering() {
24 if (Subtarget.useHVX64BOps()) {
25 addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass);
26 addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
27 addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
28 addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
29 addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
30 addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
31 // These "short" boolean vector types should be legal because
32 // they will appear as results of vector compares. If they were
33 // not legal, type legalization would try to make them legal
34 // and that would require using operations that do not use or
35 // produce such types. That, in turn, would imply using custom
36 // nodes, which would be unoptimizable by the DAG combiner.
37 // The idea is to rely on target-independent operations as much
38 // as possible.
39 addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
40 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
41 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
42 addRegisterClass(MVT::v512i1, &Hexagon::HvxQRRegClass);
43 } else if (Subtarget.useHVX128BOps()) {
44 addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass);
45 addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass);
46 addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass);
47 addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass);
48 addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
49 addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass);
50 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
51 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
52 addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
53 addRegisterClass(MVT::v1024i1, &Hexagon::HvxQRRegClass);
56 // Set up operation actions.
58 bool Use64b = Subtarget.useHVX64BOps();
59 ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
60 ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
61 MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8;
62 MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
64 auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
65 setOperationAction(Opc, FromTy, Promote);
66 AddPromotedToType(Opc, FromTy, ToTy);
69 setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
70 setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
72 for (MVT T : LegalV) {
73 setIndexedLoadAction(ISD::POST_INC, T, Legal);
74 setIndexedStoreAction(ISD::POST_INC, T, Legal);
76 setOperationAction(ISD::AND, T, Legal);
77 setOperationAction(ISD::OR, T, Legal);
78 setOperationAction(ISD::XOR, T, Legal);
79 setOperationAction(ISD::ADD, T, Legal);
80 setOperationAction(ISD::SUB, T, Legal);
81 setOperationAction(ISD::CTPOP, T, Legal);
82 setOperationAction(ISD::CTLZ, T, Legal);
83 if (T != ByteV) {
84 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
85 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
86 setOperationAction(ISD::BSWAP, T, Legal);
89 setOperationAction(ISD::CTTZ, T, Custom);
90 setOperationAction(ISD::LOAD, T, Custom);
91 setOperationAction(ISD::MUL, T, Custom);
92 setOperationAction(ISD::MULHS, T, Custom);
93 setOperationAction(ISD::MULHU, T, Custom);
94 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
95 // Make concat-vectors custom to handle concats of more than 2 vectors.
96 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
97 setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom);
98 setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom);
99 setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
100 setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
101 setOperationAction(ISD::ANY_EXTEND, T, Custom);
102 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
103 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
104 if (T != ByteV) {
105 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
106 // HVX only has shifts of words and halfwords.
107 setOperationAction(ISD::SRA, T, Custom);
108 setOperationAction(ISD::SHL, T, Custom);
109 setOperationAction(ISD::SRL, T, Custom);
111 // Promote all shuffles to operate on vectors of bytes.
112 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
115 setCondCodeAction(ISD::SETNE, T, Expand);
116 setCondCodeAction(ISD::SETLE, T, Expand);
117 setCondCodeAction(ISD::SETGE, T, Expand);
118 setCondCodeAction(ISD::SETLT, T, Expand);
119 setCondCodeAction(ISD::SETULE, T, Expand);
120 setCondCodeAction(ISD::SETUGE, T, Expand);
121 setCondCodeAction(ISD::SETULT, T, Expand);
124 for (MVT T : LegalW) {
125 // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
126 // independent) handling of it would convert it to a load, which is
127 // not always the optimal choice.
128 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
129 // Make concat-vectors custom to handle concats of more than 2 vectors.
130 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
132 // Custom-lower these operations for pairs. Expand them into a concat
133 // of the corresponding operations on individual vectors.
134 setOperationAction(ISD::ANY_EXTEND, T, Custom);
135 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
136 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
137 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom);
138 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
139 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
140 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
142 setOperationAction(ISD::LOAD, T, Custom);
143 setOperationAction(ISD::STORE, T, Custom);
144 setOperationAction(ISD::CTLZ, T, Custom);
145 setOperationAction(ISD::CTTZ, T, Custom);
146 setOperationAction(ISD::CTPOP, T, Custom);
148 setOperationAction(ISD::ADD, T, Legal);
149 setOperationAction(ISD::SUB, T, Legal);
150 setOperationAction(ISD::MUL, T, Custom);
151 setOperationAction(ISD::MULHS, T, Custom);
152 setOperationAction(ISD::MULHU, T, Custom);
153 setOperationAction(ISD::AND, T, Custom);
154 setOperationAction(ISD::OR, T, Custom);
155 setOperationAction(ISD::XOR, T, Custom);
156 setOperationAction(ISD::SETCC, T, Custom);
157 setOperationAction(ISD::VSELECT, T, Custom);
158 if (T != ByteW) {
159 setOperationAction(ISD::SRA, T, Custom);
160 setOperationAction(ISD::SHL, T, Custom);
161 setOperationAction(ISD::SRL, T, Custom);
163 // Promote all shuffles to operate on vectors of bytes.
164 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
168 // Boolean vectors.
170 for (MVT T : LegalW) {
171 // Boolean types for vector pairs will overlap with the boolean
172 // types for single vectors, e.g.
173 // v64i8 -> v64i1 (single)
174 // v64i16 -> v64i1 (pair)
175 // Set these actions first, and allow the single actions to overwrite
176 // any duplicates.
177 MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
178 setOperationAction(ISD::SETCC, BoolW, Custom);
179 setOperationAction(ISD::AND, BoolW, Custom);
180 setOperationAction(ISD::OR, BoolW, Custom);
181 setOperationAction(ISD::XOR, BoolW, Custom);
184 for (MVT T : LegalV) {
185 MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
186 setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom);
187 setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom);
188 setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom);
189 setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom);
190 setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom);
191 setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
192 setOperationAction(ISD::AND, BoolV, Legal);
193 setOperationAction(ISD::OR, BoolV, Legal);
194 setOperationAction(ISD::XOR, BoolV, Legal);
198 SDValue
199 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
200 const SDLoc &dl, SelectionDAG &DAG) const {
201 SmallVector<SDValue,4> IntOps;
202 IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
203 for (const SDValue &Op : Ops)
204 IntOps.push_back(Op);
205 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
209 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
210 assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
212 MVT ElemTy = Tys.first.getVectorElementType();
213 return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
214 Tys.second.getVectorNumElements());
217 HexagonTargetLowering::TypePair
218 HexagonTargetLowering::typeSplit(MVT VecTy) const {
219 assert(VecTy.isVector());
220 unsigned NumElem = VecTy.getVectorNumElements();
221 assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
222 MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
223 return { HalfTy, HalfTy };
227 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
228 MVT ElemTy = VecTy.getVectorElementType();
229 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
230 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
234 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
235 MVT ElemTy = VecTy.getVectorElementType();
236 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
237 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
240 SDValue
241 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
242 SelectionDAG &DAG) const {
243 if (ty(Vec).getVectorElementType() == ElemTy)
244 return Vec;
245 MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
246 return DAG.getBitcast(CastTy, Vec);
249 SDValue
250 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
251 SelectionDAG &DAG) const {
252 return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
253 Ops.second, Ops.first);
256 HexagonTargetLowering::VectorPair
257 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
258 SelectionDAG &DAG) const {
259 TypePair Tys = typeSplit(ty(Vec));
260 if (Vec.getOpcode() == HexagonISD::QCAT)
261 return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
262 return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
265 bool
266 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
267 return Subtarget.isHVXVectorType(Ty) &&
268 Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
271 bool
272 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
273 return Subtarget.isHVXVectorType(Ty) &&
274 Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
277 SDValue
278 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
279 SelectionDAG &DAG) const {
280 if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
281 ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
283 unsigned ElemWidth = ElemTy.getSizeInBits();
284 if (ElemWidth == 8)
285 return ElemIdx;
287 unsigned L = Log2_32(ElemWidth/8);
288 const SDLoc &dl(ElemIdx);
289 return DAG.getNode(ISD::SHL, dl, MVT::i32,
290 {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
293 SDValue
294 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
295 SelectionDAG &DAG) const {
296 unsigned ElemWidth = ElemTy.getSizeInBits();
297 assert(ElemWidth >= 8 && ElemWidth <= 32);
298 if (ElemWidth == 32)
299 return Idx;
301 if (ty(Idx) != MVT::i32)
302 Idx = DAG.getBitcast(MVT::i32, Idx);
303 const SDLoc &dl(Idx);
304 SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
305 SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
306 return SubIdx;
309 SDValue
310 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
311 SDValue Op1, ArrayRef<int> Mask,
312 SelectionDAG &DAG) const {
313 MVT OpTy = ty(Op0);
314 assert(OpTy == ty(Op1));
316 MVT ElemTy = OpTy.getVectorElementType();
317 if (ElemTy == MVT::i8)
318 return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
319 assert(ElemTy.getSizeInBits() >= 8);
321 MVT ResTy = tyVector(OpTy, MVT::i8);
322 unsigned ElemSize = ElemTy.getSizeInBits() / 8;
324 SmallVector<int,128> ByteMask;
325 for (int M : Mask) {
326 if (M < 0) {
327 for (unsigned I = 0; I != ElemSize; ++I)
328 ByteMask.push_back(-1);
329 } else {
330 int NewM = M*ElemSize;
331 for (unsigned I = 0; I != ElemSize; ++I)
332 ByteMask.push_back(NewM+I);
335 assert(ResTy.getVectorNumElements() == ByteMask.size());
336 return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
337 opCastElem(Op1, MVT::i8, DAG), ByteMask);
340 SDValue
341 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
342 const SDLoc &dl, MVT VecTy,
343 SelectionDAG &DAG) const {
344 unsigned VecLen = Values.size();
345 MachineFunction &MF = DAG.getMachineFunction();
346 MVT ElemTy = VecTy.getVectorElementType();
347 unsigned ElemWidth = ElemTy.getSizeInBits();
348 unsigned HwLen = Subtarget.getVectorLength();
350 unsigned ElemSize = ElemWidth / 8;
351 assert(ElemSize*VecLen == HwLen);
352 SmallVector<SDValue,32> Words;
354 if (VecTy.getVectorElementType() != MVT::i32) {
355 assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
356 unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
357 MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
358 for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
359 SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
360 Words.push_back(DAG.getBitcast(MVT::i32, W));
362 } else {
363 Words.assign(Values.begin(), Values.end());
366 unsigned NumWords = Words.size();
367 bool IsSplat = true, IsUndef = true;
368 SDValue SplatV;
369 for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
370 if (isUndef(Words[i]))
371 continue;
372 IsUndef = false;
373 if (!SplatV.getNode())
374 SplatV = Words[i];
375 else if (SplatV != Words[i])
376 IsSplat = false;
378 if (IsUndef)
379 return DAG.getUNDEF(VecTy);
380 if (IsSplat) {
381 assert(SplatV.getNode());
382 auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
383 if (IdxN && IdxN->isNullValue())
384 return getZero(dl, VecTy, DAG);
385 return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV);
388 // Delay recognizing constant vectors until here, so that we can generate
389 // a vsplat.
390 SmallVector<ConstantInt*, 128> Consts(VecLen);
391 bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
392 if (AllConst) {
393 ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
394 (Constant**)Consts.end());
395 Constant *CV = ConstantVector::get(Tmp);
396 unsigned Align = HwLen;
397 SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
398 return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
399 MachinePointerInfo::getConstantPool(MF), Align);
402 // A special case is a situation where the vector is built entirely from
403 // elements extracted from another vector. This could be done via a shuffle
404 // more efficiently, but typically, the size of the source vector will not
405 // match the size of the vector being built (which precludes the use of a
406 // shuffle directly).
407 // This only handles a single source vector, and the vector being built
408 // should be of a sub-vector type of the source vector type.
409 auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
410 SmallVectorImpl<int> &SrcIdx) {
411 SDValue Vec;
412 for (SDValue V : Values) {
413 if (isUndef(V)) {
414 SrcIdx.push_back(-1);
415 continue;
417 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
418 return false;
419 // All extracts should come from the same vector.
420 SDValue T = V.getOperand(0);
421 if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
422 return false;
423 Vec = T;
424 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
425 if (C == nullptr)
426 return false;
427 int I = C->getSExtValue();
428 assert(I >= 0 && "Negative element index");
429 SrcIdx.push_back(I);
431 SrcVec = Vec;
432 return true;
435 SmallVector<int,128> ExtIdx;
436 SDValue ExtVec;
437 if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
438 MVT ExtTy = ty(ExtVec);
439 unsigned ExtLen = ExtTy.getVectorNumElements();
440 if (ExtLen == VecLen || ExtLen == 2*VecLen) {
441 // Construct a new shuffle mask that will produce a vector with the same
442 // number of elements as the input vector, and such that the vector we
443 // want will be the initial subvector of it.
444 SmallVector<int,128> Mask;
445 BitVector Used(ExtLen);
447 for (int M : ExtIdx) {
448 Mask.push_back(M);
449 if (M >= 0)
450 Used.set(M);
452 // Fill the rest of the mask with the unused elements of ExtVec in hopes
453 // that it will result in a permutation of ExtVec's elements. It's still
454 // fine if it doesn't (e.g. if undefs are present, or elements are
455 // repeated), but permutations can always be done efficiently via vdelta
456 // and vrdelta.
457 for (unsigned I = 0; I != ExtLen; ++I) {
458 if (Mask.size() == ExtLen)
459 break;
460 if (!Used.test(I))
461 Mask.push_back(I);
464 SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
465 DAG.getUNDEF(ExtTy), Mask);
466 if (ExtLen == VecLen)
467 return S;
468 return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
472 // Construct two halves in parallel, then or them together.
473 assert(4*Words.size() == Subtarget.getVectorLength());
474 SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
475 SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
476 SDValue S = DAG.getConstant(4, dl, MVT::i32);
477 for (unsigned i = 0; i != NumWords/2; ++i) {
478 SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
479 {HalfV0, Words[i]});
480 SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
481 {HalfV1, Words[i+NumWords/2]});
482 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
483 HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
486 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
487 {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
488 SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
489 return DstV;
492 SDValue
493 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
494 unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
495 MVT PredTy = ty(PredV);
496 unsigned HwLen = Subtarget.getVectorLength();
497 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
499 if (Subtarget.isHVXVectorType(PredTy, true)) {
500 // Move the vector predicate SubV to a vector register, and scale it
501 // down to match the representation (bytes per type element) that VecV
502 // uses. The scaling down will pick every 2nd or 4th (every Scale-th
503 // in general) element and put them at the front of the resulting
504 // vector. This subvector will then be inserted into the Q2V of VecV.
505 // To avoid having an operation that generates an illegal type (short
506 // vector), generate a full size vector.
508 SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
509 SmallVector<int,128> Mask(HwLen);
510 // Scale = BitBytes(PredV) / Given BitBytes.
511 unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
512 unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
514 for (unsigned i = 0; i != HwLen; ++i) {
515 unsigned Num = i % Scale;
516 unsigned Off = i / Scale;
517 Mask[BlockLen*Num + Off] = i;
519 SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
520 if (!ZeroFill)
521 return S;
522 // Fill the bytes beyond BlockLen with 0s.
523 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
524 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
525 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
526 SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
527 return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
530 // Make sure that this is a valid scalar predicate.
531 assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
533 unsigned Bytes = 8 / PredTy.getVectorNumElements();
534 SmallVector<SDValue,4> Words[2];
535 unsigned IdxW = 0;
537 auto Lo32 = [&DAG, &dl] (SDValue P) {
538 return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
540 auto Hi32 = [&DAG, &dl] (SDValue P) {
541 return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
544 SDValue W0 = isUndef(PredV)
545 ? DAG.getUNDEF(MVT::i64)
546 : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
547 Words[IdxW].push_back(Hi32(W0));
548 Words[IdxW].push_back(Lo32(W0));
550 while (Bytes < BitBytes) {
551 IdxW ^= 1;
552 Words[IdxW].clear();
554 if (Bytes < 4) {
555 for (const SDValue &W : Words[IdxW ^ 1]) {
556 SDValue T = expandPredicate(W, dl, DAG);
557 Words[IdxW].push_back(Hi32(T));
558 Words[IdxW].push_back(Lo32(T));
560 } else {
561 for (const SDValue &W : Words[IdxW ^ 1]) {
562 Words[IdxW].push_back(W);
563 Words[IdxW].push_back(W);
566 Bytes *= 2;
569 assert(Bytes == BitBytes);
571 SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
572 SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
573 for (const SDValue &W : Words[IdxW]) {
574 Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
575 Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
578 return Vec;
581 SDValue
582 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
583 const SDLoc &dl, MVT VecTy,
584 SelectionDAG &DAG) const {
585 // Construct a vector V of bytes, such that a comparison V >u 0 would
586 // produce the required vector predicate.
587 unsigned VecLen = Values.size();
588 unsigned HwLen = Subtarget.getVectorLength();
589 assert(VecLen <= HwLen || VecLen == 8*HwLen);
590 SmallVector<SDValue,128> Bytes;
591 bool AllT = true, AllF = true;
593 auto IsTrue = [] (SDValue V) {
594 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
595 return !N->isNullValue();
596 return false;
598 auto IsFalse = [] (SDValue V) {
599 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
600 return N->isNullValue();
601 return false;
604 if (VecLen <= HwLen) {
605 // In the hardware, each bit of a vector predicate corresponds to a byte
606 // of a vector register. Calculate how many bytes does a bit of VecTy
607 // correspond to.
608 assert(HwLen % VecLen == 0);
609 unsigned BitBytes = HwLen / VecLen;
610 for (SDValue V : Values) {
611 AllT &= IsTrue(V);
612 AllF &= IsFalse(V);
614 SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
615 : DAG.getUNDEF(MVT::i8);
616 for (unsigned B = 0; B != BitBytes; ++B)
617 Bytes.push_back(Ext);
619 } else {
620 // There are as many i1 values, as there are bits in a vector register.
621 // Divide the values into groups of 8 and check that each group consists
622 // of the same value (ignoring undefs).
623 for (unsigned I = 0; I != VecLen; I += 8) {
624 unsigned B = 0;
625 // Find the first non-undef value in this group.
626 for (; B != 8; ++B) {
627 if (!Values[I+B].isUndef())
628 break;
630 SDValue F = Values[I+B];
631 AllT &= IsTrue(F);
632 AllF &= IsFalse(F);
634 SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
635 : DAG.getUNDEF(MVT::i8);
636 Bytes.push_back(Ext);
637 // Verify that the rest of values in the group are the same as the
638 // first.
639 for (; B != 8; ++B)
640 assert(Values[I+B].isUndef() || Values[I+B] == F);
644 if (AllT)
645 return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
646 if (AllF)
647 return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
649 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
650 SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
651 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
654 SDValue
655 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
656 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
657 MVT ElemTy = ty(VecV).getVectorElementType();
659 unsigned ElemWidth = ElemTy.getSizeInBits();
660 assert(ElemWidth >= 8 && ElemWidth <= 32);
661 (void)ElemWidth;
663 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
664 SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
665 {VecV, ByteIdx});
666 if (ElemTy == MVT::i32)
667 return ExWord;
669 // Have an extracted word, need to extract the smaller element out of it.
670 // 1. Extract the bits of (the original) IdxV that correspond to the index
671 // of the desired element in the 32-bit word.
672 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
673 // 2. Extract the element from the word.
674 SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
675 return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
678 SDValue
679 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
680 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
681 // Implement other return types if necessary.
682 assert(ResTy == MVT::i1);
684 unsigned HwLen = Subtarget.getVectorLength();
685 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
686 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
688 unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
689 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
690 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
692 SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
693 SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
694 return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
697 SDValue
698 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
699 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
700 MVT ElemTy = ty(VecV).getVectorElementType();
702 unsigned ElemWidth = ElemTy.getSizeInBits();
703 assert(ElemWidth >= 8 && ElemWidth <= 32);
704 (void)ElemWidth;
706 auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
707 SDValue ByteIdxV) {
708 MVT VecTy = ty(VecV);
709 unsigned HwLen = Subtarget.getVectorLength();
710 SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
711 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
712 SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
713 SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
714 SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
715 {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
716 SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
717 return TorV;
720 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
721 if (ElemTy == MVT::i32)
722 return InsertWord(VecV, ValV, ByteIdx);
724 // If this is not inserting a 32-bit word, convert it into such a thing.
725 // 1. Extract the existing word from the target vector.
726 SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
727 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
728 SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
729 dl, MVT::i32, DAG);
731 // 2. Treating the extracted word as a 32-bit vector, insert the given
732 // value into it.
733 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
734 MVT SubVecTy = tyVector(ty(Ext), ElemTy);
735 SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
736 ValV, SubIdx, dl, ElemTy, DAG);
738 // 3. Insert the 32-bit word back into the original vector.
739 return InsertWord(VecV, Ins, ByteIdx);
742 SDValue
743 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
744 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
745 unsigned HwLen = Subtarget.getVectorLength();
746 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
747 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
749 unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
750 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
751 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
752 ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
754 SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
755 return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
758 SDValue
759 HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
760 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
761 MVT VecTy = ty(VecV);
762 unsigned HwLen = Subtarget.getVectorLength();
763 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
764 MVT ElemTy = VecTy.getVectorElementType();
765 unsigned ElemWidth = ElemTy.getSizeInBits();
767 // If the source vector is a vector pair, get the single vector containing
768 // the subvector of interest. The subvector will never overlap two single
769 // vectors.
770 if (isHvxPairTy(VecTy)) {
771 unsigned SubIdx;
772 if (Idx * ElemWidth >= 8*HwLen) {
773 SubIdx = Hexagon::vsub_hi;
774 Idx -= VecTy.getVectorNumElements() / 2;
775 } else {
776 SubIdx = Hexagon::vsub_lo;
778 VecTy = typeSplit(VecTy).first;
779 VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
780 if (VecTy == ResTy)
781 return VecV;
784 // The only meaningful subvectors of a single HVX vector are those that
785 // fit in a scalar register.
786 assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
788 MVT WordTy = tyVector(VecTy, MVT::i32);
789 SDValue WordVec = DAG.getBitcast(WordTy, VecV);
790 unsigned WordIdx = (Idx*ElemWidth) / 32;
792 SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
793 SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
794 if (ResTy.getSizeInBits() == 32)
795 return DAG.getBitcast(ResTy, W0);
797 SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
798 SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
799 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
800 return DAG.getBitcast(ResTy, WW);
803 SDValue
804 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
805 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
806 MVT VecTy = ty(VecV);
807 unsigned HwLen = Subtarget.getVectorLength();
808 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
809 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
810 // IdxV is required to be a constant.
811 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
813 unsigned ResLen = ResTy.getVectorNumElements();
814 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
815 unsigned Offset = Idx * BitBytes;
816 SDValue Undef = DAG.getUNDEF(ByteTy);
817 SmallVector<int,128> Mask;
819 if (Subtarget.isHVXVectorType(ResTy, true)) {
820 // Converting between two vector predicates. Since the result is shorter
821 // than the source, it will correspond to a vector predicate with the
822 // relevant bits replicated. The replication count is the ratio of the
823 // source and target vector lengths.
824 unsigned Rep = VecTy.getVectorNumElements() / ResLen;
825 assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
826 for (unsigned i = 0; i != HwLen/Rep; ++i) {
827 for (unsigned j = 0; j != Rep; ++j)
828 Mask.push_back(i + Offset);
830 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
831 return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
834 // Converting between a vector predicate and a scalar predicate. In the
835 // vector predicate, a group of BitBytes bits will correspond to a single
836 // i1 element of the source vector type. Those bits will all have the same
837 // value. The same will be true for ByteVec, where each byte corresponds
838 // to a bit in the vector predicate.
839 // The algorithm is to traverse the ByteVec, going over the i1 values from
840 // the source vector, and generate the corresponding representation in an
841 // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
842 // elements so that the interesting 8 bytes will be in the low end of the
843 // vector.
844 unsigned Rep = 8 / ResLen;
845 // Make sure the output fill the entire vector register, so repeat the
846 // 8-byte groups as many times as necessary.
847 for (unsigned r = 0; r != HwLen/ResLen; ++r) {
848 // This will generate the indexes of the 8 interesting bytes.
849 for (unsigned i = 0; i != ResLen; ++i) {
850 for (unsigned j = 0; j != Rep; ++j)
851 Mask.push_back(Offset + i*BitBytes);
855 SDValue Zero = getZero(dl, MVT::i32, DAG);
856 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
857 // Combine the two low words from ShuffV into a v8i8, and byte-compare
858 // them against 0.
859 SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
860 SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
861 {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
862 SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
863 return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
864 {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
867 SDValue
868 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
869 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
870 MVT VecTy = ty(VecV);
871 MVT SubTy = ty(SubV);
872 unsigned HwLen = Subtarget.getVectorLength();
873 MVT ElemTy = VecTy.getVectorElementType();
874 unsigned ElemWidth = ElemTy.getSizeInBits();
876 bool IsPair = isHvxPairTy(VecTy);
877 MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
878 // The two single vectors that VecV consists of, if it's a pair.
879 SDValue V0, V1;
880 SDValue SingleV = VecV;
881 SDValue PickHi;
883 if (IsPair) {
884 V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
885 V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
887 SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
888 dl, MVT::i32);
889 PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
890 if (isHvxSingleTy(SubTy)) {
891 if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
892 unsigned Idx = CN->getZExtValue();
893 assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
894 unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
895 return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
897 // If IdxV is not a constant, generate the two variants: with the
898 // SubV as the high and as the low subregister, and select the right
899 // pair based on the IdxV.
900 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
901 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
902 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
904 // The subvector being inserted must be entirely contained in one of
905 // the vectors V0 or V1. Set SingleV to the correct one, and update
906 // IdxV to be the index relative to the beginning of that vector.
907 SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
908 IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
909 SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
912 // The only meaningful subvectors of a single HVX vector are those that
913 // fit in a scalar register.
914 assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
915 // Convert IdxV to be index in bytes.
916 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
917 if (!IdxN || !IdxN->isNullValue()) {
918 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
919 DAG.getConstant(ElemWidth/8, dl, MVT::i32));
920 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
922 // When inserting a single word, the rotation back to the original position
923 // would be by HwLen-Idx, but if two words are inserted, it will need to be
924 // by (HwLen-4)-Idx.
925 unsigned RolBase = HwLen;
926 if (VecTy.getSizeInBits() == 32) {
927 SDValue V = DAG.getBitcast(MVT::i32, SubV);
928 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
929 } else {
930 SDValue V = DAG.getBitcast(MVT::i64, SubV);
931 SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
932 SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
933 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
934 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
935 DAG.getConstant(4, dl, MVT::i32));
936 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
937 RolBase = HwLen-4;
939 // If the vector wasn't ror'ed, don't ror it back.
940 if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
941 SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
942 DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
943 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
946 if (IsPair) {
947 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
948 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
949 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
951 return SingleV;
954 SDValue
955 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
956 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
957 MVT VecTy = ty(VecV);
958 MVT SubTy = ty(SubV);
959 assert(Subtarget.isHVXVectorType(VecTy, true));
960 // VecV is an HVX vector predicate. SubV may be either an HVX vector
961 // predicate as well, or it can be a scalar predicate.
963 unsigned VecLen = VecTy.getVectorNumElements();
964 unsigned HwLen = Subtarget.getVectorLength();
965 assert(HwLen % VecLen == 0 && "Unexpected vector type");
967 unsigned Scale = VecLen / SubTy.getVectorNumElements();
968 unsigned BitBytes = HwLen / VecLen;
969 unsigned BlockLen = HwLen / Scale;
971 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
972 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
973 SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
974 SDValue ByteIdx;
976 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
977 if (!IdxN || !IdxN->isNullValue()) {
978 ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
979 DAG.getConstant(BitBytes, dl, MVT::i32));
980 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
983 // ByteVec is the target vector VecV rotated in such a way that the
984 // subvector should be inserted at index 0. Generate a predicate mask
985 // and use vmux to do the insertion.
986 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
987 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
988 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
989 ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
990 // Rotate ByteVec back, and convert to a vector predicate.
991 if (!IdxN || !IdxN->isNullValue()) {
992 SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
993 SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
994 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
996 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
999 SDValue
1000 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1001 MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1002 // Sign- and any-extending of a vector predicate to a vector register is
1003 // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1004 // a vector of 1s (where the 1s are of type matching the vector type).
1005 assert(Subtarget.isHVXVectorType(ResTy));
1006 if (!ZeroExt)
1007 return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1009 assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1010 SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
1011 DAG.getConstant(1, dl, MVT::i32));
1012 SDValue False = getZero(dl, ResTy, DAG);
1013 return DAG.getSelect(dl, ResTy, VecV, True, False);
1016 SDValue
1017 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1018 const {
1019 const SDLoc &dl(Op);
1020 MVT VecTy = ty(Op);
1022 unsigned Size = Op.getNumOperands();
1023 SmallVector<SDValue,128> Ops;
1024 for (unsigned i = 0; i != Size; ++i)
1025 Ops.push_back(Op.getOperand(i));
1027 if (VecTy.getVectorElementType() == MVT::i1)
1028 return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1030 if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1031 ArrayRef<SDValue> A(Ops);
1032 MVT SingleTy = typeSplit(VecTy).first;
1033 SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1034 SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1035 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1038 return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1041 SDValue
1042 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1043 const {
1044 // Vector concatenation of two integer (non-bool) vectors does not need
1045 // special lowering. Custom-lower concats of bool vectors and expand
1046 // concats of more than 2 vectors.
1047 MVT VecTy = ty(Op);
1048 const SDLoc &dl(Op);
1049 unsigned NumOp = Op.getNumOperands();
1050 if (VecTy.getVectorElementType() != MVT::i1) {
1051 if (NumOp == 2)
1052 return Op;
1053 // Expand the other cases into a build-vector.
1054 SmallVector<SDValue,8> Elems;
1055 for (SDValue V : Op.getNode()->ops())
1056 DAG.ExtractVectorElements(V, Elems);
1057 // A vector of i16 will be broken up into a build_vector of i16's.
1058 // This is a problem, since at the time of operation legalization,
1059 // all operations are expected to be type-legalized, and i16 is not
1060 // a legal type. If any of the extracted elements is not of a valid
1061 // type, sign-extend it to a valid one.
1062 for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1063 SDValue V = Elems[i];
1064 MVT Ty = ty(V);
1065 if (!isTypeLegal(Ty)) {
1066 EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
1067 if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1068 Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1069 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1070 V.getOperand(0), V.getOperand(1)),
1071 DAG.getValueType(Ty));
1072 continue;
1074 // A few less complicated cases.
1075 if (V.getOpcode() == ISD::Constant)
1076 Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1077 else if (V.isUndef())
1078 Elems[i] = DAG.getUNDEF(NTy);
1079 else
1080 llvm_unreachable("Unexpected vector element");
1083 return DAG.getBuildVector(VecTy, dl, Elems);
1086 assert(VecTy.getVectorElementType() == MVT::i1);
1087 unsigned HwLen = Subtarget.getVectorLength();
1088 assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1090 SDValue Op0 = Op.getOperand(0);
1092 // If the operands are HVX types (i.e. not scalar predicates), then
1093 // defer the concatenation, and create QCAT instead.
1094 if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1095 if (NumOp == 2)
1096 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1098 ArrayRef<SDUse> U(Op.getNode()->ops());
1099 SmallVector<SDValue,4> SV(U.begin(), U.end());
1100 ArrayRef<SDValue> Ops(SV);
1102 MVT HalfTy = typeSplit(VecTy).first;
1103 SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1104 Ops.take_front(NumOp/2));
1105 SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1106 Ops.take_back(NumOp/2));
1107 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1110 // Count how many bytes (in a vector register) each bit in VecTy
1111 // corresponds to.
1112 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1114 SmallVector<SDValue,8> Prefixes;
1115 for (SDValue V : Op.getNode()->op_values()) {
1116 SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1117 Prefixes.push_back(P);
1120 unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1121 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1122 SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1123 SDValue Res = getZero(dl, ByteTy, DAG);
1124 for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1125 Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1126 Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1128 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1131 SDValue
1132 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1133 const {
1134 // Change the type of the extracted element to i32.
1135 SDValue VecV = Op.getOperand(0);
1136 MVT ElemTy = ty(VecV).getVectorElementType();
1137 const SDLoc &dl(Op);
1138 SDValue IdxV = Op.getOperand(1);
1139 if (ElemTy == MVT::i1)
1140 return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1142 return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1145 SDValue
1146 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1147 const {
1148 const SDLoc &dl(Op);
1149 SDValue VecV = Op.getOperand(0);
1150 SDValue ValV = Op.getOperand(1);
1151 SDValue IdxV = Op.getOperand(2);
1152 MVT ElemTy = ty(VecV).getVectorElementType();
1153 if (ElemTy == MVT::i1)
1154 return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1156 return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1159 SDValue
1160 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1161 const {
1162 SDValue SrcV = Op.getOperand(0);
1163 MVT SrcTy = ty(SrcV);
1164 MVT DstTy = ty(Op);
1165 SDValue IdxV = Op.getOperand(1);
1166 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1167 assert(Idx % DstTy.getVectorNumElements() == 0);
1168 (void)Idx;
1169 const SDLoc &dl(Op);
1171 MVT ElemTy = SrcTy.getVectorElementType();
1172 if (ElemTy == MVT::i1)
1173 return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1175 return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
1178 SDValue
1179 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1180 const {
1181 // Idx does not need to be a constant.
1182 SDValue VecV = Op.getOperand(0);
1183 SDValue ValV = Op.getOperand(1);
1184 SDValue IdxV = Op.getOperand(2);
1186 const SDLoc &dl(Op);
1187 MVT VecTy = ty(VecV);
1188 MVT ElemTy = VecTy.getVectorElementType();
1189 if (ElemTy == MVT::i1)
1190 return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1192 return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1195 SDValue
1196 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1197 // Lower any-extends of boolean vectors to sign-extends, since they
1198 // translate directly to Q2V. Zero-extending could also be done equally
1199 // fast, but Q2V is used/recognized in more places.
1200 // For all other vectors, use zero-extend.
1201 MVT ResTy = ty(Op);
1202 SDValue InpV = Op.getOperand(0);
1203 MVT ElemTy = ty(InpV).getVectorElementType();
1204 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1205 return LowerHvxSignExt(Op, DAG);
1206 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1209 SDValue
1210 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1211 MVT ResTy = ty(Op);
1212 SDValue InpV = Op.getOperand(0);
1213 MVT ElemTy = ty(InpV).getVectorElementType();
1214 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1215 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1216 return Op;
1219 SDValue
1220 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1221 MVT ResTy = ty(Op);
1222 SDValue InpV = Op.getOperand(0);
1223 MVT ElemTy = ty(InpV).getVectorElementType();
1224 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1225 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1226 return Op;
1229 SDValue
1230 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1231 // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1232 // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1233 const SDLoc &dl(Op);
1234 MVT ResTy = ty(Op);
1235 SDValue InpV = Op.getOperand(0);
1236 assert(ResTy == ty(InpV));
1238 // Calculate the vectors of 1 and bitwidth(x).
1239 MVT ElemTy = ty(InpV).getVectorElementType();
1240 unsigned ElemWidth = ElemTy.getSizeInBits();
1241 // Using uint64_t because a shift by 32 can happen.
1242 uint64_t Splat1 = 0, SplatW = 0;
1243 assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32);
1244 for (unsigned i = 0; i != 32/ElemWidth; ++i) {
1245 Splat1 = (Splat1 << ElemWidth) | 1;
1246 SplatW = (SplatW << ElemWidth) | ElemWidth;
1248 SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1249 DAG.getConstant(uint32_t(Splat1), dl, MVT::i32));
1250 SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1251 DAG.getConstant(uint32_t(SplatW), dl, MVT::i32));
1252 SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1253 DAG.getConstant(-1, dl, MVT::i32));
1254 // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1255 // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1256 // it separately in custom combine or selection).
1257 SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1258 {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1259 DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1260 return DAG.getNode(ISD::SUB, dl, ResTy,
1261 {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1264 SDValue
1265 HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
1266 MVT ResTy = ty(Op);
1267 assert(ResTy.isVector() && isHvxSingleTy(ResTy));
1268 const SDLoc &dl(Op);
1269 SmallVector<int,256> ShuffMask;
1271 MVT ElemTy = ResTy.getVectorElementType();
1272 unsigned VecLen = ResTy.getVectorNumElements();
1273 SDValue Vs = Op.getOperand(0);
1274 SDValue Vt = Op.getOperand(1);
1276 switch (ElemTy.SimpleTy) {
1277 case MVT::i8: {
1278 // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1279 // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1280 // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1281 MVT ExtTy = typeExtElem(ResTy, 2);
1282 unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
1283 : Hexagon::V6_vmpyhv;
1284 SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1286 // Discard high halves of the resulting values, collect the low halves.
1287 for (unsigned I = 0; I < VecLen; I += 2) {
1288 ShuffMask.push_back(I); // Pick even element.
1289 ShuffMask.push_back(I+VecLen); // Pick odd element.
1291 VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1292 SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1293 return DAG.getBitcast(ResTy, BS);
1295 case MVT::i16:
1296 // For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
1297 // (There is also V6_vmpyhv, which behaves in an analogous way to
1298 // V6_vmpybv.)
1299 return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
1300 case MVT::i32: {
1301 // Use the following sequence for signed word multiply:
1302 // T0 = V6_vmpyiowh Vs, Vt
1303 // T1 = V6_vaslw T0, 16
1304 // T2 = V6_vmpyiewuh_acc T1, Vs, Vt
1305 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1306 SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
1307 SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
1308 SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1309 {T1, Vs, Vt}, DAG);
1310 return T2;
1312 default:
1313 break;
1315 return SDValue();
1318 SDValue
1319 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1320 MVT ResTy = ty(Op);
1321 assert(ResTy.isVector());
1322 const SDLoc &dl(Op);
1323 SmallVector<int,256> ShuffMask;
1325 MVT ElemTy = ResTy.getVectorElementType();
1326 unsigned VecLen = ResTy.getVectorNumElements();
1327 SDValue Vs = Op.getOperand(0);
1328 SDValue Vt = Op.getOperand(1);
1329 bool IsSigned = Op.getOpcode() == ISD::MULHS;
1331 if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
1332 // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1333 // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1334 // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1335 // For i16, use V6_vmpyhv, which behaves in an analogous way to
1336 // V6_vmpybv: results Lo and Hi are products of even/odd elements
1337 // respectively.
1338 MVT ExtTy = typeExtElem(ResTy, 2);
1339 unsigned MpyOpc = ElemTy == MVT::i8
1340 ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
1341 : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
1342 SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1344 // Discard low halves of the resulting values, collect the high halves.
1345 for (unsigned I = 0; I < VecLen; I += 2) {
1346 ShuffMask.push_back(I+1); // Pick even element.
1347 ShuffMask.push_back(I+VecLen+1); // Pick odd element.
1349 VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1350 SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1351 return DAG.getBitcast(ResTy, BS);
1354 assert(ElemTy == MVT::i32);
1355 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1357 if (IsSigned) {
1358 // mulhs(Vs,Vt) =
1359 // = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1360 // = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
1361 // + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1362 // = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
1363 // + Lo(Vs) *us Vt] >> 32
1364 // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
1365 // anything, so it cannot produce any carry over to higher bits),
1366 // so everything in [] can be shifted by 16 without loss of precision.
1367 // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
1368 // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
1369 // Denote Hi(Vs) = Vs':
1370 // = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
1371 // = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
1372 SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
1373 // Get Vs':
1374 SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
1375 SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1376 {T0, S0, Vt}, DAG);
1377 // Shift by 16:
1378 SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
1379 // Get Vs'*Hi(Vt):
1380 SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
1381 // Add:
1382 SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
1383 return T3;
1386 // Unsigned mulhw. (Would expansion using signed mulhw be better?)
1388 auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
1389 return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
1391 auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
1392 return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
1395 MVT PairTy = typeJoin({ResTy, ResTy});
1396 SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
1397 {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
1398 // Multiply-unsigned halfwords:
1399 // LoVec = Vs.uh[2i] * Vt.uh[2i],
1400 // HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
1401 SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
1402 // The low halves in the LoVec of the pair can be discarded. They are
1403 // not added to anything (in the full-precision product), so they cannot
1404 // produce a carry into the higher bits.
1405 SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
1406 // Swap low and high halves in Vt, and do the halfword multiplication
1407 // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
1408 SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
1409 SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
1410 // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
1411 // These products are words, but cannot be added directly because the
1412 // sums could overflow. Add these products, by halfwords, where each sum
1413 // of a pair of halfwords gives a word.
1414 SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
1415 {LoVec(T2), HiVec(T2)}, DAG);
1416 // Add the high halfwords from the products of the low halfwords.
1417 SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
1418 SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
1419 SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
1420 SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
1421 return T7;
1424 SDValue
1425 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
1426 // Sign- and zero-extends are legal.
1427 assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
1428 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
1429 Op.getOperand(0));
1432 SDValue
1433 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
1434 if (SDValue S = getVectorShiftByInt(Op, DAG))
1435 return S;
1436 return Op;
1439 SDValue
1440 HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
1441 assert(!Op.isMachineOpcode());
1442 SmallVector<SDValue,2> OpsL, OpsH;
1443 const SDLoc &dl(Op);
1445 auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
1446 MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
1447 SDValue TV = DAG.getValueType(Ty);
1448 return std::make_pair(TV, TV);
1451 for (SDValue A : Op.getNode()->ops()) {
1452 VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
1453 ? opSplit(A, dl, DAG)
1454 : std::make_pair(A, A);
1455 // Special case for type operand.
1456 if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1457 if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
1458 P = SplitVTNode(N);
1460 OpsL.push_back(P.first);
1461 OpsH.push_back(P.second);
1464 MVT ResTy = ty(Op);
1465 MVT HalfTy = typeSplit(ResTy).first;
1466 SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
1467 SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
1468 SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
1469 return S;
1472 SDValue
1473 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
1474 LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode());
1475 assert(BN->isUnindexed());
1476 MVT MemTy = BN->getMemoryVT().getSimpleVT();
1477 if (!isHvxPairTy(MemTy))
1478 return Op;
1480 const SDLoc &dl(Op);
1481 unsigned HwLen = Subtarget.getVectorLength();
1482 MVT SingleTy = typeSplit(MemTy).first;
1483 SDValue Chain = BN->getChain();
1484 SDValue Base0 = BN->getBasePtr();
1485 SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl);
1487 MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
1488 if (MachineMemOperand *MMO = BN->getMemOperand()) {
1489 MachineFunction &MF = DAG.getMachineFunction();
1490 MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
1491 MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
1494 unsigned MemOpc = BN->getOpcode();
1495 SDValue NewOp;
1497 if (MemOpc == ISD::LOAD) {
1498 SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
1499 SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
1500 NewOp = DAG.getMergeValues(
1501 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
1502 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1503 Load0.getValue(1), Load1.getValue(1)) }, dl);
1504 } else {
1505 assert(MemOpc == ISD::STORE);
1506 VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
1507 SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
1508 SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
1509 NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
1512 return NewOp;
1515 SDValue
1516 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
1517 unsigned Opc = Op.getOpcode();
1518 bool IsPairOp = isHvxPairTy(ty(Op)) ||
1519 llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
1520 return isHvxPairTy(ty(V));
1523 if (IsPairOp) {
1524 switch (Opc) {
1525 default:
1526 break;
1527 case ISD::LOAD:
1528 case ISD::STORE:
1529 return SplitHvxMemOp(Op, DAG);
1530 case ISD::CTPOP:
1531 case ISD::CTLZ:
1532 case ISD::CTTZ:
1533 case ISD::MUL:
1534 case ISD::MULHS:
1535 case ISD::MULHU:
1536 case ISD::AND:
1537 case ISD::OR:
1538 case ISD::XOR:
1539 case ISD::SRA:
1540 case ISD::SHL:
1541 case ISD::SRL:
1542 case ISD::SETCC:
1543 case ISD::VSELECT:
1544 case ISD::SIGN_EXTEND_INREG:
1545 return SplitHvxPairOp(Op, DAG);
1549 switch (Opc) {
1550 default:
1551 break;
1552 case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG);
1553 case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG);
1554 case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG);
1555 case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG);
1556 case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG);
1557 case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG);
1559 case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG);
1560 case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG);
1561 case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG);
1562 case ISD::CTTZ: return LowerHvxCttz(Op, DAG);
1563 case ISD::SRA:
1564 case ISD::SHL:
1565 case ISD::SRL: return LowerHvxShift(Op, DAG);
1566 case ISD::MUL: return LowerHvxMul(Op, DAG);
1567 case ISD::MULHS:
1568 case ISD::MULHU: return LowerHvxMulh(Op, DAG);
1569 case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
1570 case ISD::SETCC:
1571 case ISD::INTRINSIC_VOID: return Op;
1572 // Unaligned loads will be handled by the default lowering.
1573 case ISD::LOAD: return SDValue();
1575 #ifndef NDEBUG
1576 Op.dumpr(&DAG);
1577 #endif
1578 llvm_unreachable("Unhandled HVX operation");
1581 bool
1582 HexagonTargetLowering::isHvxOperation(SDValue Op) const {
1583 // If the type of the result, or any operand type are HVX vector types,
1584 // this is an HVX operation.
1585 return Subtarget.isHVXVectorType(ty(Op), true) ||
1586 llvm::any_of(Op.getNode()->ops(),
1587 [this] (SDValue V) {
1588 return Subtarget.isHVXVectorType(ty(V), true);