Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / Mips / Mips16ISelLowering.cpp
blob27adae9bb65a1c5fe0deb66762705751ad24d548
1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips16.
11 //===----------------------------------------------------------------------===//
12 #include "Mips16ISelLowering.h"
13 #include "MCTargetDesc/MipsBaseInfo.h"
14 #include "Mips16HardFloatInfo.h"
15 #include "MipsMachineFunction.h"
16 #include "MipsRegisterInfo.h"
17 #include "MipsTargetMachine.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/Support/CommandLine.h"
22 using namespace llvm;
24 #define DEBUG_TYPE "mips-lower"
26 static cl::opt<bool> DontExpandCondPseudos16(
27 "mips16-dont-expand-cond-pseudo",
28 cl::init(false),
29 cl::desc("Don't expand conditional move related "
30 "pseudos for Mips 16"),
31 cl::Hidden);
33 namespace {
34 struct Mips16Libcall {
35 RTLIB::Libcall Libcall;
36 const char *Name;
38 bool operator<(const Mips16Libcall &RHS) const {
39 return std::strcmp(Name, RHS.Name) < 0;
43 struct Mips16IntrinsicHelperType{
44 const char* Name;
45 const char* Helper;
47 bool operator<(const Mips16IntrinsicHelperType &RHS) const {
48 return std::strcmp(Name, RHS.Name) < 0;
50 bool operator==(const Mips16IntrinsicHelperType &RHS) const {
51 return std::strcmp(Name, RHS.Name) == 0;
56 // Libcalls for which no helper is generated. Sorted by name for binary search.
57 static const Mips16Libcall HardFloatLibCalls[] = {
58 { RTLIB::ADD_F64, "__mips16_adddf3" },
59 { RTLIB::ADD_F32, "__mips16_addsf3" },
60 { RTLIB::DIV_F64, "__mips16_divdf3" },
61 { RTLIB::DIV_F32, "__mips16_divsf3" },
62 { RTLIB::OEQ_F64, "__mips16_eqdf2" },
63 { RTLIB::OEQ_F32, "__mips16_eqsf2" },
64 { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
65 { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
66 { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
67 { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
68 { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
69 { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
70 { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
71 { RTLIB::OGE_F64, "__mips16_gedf2" },
72 { RTLIB::OGE_F32, "__mips16_gesf2" },
73 { RTLIB::OGT_F64, "__mips16_gtdf2" },
74 { RTLIB::OGT_F32, "__mips16_gtsf2" },
75 { RTLIB::OLE_F64, "__mips16_ledf2" },
76 { RTLIB::OLE_F32, "__mips16_lesf2" },
77 { RTLIB::OLT_F64, "__mips16_ltdf2" },
78 { RTLIB::OLT_F32, "__mips16_ltsf2" },
79 { RTLIB::MUL_F64, "__mips16_muldf3" },
80 { RTLIB::MUL_F32, "__mips16_mulsf3" },
81 { RTLIB::UNE_F64, "__mips16_nedf2" },
82 { RTLIB::UNE_F32, "__mips16_nesf2" },
83 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
84 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
85 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
86 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
87 { RTLIB::SUB_F64, "__mips16_subdf3" },
88 { RTLIB::SUB_F32, "__mips16_subsf3" },
89 { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
90 { RTLIB::UO_F64, "__mips16_unorddf2" },
91 { RTLIB::UO_F32, "__mips16_unordsf2" }
94 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
95 {"__fixunsdfsi", "__mips16_call_stub_2" },
96 {"ceil", "__mips16_call_stub_df_2"},
97 {"ceilf", "__mips16_call_stub_sf_1"},
98 {"copysign", "__mips16_call_stub_df_10"},
99 {"copysignf", "__mips16_call_stub_sf_5"},
100 {"cos", "__mips16_call_stub_df_2"},
101 {"cosf", "__mips16_call_stub_sf_1"},
102 {"exp2", "__mips16_call_stub_df_2"},
103 {"exp2f", "__mips16_call_stub_sf_1"},
104 {"floor", "__mips16_call_stub_df_2"},
105 {"floorf", "__mips16_call_stub_sf_1"},
106 {"log2", "__mips16_call_stub_df_2"},
107 {"log2f", "__mips16_call_stub_sf_1"},
108 {"nearbyint", "__mips16_call_stub_df_2"},
109 {"nearbyintf", "__mips16_call_stub_sf_1"},
110 {"rint", "__mips16_call_stub_df_2"},
111 {"rintf", "__mips16_call_stub_sf_1"},
112 {"sin", "__mips16_call_stub_df_2"},
113 {"sinf", "__mips16_call_stub_sf_1"},
114 {"sqrt", "__mips16_call_stub_df_2"},
115 {"sqrtf", "__mips16_call_stub_sf_1"},
116 {"trunc", "__mips16_call_stub_df_2"},
117 {"truncf", "__mips16_call_stub_sf_1"},
120 Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM,
121 const MipsSubtarget &STI)
122 : MipsTargetLowering(TM, STI) {
124 // Set up the register classes
125 addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
127 if (!Subtarget.useSoftFloat())
128 setMips16HardFloatLibCalls();
130 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
131 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
132 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
133 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
134 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
135 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
136 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
137 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
138 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
139 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
140 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
141 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
142 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
144 setOperationAction(ISD::ROTR, MVT::i32, Expand);
145 setOperationAction(ISD::ROTR, MVT::i64, Expand);
146 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
147 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
149 computeRegisterProperties(STI.getRegisterInfo());
152 const MipsTargetLowering *
153 llvm::createMips16TargetLowering(const MipsTargetMachine &TM,
154 const MipsSubtarget &STI) {
155 return new Mips16TargetLowering(TM, STI);
158 bool
159 Mips16TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
160 unsigned,
161 unsigned,
162 bool *Fast) const {
163 return false;
166 MachineBasicBlock *
167 Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
168 MachineBasicBlock *BB) const {
169 switch (MI.getOpcode()) {
170 default:
171 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
172 case Mips::SelBeqZ:
173 return emitSel16(Mips::BeqzRxImm16, MI, BB);
174 case Mips::SelBneZ:
175 return emitSel16(Mips::BnezRxImm16, MI, BB);
176 case Mips::SelTBteqZCmpi:
177 return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
178 case Mips::SelTBteqZSlti:
179 return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
180 case Mips::SelTBteqZSltiu:
181 return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
182 case Mips::SelTBtneZCmpi:
183 return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
184 case Mips::SelTBtneZSlti:
185 return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
186 case Mips::SelTBtneZSltiu:
187 return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
188 case Mips::SelTBteqZCmp:
189 return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
190 case Mips::SelTBteqZSlt:
191 return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
192 case Mips::SelTBteqZSltu:
193 return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
194 case Mips::SelTBtneZCmp:
195 return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
196 case Mips::SelTBtneZSlt:
197 return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
198 case Mips::SelTBtneZSltu:
199 return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
200 case Mips::BteqzT8CmpX16:
201 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
202 case Mips::BteqzT8SltX16:
203 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
204 case Mips::BteqzT8SltuX16:
205 // TBD: figure out a way to get this or remove the instruction
206 // altogether.
207 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
208 case Mips::BtnezT8CmpX16:
209 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
210 case Mips::BtnezT8SltX16:
211 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
212 case Mips::BtnezT8SltuX16:
213 // TBD: figure out a way to get this or remove the instruction
214 // altogether.
215 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
216 case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
217 Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
218 case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
219 Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
220 case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
221 Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
222 case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
223 Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
224 case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
225 Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
226 case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
227 Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
228 break;
229 case Mips::SltCCRxRy16:
230 return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
231 break;
232 case Mips::SltiCCRxImmX16:
233 return emitFEXT_CCRXI16_ins
234 (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
235 case Mips::SltiuCCRxImmX16:
236 return emitFEXT_CCRXI16_ins
237 (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
238 case Mips::SltuCCRxRy16:
239 return emitFEXT_CCRX16_ins
240 (Mips::SltuRxRy16, MI, BB);
244 bool Mips16TargetLowering::isEligibleForTailCallOptimization(
245 const CCState &CCInfo, unsigned NextStackOffset,
246 const MipsFunctionInfo &FI) const {
247 // No tail call optimization for mips16.
248 return false;
251 void Mips16TargetLowering::setMips16HardFloatLibCalls() {
252 for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
253 assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
254 "Array not sorted!");
255 if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
256 setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
259 setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
260 setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
264 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
265 // cleaner way to do all of this but it will have to wait until the traditional
266 // gcc mechanism is completed.
268 // For Pic, in order for Mips16 code to call Mips32 code which according the abi
269 // have either arguments or returned values placed in floating point registers,
270 // we use a set of helper functions. (This includes functions which return type
271 // complex which on Mips are returned in a pair of floating point registers).
273 // This is an encoding that we inherited from gcc.
274 // In Mips traditional O32, N32 ABI, floating point numbers are passed in
275 // floating point argument registers 1,2 only when the first and optionally
276 // the second arguments are float (sf) or double (df).
277 // For Mips16 we are only concerned with the situations where floating point
278 // arguments are being passed in floating point registers by the ABI, because
279 // Mips16 mode code cannot execute floating point instructions to load those
280 // values and hence helper functions are needed.
281 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
282 // the helper function suffixs for these are:
283 // 0, 1, 5, 9, 2, 6, 10
284 // this suffix can then be calculated as follows:
285 // for a given argument Arg:
286 // Arg1x, Arg2x = 1 : Arg is sf
287 // 2 : Arg is df
288 // 0: Arg is neither sf or df
289 // So this stub is the string for number Arg1x + Arg2x*4.
290 // However not all numbers between 0 and 10 are possible, we check anyway and
291 // assert if the impossible exists.
294 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
295 (ArgListTy &Args) const {
296 unsigned int resultNum = 0;
297 if (Args.size() >= 1) {
298 Type *t = Args[0].Ty;
299 if (t->isFloatTy()) {
300 resultNum = 1;
302 else if (t->isDoubleTy()) {
303 resultNum = 2;
306 if (resultNum) {
307 if (Args.size() >=2) {
308 Type *t = Args[1].Ty;
309 if (t->isFloatTy()) {
310 resultNum += 4;
312 else if (t->isDoubleTy()) {
313 resultNum += 8;
317 return resultNum;
321 // Prefixes are attached to stub numbers depending on the return type.
322 // return type: float sf_
323 // double df_
324 // single complex sc_
325 // double complext dc_
326 // others NO PREFIX
329 // The full name of a helper function is__mips16_call_stub +
330 // return type dependent prefix + stub number
332 // FIXME: This is something that probably should be in a different source file
333 // and perhaps done differently but my main purpose is to not waste runtime
334 // on something that we can enumerate in the source. Another possibility is
335 // to have a python script to generate these mapping tables. This will do
336 // for now. There are a whole series of helper function mapping arrays, one
337 // for each return type class as outlined above. There there are 11 possible
338 // entries. Ones with 0 are ones which should never be selected.
340 // All the arrays are similar except for ones which return neither
341 // sf, df, sc, dc, in which we only care about ones which have sf or df as a
342 // first parameter.
344 #define P_ "__mips16_call_stub_"
345 #define MAX_STUB_NUMBER 10
346 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
347 #define T P "0" , T1
348 #define P P_
349 static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
350 {nullptr, T1 };
351 #undef P
352 #define P P_ "sf_"
353 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
354 { T };
355 #undef P
356 #define P P_ "df_"
357 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
358 { T };
359 #undef P
360 #define P P_ "sc_"
361 static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
362 { T };
363 #undef P
364 #define P P_ "dc_"
365 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
366 { T };
367 #undef P
368 #undef P_
371 const char* Mips16TargetLowering::
372 getMips16HelperFunction
373 (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
374 const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
375 #ifndef NDEBUG
376 const unsigned int maxStubNum = 10;
377 assert(stubNum <= maxStubNum);
378 const bool validStubNum[maxStubNum+1] =
379 {true, true, true, false, false, true, true, false, false, true, true};
380 assert(validStubNum[stubNum]);
381 #endif
382 const char *result;
383 if (RetTy->isFloatTy()) {
384 result = sfMips16Helper[stubNum];
386 else if (RetTy ->isDoubleTy()) {
387 result = dfMips16Helper[stubNum];
388 } else if (StructType *SRetTy = dyn_cast<StructType>(RetTy)) {
389 // check if it's complex
390 if (SRetTy->getNumElements() == 2) {
391 if ((SRetTy->getElementType(0)->isFloatTy()) &&
392 (SRetTy->getElementType(1)->isFloatTy())) {
393 result = scMips16Helper[stubNum];
394 } else if ((SRetTy->getElementType(0)->isDoubleTy()) &&
395 (SRetTy->getElementType(1)->isDoubleTy())) {
396 result = dcMips16Helper[stubNum];
397 } else {
398 llvm_unreachable("Uncovered condition");
400 } else {
401 llvm_unreachable("Uncovered condition");
403 } else {
404 if (stubNum == 0) {
405 needHelper = false;
406 return "";
408 result = vMips16Helper[stubNum];
410 needHelper = true;
411 return result;
414 void Mips16TargetLowering::
415 getOpndList(SmallVectorImpl<SDValue> &Ops,
416 std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
417 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
418 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
419 SDValue Chain) const {
420 SelectionDAG &DAG = CLI.DAG;
421 MachineFunction &MF = DAG.getMachineFunction();
422 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
423 const char* Mips16HelperFunction = nullptr;
424 bool NeedMips16Helper = false;
426 if (Subtarget.inMips16HardFloat()) {
428 // currently we don't have symbols tagged with the mips16 or mips32
429 // qualifier so we will assume that we don't know what kind it is.
430 // and generate the helper
432 bool LookupHelper = true;
433 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
434 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
436 if (std::binary_search(std::begin(HardFloatLibCalls),
437 std::end(HardFloatLibCalls), Find))
438 LookupHelper = false;
439 else {
440 const char *Symbol = S->getSymbol();
441 Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
442 const Mips16HardFloatInfo::FuncSignature *Signature =
443 Mips16HardFloatInfo::findFuncSignature(Symbol);
444 if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
445 FuncInfo->StubsNeeded.end()))) {
446 FuncInfo->StubsNeeded[Symbol] = Signature;
448 // S2 is normally saved if the stub is for a function which
449 // returns a float or double value and is not otherwise. This is
450 // because more work is required after the function the stub
451 // is calling completes, and so the stub cannot directly return
452 // and the stub has no stack space to store the return address so
453 // S2 is used for that purpose.
454 // In order to take advantage of not saving S2, we need to also
455 // optimize the call in the stub and this requires some further
456 // functionality in MipsAsmPrinter which we don't have yet.
457 // So for now we always save S2. The optimization will be done
458 // in a follow-on patch.
460 if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
461 FuncInfo->setSaveS2();
463 // one more look at list of intrinsics
464 const Mips16IntrinsicHelperType *Helper =
465 std::lower_bound(std::begin(Mips16IntrinsicHelper),
466 std::end(Mips16IntrinsicHelper), IntrinsicFind);
467 if (Helper != std::end(Mips16IntrinsicHelper) &&
468 *Helper == IntrinsicFind) {
469 Mips16HelperFunction = Helper->Helper;
470 NeedMips16Helper = true;
471 LookupHelper = false;
475 } else if (GlobalAddressSDNode *G =
476 dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
477 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
478 G->getGlobal()->getName().data() };
480 if (std::binary_search(std::begin(HardFloatLibCalls),
481 std::end(HardFloatLibCalls), Find))
482 LookupHelper = false;
484 if (LookupHelper)
485 Mips16HelperFunction =
486 getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
489 SDValue JumpTarget = Callee;
491 // T9 should contain the address of the callee function if
492 // -relocation-model=pic or it is an indirect call.
493 if (IsPICCall || !GlobalOrExternal) {
494 unsigned V0Reg = Mips::V0;
495 if (NeedMips16Helper) {
496 RegsToPass.push_front(std::make_pair(V0Reg, Callee));
497 JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction,
498 getPointerTy(DAG.getDataLayout()));
499 ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
500 JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
501 MipsII::MO_GOT, Chain,
502 FuncInfo->callPtrInfo(S->getSymbol()));
503 } else
504 RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
507 Ops.push_back(JumpTarget);
509 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
510 InternalLinkage, IsCallReloc, CLI, Callee,
511 Chain);
514 MachineBasicBlock *
515 Mips16TargetLowering::emitSel16(unsigned Opc, MachineInstr &MI,
516 MachineBasicBlock *BB) const {
517 if (DontExpandCondPseudos16)
518 return BB;
519 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
520 DebugLoc DL = MI.getDebugLoc();
521 // To "insert" a SELECT_CC instruction, we actually have to insert the
522 // diamond control-flow pattern. The incoming instruction knows the
523 // destination vreg to set, the condition code register to branch on, the
524 // true/false values to select between, and a branch opcode to use.
525 const BasicBlock *LLVM_BB = BB->getBasicBlock();
526 MachineFunction::iterator It = ++BB->getIterator();
528 // thisMBB:
529 // ...
530 // TrueVal = ...
531 // setcc r1, r2, r3
532 // bNE r1, r0, copy1MBB
533 // fallthrough --> copy0MBB
534 MachineBasicBlock *thisMBB = BB;
535 MachineFunction *F = BB->getParent();
536 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
537 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
538 F->insert(It, copy0MBB);
539 F->insert(It, sinkMBB);
541 // Transfer the remainder of BB and its successor edges to sinkMBB.
542 sinkMBB->splice(sinkMBB->begin(), BB,
543 std::next(MachineBasicBlock::iterator(MI)), BB->end());
544 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
546 // Next, add the true and fallthrough blocks as its successors.
547 BB->addSuccessor(copy0MBB);
548 BB->addSuccessor(sinkMBB);
550 BuildMI(BB, DL, TII->get(Opc))
551 .addReg(MI.getOperand(3).getReg())
552 .addMBB(sinkMBB);
554 // copy0MBB:
555 // %FalseValue = ...
556 // # fallthrough to sinkMBB
557 BB = copy0MBB;
559 // Update machine-CFG edges
560 BB->addSuccessor(sinkMBB);
562 // sinkMBB:
563 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
564 // ...
565 BB = sinkMBB;
567 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
568 .addReg(MI.getOperand(1).getReg())
569 .addMBB(thisMBB)
570 .addReg(MI.getOperand(2).getReg())
571 .addMBB(copy0MBB);
573 MI.eraseFromParent(); // The pseudo instruction is gone now.
574 return BB;
577 MachineBasicBlock *
578 Mips16TargetLowering::emitSelT16(unsigned Opc1, unsigned Opc2, MachineInstr &MI,
579 MachineBasicBlock *BB) const {
580 if (DontExpandCondPseudos16)
581 return BB;
582 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
583 DebugLoc DL = MI.getDebugLoc();
584 // To "insert" a SELECT_CC instruction, we actually have to insert the
585 // diamond control-flow pattern. The incoming instruction knows the
586 // destination vreg to set, the condition code register to branch on, the
587 // true/false values to select between, and a branch opcode to use.
588 const BasicBlock *LLVM_BB = BB->getBasicBlock();
589 MachineFunction::iterator It = ++BB->getIterator();
591 // thisMBB:
592 // ...
593 // TrueVal = ...
594 // setcc r1, r2, r3
595 // bNE r1, r0, copy1MBB
596 // fallthrough --> copy0MBB
597 MachineBasicBlock *thisMBB = BB;
598 MachineFunction *F = BB->getParent();
599 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
600 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
601 F->insert(It, copy0MBB);
602 F->insert(It, sinkMBB);
604 // Transfer the remainder of BB and its successor edges to sinkMBB.
605 sinkMBB->splice(sinkMBB->begin(), BB,
606 std::next(MachineBasicBlock::iterator(MI)), BB->end());
607 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
609 // Next, add the true and fallthrough blocks as its successors.
610 BB->addSuccessor(copy0MBB);
611 BB->addSuccessor(sinkMBB);
613 BuildMI(BB, DL, TII->get(Opc2))
614 .addReg(MI.getOperand(3).getReg())
615 .addReg(MI.getOperand(4).getReg());
616 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
618 // copy0MBB:
619 // %FalseValue = ...
620 // # fallthrough to sinkMBB
621 BB = copy0MBB;
623 // Update machine-CFG edges
624 BB->addSuccessor(sinkMBB);
626 // sinkMBB:
627 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
628 // ...
629 BB = sinkMBB;
631 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
632 .addReg(MI.getOperand(1).getReg())
633 .addMBB(thisMBB)
634 .addReg(MI.getOperand(2).getReg())
635 .addMBB(copy0MBB);
637 MI.eraseFromParent(); // The pseudo instruction is gone now.
638 return BB;
642 MachineBasicBlock *
643 Mips16TargetLowering::emitSeliT16(unsigned Opc1, unsigned Opc2,
644 MachineInstr &MI,
645 MachineBasicBlock *BB) const {
646 if (DontExpandCondPseudos16)
647 return BB;
648 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
649 DebugLoc DL = MI.getDebugLoc();
650 // To "insert" a SELECT_CC instruction, we actually have to insert the
651 // diamond control-flow pattern. The incoming instruction knows the
652 // destination vreg to set, the condition code register to branch on, the
653 // true/false values to select between, and a branch opcode to use.
654 const BasicBlock *LLVM_BB = BB->getBasicBlock();
655 MachineFunction::iterator It = ++BB->getIterator();
657 // thisMBB:
658 // ...
659 // TrueVal = ...
660 // setcc r1, r2, r3
661 // bNE r1, r0, copy1MBB
662 // fallthrough --> copy0MBB
663 MachineBasicBlock *thisMBB = BB;
664 MachineFunction *F = BB->getParent();
665 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
666 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
667 F->insert(It, copy0MBB);
668 F->insert(It, sinkMBB);
670 // Transfer the remainder of BB and its successor edges to sinkMBB.
671 sinkMBB->splice(sinkMBB->begin(), BB,
672 std::next(MachineBasicBlock::iterator(MI)), BB->end());
673 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
675 // Next, add the true and fallthrough blocks as its successors.
676 BB->addSuccessor(copy0MBB);
677 BB->addSuccessor(sinkMBB);
679 BuildMI(BB, DL, TII->get(Opc2))
680 .addReg(MI.getOperand(3).getReg())
681 .addImm(MI.getOperand(4).getImm());
682 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
684 // copy0MBB:
685 // %FalseValue = ...
686 // # fallthrough to sinkMBB
687 BB = copy0MBB;
689 // Update machine-CFG edges
690 BB->addSuccessor(sinkMBB);
692 // sinkMBB:
693 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
694 // ...
695 BB = sinkMBB;
697 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
698 .addReg(MI.getOperand(1).getReg())
699 .addMBB(thisMBB)
700 .addReg(MI.getOperand(2).getReg())
701 .addMBB(copy0MBB);
703 MI.eraseFromParent(); // The pseudo instruction is gone now.
704 return BB;
708 MachineBasicBlock *
709 Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
710 MachineInstr &MI,
711 MachineBasicBlock *BB) const {
712 if (DontExpandCondPseudos16)
713 return BB;
714 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
715 unsigned regX = MI.getOperand(0).getReg();
716 unsigned regY = MI.getOperand(1).getReg();
717 MachineBasicBlock *target = MI.getOperand(2).getMBB();
718 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc))
719 .addReg(regX)
720 .addReg(regY);
721 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
722 MI.eraseFromParent(); // The pseudo instruction is gone now.
723 return BB;
726 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
727 unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
728 MachineInstr &MI, MachineBasicBlock *BB) const {
729 if (DontExpandCondPseudos16)
730 return BB;
731 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
732 unsigned regX = MI.getOperand(0).getReg();
733 int64_t imm = MI.getOperand(1).getImm();
734 MachineBasicBlock *target = MI.getOperand(2).getMBB();
735 unsigned CmpOpc;
736 if (isUInt<8>(imm))
737 CmpOpc = CmpiOpc;
738 else if ((!ImmSigned && isUInt<16>(imm)) ||
739 (ImmSigned && isInt<16>(imm)))
740 CmpOpc = CmpiXOpc;
741 else
742 llvm_unreachable("immediate field not usable");
743 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addImm(imm);
744 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
745 MI.eraseFromParent(); // The pseudo instruction is gone now.
746 return BB;
749 static unsigned Mips16WhichOp8uOr16simm
750 (unsigned shortOp, unsigned longOp, int64_t Imm) {
751 if (isUInt<8>(Imm))
752 return shortOp;
753 else if (isInt<16>(Imm))
754 return longOp;
755 else
756 llvm_unreachable("immediate field not usable");
759 MachineBasicBlock *
760 Mips16TargetLowering::emitFEXT_CCRX16_ins(unsigned SltOpc, MachineInstr &MI,
761 MachineBasicBlock *BB) const {
762 if (DontExpandCondPseudos16)
763 return BB;
764 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
765 unsigned CC = MI.getOperand(0).getReg();
766 unsigned regX = MI.getOperand(1).getReg();
767 unsigned regY = MI.getOperand(2).getReg();
768 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc))
769 .addReg(regX)
770 .addReg(regY);
771 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
772 .addReg(Mips::T8);
773 MI.eraseFromParent(); // The pseudo instruction is gone now.
774 return BB;
777 MachineBasicBlock *
778 Mips16TargetLowering::emitFEXT_CCRXI16_ins(unsigned SltiOpc, unsigned SltiXOpc,
779 MachineInstr &MI,
780 MachineBasicBlock *BB) const {
781 if (DontExpandCondPseudos16)
782 return BB;
783 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
784 unsigned CC = MI.getOperand(0).getReg();
785 unsigned regX = MI.getOperand(1).getReg();
786 int64_t Imm = MI.getOperand(2).getImm();
787 unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
788 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc)).addReg(regX).addImm(Imm);
789 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
790 .addReg(Mips::T8);
791 MI.eraseFromParent(); // The pseudo instruction is gone now.
792 return BB;