Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / Hexagon / RDFLiveness.cpp
blob6a3c82566ba54a77a31584d7b8ee9f5043192d57
1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
25 #include "RDFLiveness.h"
26 #include "RDFGraph.h"
27 #include "RDFRegisters.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineDominanceFrontier.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/MC/LaneBitmask.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <map>
48 #include <utility>
49 #include <vector>
51 using namespace llvm;
52 using namespace rdf;
54 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
55 cl::Hidden, cl::desc("Maximum recursion level"));
57 namespace llvm {
58 namespace rdf {
60 template<>
61 raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
62 OS << '{';
63 for (auto &I : P.Obj) {
64 OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
65 for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
66 OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
67 if (++J != E)
68 OS << ',';
70 OS << '}';
72 OS << " }";
73 return OS;
76 } // end namespace rdf
77 } // end namespace llvm
79 // The order in the returned sequence is the order of reaching defs in the
80 // upward traversal: the first def is the closest to the given reference RefA,
81 // the next one is further up, and so on.
82 // The list ends at a reaching phi def, or when the reference from RefA is
83 // covered by the defs in the list (see FullChain).
84 // This function provides two modes of operation:
85 // (1) Returning the sequence of reaching defs for a particular reference
86 // node. This sequence will terminate at the first phi node [1].
87 // (2) Returning a partial sequence of reaching defs, where the final goal
88 // is to traverse past phi nodes to the actual defs arising from the code
89 // itself.
90 // In mode (2), the register reference for which the search was started
91 // may be different from the reference node RefA, for which this call was
92 // made, hence the argument RefRR, which holds the original register.
93 // Also, some definitions may have already been encountered in a previous
94 // call that will influence register covering. The register references
95 // already defined are passed in through DefRRs.
96 // In mode (1), the "continuation" considerations do not apply, and the
97 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
99 // [1] It is possible for multiple phi nodes to be included in the returned
100 // sequence:
101 // SubA = phi ...
102 // SubB = phi ...
103 // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
104 // However, these phi nodes are independent from one another in terms of
105 // the data-flow.
107 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
108 NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
109 const RegisterAggr &DefRRs) {
110 NodeList RDefs; // Return value.
111 SetVector<NodeId> DefQ;
112 SetVector<NodeId> Owners;
114 // Dead defs will be treated as if they were live, since they are actually
115 // on the data-flow path. They cannot be ignored because even though they
116 // do not generate meaningful values, they still modify registers.
118 // If the reference is undefined, there is nothing to do.
119 if (RefA.Addr->getFlags() & NodeAttrs::Undef)
120 return RDefs;
122 // The initial queue should not have reaching defs for shadows. The
123 // whole point of a shadow is that it will have a reaching def that
124 // is not aliased to the reaching defs of the related shadows.
125 NodeId Start = RefA.Id;
126 auto SNA = DFG.addr<RefNode*>(Start);
127 if (NodeId RD = SNA.Addr->getReachingDef())
128 DefQ.insert(RD);
129 if (TopShadows) {
130 for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
131 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
132 DefQ.insert(RD);
135 // Collect all the reaching defs, going up until a phi node is encountered,
136 // or there are no more reaching defs. From this set, the actual set of
137 // reaching defs will be selected.
138 // The traversal upwards must go on until a covering def is encountered.
139 // It is possible that a collection of non-covering (individually) defs
140 // will be sufficient, but keep going until a covering one is found.
141 for (unsigned i = 0; i < DefQ.size(); ++i) {
142 auto TA = DFG.addr<DefNode*>(DefQ[i]);
143 if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
144 continue;
145 // Stop at the covering/overwriting def of the initial register reference.
146 RegisterRef RR = TA.Addr->getRegRef(DFG);
147 if (!DFG.IsPreservingDef(TA))
148 if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
149 continue;
150 // Get the next level of reaching defs. This will include multiple
151 // reaching defs for shadows.
152 for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
153 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
154 DefQ.insert(RD);
157 // Remove all non-phi defs that are not aliased to RefRR, and collect
158 // the owners of the remaining defs.
159 SetVector<NodeId> Defs;
160 for (NodeId N : DefQ) {
161 auto TA = DFG.addr<DefNode*>(N);
162 bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
163 if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
164 continue;
165 Defs.insert(TA.Id);
166 Owners.insert(TA.Addr->getOwner(DFG).Id);
169 // Return the MachineBasicBlock containing a given instruction.
170 auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
171 if (IA.Addr->getKind() == NodeAttrs::Stmt)
172 return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
173 assert(IA.Addr->getKind() == NodeAttrs::Phi);
174 NodeAddr<PhiNode*> PA = IA;
175 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
176 return BA.Addr->getCode();
178 // Less(A,B) iff instruction A is further down in the dominator tree than B.
179 auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
180 if (A == B)
181 return false;
182 auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
183 MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
184 if (BA != BB)
185 return MDT.dominates(BB, BA);
186 // They are in the same block.
187 bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
188 bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
189 if (StmtA) {
190 if (!StmtB) // OB is a phi and phis dominate statements.
191 return true;
192 MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
193 MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
194 // The order must be linear, so tie-break such equalities.
195 if (CA == CB)
196 return A < B;
197 return MDT.dominates(CB, CA);
198 } else {
199 // OA is a phi.
200 if (StmtB)
201 return false;
202 // Both are phis. There is no ordering between phis (in terms of
203 // the data-flow), so tie-break this via node id comparison.
204 return A < B;
208 std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
209 llvm::sort(Tmp, Less);
211 // The vector is a list of instructions, so that defs coming from
212 // the same instruction don't need to be artificially ordered.
213 // Then, when computing the initial segment, and iterating over an
214 // instruction, pick the defs that contribute to the covering (i.e. is
215 // not covered by previously added defs). Check the defs individually,
216 // i.e. first check each def if is covered or not (without adding them
217 // to the tracking set), and then add all the selected ones.
219 // The reason for this is this example:
220 // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
221 // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
222 // covered if we added A first, and A would be covered
223 // if we added B first.
225 RegisterAggr RRs(DefRRs);
227 auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
228 return TA.Addr->getKind() == NodeAttrs::Def &&
229 Defs.count(TA.Id);
231 for (NodeId T : Tmp) {
232 if (!FullChain && RRs.hasCoverOf(RefRR))
233 break;
234 auto TA = DFG.addr<InstrNode*>(T);
235 bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
236 NodeList Ds;
237 for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
238 RegisterRef QR = DA.Addr->getRegRef(DFG);
239 // Add phi defs even if they are covered by subsequent defs. This is
240 // for cases where the reached use is not covered by any of the defs
241 // encountered so far: the phi def is needed to expose the liveness
242 // of that use to the entry of the block.
243 // Example:
244 // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
245 // d2<R3>(d1,,u3), ...
246 // ..., u3<D1>(d2) This use needs to be live on entry.
247 if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
248 Ds.push_back(DA);
250 RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
251 for (NodeAddr<DefNode*> DA : Ds) {
252 // When collecting a full chain of definitions, do not consider phi
253 // defs to actually define a register.
254 uint16_t Flags = DA.Addr->getFlags();
255 if (!FullChain || !(Flags & NodeAttrs::PhiRef))
256 if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
257 RRs.insert(DA.Addr->getRegRef(DFG));
261 auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
262 return DA.Addr->getFlags() & NodeAttrs::Dead;
264 RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));
266 return RDefs;
269 std::pair<NodeSet,bool>
270 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
271 NodeSet &Visited, const NodeSet &Defs) {
272 return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
275 std::pair<NodeSet,bool>
276 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
277 NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
278 if (Nest > MaxNest)
279 return { NodeSet(), false };
280 // Collect all defined registers. Do not consider phis to be defining
281 // anything, only collect "real" definitions.
282 RegisterAggr DefRRs(PRI);
283 for (NodeId D : Defs) {
284 const auto DA = DFG.addr<const DefNode*>(D);
285 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
286 DefRRs.insert(DA.Addr->getRegRef(DFG));
289 NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
290 if (RDs.empty())
291 return { Defs, true };
293 // Make a copy of the preexisting definitions and add the newly found ones.
294 NodeSet TmpDefs = Defs;
295 for (NodeAddr<NodeBase*> R : RDs)
296 TmpDefs.insert(R.Id);
298 NodeSet Result = Defs;
300 for (NodeAddr<DefNode*> DA : RDs) {
301 Result.insert(DA.Id);
302 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
303 continue;
304 NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
305 if (Visited.count(PA.Id))
306 continue;
307 Visited.insert(PA.Id);
308 // Go over all phi uses and get the reaching defs for each use.
309 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
310 const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
311 Nest+1, MaxNest);
312 if (!T.second)
313 return { T.first, false };
314 Result.insert(T.first.begin(), T.first.end());
318 return { Result, true };
321 /// Find the nearest ref node aliased to RefRR, going upwards in the data
322 /// flow, starting from the instruction immediately preceding Inst.
323 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
324 NodeAddr<InstrNode*> IA) {
325 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
326 NodeList Ins = BA.Addr->members(DFG);
327 NodeId FindId = IA.Id;
328 auto E = Ins.rend();
329 auto B = std::find_if(Ins.rbegin(), E,
330 [FindId] (const NodeAddr<InstrNode*> T) {
331 return T.Id == FindId;
333 // Do not scan IA (which is what B would point to).
334 if (B != E)
335 ++B;
337 do {
338 // Process the range of instructions from B to E.
339 for (NodeAddr<InstrNode*> I : make_range(B, E)) {
340 NodeList Refs = I.Addr->members(DFG);
341 NodeAddr<RefNode*> Clob, Use;
342 // Scan all the refs in I aliased to RefRR, and return the one that
343 // is the closest to the output of I, i.e. def > clobber > use.
344 for (NodeAddr<RefNode*> R : Refs) {
345 if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
346 continue;
347 if (DFG.IsDef(R)) {
348 // If it's a non-clobbering def, just return it.
349 if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
350 return R;
351 Clob = R;
352 } else {
353 Use = R;
356 if (Clob.Id != 0)
357 return Clob;
358 if (Use.Id != 0)
359 return Use;
362 // Go up to the immediate dominator, if any.
363 MachineBasicBlock *BB = BA.Addr->getCode();
364 BA = NodeAddr<BlockNode*>();
365 if (MachineDomTreeNode *N = MDT.getNode(BB)) {
366 if ((N = N->getIDom()))
367 BA = DFG.findBlock(N->getBlock());
369 if (!BA.Id)
370 break;
372 Ins = BA.Addr->members(DFG);
373 B = Ins.rbegin();
374 E = Ins.rend();
375 } while (true);
377 return NodeAddr<RefNode*>();
380 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
381 NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
382 NodeSet Uses;
384 // If the original register is already covered by all the intervening
385 // defs, no more uses can be reached.
386 if (DefRRs.hasCoverOf(RefRR))
387 return Uses;
389 // Add all directly reached uses.
390 // If the def is dead, it does not provide a value for any use.
391 bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
392 NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
393 while (U != 0) {
394 auto UA = DFG.addr<UseNode*>(U);
395 if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
396 RegisterRef UR = UA.Addr->getRegRef(DFG);
397 if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
398 Uses.insert(U);
400 U = UA.Addr->getSibling();
403 // Traverse all reached defs. This time dead defs cannot be ignored.
404 for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
405 auto DA = DFG.addr<DefNode*>(D);
406 NextD = DA.Addr->getSibling();
407 RegisterRef DR = DA.Addr->getRegRef(DFG);
408 // If this def is already covered, it cannot reach anything new.
409 // Similarly, skip it if it is not aliased to the interesting register.
410 if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
411 continue;
412 NodeSet T;
413 if (DFG.IsPreservingDef(DA)) {
414 // If it is a preserving def, do not update the set of intervening defs.
415 T = getAllReachedUses(RefRR, DA, DefRRs);
416 } else {
417 RegisterAggr NewDefRRs = DefRRs;
418 NewDefRRs.insert(DR);
419 T = getAllReachedUses(RefRR, DA, NewDefRRs);
421 Uses.insert(T.begin(), T.end());
423 return Uses;
426 void Liveness::computePhiInfo() {
427 RealUseMap.clear();
429 NodeList Phis;
430 NodeAddr<FuncNode*> FA = DFG.getFunc();
431 NodeList Blocks = FA.Addr->members(DFG);
432 for (NodeAddr<BlockNode*> BA : Blocks) {
433 auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
434 Phis.insert(Phis.end(), Ps.begin(), Ps.end());
437 // phi use -> (map: reaching phi -> set of registers defined in between)
438 std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
439 std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
440 std::map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it.
442 // Go over all phis.
443 for (NodeAddr<PhiNode*> PhiA : Phis) {
444 // Go over all defs and collect the reached uses that are non-phi uses
445 // (i.e. the "real uses").
446 RefMap &RealUses = RealUseMap[PhiA.Id];
447 NodeList PhiRefs = PhiA.Addr->members(DFG);
449 // Have a work queue of defs whose reached uses need to be found.
450 // For each def, add to the queue all reached (non-phi) defs.
451 SetVector<NodeId> DefQ;
452 NodeSet PhiDefs;
453 RegisterAggr DRs(PRI);
454 for (NodeAddr<RefNode*> R : PhiRefs) {
455 if (!DFG.IsRef<NodeAttrs::Def>(R))
456 continue;
457 DRs.insert(R.Addr->getRegRef(DFG));
458 DefQ.insert(R.Id);
459 PhiDefs.insert(R.Id);
461 PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
463 // Collect the super-set of all possible reached uses. This set will
464 // contain all uses reached from this phi, either directly from the
465 // phi defs, or (recursively) via non-phi defs reached by the phi defs.
466 // This set of uses will later be trimmed to only contain these uses that
467 // are actually reached by the phi defs.
468 for (unsigned i = 0; i < DefQ.size(); ++i) {
469 NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
470 // Visit all reached uses. Phi defs should not really have the "dead"
471 // flag set, but check it anyway for consistency.
472 bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
473 NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
474 while (UN != 0) {
475 NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
476 uint16_t F = A.Addr->getFlags();
477 if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
478 RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
479 RealUses[R.Reg].insert({A.Id,R.Mask});
481 UN = A.Addr->getSibling();
483 // Visit all reached defs, and add them to the queue. These defs may
484 // override some of the uses collected here, but that will be handled
485 // later.
486 NodeId DN = DA.Addr->getReachedDef();
487 while (DN != 0) {
488 NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
489 for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
490 uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
491 // Must traverse the reached-def chain. Consider:
492 // def(D0) -> def(R0) -> def(R0) -> use(D0)
493 // The reachable use of D0 passes through a def of R0.
494 if (!(Flags & NodeAttrs::PhiRef))
495 DefQ.insert(T.Id);
497 DN = A.Addr->getSibling();
500 // Filter out these uses that appear to be reachable, but really
501 // are not. For example:
503 // R1:0 = d1
504 // = R1:0 u2 Reached by d1.
505 // R0 = d3
506 // = R1:0 u4 Still reached by d1: indirectly through
507 // the def d3.
508 // R1 = d5
509 // = R1:0 u6 Not reached by d1 (covered collectively
510 // by d3 and d5), but following reached
511 // defs and uses from d1 will lead here.
512 for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
513 // For each reached register UI->first, there is a set UI->second, of
514 // uses of it. For each such use, check if it is reached by this phi,
515 // i.e. check if the set of its reaching uses intersects the set of
516 // this phi's defs.
517 NodeRefSet Uses = UI->second;
518 UI->second.clear();
519 for (std::pair<NodeId,LaneBitmask> I : Uses) {
520 auto UA = DFG.addr<UseNode*>(I.first);
521 // Undef flag is checked above.
522 assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
523 RegisterRef R(UI->first, I.second);
524 // Calculate the exposed part of the reached use.
525 RegisterAggr Covered(PRI);
526 for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
527 if (PhiDefs.count(DA.Id))
528 break;
529 Covered.insert(DA.Addr->getRegRef(DFG));
531 if (RegisterRef RC = Covered.clearIn(R)) {
532 // We are updating the map for register UI->first, so we need
533 // to map RC to be expressed in terms of that register.
534 RegisterRef S = PRI.mapTo(RC, UI->first);
535 UI->second.insert({I.first, S.Mask});
538 UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
541 // If this phi reaches some "real" uses, add it to the queue for upward
542 // propagation.
543 if (!RealUses.empty())
544 PhiUQ.push_back(PhiA.Id);
546 // Go over all phi uses and check if the reaching def is another phi.
547 // Collect the phis that are among the reaching defs of these uses.
548 // While traversing the list of reaching defs for each phi use, accumulate
549 // the set of registers defined between this phi (PhiA) and the owner phi
550 // of the reaching def.
551 NodeSet SeenUses;
553 for (auto I : PhiRefs) {
554 if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
555 continue;
556 NodeAddr<PhiUseNode*> PUA = I;
557 if (PUA.Addr->getReachingDef() == 0)
558 continue;
560 RegisterRef UR = PUA.Addr->getRegRef(DFG);
561 NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
562 RegisterAggr DefRRs(PRI);
564 for (NodeAddr<DefNode*> D : Ds) {
565 if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
566 NodeId RP = D.Addr->getOwner(DFG).Id;
567 std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
568 auto F = M.find(RP);
569 if (F == M.end())
570 M.insert(std::make_pair(RP, DefRRs));
571 else
572 F->second.insert(DefRRs);
574 DefRRs.insert(D.Addr->getRegRef(DFG));
577 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
578 SeenUses.insert(T.Id);
582 if (Trace) {
583 dbgs() << "Phi-up-to-phi map with intervening defs:\n";
584 for (auto I : PhiUp) {
585 dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
586 for (auto R : I.second)
587 dbgs() << ' ' << Print<NodeId>(R.first, DFG)
588 << Print<RegisterAggr>(R.second, DFG);
589 dbgs() << " }\n";
593 // Propagate the reached registers up in the phi chain.
595 // The following type of situation needs careful handling:
597 // phi d1<R1:0> (1)
598 // |
599 // ... d2<R1>
600 // |
601 // phi u3<R1:0> (2)
602 // |
603 // ... u4<R1>
605 // The phi node (2) defines a register pair R1:0, and reaches a "real"
606 // use u4 of just R1. The same phi node is also known to reach (upwards)
607 // the phi node (1). However, the use u4 is not reached by phi (1),
608 // because of the intervening definition d2 of R1. The data flow between
609 // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
611 // When propagating uses up the phi chains, get the all reaching defs
612 // for a given phi use, and traverse the list until the propagated ref
613 // is covered, or until reaching the final phi. Only assume that the
614 // reference reaches the phi in the latter case.
616 for (unsigned i = 0; i < PhiUQ.size(); ++i) {
617 auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
618 NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
619 RefMap &RUM = RealUseMap[PA.Id];
621 for (NodeAddr<UseNode*> UA : PUs) {
622 std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
623 RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
624 for (const std::pair<NodeId,RegisterAggr> &P : PUM) {
625 bool Changed = false;
626 const RegisterAggr &MidDefs = P.second;
628 // Collect the set PropUp of uses that are reached by the current
629 // phi PA, and are not covered by any intervening def between the
630 // currently visited use UA and the upward phi P.
632 if (MidDefs.hasCoverOf(UR))
633 continue;
635 // General algorithm:
636 // for each (R,U) : U is use node of R, U is reached by PA
637 // if MidDefs does not cover (R,U)
638 // then add (R-MidDefs,U) to RealUseMap[P]
640 for (const std::pair<RegisterId,NodeRefSet> &T : RUM) {
641 RegisterRef R(T.first);
642 // The current phi (PA) could be a phi for a regmask. It could
643 // reach a whole variety of uses that are not related to the
644 // specific upward phi (P.first).
645 const RegisterAggr &DRs = PhiDRs.at(P.first);
646 if (!DRs.hasAliasOf(R))
647 continue;
648 R = PRI.mapTo(DRs.intersectWith(R), T.first);
649 for (std::pair<NodeId,LaneBitmask> V : T.second) {
650 LaneBitmask M = R.Mask & V.second;
651 if (M.none())
652 continue;
653 if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
654 NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
655 Changed |= RS.insert({V.first,SS.Mask}).second;
660 if (Changed)
661 PhiUQ.push_back(P.first);
666 if (Trace) {
667 dbgs() << "Real use map:\n";
668 for (auto I : RealUseMap) {
669 dbgs() << "phi " << Print<NodeId>(I.first, DFG);
670 NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
671 NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
672 if (!Ds.empty()) {
673 RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
674 dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
675 } else {
676 dbgs() << "<noreg>";
678 dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
683 void Liveness::computeLiveIns() {
684 // Populate the node-to-block map. This speeds up the calculations
685 // significantly.
686 NBMap.clear();
687 for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
688 MachineBasicBlock *BB = BA.Addr->getCode();
689 for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
690 for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
691 NBMap.insert(std::make_pair(RA.Id, BB));
692 NBMap.insert(std::make_pair(IA.Id, BB));
696 MachineFunction &MF = DFG.getMF();
698 // Compute IDF first, then the inverse.
699 decltype(IIDF) IDF;
700 for (MachineBasicBlock &B : MF) {
701 auto F1 = MDF.find(&B);
702 if (F1 == MDF.end())
703 continue;
704 SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
705 for (unsigned i = 0; i < IDFB.size(); ++i) {
706 auto F2 = MDF.find(IDFB[i]);
707 if (F2 != MDF.end())
708 IDFB.insert(F2->second.begin(), F2->second.end());
710 // Add B to the IDF(B). This will put B in the IIDF(B).
711 IDFB.insert(&B);
712 IDF[&B].insert(IDFB.begin(), IDFB.end());
715 for (auto I : IDF)
716 for (auto S : I.second)
717 IIDF[S].insert(I.first);
719 computePhiInfo();
721 NodeAddr<FuncNode*> FA = DFG.getFunc();
722 NodeList Blocks = FA.Addr->members(DFG);
724 // Build the phi live-on-entry map.
725 for (NodeAddr<BlockNode*> BA : Blocks) {
726 MachineBasicBlock *MB = BA.Addr->getCode();
727 RefMap &LON = PhiLON[MB];
728 for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
729 for (const RefMap::value_type &S : RealUseMap[P.Id])
730 LON[S.first].insert(S.second.begin(), S.second.end());
733 if (Trace) {
734 dbgs() << "Phi live-on-entry map:\n";
735 for (auto &I : PhiLON)
736 dbgs() << "block #" << I.first->getNumber() << " -> "
737 << Print<RefMap>(I.second, DFG) << '\n';
740 // Build the phi live-on-exit map. Each phi node has some set of reached
741 // "real" uses. Propagate this set backwards into the block predecessors
742 // through the reaching defs of the corresponding phi uses.
743 for (NodeAddr<BlockNode*> BA : Blocks) {
744 NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
745 for (NodeAddr<PhiNode*> PA : Phis) {
746 RefMap &RUs = RealUseMap[PA.Id];
747 if (RUs.empty())
748 continue;
750 NodeSet SeenUses;
751 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
752 if (!SeenUses.insert(U.Id).second)
753 continue;
754 NodeAddr<PhiUseNode*> PUA = U;
755 if (PUA.Addr->getReachingDef() == 0)
756 continue;
758 // Each phi has some set (possibly empty) of reached "real" uses,
759 // that is, uses that are part of the compiled program. Such a use
760 // may be located in some farther block, but following a chain of
761 // reaching defs will eventually lead to this phi.
762 // Any chain of reaching defs may fork at a phi node, but there
763 // will be a path upwards that will lead to this phi. Now, this
764 // chain will need to fork at this phi, since some of the reached
765 // uses may have definitions joining in from multiple predecessors.
766 // For each reached "real" use, identify the set of reaching defs
767 // coming from each predecessor P, and add them to PhiLOX[P].
769 auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
770 RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
772 for (const std::pair<RegisterId,NodeRefSet> &RS : RUs) {
773 // We need to visit each individual use.
774 for (std::pair<NodeId,LaneBitmask> P : RS.second) {
775 // Create a register ref corresponding to the use, and find
776 // all reaching defs starting from the phi use, and treating
777 // all related shadows as a single use cluster.
778 RegisterRef S(RS.first, P.second);
779 NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
780 for (NodeAddr<DefNode*> D : Ds) {
781 // Calculate the mask corresponding to the visited def.
782 RegisterAggr TA(PRI);
783 TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
784 LaneBitmask TM = TA.makeRegRef().Mask;
785 LOX[S.Reg].insert({D.Id, TM});
790 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
791 SeenUses.insert(T.Id);
792 } // for U : phi uses
793 } // for P : Phis
794 } // for B : Blocks
796 if (Trace) {
797 dbgs() << "Phi live-on-exit map:\n";
798 for (auto &I : PhiLOX)
799 dbgs() << "block #" << I.first->getNumber() << " -> "
800 << Print<RefMap>(I.second, DFG) << '\n';
803 RefMap LiveIn;
804 traverse(&MF.front(), LiveIn);
806 // Add function live-ins to the live-in set of the function entry block.
807 LiveMap[&MF.front()].insert(DFG.getLiveIns());
809 if (Trace) {
810 // Dump the liveness map
811 for (MachineBasicBlock &B : MF) {
812 std::vector<RegisterRef> LV;
813 for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
814 LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
815 llvm::sort(LV);
816 dbgs() << printMBBReference(B) << "\t rec = {";
817 for (auto I : LV)
818 dbgs() << ' ' << Print<RegisterRef>(I, DFG);
819 dbgs() << " }\n";
820 //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
822 LV.clear();
823 const RegisterAggr &LG = LiveMap[&B];
824 for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
825 LV.push_back(*I);
826 llvm::sort(LV);
827 dbgs() << "\tcomp = {";
828 for (auto I : LV)
829 dbgs() << ' ' << Print<RegisterRef>(I, DFG);
830 dbgs() << " }\n";
836 void Liveness::resetLiveIns() {
837 for (auto &B : DFG.getMF()) {
838 // Remove all live-ins.
839 std::vector<unsigned> T;
840 for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
841 T.push_back(I->PhysReg);
842 for (auto I : T)
843 B.removeLiveIn(I);
844 // Add the newly computed live-ins.
845 const RegisterAggr &LiveIns = LiveMap[&B];
846 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
847 RegisterRef R = *I;
848 B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
853 void Liveness::resetKills() {
854 for (auto &B : DFG.getMF())
855 resetKills(&B);
858 void Liveness::resetKills(MachineBasicBlock *B) {
859 auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
860 for (auto I : B->liveins()) {
861 MCSubRegIndexIterator S(I.PhysReg, &TRI);
862 if (!S.isValid()) {
863 LV.set(I.PhysReg);
864 continue;
866 do {
867 LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
868 if ((M & I.LaneMask).any())
869 LV.set(S.getSubReg());
870 ++S;
871 } while (S.isValid());
875 BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
876 CopyLiveIns(B, LiveIn);
877 for (auto SI : B->successors())
878 CopyLiveIns(SI, Live);
880 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
881 MachineInstr *MI = &*I;
882 if (MI->isDebugInstr())
883 continue;
885 MI->clearKillInfo();
886 for (auto &Op : MI->operands()) {
887 // An implicit def of a super-register may not necessarily start a
888 // live range of it, since an implicit use could be used to keep parts
889 // of it live. Instead of analyzing the implicit operands, ignore
890 // implicit defs.
891 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
892 continue;
893 unsigned R = Op.getReg();
894 if (!TargetRegisterInfo::isPhysicalRegister(R))
895 continue;
896 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
897 Live.reset(*SR);
899 for (auto &Op : MI->operands()) {
900 if (!Op.isReg() || !Op.isUse() || Op.isUndef())
901 continue;
902 unsigned R = Op.getReg();
903 if (!TargetRegisterInfo::isPhysicalRegister(R))
904 continue;
905 bool IsLive = false;
906 for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
907 if (!Live[*AR])
908 continue;
909 IsLive = true;
910 break;
912 if (!IsLive)
913 Op.setIsKill(true);
914 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
915 Live.set(*SR);
920 // Helper function to obtain the basic block containing the reaching def
921 // of the given use.
922 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
923 auto F = NBMap.find(RN);
924 if (F != NBMap.end())
925 return F->second;
926 llvm_unreachable("Node id not in map");
929 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
930 // The LiveIn map, for each (physical) register, contains the set of live
931 // reaching defs of that register that are live on entry to the associated
932 // block.
934 // The summary of the traversal algorithm:
936 // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
937 // and (U \in IDF(B) or B dom U).
939 // for (C : children) {
940 // LU = {}
941 // traverse(C, LU)
942 // LiveUses += LU
943 // }
945 // LiveUses -= Defs(B);
946 // LiveUses += UpwardExposedUses(B);
947 // for (C : IIDF[B])
948 // for (U : LiveUses)
949 // if (Rdef(U) dom C)
950 // C.addLiveIn(U)
953 // Go up the dominator tree (depth-first).
954 MachineDomTreeNode *N = MDT.getNode(B);
955 for (auto I : *N) {
956 RefMap L;
957 MachineBasicBlock *SB = I->getBlock();
958 traverse(SB, L);
960 for (auto S : L)
961 LiveIn[S.first].insert(S.second.begin(), S.second.end());
964 if (Trace) {
965 dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
966 << " after recursion into: {";
967 for (auto I : *N)
968 dbgs() << ' ' << I->getBlock()->getNumber();
969 dbgs() << " }\n";
970 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
971 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
974 // Add reaching defs of phi uses that are live on exit from this block.
975 RefMap &PUs = PhiLOX[B];
976 for (auto &S : PUs)
977 LiveIn[S.first].insert(S.second.begin(), S.second.end());
979 if (Trace) {
980 dbgs() << "after LOX\n";
981 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
982 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
985 // The LiveIn map at this point has all defs that are live-on-exit from B,
986 // as if they were live-on-entry to B. First, we need to filter out all
987 // defs that are present in this block. Then we will add reaching defs of
988 // all upward-exposed uses.
990 // To filter out the defs, first make a copy of LiveIn, and then re-populate
991 // LiveIn with the defs that should remain.
992 RefMap LiveInCopy = LiveIn;
993 LiveIn.clear();
995 for (const std::pair<RegisterId,NodeRefSet> &LE : LiveInCopy) {
996 RegisterRef LRef(LE.first);
997 NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
998 const NodeRefSet &OldDefs = LE.second;
999 for (NodeRef OR : OldDefs) {
1000 // R is a def node that was live-on-exit
1001 auto DA = DFG.addr<DefNode*>(OR.first);
1002 NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1003 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1004 if (B != BA.Addr->getCode()) {
1005 // Defs from a different block need to be preserved. Defs from this
1006 // block will need to be processed further, except for phi defs, the
1007 // liveness of which is handled through the PhiLON/PhiLOX maps.
1008 NewDefs.insert(OR);
1009 continue;
1012 // Defs from this block need to stop the liveness from being
1013 // propagated upwards. This only applies to non-preserving defs,
1014 // and to the parts of the register actually covered by those defs.
1015 // (Note that phi defs should always be preserving.)
1016 RegisterAggr RRs(PRI);
1017 LRef.Mask = OR.second;
1019 if (!DFG.IsPreservingDef(DA)) {
1020 assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1021 // DA is a non-phi def that is live-on-exit from this block, and
1022 // that is also located in this block. LRef is a register ref
1023 // whose use this def reaches. If DA covers LRef, then no part
1024 // of LRef is exposed upwards.A
1025 if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1026 continue;
1029 // DA itself was not sufficient to cover LRef. In general, it is
1030 // the last in a chain of aliased defs before the exit from this block.
1031 // There could be other defs in this block that are a part of that
1032 // chain. Check that now: accumulate the registers from these defs,
1033 // and if they all together cover LRef, it is not live-on-entry.
1034 for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1035 // DefNode -> InstrNode -> BlockNode.
1036 NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1037 NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1038 // Reaching defs are ordered in the upward direction.
1039 if (BTA.Addr->getCode() != B) {
1040 // We have reached past the beginning of B, and the accumulated
1041 // registers are not covering LRef. The first def from the
1042 // upward chain will be live.
1043 // Subtract all accumulated defs (RRs) from LRef.
1044 RegisterRef T = RRs.clearIn(LRef);
1045 assert(T);
1046 NewDefs.insert({TA.Id,T.Mask});
1047 break;
1050 // TA is in B. Only add this def to the accumulated cover if it is
1051 // not preserving.
1052 if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1053 RRs.insert(TA.Addr->getRegRef(DFG));
1054 // If this is enough to cover LRef, then stop.
1055 if (RRs.hasCoverOf(LRef))
1056 break;
1061 emptify(LiveIn);
1063 if (Trace) {
1064 dbgs() << "after defs in block\n";
1065 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1066 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1069 // Scan the block for upward-exposed uses and add them to the tracking set.
1070 for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1071 NodeAddr<InstrNode*> IA = I;
1072 if (IA.Addr->getKind() != NodeAttrs::Stmt)
1073 continue;
1074 for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1075 if (UA.Addr->getFlags() & NodeAttrs::Undef)
1076 continue;
1077 RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
1078 for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1079 if (getBlockWithRef(D.Id) != B)
1080 LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1084 if (Trace) {
1085 dbgs() << "after uses in block\n";
1086 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1087 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1090 // Phi uses should not be propagated up the dominator tree, since they
1091 // are not dominated by their corresponding reaching defs.
1092 RegisterAggr &Local = LiveMap[B];
1093 RefMap &LON = PhiLON[B];
1094 for (auto &R : LON) {
1095 LaneBitmask M;
1096 for (auto P : R.second)
1097 M |= P.second;
1098 Local.insert(RegisterRef(R.first,M));
1101 if (Trace) {
1102 dbgs() << "after phi uses in block\n";
1103 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1104 dbgs() << " Local: " << Print<RegisterAggr>(Local, DFG) << '\n';
1107 for (auto C : IIDF[B]) {
1108 RegisterAggr &LiveC = LiveMap[C];
1109 for (const std::pair<RegisterId,NodeRefSet> &S : LiveIn)
1110 for (auto R : S.second)
1111 if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1112 LiveC.insert(RegisterRef(S.first, R.second));
1116 void Liveness::emptify(RefMap &M) {
1117 for (auto I = M.begin(), E = M.end(); I != E; )
1118 I = I->second.empty() ? M.erase(I) : std::next(I);