1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "MipsAsmPrinter.h"
15 #include "InstPrinter/MipsInstPrinter.h"
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MCTargetDesc/MipsMCNaCl.h"
19 #include "MCTargetDesc/MipsMCTargetDesc.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetStreamer.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/ELF.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCInst.h"
49 #include "llvm/MC/MCInstBuilder.h"
50 #include "llvm/MC/MCObjectFileInfo.h"
51 #include "llvm/MC/MCSectionELF.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/MC/MCSymbolELF.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/TargetRegistry.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
68 #define DEBUG_TYPE "mips-asm-printer"
70 extern cl::opt
<bool> EmitJalrReloc
;
72 MipsTargetStreamer
&MipsAsmPrinter::getTargetStreamer() const {
73 return static_cast<MipsTargetStreamer
&>(*OutStreamer
->getTargetStreamer());
76 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction
&MF
) {
77 Subtarget
= &MF
.getSubtarget
<MipsSubtarget
>();
79 MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
80 if (Subtarget
->inMips16Mode())
83 const Mips16HardFloatInfo::FuncSignature
*>::const_iterator
84 it
= MipsFI
->StubsNeeded
.begin();
85 it
!= MipsFI
->StubsNeeded
.end(); ++it
) {
86 const char *Symbol
= it
->first
;
87 const Mips16HardFloatInfo::FuncSignature
*Signature
= it
->second
;
88 if (StubsNeeded
.find(Symbol
) == StubsNeeded
.end())
89 StubsNeeded
[Symbol
] = Signature
;
91 MCP
= MF
.getConstantPool();
93 // In NaCl, all indirect jump targets must be aligned to bundle size.
94 if (Subtarget
->isTargetNaCl())
95 NaClAlignIndirectJumpTargets(MF
);
97 AsmPrinter::runOnMachineFunction(MF
);
104 bool MipsAsmPrinter::lowerOperand(const MachineOperand
&MO
, MCOperand
&MCOp
) {
105 MCOp
= MCInstLowering
.LowerOperand(MO
);
106 return MCOp
.isValid();
109 #include "MipsGenMCPseudoLowering.inc"
111 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
112 // JALR, or JALR64 as appropriate for the target.
113 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer
&OutStreamer
,
114 const MachineInstr
*MI
) {
115 bool HasLinkReg
= false;
116 bool InMicroMipsMode
= Subtarget
->inMicroMipsMode();
119 if (Subtarget
->hasMips64r6()) {
120 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
121 TmpInst0
.setOpcode(Mips::JALR64
);
123 } else if (Subtarget
->hasMips32r6()) {
124 // MIPS32r6 should use (JALR ZERO, $rs)
126 TmpInst0
.setOpcode(Mips::JRC16_MMR6
);
128 TmpInst0
.setOpcode(Mips::JALR
);
131 } else if (Subtarget
->inMicroMipsMode())
132 // microMIPS should use (JR_MM $rs)
133 TmpInst0
.setOpcode(Mips::JR_MM
);
135 // Everything else should use (JR $rs)
136 TmpInst0
.setOpcode(Mips::JR
);
142 unsigned ZeroReg
= Subtarget
->isGP64bit() ? Mips::ZERO_64
: Mips::ZERO
;
143 TmpInst0
.addOperand(MCOperand::createReg(ZeroReg
));
146 lowerOperand(MI
->getOperand(0), MCOp
);
147 TmpInst0
.addOperand(MCOp
);
149 EmitToStreamer(OutStreamer
, TmpInst0
);
152 // If there is an MO_JALR operand, insert:
154 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
157 // This is an optimization hint for the linker which may then replace
158 // an indirect call with a direct branch.
159 static void emitDirectiveRelocJalr(const MachineInstr
&MI
,
160 MCContext
&OutContext
,
162 MCStreamer
&OutStreamer
,
163 const MipsSubtarget
&Subtarget
) {
164 for (unsigned int I
= MI
.getDesc().getNumOperands(), E
= MI
.getNumOperands();
166 MachineOperand MO
= MI
.getOperand(I
);
167 if (MO
.isMCSymbol() && (MO
.getTargetFlags() & MipsII::MO_JALR
)) {
168 MCSymbol
*Callee
= MO
.getMCSymbol();
169 if (Callee
&& !Callee
->getName().empty()) {
170 MCSymbol
*OffsetLabel
= OutContext
.createTempSymbol();
171 const MCExpr
*OffsetExpr
=
172 MCSymbolRefExpr::create(OffsetLabel
, OutContext
);
173 const MCExpr
*CaleeExpr
=
174 MCSymbolRefExpr::create(Callee
, OutContext
);
175 OutStreamer
.EmitRelocDirective
177 Subtarget
.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
178 CaleeExpr
, SMLoc(), *TM
.getMCSubtargetInfo());
179 OutStreamer
.EmitLabel(OffsetLabel
);
186 void MipsAsmPrinter::EmitInstruction(const MachineInstr
*MI
) {
187 MipsTargetStreamer
&TS
= getTargetStreamer();
188 unsigned Opc
= MI
->getOpcode();
189 TS
.forbidModuleDirective();
191 if (MI
->isDebugValue()) {
192 SmallString
<128> Str
;
193 raw_svector_ostream
OS(Str
);
195 PrintDebugValueComment(MI
, OS
);
198 if (MI
->isDebugLabel())
201 // If we just ended a constant pool, mark it as such.
202 if (InConstantPool
&& Opc
!= Mips::CONSTPOOL_ENTRY
) {
203 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
204 InConstantPool
= false;
206 if (Opc
== Mips::CONSTPOOL_ENTRY
) {
207 // CONSTPOOL_ENTRY - This instruction represents a floating
208 // constant pool in the function. The first operand is the ID#
209 // for this instruction, the second is the index into the
210 // MachineConstantPool that this is, the third is the size in
211 // bytes of this constant pool entry.
212 // The required alignment is specified on the basic block holding this MI.
214 unsigned LabelId
= (unsigned)MI
->getOperand(0).getImm();
215 unsigned CPIdx
= (unsigned)MI
->getOperand(1).getIndex();
217 // If this is the first entry of the pool, mark it.
218 if (!InConstantPool
) {
219 OutStreamer
->EmitDataRegion(MCDR_DataRegion
);
220 InConstantPool
= true;
223 OutStreamer
->EmitLabel(GetCPISymbol(LabelId
));
225 const MachineConstantPoolEntry
&MCPE
= MCP
->getConstants()[CPIdx
];
226 if (MCPE
.isMachineConstantPoolEntry())
227 EmitMachineConstantPoolValue(MCPE
.Val
.MachineCPVal
);
229 EmitGlobalConstant(MF
->getDataLayout(), MCPE
.Val
.ConstVal
);
234 case Mips::PATCHABLE_FUNCTION_ENTER
:
235 LowerPATCHABLE_FUNCTION_ENTER(*MI
);
237 case Mips::PATCHABLE_FUNCTION_EXIT
:
238 LowerPATCHABLE_FUNCTION_EXIT(*MI
);
240 case Mips::PATCHABLE_TAIL_CALL
:
241 LowerPATCHABLE_TAIL_CALL(*MI
);
246 (MI
->isReturn() || MI
->isCall() || MI
->isIndirectBranch())) {
247 emitDirectiveRelocJalr(*MI
, OutContext
, TM
, *OutStreamer
, *Subtarget
);
250 MachineBasicBlock::const_instr_iterator I
= MI
->getIterator();
251 MachineBasicBlock::const_instr_iterator E
= MI
->getParent()->instr_end();
254 // Do any auto-generated pseudo lowerings.
255 if (emitPseudoExpansionLowering(*OutStreamer
, &*I
))
258 if (I
->getOpcode() == Mips::PseudoReturn
||
259 I
->getOpcode() == Mips::PseudoReturn64
||
260 I
->getOpcode() == Mips::PseudoIndirectBranch
||
261 I
->getOpcode() == Mips::PseudoIndirectBranch64
||
262 I
->getOpcode() == Mips::TAILCALLREG
||
263 I
->getOpcode() == Mips::TAILCALLREG64
) {
264 emitPseudoIndirectBranch(*OutStreamer
, &*I
);
268 // The inMips16Mode() test is not permanent.
269 // Some instructions are marked as pseudo right now which
270 // would make the test fail for the wrong reason but
271 // that will be fixed soon. We need this here because we are
272 // removing another test for this situation downstream in the
275 if (I
->isPseudo() && !Subtarget
->inMips16Mode()
276 && !isLongBranchPseudo(I
->getOpcode()))
277 llvm_unreachable("Pseudo opcode found in EmitInstruction()");
280 MCInstLowering
.Lower(&*I
, TmpInst0
);
281 EmitToStreamer(*OutStreamer
, TmpInst0
);
282 } while ((++I
!= E
) && I
->isInsideBundle()); // Delay slot check
285 //===----------------------------------------------------------------------===//
287 // Mips Asm Directives
289 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
290 // Describe the stack frame.
292 // -- Mask directives "(f)mask bitmask, offset"
293 // Tells the assembler which registers are saved and where.
294 // bitmask - contain a little endian bitset indicating which registers are
295 // saved on function prologue (e.g. with a 0x80000000 mask, the
296 // assembler knows the register 31 (RA) is saved at prologue.
297 // offset - the position before stack pointer subtraction indicating where
298 // the first saved register on prologue is located. (e.g. with a
300 // Consider the following function prologue:
303 // .mask 0xc0000000,-8
304 // addiu $sp, $sp, -48
308 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
309 // 30 (FP) are saved at prologue. As the save order on prologue is from
310 // left to right, RA is saved first. A -8 offset means that after the
311 // stack pointer subtration, the first register in the mask (RA) will be
312 // saved at address 48-8=40.
314 //===----------------------------------------------------------------------===//
316 //===----------------------------------------------------------------------===//
318 //===----------------------------------------------------------------------===//
320 // Create a bitmask with all callee saved registers for CPU or Floating Point
321 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
322 void MipsAsmPrinter::printSavedRegsBitmask() {
323 // CPU and FPU Saved Registers Bitmasks
324 unsigned CPUBitmask
= 0, FPUBitmask
= 0;
325 int CPUTopSavedRegOff
, FPUTopSavedRegOff
;
327 // Set the CPU and FPU Bitmasks
328 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
329 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
330 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
331 // size of stack area to which FP callee-saved regs are saved.
332 unsigned CPURegSize
= TRI
->getRegSizeInBits(Mips::GPR32RegClass
) / 8;
333 unsigned FGR32RegSize
= TRI
->getRegSizeInBits(Mips::FGR32RegClass
) / 8;
334 unsigned AFGR64RegSize
= TRI
->getRegSizeInBits(Mips::AFGR64RegClass
) / 8;
335 bool HasAFGR64Reg
= false;
336 unsigned CSFPRegsSize
= 0;
338 for (const auto &I
: CSI
) {
339 unsigned Reg
= I
.getReg();
340 unsigned RegNum
= TRI
->getEncodingValue(Reg
);
342 // If it's a floating point register, set the FPU Bitmask.
343 // If it's a general purpose register, set the CPU Bitmask.
344 if (Mips::FGR32RegClass
.contains(Reg
)) {
345 FPUBitmask
|= (1 << RegNum
);
346 CSFPRegsSize
+= FGR32RegSize
;
347 } else if (Mips::AFGR64RegClass
.contains(Reg
)) {
348 FPUBitmask
|= (3 << RegNum
);
349 CSFPRegsSize
+= AFGR64RegSize
;
351 } else if (Mips::GPR32RegClass
.contains(Reg
))
352 CPUBitmask
|= (1 << RegNum
);
355 // FP Regs are saved right below where the virtual frame pointer points to.
356 FPUTopSavedRegOff
= FPUBitmask
?
357 (HasAFGR64Reg
? -AFGR64RegSize
: -FGR32RegSize
) : 0;
359 // CPU Regs are saved below FP Regs.
360 CPUTopSavedRegOff
= CPUBitmask
? -CSFPRegsSize
- CPURegSize
: 0;
362 MipsTargetStreamer
&TS
= getTargetStreamer();
364 TS
.emitMask(CPUBitmask
, CPUTopSavedRegOff
);
367 TS
.emitFMask(FPUBitmask
, FPUTopSavedRegOff
);
370 //===----------------------------------------------------------------------===//
371 // Frame and Set directives
372 //===----------------------------------------------------------------------===//
375 void MipsAsmPrinter::emitFrameDirective() {
376 const TargetRegisterInfo
&RI
= *MF
->getSubtarget().getRegisterInfo();
378 unsigned stackReg
= RI
.getFrameRegister(*MF
);
379 unsigned returnReg
= RI
.getRARegister();
380 unsigned stackSize
= MF
->getFrameInfo().getStackSize();
382 getTargetStreamer().emitFrame(stackReg
, stackSize
, returnReg
);
385 /// Emit Set directives.
386 const char *MipsAsmPrinter::getCurrentABIString() const {
387 switch (static_cast<MipsTargetMachine
&>(TM
).getABI().GetEnumValue()) {
388 case MipsABIInfo::ABI::O32
: return "abi32";
389 case MipsABIInfo::ABI::N32
: return "abiN32";
390 case MipsABIInfo::ABI::N64
: return "abi64";
391 default: llvm_unreachable("Unknown Mips ABI");
395 void MipsAsmPrinter::EmitFunctionEntryLabel() {
396 MipsTargetStreamer
&TS
= getTargetStreamer();
398 // NaCl sandboxing requires that indirect call instructions are masked.
399 // This means that function entry points should be bundle-aligned.
400 if (Subtarget
->isTargetNaCl())
401 EmitAlignment(std::max(MF
->getAlignment(), MIPS_NACL_BUNDLE_ALIGN
));
403 if (Subtarget
->inMicroMipsMode()) {
404 TS
.emitDirectiveSetMicroMips();
405 TS
.setUsesMicroMips();
406 TS
.updateABIInfo(*Subtarget
);
408 TS
.emitDirectiveSetNoMicroMips();
410 if (Subtarget
->inMips16Mode())
411 TS
.emitDirectiveSetMips16();
413 TS
.emitDirectiveSetNoMips16();
415 TS
.emitDirectiveEnt(*CurrentFnSym
);
416 OutStreamer
->EmitLabel(CurrentFnSym
);
419 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
420 /// the first basic block in the function.
421 void MipsAsmPrinter::EmitFunctionBodyStart() {
422 MipsTargetStreamer
&TS
= getTargetStreamer();
424 MCInstLowering
.Initialize(&MF
->getContext());
426 bool IsNakedFunction
= MF
->getFunction().hasFnAttribute(Attribute::Naked
);
427 if (!IsNakedFunction
)
428 emitFrameDirective();
430 if (!IsNakedFunction
)
431 printSavedRegsBitmask();
433 if (!Subtarget
->inMips16Mode()) {
434 TS
.emitDirectiveSetNoReorder();
435 TS
.emitDirectiveSetNoMacro();
436 TS
.emitDirectiveSetNoAt();
440 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
441 /// the last basic block in the function.
442 void MipsAsmPrinter::EmitFunctionBodyEnd() {
443 MipsTargetStreamer
&TS
= getTargetStreamer();
445 // There are instruction for this macros, but they must
446 // always be at the function end, and we can't emit and
447 // break with BB logic.
448 if (!Subtarget
->inMips16Mode()) {
449 TS
.emitDirectiveSetAt();
450 TS
.emitDirectiveSetMacro();
451 TS
.emitDirectiveSetReorder();
453 TS
.emitDirectiveEnd(CurrentFnSym
->getName());
454 // Make sure to terminate any constant pools that were at the end
458 InConstantPool
= false;
459 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
462 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock
&MBB
) {
463 AsmPrinter::EmitBasicBlockEnd(MBB
);
464 MipsTargetStreamer
&TS
= getTargetStreamer();
466 TS
.emitDirectiveInsn();
469 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
470 /// exactly one predecessor and the control transfer mechanism between
471 /// the predecessor and this block is a fall-through.
472 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock
*
474 // The predecessor has to be immediately before this block.
475 const MachineBasicBlock
*Pred
= *MBB
->pred_begin();
477 // If the predecessor is a switch statement, assume a jump table
478 // implementation, so it is not a fall through.
479 if (const BasicBlock
*bb
= Pred
->getBasicBlock())
480 if (isa
<SwitchInst
>(bb
->getTerminator()))
483 // If this is a landing pad, it isn't a fall through. If it has no preds,
484 // then nothing falls through to it.
485 if (MBB
->isEHPad() || MBB
->pred_empty())
488 // If there isn't exactly one predecessor, it can't be a fall through.
489 MachineBasicBlock::const_pred_iterator PI
= MBB
->pred_begin(), PI2
= PI
;
492 if (PI2
!= MBB
->pred_end())
495 // The predecessor has to be immediately before this block.
496 if (!Pred
->isLayoutSuccessor(MBB
))
499 // If the block is completely empty, then it definitely does fall through.
503 // Otherwise, check the last instruction.
504 // Check if the last terminator is an unconditional branch.
505 MachineBasicBlock::const_iterator I
= Pred
->end();
506 while (I
!= Pred
->begin() && !(--I
)->isTerminator()) ;
508 return !I
->isBarrier();
511 // Print out an operand for an inline asm expression.
512 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr
*MI
, unsigned OpNum
,
513 unsigned AsmVariant
, const char *ExtraCode
,
515 // Does this asm operand have a single letter operand modifier?
516 if (ExtraCode
&& ExtraCode
[0]) {
517 if (ExtraCode
[1] != 0) return true; // Unknown modifier.
519 const MachineOperand
&MO
= MI
->getOperand(OpNum
);
520 switch (ExtraCode
[0]) {
522 // See if this is a generic print operand
523 return AsmPrinter::PrintAsmOperand(MI
,OpNum
,AsmVariant
,ExtraCode
,O
);
524 case 'X': // hex const int
525 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
527 O
<< "0x" << Twine::utohexstr(MO
.getImm());
529 case 'x': // hex const int (low 16 bits)
530 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
532 O
<< "0x" << Twine::utohexstr(MO
.getImm() & 0xffff);
534 case 'd': // decimal const int
535 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
539 case 'm': // decimal const int minus 1
540 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
542 O
<< MO
.getImm() - 1;
544 case 'y': // exact log2
545 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
547 if (!isPowerOf2_64(MO
.getImm()))
549 O
<< Log2_64(MO
.getImm());
552 // $0 if zero, regular printing otherwise
553 if (MO
.getType() == MachineOperand::MO_Immediate
&& MO
.getImm() == 0) {
557 // If not, call printOperand as normal.
559 case 'D': // Second part of a double word register operand
560 case 'L': // Low order register of a double word register operand
561 case 'M': // High order register of a double word register operand
565 const MachineOperand
&FlagsOP
= MI
->getOperand(OpNum
- 1);
566 if (!FlagsOP
.isImm())
568 unsigned Flags
= FlagsOP
.getImm();
569 unsigned NumVals
= InlineAsm::getNumOperandRegisters(Flags
);
570 // Number of registers represented by this operand. We are looking
571 // for 2 for 32 bit mode and 1 for 64 bit mode.
573 if (Subtarget
->isGP64bit() && NumVals
== 1 && MO
.isReg()) {
574 unsigned Reg
= MO
.getReg();
575 O
<< '$' << MipsInstPrinter::getRegisterName(Reg
);
581 unsigned RegOp
= OpNum
;
582 if (!Subtarget
->isGP64bit()){
583 // Endianness reverses which register holds the high or low value
585 switch(ExtraCode
[0]) {
587 RegOp
= (Subtarget
->isLittle()) ? OpNum
+ 1 : OpNum
;
590 RegOp
= (Subtarget
->isLittle()) ? OpNum
: OpNum
+ 1;
592 case 'D': // Always the second part
595 if (RegOp
>= MI
->getNumOperands())
597 const MachineOperand
&MO
= MI
->getOperand(RegOp
);
600 unsigned Reg
= MO
.getReg();
601 O
<< '$' << MipsInstPrinter::getRegisterName(Reg
);
607 // Print MSA registers for the 'f' constraint
608 // In LLVM, the 'w' modifier doesn't need to do anything.
609 // We can just call printOperand as normal.
614 printOperand(MI
, OpNum
, O
);
618 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr
*MI
,
619 unsigned OpNum
, unsigned AsmVariant
,
620 const char *ExtraCode
,
622 assert(OpNum
+ 1 < MI
->getNumOperands() && "Insufficient operands");
623 const MachineOperand
&BaseMO
= MI
->getOperand(OpNum
);
624 const MachineOperand
&OffsetMO
= MI
->getOperand(OpNum
+ 1);
625 assert(BaseMO
.isReg() && "Unexpected base pointer for inline asm memory operand.");
626 assert(OffsetMO
.isImm() && "Unexpected offset for inline asm memory operand.");
627 int Offset
= OffsetMO
.getImm();
629 // Currently we are expecting either no ExtraCode or 'D','M','L'.
631 switch (ExtraCode
[0]) {
636 if (Subtarget
->isLittle())
640 if (!Subtarget
->isLittle())
644 return true; // Unknown modifier.
648 O
<< Offset
<< "($" << MipsInstPrinter::getRegisterName(BaseMO
.getReg())
654 void MipsAsmPrinter::printOperand(const MachineInstr
*MI
, int opNum
,
656 const MachineOperand
&MO
= MI
->getOperand(opNum
);
659 if (MO
.getTargetFlags())
662 switch(MO
.getTargetFlags()) {
663 case MipsII::MO_GPREL
: O
<< "%gp_rel("; break;
664 case MipsII::MO_GOT_CALL
: O
<< "%call16("; break;
665 case MipsII::MO_GOT
: O
<< "%got("; break;
666 case MipsII::MO_ABS_HI
: O
<< "%hi("; break;
667 case MipsII::MO_ABS_LO
: O
<< "%lo("; break;
668 case MipsII::MO_HIGHER
: O
<< "%higher("; break;
669 case MipsII::MO_HIGHEST
: O
<< "%highest(("; break;
670 case MipsII::MO_TLSGD
: O
<< "%tlsgd("; break;
671 case MipsII::MO_GOTTPREL
: O
<< "%gottprel("; break;
672 case MipsII::MO_TPREL_HI
: O
<< "%tprel_hi("; break;
673 case MipsII::MO_TPREL_LO
: O
<< "%tprel_lo("; break;
674 case MipsII::MO_GPOFF_HI
: O
<< "%hi(%neg(%gp_rel("; break;
675 case MipsII::MO_GPOFF_LO
: O
<< "%lo(%neg(%gp_rel("; break;
676 case MipsII::MO_GOT_DISP
: O
<< "%got_disp("; break;
677 case MipsII::MO_GOT_PAGE
: O
<< "%got_page("; break;
678 case MipsII::MO_GOT_OFST
: O
<< "%got_ofst("; break;
681 switch (MO
.getType()) {
682 case MachineOperand::MO_Register
:
684 << StringRef(MipsInstPrinter::getRegisterName(MO
.getReg())).lower();
687 case MachineOperand::MO_Immediate
:
691 case MachineOperand::MO_MachineBasicBlock
:
692 MO
.getMBB()->getSymbol()->print(O
, MAI
);
695 case MachineOperand::MO_GlobalAddress
:
696 getSymbol(MO
.getGlobal())->print(O
, MAI
);
699 case MachineOperand::MO_BlockAddress
: {
700 MCSymbol
*BA
= GetBlockAddressSymbol(MO
.getBlockAddress());
705 case MachineOperand::MO_ConstantPoolIndex
:
706 O
<< getDataLayout().getPrivateGlobalPrefix() << "CPI"
707 << getFunctionNumber() << "_" << MO
.getIndex();
709 O
<< "+" << MO
.getOffset();
713 llvm_unreachable("<unknown operand type>");
716 if (closeP
) O
<< ")";
719 void MipsAsmPrinter::
720 printMemOperand(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
721 // Load/Store memory operands -- imm($reg)
722 // If PIC target the target is loaded as the
723 // pattern lw $25,%call16($28)
725 // opNum can be invalid if instruction has reglist as operand.
726 // MemOperand is always last operand of instruction (base + offset).
727 switch (MI
->getOpcode()) {
732 opNum
= MI
->getNumOperands() - 2;
736 printOperand(MI
, opNum
+1, O
);
738 printOperand(MI
, opNum
, O
);
742 void MipsAsmPrinter::
743 printMemOperandEA(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
744 // when using stack locations for not load/store instructions
745 // print the same way as all normal 3 operand instructions.
746 printOperand(MI
, opNum
, O
);
748 printOperand(MI
, opNum
+1, O
);
751 void MipsAsmPrinter::
752 printFCCOperand(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
,
753 const char *Modifier
) {
754 const MachineOperand
&MO
= MI
->getOperand(opNum
);
755 O
<< Mips::MipsFCCToString((Mips::CondCode
)MO
.getImm());
758 void MipsAsmPrinter::
759 printRegisterList(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
760 for (int i
= opNum
, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
761 if (i
!= opNum
) O
<< ", ";
762 printOperand(MI
, i
, O
);
766 void MipsAsmPrinter::EmitStartOfAsmFile(Module
&M
) {
767 MipsTargetStreamer
&TS
= getTargetStreamer();
769 // MipsTargetStreamer has an initialization order problem when emitting an
770 // object file directly (see MipsTargetELFStreamer for full details). Work
771 // around it by re-initializing the PIC state here.
772 TS
.setPic(OutContext
.getObjectFileInfo()->isPositionIndependent());
774 // Compute MIPS architecture attributes based on the default subtarget
775 // that we'd have constructed. Module level directives aren't LTO
777 // FIXME: For ifunc related functions we could iterate over and look
778 // for a feature string that doesn't match the default one.
779 const Triple
&TT
= TM
.getTargetTriple();
780 StringRef CPU
= MIPS_MC::selectMipsCPU(TT
, TM
.getTargetCPU());
781 StringRef FS
= TM
.getTargetFeatureString();
782 const MipsTargetMachine
&MTM
= static_cast<const MipsTargetMachine
&>(TM
);
783 const MipsSubtarget
STI(TT
, CPU
, FS
, MTM
.isLittleEndian(), MTM
, 0);
785 bool IsABICalls
= STI
.isABICalls();
786 const MipsABIInfo
&ABI
= MTM
.getABI();
788 TS
.emitDirectiveAbiCalls();
789 // FIXME: This condition should be a lot more complicated that it is here.
790 // Ideally it should test for properties of the ABI and not the ABI
792 // For the moment, I'm only correcting enough to make MIPS-IV work.
793 if (!isPositionIndependent() && STI
.hasSym32())
794 TS
.emitDirectiveOptionPic0();
797 // Tell the assembler which ABI we are using
798 std::string SectionName
= std::string(".mdebug.") + getCurrentABIString();
799 OutStreamer
->SwitchSection(
800 OutContext
.getELFSection(SectionName
, ELF::SHT_PROGBITS
, 0));
802 // NaN: At the moment we only support:
803 // 1. .nan legacy (default)
805 STI
.isNaN2008() ? TS
.emitDirectiveNaN2008()
806 : TS
.emitDirectiveNaNLegacy();
808 // TODO: handle O64 ABI
810 TS
.updateABIInfo(STI
);
812 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
813 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
814 // -mfp64) and omit it otherwise.
815 if (ABI
.IsO32() && (STI
.isABI_FPXX() || STI
.isFP64bit()))
816 TS
.emitDirectiveModuleFP();
818 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
819 // accept it. We therefore emit it when it contradicts the default or an
820 // option has changed the default (i.e. FPXX) and omit it otherwise.
821 if (ABI
.IsO32() && (!STI
.useOddSPReg() || STI
.isABI_FPXX()))
822 TS
.emitDirectiveModuleOddSPReg();
825 void MipsAsmPrinter::emitInlineAsmStart() const {
826 MipsTargetStreamer
&TS
= getTargetStreamer();
828 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
829 // and 'reorder') is different from LLVM's choice for generated code ('noat',
830 // 'nomacro' and 'noreorder').
831 // In order to maintain compatibility with inline assembly code which depends
832 // on GCC's assembler options being used, we have to switch to those options
833 // for the duration of the inline assembly block and then switch back.
834 TS
.emitDirectiveSetPush();
835 TS
.emitDirectiveSetAt();
836 TS
.emitDirectiveSetMacro();
837 TS
.emitDirectiveSetReorder();
838 OutStreamer
->AddBlankLine();
841 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo
&StartInfo
,
842 const MCSubtargetInfo
*EndInfo
) const {
843 OutStreamer
->AddBlankLine();
844 getTargetStreamer().emitDirectiveSetPop();
847 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo
&STI
, MCSymbol
*Symbol
) {
849 I
.setOpcode(Mips::JAL
);
851 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol
, OutContext
)));
852 OutStreamer
->EmitInstruction(I
, STI
);
855 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo
&STI
, unsigned Opcode
,
859 I
.addOperand(MCOperand::createReg(Reg
));
860 OutStreamer
->EmitInstruction(I
, STI
);
863 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo
&STI
,
864 unsigned Opcode
, unsigned Reg1
,
868 // Because of the current td files for Mips32, the operands for MTC1
869 // appear backwards from their normal assembly order. It's not a trivial
870 // change to fix this in the td file so we adjust for it here.
872 if (Opcode
== Mips::MTC1
) {
873 unsigned Temp
= Reg1
;
878 I
.addOperand(MCOperand::createReg(Reg1
));
879 I
.addOperand(MCOperand::createReg(Reg2
));
880 OutStreamer
->EmitInstruction(I
, STI
);
883 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo
&STI
,
884 unsigned Opcode
, unsigned Reg1
,
885 unsigned Reg2
, unsigned Reg3
) {
888 I
.addOperand(MCOperand::createReg(Reg1
));
889 I
.addOperand(MCOperand::createReg(Reg2
));
890 I
.addOperand(MCOperand::createReg(Reg3
));
891 OutStreamer
->EmitInstruction(I
, STI
);
894 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo
&STI
,
895 unsigned MovOpc
, unsigned Reg1
,
896 unsigned Reg2
, unsigned FPReg1
,
897 unsigned FPReg2
, bool LE
) {
899 unsigned temp
= Reg1
;
903 EmitInstrRegReg(STI
, MovOpc
, Reg1
, FPReg1
);
904 EmitInstrRegReg(STI
, MovOpc
, Reg2
, FPReg2
);
907 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo
&STI
,
908 Mips16HardFloatInfo::FPParamVariant PV
,
909 bool LE
, bool ToFP
) {
910 using namespace Mips16HardFloatInfo
;
912 unsigned MovOpc
= ToFP
? Mips::MTC1
: Mips::MFC1
;
915 EmitInstrRegReg(STI
, MovOpc
, Mips::A0
, Mips::F12
);
918 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F14
, LE
);
921 EmitInstrRegReg(STI
, MovOpc
, Mips::A0
, Mips::F12
);
922 EmitMovFPIntPair(STI
, MovOpc
, Mips::A2
, Mips::A3
, Mips::F14
, Mips::F15
, LE
);
925 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
928 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
929 EmitMovFPIntPair(STI
, MovOpc
, Mips::A2
, Mips::A3
, Mips::F14
, Mips::F15
, LE
);
932 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
933 EmitInstrRegReg(STI
, MovOpc
, Mips::A2
, Mips::F14
);
940 void MipsAsmPrinter::EmitSwapFPIntRetval(
941 const MCSubtargetInfo
&STI
, Mips16HardFloatInfo::FPReturnVariant RV
,
943 using namespace Mips16HardFloatInfo
;
945 unsigned MovOpc
= Mips::MFC1
;
948 EmitInstrRegReg(STI
, MovOpc
, Mips::V0
, Mips::F0
);
951 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
954 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
957 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
958 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F2
, Mips::F3
, LE
);
965 void MipsAsmPrinter::EmitFPCallStub(
966 const char *Symbol
, const Mips16HardFloatInfo::FuncSignature
*Signature
) {
967 using namespace Mips16HardFloatInfo
;
969 MCSymbol
*MSymbol
= OutContext
.getOrCreateSymbol(StringRef(Symbol
));
970 bool LE
= getDataLayout().isLittleEndian();
971 // Construct a local MCSubtargetInfo here.
972 // This is because the MachineFunction won't exist (but have not yet been
973 // freed) and since we're at the global level we can use the default
974 // constructed subtarget.
975 std::unique_ptr
<MCSubtargetInfo
> STI(TM
.getTarget().createMCSubtargetInfo(
976 TM
.getTargetTriple().str(), TM
.getTargetCPU(),
977 TM
.getTargetFeatureString()));
982 OutStreamer
->EmitSymbolAttribute(MSymbol
, MCSA_Global
);
985 // make the comment field identifying the return and parameter
986 // types of the floating point stub
987 // # Stub function to call rettype xxxx (params)
989 switch (Signature
->RetSig
) {
1000 RetType
= "double complex";
1007 switch (Signature
->ParamSig
) {
1012 Parms
= "float, float";
1015 Parms
= "float, double";
1021 Parms
= "double, double";
1024 Parms
= "double, float";
1030 OutStreamer
->AddComment("\t# Stub function to call " + Twine(RetType
) + " " +
1031 Twine(Symbol
) + " (" + Twine(Parms
) + ")");
1033 // probably not necessary but we save and restore the current section state
1035 OutStreamer
->PushSection();
1037 // .section mips16.call.fpxxxx,"ax",@progbits
1039 MCSectionELF
*M
= OutContext
.getELFSection(
1040 ".mips16.call.fp." + std::string(Symbol
), ELF::SHT_PROGBITS
,
1041 ELF::SHF_ALLOC
| ELF::SHF_EXECINSTR
);
1042 OutStreamer
->SwitchSection(M
, nullptr);
1046 OutStreamer
->EmitValueToAlignment(4);
1047 MipsTargetStreamer
&TS
= getTargetStreamer();
1052 TS
.emitDirectiveSetNoMips16();
1053 TS
.emitDirectiveSetNoMicroMips();
1055 // .ent __call_stub_fp_xxxx
1056 // .type __call_stub_fp_xxxx,@function
1057 // __call_stub_fp_xxxx:
1059 std::string x
= "__call_stub_fp_" + std::string(Symbol
);
1061 cast
<MCSymbolELF
>(OutContext
.getOrCreateSymbol(StringRef(x
)));
1062 TS
.emitDirectiveEnt(*Stub
);
1064 OutContext
.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol
));
1065 OutStreamer
->EmitSymbolAttribute(MType
, MCSA_ELF_TypeFunction
);
1066 OutStreamer
->EmitLabel(Stub
);
1068 // Only handle non-pic for now.
1069 assert(!isPositionIndependent() &&
1070 "should not be here if we are compiling pic");
1071 TS
.emitDirectiveSetReorder();
1073 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1074 // stubs without raw text but this current patch is for compiler generated
1075 // functions and they all return some value.
1076 // The calling sequence for non pic is different in that case and we need
1077 // to implement %lo and %hi in order to handle the case of no return value
1078 // See the corresponding method in Mips16HardFloat for details.
1080 // mov the return address to S2.
1081 // we have no stack space to store it and we are about to make another call.
1082 // We need to make sure that the enclosing function knows to save S2
1083 // This should have already been handled.
1087 EmitInstrRegRegReg(*STI
, Mips::OR
, Mips::S2
, Mips::RA
, Mips::ZERO
);
1089 EmitSwapFPIntParams(*STI
, Signature
->ParamSig
, LE
, true);
1093 EmitJal(*STI
, MSymbol
);
1095 // fix return values
1096 EmitSwapFPIntRetval(*STI
, Signature
->RetSig
, LE
);
1099 // if (Signature->RetSig == NoFPRet)
1100 // llvm_unreachable("should not be any stubs here with no return value");
1102 EmitInstrReg(*STI
, Mips::JR
, Mips::S2
);
1104 MCSymbol
*Tmp
= OutContext
.createTempSymbol();
1105 OutStreamer
->EmitLabel(Tmp
);
1106 const MCSymbolRefExpr
*E
= MCSymbolRefExpr::create(Stub
, OutContext
);
1107 const MCSymbolRefExpr
*T
= MCSymbolRefExpr::create(Tmp
, OutContext
);
1108 const MCExpr
*T_min_E
= MCBinaryExpr::createSub(T
, E
, OutContext
);
1109 OutStreamer
->emitELFSize(Stub
, T_min_E
);
1110 TS
.emitDirectiveEnd(x
);
1111 OutStreamer
->PopSection();
1114 void MipsAsmPrinter::EmitEndOfAsmFile(Module
&M
) {
1115 // Emit needed stubs
1119 const Mips16HardFloatInfo::FuncSignature
*>::const_iterator
1120 it
= StubsNeeded
.begin();
1121 it
!= StubsNeeded
.end(); ++it
) {
1122 const char *Symbol
= it
->first
;
1123 const Mips16HardFloatInfo::FuncSignature
*Signature
= it
->second
;
1124 EmitFPCallStub(Symbol
, Signature
);
1126 // return to the text section
1127 OutStreamer
->SwitchSection(OutContext
.getObjectFileInfo()->getTextSection());
1130 void MipsAsmPrinter::EmitSled(const MachineInstr
&MI
, SledKind Kind
) {
1131 const uint8_t NoopsInSledCount
= Subtarget
->isGP64bit() ? 15 : 11;
1132 // For mips32 we want to emit the following pattern:
1137 // 11 NOP instructions (44 bytes)
1141 // We need the 44 bytes (11 instructions) because at runtime, we'd
1142 // be patching over the full 48 bytes (12 instructions) with the following
1149 // LUI T9, %hi(__xray_FunctionEntry/Exit)
1150 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1151 // LUI T0, %hi(function_id)
1153 // ORI T0, T0, %lo(function_id)
1158 // We add 52 bytes to t9 because we want to adjust the function pointer to
1159 // the actual start of function i.e. the address just after the noop sled.
1160 // We do this because gp displacement relocation is emitted at the start of
1161 // of the function i.e after the nop sled and to correctly calculate the
1162 // global offset table address, t9 must hold the address of the instruction
1163 // containing the gp displacement relocation.
1164 // FIXME: Is this correct for the static relocation model?
1166 // For mips64 we want to emit the following pattern:
1171 // 15 NOP instructions (60 bytes)
1174 // We need the 60 bytes (15 instructions) because at runtime, we'd
1175 // be patching over the full 64 bytes (16 instructions) with the following
1178 // DADDIU SP, SP, -16
1182 // LUI T9, %highest(__xray_FunctionEntry/Exit)
1183 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit)
1185 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit)
1187 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1188 // LUI T0, %hi(function_id)
1190 // ADDIU T0, T0, %lo(function_id)
1193 // DADDIU SP, SP, 16
1195 OutStreamer
->EmitCodeAlignment(4);
1196 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1197 OutStreamer
->EmitLabel(CurSled
);
1198 auto Target
= OutContext
.createTempSymbol();
1200 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1201 // start of function
1202 const MCExpr
*TargetExpr
= MCSymbolRefExpr::create(
1203 Target
, MCSymbolRefExpr::VariantKind::VK_None
, OutContext
);
1204 EmitToStreamer(*OutStreamer
, MCInstBuilder(Mips::BEQ
)
1207 .addExpr(TargetExpr
));
1209 for (int8_t I
= 0; I
< NoopsInSledCount
; I
++)
1210 EmitToStreamer(*OutStreamer
, MCInstBuilder(Mips::SLL
)
1215 OutStreamer
->EmitLabel(Target
);
1217 if (!Subtarget
->isGP64bit()) {
1218 EmitToStreamer(*OutStreamer
,
1219 MCInstBuilder(Mips::ADDiu
)
1225 recordSled(CurSled
, MI
, Kind
);
1228 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr
&MI
) {
1229 EmitSled(MI
, SledKind::FUNCTION_ENTER
);
1232 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr
&MI
) {
1233 EmitSled(MI
, SledKind::FUNCTION_EXIT
);
1236 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr
&MI
) {
1237 EmitSled(MI
, SledKind::TAIL_CALL
);
1240 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr
*MI
,
1245 // Emit .dtprelword or .dtpreldword directive
1246 // and value for debug thread local expression.
1247 void MipsAsmPrinter::EmitDebugValue(const MCExpr
*Value
, unsigned Size
) const {
1248 if (auto *MipsExpr
= dyn_cast
<MipsMCExpr
>(Value
)) {
1249 if (MipsExpr
&& MipsExpr
->getKind() == MipsMCExpr::MEK_DTPREL
) {
1252 OutStreamer
->EmitDTPRel32Value(MipsExpr
->getSubExpr());
1255 OutStreamer
->EmitDTPRel64Value(MipsExpr
->getSubExpr());
1258 llvm_unreachable("Unexpected size of expression value.");
1263 AsmPrinter::EmitDebugValue(Value
, Size
);
1266 // Align all targets of indirect branches on bundle size. Used only if target
1268 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction
&MF
) {
1269 // Align all blocks that are jumped to through jump table.
1270 if (MachineJumpTableInfo
*JtInfo
= MF
.getJumpTableInfo()) {
1271 const std::vector
<MachineJumpTableEntry
> &JT
= JtInfo
->getJumpTables();
1272 for (unsigned I
= 0; I
< JT
.size(); ++I
) {
1273 const std::vector
<MachineBasicBlock
*> &MBBs
= JT
[I
].MBBs
;
1275 for (unsigned J
= 0; J
< MBBs
.size(); ++J
)
1276 MBBs
[J
]->setAlignment(MIPS_NACL_BUNDLE_ALIGN
);
1280 // If basic block address is taken, block can be target of indirect branch.
1281 for (auto &MBB
: MF
) {
1282 if (MBB
.hasAddressTaken())
1283 MBB
.setAlignment(MIPS_NACL_BUNDLE_ALIGN
);
1287 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode
) const {
1288 return (Opcode
== Mips::LONG_BRANCH_LUi
1289 || Opcode
== Mips::LONG_BRANCH_LUi2Op
1290 || Opcode
== Mips::LONG_BRANCH_LUi2Op_64
1291 || Opcode
== Mips::LONG_BRANCH_ADDiu
1292 || Opcode
== Mips::LONG_BRANCH_ADDiu2Op
1293 || Opcode
== Mips::LONG_BRANCH_DADDiu
1294 || Opcode
== Mips::LONG_BRANCH_DADDiu2Op
);
1297 // Force static initialization.
1298 extern "C" void LLVMInitializeMipsAsmPrinter() {
1299 RegisterAsmPrinter
<MipsAsmPrinter
> X(getTheMipsTarget());
1300 RegisterAsmPrinter
<MipsAsmPrinter
> Y(getTheMipselTarget());
1301 RegisterAsmPrinter
<MipsAsmPrinter
> A(getTheMips64Target());
1302 RegisterAsmPrinter
<MipsAsmPrinter
> B(getTheMips64elTarget());