1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "HexagonInstrInfo.h"
15 #include "HexagonFrameLowering.h"
16 #include "HexagonHazardRecognizer.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
64 #define DEBUG_TYPE "hexagon-instrinfo"
66 #define GET_INSTRINFO_CTOR_DTOR
67 #define GET_INSTRMAP_INFO
68 #include "HexagonDepTimingClasses.h"
69 #include "HexagonGenDFAPacketizer.inc"
70 #include "HexagonGenInstrInfo.inc"
72 cl::opt
<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden
,
73 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
74 "packetization boundary."));
76 static cl::opt
<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
77 cl::Hidden
, cl::init(true), cl::desc("Enable branch prediction"));
79 static cl::opt
<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
80 cl::Hidden
, cl::ZeroOrMore
, cl::init(false),
81 cl::desc("Disable schedule adjustment for new value stores."));
83 static cl::opt
<bool> EnableTimingClassLatency(
84 "enable-timing-class-latency", cl::Hidden
, cl::init(false),
85 cl::desc("Enable timing class latency"));
87 static cl::opt
<bool> EnableALUForwarding(
88 "enable-alu-forwarding", cl::Hidden
, cl::init(true),
89 cl::desc("Enable vec alu forwarding"));
91 static cl::opt
<bool> EnableACCForwarding(
92 "enable-acc-forwarding", cl::Hidden
, cl::init(true),
93 cl::desc("Enable vec acc forwarding"));
95 static cl::opt
<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
96 cl::init(true), cl::Hidden
, cl::ZeroOrMore
, cl::desc("branch relax asm"));
98 static cl::opt
<bool> UseDFAHazardRec("dfa-hazard-rec",
99 cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
100 cl::desc("Use the DFA based hazard recognizer."));
102 /// Constants for Hexagon instructions.
103 const int Hexagon_MEMW_OFFSET_MAX
= 4095;
104 const int Hexagon_MEMW_OFFSET_MIN
= -4096;
105 const int Hexagon_MEMD_OFFSET_MAX
= 8191;
106 const int Hexagon_MEMD_OFFSET_MIN
= -8192;
107 const int Hexagon_MEMH_OFFSET_MAX
= 2047;
108 const int Hexagon_MEMH_OFFSET_MIN
= -2048;
109 const int Hexagon_MEMB_OFFSET_MAX
= 1023;
110 const int Hexagon_MEMB_OFFSET_MIN
= -1024;
111 const int Hexagon_ADDI_OFFSET_MAX
= 32767;
112 const int Hexagon_ADDI_OFFSET_MIN
= -32768;
114 // Pin the vtable to this file.
115 void HexagonInstrInfo::anchor() {}
117 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget
&ST
)
118 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN
, Hexagon::ADJCALLSTACKUP
),
121 static bool isIntRegForSubInst(unsigned Reg
) {
122 return (Reg
>= Hexagon::R0
&& Reg
<= Hexagon::R7
) ||
123 (Reg
>= Hexagon::R16
&& Reg
<= Hexagon::R23
);
126 static bool isDblRegForSubInst(unsigned Reg
, const HexagonRegisterInfo
&HRI
) {
127 return isIntRegForSubInst(HRI
.getSubReg(Reg
, Hexagon::isub_lo
)) &&
128 isIntRegForSubInst(HRI
.getSubReg(Reg
, Hexagon::isub_hi
));
131 /// Calculate number of instructions excluding the debug instructions.
132 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB
,
133 MachineBasicBlock::const_instr_iterator MIE
) {
135 for (; MIB
!= MIE
; ++MIB
) {
136 if (!MIB
->isDebugInstr())
142 /// Find the hardware loop instruction used to set-up the specified loop.
143 /// On Hexagon, we have two instructions used to set-up the hardware loop
144 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
145 /// to indicate the end of a loop.
146 MachineInstr
*HexagonInstrInfo::findLoopInstr(MachineBasicBlock
*BB
,
147 unsigned EndLoopOp
, MachineBasicBlock
*TargetBB
,
148 SmallPtrSet
<MachineBasicBlock
*, 8> &Visited
) const {
151 if (EndLoopOp
== Hexagon::ENDLOOP0
) {
152 LOOPi
= Hexagon::J2_loop0i
;
153 LOOPr
= Hexagon::J2_loop0r
;
154 } else { // EndLoopOp == Hexagon::EndLOOP1
155 LOOPi
= Hexagon::J2_loop1i
;
156 LOOPr
= Hexagon::J2_loop1r
;
159 // The loop set-up instruction will be in a predecessor block
160 for (MachineBasicBlock
*PB
: BB
->predecessors()) {
161 // If this has been visited, already skip it.
162 if (!Visited
.insert(PB
).second
)
166 for (auto I
= PB
->instr_rbegin(), E
= PB
->instr_rend(); I
!= E
; ++I
) {
167 unsigned Opc
= I
->getOpcode();
168 if (Opc
== LOOPi
|| Opc
== LOOPr
)
170 // We've reached a different loop, which means the loop01 has been
172 if (Opc
== EndLoopOp
&& I
->getOperand(0).getMBB() != TargetBB
)
175 // Check the predecessors for the LOOP instruction.
176 if (MachineInstr
*Loop
= findLoopInstr(PB
, EndLoopOp
, TargetBB
, Visited
))
182 /// Gather register def/uses from MI.
183 /// This treats possible (predicated) defs as actually happening ones
184 /// (conservatively).
185 static inline void parseOperands(const MachineInstr
&MI
,
186 SmallVector
<unsigned, 4> &Defs
, SmallVector
<unsigned, 8> &Uses
) {
190 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
191 const MachineOperand
&MO
= MI
.getOperand(i
);
196 unsigned Reg
= MO
.getReg();
201 Uses
.push_back(MO
.getReg());
204 Defs
.push_back(MO
.getReg());
208 // Position dependent, so check twice for swap.
209 static bool isDuplexPairMatch(unsigned Ga
, unsigned Gb
) {
211 case HexagonII::HSIG_None
:
214 case HexagonII::HSIG_L1
:
215 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_A
);
216 case HexagonII::HSIG_L2
:
217 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
218 Gb
== HexagonII::HSIG_A
);
219 case HexagonII::HSIG_S1
:
220 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
221 Gb
== HexagonII::HSIG_S1
|| Gb
== HexagonII::HSIG_A
);
222 case HexagonII::HSIG_S2
:
223 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
224 Gb
== HexagonII::HSIG_S1
|| Gb
== HexagonII::HSIG_S2
||
225 Gb
== HexagonII::HSIG_A
);
226 case HexagonII::HSIG_A
:
227 return (Gb
== HexagonII::HSIG_A
);
228 case HexagonII::HSIG_Compound
:
229 return (Gb
== HexagonII::HSIG_Compound
);
234 /// isLoadFromStackSlot - If the specified machine instruction is a direct
235 /// load from a stack slot, return the virtual or physical register number of
236 /// the destination along with the FrameIndex of the loaded stack slot. If
237 /// not, return 0. This predicate must return 0 if the instruction has
238 /// any side effects other than loading from the stack slot.
239 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
240 int &FrameIndex
) const {
241 switch (MI
.getOpcode()) {
244 case Hexagon::L2_loadri_io
:
245 case Hexagon::L2_loadrd_io
:
246 case Hexagon::V6_vL32b_ai
:
247 case Hexagon::V6_vL32b_nt_ai
:
248 case Hexagon::V6_vL32Ub_ai
:
249 case Hexagon::LDriw_pred
:
250 case Hexagon::LDriw_ctr
:
251 case Hexagon::PS_vloadrq_ai
:
252 case Hexagon::PS_vloadrw_ai
:
253 case Hexagon::PS_vloadrw_nt_ai
: {
254 const MachineOperand OpFI
= MI
.getOperand(1);
257 const MachineOperand OpOff
= MI
.getOperand(2);
258 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
260 FrameIndex
= OpFI
.getIndex();
261 return MI
.getOperand(0).getReg();
264 case Hexagon::L2_ploadrit_io
:
265 case Hexagon::L2_ploadrif_io
:
266 case Hexagon::L2_ploadrdt_io
:
267 case Hexagon::L2_ploadrdf_io
: {
268 const MachineOperand OpFI
= MI
.getOperand(2);
271 const MachineOperand OpOff
= MI
.getOperand(3);
272 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
274 FrameIndex
= OpFI
.getIndex();
275 return MI
.getOperand(0).getReg();
282 /// isStoreToStackSlot - If the specified machine instruction is a direct
283 /// store to a stack slot, return the virtual or physical register number of
284 /// the source reg along with the FrameIndex of the loaded stack slot. If
285 /// not, return 0. This predicate must return 0 if the instruction has
286 /// any side effects other than storing to the stack slot.
287 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
288 int &FrameIndex
) const {
289 switch (MI
.getOpcode()) {
292 case Hexagon::S2_storerb_io
:
293 case Hexagon::S2_storerh_io
:
294 case Hexagon::S2_storeri_io
:
295 case Hexagon::S2_storerd_io
:
296 case Hexagon::V6_vS32b_ai
:
297 case Hexagon::V6_vS32Ub_ai
:
298 case Hexagon::STriw_pred
:
299 case Hexagon::STriw_ctr
:
300 case Hexagon::PS_vstorerq_ai
:
301 case Hexagon::PS_vstorerw_ai
: {
302 const MachineOperand
&OpFI
= MI
.getOperand(0);
305 const MachineOperand
&OpOff
= MI
.getOperand(1);
306 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
308 FrameIndex
= OpFI
.getIndex();
309 return MI
.getOperand(2).getReg();
312 case Hexagon::S2_pstorerbt_io
:
313 case Hexagon::S2_pstorerbf_io
:
314 case Hexagon::S2_pstorerht_io
:
315 case Hexagon::S2_pstorerhf_io
:
316 case Hexagon::S2_pstorerit_io
:
317 case Hexagon::S2_pstorerif_io
:
318 case Hexagon::S2_pstorerdt_io
:
319 case Hexagon::S2_pstorerdf_io
: {
320 const MachineOperand
&OpFI
= MI
.getOperand(1);
323 const MachineOperand
&OpOff
= MI
.getOperand(2);
324 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
326 FrameIndex
= OpFI
.getIndex();
327 return MI
.getOperand(3).getReg();
334 /// This function checks if the instruction or bundle of instructions
335 /// has load from stack slot and returns frameindex and machine memory
336 /// operand of that instruction if true.
337 bool HexagonInstrInfo::hasLoadFromStackSlot(
338 const MachineInstr
&MI
,
339 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
341 const MachineBasicBlock
*MBB
= MI
.getParent();
342 MachineBasicBlock::const_instr_iterator MII
= MI
.getIterator();
343 for (++MII
; MII
!= MBB
->instr_end() && MII
->isInsideBundle(); ++MII
)
344 if (TargetInstrInfo::hasLoadFromStackSlot(*MII
, Accesses
))
349 return TargetInstrInfo::hasLoadFromStackSlot(MI
, Accesses
);
352 /// This function checks if the instruction or bundle of instructions
353 /// has store to stack slot and returns frameindex and machine memory
354 /// operand of that instruction if true.
355 bool HexagonInstrInfo::hasStoreToStackSlot(
356 const MachineInstr
&MI
,
357 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
359 const MachineBasicBlock
*MBB
= MI
.getParent();
360 MachineBasicBlock::const_instr_iterator MII
= MI
.getIterator();
361 for (++MII
; MII
!= MBB
->instr_end() && MII
->isInsideBundle(); ++MII
)
362 if (TargetInstrInfo::hasStoreToStackSlot(*MII
, Accesses
))
367 return TargetInstrInfo::hasStoreToStackSlot(MI
, Accesses
);
370 /// This function can analyze one/two way branching only and should (mostly) be
371 /// called by target independent side.
372 /// First entry is always the opcode of the branching instruction, except when
373 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
374 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
375 /// e.g. Jump_c p will have
379 /// Cond[0] = ENDLOOP
382 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
385 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
386 MachineBasicBlock
*&TBB
,
387 MachineBasicBlock
*&FBB
,
388 SmallVectorImpl
<MachineOperand
> &Cond
,
389 bool AllowModify
) const {
394 // If the block has no terminators, it just falls into the block after it.
395 MachineBasicBlock::instr_iterator I
= MBB
.instr_end();
396 if (I
== MBB
.instr_begin())
399 // A basic block may looks like this:
409 // It has two succs but does not have a terminator
410 // Don't know how to handle it.
414 // Don't analyze EH branches.
416 } while (I
!= MBB
.instr_begin());
421 while (I
->isDebugInstr()) {
422 if (I
== MBB
.instr_begin())
427 bool JumpToBlock
= I
->getOpcode() == Hexagon::J2_jump
&&
428 I
->getOperand(0).isMBB();
429 // Delete the J2_jump if it's equivalent to a fall-through.
430 if (AllowModify
&& JumpToBlock
&&
431 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
432 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
433 I
->eraseFromParent();
435 if (I
== MBB
.instr_begin())
439 if (!isUnpredicatedTerminator(*I
))
442 // Get the last instruction in the block.
443 MachineInstr
*LastInst
= &*I
;
444 MachineInstr
*SecondLastInst
= nullptr;
445 // Find one more terminator if present.
447 if (&*I
!= LastInst
&& !I
->isBundle() && isUnpredicatedTerminator(*I
)) {
449 SecondLastInst
= &*I
;
451 // This is a third branch.
454 if (I
== MBB
.instr_begin())
459 int LastOpcode
= LastInst
->getOpcode();
460 int SecLastOpcode
= SecondLastInst
? SecondLastInst
->getOpcode() : 0;
461 // If the branch target is not a basic block, it could be a tail call.
462 // (It is, if the target is a function.)
463 if (LastOpcode
== Hexagon::J2_jump
&& !LastInst
->getOperand(0).isMBB())
465 if (SecLastOpcode
== Hexagon::J2_jump
&&
466 !SecondLastInst
->getOperand(0).isMBB())
469 bool LastOpcodeHasJMP_c
= PredOpcodeHasJMP_c(LastOpcode
);
470 bool LastOpcodeHasNVJump
= isNewValueJump(*LastInst
);
472 if (LastOpcodeHasJMP_c
&& !LastInst
->getOperand(1).isMBB())
475 // If there is only one terminator instruction, process it.
476 if (LastInst
&& !SecondLastInst
) {
477 if (LastOpcode
== Hexagon::J2_jump
) {
478 TBB
= LastInst
->getOperand(0).getMBB();
481 if (isEndLoopN(LastOpcode
)) {
482 TBB
= LastInst
->getOperand(0).getMBB();
483 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
484 Cond
.push_back(LastInst
->getOperand(0));
487 if (LastOpcodeHasJMP_c
) {
488 TBB
= LastInst
->getOperand(1).getMBB();
489 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
490 Cond
.push_back(LastInst
->getOperand(0));
493 // Only supporting rr/ri versions of new-value jumps.
494 if (LastOpcodeHasNVJump
&& (LastInst
->getNumExplicitOperands() == 3)) {
495 TBB
= LastInst
->getOperand(2).getMBB();
496 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
497 Cond
.push_back(LastInst
->getOperand(0));
498 Cond
.push_back(LastInst
->getOperand(1));
501 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB
)
502 << " with one jump\n";);
503 // Otherwise, don't know what this is.
507 bool SecLastOpcodeHasJMP_c
= PredOpcodeHasJMP_c(SecLastOpcode
);
508 bool SecLastOpcodeHasNVJump
= isNewValueJump(*SecondLastInst
);
509 if (SecLastOpcodeHasJMP_c
&& (LastOpcode
== Hexagon::J2_jump
)) {
510 if (!SecondLastInst
->getOperand(1).isMBB())
512 TBB
= SecondLastInst
->getOperand(1).getMBB();
513 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
514 Cond
.push_back(SecondLastInst
->getOperand(0));
515 FBB
= LastInst
->getOperand(0).getMBB();
519 // Only supporting rr/ri versions of new-value jumps.
520 if (SecLastOpcodeHasNVJump
&&
521 (SecondLastInst
->getNumExplicitOperands() == 3) &&
522 (LastOpcode
== Hexagon::J2_jump
)) {
523 TBB
= SecondLastInst
->getOperand(2).getMBB();
524 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
525 Cond
.push_back(SecondLastInst
->getOperand(0));
526 Cond
.push_back(SecondLastInst
->getOperand(1));
527 FBB
= LastInst
->getOperand(0).getMBB();
531 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
532 // executed, so remove it.
533 if (SecLastOpcode
== Hexagon::J2_jump
&& LastOpcode
== Hexagon::J2_jump
) {
534 TBB
= SecondLastInst
->getOperand(0).getMBB();
535 I
= LastInst
->getIterator();
537 I
->eraseFromParent();
541 // If the block ends with an ENDLOOP, and J2_jump, handle it.
542 if (isEndLoopN(SecLastOpcode
) && LastOpcode
== Hexagon::J2_jump
) {
543 TBB
= SecondLastInst
->getOperand(0).getMBB();
544 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
545 Cond
.push_back(SecondLastInst
->getOperand(0));
546 FBB
= LastInst
->getOperand(0).getMBB();
549 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB
)
550 << " with two jumps";);
551 // Otherwise, can't handle this.
555 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
556 int *BytesRemoved
) const {
557 assert(!BytesRemoved
&& "code size not handled");
559 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB
));
560 MachineBasicBlock::iterator I
= MBB
.end();
562 while (I
!= MBB
.begin()) {
564 if (I
->isDebugInstr())
566 // Only removing branches from end of MBB.
569 if (Count
&& (I
->getOpcode() == Hexagon::J2_jump
))
570 llvm_unreachable("Malformed basic block: unconditional branch not last");
571 MBB
.erase(&MBB
.back());
578 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
579 MachineBasicBlock
*TBB
,
580 MachineBasicBlock
*FBB
,
581 ArrayRef
<MachineOperand
> Cond
,
583 int *BytesAdded
) const {
584 unsigned BOpc
= Hexagon::J2_jump
;
585 unsigned BccOpc
= Hexagon::J2_jumpt
;
586 assert(validateBranchCond(Cond
) && "Invalid branching condition");
587 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
588 assert(!BytesAdded
&& "code size not handled");
590 // Check if reverseBranchCondition has asked to reverse this branch
591 // If we want to reverse the branch an odd number of times, we want
593 if (!Cond
.empty() && Cond
[0].isImm())
594 BccOpc
= Cond
[0].getImm();
598 // Due to a bug in TailMerging/CFG Optimization, we need to add a
599 // special case handling of a predicated jump followed by an
600 // unconditional jump. If not, Tail Merging and CFG Optimization go
601 // into an infinite loop.
602 MachineBasicBlock
*NewTBB
, *NewFBB
;
603 SmallVector
<MachineOperand
, 4> Cond
;
604 auto Term
= MBB
.getFirstTerminator();
605 if (Term
!= MBB
.end() && isPredicated(*Term
) &&
606 !analyzeBranch(MBB
, NewTBB
, NewFBB
, Cond
, false) &&
607 MachineFunction::iterator(NewTBB
) == ++MBB
.getIterator()) {
608 reverseBranchCondition(Cond
);
610 return insertBranch(MBB
, TBB
, nullptr, Cond
, DL
);
612 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
);
613 } else if (isEndLoopN(Cond
[0].getImm())) {
614 int EndLoopOp
= Cond
[0].getImm();
615 assert(Cond
[1].isMBB());
616 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
617 // Check for it, and change the BB target if needed.
618 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
619 MachineInstr
*Loop
= findLoopInstr(TBB
, EndLoopOp
, Cond
[1].getMBB(),
621 assert(Loop
!= nullptr && "Inserting an ENDLOOP without a LOOP");
622 Loop
->getOperand(0).setMBB(TBB
);
623 // Add the ENDLOOP after the finding the LOOP0.
624 BuildMI(&MBB
, DL
, get(EndLoopOp
)).addMBB(TBB
);
625 } else if (isNewValueJump(Cond
[0].getImm())) {
626 assert((Cond
.size() == 3) && "Only supporting rr/ri version of nvjump");
628 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
629 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
630 unsigned Flags1
= getUndefRegState(Cond
[1].isUndef());
631 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
632 << printMBBReference(MBB
););
633 if (Cond
[2].isReg()) {
634 unsigned Flags2
= getUndefRegState(Cond
[2].isUndef());
635 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(Cond
[1].getReg(), Flags1
).
636 addReg(Cond
[2].getReg(), Flags2
).addMBB(TBB
);
637 } else if(Cond
[2].isImm()) {
638 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(Cond
[1].getReg(), Flags1
).
639 addImm(Cond
[2].getImm()).addMBB(TBB
);
641 llvm_unreachable("Invalid condition for branching");
643 assert((Cond
.size() == 2) && "Malformed cond vector");
644 const MachineOperand
&RO
= Cond
[1];
645 unsigned Flags
= getUndefRegState(RO
.isUndef());
646 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(RO
.getReg(), Flags
).addMBB(TBB
);
650 assert((!Cond
.empty()) &&
651 "Cond. cannot be empty when multiple branchings are required");
652 assert((!isNewValueJump(Cond
[0].getImm())) &&
653 "NV-jump cannot be inserted with another branch");
654 // Special case for hardware loops. The condition is a basic block.
655 if (isEndLoopN(Cond
[0].getImm())) {
656 int EndLoopOp
= Cond
[0].getImm();
657 assert(Cond
[1].isMBB());
658 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
659 // Check for it, and change the BB target if needed.
660 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
661 MachineInstr
*Loop
= findLoopInstr(TBB
, EndLoopOp
, Cond
[1].getMBB(),
663 assert(Loop
!= nullptr && "Inserting an ENDLOOP without a LOOP");
664 Loop
->getOperand(0).setMBB(TBB
);
665 // Add the ENDLOOP after the finding the LOOP0.
666 BuildMI(&MBB
, DL
, get(EndLoopOp
)).addMBB(TBB
);
668 const MachineOperand
&RO
= Cond
[1];
669 unsigned Flags
= getUndefRegState(RO
.isUndef());
670 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(RO
.getReg(), Flags
).addMBB(TBB
);
672 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
);
677 /// Analyze the loop code to find the loop induction variable and compare used
678 /// to compute the number of iterations. Currently, we analyze loop that are
679 /// controlled using hardware loops. In this case, the induction variable
680 /// instruction is null. For all other cases, this function returns true, which
681 /// means we're unable to analyze it.
682 bool HexagonInstrInfo::analyzeLoop(MachineLoop
&L
,
683 MachineInstr
*&IndVarInst
,
684 MachineInstr
*&CmpInst
) const {
686 MachineBasicBlock
*LoopEnd
= L
.getBottomBlock();
687 MachineBasicBlock::iterator I
= LoopEnd
->getFirstTerminator();
688 // We really "analyze" only hardware loops right now.
689 if (I
!= LoopEnd
->end() && isEndLoopN(I
->getOpcode())) {
690 IndVarInst
= nullptr;
697 /// Generate code to reduce the loop iteration by one and check if the loop is
698 /// finished. Return the value/register of the new loop count. this function
699 /// assumes the nth iteration is peeled first.
700 unsigned HexagonInstrInfo::reduceLoopCount(MachineBasicBlock
&MBB
,
701 MachineInstr
*IndVar
, MachineInstr
&Cmp
,
702 SmallVectorImpl
<MachineOperand
> &Cond
,
703 SmallVectorImpl
<MachineInstr
*> &PrevInsts
,
704 unsigned Iter
, unsigned MaxIter
) const {
705 // We expect a hardware loop currently. This means that IndVar is set
706 // to null, and the compare is the ENDLOOP instruction.
707 assert((!IndVar
) && isEndLoopN(Cmp
.getOpcode())
708 && "Expecting a hardware loop");
709 MachineFunction
*MF
= MBB
.getParent();
710 DebugLoc DL
= Cmp
.getDebugLoc();
711 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
712 MachineInstr
*Loop
= findLoopInstr(&MBB
, Cmp
.getOpcode(),
713 Cmp
.getOperand(0).getMBB(), VisitedBBs
);
716 // If the loop trip count is a compile-time value, then just change the
718 if (Loop
->getOpcode() == Hexagon::J2_loop0i
||
719 Loop
->getOpcode() == Hexagon::J2_loop1i
) {
720 int64_t Offset
= Loop
->getOperand(1).getImm();
722 Loop
->eraseFromParent();
724 Loop
->getOperand(1).setImm(Offset
- 1);
727 // The loop trip count is a run-time value. We generate code to subtract
728 // one from the trip count, and update the loop instruction.
729 assert(Loop
->getOpcode() == Hexagon::J2_loop0r
&& "Unexpected instruction");
730 unsigned LoopCount
= Loop
->getOperand(1).getReg();
731 // Check if we're done with the loop.
732 unsigned LoopEnd
= createVR(MF
, MVT::i1
);
733 MachineInstr
*NewCmp
= BuildMI(&MBB
, DL
, get(Hexagon::C2_cmpgtui
), LoopEnd
).
734 addReg(LoopCount
).addImm(1);
735 unsigned NewLoopCount
= createVR(MF
, MVT::i32
);
736 MachineInstr
*NewAdd
= BuildMI(&MBB
, DL
, get(Hexagon::A2_addi
), NewLoopCount
).
737 addReg(LoopCount
).addImm(-1);
738 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
739 // Update the previously generated instructions with the new loop counter.
740 for (SmallVectorImpl
<MachineInstr
*>::iterator I
= PrevInsts
.begin(),
741 E
= PrevInsts
.end(); I
!= E
; ++I
)
742 (*I
)->substituteRegister(LoopCount
, NewLoopCount
, 0, HRI
);
744 PrevInsts
.push_back(NewCmp
);
745 PrevInsts
.push_back(NewAdd
);
746 // Insert the new loop instruction if this is the last time the loop is
749 BuildMI(&MBB
, DL
, get(Hexagon::J2_loop0r
)).
750 addMBB(Loop
->getOperand(0).getMBB()).addReg(NewLoopCount
);
751 // Delete the old loop instruction.
753 Loop
->eraseFromParent();
754 Cond
.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf
));
755 Cond
.push_back(NewCmp
->getOperand(0));
759 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&MBB
,
760 unsigned NumCycles
, unsigned ExtraPredCycles
,
761 BranchProbability Probability
) const {
762 return nonDbgBBSize(&MBB
) <= 3;
765 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
766 unsigned NumTCycles
, unsigned ExtraTCycles
, MachineBasicBlock
&FMBB
,
767 unsigned NumFCycles
, unsigned ExtraFCycles
, BranchProbability Probability
)
769 return nonDbgBBSize(&TMBB
) <= 3 && nonDbgBBSize(&FMBB
) <= 3;
772 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock
&MBB
,
773 unsigned NumInstrs
, BranchProbability Probability
) const {
774 return NumInstrs
<= 4;
777 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
778 MachineBasicBlock::iterator I
,
779 const DebugLoc
&DL
, unsigned DestReg
,
780 unsigned SrcReg
, bool KillSrc
) const {
781 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
782 unsigned KillFlag
= getKillRegState(KillSrc
);
784 if (Hexagon::IntRegsRegClass
.contains(SrcReg
, DestReg
)) {
785 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfr
), DestReg
)
786 .addReg(SrcReg
, KillFlag
);
789 if (Hexagon::DoubleRegsRegClass
.contains(SrcReg
, DestReg
)) {
790 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrp
), DestReg
)
791 .addReg(SrcReg
, KillFlag
);
794 if (Hexagon::PredRegsRegClass
.contains(SrcReg
, DestReg
)) {
795 // Map Pd = Ps to Pd = or(Ps, Ps).
796 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_or
), DestReg
)
797 .addReg(SrcReg
).addReg(SrcReg
, KillFlag
);
800 if (Hexagon::CtrRegsRegClass
.contains(DestReg
) &&
801 Hexagon::IntRegsRegClass
.contains(SrcReg
)) {
802 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrrcr
), DestReg
)
803 .addReg(SrcReg
, KillFlag
);
806 if (Hexagon::IntRegsRegClass
.contains(DestReg
) &&
807 Hexagon::CtrRegsRegClass
.contains(SrcReg
)) {
808 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrcrr
), DestReg
)
809 .addReg(SrcReg
, KillFlag
);
812 if (Hexagon::ModRegsRegClass
.contains(DestReg
) &&
813 Hexagon::IntRegsRegClass
.contains(SrcReg
)) {
814 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrrcr
), DestReg
)
815 .addReg(SrcReg
, KillFlag
);
818 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
819 Hexagon::IntRegsRegClass
.contains(DestReg
)) {
820 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrpr
), DestReg
)
821 .addReg(SrcReg
, KillFlag
);
824 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
825 Hexagon::PredRegsRegClass
.contains(DestReg
)) {
826 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrrp
), DestReg
)
827 .addReg(SrcReg
, KillFlag
);
830 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
831 Hexagon::IntRegsRegClass
.contains(DestReg
)) {
832 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrpr
), DestReg
)
833 .addReg(SrcReg
, KillFlag
);
836 if (Hexagon::HvxVRRegClass
.contains(SrcReg
, DestReg
)) {
837 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_vassign
), DestReg
).
838 addReg(SrcReg
, KillFlag
);
841 if (Hexagon::HvxWRRegClass
.contains(SrcReg
, DestReg
)) {
842 unsigned LoSrc
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
843 unsigned HiSrc
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
844 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_vcombine
), DestReg
)
845 .addReg(HiSrc
, KillFlag
)
846 .addReg(LoSrc
, KillFlag
);
849 if (Hexagon::HvxQRRegClass
.contains(SrcReg
, DestReg
)) {
850 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_pred_and
), DestReg
)
852 .addReg(SrcReg
, KillFlag
);
855 if (Hexagon::HvxQRRegClass
.contains(SrcReg
) &&
856 Hexagon::HvxVRRegClass
.contains(DestReg
)) {
857 llvm_unreachable("Unimplemented pred to vec");
860 if (Hexagon::HvxQRRegClass
.contains(DestReg
) &&
861 Hexagon::HvxVRRegClass
.contains(SrcReg
)) {
862 llvm_unreachable("Unimplemented vec to pred");
867 // Show the invalid registers to ease debugging.
868 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB
) << ": "
869 << printReg(DestReg
, &HRI
) << " = " << printReg(SrcReg
, &HRI
) << '\n';
871 llvm_unreachable("Unimplemented");
874 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
875 MachineBasicBlock::iterator I
, unsigned SrcReg
, bool isKill
, int FI
,
876 const TargetRegisterClass
*RC
, const TargetRegisterInfo
*TRI
) const {
877 DebugLoc DL
= MBB
.findDebugLoc(I
);
878 MachineFunction
&MF
= *MBB
.getParent();
879 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
880 unsigned SlotAlign
= MFI
.getObjectAlignment(FI
);
881 unsigned RegAlign
= TRI
->getSpillAlignment(*RC
);
882 unsigned KillFlag
= getKillRegState(isKill
);
883 bool HasAlloca
= MFI
.hasVarSizedObjects();
884 const HexagonFrameLowering
&HFI
= *Subtarget
.getFrameLowering();
886 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
887 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
888 MFI
.getObjectSize(FI
), SlotAlign
);
890 if (Hexagon::IntRegsRegClass
.hasSubClassEq(RC
)) {
891 BuildMI(MBB
, I
, DL
, get(Hexagon::S2_storeri_io
))
892 .addFrameIndex(FI
).addImm(0)
893 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
894 } else if (Hexagon::DoubleRegsRegClass
.hasSubClassEq(RC
)) {
895 BuildMI(MBB
, I
, DL
, get(Hexagon::S2_storerd_io
))
896 .addFrameIndex(FI
).addImm(0)
897 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
898 } else if (Hexagon::PredRegsRegClass
.hasSubClassEq(RC
)) {
899 BuildMI(MBB
, I
, DL
, get(Hexagon::STriw_pred
))
900 .addFrameIndex(FI
).addImm(0)
901 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
902 } else if (Hexagon::ModRegsRegClass
.hasSubClassEq(RC
)) {
903 BuildMI(MBB
, I
, DL
, get(Hexagon::STriw_ctr
))
904 .addFrameIndex(FI
).addImm(0)
905 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
906 } else if (Hexagon::HvxQRRegClass
.hasSubClassEq(RC
)) {
907 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vstorerq_ai
))
908 .addFrameIndex(FI
).addImm(0)
909 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
910 } else if (Hexagon::HvxVRRegClass
.hasSubClassEq(RC
)) {
911 // If there are variable-sized objects, spills will not be aligned.
913 SlotAlign
= HFI
.getStackAlignment();
914 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::V6_vS32Ub_ai
915 : Hexagon::V6_vS32b_ai
;
916 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
917 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
918 MFI
.getObjectSize(FI
), SlotAlign
);
919 BuildMI(MBB
, I
, DL
, get(Opc
))
920 .addFrameIndex(FI
).addImm(0)
921 .addReg(SrcReg
, KillFlag
).addMemOperand(MMOA
);
922 } else if (Hexagon::HvxWRRegClass
.hasSubClassEq(RC
)) {
923 // If there are variable-sized objects, spills will not be aligned.
925 SlotAlign
= HFI
.getStackAlignment();
926 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::PS_vstorerwu_ai
927 : Hexagon::PS_vstorerw_ai
;
928 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
929 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
930 MFI
.getObjectSize(FI
), SlotAlign
);
931 BuildMI(MBB
, I
, DL
, get(Opc
))
932 .addFrameIndex(FI
).addImm(0)
933 .addReg(SrcReg
, KillFlag
).addMemOperand(MMOA
);
935 llvm_unreachable("Unimplemented");
939 void HexagonInstrInfo::loadRegFromStackSlot(
940 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
, unsigned DestReg
,
941 int FI
, const TargetRegisterClass
*RC
,
942 const TargetRegisterInfo
*TRI
) const {
943 DebugLoc DL
= MBB
.findDebugLoc(I
);
944 MachineFunction
&MF
= *MBB
.getParent();
945 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
946 unsigned SlotAlign
= MFI
.getObjectAlignment(FI
);
947 unsigned RegAlign
= TRI
->getSpillAlignment(*RC
);
948 bool HasAlloca
= MFI
.hasVarSizedObjects();
949 const HexagonFrameLowering
&HFI
= *Subtarget
.getFrameLowering();
951 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
952 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
953 MFI
.getObjectSize(FI
), SlotAlign
);
955 if (Hexagon::IntRegsRegClass
.hasSubClassEq(RC
)) {
956 BuildMI(MBB
, I
, DL
, get(Hexagon::L2_loadri_io
), DestReg
)
957 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
958 } else if (Hexagon::DoubleRegsRegClass
.hasSubClassEq(RC
)) {
959 BuildMI(MBB
, I
, DL
, get(Hexagon::L2_loadrd_io
), DestReg
)
960 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
961 } else if (Hexagon::PredRegsRegClass
.hasSubClassEq(RC
)) {
962 BuildMI(MBB
, I
, DL
, get(Hexagon::LDriw_pred
), DestReg
)
963 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
964 } else if (Hexagon::ModRegsRegClass
.hasSubClassEq(RC
)) {
965 BuildMI(MBB
, I
, DL
, get(Hexagon::LDriw_ctr
), DestReg
)
966 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
967 } else if (Hexagon::HvxQRRegClass
.hasSubClassEq(RC
)) {
968 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vloadrq_ai
), DestReg
)
969 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
970 } else if (Hexagon::HvxVRRegClass
.hasSubClassEq(RC
)) {
971 // If there are variable-sized objects, spills will not be aligned.
973 SlotAlign
= HFI
.getStackAlignment();
974 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::V6_vL32Ub_ai
975 : Hexagon::V6_vL32b_ai
;
976 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
977 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
978 MFI
.getObjectSize(FI
), SlotAlign
);
979 BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
)
980 .addFrameIndex(FI
).addImm(0).addMemOperand(MMOA
);
981 } else if (Hexagon::HvxWRRegClass
.hasSubClassEq(RC
)) {
982 // If there are variable-sized objects, spills will not be aligned.
984 SlotAlign
= HFI
.getStackAlignment();
985 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::PS_vloadrwu_ai
986 : Hexagon::PS_vloadrw_ai
;
987 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
988 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
989 MFI
.getObjectSize(FI
), SlotAlign
);
990 BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
)
991 .addFrameIndex(FI
).addImm(0).addMemOperand(MMOA
);
993 llvm_unreachable("Can't store this register to stack slot");
997 static void getLiveRegsAt(LivePhysRegs
&Regs
, const MachineInstr
&MI
) {
998 const MachineBasicBlock
&B
= *MI
.getParent();
1000 auto E
= ++MachineBasicBlock::const_iterator(MI
.getIterator()).getReverse();
1001 for (auto I
= B
.rbegin(); I
!= E
; ++I
)
1002 Regs
.stepBackward(*I
);
1005 /// expandPostRAPseudo - This function is called for all pseudo instructions
1006 /// that remain after register allocation. Many pseudo instructions are
1007 /// created to help register allocation. This is the place to convert them
1008 /// into real instructions. The target can edit MI in place, or it can insert
1009 /// new instructions and erase MI. The function should return true if
1010 /// anything was changed.
1011 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
1012 MachineBasicBlock
&MBB
= *MI
.getParent();
1013 MachineFunction
&MF
= *MBB
.getParent();
1014 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1015 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
1016 DebugLoc DL
= MI
.getDebugLoc();
1017 unsigned Opc
= MI
.getOpcode();
1019 auto RealCirc
= [&](unsigned Opc
, bool HasImm
, unsigned MxOp
) {
1020 unsigned Mx
= MI
.getOperand(MxOp
).getReg();
1021 unsigned CSx
= (Mx
== Hexagon::M0
? Hexagon::CS0
: Hexagon::CS1
);
1022 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrrcr
), CSx
)
1023 .add(MI
.getOperand((HasImm
? 5 : 4)));
1024 auto MIB
= BuildMI(MBB
, MI
, DL
, get(Opc
)).add(MI
.getOperand(0))
1025 .add(MI
.getOperand(1)).add(MI
.getOperand(2)).add(MI
.getOperand(3));
1027 MIB
.add(MI
.getOperand(4));
1028 MIB
.addReg(CSx
, RegState::Implicit
);
1034 case TargetOpcode::COPY
: {
1035 MachineOperand
&MD
= MI
.getOperand(0);
1036 MachineOperand
&MS
= MI
.getOperand(1);
1037 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
1038 if (MD
.getReg() != MS
.getReg() && !MS
.isUndef()) {
1039 copyPhysReg(MBB
, MI
, DL
, MD
.getReg(), MS
.getReg(), MS
.isKill());
1040 std::prev(MBBI
)->copyImplicitOps(*MBB
.getParent(), MI
);
1045 case Hexagon::PS_aligna
:
1046 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_andir
), MI
.getOperand(0).getReg())
1047 .addReg(HRI
.getFrameRegister())
1048 .addImm(-MI
.getOperand(1).getImm());
1051 case Hexagon::V6_vassignp
: {
1052 unsigned SrcReg
= MI
.getOperand(1).getReg();
1053 unsigned DstReg
= MI
.getOperand(0).getReg();
1054 unsigned Kill
= getKillRegState(MI
.getOperand(1).isKill());
1055 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vcombine
), DstReg
)
1056 .addReg(HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
), Kill
)
1057 .addReg(HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
), Kill
);
1061 case Hexagon::V6_lo
: {
1062 unsigned SrcReg
= MI
.getOperand(1).getReg();
1063 unsigned DstReg
= MI
.getOperand(0).getReg();
1064 unsigned SrcSubLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
1065 copyPhysReg(MBB
, MI
, DL
, DstReg
, SrcSubLo
, MI
.getOperand(1).isKill());
1067 MRI
.clearKillFlags(SrcSubLo
);
1070 case Hexagon::V6_hi
: {
1071 unsigned SrcReg
= MI
.getOperand(1).getReg();
1072 unsigned DstReg
= MI
.getOperand(0).getReg();
1073 unsigned SrcSubHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
1074 copyPhysReg(MBB
, MI
, DL
, DstReg
, SrcSubHi
, MI
.getOperand(1).isKill());
1076 MRI
.clearKillFlags(SrcSubHi
);
1079 case Hexagon::PS_vstorerw_ai
:
1080 case Hexagon::PS_vstorerwu_ai
: {
1081 bool Aligned
= Opc
== Hexagon::PS_vstorerw_ai
;
1082 unsigned SrcReg
= MI
.getOperand(2).getReg();
1083 unsigned SrcSubHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
1084 unsigned SrcSubLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
1085 unsigned NewOpc
= Aligned
? Hexagon::V6_vS32b_ai
: Hexagon::V6_vS32Ub_ai
;
1086 unsigned Offset
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1088 MachineInstr
*MI1New
= BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1089 .add(MI
.getOperand(0))
1090 .addImm(MI
.getOperand(1).getImm())
1093 MI1New
->getOperand(0).setIsKill(false);
1094 BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1095 .add(MI
.getOperand(0))
1096 // The Vectors are indexed in multiples of vector size.
1097 .addImm(MI
.getOperand(1).getImm() + Offset
)
1103 case Hexagon::PS_vloadrw_ai
:
1104 case Hexagon::PS_vloadrwu_ai
: {
1105 bool Aligned
= Opc
== Hexagon::PS_vloadrw_ai
;
1106 unsigned DstReg
= MI
.getOperand(0).getReg();
1107 unsigned NewOpc
= Aligned
? Hexagon::V6_vL32b_ai
: Hexagon::V6_vL32Ub_ai
;
1108 unsigned Offset
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1110 MachineInstr
*MI1New
= BuildMI(MBB
, MI
, DL
, get(NewOpc
),
1111 HRI
.getSubReg(DstReg
, Hexagon::vsub_lo
))
1112 .add(MI
.getOperand(1))
1113 .addImm(MI
.getOperand(2).getImm())
1115 MI1New
->getOperand(1).setIsKill(false);
1116 BuildMI(MBB
, MI
, DL
, get(NewOpc
), HRI
.getSubReg(DstReg
, Hexagon::vsub_hi
))
1117 .add(MI
.getOperand(1))
1118 // The Vectors are indexed in multiples of vector size.
1119 .addImm(MI
.getOperand(2).getImm() + Offset
)
1124 case Hexagon::PS_true
: {
1125 unsigned Reg
= MI
.getOperand(0).getReg();
1126 BuildMI(MBB
, MI
, DL
, get(Hexagon::C2_orn
), Reg
)
1127 .addReg(Reg
, RegState::Undef
)
1128 .addReg(Reg
, RegState::Undef
);
1132 case Hexagon::PS_false
: {
1133 unsigned Reg
= MI
.getOperand(0).getReg();
1134 BuildMI(MBB
, MI
, DL
, get(Hexagon::C2_andn
), Reg
)
1135 .addReg(Reg
, RegState::Undef
)
1136 .addReg(Reg
, RegState::Undef
);
1140 case Hexagon::PS_qtrue
: {
1141 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_veqw
), MI
.getOperand(0).getReg())
1142 .addReg(Hexagon::V0
, RegState::Undef
)
1143 .addReg(Hexagon::V0
, RegState::Undef
);
1147 case Hexagon::PS_qfalse
: {
1148 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgtw
), MI
.getOperand(0).getReg())
1149 .addReg(Hexagon::V0
, RegState::Undef
)
1150 .addReg(Hexagon::V0
, RegState::Undef
);
1154 case Hexagon::PS_vdd0
: {
1155 unsigned Vd
= MI
.getOperand(0).getReg();
1156 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vsubw_dv
), Vd
)
1157 .addReg(Vd
, RegState::Undef
)
1158 .addReg(Vd
, RegState::Undef
);
1162 case Hexagon::PS_vmulw
: {
1163 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1164 unsigned DstReg
= MI
.getOperand(0).getReg();
1165 unsigned Src1Reg
= MI
.getOperand(1).getReg();
1166 unsigned Src2Reg
= MI
.getOperand(2).getReg();
1167 unsigned Src1SubHi
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_hi
);
1168 unsigned Src1SubLo
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_lo
);
1169 unsigned Src2SubHi
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_hi
);
1170 unsigned Src2SubLo
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_lo
);
1171 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_mpyi
),
1172 HRI
.getSubReg(DstReg
, Hexagon::isub_hi
))
1175 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_mpyi
),
1176 HRI
.getSubReg(DstReg
, Hexagon::isub_lo
))
1180 MRI
.clearKillFlags(Src1SubHi
);
1181 MRI
.clearKillFlags(Src1SubLo
);
1182 MRI
.clearKillFlags(Src2SubHi
);
1183 MRI
.clearKillFlags(Src2SubLo
);
1186 case Hexagon::PS_vmulw_acc
: {
1187 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1188 unsigned DstReg
= MI
.getOperand(0).getReg();
1189 unsigned Src1Reg
= MI
.getOperand(1).getReg();
1190 unsigned Src2Reg
= MI
.getOperand(2).getReg();
1191 unsigned Src3Reg
= MI
.getOperand(3).getReg();
1192 unsigned Src1SubHi
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_hi
);
1193 unsigned Src1SubLo
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_lo
);
1194 unsigned Src2SubHi
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_hi
);
1195 unsigned Src2SubLo
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_lo
);
1196 unsigned Src3SubHi
= HRI
.getSubReg(Src3Reg
, Hexagon::isub_hi
);
1197 unsigned Src3SubLo
= HRI
.getSubReg(Src3Reg
, Hexagon::isub_lo
);
1198 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_maci
),
1199 HRI
.getSubReg(DstReg
, Hexagon::isub_hi
))
1203 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_maci
),
1204 HRI
.getSubReg(DstReg
, Hexagon::isub_lo
))
1209 MRI
.clearKillFlags(Src1SubHi
);
1210 MRI
.clearKillFlags(Src1SubLo
);
1211 MRI
.clearKillFlags(Src2SubHi
);
1212 MRI
.clearKillFlags(Src2SubLo
);
1213 MRI
.clearKillFlags(Src3SubHi
);
1214 MRI
.clearKillFlags(Src3SubLo
);
1217 case Hexagon::PS_pselect
: {
1218 const MachineOperand
&Op0
= MI
.getOperand(0);
1219 const MachineOperand
&Op1
= MI
.getOperand(1);
1220 const MachineOperand
&Op2
= MI
.getOperand(2);
1221 const MachineOperand
&Op3
= MI
.getOperand(3);
1222 unsigned Rd
= Op0
.getReg();
1223 unsigned Pu
= Op1
.getReg();
1224 unsigned Rs
= Op2
.getReg();
1225 unsigned Rt
= Op3
.getReg();
1226 DebugLoc DL
= MI
.getDebugLoc();
1227 unsigned K1
= getKillRegState(Op1
.isKill());
1228 unsigned K2
= getKillRegState(Op2
.isKill());
1229 unsigned K3
= getKillRegState(Op3
.isKill());
1231 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrpt
), Rd
)
1232 .addReg(Pu
, (Rd
== Rt
) ? K1
: 0)
1235 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrpf
), Rd
)
1241 case Hexagon::PS_vselect
: {
1242 const MachineOperand
&Op0
= MI
.getOperand(0);
1243 const MachineOperand
&Op1
= MI
.getOperand(1);
1244 const MachineOperand
&Op2
= MI
.getOperand(2);
1245 const MachineOperand
&Op3
= MI
.getOperand(3);
1246 LivePhysRegs
LiveAtMI(HRI
);
1247 getLiveRegsAt(LiveAtMI
, MI
);
1248 bool IsDestLive
= !LiveAtMI
.available(MRI
, Op0
.getReg());
1249 unsigned PReg
= Op1
.getReg();
1250 assert(Op1
.getSubReg() == 0);
1251 unsigned PState
= getRegState(Op1
);
1253 if (Op0
.getReg() != Op2
.getReg()) {
1254 unsigned S
= Op0
.getReg() != Op3
.getReg() ? PState
& ~RegState::Kill
1256 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vcmov
))
1261 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1264 if (Op0
.getReg() != Op3
.getReg()) {
1265 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vncmov
))
1267 .addReg(PReg
, PState
)
1270 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1275 case Hexagon::PS_wselect
: {
1276 MachineOperand
&Op0
= MI
.getOperand(0);
1277 MachineOperand
&Op1
= MI
.getOperand(1);
1278 MachineOperand
&Op2
= MI
.getOperand(2);
1279 MachineOperand
&Op3
= MI
.getOperand(3);
1280 LivePhysRegs
LiveAtMI(HRI
);
1281 getLiveRegsAt(LiveAtMI
, MI
);
1282 bool IsDestLive
= !LiveAtMI
.available(MRI
, Op0
.getReg());
1283 unsigned PReg
= Op1
.getReg();
1284 assert(Op1
.getSubReg() == 0);
1285 unsigned PState
= getRegState(Op1
);
1287 if (Op0
.getReg() != Op2
.getReg()) {
1288 unsigned S
= Op0
.getReg() != Op3
.getReg() ? PState
& ~RegState::Kill
1290 unsigned SrcLo
= HRI
.getSubReg(Op2
.getReg(), Hexagon::vsub_lo
);
1291 unsigned SrcHi
= HRI
.getSubReg(Op2
.getReg(), Hexagon::vsub_hi
);
1292 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vccombine
))
1298 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1301 if (Op0
.getReg() != Op3
.getReg()) {
1302 unsigned SrcLo
= HRI
.getSubReg(Op3
.getReg(), Hexagon::vsub_lo
);
1303 unsigned SrcHi
= HRI
.getSubReg(Op3
.getReg(), Hexagon::vsub_hi
);
1304 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vnccombine
))
1306 .addReg(PReg
, PState
)
1310 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1316 case Hexagon::PS_tailcall_i
:
1317 MI
.setDesc(get(Hexagon::J2_jump
));
1319 case Hexagon::PS_tailcall_r
:
1320 case Hexagon::PS_jmpret
:
1321 MI
.setDesc(get(Hexagon::J2_jumpr
));
1323 case Hexagon::PS_jmprett
:
1324 MI
.setDesc(get(Hexagon::J2_jumprt
));
1326 case Hexagon::PS_jmpretf
:
1327 MI
.setDesc(get(Hexagon::J2_jumprf
));
1329 case Hexagon::PS_jmprettnewpt
:
1330 MI
.setDesc(get(Hexagon::J2_jumprtnewpt
));
1332 case Hexagon::PS_jmpretfnewpt
:
1333 MI
.setDesc(get(Hexagon::J2_jumprfnewpt
));
1335 case Hexagon::PS_jmprettnew
:
1336 MI
.setDesc(get(Hexagon::J2_jumprtnew
));
1338 case Hexagon::PS_jmpretfnew
:
1339 MI
.setDesc(get(Hexagon::J2_jumprfnew
));
1342 case Hexagon::PS_loadrub_pci
:
1343 return RealCirc(Hexagon::L2_loadrub_pci
, /*HasImm*/true, /*MxOp*/4);
1344 case Hexagon::PS_loadrb_pci
:
1345 return RealCirc(Hexagon::L2_loadrb_pci
, /*HasImm*/true, /*MxOp*/4);
1346 case Hexagon::PS_loadruh_pci
:
1347 return RealCirc(Hexagon::L2_loadruh_pci
, /*HasImm*/true, /*MxOp*/4);
1348 case Hexagon::PS_loadrh_pci
:
1349 return RealCirc(Hexagon::L2_loadrh_pci
, /*HasImm*/true, /*MxOp*/4);
1350 case Hexagon::PS_loadri_pci
:
1351 return RealCirc(Hexagon::L2_loadri_pci
, /*HasImm*/true, /*MxOp*/4);
1352 case Hexagon::PS_loadrd_pci
:
1353 return RealCirc(Hexagon::L2_loadrd_pci
, /*HasImm*/true, /*MxOp*/4);
1354 case Hexagon::PS_loadrub_pcr
:
1355 return RealCirc(Hexagon::L2_loadrub_pcr
, /*HasImm*/false, /*MxOp*/3);
1356 case Hexagon::PS_loadrb_pcr
:
1357 return RealCirc(Hexagon::L2_loadrb_pcr
, /*HasImm*/false, /*MxOp*/3);
1358 case Hexagon::PS_loadruh_pcr
:
1359 return RealCirc(Hexagon::L2_loadruh_pcr
, /*HasImm*/false, /*MxOp*/3);
1360 case Hexagon::PS_loadrh_pcr
:
1361 return RealCirc(Hexagon::L2_loadrh_pcr
, /*HasImm*/false, /*MxOp*/3);
1362 case Hexagon::PS_loadri_pcr
:
1363 return RealCirc(Hexagon::L2_loadri_pcr
, /*HasImm*/false, /*MxOp*/3);
1364 case Hexagon::PS_loadrd_pcr
:
1365 return RealCirc(Hexagon::L2_loadrd_pcr
, /*HasImm*/false, /*MxOp*/3);
1366 case Hexagon::PS_storerb_pci
:
1367 return RealCirc(Hexagon::S2_storerb_pci
, /*HasImm*/true, /*MxOp*/3);
1368 case Hexagon::PS_storerh_pci
:
1369 return RealCirc(Hexagon::S2_storerh_pci
, /*HasImm*/true, /*MxOp*/3);
1370 case Hexagon::PS_storerf_pci
:
1371 return RealCirc(Hexagon::S2_storerf_pci
, /*HasImm*/true, /*MxOp*/3);
1372 case Hexagon::PS_storeri_pci
:
1373 return RealCirc(Hexagon::S2_storeri_pci
, /*HasImm*/true, /*MxOp*/3);
1374 case Hexagon::PS_storerd_pci
:
1375 return RealCirc(Hexagon::S2_storerd_pci
, /*HasImm*/true, /*MxOp*/3);
1376 case Hexagon::PS_storerb_pcr
:
1377 return RealCirc(Hexagon::S2_storerb_pcr
, /*HasImm*/false, /*MxOp*/2);
1378 case Hexagon::PS_storerh_pcr
:
1379 return RealCirc(Hexagon::S2_storerh_pcr
, /*HasImm*/false, /*MxOp*/2);
1380 case Hexagon::PS_storerf_pcr
:
1381 return RealCirc(Hexagon::S2_storerf_pcr
, /*HasImm*/false, /*MxOp*/2);
1382 case Hexagon::PS_storeri_pcr
:
1383 return RealCirc(Hexagon::S2_storeri_pcr
, /*HasImm*/false, /*MxOp*/2);
1384 case Hexagon::PS_storerd_pcr
:
1385 return RealCirc(Hexagon::S2_storerd_pcr
, /*HasImm*/false, /*MxOp*/2);
1391 MachineBasicBlock::instr_iterator
1392 HexagonInstrInfo::expandVGatherPseudo(MachineInstr
&MI
) const {
1393 MachineBasicBlock
&MBB
= *MI
.getParent();
1394 const DebugLoc
&DL
= MI
.getDebugLoc();
1395 unsigned Opc
= MI
.getOpcode();
1396 MachineBasicBlock::iterator First
;
1399 case Hexagon::V6_vgathermh_pseudo
:
1400 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermh
))
1401 .add(MI
.getOperand(1))
1402 .add(MI
.getOperand(2))
1403 .add(MI
.getOperand(3));
1404 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1405 .add(MI
.getOperand(0))
1407 .addReg(Hexagon::VTMP
);
1409 return First
.getInstrIterator();
1411 case Hexagon::V6_vgathermw_pseudo
:
1412 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermw
))
1413 .add(MI
.getOperand(1))
1414 .add(MI
.getOperand(2))
1415 .add(MI
.getOperand(3));
1416 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1417 .add(MI
.getOperand(0))
1419 .addReg(Hexagon::VTMP
);
1421 return First
.getInstrIterator();
1423 case Hexagon::V6_vgathermhw_pseudo
:
1424 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhw
))
1425 .add(MI
.getOperand(1))
1426 .add(MI
.getOperand(2))
1427 .add(MI
.getOperand(3));
1428 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1429 .add(MI
.getOperand(0))
1431 .addReg(Hexagon::VTMP
);
1433 return First
.getInstrIterator();
1435 case Hexagon::V6_vgathermhq_pseudo
:
1436 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhq
))
1437 .add(MI
.getOperand(1))
1438 .add(MI
.getOperand(2))
1439 .add(MI
.getOperand(3))
1440 .add(MI
.getOperand(4));
1441 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1442 .add(MI
.getOperand(0))
1444 .addReg(Hexagon::VTMP
);
1446 return First
.getInstrIterator();
1448 case Hexagon::V6_vgathermwq_pseudo
:
1449 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermwq
))
1450 .add(MI
.getOperand(1))
1451 .add(MI
.getOperand(2))
1452 .add(MI
.getOperand(3))
1453 .add(MI
.getOperand(4));
1454 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1455 .add(MI
.getOperand(0))
1457 .addReg(Hexagon::VTMP
);
1459 return First
.getInstrIterator();
1461 case Hexagon::V6_vgathermhwq_pseudo
:
1462 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhwq
))
1463 .add(MI
.getOperand(1))
1464 .add(MI
.getOperand(2))
1465 .add(MI
.getOperand(3))
1466 .add(MI
.getOperand(4));
1467 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1468 .add(MI
.getOperand(0))
1470 .addReg(Hexagon::VTMP
);
1472 return First
.getInstrIterator();
1475 return MI
.getIterator();
1478 // We indicate that we want to reverse the branch by
1479 // inserting the reversed branching opcode.
1480 bool HexagonInstrInfo::reverseBranchCondition(
1481 SmallVectorImpl
<MachineOperand
> &Cond
) const {
1484 assert(Cond
[0].isImm() && "First entry in the cond vector not imm-val");
1485 unsigned opcode
= Cond
[0].getImm();
1487 assert(get(opcode
).isBranch() && "Should be a branching condition.");
1488 if (isEndLoopN(opcode
))
1490 unsigned NewOpcode
= getInvertedPredicatedOpcode(opcode
);
1491 Cond
[0].setImm(NewOpcode
);
1495 void HexagonInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
1496 MachineBasicBlock::iterator MI
) const {
1498 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_nop
));
1501 bool HexagonInstrInfo::isPostIncrement(const MachineInstr
&MI
) const {
1502 return getAddrMode(MI
) == HexagonII::PostInc
;
1505 // Returns true if an instruction is predicated irrespective of the predicate
1506 // sense. For example, all of the following will return true.
1507 // if (p0) R1 = add(R2, R3)
1508 // if (!p0) R1 = add(R2, R3)
1509 // if (p0.new) R1 = add(R2, R3)
1510 // if (!p0.new) R1 = add(R2, R3)
1511 // Note: New-value stores are not included here as in the current
1512 // implementation, we don't need to check their predicate sense.
1513 bool HexagonInstrInfo::isPredicated(const MachineInstr
&MI
) const {
1514 const uint64_t F
= MI
.getDesc().TSFlags
;
1515 return (F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
;
1518 bool HexagonInstrInfo::PredicateInstruction(
1519 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Cond
) const {
1520 if (Cond
.empty() || isNewValueJump(Cond
[0].getImm()) ||
1521 isEndLoopN(Cond
[0].getImm())) {
1522 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI
.dump(););
1525 int Opc
= MI
.getOpcode();
1526 assert (isPredicable(MI
) && "Expected predicable instruction");
1527 bool invertJump
= predOpcodeHasNot(Cond
);
1529 // We have to predicate MI "in place", i.e. after this function returns,
1530 // MI will need to be transformed into a predicated form. To avoid com-
1531 // plicated manipulations with the operands (handling tied operands,
1532 // etc.), build a new temporary instruction, then overwrite MI with it.
1534 MachineBasicBlock
&B
= *MI
.getParent();
1535 DebugLoc DL
= MI
.getDebugLoc();
1536 unsigned PredOpc
= getCondOpcode(Opc
, invertJump
);
1537 MachineInstrBuilder T
= BuildMI(B
, MI
, DL
, get(PredOpc
));
1538 unsigned NOp
= 0, NumOps
= MI
.getNumOperands();
1539 while (NOp
< NumOps
) {
1540 MachineOperand
&Op
= MI
.getOperand(NOp
);
1541 if (!Op
.isReg() || !Op
.isDef() || Op
.isImplicit())
1547 unsigned PredReg
, PredRegPos
, PredRegFlags
;
1548 bool GotPredReg
= getPredReg(Cond
, PredReg
, PredRegPos
, PredRegFlags
);
1551 T
.addReg(PredReg
, PredRegFlags
);
1552 while (NOp
< NumOps
)
1553 T
.add(MI
.getOperand(NOp
++));
1555 MI
.setDesc(get(PredOpc
));
1556 while (unsigned n
= MI
.getNumOperands())
1557 MI
.RemoveOperand(n
-1);
1558 for (unsigned i
= 0, n
= T
->getNumOperands(); i
< n
; ++i
)
1559 MI
.addOperand(T
->getOperand(i
));
1561 MachineBasicBlock::instr_iterator TI
= T
->getIterator();
1564 MachineRegisterInfo
&MRI
= B
.getParent()->getRegInfo();
1565 MRI
.clearKillFlags(PredReg
);
1569 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1570 ArrayRef
<MachineOperand
> Pred2
) const {
1575 bool HexagonInstrInfo::DefinesPredicate(MachineInstr
&MI
,
1576 std::vector
<MachineOperand
> &Pred
) const {
1577 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
1579 for (unsigned oper
= 0; oper
< MI
.getNumOperands(); ++oper
) {
1580 MachineOperand MO
= MI
.getOperand(oper
);
1584 const TargetRegisterClass
* RC
= HRI
.getMinimalPhysRegClass(MO
.getReg());
1585 if (RC
== &Hexagon::PredRegsRegClass
) {
1590 } else if (MO
.isRegMask()) {
1591 for (unsigned PR
: Hexagon::PredRegsRegClass
) {
1592 if (!MI
.modifiesRegister(PR
, &HRI
))
1602 bool HexagonInstrInfo::isPredicable(const MachineInstr
&MI
) const {
1603 if (!MI
.getDesc().isPredicable())
1606 if (MI
.isCall() || isTailCall(MI
)) {
1607 if (!Subtarget
.usePredicatedCalls())
1611 // HVX loads are not predicable on v60, but are on v62.
1612 if (!Subtarget
.hasV62Ops()) {
1613 switch (MI
.getOpcode()) {
1614 case Hexagon::V6_vL32b_ai
:
1615 case Hexagon::V6_vL32b_pi
:
1616 case Hexagon::V6_vL32b_ppu
:
1617 case Hexagon::V6_vL32b_cur_ai
:
1618 case Hexagon::V6_vL32b_cur_pi
:
1619 case Hexagon::V6_vL32b_cur_ppu
:
1620 case Hexagon::V6_vL32b_nt_ai
:
1621 case Hexagon::V6_vL32b_nt_pi
:
1622 case Hexagon::V6_vL32b_nt_ppu
:
1623 case Hexagon::V6_vL32b_tmp_ai
:
1624 case Hexagon::V6_vL32b_tmp_pi
:
1625 case Hexagon::V6_vL32b_tmp_ppu
:
1626 case Hexagon::V6_vL32b_nt_cur_ai
:
1627 case Hexagon::V6_vL32b_nt_cur_pi
:
1628 case Hexagon::V6_vL32b_nt_cur_ppu
:
1629 case Hexagon::V6_vL32b_nt_tmp_ai
:
1630 case Hexagon::V6_vL32b_nt_tmp_pi
:
1631 case Hexagon::V6_vL32b_nt_tmp_ppu
:
1638 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
1639 const MachineBasicBlock
*MBB
,
1640 const MachineFunction
&MF
) const {
1641 // Debug info is never a scheduling boundary. It's necessary to be explicit
1642 // due to the special treatment of IT instructions below, otherwise a
1643 // dbg_value followed by an IT will result in the IT instruction being
1644 // considered a scheduling hazard, which is wrong. It should be the actual
1645 // instruction preceding the dbg_value instruction(s), just like it is
1646 // when debug info is not present.
1647 if (MI
.isDebugInstr())
1650 // Throwing call is a boundary.
1652 // Don't mess around with no return calls.
1653 if (doesNotReturn(MI
))
1655 // If any of the block's successors is a landing pad, this could be a
1657 for (auto I
: MBB
->successors())
1662 // Terminators and labels can't be scheduled around.
1663 if (MI
.getDesc().isTerminator() || MI
.isPosition())
1666 if (MI
.isInlineAsm() && !ScheduleInlineAsm
)
1672 /// Measure the specified inline asm to determine an approximation of its
1674 /// Comments (which run till the next SeparatorString or newline) do not
1675 /// count as an instruction.
1676 /// Any other non-whitespace text is considered an instruction, with
1677 /// multiple instructions separated by SeparatorString or newlines.
1678 /// Variable-length instructions are not handled here; this function
1679 /// may be overloaded in the target code to do that.
1680 /// Hexagon counts the number of ##'s and adjust for that many
1681 /// constant exenders.
1682 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str
,
1683 const MCAsmInfo
&MAI
) const {
1684 StringRef
AStr(Str
);
1685 // Count the number of instructions in the asm.
1686 bool atInsnStart
= true;
1687 unsigned Length
= 0;
1688 for (; *Str
; ++Str
) {
1689 if (*Str
== '\n' || strncmp(Str
, MAI
.getSeparatorString(),
1690 strlen(MAI
.getSeparatorString())) == 0)
1692 if (atInsnStart
&& !std::isspace(static_cast<unsigned char>(*Str
))) {
1693 Length
+= MAI
.getMaxInstLength();
1694 atInsnStart
= false;
1696 if (atInsnStart
&& strncmp(Str
, MAI
.getCommentString().data(),
1697 MAI
.getCommentString().size()) == 0)
1698 atInsnStart
= false;
1701 // Add to size number of constant extenders seen * 4.
1702 StringRef
Occ("##");
1703 Length
+= AStr
.count(Occ
)*4;
1707 ScheduleHazardRecognizer
*
1708 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1709 const InstrItineraryData
*II
, const ScheduleDAG
*DAG
) const {
1710 if (UseDFAHazardRec
)
1711 return new HexagonHazardRecognizer(II
, this, Subtarget
);
1712 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II
, DAG
);
1715 /// For a comparison instruction, return the source registers in
1716 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1717 /// compares against in CmpValue. Return true if the comparison instruction
1718 /// can be analyzed.
1719 bool HexagonInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1720 unsigned &SrcReg2
, int &Mask
,
1722 unsigned Opc
= MI
.getOpcode();
1724 // Set mask and the first source register.
1726 case Hexagon::C2_cmpeq
:
1727 case Hexagon::C2_cmpeqp
:
1728 case Hexagon::C2_cmpgt
:
1729 case Hexagon::C2_cmpgtp
:
1730 case Hexagon::C2_cmpgtu
:
1731 case Hexagon::C2_cmpgtup
:
1732 case Hexagon::C4_cmpneq
:
1733 case Hexagon::C4_cmplte
:
1734 case Hexagon::C4_cmplteu
:
1735 case Hexagon::C2_cmpeqi
:
1736 case Hexagon::C2_cmpgti
:
1737 case Hexagon::C2_cmpgtui
:
1738 case Hexagon::C4_cmpneqi
:
1739 case Hexagon::C4_cmplteui
:
1740 case Hexagon::C4_cmpltei
:
1741 SrcReg
= MI
.getOperand(1).getReg();
1744 case Hexagon::A4_cmpbeq
:
1745 case Hexagon::A4_cmpbgt
:
1746 case Hexagon::A4_cmpbgtu
:
1747 case Hexagon::A4_cmpbeqi
:
1748 case Hexagon::A4_cmpbgti
:
1749 case Hexagon::A4_cmpbgtui
:
1750 SrcReg
= MI
.getOperand(1).getReg();
1753 case Hexagon::A4_cmpheq
:
1754 case Hexagon::A4_cmphgt
:
1755 case Hexagon::A4_cmphgtu
:
1756 case Hexagon::A4_cmpheqi
:
1757 case Hexagon::A4_cmphgti
:
1758 case Hexagon::A4_cmphgtui
:
1759 SrcReg
= MI
.getOperand(1).getReg();
1764 // Set the value/second source register.
1766 case Hexagon::C2_cmpeq
:
1767 case Hexagon::C2_cmpeqp
:
1768 case Hexagon::C2_cmpgt
:
1769 case Hexagon::C2_cmpgtp
:
1770 case Hexagon::C2_cmpgtu
:
1771 case Hexagon::C2_cmpgtup
:
1772 case Hexagon::A4_cmpbeq
:
1773 case Hexagon::A4_cmpbgt
:
1774 case Hexagon::A4_cmpbgtu
:
1775 case Hexagon::A4_cmpheq
:
1776 case Hexagon::A4_cmphgt
:
1777 case Hexagon::A4_cmphgtu
:
1778 case Hexagon::C4_cmpneq
:
1779 case Hexagon::C4_cmplte
:
1780 case Hexagon::C4_cmplteu
:
1781 SrcReg2
= MI
.getOperand(2).getReg();
1784 case Hexagon::C2_cmpeqi
:
1785 case Hexagon::C2_cmpgtui
:
1786 case Hexagon::C2_cmpgti
:
1787 case Hexagon::C4_cmpneqi
:
1788 case Hexagon::C4_cmplteui
:
1789 case Hexagon::C4_cmpltei
:
1790 case Hexagon::A4_cmpbeqi
:
1791 case Hexagon::A4_cmpbgti
:
1792 case Hexagon::A4_cmpbgtui
:
1793 case Hexagon::A4_cmpheqi
:
1794 case Hexagon::A4_cmphgti
:
1795 case Hexagon::A4_cmphgtui
: {
1797 const MachineOperand
&Op2
= MI
.getOperand(2);
1800 Value
= MI
.getOperand(2).getImm();
1808 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1809 const MachineInstr
&MI
,
1810 unsigned *PredCost
) const {
1811 return getInstrTimingClassLatency(ItinData
, MI
);
1814 DFAPacketizer
*HexagonInstrInfo::CreateTargetScheduleState(
1815 const TargetSubtargetInfo
&STI
) const {
1816 const InstrItineraryData
*II
= STI
.getInstrItineraryData();
1817 return static_cast<const HexagonSubtarget
&>(STI
).createDFAPacketizer(II
);
1820 // Inspired by this pair:
1821 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1822 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1823 // Currently AA considers the addresses in these instructions to be aliasing.
1824 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1825 MachineInstr
&MIa
, MachineInstr
&MIb
, AliasAnalysis
*AA
) const {
1826 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
1827 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
1830 // Instructions that are pure loads, not loads and stores like memops are not
1832 if (MIa
.mayLoad() && !isMemOp(MIa
) && MIb
.mayLoad() && !isMemOp(MIb
))
1835 // Get the base register in MIa.
1836 unsigned BasePosA
, OffsetPosA
;
1837 if (!getBaseAndOffsetPosition(MIa
, BasePosA
, OffsetPosA
))
1839 const MachineOperand
&BaseA
= MIa
.getOperand(BasePosA
);
1840 unsigned BaseRegA
= BaseA
.getReg();
1841 unsigned BaseSubA
= BaseA
.getSubReg();
1843 // Get the base register in MIb.
1844 unsigned BasePosB
, OffsetPosB
;
1845 if (!getBaseAndOffsetPosition(MIb
, BasePosB
, OffsetPosB
))
1847 const MachineOperand
&BaseB
= MIb
.getOperand(BasePosB
);
1848 unsigned BaseRegB
= BaseB
.getReg();
1849 unsigned BaseSubB
= BaseB
.getSubReg();
1851 if (BaseRegA
!= BaseRegB
|| BaseSubA
!= BaseSubB
)
1854 // Get the access sizes.
1855 unsigned SizeA
= getMemAccessSize(MIa
);
1856 unsigned SizeB
= getMemAccessSize(MIb
);
1858 // Get the offsets. Handle immediates only for now.
1859 const MachineOperand
&OffA
= MIa
.getOperand(OffsetPosA
);
1860 const MachineOperand
&OffB
= MIb
.getOperand(OffsetPosB
);
1861 if (!MIa
.getOperand(OffsetPosA
).isImm() ||
1862 !MIb
.getOperand(OffsetPosB
).isImm())
1864 int OffsetA
= isPostIncrement(MIa
) ? 0 : OffA
.getImm();
1865 int OffsetB
= isPostIncrement(MIb
) ? 0 : OffB
.getImm();
1867 // This is a mem access with the same base register and known offsets from it.
1869 if (OffsetA
> OffsetB
) {
1870 uint64_t OffDiff
= (uint64_t)((int64_t)OffsetA
- (int64_t)OffsetB
);
1871 return SizeB
<= OffDiff
;
1873 if (OffsetA
< OffsetB
) {
1874 uint64_t OffDiff
= (uint64_t)((int64_t)OffsetB
- (int64_t)OffsetA
);
1875 return SizeA
<= OffDiff
;
1881 /// If the instruction is an increment of a constant value, return the amount.
1882 bool HexagonInstrInfo::getIncrementValue(const MachineInstr
&MI
,
1884 if (isPostIncrement(MI
)) {
1885 unsigned BasePos
= 0, OffsetPos
= 0;
1886 if (!getBaseAndOffsetPosition(MI
, BasePos
, OffsetPos
))
1888 const MachineOperand
&OffsetOp
= MI
.getOperand(OffsetPos
);
1889 if (OffsetOp
.isImm()) {
1890 Value
= OffsetOp
.getImm();
1893 } else if (MI
.getOpcode() == Hexagon::A2_addi
) {
1894 const MachineOperand
&AddOp
= MI
.getOperand(2);
1895 if (AddOp
.isImm()) {
1896 Value
= AddOp
.getImm();
1904 std::pair
<unsigned, unsigned>
1905 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
1906 return std::make_pair(TF
& ~HexagonII::MO_Bitmasks
,
1907 TF
& HexagonII::MO_Bitmasks
);
1910 ArrayRef
<std::pair
<unsigned, const char*>>
1911 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1912 using namespace HexagonII
;
1914 static const std::pair
<unsigned, const char*> Flags
[] = {
1915 {MO_PCREL
, "hexagon-pcrel"},
1916 {MO_GOT
, "hexagon-got"},
1917 {MO_LO16
, "hexagon-lo16"},
1918 {MO_HI16
, "hexagon-hi16"},
1919 {MO_GPREL
, "hexagon-gprel"},
1920 {MO_GDGOT
, "hexagon-gdgot"},
1921 {MO_GDPLT
, "hexagon-gdplt"},
1922 {MO_IE
, "hexagon-ie"},
1923 {MO_IEGOT
, "hexagon-iegot"},
1924 {MO_TPREL
, "hexagon-tprel"}
1926 return makeArrayRef(Flags
);
1929 ArrayRef
<std::pair
<unsigned, const char*>>
1930 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1931 using namespace HexagonII
;
1933 static const std::pair
<unsigned, const char*> Flags
[] = {
1934 {HMOTF_ConstExtended
, "hexagon-ext"}
1936 return makeArrayRef(Flags
);
1939 unsigned HexagonInstrInfo::createVR(MachineFunction
*MF
, MVT VT
) const {
1940 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1941 const TargetRegisterClass
*TRC
;
1942 if (VT
== MVT::i1
) {
1943 TRC
= &Hexagon::PredRegsRegClass
;
1944 } else if (VT
== MVT::i32
|| VT
== MVT::f32
) {
1945 TRC
= &Hexagon::IntRegsRegClass
;
1946 } else if (VT
== MVT::i64
|| VT
== MVT::f64
) {
1947 TRC
= &Hexagon::DoubleRegsRegClass
;
1949 llvm_unreachable("Cannot handle this register class");
1952 unsigned NewReg
= MRI
.createVirtualRegister(TRC
);
1956 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr
&MI
) const {
1957 return (getAddrMode(MI
) == HexagonII::AbsoluteSet
);
1960 bool HexagonInstrInfo::isAccumulator(const MachineInstr
&MI
) const {
1961 const uint64_t F
= MI
.getDesc().TSFlags
;
1962 return((F
>> HexagonII::AccumulatorPos
) & HexagonII::AccumulatorMask
);
1965 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr
&MI
) const {
1966 return getAddrMode(MI
) == HexagonII::BaseImmOffset
;
1969 bool HexagonInstrInfo::isComplex(const MachineInstr
&MI
) const {
1970 return !isTC1(MI
) && !isTC2Early(MI
) && !MI
.getDesc().mayLoad() &&
1971 !MI
.getDesc().mayStore() &&
1972 MI
.getDesc().getOpcode() != Hexagon::S2_allocframe
&&
1973 MI
.getDesc().getOpcode() != Hexagon::L2_deallocframe
&&
1974 !isMemOp(MI
) && !MI
.isBranch() && !MI
.isReturn() && !MI
.isCall();
1977 // Return true if the instruction is a compund branch instruction.
1978 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr
&MI
) const {
1979 return getType(MI
) == HexagonII::TypeCJ
&& MI
.isBranch();
1982 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1983 // isFPImm and later getFPImm as well.
1984 bool HexagonInstrInfo::isConstExtended(const MachineInstr
&MI
) const {
1985 const uint64_t F
= MI
.getDesc().TSFlags
;
1986 unsigned isExtended
= (F
>> HexagonII::ExtendedPos
) & HexagonII::ExtendedMask
;
1987 if (isExtended
) // Instruction must be extended.
1990 unsigned isExtendable
=
1991 (F
>> HexagonII::ExtendablePos
) & HexagonII::ExtendableMask
;
1998 short ExtOpNum
= getCExtOpNum(MI
);
1999 const MachineOperand
&MO
= MI
.getOperand(ExtOpNum
);
2000 // Use MO operand flags to determine if MO
2001 // has the HMOTF_ConstExtended flag set.
2002 if (MO
.getTargetFlags() & HexagonII::HMOTF_ConstExtended
)
2004 // If this is a Machine BB address we are talking about, and it is
2005 // not marked as extended, say so.
2009 // We could be using an instruction with an extendable immediate and shoehorn
2010 // a global address into it. If it is a global address it will be constant
2011 // extended. We do this for COMBINE.
2012 if (MO
.isGlobal() || MO
.isSymbol() || MO
.isBlockAddress() ||
2013 MO
.isJTI() || MO
.isCPI() || MO
.isFPImm())
2016 // If the extendable operand is not 'Immediate' type, the instruction should
2017 // have 'isExtended' flag set.
2018 assert(MO
.isImm() && "Extendable operand must be Immediate type");
2020 int MinValue
= getMinValue(MI
);
2021 int MaxValue
= getMaxValue(MI
);
2022 int ImmValue
= MO
.getImm();
2024 return (ImmValue
< MinValue
|| ImmValue
> MaxValue
);
2027 bool HexagonInstrInfo::isDeallocRet(const MachineInstr
&MI
) const {
2028 switch (MI
.getOpcode()) {
2029 case Hexagon::L4_return
:
2030 case Hexagon::L4_return_t
:
2031 case Hexagon::L4_return_f
:
2032 case Hexagon::L4_return_tnew_pnt
:
2033 case Hexagon::L4_return_fnew_pnt
:
2034 case Hexagon::L4_return_tnew_pt
:
2035 case Hexagon::L4_return_fnew_pt
:
2041 // Return true when ConsMI uses a register defined by ProdMI.
2042 bool HexagonInstrInfo::isDependent(const MachineInstr
&ProdMI
,
2043 const MachineInstr
&ConsMI
) const {
2044 if (!ProdMI
.getDesc().getNumDefs())
2046 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
2048 SmallVector
<unsigned, 4> DefsA
;
2049 SmallVector
<unsigned, 4> DefsB
;
2050 SmallVector
<unsigned, 8> UsesA
;
2051 SmallVector
<unsigned, 8> UsesB
;
2053 parseOperands(ProdMI
, DefsA
, UsesA
);
2054 parseOperands(ConsMI
, DefsB
, UsesB
);
2056 for (auto &RegA
: DefsA
)
2057 for (auto &RegB
: UsesB
) {
2058 // True data dependency.
2062 if (TargetRegisterInfo::isPhysicalRegister(RegA
))
2063 for (MCSubRegIterator
SubRegs(RegA
, &HRI
); SubRegs
.isValid(); ++SubRegs
)
2064 if (RegB
== *SubRegs
)
2067 if (TargetRegisterInfo::isPhysicalRegister(RegB
))
2068 for (MCSubRegIterator
SubRegs(RegB
, &HRI
); SubRegs
.isValid(); ++SubRegs
)
2069 if (RegA
== *SubRegs
)
2076 // Returns true if the instruction is alread a .cur.
2077 bool HexagonInstrInfo::isDotCurInst(const MachineInstr
&MI
) const {
2078 switch (MI
.getOpcode()) {
2079 case Hexagon::V6_vL32b_cur_pi
:
2080 case Hexagon::V6_vL32b_cur_ai
:
2086 // Returns true, if any one of the operands is a dot new
2087 // insn, whether it is predicated dot new or register dot new.
2088 bool HexagonInstrInfo::isDotNewInst(const MachineInstr
&MI
) const {
2089 if (isNewValueInst(MI
) || (isPredicated(MI
) && isPredicatedNew(MI
)))
2095 /// Symmetrical. See if these two instructions are fit for duplex pair.
2096 bool HexagonInstrInfo::isDuplexPair(const MachineInstr
&MIa
,
2097 const MachineInstr
&MIb
) const {
2098 HexagonII::SubInstructionGroup MIaG
= getDuplexCandidateGroup(MIa
);
2099 HexagonII::SubInstructionGroup MIbG
= getDuplexCandidateGroup(MIb
);
2100 return (isDuplexPairMatch(MIaG
, MIbG
) || isDuplexPairMatch(MIbG
, MIaG
));
2103 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr
&MI
) const {
2104 if (MI
.mayLoad() || MI
.mayStore() || MI
.isCompare())
2108 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2109 return is_TC4x(SchedClass
) || is_TC3x(SchedClass
);
2112 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode
) const {
2113 return (Opcode
== Hexagon::ENDLOOP0
||
2114 Opcode
== Hexagon::ENDLOOP1
);
2117 bool HexagonInstrInfo::isExpr(unsigned OpType
) const {
2119 case MachineOperand::MO_MachineBasicBlock
:
2120 case MachineOperand::MO_GlobalAddress
:
2121 case MachineOperand::MO_ExternalSymbol
:
2122 case MachineOperand::MO_JumpTableIndex
:
2123 case MachineOperand::MO_ConstantPoolIndex
:
2124 case MachineOperand::MO_BlockAddress
:
2131 bool HexagonInstrInfo::isExtendable(const MachineInstr
&MI
) const {
2132 const MCInstrDesc
&MID
= MI
.getDesc();
2133 const uint64_t F
= MID
.TSFlags
;
2134 if ((F
>> HexagonII::ExtendablePos
) & HexagonII::ExtendableMask
)
2137 // TODO: This is largely obsolete now. Will need to be removed
2138 // in consecutive patches.
2139 switch (MI
.getOpcode()) {
2140 // PS_fi and PS_fia remain special cases.
2141 case Hexagon::PS_fi
:
2142 case Hexagon::PS_fia
:
2150 // This returns true in two cases:
2151 // - The OP code itself indicates that this is an extended instruction.
2152 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2153 bool HexagonInstrInfo::isExtended(const MachineInstr
&MI
) const {
2154 // First check if this is permanently extended op code.
2155 const uint64_t F
= MI
.getDesc().TSFlags
;
2156 if ((F
>> HexagonII::ExtendedPos
) & HexagonII::ExtendedMask
)
2158 // Use MO operand flags to determine if one of MI's operands
2159 // has HMOTF_ConstExtended flag set.
2160 for (const MachineOperand
&MO
: MI
.operands())
2161 if (MO
.getTargetFlags() & HexagonII::HMOTF_ConstExtended
)
2166 bool HexagonInstrInfo::isFloat(const MachineInstr
&MI
) const {
2167 unsigned Opcode
= MI
.getOpcode();
2168 const uint64_t F
= get(Opcode
).TSFlags
;
2169 return (F
>> HexagonII::FPPos
) & HexagonII::FPMask
;
2172 // No V60 HVX VMEM with A_INDIRECT.
2173 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr
&I
,
2174 const MachineInstr
&J
) const {
2177 if (!I
.mayLoad() && !I
.mayStore())
2179 return J
.isIndirectBranch() || isIndirectCall(J
) || isIndirectL4Return(J
);
2182 bool HexagonInstrInfo::isIndirectCall(const MachineInstr
&MI
) const {
2183 switch (MI
.getOpcode()) {
2184 case Hexagon::J2_callr
:
2185 case Hexagon::J2_callrf
:
2186 case Hexagon::J2_callrt
:
2187 case Hexagon::PS_call_nr
:
2193 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr
&MI
) const {
2194 switch (MI
.getOpcode()) {
2195 case Hexagon::L4_return
:
2196 case Hexagon::L4_return_t
:
2197 case Hexagon::L4_return_f
:
2198 case Hexagon::L4_return_fnew_pnt
:
2199 case Hexagon::L4_return_fnew_pt
:
2200 case Hexagon::L4_return_tnew_pnt
:
2201 case Hexagon::L4_return_tnew_pt
:
2207 bool HexagonInstrInfo::isJumpR(const MachineInstr
&MI
) const {
2208 switch (MI
.getOpcode()) {
2209 case Hexagon::J2_jumpr
:
2210 case Hexagon::J2_jumprt
:
2211 case Hexagon::J2_jumprf
:
2212 case Hexagon::J2_jumprtnewpt
:
2213 case Hexagon::J2_jumprfnewpt
:
2214 case Hexagon::J2_jumprtnew
:
2215 case Hexagon::J2_jumprfnew
:
2221 // Return true if a given MI can accommodate given offset.
2222 // Use abs estimate as oppose to the exact number.
2223 // TODO: This will need to be changed to use MC level
2224 // definition of instruction extendable field size.
2225 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr
&MI
,
2226 unsigned offset
) const {
2227 // This selection of jump instructions matches to that what
2228 // analyzeBranch can parse, plus NVJ.
2229 if (isNewValueJump(MI
)) // r9:2
2230 return isInt
<11>(offset
);
2232 switch (MI
.getOpcode()) {
2233 // Still missing Jump to address condition on register value.
2236 case Hexagon::J2_jump
: // bits<24> dst; // r22:2
2237 case Hexagon::J2_call
:
2238 case Hexagon::PS_call_nr
:
2239 return isInt
<24>(offset
);
2240 case Hexagon::J2_jumpt
: //bits<17> dst; // r15:2
2241 case Hexagon::J2_jumpf
:
2242 case Hexagon::J2_jumptnew
:
2243 case Hexagon::J2_jumptnewpt
:
2244 case Hexagon::J2_jumpfnew
:
2245 case Hexagon::J2_jumpfnewpt
:
2246 case Hexagon::J2_callt
:
2247 case Hexagon::J2_callf
:
2248 return isInt
<17>(offset
);
2249 case Hexagon::J2_loop0i
:
2250 case Hexagon::J2_loop0iext
:
2251 case Hexagon::J2_loop0r
:
2252 case Hexagon::J2_loop0rext
:
2253 case Hexagon::J2_loop1i
:
2254 case Hexagon::J2_loop1iext
:
2255 case Hexagon::J2_loop1r
:
2256 case Hexagon::J2_loop1rext
:
2257 return isInt
<9>(offset
);
2258 // TODO: Add all the compound branches here. Can we do this in Relation model?
2259 case Hexagon::J4_cmpeqi_tp0_jump_nt
:
2260 case Hexagon::J4_cmpeqi_tp1_jump_nt
:
2261 case Hexagon::J4_cmpeqn1_tp0_jump_nt
:
2262 case Hexagon::J4_cmpeqn1_tp1_jump_nt
:
2263 return isInt
<11>(offset
);
2267 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr
&LRMI
,
2268 const MachineInstr
&ESMI
) const {
2269 bool isLate
= isLateResultInstr(LRMI
);
2270 bool isEarly
= isEarlySourceInstr(ESMI
);
2272 LLVM_DEBUG(dbgs() << "V60" << (isLate
? "-LR " : " -- "));
2273 LLVM_DEBUG(LRMI
.dump());
2274 LLVM_DEBUG(dbgs() << "V60" << (isEarly
? "-ES " : " -- "));
2275 LLVM_DEBUG(ESMI
.dump());
2277 if (isLate
&& isEarly
) {
2278 LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2285 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr
&MI
) const {
2286 switch (MI
.getOpcode()) {
2287 case TargetOpcode::EXTRACT_SUBREG
:
2288 case TargetOpcode::INSERT_SUBREG
:
2289 case TargetOpcode::SUBREG_TO_REG
:
2290 case TargetOpcode::REG_SEQUENCE
:
2291 case TargetOpcode::IMPLICIT_DEF
:
2292 case TargetOpcode::COPY
:
2293 case TargetOpcode::INLINEASM
:
2294 case TargetOpcode::PHI
:
2300 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2301 return !is_TC1(SchedClass
);
2304 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr
&MI
) const {
2305 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2306 // resource, but all operands can be received late like an ALU instruction.
2307 return getType(MI
) == HexagonII::TypeCVI_VX_LATE
;
2310 bool HexagonInstrInfo::isLoopN(const MachineInstr
&MI
) const {
2311 unsigned Opcode
= MI
.getOpcode();
2312 return Opcode
== Hexagon::J2_loop0i
||
2313 Opcode
== Hexagon::J2_loop0r
||
2314 Opcode
== Hexagon::J2_loop0iext
||
2315 Opcode
== Hexagon::J2_loop0rext
||
2316 Opcode
== Hexagon::J2_loop1i
||
2317 Opcode
== Hexagon::J2_loop1r
||
2318 Opcode
== Hexagon::J2_loop1iext
||
2319 Opcode
== Hexagon::J2_loop1rext
;
2322 bool HexagonInstrInfo::isMemOp(const MachineInstr
&MI
) const {
2323 switch (MI
.getOpcode()) {
2324 default: return false;
2325 case Hexagon::L4_iadd_memopw_io
:
2326 case Hexagon::L4_isub_memopw_io
:
2327 case Hexagon::L4_add_memopw_io
:
2328 case Hexagon::L4_sub_memopw_io
:
2329 case Hexagon::L4_and_memopw_io
:
2330 case Hexagon::L4_or_memopw_io
:
2331 case Hexagon::L4_iadd_memoph_io
:
2332 case Hexagon::L4_isub_memoph_io
:
2333 case Hexagon::L4_add_memoph_io
:
2334 case Hexagon::L4_sub_memoph_io
:
2335 case Hexagon::L4_and_memoph_io
:
2336 case Hexagon::L4_or_memoph_io
:
2337 case Hexagon::L4_iadd_memopb_io
:
2338 case Hexagon::L4_isub_memopb_io
:
2339 case Hexagon::L4_add_memopb_io
:
2340 case Hexagon::L4_sub_memopb_io
:
2341 case Hexagon::L4_and_memopb_io
:
2342 case Hexagon::L4_or_memopb_io
:
2343 case Hexagon::L4_ior_memopb_io
:
2344 case Hexagon::L4_ior_memoph_io
:
2345 case Hexagon::L4_ior_memopw_io
:
2346 case Hexagon::L4_iand_memopb_io
:
2347 case Hexagon::L4_iand_memoph_io
:
2348 case Hexagon::L4_iand_memopw_io
:
2354 bool HexagonInstrInfo::isNewValue(const MachineInstr
&MI
) const {
2355 const uint64_t F
= MI
.getDesc().TSFlags
;
2356 return (F
>> HexagonII::NewValuePos
) & HexagonII::NewValueMask
;
2359 bool HexagonInstrInfo::isNewValue(unsigned Opcode
) const {
2360 const uint64_t F
= get(Opcode
).TSFlags
;
2361 return (F
>> HexagonII::NewValuePos
) & HexagonII::NewValueMask
;
2364 bool HexagonInstrInfo::isNewValueInst(const MachineInstr
&MI
) const {
2365 return isNewValueJump(MI
) || isNewValueStore(MI
);
2368 bool HexagonInstrInfo::isNewValueJump(const MachineInstr
&MI
) const {
2369 return isNewValue(MI
) && MI
.isBranch();
2372 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode
) const {
2373 return isNewValue(Opcode
) && get(Opcode
).isBranch() && isPredicated(Opcode
);
2376 bool HexagonInstrInfo::isNewValueStore(const MachineInstr
&MI
) const {
2377 const uint64_t F
= MI
.getDesc().TSFlags
;
2378 return (F
>> HexagonII::NVStorePos
) & HexagonII::NVStoreMask
;
2381 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode
) const {
2382 const uint64_t F
= get(Opcode
).TSFlags
;
2383 return (F
>> HexagonII::NVStorePos
) & HexagonII::NVStoreMask
;
2386 // Returns true if a particular operand is extendable for an instruction.
2387 bool HexagonInstrInfo::isOperandExtended(const MachineInstr
&MI
,
2388 unsigned OperandNum
) const {
2389 const uint64_t F
= MI
.getDesc().TSFlags
;
2390 return ((F
>> HexagonII::ExtendableOpPos
) & HexagonII::ExtendableOpMask
)
2394 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr
&MI
) const {
2395 const uint64_t F
= MI
.getDesc().TSFlags
;
2396 assert(isPredicated(MI
));
2397 return (F
>> HexagonII::PredicatedNewPos
) & HexagonII::PredicatedNewMask
;
2400 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode
) const {
2401 const uint64_t F
= get(Opcode
).TSFlags
;
2402 assert(isPredicated(Opcode
));
2403 return (F
>> HexagonII::PredicatedNewPos
) & HexagonII::PredicatedNewMask
;
2406 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr
&MI
) const {
2407 const uint64_t F
= MI
.getDesc().TSFlags
;
2408 return !((F
>> HexagonII::PredicatedFalsePos
) &
2409 HexagonII::PredicatedFalseMask
);
2412 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode
) const {
2413 const uint64_t F
= get(Opcode
).TSFlags
;
2414 // Make sure that the instruction is predicated.
2415 assert((F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
);
2416 return !((F
>> HexagonII::PredicatedFalsePos
) &
2417 HexagonII::PredicatedFalseMask
);
2420 bool HexagonInstrInfo::isPredicated(unsigned Opcode
) const {
2421 const uint64_t F
= get(Opcode
).TSFlags
;
2422 return (F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
;
2425 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode
) const {
2426 const uint64_t F
= get(Opcode
).TSFlags
;
2427 return (F
>> HexagonII::PredicateLatePos
) & HexagonII::PredicateLateMask
;
2430 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode
) const {
2431 const uint64_t F
= get(Opcode
).TSFlags
;
2432 assert(get(Opcode
).isBranch() &&
2433 (isPredicatedNew(Opcode
) || isNewValue(Opcode
)));
2434 return (F
>> HexagonII::TakenPos
) & HexagonII::TakenMask
;
2437 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr
&MI
) const {
2438 return MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4
||
2439 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT
||
2440 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC
||
2441 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
;
2444 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr
&MI
) const {
2445 switch (MI
.getOpcode()) {
2447 case Hexagon::L2_loadrb_io
:
2448 case Hexagon::L4_loadrb_ur
:
2449 case Hexagon::L4_loadrb_ap
:
2450 case Hexagon::L2_loadrb_pr
:
2451 case Hexagon::L2_loadrb_pbr
:
2452 case Hexagon::L2_loadrb_pi
:
2453 case Hexagon::L2_loadrb_pci
:
2454 case Hexagon::L2_loadrb_pcr
:
2455 case Hexagon::L2_loadbsw2_io
:
2456 case Hexagon::L4_loadbsw2_ur
:
2457 case Hexagon::L4_loadbsw2_ap
:
2458 case Hexagon::L2_loadbsw2_pr
:
2459 case Hexagon::L2_loadbsw2_pbr
:
2460 case Hexagon::L2_loadbsw2_pi
:
2461 case Hexagon::L2_loadbsw2_pci
:
2462 case Hexagon::L2_loadbsw2_pcr
:
2463 case Hexagon::L2_loadbsw4_io
:
2464 case Hexagon::L4_loadbsw4_ur
:
2465 case Hexagon::L4_loadbsw4_ap
:
2466 case Hexagon::L2_loadbsw4_pr
:
2467 case Hexagon::L2_loadbsw4_pbr
:
2468 case Hexagon::L2_loadbsw4_pi
:
2469 case Hexagon::L2_loadbsw4_pci
:
2470 case Hexagon::L2_loadbsw4_pcr
:
2471 case Hexagon::L4_loadrb_rr
:
2472 case Hexagon::L2_ploadrbt_io
:
2473 case Hexagon::L2_ploadrbt_pi
:
2474 case Hexagon::L2_ploadrbf_io
:
2475 case Hexagon::L2_ploadrbf_pi
:
2476 case Hexagon::L2_ploadrbtnew_io
:
2477 case Hexagon::L2_ploadrbfnew_io
:
2478 case Hexagon::L4_ploadrbt_rr
:
2479 case Hexagon::L4_ploadrbf_rr
:
2480 case Hexagon::L4_ploadrbtnew_rr
:
2481 case Hexagon::L4_ploadrbfnew_rr
:
2482 case Hexagon::L2_ploadrbtnew_pi
:
2483 case Hexagon::L2_ploadrbfnew_pi
:
2484 case Hexagon::L4_ploadrbt_abs
:
2485 case Hexagon::L4_ploadrbf_abs
:
2486 case Hexagon::L4_ploadrbtnew_abs
:
2487 case Hexagon::L4_ploadrbfnew_abs
:
2488 case Hexagon::L2_loadrbgp
:
2490 case Hexagon::L2_loadrh_io
:
2491 case Hexagon::L4_loadrh_ur
:
2492 case Hexagon::L4_loadrh_ap
:
2493 case Hexagon::L2_loadrh_pr
:
2494 case Hexagon::L2_loadrh_pbr
:
2495 case Hexagon::L2_loadrh_pi
:
2496 case Hexagon::L2_loadrh_pci
:
2497 case Hexagon::L2_loadrh_pcr
:
2498 case Hexagon::L4_loadrh_rr
:
2499 case Hexagon::L2_ploadrht_io
:
2500 case Hexagon::L2_ploadrht_pi
:
2501 case Hexagon::L2_ploadrhf_io
:
2502 case Hexagon::L2_ploadrhf_pi
:
2503 case Hexagon::L2_ploadrhtnew_io
:
2504 case Hexagon::L2_ploadrhfnew_io
:
2505 case Hexagon::L4_ploadrht_rr
:
2506 case Hexagon::L4_ploadrhf_rr
:
2507 case Hexagon::L4_ploadrhtnew_rr
:
2508 case Hexagon::L4_ploadrhfnew_rr
:
2509 case Hexagon::L2_ploadrhtnew_pi
:
2510 case Hexagon::L2_ploadrhfnew_pi
:
2511 case Hexagon::L4_ploadrht_abs
:
2512 case Hexagon::L4_ploadrhf_abs
:
2513 case Hexagon::L4_ploadrhtnew_abs
:
2514 case Hexagon::L4_ploadrhfnew_abs
:
2515 case Hexagon::L2_loadrhgp
:
2522 bool HexagonInstrInfo::isSolo(const MachineInstr
&MI
) const {
2523 const uint64_t F
= MI
.getDesc().TSFlags
;
2524 return (F
>> HexagonII::SoloPos
) & HexagonII::SoloMask
;
2527 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr
&MI
) const {
2528 switch (MI
.getOpcode()) {
2529 case Hexagon::STriw_pred
:
2530 case Hexagon::LDriw_pred
:
2537 bool HexagonInstrInfo::isTailCall(const MachineInstr
&MI
) const {
2541 for (auto &Op
: MI
.operands())
2542 if (Op
.isGlobal() || Op
.isSymbol())
2547 // Returns true when SU has a timing class TC1.
2548 bool HexagonInstrInfo::isTC1(const MachineInstr
&MI
) const {
2549 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2550 return is_TC1(SchedClass
);
2553 bool HexagonInstrInfo::isTC2(const MachineInstr
&MI
) const {
2554 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2555 return is_TC2(SchedClass
);
2558 bool HexagonInstrInfo::isTC2Early(const MachineInstr
&MI
) const {
2559 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2560 return is_TC2early(SchedClass
);
2563 bool HexagonInstrInfo::isTC4x(const MachineInstr
&MI
) const {
2564 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2565 return is_TC4x(SchedClass
);
2568 // Schedule this ASAP.
2569 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr
&MI1
,
2570 const MachineInstr
&MI2
) const {
2571 if (mayBeCurLoad(MI1
)) {
2572 // if (result of SU is used in Next) return true;
2573 unsigned DstReg
= MI1
.getOperand(0).getReg();
2574 int N
= MI2
.getNumOperands();
2575 for (int I
= 0; I
< N
; I
++)
2576 if (MI2
.getOperand(I
).isReg() && DstReg
== MI2
.getOperand(I
).getReg())
2579 if (mayBeNewStore(MI2
))
2580 if (MI2
.getOpcode() == Hexagon::V6_vS32b_pi
)
2581 if (MI1
.getOperand(0).isReg() && MI2
.getOperand(3).isReg() &&
2582 MI1
.getOperand(0).getReg() == MI2
.getOperand(3).getReg())
2587 bool HexagonInstrInfo::isHVXVec(const MachineInstr
&MI
) const {
2588 const uint64_t V
= getType(MI
);
2589 return HexagonII::TypeCVI_FIRST
<= V
&& V
<= HexagonII::TypeCVI_LAST
;
2592 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2593 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT
, int Offset
) const {
2594 int Size
= VT
.getSizeInBits() / 8;
2595 if (Offset
% Size
!= 0)
2597 int Count
= Offset
/ Size
;
2599 switch (VT
.getSimpleVT().SimpleTy
) {
2600 // For scalars the auto-inc is s4
2612 return isInt
<4>(Count
);
2613 // For HVX vectors the auto-inc is s3
2622 return isInt
<3>(Count
);
2627 llvm_unreachable("Not an valid type!");
2630 bool HexagonInstrInfo::isValidOffset(unsigned Opcode
, int Offset
,
2631 const TargetRegisterInfo
*TRI
, bool Extend
) const {
2632 // This function is to check whether the "Offset" is in the correct range of
2633 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2634 // inserted to calculate the final address. Due to this reason, the function
2635 // assumes that the "Offset" has correct alignment.
2636 // We used to assert if the offset was not properly aligned, however,
2637 // there are cases where a misaligned pointer recast can cause this
2638 // problem, and we need to allow for it. The front end warns of such
2639 // misaligns with respect to load size.
2641 case Hexagon::PS_vstorerq_ai
:
2642 case Hexagon::PS_vstorerw_ai
:
2643 case Hexagon::PS_vstorerw_nt_ai
:
2644 case Hexagon::PS_vloadrq_ai
:
2645 case Hexagon::PS_vloadrw_ai
:
2646 case Hexagon::PS_vloadrw_nt_ai
:
2647 case Hexagon::V6_vL32b_ai
:
2648 case Hexagon::V6_vS32b_ai
:
2649 case Hexagon::V6_vL32b_nt_ai
:
2650 case Hexagon::V6_vS32b_nt_ai
:
2651 case Hexagon::V6_vL32Ub_ai
:
2652 case Hexagon::V6_vS32Ub_ai
: {
2653 unsigned VectorSize
= TRI
->getSpillSize(Hexagon::HvxVRRegClass
);
2654 assert(isPowerOf2_32(VectorSize
));
2655 if (Offset
& (VectorSize
-1))
2657 return isInt
<4>(Offset
>> Log2_32(VectorSize
));
2660 case Hexagon::J2_loop0i
:
2661 case Hexagon::J2_loop1i
:
2662 return isUInt
<10>(Offset
);
2664 case Hexagon::S4_storeirb_io
:
2665 case Hexagon::S4_storeirbt_io
:
2666 case Hexagon::S4_storeirbf_io
:
2667 return isUInt
<6>(Offset
);
2669 case Hexagon::S4_storeirh_io
:
2670 case Hexagon::S4_storeirht_io
:
2671 case Hexagon::S4_storeirhf_io
:
2672 return isShiftedUInt
<6,1>(Offset
);
2674 case Hexagon::S4_storeiri_io
:
2675 case Hexagon::S4_storeirit_io
:
2676 case Hexagon::S4_storeirif_io
:
2677 return isShiftedUInt
<6,2>(Offset
);
2684 case Hexagon::L2_loadri_io
:
2685 case Hexagon::S2_storeri_io
:
2686 return (Offset
>= Hexagon_MEMW_OFFSET_MIN
) &&
2687 (Offset
<= Hexagon_MEMW_OFFSET_MAX
);
2689 case Hexagon::L2_loadrd_io
:
2690 case Hexagon::S2_storerd_io
:
2691 return (Offset
>= Hexagon_MEMD_OFFSET_MIN
) &&
2692 (Offset
<= Hexagon_MEMD_OFFSET_MAX
);
2694 case Hexagon::L2_loadrh_io
:
2695 case Hexagon::L2_loadruh_io
:
2696 case Hexagon::S2_storerh_io
:
2697 case Hexagon::S2_storerf_io
:
2698 return (Offset
>= Hexagon_MEMH_OFFSET_MIN
) &&
2699 (Offset
<= Hexagon_MEMH_OFFSET_MAX
);
2701 case Hexagon::L2_loadrb_io
:
2702 case Hexagon::L2_loadrub_io
:
2703 case Hexagon::S2_storerb_io
:
2704 return (Offset
>= Hexagon_MEMB_OFFSET_MIN
) &&
2705 (Offset
<= Hexagon_MEMB_OFFSET_MAX
);
2707 case Hexagon::A2_addi
:
2708 return (Offset
>= Hexagon_ADDI_OFFSET_MIN
) &&
2709 (Offset
<= Hexagon_ADDI_OFFSET_MAX
);
2711 case Hexagon::L4_iadd_memopw_io
:
2712 case Hexagon::L4_isub_memopw_io
:
2713 case Hexagon::L4_add_memopw_io
:
2714 case Hexagon::L4_sub_memopw_io
:
2715 case Hexagon::L4_and_memopw_io
:
2716 case Hexagon::L4_or_memopw_io
:
2717 return (0 <= Offset
&& Offset
<= 255);
2719 case Hexagon::L4_iadd_memoph_io
:
2720 case Hexagon::L4_isub_memoph_io
:
2721 case Hexagon::L4_add_memoph_io
:
2722 case Hexagon::L4_sub_memoph_io
:
2723 case Hexagon::L4_and_memoph_io
:
2724 case Hexagon::L4_or_memoph_io
:
2725 return (0 <= Offset
&& Offset
<= 127);
2727 case Hexagon::L4_iadd_memopb_io
:
2728 case Hexagon::L4_isub_memopb_io
:
2729 case Hexagon::L4_add_memopb_io
:
2730 case Hexagon::L4_sub_memopb_io
:
2731 case Hexagon::L4_and_memopb_io
:
2732 case Hexagon::L4_or_memopb_io
:
2733 return (0 <= Offset
&& Offset
<= 63);
2735 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2736 // any size. Later pass knows how to handle it.
2737 case Hexagon::STriw_pred
:
2738 case Hexagon::LDriw_pred
:
2739 case Hexagon::STriw_ctr
:
2740 case Hexagon::LDriw_ctr
:
2743 case Hexagon::PS_fi
:
2744 case Hexagon::PS_fia
:
2745 case Hexagon::INLINEASM
:
2748 case Hexagon::L2_ploadrbt_io
:
2749 case Hexagon::L2_ploadrbf_io
:
2750 case Hexagon::L2_ploadrubt_io
:
2751 case Hexagon::L2_ploadrubf_io
:
2752 case Hexagon::S2_pstorerbt_io
:
2753 case Hexagon::S2_pstorerbf_io
:
2754 return isUInt
<6>(Offset
);
2756 case Hexagon::L2_ploadrht_io
:
2757 case Hexagon::L2_ploadrhf_io
:
2758 case Hexagon::L2_ploadruht_io
:
2759 case Hexagon::L2_ploadruhf_io
:
2760 case Hexagon::S2_pstorerht_io
:
2761 case Hexagon::S2_pstorerhf_io
:
2762 return isShiftedUInt
<6,1>(Offset
);
2764 case Hexagon::L2_ploadrit_io
:
2765 case Hexagon::L2_ploadrif_io
:
2766 case Hexagon::S2_pstorerit_io
:
2767 case Hexagon::S2_pstorerif_io
:
2768 return isShiftedUInt
<6,2>(Offset
);
2770 case Hexagon::L2_ploadrdt_io
:
2771 case Hexagon::L2_ploadrdf_io
:
2772 case Hexagon::S2_pstorerdt_io
:
2773 case Hexagon::S2_pstorerdf_io
:
2774 return isShiftedUInt
<6,3>(Offset
);
2777 llvm_unreachable("No offset range is defined for this opcode. "
2778 "Please define it in the above switch statement!");
2781 bool HexagonInstrInfo::isVecAcc(const MachineInstr
&MI
) const {
2782 return isHVXVec(MI
) && isAccumulator(MI
);
2785 bool HexagonInstrInfo::isVecALU(const MachineInstr
&MI
) const {
2786 const uint64_t F
= get(MI
.getOpcode()).TSFlags
;
2787 const uint64_t V
= ((F
>> HexagonII::TypePos
) & HexagonII::TypeMask
);
2789 V
== HexagonII::TypeCVI_VA
||
2790 V
== HexagonII::TypeCVI_VA_DV
;
2793 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr
&ProdMI
,
2794 const MachineInstr
&ConsMI
) const {
2795 if (EnableACCForwarding
&& isVecAcc(ProdMI
) && isVecAcc(ConsMI
))
2798 if (EnableALUForwarding
&& (isVecALU(ConsMI
) || isLateSourceInstr(ConsMI
)))
2801 if (mayBeNewStore(ConsMI
))
2807 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr
&MI
) const {
2808 switch (MI
.getOpcode()) {
2810 case Hexagon::L2_loadrub_io
:
2811 case Hexagon::L4_loadrub_ur
:
2812 case Hexagon::L4_loadrub_ap
:
2813 case Hexagon::L2_loadrub_pr
:
2814 case Hexagon::L2_loadrub_pbr
:
2815 case Hexagon::L2_loadrub_pi
:
2816 case Hexagon::L2_loadrub_pci
:
2817 case Hexagon::L2_loadrub_pcr
:
2818 case Hexagon::L2_loadbzw2_io
:
2819 case Hexagon::L4_loadbzw2_ur
:
2820 case Hexagon::L4_loadbzw2_ap
:
2821 case Hexagon::L2_loadbzw2_pr
:
2822 case Hexagon::L2_loadbzw2_pbr
:
2823 case Hexagon::L2_loadbzw2_pi
:
2824 case Hexagon::L2_loadbzw2_pci
:
2825 case Hexagon::L2_loadbzw2_pcr
:
2826 case Hexagon::L2_loadbzw4_io
:
2827 case Hexagon::L4_loadbzw4_ur
:
2828 case Hexagon::L4_loadbzw4_ap
:
2829 case Hexagon::L2_loadbzw4_pr
:
2830 case Hexagon::L2_loadbzw4_pbr
:
2831 case Hexagon::L2_loadbzw4_pi
:
2832 case Hexagon::L2_loadbzw4_pci
:
2833 case Hexagon::L2_loadbzw4_pcr
:
2834 case Hexagon::L4_loadrub_rr
:
2835 case Hexagon::L2_ploadrubt_io
:
2836 case Hexagon::L2_ploadrubt_pi
:
2837 case Hexagon::L2_ploadrubf_io
:
2838 case Hexagon::L2_ploadrubf_pi
:
2839 case Hexagon::L2_ploadrubtnew_io
:
2840 case Hexagon::L2_ploadrubfnew_io
:
2841 case Hexagon::L4_ploadrubt_rr
:
2842 case Hexagon::L4_ploadrubf_rr
:
2843 case Hexagon::L4_ploadrubtnew_rr
:
2844 case Hexagon::L4_ploadrubfnew_rr
:
2845 case Hexagon::L2_ploadrubtnew_pi
:
2846 case Hexagon::L2_ploadrubfnew_pi
:
2847 case Hexagon::L4_ploadrubt_abs
:
2848 case Hexagon::L4_ploadrubf_abs
:
2849 case Hexagon::L4_ploadrubtnew_abs
:
2850 case Hexagon::L4_ploadrubfnew_abs
:
2851 case Hexagon::L2_loadrubgp
:
2853 case Hexagon::L2_loadruh_io
:
2854 case Hexagon::L4_loadruh_ur
:
2855 case Hexagon::L4_loadruh_ap
:
2856 case Hexagon::L2_loadruh_pr
:
2857 case Hexagon::L2_loadruh_pbr
:
2858 case Hexagon::L2_loadruh_pi
:
2859 case Hexagon::L2_loadruh_pci
:
2860 case Hexagon::L2_loadruh_pcr
:
2861 case Hexagon::L4_loadruh_rr
:
2862 case Hexagon::L2_ploadruht_io
:
2863 case Hexagon::L2_ploadruht_pi
:
2864 case Hexagon::L2_ploadruhf_io
:
2865 case Hexagon::L2_ploadruhf_pi
:
2866 case Hexagon::L2_ploadruhtnew_io
:
2867 case Hexagon::L2_ploadruhfnew_io
:
2868 case Hexagon::L4_ploadruht_rr
:
2869 case Hexagon::L4_ploadruhf_rr
:
2870 case Hexagon::L4_ploadruhtnew_rr
:
2871 case Hexagon::L4_ploadruhfnew_rr
:
2872 case Hexagon::L2_ploadruhtnew_pi
:
2873 case Hexagon::L2_ploadruhfnew_pi
:
2874 case Hexagon::L4_ploadruht_abs
:
2875 case Hexagon::L4_ploadruhf_abs
:
2876 case Hexagon::L4_ploadruhtnew_abs
:
2877 case Hexagon::L4_ploadruhfnew_abs
:
2878 case Hexagon::L2_loadruhgp
:
2885 // Add latency to instruction.
2886 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr
&MI1
,
2887 const MachineInstr
&MI2
) const {
2888 if (isHVXVec(MI1
) && isHVXVec(MI2
))
2889 if (!isVecUsableNextPacket(MI1
, MI2
))
2894 /// Get the base register and byte offset of a load/store instr.
2895 bool HexagonInstrInfo::getMemOperandWithOffset(
2896 MachineInstr
&LdSt
, MachineOperand
*&BaseOp
, int64_t &Offset
,
2897 const TargetRegisterInfo
*TRI
) const {
2898 unsigned AccessSize
= 0;
2899 BaseOp
= getBaseAndOffset(LdSt
, Offset
, AccessSize
);
2900 assert((!BaseOp
|| BaseOp
->isReg()) &&
2901 "getMemOperandWithOffset only supports base "
2902 "operands of type register.");
2903 return BaseOp
!= nullptr;
2906 /// Can these instructions execute at the same time in a bundle.
2907 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr
&First
,
2908 const MachineInstr
&Second
) const {
2909 if (Second
.mayStore() && First
.getOpcode() == Hexagon::S2_allocframe
) {
2910 const MachineOperand
&Op
= Second
.getOperand(0);
2911 if (Op
.isReg() && Op
.isUse() && Op
.getReg() == Hexagon::R29
)
2914 if (DisableNVSchedule
)
2916 if (mayBeNewStore(Second
)) {
2917 // Make sure the definition of the first instruction is the value being
2919 const MachineOperand
&Stored
=
2920 Second
.getOperand(Second
.getNumOperands() - 1);
2921 if (!Stored
.isReg())
2923 for (unsigned i
= 0, e
= First
.getNumOperands(); i
< e
; ++i
) {
2924 const MachineOperand
&Op
= First
.getOperand(i
);
2925 if (Op
.isReg() && Op
.isDef() && Op
.getReg() == Stored
.getReg())
2932 bool HexagonInstrInfo::doesNotReturn(const MachineInstr
&CallMI
) const {
2933 unsigned Opc
= CallMI
.getOpcode();
2934 return Opc
== Hexagon::PS_call_nr
|| Opc
== Hexagon::PS_callr_nr
;
2937 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock
*B
) const {
2944 // Returns true if an instruction can be converted into a non-extended
2945 // equivalent instruction.
2946 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr
&MI
) const {
2948 // Check if the instruction has a register form that uses register in place
2949 // of the extended operand, if so return that as the non-extended form.
2950 if (Hexagon::getRegForm(MI
.getOpcode()) >= 0)
2953 if (MI
.getDesc().mayLoad() || MI
.getDesc().mayStore()) {
2954 // Check addressing mode and retrieve non-ext equivalent instruction.
2956 switch (getAddrMode(MI
)) {
2957 case HexagonII::Absolute
:
2958 // Load/store with absolute addressing mode can be converted into
2959 // base+offset mode.
2960 NonExtOpcode
= Hexagon::changeAddrMode_abs_io(MI
.getOpcode());
2962 case HexagonII::BaseImmOffset
:
2963 // Load/store with base+offset addressing mode can be converted into
2964 // base+register offset addressing mode. However left shift operand should
2966 NonExtOpcode
= Hexagon::changeAddrMode_io_rr(MI
.getOpcode());
2968 case HexagonII::BaseLongOffset
:
2969 NonExtOpcode
= Hexagon::changeAddrMode_ur_rr(MI
.getOpcode());
2974 if (NonExtOpcode
< 0)
2981 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr
&MI
) const {
2982 return Hexagon::getRealHWInstr(MI
.getOpcode(),
2983 Hexagon::InstrType_Pseudo
) >= 0;
2986 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock
*B
)
2988 MachineBasicBlock::const_iterator I
= B
->getFirstTerminator(), E
= B
->end();
2997 // Returns true, if a LD insn can be promoted to a cur load.
2998 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr
&MI
) const {
2999 const uint64_t F
= MI
.getDesc().TSFlags
;
3000 return ((F
>> HexagonII::mayCVLoadPos
) & HexagonII::mayCVLoadMask
) &&
3001 Subtarget
.hasV60Ops();
3004 // Returns true, if a ST insn can be promoted to a new-value store.
3005 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr
&MI
) const {
3006 if (MI
.mayStore() && !Subtarget
.useNewValueStores())
3009 const uint64_t F
= MI
.getDesc().TSFlags
;
3010 return (F
>> HexagonII::mayNVStorePos
) & HexagonII::mayNVStoreMask
;
3013 bool HexagonInstrInfo::producesStall(const MachineInstr
&ProdMI
,
3014 const MachineInstr
&ConsMI
) const {
3015 // There is no stall when ProdMI is not a V60 vector.
3016 if (!isHVXVec(ProdMI
))
3019 // There is no stall when ProdMI and ConsMI are not dependent.
3020 if (!isDependent(ProdMI
, ConsMI
))
3023 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3024 // are scheduled in consecutive packets.
3025 if (isVecUsableNextPacket(ProdMI
, ConsMI
))
3031 bool HexagonInstrInfo::producesStall(const MachineInstr
&MI
,
3032 MachineBasicBlock::const_instr_iterator BII
) const {
3033 // There is no stall when I is not a V60 vector.
3037 MachineBasicBlock::const_instr_iterator MII
= BII
;
3038 MachineBasicBlock::const_instr_iterator MIE
= MII
->getParent()->instr_end();
3040 if (!MII
->isBundle())
3041 return producesStall(*MII
, MI
);
3043 for (++MII
; MII
!= MIE
&& MII
->isInsideBundle(); ++MII
) {
3044 const MachineInstr
&J
= *MII
;
3045 if (producesStall(J
, MI
))
3051 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr
&MI
,
3052 unsigned PredReg
) const {
3053 for (const MachineOperand
&MO
: MI
.operands()) {
3054 // Predicate register must be explicitly defined.
3055 if (MO
.isRegMask() && MO
.clobbersPhysReg(PredReg
))
3057 if (MO
.isReg() && MO
.isDef() && MO
.isImplicit() && (MO
.getReg() == PredReg
))
3061 // Instruction that produce late predicate cannot be used as sources of
3063 switch (MI
.getOpcode()) {
3064 case Hexagon::A4_addp_c
:
3065 case Hexagon::A4_subp_c
:
3066 case Hexagon::A4_tlbmatch
:
3067 case Hexagon::A5_ACS
:
3068 case Hexagon::F2_sfinvsqrta
:
3069 case Hexagon::F2_sfrecipa
:
3070 case Hexagon::J2_endloop0
:
3071 case Hexagon::J2_endloop01
:
3072 case Hexagon::J2_ploop1si
:
3073 case Hexagon::J2_ploop1sr
:
3074 case Hexagon::J2_ploop2si
:
3075 case Hexagon::J2_ploop2sr
:
3076 case Hexagon::J2_ploop3si
:
3077 case Hexagon::J2_ploop3sr
:
3078 case Hexagon::S2_cabacdecbin
:
3079 case Hexagon::S2_storew_locked
:
3080 case Hexagon::S4_stored_locked
:
3086 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode
) const {
3087 return Opcode
== Hexagon::J2_jumpt
||
3088 Opcode
== Hexagon::J2_jumptpt
||
3089 Opcode
== Hexagon::J2_jumpf
||
3090 Opcode
== Hexagon::J2_jumpfpt
||
3091 Opcode
== Hexagon::J2_jumptnew
||
3092 Opcode
== Hexagon::J2_jumpfnew
||
3093 Opcode
== Hexagon::J2_jumptnewpt
||
3094 Opcode
== Hexagon::J2_jumpfnewpt
;
3097 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef
<MachineOperand
> Cond
) const {
3098 if (Cond
.empty() || !isPredicated(Cond
[0].getImm()))
3100 return !isPredicatedTrue(Cond
[0].getImm());
3103 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr
&MI
) const {
3104 const uint64_t F
= MI
.getDesc().TSFlags
;
3105 return (F
>> HexagonII::AddrModePos
) & HexagonII::AddrModeMask
;
3108 // Returns the base register in a memory access (load/store). The offset is
3109 // returned in Offset and the access size is returned in AccessSize.
3110 // If the base operand has a subregister or the offset field does not contain
3111 // an immediate value, return nullptr.
3112 MachineOperand
*HexagonInstrInfo::getBaseAndOffset(const MachineInstr
&MI
,
3114 unsigned &AccessSize
) const {
3115 // Return if it is not a base+offset type instruction or a MemOp.
3116 if (getAddrMode(MI
) != HexagonII::BaseImmOffset
&&
3117 getAddrMode(MI
) != HexagonII::BaseLongOffset
&&
3118 !isMemOp(MI
) && !isPostIncrement(MI
))
3121 AccessSize
= getMemAccessSize(MI
);
3123 unsigned BasePos
= 0, OffsetPos
= 0;
3124 if (!getBaseAndOffsetPosition(MI
, BasePos
, OffsetPos
))
3127 // Post increment updates its EA after the mem access,
3128 // so we need to treat its offset as zero.
3129 if (isPostIncrement(MI
)) {
3132 const MachineOperand
&OffsetOp
= MI
.getOperand(OffsetPos
);
3133 if (!OffsetOp
.isImm())
3135 Offset
= OffsetOp
.getImm();
3138 const MachineOperand
&BaseOp
= MI
.getOperand(BasePos
);
3139 if (BaseOp
.getSubReg() != 0)
3141 return &const_cast<MachineOperand
&>(BaseOp
);
3144 /// Return the position of the base and offset operands for this instruction.
3145 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr
&MI
,
3146 unsigned &BasePos
, unsigned &OffsetPos
) const {
3147 if (!isAddrModeWithOffset(MI
) && !isPostIncrement(MI
))
3150 // Deal with memops first.
3154 } else if (MI
.mayStore()) {
3157 } else if (MI
.mayLoad()) {
3163 if (isPredicated(MI
)) {
3167 if (isPostIncrement(MI
)) {
3172 if (!MI
.getOperand(BasePos
).isReg() || !MI
.getOperand(OffsetPos
).isImm())
3178 // Inserts branching instructions in reverse order of their occurrence.
3179 // e.g. jump_t t1 (i1)
3181 // Jumpers = {i2, i1}
3182 SmallVector
<MachineInstr
*, 2> HexagonInstrInfo::getBranchingInstrs(
3183 MachineBasicBlock
& MBB
) const {
3184 SmallVector
<MachineInstr
*, 2> Jumpers
;
3185 // If the block has no terminators, it just falls into the block after it.
3186 MachineBasicBlock::instr_iterator I
= MBB
.instr_end();
3187 if (I
== MBB
.instr_begin())
3190 // A basic block may looks like this:
3200 // It has two succs but does not have a terminator
3201 // Don't know how to handle it.
3206 } while (I
!= MBB
.instr_begin());
3208 I
= MBB
.instr_end();
3211 while (I
->isDebugInstr()) {
3212 if (I
== MBB
.instr_begin())
3216 if (!isUnpredicatedTerminator(*I
))
3219 // Get the last instruction in the block.
3220 MachineInstr
*LastInst
= &*I
;
3221 Jumpers
.push_back(LastInst
);
3222 MachineInstr
*SecondLastInst
= nullptr;
3223 // Find one more terminator if present.
3225 if (&*I
!= LastInst
&& !I
->isBundle() && isUnpredicatedTerminator(*I
)) {
3226 if (!SecondLastInst
) {
3227 SecondLastInst
= &*I
;
3228 Jumpers
.push_back(SecondLastInst
);
3229 } else // This is a third branch.
3232 if (I
== MBB
.instr_begin())
3239 // Returns Operand Index for the constant extended instruction.
3240 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr
&MI
) const {
3241 const uint64_t F
= MI
.getDesc().TSFlags
;
3242 return (F
>> HexagonII::ExtendableOpPos
) & HexagonII::ExtendableOpMask
;
3245 // See if instruction could potentially be a duplex candidate.
3246 // If so, return its group. Zero otherwise.
3247 HexagonII::CompoundGroup
HexagonInstrInfo::getCompoundCandidateGroup(
3248 const MachineInstr
&MI
) const {
3249 unsigned DstReg
, SrcReg
, Src1Reg
, Src2Reg
;
3251 switch (MI
.getOpcode()) {
3253 return HexagonII::HCG_None
;
3256 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3257 // "Rd16=#U6 ; jump #r9:2"
3258 // "Rd16=Rs16 ; jump #r9:2"
3260 case Hexagon::C2_cmpeq
:
3261 case Hexagon::C2_cmpgt
:
3262 case Hexagon::C2_cmpgtu
:
3263 DstReg
= MI
.getOperand(0).getReg();
3264 Src1Reg
= MI
.getOperand(1).getReg();
3265 Src2Reg
= MI
.getOperand(2).getReg();
3266 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3267 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3268 isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
))
3269 return HexagonII::HCG_A
;
3271 case Hexagon::C2_cmpeqi
:
3272 case Hexagon::C2_cmpgti
:
3273 case Hexagon::C2_cmpgtui
:
3274 // P0 = cmp.eq(Rs,#u2)
3275 DstReg
= MI
.getOperand(0).getReg();
3276 SrcReg
= MI
.getOperand(1).getReg();
3277 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3278 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3279 isIntRegForSubInst(SrcReg
) && MI
.getOperand(2).isImm() &&
3280 ((isUInt
<5>(MI
.getOperand(2).getImm())) ||
3281 (MI
.getOperand(2).getImm() == -1)))
3282 return HexagonII::HCG_A
;
3284 case Hexagon::A2_tfr
:
3286 DstReg
= MI
.getOperand(0).getReg();
3287 SrcReg
= MI
.getOperand(1).getReg();
3288 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
3289 return HexagonII::HCG_A
;
3291 case Hexagon::A2_tfrsi
:
3293 // Do not test for #u6 size since the const is getting extended
3294 // regardless and compound could be formed.
3295 DstReg
= MI
.getOperand(0).getReg();
3296 if (isIntRegForSubInst(DstReg
))
3297 return HexagonII::HCG_A
;
3299 case Hexagon::S2_tstbit_i
:
3300 DstReg
= MI
.getOperand(0).getReg();
3301 Src1Reg
= MI
.getOperand(1).getReg();
3302 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3303 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3304 MI
.getOperand(2).isImm() &&
3305 isIntRegForSubInst(Src1Reg
) && (MI
.getOperand(2).getImm() == 0))
3306 return HexagonII::HCG_A
;
3308 // The fact that .new form is used pretty much guarantees
3309 // that predicate register will match. Nevertheless,
3310 // there could be some false positives without additional
3312 case Hexagon::J2_jumptnew
:
3313 case Hexagon::J2_jumpfnew
:
3314 case Hexagon::J2_jumptnewpt
:
3315 case Hexagon::J2_jumpfnewpt
:
3316 Src1Reg
= MI
.getOperand(0).getReg();
3317 if (Hexagon::PredRegsRegClass
.contains(Src1Reg
) &&
3318 (Hexagon::P0
== Src1Reg
|| Hexagon::P1
== Src1Reg
))
3319 return HexagonII::HCG_B
;
3321 // Transfer and jump:
3322 // Rd=#U6 ; jump #r9:2
3323 // Rd=Rs ; jump #r9:2
3324 // Do not test for jump range here.
3325 case Hexagon::J2_jump
:
3326 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
3327 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
3328 return HexagonII::HCG_C
;
3331 return HexagonII::HCG_None
;
3334 // Returns -1 when there is no opcode found.
3335 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr
&GA
,
3336 const MachineInstr
&GB
) const {
3337 assert(getCompoundCandidateGroup(GA
) == HexagonII::HCG_A
);
3338 assert(getCompoundCandidateGroup(GB
) == HexagonII::HCG_B
);
3339 if ((GA
.getOpcode() != Hexagon::C2_cmpeqi
) ||
3340 (GB
.getOpcode() != Hexagon::J2_jumptnew
))
3342 unsigned DestReg
= GA
.getOperand(0).getReg();
3343 if (!GB
.readsRegister(DestReg
))
3345 if (DestReg
!= Hexagon::P0
&& DestReg
!= Hexagon::P1
)
3347 // The value compared against must be either u5 or -1.
3348 const MachineOperand
&CmpOp
= GA
.getOperand(2);
3351 int V
= CmpOp
.getImm();
3353 return DestReg
== Hexagon::P0
? Hexagon::J4_cmpeqn1_tp0_jump_nt
3354 : Hexagon::J4_cmpeqn1_tp1_jump_nt
;
3357 return DestReg
== Hexagon::P0
? Hexagon::J4_cmpeqi_tp0_jump_nt
3358 : Hexagon::J4_cmpeqi_tp1_jump_nt
;
3361 int HexagonInstrInfo::getCondOpcode(int Opc
, bool invertPredicate
) const {
3362 enum Hexagon::PredSense inPredSense
;
3363 inPredSense
= invertPredicate
? Hexagon::PredSense_false
:
3364 Hexagon::PredSense_true
;
3365 int CondOpcode
= Hexagon::getPredOpcode(Opc
, inPredSense
);
3366 if (CondOpcode
>= 0) // Valid Conditional opcode/instruction
3369 llvm_unreachable("Unexpected predicable instruction");
3372 // Return the cur value instruction for a given store.
3373 int HexagonInstrInfo::getDotCurOp(const MachineInstr
&MI
) const {
3374 switch (MI
.getOpcode()) {
3375 default: llvm_unreachable("Unknown .cur type");
3376 case Hexagon::V6_vL32b_pi
:
3377 return Hexagon::V6_vL32b_cur_pi
;
3378 case Hexagon::V6_vL32b_ai
:
3379 return Hexagon::V6_vL32b_cur_ai
;
3380 case Hexagon::V6_vL32b_nt_pi
:
3381 return Hexagon::V6_vL32b_nt_cur_pi
;
3382 case Hexagon::V6_vL32b_nt_ai
:
3383 return Hexagon::V6_vL32b_nt_cur_ai
;
3388 // Return the regular version of the .cur instruction.
3389 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr
&MI
) const {
3390 switch (MI
.getOpcode()) {
3391 default: llvm_unreachable("Unknown .cur type");
3392 case Hexagon::V6_vL32b_cur_pi
:
3393 return Hexagon::V6_vL32b_pi
;
3394 case Hexagon::V6_vL32b_cur_ai
:
3395 return Hexagon::V6_vL32b_ai
;
3396 case Hexagon::V6_vL32b_nt_cur_pi
:
3397 return Hexagon::V6_vL32b_nt_pi
;
3398 case Hexagon::V6_vL32b_nt_cur_ai
:
3399 return Hexagon::V6_vL32b_nt_ai
;
3404 // The diagram below shows the steps involved in the conversion of a predicated
3405 // store instruction to its .new predicated new-value form.
3407 // Note: It doesn't include conditional new-value stores as they can't be
3408 // converted to .new predicate.
3410 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3412 // / \ (not OK. it will cause new-value store to be
3413 // / X conditional on p0.new while R2 producer is
3416 // p.new store p.old NV store
3417 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3423 // [if (p0)memw(R0+#0)=R2]
3425 // The following set of instructions further explains the scenario where
3426 // conditional new-value store becomes invalid when promoted to .new predicate
3429 // { 1) if (p0) r0 = add(r1, r2)
3430 // 2) p0 = cmp.eq(r3, #0) }
3432 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3433 // the first two instructions because in instr 1, r0 is conditional on old value
3434 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3435 // is not valid for new-value stores.
3436 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3437 // from the "Conditional Store" list. Because a predicated new value store
3438 // would NOT be promoted to a double dot new store. See diagram below:
3439 // This function returns yes for those stores that are predicated but not
3440 // yet promoted to predicate dot new instructions.
3442 // +---------------------+
3443 // /-----| if (p0) memw(..)=r0 |---------\~
3444 // || +---------------------+ ||
3445 // promote || /\ /\ || promote
3447 // \||/ demote || \||/
3449 // +-------------------------+ || +-------------------------+
3450 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3451 // +-------------------------+ || +-------------------------+
3454 // promote || \/ NOT possible
3458 // +-----------------------------+
3459 // | if (p0.new) memw(..)=r0.new |
3460 // +-----------------------------+
3461 // Double Dot New Store
3463 // Returns the most basic instruction for the .new predicated instructions and
3464 // new-value stores.
3465 // For example, all of the following instructions will be converted back to the
3466 // same instruction:
3467 // 1) if (p0.new) memw(R0+#0) = R1.new --->
3468 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3469 // 3) if (p0.new) memw(R0+#0) = R1 --->
3471 // To understand the translation of instruction 1 to its original form, consider
3472 // a packet with 3 instructions.
3473 // { p0 = cmp.eq(R0,R1)
3474 // if (p0.new) R2 = add(R3, R4)
3475 // R5 = add (R3, R1)
3477 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3479 // This instruction can be part of the previous packet only if both p0 and R2
3480 // are promoted to .new values. This promotion happens in steps, first
3481 // predicate register is promoted to .new and in the next iteration R2 is
3482 // promoted. Therefore, in case of dependence check failure (due to R5) during
3483 // next iteration, it should be converted back to its most basic form.
3485 // Return the new value instruction for a given store.
3486 int HexagonInstrInfo::getDotNewOp(const MachineInstr
&MI
) const {
3487 int NVOpcode
= Hexagon::getNewValueOpcode(MI
.getOpcode());
3488 if (NVOpcode
>= 0) // Valid new-value store instruction.
3491 switch (MI
.getOpcode()) {
3493 report_fatal_error(std::string("Unknown .new type: ") +
3494 std::to_string(MI
.getOpcode()));
3495 case Hexagon::S4_storerb_ur
:
3496 return Hexagon::S4_storerbnew_ur
;
3498 case Hexagon::S2_storerb_pci
:
3499 return Hexagon::S2_storerb_pci
;
3501 case Hexagon::S2_storeri_pci
:
3502 return Hexagon::S2_storeri_pci
;
3504 case Hexagon::S2_storerh_pci
:
3505 return Hexagon::S2_storerh_pci
;
3507 case Hexagon::S2_storerd_pci
:
3508 return Hexagon::S2_storerd_pci
;
3510 case Hexagon::S2_storerf_pci
:
3511 return Hexagon::S2_storerf_pci
;
3513 case Hexagon::V6_vS32b_ai
:
3514 return Hexagon::V6_vS32b_new_ai
;
3516 case Hexagon::V6_vS32b_pi
:
3517 return Hexagon::V6_vS32b_new_pi
;
3522 // Returns the opcode to use when converting MI, which is a conditional jump,
3523 // into a conditional instruction which uses the .new value of the predicate.
3524 // We also use branch probabilities to add a hint to the jump.
3525 // If MBPI is null, all edges will be treated as equally likely for the
3526 // purposes of establishing a predication hint.
3527 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr
&MI
,
3528 const MachineBranchProbabilityInfo
*MBPI
) const {
3529 // We assume that block can have at most two successors.
3530 const MachineBasicBlock
*Src
= MI
.getParent();
3531 const MachineOperand
&BrTarget
= MI
.getOperand(1);
3533 const BranchProbability
OneHalf(1, 2);
3535 auto getEdgeProbability
= [MBPI
] (const MachineBasicBlock
*Src
,
3536 const MachineBasicBlock
*Dst
) {
3538 return MBPI
->getEdgeProbability(Src
, Dst
);
3539 return BranchProbability(1, Src
->succ_size());
3542 if (BrTarget
.isMBB()) {
3543 const MachineBasicBlock
*Dst
= BrTarget
.getMBB();
3544 Taken
= getEdgeProbability(Src
, Dst
) >= OneHalf
;
3546 // The branch target is not a basic block (most likely a function).
3547 // Since BPI only gives probabilities for targets that are basic blocks,
3548 // try to identify another target of this branch (potentially a fall-
3549 // -through) and check the probability of that target.
3551 // The only handled branch combinations are:
3552 // - one conditional branch,
3553 // - one conditional branch followed by one unconditional branch.
3554 // Otherwise, assume not-taken.
3555 assert(MI
.isConditionalBranch());
3556 const MachineBasicBlock
&B
= *MI
.getParent();
3557 bool SawCond
= false, Bad
= false;
3558 for (const MachineInstr
&I
: B
) {
3561 if (I
.isConditionalBranch()) {
3568 if (I
.isUnconditionalBranch() && !SawCond
) {
3574 MachineBasicBlock::const_instr_iterator
It(MI
);
3575 MachineBasicBlock::const_instr_iterator NextIt
= std::next(It
);
3576 if (NextIt
== B
.instr_end()) {
3577 // If this branch is the last, look for the fall-through block.
3578 for (const MachineBasicBlock
*SB
: B
.successors()) {
3579 if (!B
.isLayoutSuccessor(SB
))
3581 Taken
= getEdgeProbability(Src
, SB
) < OneHalf
;
3585 assert(NextIt
->isUnconditionalBranch());
3586 // Find the first MBB operand and assume it's the target.
3587 const MachineBasicBlock
*BT
= nullptr;
3588 for (const MachineOperand
&Op
: NextIt
->operands()) {
3594 Taken
= BT
&& getEdgeProbability(Src
, BT
) < OneHalf
;
3599 // The Taken flag should be set to something reasonable by this point.
3601 switch (MI
.getOpcode()) {
3602 case Hexagon::J2_jumpt
:
3603 return Taken
? Hexagon::J2_jumptnewpt
: Hexagon::J2_jumptnew
;
3604 case Hexagon::J2_jumpf
:
3605 return Taken
? Hexagon::J2_jumpfnewpt
: Hexagon::J2_jumpfnew
;
3608 llvm_unreachable("Unexpected jump instruction.");
3612 // Return .new predicate version for an instruction.
3613 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr
&MI
,
3614 const MachineBranchProbabilityInfo
*MBPI
) const {
3615 switch (MI
.getOpcode()) {
3617 case Hexagon::J2_jumpt
:
3618 case Hexagon::J2_jumpf
:
3619 return getDotNewPredJumpOp(MI
, MBPI
);
3622 int NewOpcode
= Hexagon::getPredNewOpcode(MI
.getOpcode());
3628 int HexagonInstrInfo::getDotOldOp(const MachineInstr
&MI
) const {
3629 int NewOp
= MI
.getOpcode();
3630 if (isPredicated(NewOp
) && isPredicatedNew(NewOp
)) { // Get predicate old form
3631 NewOp
= Hexagon::getPredOldOpcode(NewOp
);
3632 // All Hexagon architectures have prediction bits on dot-new branches,
3633 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3634 // to pick the right opcode when converting back to dot-old.
3635 if (!Subtarget
.getFeatureBits()[Hexagon::ArchV60
]) {
3637 case Hexagon::J2_jumptpt
:
3638 NewOp
= Hexagon::J2_jumpt
;
3640 case Hexagon::J2_jumpfpt
:
3641 NewOp
= Hexagon::J2_jumpf
;
3643 case Hexagon::J2_jumprtpt
:
3644 NewOp
= Hexagon::J2_jumprt
;
3646 case Hexagon::J2_jumprfpt
:
3647 NewOp
= Hexagon::J2_jumprf
;
3651 assert(NewOp
>= 0 &&
3652 "Couldn't change predicate new instruction to its old form.");
3655 if (isNewValueStore(NewOp
)) { // Convert into non-new-value format
3656 NewOp
= Hexagon::getNonNVStore(NewOp
);
3657 assert(NewOp
>= 0 && "Couldn't change new-value store to its old form.");
3660 if (Subtarget
.hasV60Ops())
3663 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3665 case Hexagon::J2_jumpfpt
:
3666 return Hexagon::J2_jumpf
;
3667 case Hexagon::J2_jumptpt
:
3668 return Hexagon::J2_jumpt
;
3669 case Hexagon::J2_jumprfpt
:
3670 return Hexagon::J2_jumprf
;
3671 case Hexagon::J2_jumprtpt
:
3672 return Hexagon::J2_jumprt
;
3677 // See if instruction could potentially be a duplex candidate.
3678 // If so, return its group. Zero otherwise.
3679 HexagonII::SubInstructionGroup
HexagonInstrInfo::getDuplexCandidateGroup(
3680 const MachineInstr
&MI
) const {
3681 unsigned DstReg
, SrcReg
, Src1Reg
, Src2Reg
;
3682 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
3684 switch (MI
.getOpcode()) {
3686 return HexagonII::HSIG_None
;
3690 // Rd = memw(Rs+#u4:2)
3691 // Rd = memub(Rs+#u4:0)
3692 case Hexagon::L2_loadri_io
:
3693 DstReg
= MI
.getOperand(0).getReg();
3694 SrcReg
= MI
.getOperand(1).getReg();
3695 // Special case this one from Group L2.
3696 // Rd = memw(r29+#u5:2)
3697 if (isIntRegForSubInst(DstReg
)) {
3698 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3699 HRI
.getStackRegister() == SrcReg
&&
3700 MI
.getOperand(2).isImm() &&
3701 isShiftedUInt
<5,2>(MI
.getOperand(2).getImm()))
3702 return HexagonII::HSIG_L2
;
3703 // Rd = memw(Rs+#u4:2)
3704 if (isIntRegForSubInst(SrcReg
) &&
3705 (MI
.getOperand(2).isImm() &&
3706 isShiftedUInt
<4,2>(MI
.getOperand(2).getImm())))
3707 return HexagonII::HSIG_L1
;
3710 case Hexagon::L2_loadrub_io
:
3711 // Rd = memub(Rs+#u4:0)
3712 DstReg
= MI
.getOperand(0).getReg();
3713 SrcReg
= MI
.getOperand(1).getReg();
3714 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3715 MI
.getOperand(2).isImm() && isUInt
<4>(MI
.getOperand(2).getImm()))
3716 return HexagonII::HSIG_L1
;
3721 // Rd = memh/memuh(Rs+#u3:1)
3722 // Rd = memb(Rs+#u3:0)
3723 // Rd = memw(r29+#u5:2) - Handled above.
3724 // Rdd = memd(r29+#u5:3)
3726 // [if ([!]p0[.new])] dealloc_return
3727 // [if ([!]p0[.new])] jumpr r31
3728 case Hexagon::L2_loadrh_io
:
3729 case Hexagon::L2_loadruh_io
:
3730 // Rd = memh/memuh(Rs+#u3:1)
3731 DstReg
= MI
.getOperand(0).getReg();
3732 SrcReg
= MI
.getOperand(1).getReg();
3733 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3734 MI
.getOperand(2).isImm() &&
3735 isShiftedUInt
<3,1>(MI
.getOperand(2).getImm()))
3736 return HexagonII::HSIG_L2
;
3738 case Hexagon::L2_loadrb_io
:
3739 // Rd = memb(Rs+#u3:0)
3740 DstReg
= MI
.getOperand(0).getReg();
3741 SrcReg
= MI
.getOperand(1).getReg();
3742 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3743 MI
.getOperand(2).isImm() &&
3744 isUInt
<3>(MI
.getOperand(2).getImm()))
3745 return HexagonII::HSIG_L2
;
3747 case Hexagon::L2_loadrd_io
:
3748 // Rdd = memd(r29+#u5:3)
3749 DstReg
= MI
.getOperand(0).getReg();
3750 SrcReg
= MI
.getOperand(1).getReg();
3751 if (isDblRegForSubInst(DstReg
, HRI
) &&
3752 Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3753 HRI
.getStackRegister() == SrcReg
&&
3754 MI
.getOperand(2).isImm() &&
3755 isShiftedUInt
<5,3>(MI
.getOperand(2).getImm()))
3756 return HexagonII::HSIG_L2
;
3758 // dealloc_return is not documented in Hexagon Manual, but marked
3759 // with A_SUBINSN attribute in iset_v4classic.py.
3760 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
3761 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
3762 case Hexagon::L4_return
:
3763 case Hexagon::L2_deallocframe
:
3764 return HexagonII::HSIG_L2
;
3765 case Hexagon::EH_RETURN_JMPR
:
3766 case Hexagon::PS_jmpret
:
3767 case Hexagon::SL2_jumpr31
:
3769 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3770 DstReg
= MI
.getOperand(0).getReg();
3771 if (Hexagon::IntRegsRegClass
.contains(DstReg
) && (Hexagon::R31
== DstReg
))
3772 return HexagonII::HSIG_L2
;
3774 case Hexagon::PS_jmprett
:
3775 case Hexagon::PS_jmpretf
:
3776 case Hexagon::PS_jmprettnewpt
:
3777 case Hexagon::PS_jmpretfnewpt
:
3778 case Hexagon::PS_jmprettnew
:
3779 case Hexagon::PS_jmpretfnew
:
3780 case Hexagon::SL2_jumpr31_t
:
3781 case Hexagon::SL2_jumpr31_f
:
3782 case Hexagon::SL2_jumpr31_tnew
:
3783 DstReg
= MI
.getOperand(1).getReg();
3784 SrcReg
= MI
.getOperand(0).getReg();
3785 // [if ([!]p0[.new])] jumpr r31
3786 if ((Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
3787 (Hexagon::P0
== SrcReg
)) &&
3788 (Hexagon::IntRegsRegClass
.contains(DstReg
) && (Hexagon::R31
== DstReg
)))
3789 return HexagonII::HSIG_L2
;
3791 case Hexagon::L4_return_t
:
3792 case Hexagon::L4_return_f
:
3793 case Hexagon::L4_return_tnew_pnt
:
3794 case Hexagon::L4_return_fnew_pnt
:
3795 case Hexagon::L4_return_tnew_pt
:
3796 case Hexagon::L4_return_fnew_pt
:
3797 // [if ([!]p0[.new])] dealloc_return
3798 SrcReg
= MI
.getOperand(0).getReg();
3799 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) && (Hexagon::P0
== SrcReg
))
3800 return HexagonII::HSIG_L2
;
3805 // memw(Rs+#u4:2) = Rt
3806 // memb(Rs+#u4:0) = Rt
3807 case Hexagon::S2_storeri_io
:
3808 // Special case this one from Group S2.
3809 // memw(r29+#u5:2) = Rt
3810 Src1Reg
= MI
.getOperand(0).getReg();
3811 Src2Reg
= MI
.getOperand(2).getReg();
3812 if (Hexagon::IntRegsRegClass
.contains(Src1Reg
) &&
3813 isIntRegForSubInst(Src2Reg
) &&
3814 HRI
.getStackRegister() == Src1Reg
&& MI
.getOperand(1).isImm() &&
3815 isShiftedUInt
<5,2>(MI
.getOperand(1).getImm()))
3816 return HexagonII::HSIG_S2
;
3817 // memw(Rs+#u4:2) = Rt
3818 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3819 MI
.getOperand(1).isImm() &&
3820 isShiftedUInt
<4,2>(MI
.getOperand(1).getImm()))
3821 return HexagonII::HSIG_S1
;
3823 case Hexagon::S2_storerb_io
:
3824 // memb(Rs+#u4:0) = Rt
3825 Src1Reg
= MI
.getOperand(0).getReg();
3826 Src2Reg
= MI
.getOperand(2).getReg();
3827 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3828 MI
.getOperand(1).isImm() && isUInt
<4>(MI
.getOperand(1).getImm()))
3829 return HexagonII::HSIG_S1
;
3834 // memh(Rs+#u3:1) = Rt
3835 // memw(r29+#u5:2) = Rt
3836 // memd(r29+#s6:3) = Rtt
3837 // memw(Rs+#u4:2) = #U1
3838 // memb(Rs+#u4) = #U1
3839 // allocframe(#u5:3)
3840 case Hexagon::S2_storerh_io
:
3841 // memh(Rs+#u3:1) = Rt
3842 Src1Reg
= MI
.getOperand(0).getReg();
3843 Src2Reg
= MI
.getOperand(2).getReg();
3844 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3845 MI
.getOperand(1).isImm() &&
3846 isShiftedUInt
<3,1>(MI
.getOperand(1).getImm()))
3847 return HexagonII::HSIG_S1
;
3849 case Hexagon::S2_storerd_io
:
3850 // memd(r29+#s6:3) = Rtt
3851 Src1Reg
= MI
.getOperand(0).getReg();
3852 Src2Reg
= MI
.getOperand(2).getReg();
3853 if (isDblRegForSubInst(Src2Reg
, HRI
) &&
3854 Hexagon::IntRegsRegClass
.contains(Src1Reg
) &&
3855 HRI
.getStackRegister() == Src1Reg
&& MI
.getOperand(1).isImm() &&
3856 isShiftedInt
<6,3>(MI
.getOperand(1).getImm()))
3857 return HexagonII::HSIG_S2
;
3859 case Hexagon::S4_storeiri_io
:
3860 // memw(Rs+#u4:2) = #U1
3861 Src1Reg
= MI
.getOperand(0).getReg();
3862 if (isIntRegForSubInst(Src1Reg
) && MI
.getOperand(1).isImm() &&
3863 isShiftedUInt
<4,2>(MI
.getOperand(1).getImm()) &&
3864 MI
.getOperand(2).isImm() && isUInt
<1>(MI
.getOperand(2).getImm()))
3865 return HexagonII::HSIG_S2
;
3867 case Hexagon::S4_storeirb_io
:
3868 // memb(Rs+#u4) = #U1
3869 Src1Reg
= MI
.getOperand(0).getReg();
3870 if (isIntRegForSubInst(Src1Reg
) &&
3871 MI
.getOperand(1).isImm() && isUInt
<4>(MI
.getOperand(1).getImm()) &&
3872 MI
.getOperand(2).isImm() && isUInt
<1>(MI
.getOperand(2).getImm()))
3873 return HexagonII::HSIG_S2
;
3875 case Hexagon::S2_allocframe
:
3876 if (MI
.getOperand(2).isImm() &&
3877 isShiftedUInt
<5,3>(MI
.getOperand(2).getImm()))
3878 return HexagonII::HSIG_S1
;
3887 // if ([!]P0[.new]) Rd = #0
3888 // Rd = add(r29,#u6:2)
3890 // P0 = cmp.eq(Rs,#u2)
3891 // Rdd = combine(#0,Rs)
3892 // Rdd = combine(Rs,#0)
3893 // Rdd = combine(#u2,#U2)
3896 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3898 case Hexagon::A2_addi
:
3899 DstReg
= MI
.getOperand(0).getReg();
3900 SrcReg
= MI
.getOperand(1).getReg();
3901 if (isIntRegForSubInst(DstReg
)) {
3902 // Rd = add(r29,#u6:2)
3903 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3904 HRI
.getStackRegister() == SrcReg
&& MI
.getOperand(2).isImm() &&
3905 isShiftedUInt
<6,2>(MI
.getOperand(2).getImm()))
3906 return HexagonII::HSIG_A
;
3908 if ((DstReg
== SrcReg
) && MI
.getOperand(2).isImm() &&
3909 isInt
<7>(MI
.getOperand(2).getImm()))
3910 return HexagonII::HSIG_A
;
3913 if (isIntRegForSubInst(SrcReg
) && MI
.getOperand(2).isImm() &&
3914 ((MI
.getOperand(2).getImm() == 1) ||
3915 (MI
.getOperand(2).getImm() == -1)))
3916 return HexagonII::HSIG_A
;
3919 case Hexagon::A2_add
:
3921 DstReg
= MI
.getOperand(0).getReg();
3922 Src1Reg
= MI
.getOperand(1).getReg();
3923 Src2Reg
= MI
.getOperand(2).getReg();
3924 if (isIntRegForSubInst(DstReg
) && (DstReg
== Src1Reg
) &&
3925 isIntRegForSubInst(Src2Reg
))
3926 return HexagonII::HSIG_A
;
3928 case Hexagon::A2_andir
:
3930 // Rd16=and(Rs16,#255)
3931 // Rd16=and(Rs16,#1)
3932 DstReg
= MI
.getOperand(0).getReg();
3933 SrcReg
= MI
.getOperand(1).getReg();
3934 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3935 MI
.getOperand(2).isImm() &&
3936 ((MI
.getOperand(2).getImm() == 1) ||
3937 (MI
.getOperand(2).getImm() == 255)))
3938 return HexagonII::HSIG_A
;
3940 case Hexagon::A2_tfr
:
3942 DstReg
= MI
.getOperand(0).getReg();
3943 SrcReg
= MI
.getOperand(1).getReg();
3944 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
3945 return HexagonII::HSIG_A
;
3947 case Hexagon::A2_tfrsi
:
3949 // Do not test for #u6 size since the const is getting extended
3950 // regardless and compound could be formed.
3952 DstReg
= MI
.getOperand(0).getReg();
3953 if (isIntRegForSubInst(DstReg
))
3954 return HexagonII::HSIG_A
;
3956 case Hexagon::C2_cmoveit
:
3957 case Hexagon::C2_cmovenewit
:
3958 case Hexagon::C2_cmoveif
:
3959 case Hexagon::C2_cmovenewif
:
3960 // if ([!]P0[.new]) Rd = #0
3962 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
3963 DstReg
= MI
.getOperand(0).getReg();
3964 SrcReg
= MI
.getOperand(1).getReg();
3965 if (isIntRegForSubInst(DstReg
) &&
3966 Hexagon::PredRegsRegClass
.contains(SrcReg
) && Hexagon::P0
== SrcReg
&&
3967 MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0)
3968 return HexagonII::HSIG_A
;
3970 case Hexagon::C2_cmpeqi
:
3971 // P0 = cmp.eq(Rs,#u2)
3972 DstReg
= MI
.getOperand(0).getReg();
3973 SrcReg
= MI
.getOperand(1).getReg();
3974 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3975 Hexagon::P0
== DstReg
&& isIntRegForSubInst(SrcReg
) &&
3976 MI
.getOperand(2).isImm() && isUInt
<2>(MI
.getOperand(2).getImm()))
3977 return HexagonII::HSIG_A
;
3979 case Hexagon::A2_combineii
:
3980 case Hexagon::A4_combineii
:
3981 // Rdd = combine(#u2,#U2)
3982 DstReg
= MI
.getOperand(0).getReg();
3983 if (isDblRegForSubInst(DstReg
, HRI
) &&
3984 ((MI
.getOperand(1).isImm() && isUInt
<2>(MI
.getOperand(1).getImm())) ||
3985 (MI
.getOperand(1).isGlobal() &&
3986 isUInt
<2>(MI
.getOperand(1).getOffset()))) &&
3987 ((MI
.getOperand(2).isImm() && isUInt
<2>(MI
.getOperand(2).getImm())) ||
3988 (MI
.getOperand(2).isGlobal() &&
3989 isUInt
<2>(MI
.getOperand(2).getOffset()))))
3990 return HexagonII::HSIG_A
;
3992 case Hexagon::A4_combineri
:
3993 // Rdd = combine(Rs,#0)
3994 DstReg
= MI
.getOperand(0).getReg();
3995 SrcReg
= MI
.getOperand(1).getReg();
3996 if (isDblRegForSubInst(DstReg
, HRI
) && isIntRegForSubInst(SrcReg
) &&
3997 ((MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0) ||
3998 (MI
.getOperand(2).isGlobal() && MI
.getOperand(2).getOffset() == 0)))
3999 return HexagonII::HSIG_A
;
4001 case Hexagon::A4_combineir
:
4002 // Rdd = combine(#0,Rs)
4003 DstReg
= MI
.getOperand(0).getReg();
4004 SrcReg
= MI
.getOperand(2).getReg();
4005 if (isDblRegForSubInst(DstReg
, HRI
) && isIntRegForSubInst(SrcReg
) &&
4006 ((MI
.getOperand(1).isImm() && MI
.getOperand(1).getImm() == 0) ||
4007 (MI
.getOperand(1).isGlobal() && MI
.getOperand(1).getOffset() == 0)))
4008 return HexagonII::HSIG_A
;
4010 case Hexagon::A2_sxtb
:
4011 case Hexagon::A2_sxth
:
4012 case Hexagon::A2_zxtb
:
4013 case Hexagon::A2_zxth
:
4014 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4015 DstReg
= MI
.getOperand(0).getReg();
4016 SrcReg
= MI
.getOperand(1).getReg();
4017 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
4018 return HexagonII::HSIG_A
;
4022 return HexagonII::HSIG_None
;
4025 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr
&MI
) const {
4026 return Hexagon::getRealHWInstr(MI
.getOpcode(), Hexagon::InstrType_Real
);
4029 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4030 const InstrItineraryData
*ItinData
, const MachineInstr
&MI
) const {
4031 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4032 // still have a MinLatency property, which getStageLatency checks.
4034 return getInstrLatency(ItinData
, MI
);
4036 if (MI
.isTransient())
4038 return ItinData
->getStageLatency(MI
.getDesc().getSchedClass());
4041 /// getOperandLatency - Compute and return the use operand latency of a given
4042 /// pair of def and use.
4043 /// In most cases, the static scheduling itinerary was enough to determine the
4044 /// operand latency. But it may not be possible for instructions with variable
4045 /// number of defs / uses.
4047 /// This is a raw interface to the itinerary that may be directly overriden by
4048 /// a target. Use computeOperandLatency to get the best estimate of latency.
4049 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
4050 const MachineInstr
&DefMI
,
4052 const MachineInstr
&UseMI
,
4053 unsigned UseIdx
) const {
4054 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
4056 // Get DefIdx and UseIdx for super registers.
4057 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
4059 if (DefMO
.isReg() && HRI
.isPhysicalRegister(DefMO
.getReg())) {
4060 if (DefMO
.isImplicit()) {
4061 for (MCSuperRegIterator
SR(DefMO
.getReg(), &HRI
); SR
.isValid(); ++SR
) {
4062 int Idx
= DefMI
.findRegisterDefOperandIdx(*SR
, false, false, &HRI
);
4070 const MachineOperand
&UseMO
= UseMI
.getOperand(UseIdx
);
4071 if (UseMO
.isImplicit()) {
4072 for (MCSuperRegIterator
SR(UseMO
.getReg(), &HRI
); SR
.isValid(); ++SR
) {
4073 int Idx
= UseMI
.findRegisterUseOperandIdx(*SR
, false, &HRI
);
4082 int Latency
= TargetInstrInfo::getOperandLatency(ItinData
, DefMI
, DefIdx
,
4085 // We should never have 0 cycle latency between two instructions unless
4086 // they can be packetized together. However, this decision can't be made
4092 // inverts the predication logic.
4095 bool HexagonInstrInfo::getInvertedPredSense(
4096 SmallVectorImpl
<MachineOperand
> &Cond
) const {
4099 unsigned Opc
= getInvertedPredicatedOpcode(Cond
[0].getImm());
4100 Cond
[0].setImm(Opc
);
4104 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc
) const {
4106 InvPredOpcode
= isPredicatedTrue(Opc
) ? Hexagon::getFalsePredOpcode(Opc
)
4107 : Hexagon::getTruePredOpcode(Opc
);
4108 if (InvPredOpcode
>= 0) // Valid instruction with the inverted predicate.
4109 return InvPredOpcode
;
4111 llvm_unreachable("Unexpected predicated instruction");
4114 // Returns the max value that doesn't need to be extended.
4115 int HexagonInstrInfo::getMaxValue(const MachineInstr
&MI
) const {
4116 const uint64_t F
= MI
.getDesc().TSFlags
;
4117 unsigned isSigned
= (F
>> HexagonII::ExtentSignedPos
)
4118 & HexagonII::ExtentSignedMask
;
4119 unsigned bits
= (F
>> HexagonII::ExtentBitsPos
)
4120 & HexagonII::ExtentBitsMask
;
4122 if (isSigned
) // if value is signed
4123 return ~(-1U << (bits
- 1));
4125 return ~(-1U << bits
);
4129 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr
&MI
) const {
4130 switch (MI
.getOpcode()) {
4131 case Hexagon::L2_loadrbgp
:
4132 case Hexagon::L2_loadrdgp
:
4133 case Hexagon::L2_loadrhgp
:
4134 case Hexagon::L2_loadrigp
:
4135 case Hexagon::L2_loadrubgp
:
4136 case Hexagon::L2_loadruhgp
:
4137 case Hexagon::S2_storerbgp
:
4138 case Hexagon::S2_storerbnewgp
:
4139 case Hexagon::S2_storerhgp
:
4140 case Hexagon::S2_storerhnewgp
:
4141 case Hexagon::S2_storerigp
:
4142 case Hexagon::S2_storerinewgp
:
4143 case Hexagon::S2_storerdgp
:
4144 case Hexagon::S2_storerfgp
:
4147 const uint64_t F
= MI
.getDesc().TSFlags
;
4149 ((F
>> HexagonII::AddrModePos
) & HexagonII::AddrModeMask
);
4150 // Disallow any base+offset instruction. The assembler does not yet reorder
4151 // based up any zero offset instruction.
4152 return (addrMode
== HexagonII::BaseRegOffset
||
4153 addrMode
== HexagonII::BaseImmOffset
||
4154 addrMode
== HexagonII::BaseLongOffset
);
4157 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr
&MI
) const {
4158 using namespace HexagonII
;
4160 const uint64_t F
= MI
.getDesc().TSFlags
;
4161 unsigned S
= (F
>> MemAccessSizePos
) & MemAccesSizeMask
;
4162 unsigned Size
= getMemAccessSizeInBytes(MemAccessSize(S
));
4166 // Handle vector access sizes.
4167 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
4169 case HexagonII::HVXVectorAccess
:
4170 return HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
4172 llvm_unreachable("Unexpected instruction");
4176 // Returns the min value that doesn't need to be extended.
4177 int HexagonInstrInfo::getMinValue(const MachineInstr
&MI
) const {
4178 const uint64_t F
= MI
.getDesc().TSFlags
;
4179 unsigned isSigned
= (F
>> HexagonII::ExtentSignedPos
)
4180 & HexagonII::ExtentSignedMask
;
4181 unsigned bits
= (F
>> HexagonII::ExtentBitsPos
)
4182 & HexagonII::ExtentBitsMask
;
4184 if (isSigned
) // if value is signed
4185 return -1U << (bits
- 1);
4190 // Returns opcode of the non-extended equivalent instruction.
4191 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr
&MI
) const {
4192 // Check if the instruction has a register form that uses register in place
4193 // of the extended operand, if so return that as the non-extended form.
4194 short NonExtOpcode
= Hexagon::getRegForm(MI
.getOpcode());
4195 if (NonExtOpcode
>= 0)
4196 return NonExtOpcode
;
4198 if (MI
.getDesc().mayLoad() || MI
.getDesc().mayStore()) {
4199 // Check addressing mode and retrieve non-ext equivalent instruction.
4200 switch (getAddrMode(MI
)) {
4201 case HexagonII::Absolute
:
4202 return Hexagon::changeAddrMode_abs_io(MI
.getOpcode());
4203 case HexagonII::BaseImmOffset
:
4204 return Hexagon::changeAddrMode_io_rr(MI
.getOpcode());
4205 case HexagonII::BaseLongOffset
:
4206 return Hexagon::changeAddrMode_ur_rr(MI
.getOpcode());
4215 bool HexagonInstrInfo::getPredReg(ArrayRef
<MachineOperand
> Cond
,
4216 unsigned &PredReg
, unsigned &PredRegPos
, unsigned &PredRegFlags
) const {
4219 assert(Cond
.size() == 2);
4220 if (isNewValueJump(Cond
[0].getImm()) || Cond
[1].isMBB()) {
4221 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4224 PredReg
= Cond
[1].getReg();
4226 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4228 if (Cond
[1].isImplicit())
4229 PredRegFlags
= RegState::Implicit
;
4230 if (Cond
[1].isUndef())
4231 PredRegFlags
|= RegState::Undef
;
4235 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr
&MI
) const {
4236 return Hexagon::getRealHWInstr(MI
.getOpcode(), Hexagon::InstrType_Pseudo
);
4239 short HexagonInstrInfo::getRegForm(const MachineInstr
&MI
) const {
4240 return Hexagon::getRegForm(MI
.getOpcode());
4243 // Return the number of bytes required to encode the instruction.
4244 // Hexagon instructions are fixed length, 4 bytes, unless they
4245 // use a constant extender, which requires another 4 bytes.
4246 // For debug instructions and prolog labels, return 0.
4247 unsigned HexagonInstrInfo::getSize(const MachineInstr
&MI
) const {
4248 if (MI
.isDebugInstr() || MI
.isPosition())
4251 unsigned Size
= MI
.getDesc().getSize();
4253 // Assume the default insn size in case it cannot be determined
4254 // for whatever reason.
4255 Size
= HEXAGON_INSTR_SIZE
;
4257 if (isConstExtended(MI
) || isExtended(MI
))
4258 Size
+= HEXAGON_INSTR_SIZE
;
4260 // Try and compute number of instructions in asm.
4261 if (BranchRelaxAsmLarge
&& MI
.getOpcode() == Hexagon::INLINEASM
) {
4262 const MachineBasicBlock
&MBB
= *MI
.getParent();
4263 const MachineFunction
*MF
= MBB
.getParent();
4264 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
4266 // Count the number of register definitions to find the asm string.
4267 unsigned NumDefs
= 0;
4268 for (; MI
.getOperand(NumDefs
).isReg() && MI
.getOperand(NumDefs
).isDef();
4270 assert(NumDefs
!= MI
.getNumOperands()-2 && "No asm string?");
4272 assert(MI
.getOperand(NumDefs
).isSymbol() && "No asm string?");
4273 // Disassemble the AsmStr and approximate number of instructions.
4274 const char *AsmStr
= MI
.getOperand(NumDefs
).getSymbolName();
4275 Size
= getInlineAsmLength(AsmStr
, *MAI
);
4281 uint64_t HexagonInstrInfo::getType(const MachineInstr
&MI
) const {
4282 const uint64_t F
= MI
.getDesc().TSFlags
;
4283 return (F
>> HexagonII::TypePos
) & HexagonII::TypeMask
;
4286 unsigned HexagonInstrInfo::getUnits(const MachineInstr
&MI
) const {
4287 const InstrItineraryData
&II
= *Subtarget
.getInstrItineraryData();
4288 const InstrStage
&IS
= *II
.beginStage(MI
.getDesc().getSchedClass());
4290 return IS
.getUnits();
4293 // Calculate size of the basic block without debug instructions.
4294 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock
*BB
) const {
4295 return nonDbgMICount(BB
->instr_begin(), BB
->instr_end());
4298 unsigned HexagonInstrInfo::nonDbgBundleSize(
4299 MachineBasicBlock::const_iterator BundleHead
) const {
4300 assert(BundleHead
->isBundle() && "Not a bundle header");
4301 auto MII
= BundleHead
.getInstrIterator();
4302 // Skip the bundle header.
4303 return nonDbgMICount(++MII
, getBundleEnd(BundleHead
.getInstrIterator()));
4306 /// immediateExtend - Changes the instruction in place to one using an immediate
4308 void HexagonInstrInfo::immediateExtend(MachineInstr
&MI
) const {
4309 assert((isExtendable(MI
)||isConstExtended(MI
)) &&
4310 "Instruction must be extendable");
4311 // Find which operand is extendable.
4312 short ExtOpNum
= getCExtOpNum(MI
);
4313 MachineOperand
&MO
= MI
.getOperand(ExtOpNum
);
4314 // This needs to be something we understand.
4315 assert((MO
.isMBB() || MO
.isImm()) &&
4316 "Branch with unknown extendable field type");
4317 // Mark given operand as extended.
4318 MO
.addTargetFlag(HexagonII::HMOTF_ConstExtended
);
4321 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4322 MachineInstr
&MI
, MachineBasicBlock
*NewTarget
) const {
4323 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4324 << printMBBReference(*NewTarget
);
4326 assert(MI
.isBranch());
4327 unsigned NewOpcode
= getInvertedPredicatedOpcode(MI
.getOpcode());
4328 int TargetPos
= MI
.getNumOperands() - 1;
4329 // In general branch target is the last operand,
4330 // but some implicit defs added at the end might change it.
4331 while ((TargetPos
> -1) && !MI
.getOperand(TargetPos
).isMBB())
4333 assert((TargetPos
>= 0) && MI
.getOperand(TargetPos
).isMBB());
4334 MI
.getOperand(TargetPos
).setMBB(NewTarget
);
4335 if (EnableBranchPrediction
&& isPredicatedNew(MI
)) {
4336 NewOpcode
= reversePrediction(NewOpcode
);
4338 MI
.setDesc(get(NewOpcode
));
4342 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction
&MF
) const {
4343 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4344 MachineFunction::iterator A
= MF
.begin();
4345 MachineBasicBlock
&B
= *A
;
4346 MachineBasicBlock::iterator I
= B
.begin();
4347 DebugLoc DL
= I
->getDebugLoc();
4348 MachineInstr
*NewMI
;
4350 for (unsigned insn
= TargetOpcode::GENERIC_OP_END
+1;
4351 insn
< Hexagon::INSTRUCTION_LIST_END
; ++insn
) {
4352 NewMI
= BuildMI(B
, I
, DL
, get(insn
));
4353 LLVM_DEBUG(dbgs() << "\n"
4354 << getName(NewMI
->getOpcode())
4355 << " Class: " << NewMI
->getDesc().getSchedClass());
4356 NewMI
->eraseFromParent();
4358 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4361 // inverts the predication logic.
4364 bool HexagonInstrInfo::reversePredSense(MachineInstr
&MI
) const {
4365 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI
.dump());
4366 MI
.setDesc(get(getInvertedPredicatedOpcode(MI
.getOpcode())));
4370 // Reverse the branch prediction.
4371 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode
) const {
4372 int PredRevOpcode
= -1;
4373 if (isPredictedTaken(Opcode
))
4374 PredRevOpcode
= Hexagon::notTakenBranchPrediction(Opcode
);
4376 PredRevOpcode
= Hexagon::takenBranchPrediction(Opcode
);
4377 assert(PredRevOpcode
> 0);
4378 return PredRevOpcode
;
4381 // TODO: Add more rigorous validation.
4382 bool HexagonInstrInfo::validateBranchCond(const ArrayRef
<MachineOperand
> &Cond
)
4384 return Cond
.empty() || (Cond
[0].isImm() && (Cond
.size() != 1));
4387 void HexagonInstrInfo::
4388 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB
) const {
4389 assert(MIB
->isBundle());
4390 MachineOperand
&Operand
= MIB
->getOperand(0);
4391 if (Operand
.isImm())
4392 Operand
.setImm(Operand
.getImm() | memShufDisabledMask
);
4394 MIB
->addOperand(MachineOperand::CreateImm(memShufDisabledMask
));
4397 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr
&MIB
) const {
4398 assert(MIB
.isBundle());
4399 const MachineOperand
&Operand
= MIB
.getOperand(0);
4400 return (Operand
.isImm() && (Operand
.getImm() & memShufDisabledMask
) != 0);
4403 // Addressing mode relations.
4404 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc
) const {
4405 return Opc
>= 0 ? Hexagon::changeAddrMode_abs_io(Opc
) : Opc
;
4408 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc
) const {
4409 return Opc
>= 0 ? Hexagon::changeAddrMode_io_abs(Opc
) : Opc
;
4412 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc
) const {
4413 return Opc
>= 0 ? Hexagon::changeAddrMode_io_pi(Opc
) : Opc
;
4416 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc
) const {
4417 return Opc
>= 0 ? Hexagon::changeAddrMode_io_rr(Opc
) : Opc
;
4420 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc
) const {
4421 return Opc
>= 0 ? Hexagon::changeAddrMode_pi_io(Opc
) : Opc
;
4424 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc
) const {
4425 return Opc
>= 0 ? Hexagon::changeAddrMode_rr_io(Opc
) : Opc
;
4428 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc
) const {
4429 return Opc
>= 0 ? Hexagon::changeAddrMode_rr_ur(Opc
) : Opc
;
4432 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc
) const {
4433 return Opc
>= 0 ? Hexagon::changeAddrMode_ur_rr(Opc
) : Opc
;