1 //===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Target-independent, SSA-based data flow graph for register data flow (RDF)
10 // for a non-SSA program representation (e.g. post-RA machine code).
15 // The RDF graph is a collection of nodes, each of which denotes some element
16 // of the program. There are two main types of such elements: code and refe-
17 // rences. Conceptually, "code" is something that represents the structure
18 // of the program, e.g. basic block or a statement, while "reference" is an
19 // instance of accessing a register, e.g. a definition or a use. Nodes are
20 // connected with each other based on the structure of the program (such as
21 // blocks, instructions, etc.), and based on the data flow (e.g. reaching
22 // definitions, reached uses, etc.). The single-reaching-definition principle
23 // of SSA is generally observed, although, due to the non-SSA representation
24 // of the program, there are some differences between the graph and a "pure"
25 // SSA representation.
28 // *** Implementation remarks
30 // Since the graph can contain a large number of nodes, memory consumption
31 // was one of the major design considerations. As a result, there is a single
32 // base class NodeBase which defines all members used by all possible derived
33 // classes. The members are arranged in a union, and a derived class cannot
34 // add any data members of its own. Each derived class only defines the
35 // functional interface, i.e. member functions. NodeBase must be a POD,
36 // which implies that all of its members must also be PODs.
37 // Since nodes need to be connected with other nodes, pointers have been
38 // replaced with 32-bit identifiers: each node has an id of type NodeId.
39 // There are mapping functions in the graph that translate between actual
40 // memory addresses and the corresponding identifiers.
41 // A node id of 0 is equivalent to nullptr.
44 // *** Structure of the graph
46 // A code node is always a collection of other nodes. For example, a code
47 // node corresponding to a basic block will contain code nodes corresponding
48 // to instructions. In turn, a code node corresponding to an instruction will
49 // contain a list of reference nodes that correspond to the definitions and
50 // uses of registers in that instruction. The members are arranged into a
51 // circular list, which is yet another consequence of the effort to save
52 // memory: for each member node it should be possible to obtain its owner,
53 // and it should be possible to access all other members. There are other
54 // ways to accomplish that, but the circular list seemed the most natural.
57 // | | <---------------------------------------------------+
60 // | +-------------------------------------+ |
63 // +----------+ Next +----------+ Next Next +----------+ Next |
64 // | |----->| |-----> ... ----->| |----->-+
65 // +- Member -+ +- Member -+ +- Member -+
67 // The order of members is such that related reference nodes (see below)
68 // should be contiguous on the member list.
70 // A reference node is a node that encapsulates an access to a register,
71 // in other words, data flowing into or out of a register. There are two
72 // major kinds of reference nodes: defs and uses. A def node will contain
73 // the id of the first reached use, and the id of the first reached def.
74 // Each def and use will contain the id of the reaching def, and also the
75 // id of the next reached def (for def nodes) or use (for use nodes).
76 // The "next node sharing the same reaching def" is denoted as "sibling".
78 // - Def node contains: reaching def, sibling, first reached def, and first
80 // - Use node contains: reaching def and sibling.
83 // | R2 = ... | <---+--------------------+
84 // ++---------+--+ | |
85 // |Reached |Reached | |
87 // | | |Reaching |Reaching
89 // | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
90 // | | ... = R2 |----->| ... = R2 |----> ... ----> 0
91 // | +-------------+ +-------------+
93 // +-- DefNode --+ Sib
94 // | R2 = ... |----> ...
100 // To get a full picture, the circular lists connecting blocks within a
101 // function, instructions within a block, etc. should be superimposed with
102 // the def-def, def-use links shown above.
103 // To illustrate this, consider a small example in a pseudo-assembly:
105 // add r2, r0, r1 ; r2 = r0+r1
106 // addi r0, r2, 1 ; r0 = r2+1
107 // ret r0 ; return value in r0
109 // The graph (in a format used by the debugging functions) would look like:
113 // b2: === %bb.0 === preds(0), succs(0):
114 // p3: phi [d4<r0>(,d12,u9):]
115 // p5: phi [d6<r1>(,,u10):]
116 // s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
117 // s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
118 // s14: ret [u15<r0>(d12):]
121 // The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
122 // kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
123 // ment, d - def, u - use).
124 // The format of a def node is:
125 // dN<R>(rd,d,u):sib,
127 // N - numeric node id,
128 // R - register being defined
129 // rd - reaching def,
133 // The format of a use node is:
136 // N - numeric node id,
137 // R - register being used,
138 // rd - reaching def,
140 // Possible annotations (usually preceding the node id):
141 // + - preserving def,
142 // ~ - clobbering def,
143 // " - shadow ref (follows the node id),
144 // ! - fixed register (appears after register name).
146 // The circular lists are not explicit in the dump.
149 // *** Node attributes
151 // NodeBase has a member "Attrs", which is the primary way of determining
152 // the node's characteristics. The fields in this member decide whether
153 // the node is a code node or a reference node (i.e. node's "type"), then
154 // within each type, the "kind" determines what specifically this node
155 // represents. The remaining bits, "flags", contain additional information
156 // that is even more detailed than the "kind".
157 // CodeNode's kinds are:
158 // - Phi: Phi node, members are reference nodes.
159 // - Stmt: Statement, members are reference nodes.
160 // - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
161 // - Func: The whole function. The members are basic block nodes.
162 // RefNode's kinds are:
167 // - Preserving: applies only to defs. A preserving def is one that can
168 // preserve some of the original bits among those that are included in
169 // the register associated with that def. For example, if R0 is a 32-bit
170 // register, but a def can only change the lower 16 bits, then it will
171 // be marked as preserving.
172 // - Shadow: a reference that has duplicates holding additional reaching
173 // defs (see more below).
174 // - Clobbering: applied only to defs, indicates that the value generated
175 // by this def is unspecified. A typical example would be volatile registers
176 // after function calls.
177 // - Fixed: the register in this def/use cannot be replaced with any other
178 // register. A typical case would be a parameter register to a call, or
179 // the register with the return value from a function.
180 // - Undef: the register in this reference the register is assumed to have
181 // no pre-existing value, even if it appears to be reached by some def.
182 // This is typically used to prevent keeping registers artificially live
183 // in cases when they are defined via predicated instructions. For example:
184 // r0 = add-if-true cond, r10, r11 (1)
185 // r0 = add-if-false cond, r12, r13, implicit r0 (2)
187 // Before (1), r0 is not intended to be live, and the use of r0 in (3) is
188 // not meant to be reached by any def preceding (1). However, since the
189 // defs in (1) and (2) are both preserving, these properties alone would
190 // imply that the use in (3) may indeed be reached by some prior def.
191 // Adding Undef flag to the def in (1) prevents that. The Undef flag
192 // may be applied to both defs and uses.
193 // - Dead: applies only to defs. The value coming out of a "dead" def is
194 // assumed to be unused, even if the def appears to be reaching other defs
195 // or uses. The motivation for this flag comes from dead defs on function
196 // calls: there is no way to determine if such a def is dead without
197 // analyzing the target's ABI. Hence the graph should contain this info,
198 // as it is unavailable otherwise. On the other hand, a def without any
199 // uses on a typical instruction is not the intended target for this flag.
201 // *** Shadow references
203 // It may happen that a super-register can have two (or more) non-overlapping
204 // sub-registers. When both of these sub-registers are defined and followed
205 // by a use of the super-register, the use of the super-register will not
206 // have a unique reaching def: both defs of the sub-registers need to be
207 // accounted for. In such cases, a duplicate use of the super-register is
208 // added and it points to the extra reaching def. Both uses are marked with
209 // a flag "shadow". Example:
210 // Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
211 // set r0, 1 ; r0 = 1
212 // set r1, 1 ; r1 = 1
213 // addi t1, t0, 1 ; t1 = t0+1
216 // s1: set [d2<r0>(,,u9):]
217 // s3: set [d4<r1>(,,u10):]
218 // s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
220 // The statement s5 has two use nodes for t0: u7" and u9". The quotation
221 // mark " indicates that the node is a shadow.
224 #ifndef LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
225 #define LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
227 #include "RDFRegisters.h"
228 #include "llvm/ADT/SmallVector.h"
229 #include "llvm/MC/LaneBitmask.h"
230 #include "llvm/Support/Allocator.h"
231 #include "llvm/Support/MathExtras.h"
237 #include <unordered_map>
241 // RDF uses uint32_t to refer to registers. This is to ensure that the type
242 // size remains specific. In other places, registers are often stored using
244 static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
248 class MachineBasicBlock
;
249 class MachineDominanceFrontier
;
250 class MachineDominatorTree
;
251 class MachineFunction
;
253 class MachineOperand
;
255 class TargetInstrInfo
;
256 class TargetRegisterInfo
;
260 using NodeId
= uint32_t;
262 struct DataFlowGraph
;
266 None
= 0x0000, // Nothing
270 Code
= 0x0001, // 01, Container
271 Ref
= 0x0002, // 10, Reference
274 KindMask
= 0x0007 << 2,
275 Def
= 0x0001 << 2, // 001
276 Use
= 0x0002 << 2, // 010
277 Phi
= 0x0003 << 2, // 011
278 Stmt
= 0x0004 << 2, // 100
279 Block
= 0x0005 << 2, // 101
280 Func
= 0x0006 << 2, // 110
282 // Flags: 7 bits for now
283 FlagMask
= 0x007F << 5,
284 Shadow
= 0x0001 << 5, // 0000001, Has extra reaching defs.
285 Clobbering
= 0x0002 << 5, // 0000010, Produces unspecified values.
286 PhiRef
= 0x0004 << 5, // 0000100, Member of PhiNode.
287 Preserving
= 0x0008 << 5, // 0001000, Def can keep original bits.
288 Fixed
= 0x0010 << 5, // 0010000, Fixed register.
289 Undef
= 0x0020 << 5, // 0100000, Has no pre-existing value.
290 Dead
= 0x0040 << 5, // 1000000, Does not define a value.
293 static uint16_t type(uint16_t T
) { return T
& TypeMask
; }
294 static uint16_t kind(uint16_t T
) { return T
& KindMask
; }
295 static uint16_t flags(uint16_t T
) { return T
& FlagMask
; }
297 static uint16_t set_type(uint16_t A
, uint16_t T
) {
298 return (A
& ~TypeMask
) | T
;
301 static uint16_t set_kind(uint16_t A
, uint16_t K
) {
302 return (A
& ~KindMask
) | K
;
305 static uint16_t set_flags(uint16_t A
, uint16_t F
) {
306 return (A
& ~FlagMask
) | F
;
309 // Test if A contains B.
310 static bool contains(uint16_t A
, uint16_t B
) {
313 uint16_t KB
= kind(B
);
318 return KB
== Phi
|| KB
== Stmt
;
321 return type(B
) == Ref
;
327 struct BuildOptions
{
330 KeepDeadPhis
= 0x01, // Do not remove dead phis during build.
334 template <typename T
> struct NodeAddr
{
335 NodeAddr() = default;
336 NodeAddr(T A
, NodeId I
) : Addr(A
), Id(I
) {}
338 // Type cast (casting constructor). The reason for having this class
339 // instead of std::pair.
340 template <typename S
> NodeAddr(const NodeAddr
<S
> &NA
)
341 : Addr(static_cast<T
>(NA
.Addr
)), Id(NA
.Id
) {}
343 bool operator== (const NodeAddr
<T
> &NA
) const {
344 assert((Addr
== NA
.Addr
) == (Id
== NA
.Id
));
345 return Addr
== NA
.Addr
;
347 bool operator!= (const NodeAddr
<T
> &NA
) const {
348 return !operator==(NA
);
357 // Fast memory allocation and translation between node id and node address.
358 // This is really the same idea as the one underlying the "bump pointer
359 // allocator", the difference being in the translation. A node id is
360 // composed of two components: the index of the block in which it was
361 // allocated, and the index within the block. With the default settings,
362 // where the number of nodes per block is 4096, the node id (minus 1) is:
364 // bit position: 11 0
365 // +----------------------------+--------------+
366 // | Index of the block |Index in block|
367 // +----------------------------+--------------+
369 // The actual node id is the above plus 1, to avoid creating a node id of 0.
371 // This method significantly improved the build time, compared to using maps
372 // (std::unordered_map or DenseMap) to translate between pointers and ids.
373 struct NodeAllocator
{
374 // Amount of storage for a single node.
375 enum { NodeMemSize
= 32 };
377 NodeAllocator(uint32_t NPB
= 4096)
378 : NodesPerBlock(NPB
), BitsPerIndex(Log2_32(NPB
)),
379 IndexMask((1 << BitsPerIndex
)-1) {
380 assert(isPowerOf2_32(NPB
));
383 NodeBase
*ptr(NodeId N
) const {
385 uint32_t BlockN
= N1
>> BitsPerIndex
;
386 uint32_t Offset
= (N1
& IndexMask
) * NodeMemSize
;
387 return reinterpret_cast<NodeBase
*>(Blocks
[BlockN
]+Offset
);
390 NodeId
id(const NodeBase
*P
) const;
391 NodeAddr
<NodeBase
*> New();
395 void startNewBlock();
398 uint32_t makeId(uint32_t Block
, uint32_t Index
) const {
399 // Add 1 to the id, to avoid the id of 0, which is treated as "null".
400 return ((Block
<< BitsPerIndex
) | Index
) + 1;
403 const uint32_t NodesPerBlock
;
404 const uint32_t BitsPerIndex
;
405 const uint32_t IndexMask
;
406 char *ActiveEnd
= nullptr;
407 std::vector
<char*> Blocks
;
408 using AllocatorTy
= BumpPtrAllocatorImpl
<MallocAllocator
, 65536>;
412 using RegisterSet
= std::set
<RegisterRef
>;
414 struct TargetOperandInfo
{
415 TargetOperandInfo(const TargetInstrInfo
&tii
) : TII(tii
) {}
416 virtual ~TargetOperandInfo() = default;
418 virtual bool isPreserving(const MachineInstr
&In
, unsigned OpNum
) const;
419 virtual bool isClobbering(const MachineInstr
&In
, unsigned OpNum
) const;
420 virtual bool isFixedReg(const MachineInstr
&In
, unsigned OpNum
) const;
422 const TargetInstrInfo
&TII
;
425 // Packed register reference. Only used for storage.
426 struct PackedRegisterRef
{
431 struct LaneMaskIndex
: private IndexedSet
<LaneBitmask
> {
432 LaneMaskIndex() = default;
434 LaneBitmask
getLaneMaskForIndex(uint32_t K
) const {
435 return K
== 0 ? LaneBitmask::getAll() : get(K
);
438 uint32_t getIndexForLaneMask(LaneBitmask LM
) {
440 return LM
.all() ? 0 : insert(LM
);
443 uint32_t getIndexForLaneMask(LaneBitmask LM
) const {
445 return LM
.all() ? 0 : find(LM
);
451 // Make sure this is a POD.
452 NodeBase() = default;
454 uint16_t getType() const { return NodeAttrs::type(Attrs
); }
455 uint16_t getKind() const { return NodeAttrs::kind(Attrs
); }
456 uint16_t getFlags() const { return NodeAttrs::flags(Attrs
); }
457 NodeId
getNext() const { return Next
; }
459 uint16_t getAttrs() const { return Attrs
; }
460 void setAttrs(uint16_t A
) { Attrs
= A
; }
461 void setFlags(uint16_t F
) { setAttrs(NodeAttrs::set_flags(getAttrs(), F
)); }
463 // Insert node NA after "this" in the circular chain.
464 void append(NodeAddr
<NodeBase
*> NA
);
466 // Initialize all members to 0.
467 void init() { memset(this, 0, sizeof *this); }
469 void setNext(NodeId N
) { Next
= N
; }
474 NodeId Next
; // Id of the next node in the circular chain.
475 // Definitions of nested types. Using anonymous nested structs would make
476 // this class definition clearer, but unnamed structs are not a part of
479 NodeId DD
, DU
; // Ids of the first reached def and use.
482 NodeId PredB
; // Id of the predecessor block for a phi use.
485 void *CP
; // Pointer to the actual code.
486 NodeId FirstM
, LastM
; // Id of the first member and last.
489 NodeId RD
, Sib
; // Ids of the reaching def and the sibling.
495 MachineOperand
*Op
; // Non-phi refs point to a machine operand.
496 PackedRegisterRef PR
; // Phi refs store register info directly.
500 // The actual payload.
506 // The allocator allocates chunks of 32 bytes for each node. The fact that
507 // each node takes 32 bytes in memory is used for fast translation between
508 // the node id and the node address.
509 static_assert(sizeof(NodeBase
) <= NodeAllocator::NodeMemSize
,
510 "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
512 using NodeList
= SmallVector
<NodeAddr
<NodeBase
*>, 4>;
513 using NodeSet
= std::set
<NodeId
>;
515 struct RefNode
: public NodeBase
{
518 RegisterRef
getRegRef(const DataFlowGraph
&G
) const;
520 MachineOperand
&getOp() {
521 assert(!(getFlags() & NodeAttrs::PhiRef
));
525 void setRegRef(RegisterRef RR
, DataFlowGraph
&G
);
526 void setRegRef(MachineOperand
*Op
, DataFlowGraph
&G
);
528 NodeId
getReachingDef() const {
531 void setReachingDef(NodeId RD
) {
535 NodeId
getSibling() const {
538 void setSibling(NodeId Sib
) {
543 assert(getType() == NodeAttrs::Ref
);
544 return getKind() == NodeAttrs::Use
;
548 assert(getType() == NodeAttrs::Ref
);
549 return getKind() == NodeAttrs::Def
;
552 template <typename Predicate
>
553 NodeAddr
<RefNode
*> getNextRef(RegisterRef RR
, Predicate P
, bool NextOnly
,
554 const DataFlowGraph
&G
);
555 NodeAddr
<NodeBase
*> getOwner(const DataFlowGraph
&G
);
558 struct DefNode
: public RefNode
{
559 NodeId
getReachedDef() const {
562 void setReachedDef(NodeId D
) {
565 NodeId
getReachedUse() const {
568 void setReachedUse(NodeId U
) {
572 void linkToDef(NodeId Self
, NodeAddr
<DefNode
*> DA
);
575 struct UseNode
: public RefNode
{
576 void linkToDef(NodeId Self
, NodeAddr
<DefNode
*> DA
);
579 struct PhiUseNode
: public UseNode
{
580 NodeId
getPredecessor() const {
581 assert(getFlags() & NodeAttrs::PhiRef
);
582 return Ref
.PhiU
.PredB
;
584 void setPredecessor(NodeId B
) {
585 assert(getFlags() & NodeAttrs::PhiRef
);
590 struct CodeNode
: public NodeBase
{
591 template <typename T
> T
getCode() const {
592 return static_cast<T
>(Code
.CP
);
594 void setCode(void *C
) {
598 NodeAddr
<NodeBase
*> getFirstMember(const DataFlowGraph
&G
) const;
599 NodeAddr
<NodeBase
*> getLastMember(const DataFlowGraph
&G
) const;
600 void addMember(NodeAddr
<NodeBase
*> NA
, const DataFlowGraph
&G
);
601 void addMemberAfter(NodeAddr
<NodeBase
*> MA
, NodeAddr
<NodeBase
*> NA
,
602 const DataFlowGraph
&G
);
603 void removeMember(NodeAddr
<NodeBase
*> NA
, const DataFlowGraph
&G
);
605 NodeList
members(const DataFlowGraph
&G
) const;
606 template <typename Predicate
>
607 NodeList
members_if(Predicate P
, const DataFlowGraph
&G
) const;
610 struct InstrNode
: public CodeNode
{
611 NodeAddr
<NodeBase
*> getOwner(const DataFlowGraph
&G
);
614 struct PhiNode
: public InstrNode
{
615 MachineInstr
*getCode() const {
620 struct StmtNode
: public InstrNode
{
621 MachineInstr
*getCode() const {
622 return CodeNode::getCode
<MachineInstr
*>();
626 struct BlockNode
: public CodeNode
{
627 MachineBasicBlock
*getCode() const {
628 return CodeNode::getCode
<MachineBasicBlock
*>();
631 void addPhi(NodeAddr
<PhiNode
*> PA
, const DataFlowGraph
&G
);
634 struct FuncNode
: public CodeNode
{
635 MachineFunction
*getCode() const {
636 return CodeNode::getCode
<MachineFunction
*>();
639 NodeAddr
<BlockNode
*> findBlock(const MachineBasicBlock
*BB
,
640 const DataFlowGraph
&G
) const;
641 NodeAddr
<BlockNode
*> getEntryBlock(const DataFlowGraph
&G
);
644 struct DataFlowGraph
{
645 DataFlowGraph(MachineFunction
&mf
, const TargetInstrInfo
&tii
,
646 const TargetRegisterInfo
&tri
, const MachineDominatorTree
&mdt
,
647 const MachineDominanceFrontier
&mdf
, const TargetOperandInfo
&toi
);
649 NodeBase
*ptr(NodeId N
) const;
650 template <typename T
> T
ptr(NodeId N
) const {
651 return static_cast<T
>(ptr(N
));
654 NodeId
id(const NodeBase
*P
) const;
656 template <typename T
> NodeAddr
<T
> addr(NodeId N
) const {
657 return { ptr
<T
>(N
), N
};
660 NodeAddr
<FuncNode
*> getFunc() const { return Func
; }
661 MachineFunction
&getMF() const { return MF
; }
662 const TargetInstrInfo
&getTII() const { return TII
; }
663 const TargetRegisterInfo
&getTRI() const { return TRI
; }
664 const PhysicalRegisterInfo
&getPRI() const { return PRI
; }
665 const MachineDominatorTree
&getDT() const { return MDT
; }
666 const MachineDominanceFrontier
&getDF() const { return MDF
; }
667 const RegisterAggr
&getLiveIns() const { return LiveIns
; }
670 DefStack() = default;
672 bool empty() const { return Stack
.empty() || top() == bottom(); }
675 using value_type
= NodeAddr
<DefNode
*>;
677 using value_type
= DefStack::value_type
;
679 Iterator
&up() { Pos
= DS
.nextUp(Pos
); return *this; }
680 Iterator
&down() { Pos
= DS
.nextDown(Pos
); return *this; }
682 value_type
operator*() const {
684 return DS
.Stack
[Pos
-1];
686 const value_type
*operator->() const {
688 return &DS
.Stack
[Pos
-1];
690 bool operator==(const Iterator
&It
) const { return Pos
== It
.Pos
; }
691 bool operator!=(const Iterator
&It
) const { return Pos
!= It
.Pos
; }
694 friend struct DefStack
;
696 Iterator(const DefStack
&S
, bool Top
);
698 // Pos-1 is the index in the StorageType object that corresponds to
699 // the top of the DefStack.
705 using iterator
= Iterator
;
707 iterator
top() const { return Iterator(*this, true); }
708 iterator
bottom() const { return Iterator(*this, false); }
709 unsigned size() const;
711 void push(NodeAddr
<DefNode
*> DA
) { Stack
.push_back(DA
); }
713 void start_block(NodeId N
);
714 void clear_block(NodeId N
);
717 friend struct Iterator
;
719 using StorageType
= std::vector
<value_type
>;
721 bool isDelimiter(const StorageType::value_type
&P
, NodeId N
= 0) const {
722 return (P
.Addr
== nullptr) && (N
== 0 || P
.Id
== N
);
725 unsigned nextUp(unsigned P
) const;
726 unsigned nextDown(unsigned P
) const;
731 // Make this std::unordered_map for speed of accessing elements.
732 // Map: Register (physical or virtual) -> DefStack
733 using DefStackMap
= std::unordered_map
<RegisterId
, DefStack
>;
735 void build(unsigned Options
= BuildOptions::None
);
736 void pushAllDefs(NodeAddr
<InstrNode
*> IA
, DefStackMap
&DM
);
737 void markBlock(NodeId B
, DefStackMap
&DefM
);
738 void releaseBlock(NodeId B
, DefStackMap
&DefM
);
740 PackedRegisterRef
pack(RegisterRef RR
) {
741 return { RR
.Reg
, LMI
.getIndexForLaneMask(RR
.Mask
) };
743 PackedRegisterRef
pack(RegisterRef RR
) const {
744 return { RR
.Reg
, LMI
.getIndexForLaneMask(RR
.Mask
) };
746 RegisterRef
unpack(PackedRegisterRef PR
) const {
747 return RegisterRef(PR
.Reg
, LMI
.getLaneMaskForIndex(PR
.MaskId
));
750 RegisterRef
makeRegRef(unsigned Reg
, unsigned Sub
) const;
751 RegisterRef
makeRegRef(const MachineOperand
&Op
) const;
752 RegisterRef
restrictRef(RegisterRef AR
, RegisterRef BR
) const;
754 NodeAddr
<RefNode
*> getNextRelated(NodeAddr
<InstrNode
*> IA
,
755 NodeAddr
<RefNode
*> RA
) const;
756 NodeAddr
<RefNode
*> getNextImp(NodeAddr
<InstrNode
*> IA
,
757 NodeAddr
<RefNode
*> RA
, bool Create
);
758 NodeAddr
<RefNode
*> getNextImp(NodeAddr
<InstrNode
*> IA
,
759 NodeAddr
<RefNode
*> RA
) const;
760 NodeAddr
<RefNode
*> getNextShadow(NodeAddr
<InstrNode
*> IA
,
761 NodeAddr
<RefNode
*> RA
, bool Create
);
762 NodeAddr
<RefNode
*> getNextShadow(NodeAddr
<InstrNode
*> IA
,
763 NodeAddr
<RefNode
*> RA
) const;
765 NodeList
getRelatedRefs(NodeAddr
<InstrNode
*> IA
,
766 NodeAddr
<RefNode
*> RA
) const;
768 NodeAddr
<BlockNode
*> findBlock(MachineBasicBlock
*BB
) const {
769 return BlockNodes
.at(BB
);
772 void unlinkUse(NodeAddr
<UseNode
*> UA
, bool RemoveFromOwner
) {
778 void unlinkDef(NodeAddr
<DefNode
*> DA
, bool RemoveFromOwner
) {
784 // Some useful filters.
785 template <uint16_t Kind
>
786 static bool IsRef(const NodeAddr
<NodeBase
*> BA
) {
787 return BA
.Addr
->getType() == NodeAttrs::Ref
&&
788 BA
.Addr
->getKind() == Kind
;
791 template <uint16_t Kind
>
792 static bool IsCode(const NodeAddr
<NodeBase
*> BA
) {
793 return BA
.Addr
->getType() == NodeAttrs::Code
&&
794 BA
.Addr
->getKind() == Kind
;
797 static bool IsDef(const NodeAddr
<NodeBase
*> BA
) {
798 return BA
.Addr
->getType() == NodeAttrs::Ref
&&
799 BA
.Addr
->getKind() == NodeAttrs::Def
;
802 static bool IsUse(const NodeAddr
<NodeBase
*> BA
) {
803 return BA
.Addr
->getType() == NodeAttrs::Ref
&&
804 BA
.Addr
->getKind() == NodeAttrs::Use
;
807 static bool IsPhi(const NodeAddr
<NodeBase
*> BA
) {
808 return BA
.Addr
->getType() == NodeAttrs::Code
&&
809 BA
.Addr
->getKind() == NodeAttrs::Phi
;
812 static bool IsPreservingDef(const NodeAddr
<DefNode
*> DA
) {
813 uint16_t Flags
= DA
.Addr
->getFlags();
814 return (Flags
& NodeAttrs::Preserving
) && !(Flags
& NodeAttrs::Undef
);
820 RegisterSet
getLandingPadLiveIns() const;
822 NodeAddr
<NodeBase
*> newNode(uint16_t Attrs
);
823 NodeAddr
<NodeBase
*> cloneNode(const NodeAddr
<NodeBase
*> B
);
824 NodeAddr
<UseNode
*> newUse(NodeAddr
<InstrNode
*> Owner
,
825 MachineOperand
&Op
, uint16_t Flags
= NodeAttrs::None
);
826 NodeAddr
<PhiUseNode
*> newPhiUse(NodeAddr
<PhiNode
*> Owner
,
827 RegisterRef RR
, NodeAddr
<BlockNode
*> PredB
,
828 uint16_t Flags
= NodeAttrs::PhiRef
);
829 NodeAddr
<DefNode
*> newDef(NodeAddr
<InstrNode
*> Owner
,
830 MachineOperand
&Op
, uint16_t Flags
= NodeAttrs::None
);
831 NodeAddr
<DefNode
*> newDef(NodeAddr
<InstrNode
*> Owner
,
832 RegisterRef RR
, uint16_t Flags
= NodeAttrs::PhiRef
);
833 NodeAddr
<PhiNode
*> newPhi(NodeAddr
<BlockNode
*> Owner
);
834 NodeAddr
<StmtNode
*> newStmt(NodeAddr
<BlockNode
*> Owner
,
836 NodeAddr
<BlockNode
*> newBlock(NodeAddr
<FuncNode
*> Owner
,
837 MachineBasicBlock
*BB
);
838 NodeAddr
<FuncNode
*> newFunc(MachineFunction
*MF
);
840 template <typename Predicate
>
841 std::pair
<NodeAddr
<RefNode
*>,NodeAddr
<RefNode
*>>
842 locateNextRef(NodeAddr
<InstrNode
*> IA
, NodeAddr
<RefNode
*> RA
,
845 using BlockRefsMap
= std::map
<NodeId
, RegisterSet
>;
847 void buildStmt(NodeAddr
<BlockNode
*> BA
, MachineInstr
&In
);
848 void recordDefsForDF(BlockRefsMap
&PhiM
, NodeAddr
<BlockNode
*> BA
);
849 void buildPhis(BlockRefsMap
&PhiM
, RegisterSet
&AllRefs
,
850 NodeAddr
<BlockNode
*> BA
);
851 void removeUnusedPhis();
853 void pushClobbers(NodeAddr
<InstrNode
*> IA
, DefStackMap
&DM
);
854 void pushDefs(NodeAddr
<InstrNode
*> IA
, DefStackMap
&DM
);
855 template <typename T
> void linkRefUp(NodeAddr
<InstrNode
*> IA
,
856 NodeAddr
<T
> TA
, DefStack
&DS
);
857 template <typename Predicate
> void linkStmtRefs(DefStackMap
&DefM
,
858 NodeAddr
<StmtNode
*> SA
, Predicate P
);
859 void linkBlockRefs(DefStackMap
&DefM
, NodeAddr
<BlockNode
*> BA
);
861 void unlinkUseDF(NodeAddr
<UseNode
*> UA
);
862 void unlinkDefDF(NodeAddr
<DefNode
*> DA
);
864 void removeFromOwner(NodeAddr
<RefNode
*> RA
) {
865 NodeAddr
<InstrNode
*> IA
= RA
.Addr
->getOwner(*this);
866 IA
.Addr
->removeMember(RA
, *this);
870 const TargetInstrInfo
&TII
;
871 const TargetRegisterInfo
&TRI
;
872 const PhysicalRegisterInfo PRI
;
873 const MachineDominatorTree
&MDT
;
874 const MachineDominanceFrontier
&MDF
;
875 const TargetOperandInfo
&TOI
;
877 RegisterAggr LiveIns
;
878 NodeAddr
<FuncNode
*> Func
;
879 NodeAllocator Memory
;
880 // Local map: MachineBasicBlock -> NodeAddr<BlockNode*>
881 std::map
<MachineBasicBlock
*,NodeAddr
<BlockNode
*>> BlockNodes
;
884 }; // struct DataFlowGraph
886 template <typename Predicate
>
887 NodeAddr
<RefNode
*> RefNode::getNextRef(RegisterRef RR
, Predicate P
,
888 bool NextOnly
, const DataFlowGraph
&G
) {
889 // Get the "Next" reference in the circular list that references RR and
890 // satisfies predicate "Pred".
891 auto NA
= G
.addr
<NodeBase
*>(getNext());
893 while (NA
.Addr
!= this) {
894 if (NA
.Addr
->getType() == NodeAttrs::Ref
) {
895 NodeAddr
<RefNode
*> RA
= NA
;
896 if (RA
.Addr
->getRegRef(G
) == RR
&& P(NA
))
900 NA
= G
.addr
<NodeBase
*>(NA
.Addr
->getNext());
902 // We've hit the beginning of the chain.
903 assert(NA
.Addr
->getType() == NodeAttrs::Code
);
904 NodeAddr
<CodeNode
*> CA
= NA
;
905 NA
= CA
.Addr
->getFirstMember(G
);
908 // Return the equivalent of "nullptr" if such a node was not found.
909 return NodeAddr
<RefNode
*>();
912 template <typename Predicate
>
913 NodeList
CodeNode::members_if(Predicate P
, const DataFlowGraph
&G
) const {
915 auto M
= getFirstMember(G
);
919 while (M
.Addr
!= this) {
922 M
= G
.addr
<NodeBase
*>(M
.Addr
->getNext());
927 template <typename T
> struct Print
;
928 template <typename T
>
929 raw_ostream
&operator<< (raw_ostream
&OS
, const Print
<T
> &P
);
931 template <typename T
>
933 Print(const T
&x
, const DataFlowGraph
&g
) : Obj(x
), G(g
) {}
936 const DataFlowGraph
&G
;
939 template <typename T
>
940 struct PrintNode
: Print
<NodeAddr
<T
>> {
941 PrintNode(const NodeAddr
<T
> &x
, const DataFlowGraph
&g
)
942 : Print
<NodeAddr
<T
>>(x
, g
) {}
945 } // end namespace rdf
947 } // end namespace llvm
949 #endif // LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H