Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / Mips / MipsAsmPrinter.cpp
blobd4a8d41c460aeaeec88a528c1ff1f73996ea1fa6
1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "MipsAsmPrinter.h"
15 #include "InstPrinter/MipsInstPrinter.h"
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MCTargetDesc/MipsMCNaCl.h"
19 #include "MCTargetDesc/MipsMCTargetDesc.h"
20 #include "Mips.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetStreamer.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/ELF.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCInst.h"
49 #include "llvm/MC/MCInstBuilder.h"
50 #include "llvm/MC/MCObjectFileInfo.h"
51 #include "llvm/MC/MCSectionELF.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/MC/MCSymbolELF.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/TargetRegistry.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <map>
62 #include <memory>
63 #include <string>
64 #include <vector>
66 using namespace llvm;
68 #define DEBUG_TYPE "mips-asm-printer"
70 extern cl::opt<bool> EmitJalrReloc;
72 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
73 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
76 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
77 Subtarget = &MF.getSubtarget<MipsSubtarget>();
79 MipsFI = MF.getInfo<MipsFunctionInfo>();
80 if (Subtarget->inMips16Mode())
81 for (std::map<
82 const char *,
83 const Mips16HardFloatInfo::FuncSignature *>::const_iterator
84 it = MipsFI->StubsNeeded.begin();
85 it != MipsFI->StubsNeeded.end(); ++it) {
86 const char *Symbol = it->first;
87 const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
88 if (StubsNeeded.find(Symbol) == StubsNeeded.end())
89 StubsNeeded[Symbol] = Signature;
91 MCP = MF.getConstantPool();
93 // In NaCl, all indirect jump targets must be aligned to bundle size.
94 if (Subtarget->isTargetNaCl())
95 NaClAlignIndirectJumpTargets(MF);
97 AsmPrinter::runOnMachineFunction(MF);
99 emitXRayTable();
101 return true;
104 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
105 MCOp = MCInstLowering.LowerOperand(MO);
106 return MCOp.isValid();
109 #include "MipsGenMCPseudoLowering.inc"
111 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
112 // JALR, or JALR64 as appropriate for the target.
113 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
114 const MachineInstr *MI) {
115 bool HasLinkReg = false;
116 bool InMicroMipsMode = Subtarget->inMicroMipsMode();
117 MCInst TmpInst0;
119 if (Subtarget->hasMips64r6()) {
120 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
121 TmpInst0.setOpcode(Mips::JALR64);
122 HasLinkReg = true;
123 } else if (Subtarget->hasMips32r6()) {
124 // MIPS32r6 should use (JALR ZERO, $rs)
125 if (InMicroMipsMode)
126 TmpInst0.setOpcode(Mips::JRC16_MMR6);
127 else {
128 TmpInst0.setOpcode(Mips::JALR);
129 HasLinkReg = true;
131 } else if (Subtarget->inMicroMipsMode())
132 // microMIPS should use (JR_MM $rs)
133 TmpInst0.setOpcode(Mips::JR_MM);
134 else {
135 // Everything else should use (JR $rs)
136 TmpInst0.setOpcode(Mips::JR);
139 MCOperand MCOp;
141 if (HasLinkReg) {
142 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
143 TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
146 lowerOperand(MI->getOperand(0), MCOp);
147 TmpInst0.addOperand(MCOp);
149 EmitToStreamer(OutStreamer, TmpInst0);
152 // If there is an MO_JALR operand, insert:
154 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
155 // tmplabel:
157 // This is an optimization hint for the linker which may then replace
158 // an indirect call with a direct branch.
159 static void emitDirectiveRelocJalr(const MachineInstr &MI,
160 MCContext &OutContext,
161 TargetMachine &TM,
162 MCStreamer &OutStreamer,
163 const MipsSubtarget &Subtarget) {
164 for (unsigned int I = MI.getDesc().getNumOperands(), E = MI.getNumOperands();
165 I < E; ++I) {
166 MachineOperand MO = MI.getOperand(I);
167 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) {
168 MCSymbol *Callee = MO.getMCSymbol();
169 if (Callee && !Callee->getName().empty()) {
170 MCSymbol *OffsetLabel = OutContext.createTempSymbol();
171 const MCExpr *OffsetExpr =
172 MCSymbolRefExpr::create(OffsetLabel, OutContext);
173 const MCExpr *CaleeExpr =
174 MCSymbolRefExpr::create(Callee, OutContext);
175 OutStreamer.EmitRelocDirective
176 (*OffsetExpr,
177 Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
178 CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo());
179 OutStreamer.EmitLabel(OffsetLabel);
180 return;
186 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
187 MipsTargetStreamer &TS = getTargetStreamer();
188 unsigned Opc = MI->getOpcode();
189 TS.forbidModuleDirective();
191 if (MI->isDebugValue()) {
192 SmallString<128> Str;
193 raw_svector_ostream OS(Str);
195 PrintDebugValueComment(MI, OS);
196 return;
198 if (MI->isDebugLabel())
199 return;
201 // If we just ended a constant pool, mark it as such.
202 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) {
203 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
204 InConstantPool = false;
206 if (Opc == Mips::CONSTPOOL_ENTRY) {
207 // CONSTPOOL_ENTRY - This instruction represents a floating
208 // constant pool in the function. The first operand is the ID#
209 // for this instruction, the second is the index into the
210 // MachineConstantPool that this is, the third is the size in
211 // bytes of this constant pool entry.
212 // The required alignment is specified on the basic block holding this MI.
214 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
215 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
217 // If this is the first entry of the pool, mark it.
218 if (!InConstantPool) {
219 OutStreamer->EmitDataRegion(MCDR_DataRegion);
220 InConstantPool = true;
223 OutStreamer->EmitLabel(GetCPISymbol(LabelId));
225 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
226 if (MCPE.isMachineConstantPoolEntry())
227 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
228 else
229 EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
230 return;
233 switch (Opc) {
234 case Mips::PATCHABLE_FUNCTION_ENTER:
235 LowerPATCHABLE_FUNCTION_ENTER(*MI);
236 return;
237 case Mips::PATCHABLE_FUNCTION_EXIT:
238 LowerPATCHABLE_FUNCTION_EXIT(*MI);
239 return;
240 case Mips::PATCHABLE_TAIL_CALL:
241 LowerPATCHABLE_TAIL_CALL(*MI);
242 return;
245 if (EmitJalrReloc &&
246 (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) {
247 emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget);
250 MachineBasicBlock::const_instr_iterator I = MI->getIterator();
251 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
253 do {
254 // Do any auto-generated pseudo lowerings.
255 if (emitPseudoExpansionLowering(*OutStreamer, &*I))
256 continue;
258 if (I->getOpcode() == Mips::PseudoReturn ||
259 I->getOpcode() == Mips::PseudoReturn64 ||
260 I->getOpcode() == Mips::PseudoIndirectBranch ||
261 I->getOpcode() == Mips::PseudoIndirectBranch64 ||
262 I->getOpcode() == Mips::TAILCALLREG ||
263 I->getOpcode() == Mips::TAILCALLREG64) {
264 emitPseudoIndirectBranch(*OutStreamer, &*I);
265 continue;
268 // The inMips16Mode() test is not permanent.
269 // Some instructions are marked as pseudo right now which
270 // would make the test fail for the wrong reason but
271 // that will be fixed soon. We need this here because we are
272 // removing another test for this situation downstream in the
273 // callchain.
275 if (I->isPseudo() && !Subtarget->inMips16Mode()
276 && !isLongBranchPseudo(I->getOpcode()))
277 llvm_unreachable("Pseudo opcode found in EmitInstruction()");
279 MCInst TmpInst0;
280 MCInstLowering.Lower(&*I, TmpInst0);
281 EmitToStreamer(*OutStreamer, TmpInst0);
282 } while ((++I != E) && I->isInsideBundle()); // Delay slot check
285 //===----------------------------------------------------------------------===//
287 // Mips Asm Directives
289 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
290 // Describe the stack frame.
292 // -- Mask directives "(f)mask bitmask, offset"
293 // Tells the assembler which registers are saved and where.
294 // bitmask - contain a little endian bitset indicating which registers are
295 // saved on function prologue (e.g. with a 0x80000000 mask, the
296 // assembler knows the register 31 (RA) is saved at prologue.
297 // offset - the position before stack pointer subtraction indicating where
298 // the first saved register on prologue is located. (e.g. with a
300 // Consider the following function prologue:
302 // .frame $fp,48,$ra
303 // .mask 0xc0000000,-8
304 // addiu $sp, $sp, -48
305 // sw $ra, 40($sp)
306 // sw $fp, 36($sp)
308 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
309 // 30 (FP) are saved at prologue. As the save order on prologue is from
310 // left to right, RA is saved first. A -8 offset means that after the
311 // stack pointer subtration, the first register in the mask (RA) will be
312 // saved at address 48-8=40.
314 //===----------------------------------------------------------------------===//
316 //===----------------------------------------------------------------------===//
317 // Mask directives
318 //===----------------------------------------------------------------------===//
320 // Create a bitmask with all callee saved registers for CPU or Floating Point
321 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
322 void MipsAsmPrinter::printSavedRegsBitmask() {
323 // CPU and FPU Saved Registers Bitmasks
324 unsigned CPUBitmask = 0, FPUBitmask = 0;
325 int CPUTopSavedRegOff, FPUTopSavedRegOff;
327 // Set the CPU and FPU Bitmasks
328 const MachineFrameInfo &MFI = MF->getFrameInfo();
329 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
330 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
331 // size of stack area to which FP callee-saved regs are saved.
332 unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8;
333 unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8;
334 unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8;
335 bool HasAFGR64Reg = false;
336 unsigned CSFPRegsSize = 0;
338 for (const auto &I : CSI) {
339 unsigned Reg = I.getReg();
340 unsigned RegNum = TRI->getEncodingValue(Reg);
342 // If it's a floating point register, set the FPU Bitmask.
343 // If it's a general purpose register, set the CPU Bitmask.
344 if (Mips::FGR32RegClass.contains(Reg)) {
345 FPUBitmask |= (1 << RegNum);
346 CSFPRegsSize += FGR32RegSize;
347 } else if (Mips::AFGR64RegClass.contains(Reg)) {
348 FPUBitmask |= (3 << RegNum);
349 CSFPRegsSize += AFGR64RegSize;
350 HasAFGR64Reg = true;
351 } else if (Mips::GPR32RegClass.contains(Reg))
352 CPUBitmask |= (1 << RegNum);
355 // FP Regs are saved right below where the virtual frame pointer points to.
356 FPUTopSavedRegOff = FPUBitmask ?
357 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
359 // CPU Regs are saved below FP Regs.
360 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
362 MipsTargetStreamer &TS = getTargetStreamer();
363 // Print CPUBitmask
364 TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
366 // Print FPUBitmask
367 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
370 //===----------------------------------------------------------------------===//
371 // Frame and Set directives
372 //===----------------------------------------------------------------------===//
374 /// Frame Directive
375 void MipsAsmPrinter::emitFrameDirective() {
376 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
378 unsigned stackReg = RI.getFrameRegister(*MF);
379 unsigned returnReg = RI.getRARegister();
380 unsigned stackSize = MF->getFrameInfo().getStackSize();
382 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
385 /// Emit Set directives.
386 const char *MipsAsmPrinter::getCurrentABIString() const {
387 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
388 case MipsABIInfo::ABI::O32: return "abi32";
389 case MipsABIInfo::ABI::N32: return "abiN32";
390 case MipsABIInfo::ABI::N64: return "abi64";
391 default: llvm_unreachable("Unknown Mips ABI");
395 void MipsAsmPrinter::EmitFunctionEntryLabel() {
396 MipsTargetStreamer &TS = getTargetStreamer();
398 // NaCl sandboxing requires that indirect call instructions are masked.
399 // This means that function entry points should be bundle-aligned.
400 if (Subtarget->isTargetNaCl())
401 EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
403 if (Subtarget->inMicroMipsMode()) {
404 TS.emitDirectiveSetMicroMips();
405 TS.setUsesMicroMips();
406 TS.updateABIInfo(*Subtarget);
407 } else
408 TS.emitDirectiveSetNoMicroMips();
410 if (Subtarget->inMips16Mode())
411 TS.emitDirectiveSetMips16();
412 else
413 TS.emitDirectiveSetNoMips16();
415 TS.emitDirectiveEnt(*CurrentFnSym);
416 OutStreamer->EmitLabel(CurrentFnSym);
419 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
420 /// the first basic block in the function.
421 void MipsAsmPrinter::EmitFunctionBodyStart() {
422 MipsTargetStreamer &TS = getTargetStreamer();
424 MCInstLowering.Initialize(&MF->getContext());
426 bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked);
427 if (!IsNakedFunction)
428 emitFrameDirective();
430 if (!IsNakedFunction)
431 printSavedRegsBitmask();
433 if (!Subtarget->inMips16Mode()) {
434 TS.emitDirectiveSetNoReorder();
435 TS.emitDirectiveSetNoMacro();
436 TS.emitDirectiveSetNoAt();
440 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
441 /// the last basic block in the function.
442 void MipsAsmPrinter::EmitFunctionBodyEnd() {
443 MipsTargetStreamer &TS = getTargetStreamer();
445 // There are instruction for this macros, but they must
446 // always be at the function end, and we can't emit and
447 // break with BB logic.
448 if (!Subtarget->inMips16Mode()) {
449 TS.emitDirectiveSetAt();
450 TS.emitDirectiveSetMacro();
451 TS.emitDirectiveSetReorder();
453 TS.emitDirectiveEnd(CurrentFnSym->getName());
454 // Make sure to terminate any constant pools that were at the end
455 // of the function.
456 if (!InConstantPool)
457 return;
458 InConstantPool = false;
459 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
462 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
463 AsmPrinter::EmitBasicBlockEnd(MBB);
464 MipsTargetStreamer &TS = getTargetStreamer();
465 if (MBB.empty())
466 TS.emitDirectiveInsn();
469 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
470 /// exactly one predecessor and the control transfer mechanism between
471 /// the predecessor and this block is a fall-through.
472 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
473 MBB) const {
474 // The predecessor has to be immediately before this block.
475 const MachineBasicBlock *Pred = *MBB->pred_begin();
477 // If the predecessor is a switch statement, assume a jump table
478 // implementation, so it is not a fall through.
479 if (const BasicBlock *bb = Pred->getBasicBlock())
480 if (isa<SwitchInst>(bb->getTerminator()))
481 return false;
483 // If this is a landing pad, it isn't a fall through. If it has no preds,
484 // then nothing falls through to it.
485 if (MBB->isEHPad() || MBB->pred_empty())
486 return false;
488 // If there isn't exactly one predecessor, it can't be a fall through.
489 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
490 ++PI2;
492 if (PI2 != MBB->pred_end())
493 return false;
495 // The predecessor has to be immediately before this block.
496 if (!Pred->isLayoutSuccessor(MBB))
497 return false;
499 // If the block is completely empty, then it definitely does fall through.
500 if (Pred->empty())
501 return true;
503 // Otherwise, check the last instruction.
504 // Check if the last terminator is an unconditional branch.
505 MachineBasicBlock::const_iterator I = Pred->end();
506 while (I != Pred->begin() && !(--I)->isTerminator()) ;
508 return !I->isBarrier();
511 // Print out an operand for an inline asm expression.
512 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
513 unsigned AsmVariant, const char *ExtraCode,
514 raw_ostream &O) {
515 // Does this asm operand have a single letter operand modifier?
516 if (ExtraCode && ExtraCode[0]) {
517 if (ExtraCode[1] != 0) return true; // Unknown modifier.
519 const MachineOperand &MO = MI->getOperand(OpNum);
520 switch (ExtraCode[0]) {
521 default:
522 // See if this is a generic print operand
523 return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O);
524 case 'X': // hex const int
525 if ((MO.getType()) != MachineOperand::MO_Immediate)
526 return true;
527 O << "0x" << Twine::utohexstr(MO.getImm());
528 return false;
529 case 'x': // hex const int (low 16 bits)
530 if ((MO.getType()) != MachineOperand::MO_Immediate)
531 return true;
532 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
533 return false;
534 case 'd': // decimal const int
535 if ((MO.getType()) != MachineOperand::MO_Immediate)
536 return true;
537 O << MO.getImm();
538 return false;
539 case 'm': // decimal const int minus 1
540 if ((MO.getType()) != MachineOperand::MO_Immediate)
541 return true;
542 O << MO.getImm() - 1;
543 return false;
544 case 'y': // exact log2
545 if ((MO.getType()) != MachineOperand::MO_Immediate)
546 return true;
547 if (!isPowerOf2_64(MO.getImm()))
548 return true;
549 O << Log2_64(MO.getImm());
550 return false;
551 case 'z':
552 // $0 if zero, regular printing otherwise
553 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
554 O << "$0";
555 return false;
557 // If not, call printOperand as normal.
558 break;
559 case 'D': // Second part of a double word register operand
560 case 'L': // Low order register of a double word register operand
561 case 'M': // High order register of a double word register operand
563 if (OpNum == 0)
564 return true;
565 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
566 if (!FlagsOP.isImm())
567 return true;
568 unsigned Flags = FlagsOP.getImm();
569 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
570 // Number of registers represented by this operand. We are looking
571 // for 2 for 32 bit mode and 1 for 64 bit mode.
572 if (NumVals != 2) {
573 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
574 unsigned Reg = MO.getReg();
575 O << '$' << MipsInstPrinter::getRegisterName(Reg);
576 return false;
578 return true;
581 unsigned RegOp = OpNum;
582 if (!Subtarget->isGP64bit()){
583 // Endianness reverses which register holds the high or low value
584 // between M and L.
585 switch(ExtraCode[0]) {
586 case 'M':
587 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
588 break;
589 case 'L':
590 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
591 break;
592 case 'D': // Always the second part
593 RegOp = OpNum + 1;
595 if (RegOp >= MI->getNumOperands())
596 return true;
597 const MachineOperand &MO = MI->getOperand(RegOp);
598 if (!MO.isReg())
599 return true;
600 unsigned Reg = MO.getReg();
601 O << '$' << MipsInstPrinter::getRegisterName(Reg);
602 return false;
604 break;
606 case 'w':
607 // Print MSA registers for the 'f' constraint
608 // In LLVM, the 'w' modifier doesn't need to do anything.
609 // We can just call printOperand as normal.
610 break;
614 printOperand(MI, OpNum, O);
615 return false;
618 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
619 unsigned OpNum, unsigned AsmVariant,
620 const char *ExtraCode,
621 raw_ostream &O) {
622 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
623 const MachineOperand &BaseMO = MI->getOperand(OpNum);
624 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
625 assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand.");
626 assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand.");
627 int Offset = OffsetMO.getImm();
629 // Currently we are expecting either no ExtraCode or 'D','M','L'.
630 if (ExtraCode) {
631 switch (ExtraCode[0]) {
632 case 'D':
633 Offset += 4;
634 break;
635 case 'M':
636 if (Subtarget->isLittle())
637 Offset += 4;
638 break;
639 case 'L':
640 if (!Subtarget->isLittle())
641 Offset += 4;
642 break;
643 default:
644 return true; // Unknown modifier.
648 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg())
649 << ")";
651 return false;
654 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
655 raw_ostream &O) {
656 const MachineOperand &MO = MI->getOperand(opNum);
657 bool closeP = false;
659 if (MO.getTargetFlags())
660 closeP = true;
662 switch(MO.getTargetFlags()) {
663 case MipsII::MO_GPREL: O << "%gp_rel("; break;
664 case MipsII::MO_GOT_CALL: O << "%call16("; break;
665 case MipsII::MO_GOT: O << "%got("; break;
666 case MipsII::MO_ABS_HI: O << "%hi("; break;
667 case MipsII::MO_ABS_LO: O << "%lo("; break;
668 case MipsII::MO_HIGHER: O << "%higher("; break;
669 case MipsII::MO_HIGHEST: O << "%highest(("; break;
670 case MipsII::MO_TLSGD: O << "%tlsgd("; break;
671 case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
672 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
673 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
674 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
675 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
676 case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
677 case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
678 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
681 switch (MO.getType()) {
682 case MachineOperand::MO_Register:
683 O << '$'
684 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
685 break;
687 case MachineOperand::MO_Immediate:
688 O << MO.getImm();
689 break;
691 case MachineOperand::MO_MachineBasicBlock:
692 MO.getMBB()->getSymbol()->print(O, MAI);
693 return;
695 case MachineOperand::MO_GlobalAddress:
696 getSymbol(MO.getGlobal())->print(O, MAI);
697 break;
699 case MachineOperand::MO_BlockAddress: {
700 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
701 O << BA->getName();
702 break;
705 case MachineOperand::MO_ConstantPoolIndex:
706 O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
707 << getFunctionNumber() << "_" << MO.getIndex();
708 if (MO.getOffset())
709 O << "+" << MO.getOffset();
710 break;
712 default:
713 llvm_unreachable("<unknown operand type>");
716 if (closeP) O << ")";
719 void MipsAsmPrinter::
720 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
721 // Load/Store memory operands -- imm($reg)
722 // If PIC target the target is loaded as the
723 // pattern lw $25,%call16($28)
725 // opNum can be invalid if instruction has reglist as operand.
726 // MemOperand is always last operand of instruction (base + offset).
727 switch (MI->getOpcode()) {
728 default:
729 break;
730 case Mips::SWM32_MM:
731 case Mips::LWM32_MM:
732 opNum = MI->getNumOperands() - 2;
733 break;
736 printOperand(MI, opNum+1, O);
737 O << "(";
738 printOperand(MI, opNum, O);
739 O << ")";
742 void MipsAsmPrinter::
743 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
744 // when using stack locations for not load/store instructions
745 // print the same way as all normal 3 operand instructions.
746 printOperand(MI, opNum, O);
747 O << ", ";
748 printOperand(MI, opNum+1, O);
751 void MipsAsmPrinter::
752 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
753 const char *Modifier) {
754 const MachineOperand &MO = MI->getOperand(opNum);
755 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
758 void MipsAsmPrinter::
759 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
760 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
761 if (i != opNum) O << ", ";
762 printOperand(MI, i, O);
766 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
767 MipsTargetStreamer &TS = getTargetStreamer();
769 // MipsTargetStreamer has an initialization order problem when emitting an
770 // object file directly (see MipsTargetELFStreamer for full details). Work
771 // around it by re-initializing the PIC state here.
772 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());
774 // Compute MIPS architecture attributes based on the default subtarget
775 // that we'd have constructed. Module level directives aren't LTO
776 // clean anyhow.
777 // FIXME: For ifunc related functions we could iterate over and look
778 // for a feature string that doesn't match the default one.
779 const Triple &TT = TM.getTargetTriple();
780 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
781 StringRef FS = TM.getTargetFeatureString();
782 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
783 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, 0);
785 bool IsABICalls = STI.isABICalls();
786 const MipsABIInfo &ABI = MTM.getABI();
787 if (IsABICalls) {
788 TS.emitDirectiveAbiCalls();
789 // FIXME: This condition should be a lot more complicated that it is here.
790 // Ideally it should test for properties of the ABI and not the ABI
791 // itself.
792 // For the moment, I'm only correcting enough to make MIPS-IV work.
793 if (!isPositionIndependent() && STI.hasSym32())
794 TS.emitDirectiveOptionPic0();
797 // Tell the assembler which ABI we are using
798 std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
799 OutStreamer->SwitchSection(
800 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
802 // NaN: At the moment we only support:
803 // 1. .nan legacy (default)
804 // 2. .nan 2008
805 STI.isNaN2008() ? TS.emitDirectiveNaN2008()
806 : TS.emitDirectiveNaNLegacy();
808 // TODO: handle O64 ABI
810 TS.updateABIInfo(STI);
812 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
813 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
814 // -mfp64) and omit it otherwise.
815 if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit()))
816 TS.emitDirectiveModuleFP();
818 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
819 // accept it. We therefore emit it when it contradicts the default or an
820 // option has changed the default (i.e. FPXX) and omit it otherwise.
821 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
822 TS.emitDirectiveModuleOddSPReg();
825 void MipsAsmPrinter::emitInlineAsmStart() const {
826 MipsTargetStreamer &TS = getTargetStreamer();
828 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
829 // and 'reorder') is different from LLVM's choice for generated code ('noat',
830 // 'nomacro' and 'noreorder').
831 // In order to maintain compatibility with inline assembly code which depends
832 // on GCC's assembler options being used, we have to switch to those options
833 // for the duration of the inline assembly block and then switch back.
834 TS.emitDirectiveSetPush();
835 TS.emitDirectiveSetAt();
836 TS.emitDirectiveSetMacro();
837 TS.emitDirectiveSetReorder();
838 OutStreamer->AddBlankLine();
841 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
842 const MCSubtargetInfo *EndInfo) const {
843 OutStreamer->AddBlankLine();
844 getTargetStreamer().emitDirectiveSetPop();
847 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
848 MCInst I;
849 I.setOpcode(Mips::JAL);
850 I.addOperand(
851 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
852 OutStreamer->EmitInstruction(I, STI);
855 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
856 unsigned Reg) {
857 MCInst I;
858 I.setOpcode(Opcode);
859 I.addOperand(MCOperand::createReg(Reg));
860 OutStreamer->EmitInstruction(I, STI);
863 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
864 unsigned Opcode, unsigned Reg1,
865 unsigned Reg2) {
866 MCInst I;
868 // Because of the current td files for Mips32, the operands for MTC1
869 // appear backwards from their normal assembly order. It's not a trivial
870 // change to fix this in the td file so we adjust for it here.
872 if (Opcode == Mips::MTC1) {
873 unsigned Temp = Reg1;
874 Reg1 = Reg2;
875 Reg2 = Temp;
877 I.setOpcode(Opcode);
878 I.addOperand(MCOperand::createReg(Reg1));
879 I.addOperand(MCOperand::createReg(Reg2));
880 OutStreamer->EmitInstruction(I, STI);
883 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
884 unsigned Opcode, unsigned Reg1,
885 unsigned Reg2, unsigned Reg3) {
886 MCInst I;
887 I.setOpcode(Opcode);
888 I.addOperand(MCOperand::createReg(Reg1));
889 I.addOperand(MCOperand::createReg(Reg2));
890 I.addOperand(MCOperand::createReg(Reg3));
891 OutStreamer->EmitInstruction(I, STI);
894 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
895 unsigned MovOpc, unsigned Reg1,
896 unsigned Reg2, unsigned FPReg1,
897 unsigned FPReg2, bool LE) {
898 if (!LE) {
899 unsigned temp = Reg1;
900 Reg1 = Reg2;
901 Reg2 = temp;
903 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
904 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
907 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
908 Mips16HardFloatInfo::FPParamVariant PV,
909 bool LE, bool ToFP) {
910 using namespace Mips16HardFloatInfo;
912 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
913 switch (PV) {
914 case FSig:
915 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
916 break;
917 case FFSig:
918 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
919 break;
920 case FDSig:
921 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
922 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
923 break;
924 case DSig:
925 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
926 break;
927 case DDSig:
928 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
929 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
930 break;
931 case DFSig:
932 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
933 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
934 break;
935 case NoSig:
936 return;
940 void MipsAsmPrinter::EmitSwapFPIntRetval(
941 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
942 bool LE) {
943 using namespace Mips16HardFloatInfo;
945 unsigned MovOpc = Mips::MFC1;
946 switch (RV) {
947 case FRet:
948 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
949 break;
950 case DRet:
951 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
952 break;
953 case CFRet:
954 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
955 break;
956 case CDRet:
957 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
958 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
959 break;
960 case NoFPRet:
961 break;
965 void MipsAsmPrinter::EmitFPCallStub(
966 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
967 using namespace Mips16HardFloatInfo;
969 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
970 bool LE = getDataLayout().isLittleEndian();
971 // Construct a local MCSubtargetInfo here.
972 // This is because the MachineFunction won't exist (but have not yet been
973 // freed) and since we're at the global level we can use the default
974 // constructed subtarget.
975 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
976 TM.getTargetTriple().str(), TM.getTargetCPU(),
977 TM.getTargetFeatureString()));
980 // .global xxxx
982 OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global);
983 const char *RetType;
985 // make the comment field identifying the return and parameter
986 // types of the floating point stub
987 // # Stub function to call rettype xxxx (params)
989 switch (Signature->RetSig) {
990 case FRet:
991 RetType = "float";
992 break;
993 case DRet:
994 RetType = "double";
995 break;
996 case CFRet:
997 RetType = "complex";
998 break;
999 case CDRet:
1000 RetType = "double complex";
1001 break;
1002 case NoFPRet:
1003 RetType = "";
1004 break;
1006 const char *Parms;
1007 switch (Signature->ParamSig) {
1008 case FSig:
1009 Parms = "float";
1010 break;
1011 case FFSig:
1012 Parms = "float, float";
1013 break;
1014 case FDSig:
1015 Parms = "float, double";
1016 break;
1017 case DSig:
1018 Parms = "double";
1019 break;
1020 case DDSig:
1021 Parms = "double, double";
1022 break;
1023 case DFSig:
1024 Parms = "double, float";
1025 break;
1026 case NoSig:
1027 Parms = "";
1028 break;
1030 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
1031 Twine(Symbol) + " (" + Twine(Parms) + ")");
1033 // probably not necessary but we save and restore the current section state
1035 OutStreamer->PushSection();
1037 // .section mips16.call.fpxxxx,"ax",@progbits
1039 MCSectionELF *M = OutContext.getELFSection(
1040 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
1041 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
1042 OutStreamer->SwitchSection(M, nullptr);
1044 // .align 2
1046 OutStreamer->EmitValueToAlignment(4);
1047 MipsTargetStreamer &TS = getTargetStreamer();
1049 // .set nomips16
1050 // .set nomicromips
1052 TS.emitDirectiveSetNoMips16();
1053 TS.emitDirectiveSetNoMicroMips();
1055 // .ent __call_stub_fp_xxxx
1056 // .type __call_stub_fp_xxxx,@function
1057 // __call_stub_fp_xxxx:
1059 std::string x = "__call_stub_fp_" + std::string(Symbol);
1060 MCSymbolELF *Stub =
1061 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
1062 TS.emitDirectiveEnt(*Stub);
1063 MCSymbol *MType =
1064 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
1065 OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
1066 OutStreamer->EmitLabel(Stub);
1068 // Only handle non-pic for now.
1069 assert(!isPositionIndependent() &&
1070 "should not be here if we are compiling pic");
1071 TS.emitDirectiveSetReorder();
1073 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1074 // stubs without raw text but this current patch is for compiler generated
1075 // functions and they all return some value.
1076 // The calling sequence for non pic is different in that case and we need
1077 // to implement %lo and %hi in order to handle the case of no return value
1078 // See the corresponding method in Mips16HardFloat for details.
1080 // mov the return address to S2.
1081 // we have no stack space to store it and we are about to make another call.
1082 // We need to make sure that the enclosing function knows to save S2
1083 // This should have already been handled.
1085 // Mov $18, $31
1087 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
1089 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1091 // Jal xxxx
1093 EmitJal(*STI, MSymbol);
1095 // fix return values
1096 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1098 // do the return
1099 // if (Signature->RetSig == NoFPRet)
1100 // llvm_unreachable("should not be any stubs here with no return value");
1101 // else
1102 EmitInstrReg(*STI, Mips::JR, Mips::S2);
1104 MCSymbol *Tmp = OutContext.createTempSymbol();
1105 OutStreamer->EmitLabel(Tmp);
1106 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1107 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1108 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1109 OutStreamer->emitELFSize(Stub, T_min_E);
1110 TS.emitDirectiveEnd(x);
1111 OutStreamer->PopSection();
1114 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
1115 // Emit needed stubs
1117 for (std::map<
1118 const char *,
1119 const Mips16HardFloatInfo::FuncSignature *>::const_iterator
1120 it = StubsNeeded.begin();
1121 it != StubsNeeded.end(); ++it) {
1122 const char *Symbol = it->first;
1123 const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1124 EmitFPCallStub(Symbol, Signature);
1126 // return to the text section
1127 OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1130 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) {
1131 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11;
1132 // For mips32 we want to emit the following pattern:
1134 // .Lxray_sled_N:
1135 // ALIGN
1136 // B .tmpN
1137 // 11 NOP instructions (44 bytes)
1138 // ADDIU T9, T9, 52
1139 // .tmpN
1141 // We need the 44 bytes (11 instructions) because at runtime, we'd
1142 // be patching over the full 48 bytes (12 instructions) with the following
1143 // pattern:
1145 // ADDIU SP, SP, -8
1146 // NOP
1147 // SW RA, 4(SP)
1148 // SW T9, 0(SP)
1149 // LUI T9, %hi(__xray_FunctionEntry/Exit)
1150 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1151 // LUI T0, %hi(function_id)
1152 // JALR T9
1153 // ORI T0, T0, %lo(function_id)
1154 // LW T9, 0(SP)
1155 // LW RA, 4(SP)
1156 // ADDIU SP, SP, 8
1158 // We add 52 bytes to t9 because we want to adjust the function pointer to
1159 // the actual start of function i.e. the address just after the noop sled.
1160 // We do this because gp displacement relocation is emitted at the start of
1161 // of the function i.e after the nop sled and to correctly calculate the
1162 // global offset table address, t9 must hold the address of the instruction
1163 // containing the gp displacement relocation.
1164 // FIXME: Is this correct for the static relocation model?
1166 // For mips64 we want to emit the following pattern:
1168 // .Lxray_sled_N:
1169 // ALIGN
1170 // B .tmpN
1171 // 15 NOP instructions (60 bytes)
1172 // .tmpN
1174 // We need the 60 bytes (15 instructions) because at runtime, we'd
1175 // be patching over the full 64 bytes (16 instructions) with the following
1176 // pattern:
1178 // DADDIU SP, SP, -16
1179 // NOP
1180 // SD RA, 8(SP)
1181 // SD T9, 0(SP)
1182 // LUI T9, %highest(__xray_FunctionEntry/Exit)
1183 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit)
1184 // DSLL T9, T9, 16
1185 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit)
1186 // DSLL T9, T9, 16
1187 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1188 // LUI T0, %hi(function_id)
1189 // JALR T9
1190 // ADDIU T0, T0, %lo(function_id)
1191 // LD T9, 0(SP)
1192 // LD RA, 8(SP)
1193 // DADDIU SP, SP, 16
1195 OutStreamer->EmitCodeAlignment(4);
1196 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1197 OutStreamer->EmitLabel(CurSled);
1198 auto Target = OutContext.createTempSymbol();
1200 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1201 // start of function
1202 const MCExpr *TargetExpr = MCSymbolRefExpr::create(
1203 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
1204 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ)
1205 .addReg(Mips::ZERO)
1206 .addReg(Mips::ZERO)
1207 .addExpr(TargetExpr));
1209 for (int8_t I = 0; I < NoopsInSledCount; I++)
1210 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL)
1211 .addReg(Mips::ZERO)
1212 .addReg(Mips::ZERO)
1213 .addImm(0));
1215 OutStreamer->EmitLabel(Target);
1217 if (!Subtarget->isGP64bit()) {
1218 EmitToStreamer(*OutStreamer,
1219 MCInstBuilder(Mips::ADDiu)
1220 .addReg(Mips::T9)
1221 .addReg(Mips::T9)
1222 .addImm(0x34));
1225 recordSled(CurSled, MI, Kind);
1228 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) {
1229 EmitSled(MI, SledKind::FUNCTION_ENTER);
1232 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
1233 EmitSled(MI, SledKind::FUNCTION_EXIT);
1236 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
1237 EmitSled(MI, SledKind::TAIL_CALL);
1240 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1241 raw_ostream &OS) {
1242 // TODO: implement
1245 // Emit .dtprelword or .dtpreldword directive
1246 // and value for debug thread local expression.
1247 void MipsAsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
1248 if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) {
1249 if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) {
1250 switch (Size) {
1251 case 4:
1252 OutStreamer->EmitDTPRel32Value(MipsExpr->getSubExpr());
1253 break;
1254 case 8:
1255 OutStreamer->EmitDTPRel64Value(MipsExpr->getSubExpr());
1256 break;
1257 default:
1258 llvm_unreachable("Unexpected size of expression value.");
1260 return;
1263 AsmPrinter::EmitDebugValue(Value, Size);
1266 // Align all targets of indirect branches on bundle size. Used only if target
1267 // is NaCl.
1268 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1269 // Align all blocks that are jumped to through jump table.
1270 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1271 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1272 for (unsigned I = 0; I < JT.size(); ++I) {
1273 const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
1275 for (unsigned J = 0; J < MBBs.size(); ++J)
1276 MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1280 // If basic block address is taken, block can be target of indirect branch.
1281 for (auto &MBB : MF) {
1282 if (MBB.hasAddressTaken())
1283 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1287 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1288 return (Opcode == Mips::LONG_BRANCH_LUi
1289 || Opcode == Mips::LONG_BRANCH_LUi2Op
1290 || Opcode == Mips::LONG_BRANCH_LUi2Op_64
1291 || Opcode == Mips::LONG_BRANCH_ADDiu
1292 || Opcode == Mips::LONG_BRANCH_ADDiu2Op
1293 || Opcode == Mips::LONG_BRANCH_DADDiu
1294 || Opcode == Mips::LONG_BRANCH_DADDiu2Op);
1297 // Force static initialization.
1298 extern "C" void LLVMInitializeMipsAsmPrinter() {
1299 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget());
1300 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget());
1301 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target());
1302 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget());