1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file defines the MIPS-specific support for the FastISel class.
11 /// Some of the target-specific code is generated by tablegen in the file
12 /// MipsGenFastISel.inc, which is #included here.
14 //===----------------------------------------------------------------------===//
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsCCState.h"
19 #include "MipsISelLowering.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
74 #define DEBUG_TYPE "mips-fastisel"
78 extern cl::opt
<bool> EmitJalrReloc
;
82 class MipsFastISel final
: public FastISel
{
84 // All possible address modes.
87 using BaseKind
= enum { RegBase
, FrameIndexBase
};
90 BaseKind Kind
= RegBase
;
98 const GlobalValue
*GV
= nullptr;
101 // Innocuous defaults for our address.
102 Address() { Base
.Reg
= 0; }
104 void setKind(BaseKind K
) { Kind
= K
; }
105 BaseKind
getKind() const { return Kind
; }
106 bool isRegBase() const { return Kind
== RegBase
; }
107 bool isFIBase() const { return Kind
== FrameIndexBase
; }
109 void setReg(unsigned Reg
) {
110 assert(isRegBase() && "Invalid base register access!");
114 unsigned getReg() const {
115 assert(isRegBase() && "Invalid base register access!");
119 void setFI(unsigned FI
) {
120 assert(isFIBase() && "Invalid base frame index access!");
124 unsigned getFI() const {
125 assert(isFIBase() && "Invalid base frame index access!");
129 void setOffset(int64_t Offset_
) { Offset
= Offset_
; }
130 int64_t getOffset() const { return Offset
; }
131 void setGlobalValue(const GlobalValue
*G
) { GV
= G
; }
132 const GlobalValue
*getGlobalValue() { return GV
; }
135 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
136 /// make the right decision when generating code for different targets.
137 const TargetMachine
&TM
;
138 const MipsSubtarget
*Subtarget
;
139 const TargetInstrInfo
&TII
;
140 const TargetLowering
&TLI
;
141 MipsFunctionInfo
*MFI
;
143 // Convenience variables to avoid some queries.
144 LLVMContext
*Context
;
146 bool fastLowerArguments() override
;
147 bool fastLowerCall(CallLoweringInfo
&CLI
) override
;
148 bool fastLowerIntrinsicCall(const IntrinsicInst
*II
) override
;
150 bool UnsupportedFPMode
; // To allow fast-isel to proceed and just not handle
151 // floating point but not reject doing fast-isel in other
155 // Selection routines.
156 bool selectLogicalOp(const Instruction
*I
);
157 bool selectLoad(const Instruction
*I
);
158 bool selectStore(const Instruction
*I
);
159 bool selectBranch(const Instruction
*I
);
160 bool selectSelect(const Instruction
*I
);
161 bool selectCmp(const Instruction
*I
);
162 bool selectFPExt(const Instruction
*I
);
163 bool selectFPTrunc(const Instruction
*I
);
164 bool selectFPToInt(const Instruction
*I
, bool IsSigned
);
165 bool selectRet(const Instruction
*I
);
166 bool selectTrunc(const Instruction
*I
);
167 bool selectIntExt(const Instruction
*I
);
168 bool selectShift(const Instruction
*I
);
169 bool selectDivRem(const Instruction
*I
, unsigned ISDOpcode
);
171 // Utility helper routines.
172 bool isTypeLegal(Type
*Ty
, MVT
&VT
);
173 bool isTypeSupported(Type
*Ty
, MVT
&VT
);
174 bool isLoadTypeLegal(Type
*Ty
, MVT
&VT
);
175 bool computeAddress(const Value
*Obj
, Address
&Addr
);
176 bool computeCallAddress(const Value
*V
, Address
&Addr
);
177 void simplifyAddress(Address
&Addr
);
179 // Emit helper routines.
180 bool emitCmp(unsigned DestReg
, const CmpInst
*CI
);
181 bool emitLoad(MVT VT
, unsigned &ResultReg
, Address
&Addr
,
182 unsigned Alignment
= 0);
183 bool emitStore(MVT VT
, unsigned SrcReg
, Address Addr
,
184 MachineMemOperand
*MMO
= nullptr);
185 bool emitStore(MVT VT
, unsigned SrcReg
, Address
&Addr
,
186 unsigned Alignment
= 0);
187 unsigned emitIntExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
, bool isZExt
);
188 bool emitIntExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
, unsigned DestReg
,
191 bool emitIntZExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
, unsigned DestReg
);
193 bool emitIntSExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
, unsigned DestReg
);
194 bool emitIntSExt32r1(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
196 bool emitIntSExt32r2(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
199 unsigned getRegEnsuringSimpleIntegerWidening(const Value
*, bool IsUnsigned
);
201 unsigned emitLogicalOp(unsigned ISDOpc
, MVT RetVT
, const Value
*LHS
,
204 unsigned materializeFP(const ConstantFP
*CFP
, MVT VT
);
205 unsigned materializeGV(const GlobalValue
*GV
, MVT VT
);
206 unsigned materializeInt(const Constant
*C
, MVT VT
);
207 unsigned materialize32BitInt(int64_t Imm
, const TargetRegisterClass
*RC
);
208 unsigned materializeExternalCallSym(MCSymbol
*Syn
);
210 MachineInstrBuilder
emitInst(unsigned Opc
) {
211 return BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
));
214 MachineInstrBuilder
emitInst(unsigned Opc
, unsigned DstReg
) {
215 return BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
),
219 MachineInstrBuilder
emitInstStore(unsigned Opc
, unsigned SrcReg
,
220 unsigned MemReg
, int64_t MemOffset
) {
221 return emitInst(Opc
).addReg(SrcReg
).addReg(MemReg
).addImm(MemOffset
);
224 MachineInstrBuilder
emitInstLoad(unsigned Opc
, unsigned DstReg
,
225 unsigned MemReg
, int64_t MemOffset
) {
226 return emitInst(Opc
, DstReg
).addReg(MemReg
).addImm(MemOffset
);
229 unsigned fastEmitInst_rr(unsigned MachineInstOpcode
,
230 const TargetRegisterClass
*RC
,
231 unsigned Op0
, bool Op0IsKill
,
232 unsigned Op1
, bool Op1IsKill
);
234 // for some reason, this default is not generated by tablegen
235 // so we explicitly generate it here.
236 unsigned fastEmitInst_riir(uint64_t inst
, const TargetRegisterClass
*RC
,
237 unsigned Op0
, bool Op0IsKill
, uint64_t imm1
,
238 uint64_t imm2
, unsigned Op3
, bool Op3IsKill
) {
242 // Call handling routines.
244 CCAssignFn
*CCAssignFnForCall(CallingConv::ID CC
) const;
245 bool processCallArgs(CallLoweringInfo
&CLI
, SmallVectorImpl
<MVT
> &ArgVTs
,
247 bool finishCall(CallLoweringInfo
&CLI
, MVT RetVT
, unsigned NumBytes
);
249 const MipsABIInfo
&getABI() const {
250 return static_cast<const MipsTargetMachine
&>(TM
).getABI();
254 // Backend specific FastISel code.
255 explicit MipsFastISel(FunctionLoweringInfo
&funcInfo
,
256 const TargetLibraryInfo
*libInfo
)
257 : FastISel(funcInfo
, libInfo
), TM(funcInfo
.MF
->getTarget()),
258 Subtarget(&funcInfo
.MF
->getSubtarget
<MipsSubtarget
>()),
259 TII(*Subtarget
->getInstrInfo()), TLI(*Subtarget
->getTargetLowering()) {
260 MFI
= funcInfo
.MF
->getInfo
<MipsFunctionInfo
>();
261 Context
= &funcInfo
.Fn
->getContext();
262 UnsupportedFPMode
= Subtarget
->isFP64bit() || Subtarget
->useSoftFloat();
265 unsigned fastMaterializeAlloca(const AllocaInst
*AI
) override
;
266 unsigned fastMaterializeConstant(const Constant
*C
) override
;
267 bool fastSelectInstruction(const Instruction
*I
) override
;
269 #include "MipsGenFastISel.inc"
272 } // end anonymous namespace
274 static bool CC_Mips(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
275 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
276 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
278 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
279 CCValAssign::LocInfo LocInfo
,
280 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
281 llvm_unreachable("should not be called");
284 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
285 CCValAssign::LocInfo LocInfo
,
286 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
287 llvm_unreachable("should not be called");
290 #include "MipsGenCallingConv.inc"
292 CCAssignFn
*MipsFastISel::CCAssignFnForCall(CallingConv::ID CC
) const {
296 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc
, MVT RetVT
,
297 const Value
*LHS
, const Value
*RHS
) {
298 // Canonicalize immediates to the RHS first.
299 if (isa
<ConstantInt
>(LHS
) && !isa
<ConstantInt
>(RHS
))
314 llvm_unreachable("unexpected opcode");
317 unsigned LHSReg
= getRegForValue(LHS
);
322 if (const auto *C
= dyn_cast
<ConstantInt
>(RHS
))
323 RHSReg
= materializeInt(C
, MVT::i32
);
325 RHSReg
= getRegForValue(RHS
);
329 unsigned ResultReg
= createResultReg(&Mips::GPR32RegClass
);
333 emitInst(Opc
, ResultReg
).addReg(LHSReg
).addReg(RHSReg
);
337 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst
*AI
) {
338 assert(TLI
.getValueType(DL
, AI
->getType(), true) == MVT::i32
&&
339 "Alloca should always return a pointer.");
341 DenseMap
<const AllocaInst
*, int>::iterator SI
=
342 FuncInfo
.StaticAllocaMap
.find(AI
);
344 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
345 unsigned ResultReg
= createResultReg(&Mips::GPR32RegClass
);
346 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Mips::LEA_ADDiu
),
348 .addFrameIndex(SI
->second
)
356 unsigned MipsFastISel::materializeInt(const Constant
*C
, MVT VT
) {
357 if (VT
!= MVT::i32
&& VT
!= MVT::i16
&& VT
!= MVT::i8
&& VT
!= MVT::i1
)
359 const TargetRegisterClass
*RC
= &Mips::GPR32RegClass
;
360 const ConstantInt
*CI
= cast
<ConstantInt
>(C
);
361 return materialize32BitInt(CI
->getZExtValue(), RC
);
364 unsigned MipsFastISel::materialize32BitInt(int64_t Imm
,
365 const TargetRegisterClass
*RC
) {
366 unsigned ResultReg
= createResultReg(RC
);
368 if (isInt
<16>(Imm
)) {
369 unsigned Opc
= Mips::ADDiu
;
370 emitInst(Opc
, ResultReg
).addReg(Mips::ZERO
).addImm(Imm
);
372 } else if (isUInt
<16>(Imm
)) {
373 emitInst(Mips::ORi
, ResultReg
).addReg(Mips::ZERO
).addImm(Imm
);
376 unsigned Lo
= Imm
& 0xFFFF;
377 unsigned Hi
= (Imm
>> 16) & 0xFFFF;
379 // Both Lo and Hi have nonzero bits.
380 unsigned TmpReg
= createResultReg(RC
);
381 emitInst(Mips::LUi
, TmpReg
).addImm(Hi
);
382 emitInst(Mips::ORi
, ResultReg
).addReg(TmpReg
).addImm(Lo
);
384 emitInst(Mips::LUi
, ResultReg
).addImm(Hi
);
389 unsigned MipsFastISel::materializeFP(const ConstantFP
*CFP
, MVT VT
) {
390 if (UnsupportedFPMode
)
392 int64_t Imm
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
393 if (VT
== MVT::f32
) {
394 const TargetRegisterClass
*RC
= &Mips::FGR32RegClass
;
395 unsigned DestReg
= createResultReg(RC
);
396 unsigned TempReg
= materialize32BitInt(Imm
, &Mips::GPR32RegClass
);
397 emitInst(Mips::MTC1
, DestReg
).addReg(TempReg
);
399 } else if (VT
== MVT::f64
) {
400 const TargetRegisterClass
*RC
= &Mips::AFGR64RegClass
;
401 unsigned DestReg
= createResultReg(RC
);
402 unsigned TempReg1
= materialize32BitInt(Imm
>> 32, &Mips::GPR32RegClass
);
404 materialize32BitInt(Imm
& 0xFFFFFFFF, &Mips::GPR32RegClass
);
405 emitInst(Mips::BuildPairF64
, DestReg
).addReg(TempReg2
).addReg(TempReg1
);
411 unsigned MipsFastISel::materializeGV(const GlobalValue
*GV
, MVT VT
) {
412 // For now 32-bit only.
415 const TargetRegisterClass
*RC
= &Mips::GPR32RegClass
;
416 unsigned DestReg
= createResultReg(RC
);
417 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
418 bool IsThreadLocal
= GVar
&& GVar
->isThreadLocal();
419 // TLS not supported at this time.
422 emitInst(Mips::LW
, DestReg
)
423 .addReg(MFI
->getGlobalBaseReg())
424 .addGlobalAddress(GV
, 0, MipsII::MO_GOT
);
425 if ((GV
->hasInternalLinkage() ||
426 (GV
->hasLocalLinkage() && !isa
<Function
>(GV
)))) {
427 unsigned TempReg
= createResultReg(RC
);
428 emitInst(Mips::ADDiu
, TempReg
)
430 .addGlobalAddress(GV
, 0, MipsII::MO_ABS_LO
);
436 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol
*Sym
) {
437 const TargetRegisterClass
*RC
= &Mips::GPR32RegClass
;
438 unsigned DestReg
= createResultReg(RC
);
439 emitInst(Mips::LW
, DestReg
)
440 .addReg(MFI
->getGlobalBaseReg())
441 .addSym(Sym
, MipsII::MO_GOT
);
445 // Materialize a constant into a register, and return the register
446 // number (or zero if we failed to handle it).
447 unsigned MipsFastISel::fastMaterializeConstant(const Constant
*C
) {
448 EVT CEVT
= TLI
.getValueType(DL
, C
->getType(), true);
450 // Only handle simple types.
451 if (!CEVT
.isSimple())
453 MVT VT
= CEVT
.getSimpleVT();
455 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
456 return (UnsupportedFPMode
) ? 0 : materializeFP(CFP
, VT
);
457 else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
458 return materializeGV(GV
, VT
);
459 else if (isa
<ConstantInt
>(C
))
460 return materializeInt(C
, VT
);
465 bool MipsFastISel::computeAddress(const Value
*Obj
, Address
&Addr
) {
466 const User
*U
= nullptr;
467 unsigned Opcode
= Instruction::UserOp1
;
468 if (const Instruction
*I
= dyn_cast
<Instruction
>(Obj
)) {
469 // Don't walk into other basic blocks unless the object is an alloca from
470 // another block, otherwise it may not have a virtual register assigned.
471 if (FuncInfo
.StaticAllocaMap
.count(static_cast<const AllocaInst
*>(Obj
)) ||
472 FuncInfo
.MBBMap
[I
->getParent()] == FuncInfo
.MBB
) {
473 Opcode
= I
->getOpcode();
476 } else if (const ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(Obj
)) {
477 Opcode
= C
->getOpcode();
483 case Instruction::BitCast
:
484 // Look through bitcasts.
485 return computeAddress(U
->getOperand(0), Addr
);
486 case Instruction::GetElementPtr
: {
487 Address SavedAddr
= Addr
;
488 int64_t TmpOffset
= Addr
.getOffset();
489 // Iterate through the GEP folding the constants into offsets where
491 gep_type_iterator GTI
= gep_type_begin(U
);
492 for (User::const_op_iterator i
= U
->op_begin() + 1, e
= U
->op_end(); i
!= e
;
494 const Value
*Op
= *i
;
495 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
496 const StructLayout
*SL
= DL
.getStructLayout(STy
);
497 unsigned Idx
= cast
<ConstantInt
>(Op
)->getZExtValue();
498 TmpOffset
+= SL
->getElementOffset(Idx
);
500 uint64_t S
= DL
.getTypeAllocSize(GTI
.getIndexedType());
502 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
503 // Constant-offset addressing.
504 TmpOffset
+= CI
->getSExtValue() * S
;
507 if (canFoldAddIntoGEP(U
, Op
)) {
508 // A compatible add with a constant operand. Fold the constant.
510 cast
<ConstantInt
>(cast
<AddOperator
>(Op
)->getOperand(1));
511 TmpOffset
+= CI
->getSExtValue() * S
;
512 // Iterate on the other operand.
513 Op
= cast
<AddOperator
>(Op
)->getOperand(0);
517 goto unsupported_gep
;
521 // Try to grab the base operand now.
522 Addr
.setOffset(TmpOffset
);
523 if (computeAddress(U
->getOperand(0), Addr
))
525 // We failed, restore everything and try the other options.
530 case Instruction::Alloca
: {
531 const AllocaInst
*AI
= cast
<AllocaInst
>(Obj
);
532 DenseMap
<const AllocaInst
*, int>::iterator SI
=
533 FuncInfo
.StaticAllocaMap
.find(AI
);
534 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
535 Addr
.setKind(Address::FrameIndexBase
);
536 Addr
.setFI(SI
->second
);
542 Addr
.setReg(getRegForValue(Obj
));
543 return Addr
.getReg() != 0;
546 bool MipsFastISel::computeCallAddress(const Value
*V
, Address
&Addr
) {
547 const User
*U
= nullptr;
548 unsigned Opcode
= Instruction::UserOp1
;
550 if (const auto *I
= dyn_cast
<Instruction
>(V
)) {
551 // Check if the value is defined in the same basic block. This information
552 // is crucial to know whether or not folding an operand is valid.
553 if (I
->getParent() == FuncInfo
.MBB
->getBasicBlock()) {
554 Opcode
= I
->getOpcode();
557 } else if (const auto *C
= dyn_cast
<ConstantExpr
>(V
)) {
558 Opcode
= C
->getOpcode();
565 case Instruction::BitCast
:
566 // Look past bitcasts if its operand is in the same BB.
567 return computeCallAddress(U
->getOperand(0), Addr
);
569 case Instruction::IntToPtr
:
570 // Look past no-op inttoptrs if its operand is in the same BB.
571 if (TLI
.getValueType(DL
, U
->getOperand(0)->getType()) ==
572 TLI
.getPointerTy(DL
))
573 return computeCallAddress(U
->getOperand(0), Addr
);
575 case Instruction::PtrToInt
:
576 // Look past no-op ptrtoints if its operand is in the same BB.
577 if (TLI
.getValueType(DL
, U
->getType()) == TLI
.getPointerTy(DL
))
578 return computeCallAddress(U
->getOperand(0), Addr
);
582 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
583 Addr
.setGlobalValue(GV
);
587 // If all else fails, try to materialize the value in a register.
588 if (!Addr
.getGlobalValue()) {
589 Addr
.setReg(getRegForValue(V
));
590 return Addr
.getReg() != 0;
596 bool MipsFastISel::isTypeLegal(Type
*Ty
, MVT
&VT
) {
597 EVT evt
= TLI
.getValueType(DL
, Ty
, true);
598 // Only handle simple types.
599 if (evt
== MVT::Other
|| !evt
.isSimple())
601 VT
= evt
.getSimpleVT();
603 // Handle all legal types, i.e. a register that will directly hold this
605 return TLI
.isTypeLegal(VT
);
608 bool MipsFastISel::isTypeSupported(Type
*Ty
, MVT
&VT
) {
609 if (Ty
->isVectorTy())
612 if (isTypeLegal(Ty
, VT
))
615 // If this is a type than can be sign or zero-extended to a basic operation
616 // go ahead and accept it now.
617 if (VT
== MVT::i1
|| VT
== MVT::i8
|| VT
== MVT::i16
)
623 bool MipsFastISel::isLoadTypeLegal(Type
*Ty
, MVT
&VT
) {
624 if (isTypeLegal(Ty
, VT
))
626 // We will extend this in a later patch:
627 // If this is a type than can be sign or zero-extended to a basic operation
628 // go ahead and accept it now.
629 if (VT
== MVT::i8
|| VT
== MVT::i16
)
634 // Because of how EmitCmp is called with fast-isel, you can
635 // end up with redundant "andi" instructions after the sequences emitted below.
636 // We should try and solve this issue in the future.
638 bool MipsFastISel::emitCmp(unsigned ResultReg
, const CmpInst
*CI
) {
639 const Value
*Left
= CI
->getOperand(0), *Right
= CI
->getOperand(1);
640 bool IsUnsigned
= CI
->isUnsigned();
641 unsigned LeftReg
= getRegEnsuringSimpleIntegerWidening(Left
, IsUnsigned
);
644 unsigned RightReg
= getRegEnsuringSimpleIntegerWidening(Right
, IsUnsigned
);
647 CmpInst::Predicate P
= CI
->getPredicate();
652 case CmpInst::ICMP_EQ
: {
653 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
654 emitInst(Mips::XOR
, TempReg
).addReg(LeftReg
).addReg(RightReg
);
655 emitInst(Mips::SLTiu
, ResultReg
).addReg(TempReg
).addImm(1);
658 case CmpInst::ICMP_NE
: {
659 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
660 emitInst(Mips::XOR
, TempReg
).addReg(LeftReg
).addReg(RightReg
);
661 emitInst(Mips::SLTu
, ResultReg
).addReg(Mips::ZERO
).addReg(TempReg
);
664 case CmpInst::ICMP_UGT
:
665 emitInst(Mips::SLTu
, ResultReg
).addReg(RightReg
).addReg(LeftReg
);
667 case CmpInst::ICMP_ULT
:
668 emitInst(Mips::SLTu
, ResultReg
).addReg(LeftReg
).addReg(RightReg
);
670 case CmpInst::ICMP_UGE
: {
671 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
672 emitInst(Mips::SLTu
, TempReg
).addReg(LeftReg
).addReg(RightReg
);
673 emitInst(Mips::XORi
, ResultReg
).addReg(TempReg
).addImm(1);
676 case CmpInst::ICMP_ULE
: {
677 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
678 emitInst(Mips::SLTu
, TempReg
).addReg(RightReg
).addReg(LeftReg
);
679 emitInst(Mips::XORi
, ResultReg
).addReg(TempReg
).addImm(1);
682 case CmpInst::ICMP_SGT
:
683 emitInst(Mips::SLT
, ResultReg
).addReg(RightReg
).addReg(LeftReg
);
685 case CmpInst::ICMP_SLT
:
686 emitInst(Mips::SLT
, ResultReg
).addReg(LeftReg
).addReg(RightReg
);
688 case CmpInst::ICMP_SGE
: {
689 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
690 emitInst(Mips::SLT
, TempReg
).addReg(LeftReg
).addReg(RightReg
);
691 emitInst(Mips::XORi
, ResultReg
).addReg(TempReg
).addImm(1);
694 case CmpInst::ICMP_SLE
: {
695 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
696 emitInst(Mips::SLT
, TempReg
).addReg(RightReg
).addReg(LeftReg
);
697 emitInst(Mips::XORi
, ResultReg
).addReg(TempReg
).addImm(1);
700 case CmpInst::FCMP_OEQ
:
701 case CmpInst::FCMP_UNE
:
702 case CmpInst::FCMP_OLT
:
703 case CmpInst::FCMP_OLE
:
704 case CmpInst::FCMP_OGT
:
705 case CmpInst::FCMP_OGE
: {
706 if (UnsupportedFPMode
)
708 bool IsFloat
= Left
->getType()->isFloatTy();
709 bool IsDouble
= Left
->getType()->isDoubleTy();
710 if (!IsFloat
&& !IsDouble
)
712 unsigned Opc
, CondMovOpc
;
714 case CmpInst::FCMP_OEQ
:
715 Opc
= IsFloat
? Mips::C_EQ_S
: Mips::C_EQ_D32
;
716 CondMovOpc
= Mips::MOVT_I
;
718 case CmpInst::FCMP_UNE
:
719 Opc
= IsFloat
? Mips::C_EQ_S
: Mips::C_EQ_D32
;
720 CondMovOpc
= Mips::MOVF_I
;
722 case CmpInst::FCMP_OLT
:
723 Opc
= IsFloat
? Mips::C_OLT_S
: Mips::C_OLT_D32
;
724 CondMovOpc
= Mips::MOVT_I
;
726 case CmpInst::FCMP_OLE
:
727 Opc
= IsFloat
? Mips::C_OLE_S
: Mips::C_OLE_D32
;
728 CondMovOpc
= Mips::MOVT_I
;
730 case CmpInst::FCMP_OGT
:
731 Opc
= IsFloat
? Mips::C_ULE_S
: Mips::C_ULE_D32
;
732 CondMovOpc
= Mips::MOVF_I
;
734 case CmpInst::FCMP_OGE
:
735 Opc
= IsFloat
? Mips::C_ULT_S
: Mips::C_ULT_D32
;
736 CondMovOpc
= Mips::MOVF_I
;
739 llvm_unreachable("Only switching of a subset of CCs.");
741 unsigned RegWithZero
= createResultReg(&Mips::GPR32RegClass
);
742 unsigned RegWithOne
= createResultReg(&Mips::GPR32RegClass
);
743 emitInst(Mips::ADDiu
, RegWithZero
).addReg(Mips::ZERO
).addImm(0);
744 emitInst(Mips::ADDiu
, RegWithOne
).addReg(Mips::ZERO
).addImm(1);
745 emitInst(Opc
).addReg(Mips::FCC0
, RegState::Define
).addReg(LeftReg
)
747 emitInst(CondMovOpc
, ResultReg
)
750 .addReg(RegWithZero
);
757 bool MipsFastISel::emitLoad(MVT VT
, unsigned &ResultReg
, Address
&Addr
,
758 unsigned Alignment
) {
760 // more cases will be handled here in following patches.
763 switch (VT
.SimpleTy
) {
765 ResultReg
= createResultReg(&Mips::GPR32RegClass
);
769 ResultReg
= createResultReg(&Mips::GPR32RegClass
);
773 ResultReg
= createResultReg(&Mips::GPR32RegClass
);
777 if (UnsupportedFPMode
)
779 ResultReg
= createResultReg(&Mips::FGR32RegClass
);
783 if (UnsupportedFPMode
)
785 ResultReg
= createResultReg(&Mips::AFGR64RegClass
);
791 if (Addr
.isRegBase()) {
792 simplifyAddress(Addr
);
793 emitInstLoad(Opc
, ResultReg
, Addr
.getReg(), Addr
.getOffset());
796 if (Addr
.isFIBase()) {
797 unsigned FI
= Addr
.getFI();
799 int64_t Offset
= Addr
.getOffset();
800 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
801 MachineMemOperand
*MMO
= MF
->getMachineMemOperand(
802 MachinePointerInfo::getFixedStack(*MF
, FI
), MachineMemOperand::MOLoad
,
803 MFI
.getObjectSize(FI
), Align
);
804 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ResultReg
)
813 bool MipsFastISel::emitStore(MVT VT
, unsigned SrcReg
, Address
&Addr
,
814 unsigned Alignment
) {
816 // more cases will be handled here in following patches.
819 switch (VT
.SimpleTy
) {
830 if (UnsupportedFPMode
)
835 if (UnsupportedFPMode
)
842 if (Addr
.isRegBase()) {
843 simplifyAddress(Addr
);
844 emitInstStore(Opc
, SrcReg
, Addr
.getReg(), Addr
.getOffset());
847 if (Addr
.isFIBase()) {
848 unsigned FI
= Addr
.getFI();
850 int64_t Offset
= Addr
.getOffset();
851 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
852 MachineMemOperand
*MMO
= MF
->getMachineMemOperand(
853 MachinePointerInfo::getFixedStack(*MF
, FI
), MachineMemOperand::MOStore
,
854 MFI
.getObjectSize(FI
), Align
);
855 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
))
865 bool MipsFastISel::selectLogicalOp(const Instruction
*I
) {
867 if (!isTypeSupported(I
->getType(), VT
))
871 switch (I
->getOpcode()) {
873 llvm_unreachable("Unexpected instruction.");
874 case Instruction::And
:
875 ResultReg
= emitLogicalOp(ISD::AND
, VT
, I
->getOperand(0), I
->getOperand(1));
877 case Instruction::Or
:
878 ResultReg
= emitLogicalOp(ISD::OR
, VT
, I
->getOperand(0), I
->getOperand(1));
880 case Instruction::Xor
:
881 ResultReg
= emitLogicalOp(ISD::XOR
, VT
, I
->getOperand(0), I
->getOperand(1));
888 updateValueMap(I
, ResultReg
);
892 bool MipsFastISel::selectLoad(const Instruction
*I
) {
893 // Atomic loads need special handling.
894 if (cast
<LoadInst
>(I
)->isAtomic())
897 // Verify we have a legal type before going any further.
899 if (!isLoadTypeLegal(I
->getType(), VT
))
902 // See if we can handle this address.
904 if (!computeAddress(I
->getOperand(0), Addr
))
908 if (!emitLoad(VT
, ResultReg
, Addr
, cast
<LoadInst
>(I
)->getAlignment()))
910 updateValueMap(I
, ResultReg
);
914 bool MipsFastISel::selectStore(const Instruction
*I
) {
915 Value
*Op0
= I
->getOperand(0);
918 // Atomic stores need special handling.
919 if (cast
<StoreInst
>(I
)->isAtomic())
922 // Verify we have a legal type before going any further.
924 if (!isLoadTypeLegal(I
->getOperand(0)->getType(), VT
))
927 // Get the value to be stored into a register.
928 SrcReg
= getRegForValue(Op0
);
932 // See if we can handle this address.
934 if (!computeAddress(I
->getOperand(1), Addr
))
937 if (!emitStore(VT
, SrcReg
, Addr
, cast
<StoreInst
>(I
)->getAlignment()))
942 // This can cause a redundant sltiu to be generated.
943 // FIXME: try and eliminate this in a future patch.
944 bool MipsFastISel::selectBranch(const Instruction
*I
) {
945 const BranchInst
*BI
= cast
<BranchInst
>(I
);
946 MachineBasicBlock
*BrBB
= FuncInfo
.MBB
;
948 // TBB is the basic block for the case where the comparison is true.
949 // FBB is the basic block for the case where the comparison is false.
950 // if (cond) goto TBB
954 MachineBasicBlock
*TBB
= FuncInfo
.MBBMap
[BI
->getSuccessor(0)];
955 MachineBasicBlock
*FBB
= FuncInfo
.MBBMap
[BI
->getSuccessor(1)];
956 // For now, just try the simplest case where it's fed by a compare.
957 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition())) {
959 TLI
.getValueType(DL
, CI
->getOperand(0)->getType(), true).getSimpleVT();
960 if (CIMVT
== MVT::i1
)
963 unsigned CondReg
= getRegForValue(CI
);
964 BuildMI(*BrBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Mips::BGTZ
))
967 finishCondBranch(BI
->getParent(), TBB
, FBB
);
973 bool MipsFastISel::selectCmp(const Instruction
*I
) {
974 const CmpInst
*CI
= cast
<CmpInst
>(I
);
975 unsigned ResultReg
= createResultReg(&Mips::GPR32RegClass
);
976 if (!emitCmp(ResultReg
, CI
))
978 updateValueMap(I
, ResultReg
);
982 // Attempt to fast-select a floating-point extend instruction.
983 bool MipsFastISel::selectFPExt(const Instruction
*I
) {
984 if (UnsupportedFPMode
)
986 Value
*Src
= I
->getOperand(0);
987 EVT SrcVT
= TLI
.getValueType(DL
, Src
->getType(), true);
988 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
990 if (SrcVT
!= MVT::f32
|| DestVT
!= MVT::f64
)
994 getRegForValue(Src
); // this must be a 32bit floating point register class
995 // maybe we should handle this differently
999 unsigned DestReg
= createResultReg(&Mips::AFGR64RegClass
);
1000 emitInst(Mips::CVT_D32_S
, DestReg
).addReg(SrcReg
);
1001 updateValueMap(I
, DestReg
);
1005 bool MipsFastISel::selectSelect(const Instruction
*I
) {
1006 assert(isa
<SelectInst
>(I
) && "Expected a select instruction.");
1008 LLVM_DEBUG(dbgs() << "selectSelect\n");
1011 if (!isTypeSupported(I
->getType(), VT
) || UnsupportedFPMode
) {
1013 dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1017 unsigned CondMovOpc
;
1018 const TargetRegisterClass
*RC
;
1020 if (VT
.isInteger() && !VT
.isVector() && VT
.getSizeInBits() <= 32) {
1021 CondMovOpc
= Mips::MOVN_I_I
;
1022 RC
= &Mips::GPR32RegClass
;
1023 } else if (VT
== MVT::f32
) {
1024 CondMovOpc
= Mips::MOVN_I_S
;
1025 RC
= &Mips::FGR32RegClass
;
1026 } else if (VT
== MVT::f64
) {
1027 CondMovOpc
= Mips::MOVN_I_D32
;
1028 RC
= &Mips::AFGR64RegClass
;
1032 const SelectInst
*SI
= cast
<SelectInst
>(I
);
1033 const Value
*Cond
= SI
->getCondition();
1034 unsigned Src1Reg
= getRegForValue(SI
->getTrueValue());
1035 unsigned Src2Reg
= getRegForValue(SI
->getFalseValue());
1036 unsigned CondReg
= getRegForValue(Cond
);
1038 if (!Src1Reg
|| !Src2Reg
|| !CondReg
)
1041 unsigned ZExtCondReg
= createResultReg(&Mips::GPR32RegClass
);
1045 if (!emitIntExt(MVT::i1
, CondReg
, MVT::i32
, ZExtCondReg
, true))
1048 unsigned ResultReg
= createResultReg(RC
);
1049 unsigned TempReg
= createResultReg(RC
);
1051 if (!ResultReg
|| !TempReg
)
1054 emitInst(TargetOpcode::COPY
, TempReg
).addReg(Src2Reg
);
1055 emitInst(CondMovOpc
, ResultReg
)
1056 .addReg(Src1Reg
).addReg(ZExtCondReg
).addReg(TempReg
);
1057 updateValueMap(I
, ResultReg
);
1061 // Attempt to fast-select a floating-point truncate instruction.
1062 bool MipsFastISel::selectFPTrunc(const Instruction
*I
) {
1063 if (UnsupportedFPMode
)
1065 Value
*Src
= I
->getOperand(0);
1066 EVT SrcVT
= TLI
.getValueType(DL
, Src
->getType(), true);
1067 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
1069 if (SrcVT
!= MVT::f64
|| DestVT
!= MVT::f32
)
1072 unsigned SrcReg
= getRegForValue(Src
);
1076 unsigned DestReg
= createResultReg(&Mips::FGR32RegClass
);
1080 emitInst(Mips::CVT_S_D32
, DestReg
).addReg(SrcReg
);
1081 updateValueMap(I
, DestReg
);
1085 // Attempt to fast-select a floating-point-to-integer conversion.
1086 bool MipsFastISel::selectFPToInt(const Instruction
*I
, bool IsSigned
) {
1087 if (UnsupportedFPMode
)
1091 return false; // We don't handle this case yet. There is no native
1092 // instruction for this but it can be synthesized.
1093 Type
*DstTy
= I
->getType();
1094 if (!isTypeLegal(DstTy
, DstVT
))
1097 if (DstVT
!= MVT::i32
)
1100 Value
*Src
= I
->getOperand(0);
1101 Type
*SrcTy
= Src
->getType();
1102 if (!isTypeLegal(SrcTy
, SrcVT
))
1105 if (SrcVT
!= MVT::f32
&& SrcVT
!= MVT::f64
)
1108 unsigned SrcReg
= getRegForValue(Src
);
1112 // Determine the opcode for the conversion, which takes place
1113 // entirely within FPRs.
1114 unsigned DestReg
= createResultReg(&Mips::GPR32RegClass
);
1115 unsigned TempReg
= createResultReg(&Mips::FGR32RegClass
);
1116 unsigned Opc
= (SrcVT
== MVT::f32
) ? Mips::TRUNC_W_S
: Mips::TRUNC_W_D32
;
1118 // Generate the convert.
1119 emitInst(Opc
, TempReg
).addReg(SrcReg
);
1120 emitInst(Mips::MFC1
, DestReg
).addReg(TempReg
);
1122 updateValueMap(I
, DestReg
);
1126 bool MipsFastISel::processCallArgs(CallLoweringInfo
&CLI
,
1127 SmallVectorImpl
<MVT
> &OutVTs
,
1128 unsigned &NumBytes
) {
1129 CallingConv::ID CC
= CLI
.CallConv
;
1130 SmallVector
<CCValAssign
, 16> ArgLocs
;
1131 CCState
CCInfo(CC
, false, *FuncInfo
.MF
, ArgLocs
, *Context
);
1132 CCInfo
.AnalyzeCallOperands(OutVTs
, CLI
.OutFlags
, CCAssignFnForCall(CC
));
1133 // Get a count of how many bytes are to be pushed on the stack.
1134 NumBytes
= CCInfo
.getNextStackOffset();
1135 // This is the minimum argument area used for A0-A3.
1139 emitInst(Mips::ADJCALLSTACKDOWN
).addImm(16).addImm(0);
1140 // Process the args.
1142 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1143 CCValAssign
&VA
= ArgLocs
[i
];
1144 const Value
*ArgVal
= CLI
.OutVals
[VA
.getValNo()];
1145 MVT ArgVT
= OutVTs
[VA
.getValNo()];
1149 if (ArgVT
== MVT::f32
) {
1150 VA
.convertToReg(Mips::F12
);
1151 } else if (ArgVT
== MVT::f64
) {
1152 VA
.convertToReg(Mips::D6
);
1154 } else if (i
== 1) {
1155 if ((firstMVT
== MVT::f32
) || (firstMVT
== MVT::f64
)) {
1156 if (ArgVT
== MVT::f32
) {
1157 VA
.convertToReg(Mips::F14
);
1158 } else if (ArgVT
== MVT::f64
) {
1159 VA
.convertToReg(Mips::D7
);
1163 if (((ArgVT
== MVT::i32
) || (ArgVT
== MVT::f32
) || (ArgVT
== MVT::i16
) ||
1164 (ArgVT
== MVT::i8
)) &&
1166 switch (VA
.getLocMemOffset()) {
1168 VA
.convertToReg(Mips::A0
);
1171 VA
.convertToReg(Mips::A1
);
1174 VA
.convertToReg(Mips::A2
);
1177 VA
.convertToReg(Mips::A3
);
1183 unsigned ArgReg
= getRegForValue(ArgVal
);
1187 // Handle arg promotion: SExt, ZExt, AExt.
1188 switch (VA
.getLocInfo()) {
1189 case CCValAssign::Full
:
1191 case CCValAssign::AExt
:
1192 case CCValAssign::SExt
: {
1193 MVT DestVT
= VA
.getLocVT();
1195 ArgReg
= emitIntExt(SrcVT
, ArgReg
, DestVT
, /*isZExt=*/false);
1200 case CCValAssign::ZExt
: {
1201 MVT DestVT
= VA
.getLocVT();
1203 ArgReg
= emitIntExt(SrcVT
, ArgReg
, DestVT
, /*isZExt=*/true);
1209 llvm_unreachable("Unknown arg promotion!");
1212 // Now copy/store arg to correct locations.
1213 if (VA
.isRegLoc() && !VA
.needsCustom()) {
1214 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1215 TII
.get(TargetOpcode::COPY
), VA
.getLocReg()).addReg(ArgReg
);
1216 CLI
.OutRegs
.push_back(VA
.getLocReg());
1217 } else if (VA
.needsCustom()) {
1218 llvm_unreachable("Mips does not use custom args.");
1222 // FIXME: This path will currently return false. It was copied
1223 // from the AArch64 port and should be essentially fine for Mips too.
1224 // The work to finish up this path will be done in a follow-on patch.
1226 assert(VA
.isMemLoc() && "Assuming store on stack.");
1227 // Don't emit stores for undef values.
1228 if (isa
<UndefValue
>(ArgVal
))
1231 // Need to store on the stack.
1232 // FIXME: This alignment is incorrect but this path is disabled
1233 // for now (will return false). We need to determine the right alignment
1234 // based on the normal alignment for the underlying machine type.
1236 unsigned ArgSize
= alignTo(ArgVT
.getSizeInBits(), 4);
1238 unsigned BEAlign
= 0;
1239 if (ArgSize
< 8 && !Subtarget
->isLittle())
1240 BEAlign
= 8 - ArgSize
;
1243 Addr
.setKind(Address::RegBase
);
1244 Addr
.setReg(Mips::SP
);
1245 Addr
.setOffset(VA
.getLocMemOffset() + BEAlign
);
1247 unsigned Alignment
= DL
.getABITypeAlignment(ArgVal
->getType());
1248 MachineMemOperand
*MMO
= FuncInfo
.MF
->getMachineMemOperand(
1249 MachinePointerInfo::getStack(*FuncInfo
.MF
, Addr
.getOffset()),
1250 MachineMemOperand::MOStore
, ArgVT
.getStoreSize(), Alignment
);
1252 // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1253 return false; // can't store on the stack yet.
1260 bool MipsFastISel::finishCall(CallLoweringInfo
&CLI
, MVT RetVT
,
1261 unsigned NumBytes
) {
1262 CallingConv::ID CC
= CLI
.CallConv
;
1263 emitInst(Mips::ADJCALLSTACKUP
).addImm(16).addImm(0);
1264 if (RetVT
!= MVT::isVoid
) {
1265 SmallVector
<CCValAssign
, 16> RVLocs
;
1266 MipsCCState
CCInfo(CC
, false, *FuncInfo
.MF
, RVLocs
, *Context
);
1268 CCInfo
.AnalyzeCallResult(CLI
.Ins
, RetCC_Mips
, CLI
.RetTy
,
1269 CLI
.Symbol
? CLI
.Symbol
->getName().data()
1272 // Only handle a single return value.
1273 if (RVLocs
.size() != 1)
1275 // Copy all of the result registers out of their specified physreg.
1276 MVT CopyVT
= RVLocs
[0].getValVT();
1277 // Special handling for extended integers.
1278 if (RetVT
== MVT::i1
|| RetVT
== MVT::i8
|| RetVT
== MVT::i16
)
1281 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(CopyVT
));
1284 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1285 TII
.get(TargetOpcode::COPY
),
1286 ResultReg
).addReg(RVLocs
[0].getLocReg());
1287 CLI
.InRegs
.push_back(RVLocs
[0].getLocReg());
1289 CLI
.ResultReg
= ResultReg
;
1290 CLI
.NumResultRegs
= 1;
1295 bool MipsFastISel::fastLowerArguments() {
1296 LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1298 if (!FuncInfo
.CanLowerReturn
) {
1299 LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1303 const Function
*F
= FuncInfo
.Fn
;
1304 if (F
->isVarArg()) {
1305 LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1309 CallingConv::ID CC
= F
->getCallingConv();
1310 if (CC
!= CallingConv::C
) {
1311 LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1315 std::array
<MCPhysReg
, 4> GPR32ArgRegs
= {{Mips::A0
, Mips::A1
, Mips::A2
,
1317 std::array
<MCPhysReg
, 2> FGR32ArgRegs
= {{Mips::F12
, Mips::F14
}};
1318 std::array
<MCPhysReg
, 2> AFGR64ArgRegs
= {{Mips::D6
, Mips::D7
}};
1319 auto NextGPR32
= GPR32ArgRegs
.begin();
1320 auto NextFGR32
= FGR32ArgRegs
.begin();
1321 auto NextAFGR64
= AFGR64ArgRegs
.begin();
1323 struct AllocatedReg
{
1324 const TargetRegisterClass
*RC
;
1326 AllocatedReg(const TargetRegisterClass
*RC
, unsigned Reg
)
1327 : RC(RC
), Reg(Reg
) {}
1330 // Only handle simple cases. i.e. All arguments are directly mapped to
1331 // registers of the appropriate type.
1332 SmallVector
<AllocatedReg
, 4> Allocation
;
1333 for (const auto &FormalArg
: F
->args()) {
1334 if (FormalArg
.hasAttribute(Attribute::InReg
) ||
1335 FormalArg
.hasAttribute(Attribute::StructRet
) ||
1336 FormalArg
.hasAttribute(Attribute::ByVal
)) {
1337 LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1341 Type
*ArgTy
= FormalArg
.getType();
1342 if (ArgTy
->isStructTy() || ArgTy
->isArrayTy() || ArgTy
->isVectorTy()) {
1343 LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1347 EVT ArgVT
= TLI
.getValueType(DL
, ArgTy
);
1348 LLVM_DEBUG(dbgs() << ".. " << FormalArg
.getArgNo() << ": "
1349 << ArgVT
.getEVTString() << "\n");
1350 if (!ArgVT
.isSimple()) {
1351 LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1355 switch (ArgVT
.getSimpleVT().SimpleTy
) {
1359 if (!FormalArg
.hasAttribute(Attribute::SExt
) &&
1360 !FormalArg
.hasAttribute(Attribute::ZExt
)) {
1361 // It must be any extend, this shouldn't happen for clang-generated IR
1362 // so just fall back on SelectionDAG.
1363 LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1367 if (NextGPR32
== GPR32ArgRegs
.end()) {
1368 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1372 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32
<< ")\n");
1373 Allocation
.emplace_back(&Mips::GPR32RegClass
, *NextGPR32
++);
1375 // Allocating any GPR32 prohibits further use of floating point arguments.
1376 NextFGR32
= FGR32ArgRegs
.end();
1377 NextAFGR64
= AFGR64ArgRegs
.end();
1381 if (FormalArg
.hasAttribute(Attribute::ZExt
)) {
1382 // The O32 ABI does not permit a zero-extended i32.
1383 LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1387 if (NextGPR32
== GPR32ArgRegs
.end()) {
1388 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1392 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32
<< ")\n");
1393 Allocation
.emplace_back(&Mips::GPR32RegClass
, *NextGPR32
++);
1395 // Allocating any GPR32 prohibits further use of floating point arguments.
1396 NextFGR32
= FGR32ArgRegs
.end();
1397 NextAFGR64
= AFGR64ArgRegs
.end();
1401 if (UnsupportedFPMode
) {
1402 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1405 if (NextFGR32
== FGR32ArgRegs
.end()) {
1406 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1409 LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32
<< ")\n");
1410 Allocation
.emplace_back(&Mips::FGR32RegClass
, *NextFGR32
++);
1411 // Allocating an FGR32 also allocates the super-register AFGR64, and
1412 // ABI rules require us to skip the corresponding GPR32.
1413 if (NextGPR32
!= GPR32ArgRegs
.end())
1415 if (NextAFGR64
!= AFGR64ArgRegs
.end())
1420 if (UnsupportedFPMode
) {
1421 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1424 if (NextAFGR64
== AFGR64ArgRegs
.end()) {
1425 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1428 LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64
<< ")\n");
1429 Allocation
.emplace_back(&Mips::AFGR64RegClass
, *NextAFGR64
++);
1430 // Allocating an FGR32 also allocates the super-register AFGR64, and
1431 // ABI rules require us to skip the corresponding GPR32 pair.
1432 if (NextGPR32
!= GPR32ArgRegs
.end())
1434 if (NextGPR32
!= GPR32ArgRegs
.end())
1436 if (NextFGR32
!= FGR32ArgRegs
.end())
1441 LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1446 for (const auto &FormalArg
: F
->args()) {
1447 unsigned ArgNo
= FormalArg
.getArgNo();
1448 unsigned SrcReg
= Allocation
[ArgNo
].Reg
;
1449 unsigned DstReg
= FuncInfo
.MF
->addLiveIn(SrcReg
, Allocation
[ArgNo
].RC
);
1450 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1451 // Without this, EmitLiveInCopies may eliminate the livein if its only
1452 // use is a bitcast (which isn't turned into an instruction).
1453 unsigned ResultReg
= createResultReg(Allocation
[ArgNo
].RC
);
1454 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1455 TII
.get(TargetOpcode::COPY
), ResultReg
)
1456 .addReg(DstReg
, getKillRegState(true));
1457 updateValueMap(&FormalArg
, ResultReg
);
1460 // Calculate the size of the incoming arguments area.
1461 // We currently reject all the cases where this would be non-zero.
1462 unsigned IncomingArgSizeInBytes
= 0;
1464 // Account for the reserved argument area on ABI's that have one (O32).
1465 // It seems strange to do this on the caller side but it's necessary in
1466 // SelectionDAG's implementation.
1467 IncomingArgSizeInBytes
= std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC
),
1468 IncomingArgSizeInBytes
);
1470 MF
->getInfo
<MipsFunctionInfo
>()->setFormalArgInfo(IncomingArgSizeInBytes
,
1476 bool MipsFastISel::fastLowerCall(CallLoweringInfo
&CLI
) {
1477 CallingConv::ID CC
= CLI
.CallConv
;
1478 bool IsTailCall
= CLI
.IsTailCall
;
1479 bool IsVarArg
= CLI
.IsVarArg
;
1480 const Value
*Callee
= CLI
.Callee
;
1481 MCSymbol
*Symbol
= CLI
.Symbol
;
1483 // Do not handle FastCC.
1484 if (CC
== CallingConv::Fast
)
1487 // Allow SelectionDAG isel to handle tail calls.
1491 // Let SDISel handle vararg functions.
1495 // FIXME: Only handle *simple* calls for now.
1497 if (CLI
.RetTy
->isVoidTy())
1498 RetVT
= MVT::isVoid
;
1499 else if (!isTypeSupported(CLI
.RetTy
, RetVT
))
1502 for (auto Flag
: CLI
.OutFlags
)
1503 if (Flag
.isInReg() || Flag
.isSRet() || Flag
.isNest() || Flag
.isByVal())
1506 // Set up the argument vectors.
1507 SmallVector
<MVT
, 16> OutVTs
;
1508 OutVTs
.reserve(CLI
.OutVals
.size());
1510 for (auto *Val
: CLI
.OutVals
) {
1512 if (!isTypeLegal(Val
->getType(), VT
) &&
1513 !(VT
== MVT::i1
|| VT
== MVT::i8
|| VT
== MVT::i16
))
1516 // We don't handle vector parameters yet.
1517 if (VT
.isVector() || VT
.getSizeInBits() > 64)
1520 OutVTs
.push_back(VT
);
1524 if (!computeCallAddress(Callee
, Addr
))
1527 // Handle the arguments now that we've gotten them.
1529 if (!processCallArgs(CLI
, OutVTs
, NumBytes
))
1532 if (!Addr
.getGlobalValue())
1536 unsigned DestAddress
;
1538 DestAddress
= materializeExternalCallSym(Symbol
);
1540 DestAddress
= materializeGV(Addr
.getGlobalValue(), MVT::i32
);
1541 emitInst(TargetOpcode::COPY
, Mips::T9
).addReg(DestAddress
);
1542 MachineInstrBuilder MIB
=
1543 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Mips::JALR
),
1544 Mips::RA
).addReg(Mips::T9
);
1546 // Add implicit physical register uses to the call.
1547 for (auto Reg
: CLI
.OutRegs
)
1548 MIB
.addReg(Reg
, RegState::Implicit
);
1550 // Add a register mask with the call-preserved registers.
1551 // Proper defs for return values will be added by setPhysRegsDeadExcept().
1552 MIB
.addRegMask(TRI
.getCallPreservedMask(*FuncInfo
.MF
, CC
));
1556 if (EmitJalrReloc
&& !Subtarget
->inMips16Mode()) {
1557 // Attach callee address to the instruction, let asm printer emit
1558 // .reloc R_MIPS_JALR.
1560 MIB
.addSym(Symbol
, MipsII::MO_JALR
);
1562 MIB
.addSym(FuncInfo
.MF
->getContext().getOrCreateSymbol(
1563 Addr
.getGlobalValue()->getName()), MipsII::MO_JALR
);
1566 // Finish off the call including any return values.
1567 return finishCall(CLI
, RetVT
, NumBytes
);
1570 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst
*II
) {
1571 switch (II
->getIntrinsicID()) {
1574 case Intrinsic::bswap
: {
1575 Type
*RetTy
= II
->getCalledFunction()->getReturnType();
1578 if (!isTypeSupported(RetTy
, VT
))
1581 unsigned SrcReg
= getRegForValue(II
->getOperand(0));
1584 unsigned DestReg
= createResultReg(&Mips::GPR32RegClass
);
1587 if (VT
== MVT::i16
) {
1588 if (Subtarget
->hasMips32r2()) {
1589 emitInst(Mips::WSBH
, DestReg
).addReg(SrcReg
);
1590 updateValueMap(II
, DestReg
);
1593 unsigned TempReg
[3];
1594 for (int i
= 0; i
< 3; i
++) {
1595 TempReg
[i
] = createResultReg(&Mips::GPR32RegClass
);
1596 if (TempReg
[i
] == 0)
1599 emitInst(Mips::SLL
, TempReg
[0]).addReg(SrcReg
).addImm(8);
1600 emitInst(Mips::SRL
, TempReg
[1]).addReg(SrcReg
).addImm(8);
1601 emitInst(Mips::OR
, TempReg
[2]).addReg(TempReg
[0]).addReg(TempReg
[1]);
1602 emitInst(Mips::ANDi
, DestReg
).addReg(TempReg
[2]).addImm(0xFFFF);
1603 updateValueMap(II
, DestReg
);
1606 } else if (VT
== MVT::i32
) {
1607 if (Subtarget
->hasMips32r2()) {
1608 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
1609 emitInst(Mips::WSBH
, TempReg
).addReg(SrcReg
);
1610 emitInst(Mips::ROTR
, DestReg
).addReg(TempReg
).addImm(16);
1611 updateValueMap(II
, DestReg
);
1614 unsigned TempReg
[8];
1615 for (int i
= 0; i
< 8; i
++) {
1616 TempReg
[i
] = createResultReg(&Mips::GPR32RegClass
);
1617 if (TempReg
[i
] == 0)
1621 emitInst(Mips::SRL
, TempReg
[0]).addReg(SrcReg
).addImm(8);
1622 emitInst(Mips::SRL
, TempReg
[1]).addReg(SrcReg
).addImm(24);
1623 emitInst(Mips::ANDi
, TempReg
[2]).addReg(TempReg
[0]).addImm(0xFF00);
1624 emitInst(Mips::OR
, TempReg
[3]).addReg(TempReg
[1]).addReg(TempReg
[2]);
1626 emitInst(Mips::ANDi
, TempReg
[4]).addReg(SrcReg
).addImm(0xFF00);
1627 emitInst(Mips::SLL
, TempReg
[5]).addReg(TempReg
[4]).addImm(8);
1629 emitInst(Mips::SLL
, TempReg
[6]).addReg(SrcReg
).addImm(24);
1630 emitInst(Mips::OR
, TempReg
[7]).addReg(TempReg
[3]).addReg(TempReg
[5]);
1631 emitInst(Mips::OR
, DestReg
).addReg(TempReg
[6]).addReg(TempReg
[7]);
1632 updateValueMap(II
, DestReg
);
1638 case Intrinsic::memcpy
:
1639 case Intrinsic::memmove
: {
1640 const auto *MTI
= cast
<MemTransferInst
>(II
);
1641 // Don't handle volatile.
1642 if (MTI
->isVolatile())
1644 if (!MTI
->getLength()->getType()->isIntegerTy(32))
1646 const char *IntrMemName
= isa
<MemCpyInst
>(II
) ? "memcpy" : "memmove";
1647 return lowerCallTo(II
, IntrMemName
, II
->getNumArgOperands() - 1);
1649 case Intrinsic::memset
: {
1650 const MemSetInst
*MSI
= cast
<MemSetInst
>(II
);
1651 // Don't handle volatile.
1652 if (MSI
->isVolatile())
1654 if (!MSI
->getLength()->getType()->isIntegerTy(32))
1656 return lowerCallTo(II
, "memset", II
->getNumArgOperands() - 1);
1662 bool MipsFastISel::selectRet(const Instruction
*I
) {
1663 const Function
&F
= *I
->getParent()->getParent();
1664 const ReturnInst
*Ret
= cast
<ReturnInst
>(I
);
1666 LLVM_DEBUG(dbgs() << "selectRet\n");
1668 if (!FuncInfo
.CanLowerReturn
)
1671 // Build a list of return value registers.
1672 SmallVector
<unsigned, 4> RetRegs
;
1674 if (Ret
->getNumOperands() > 0) {
1675 CallingConv::ID CC
= F
.getCallingConv();
1677 // Do not handle FastCC.
1678 if (CC
== CallingConv::Fast
)
1681 SmallVector
<ISD::OutputArg
, 4> Outs
;
1682 GetReturnInfo(CC
, F
.getReturnType(), F
.getAttributes(), Outs
, TLI
, DL
);
1684 // Analyze operands of the call, assigning locations to each operand.
1685 SmallVector
<CCValAssign
, 16> ValLocs
;
1686 MipsCCState
CCInfo(CC
, F
.isVarArg(), *FuncInfo
.MF
, ValLocs
,
1688 CCAssignFn
*RetCC
= RetCC_Mips
;
1689 CCInfo
.AnalyzeReturn(Outs
, RetCC
);
1691 // Only handle a single return value for now.
1692 if (ValLocs
.size() != 1)
1695 CCValAssign
&VA
= ValLocs
[0];
1696 const Value
*RV
= Ret
->getOperand(0);
1698 // Don't bother handling odd stuff for now.
1699 if ((VA
.getLocInfo() != CCValAssign::Full
) &&
1700 (VA
.getLocInfo() != CCValAssign::BCvt
))
1703 // Only handle register returns for now.
1707 unsigned Reg
= getRegForValue(RV
);
1711 unsigned SrcReg
= Reg
+ VA
.getValNo();
1712 unsigned DestReg
= VA
.getLocReg();
1713 // Avoid a cross-class copy. This is very unlikely.
1714 if (!MRI
.getRegClass(SrcReg
)->contains(DestReg
))
1717 EVT RVEVT
= TLI
.getValueType(DL
, RV
->getType());
1718 if (!RVEVT
.isSimple())
1721 if (RVEVT
.isVector())
1724 MVT RVVT
= RVEVT
.getSimpleVT();
1725 if (RVVT
== MVT::f128
)
1728 // Do not handle FGR64 returns for now.
1729 if (RVVT
== MVT::f64
&& UnsupportedFPMode
) {
1730 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1734 MVT DestVT
= VA
.getValVT();
1735 // Special handling for extended integers.
1736 if (RVVT
!= DestVT
) {
1737 if (RVVT
!= MVT::i1
&& RVVT
!= MVT::i8
&& RVVT
!= MVT::i16
)
1740 if (Outs
[0].Flags
.isZExt() || Outs
[0].Flags
.isSExt()) {
1741 bool IsZExt
= Outs
[0].Flags
.isZExt();
1742 SrcReg
= emitIntExt(RVVT
, SrcReg
, DestVT
, IsZExt
);
1749 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1750 TII
.get(TargetOpcode::COPY
), DestReg
).addReg(SrcReg
);
1752 // Add register to return instruction.
1753 RetRegs
.push_back(VA
.getLocReg());
1755 MachineInstrBuilder MIB
= emitInst(Mips::RetRA
);
1756 for (unsigned i
= 0, e
= RetRegs
.size(); i
!= e
; ++i
)
1757 MIB
.addReg(RetRegs
[i
], RegState::Implicit
);
1761 bool MipsFastISel::selectTrunc(const Instruction
*I
) {
1762 // The high bits for a type smaller than the register size are assumed to be
1764 Value
*Op
= I
->getOperand(0);
1767 SrcVT
= TLI
.getValueType(DL
, Op
->getType(), true);
1768 DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
1770 if (SrcVT
!= MVT::i32
&& SrcVT
!= MVT::i16
&& SrcVT
!= MVT::i8
)
1772 if (DestVT
!= MVT::i16
&& DestVT
!= MVT::i8
&& DestVT
!= MVT::i1
)
1775 unsigned SrcReg
= getRegForValue(Op
);
1779 // Because the high bits are undefined, a truncate doesn't generate
1781 updateValueMap(I
, SrcReg
);
1785 bool MipsFastISel::selectIntExt(const Instruction
*I
) {
1786 Type
*DestTy
= I
->getType();
1787 Value
*Src
= I
->getOperand(0);
1788 Type
*SrcTy
= Src
->getType();
1790 bool isZExt
= isa
<ZExtInst
>(I
);
1791 unsigned SrcReg
= getRegForValue(Src
);
1795 EVT SrcEVT
, DestEVT
;
1796 SrcEVT
= TLI
.getValueType(DL
, SrcTy
, true);
1797 DestEVT
= TLI
.getValueType(DL
, DestTy
, true);
1798 if (!SrcEVT
.isSimple())
1800 if (!DestEVT
.isSimple())
1803 MVT SrcVT
= SrcEVT
.getSimpleVT();
1804 MVT DestVT
= DestEVT
.getSimpleVT();
1805 unsigned ResultReg
= createResultReg(&Mips::GPR32RegClass
);
1807 if (!emitIntExt(SrcVT
, SrcReg
, DestVT
, ResultReg
, isZExt
))
1809 updateValueMap(I
, ResultReg
);
1813 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
1816 switch (SrcVT
.SimpleTy
) {
1826 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
1827 emitInst(Mips::SLL
, TempReg
).addReg(SrcReg
).addImm(ShiftAmt
);
1828 emitInst(Mips::SRA
, DestReg
).addReg(TempReg
).addImm(ShiftAmt
);
1832 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
1834 switch (SrcVT
.SimpleTy
) {
1838 emitInst(Mips::SEB
, DestReg
).addReg(SrcReg
);
1841 emitInst(Mips::SEH
, DestReg
).addReg(SrcReg
);
1847 bool MipsFastISel::emitIntSExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
1849 if ((DestVT
!= MVT::i32
) && (DestVT
!= MVT::i16
))
1851 if (Subtarget
->hasMips32r2())
1852 return emitIntSExt32r2(SrcVT
, SrcReg
, DestVT
, DestReg
);
1853 return emitIntSExt32r1(SrcVT
, SrcReg
, DestVT
, DestReg
);
1856 bool MipsFastISel::emitIntZExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
1860 switch (SrcVT
.SimpleTy
) {
1874 emitInst(Mips::ANDi
, DestReg
).addReg(SrcReg
).addImm(Imm
);
1878 bool MipsFastISel::emitIntExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
1879 unsigned DestReg
, bool IsZExt
) {
1880 // FastISel does not have plumbing to deal with extensions where the SrcVT or
1881 // DestVT are odd things, so test to make sure that they are both types we can
1882 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1883 // bail out to SelectionDAG.
1884 if (((DestVT
!= MVT::i8
) && (DestVT
!= MVT::i16
) && (DestVT
!= MVT::i32
)) ||
1885 ((SrcVT
!= MVT::i1
) && (SrcVT
!= MVT::i8
) && (SrcVT
!= MVT::i16
)))
1888 return emitIntZExt(SrcVT
, SrcReg
, DestVT
, DestReg
);
1889 return emitIntSExt(SrcVT
, SrcReg
, DestVT
, DestReg
);
1892 unsigned MipsFastISel::emitIntExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
1894 unsigned DestReg
= createResultReg(&Mips::GPR32RegClass
);
1895 bool Success
= emitIntExt(SrcVT
, SrcReg
, DestVT
, DestReg
, isZExt
);
1896 return Success
? DestReg
: 0;
1899 bool MipsFastISel::selectDivRem(const Instruction
*I
, unsigned ISDOpcode
) {
1900 EVT DestEVT
= TLI
.getValueType(DL
, I
->getType(), true);
1901 if (!DestEVT
.isSimple())
1904 MVT DestVT
= DestEVT
.getSimpleVT();
1905 if (DestVT
!= MVT::i32
)
1909 switch (ISDOpcode
) {
1914 DivOpc
= Mips::SDIV
;
1918 DivOpc
= Mips::UDIV
;
1922 unsigned Src0Reg
= getRegForValue(I
->getOperand(0));
1923 unsigned Src1Reg
= getRegForValue(I
->getOperand(1));
1924 if (!Src0Reg
|| !Src1Reg
)
1927 emitInst(DivOpc
).addReg(Src0Reg
).addReg(Src1Reg
);
1928 emitInst(Mips::TEQ
).addReg(Src1Reg
).addReg(Mips::ZERO
).addImm(7);
1930 unsigned ResultReg
= createResultReg(&Mips::GPR32RegClass
);
1934 unsigned MFOpc
= (ISDOpcode
== ISD::SREM
|| ISDOpcode
== ISD::UREM
)
1937 emitInst(MFOpc
, ResultReg
);
1939 updateValueMap(I
, ResultReg
);
1943 bool MipsFastISel::selectShift(const Instruction
*I
) {
1946 if (!isTypeSupported(I
->getType(), RetVT
))
1949 unsigned ResultReg
= createResultReg(&Mips::GPR32RegClass
);
1953 unsigned Opcode
= I
->getOpcode();
1954 const Value
*Op0
= I
->getOperand(0);
1955 unsigned Op0Reg
= getRegForValue(Op0
);
1959 // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1960 if (Opcode
== Instruction::AShr
|| Opcode
== Instruction::LShr
) {
1961 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
1965 MVT Op0MVT
= TLI
.getValueType(DL
, Op0
->getType(), true).getSimpleVT();
1966 bool IsZExt
= Opcode
== Instruction::LShr
;
1967 if (!emitIntExt(Op0MVT
, Op0Reg
, MVT::i32
, TempReg
, IsZExt
))
1973 if (const auto *C
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1974 uint64_t ShiftVal
= C
->getZExtValue();
1978 llvm_unreachable("Unexpected instruction.");
1979 case Instruction::Shl
:
1982 case Instruction::AShr
:
1985 case Instruction::LShr
:
1990 emitInst(Opcode
, ResultReg
).addReg(Op0Reg
).addImm(ShiftVal
);
1991 updateValueMap(I
, ResultReg
);
1995 unsigned Op1Reg
= getRegForValue(I
->getOperand(1));
2001 llvm_unreachable("Unexpected instruction.");
2002 case Instruction::Shl
:
2003 Opcode
= Mips::SLLV
;
2005 case Instruction::AShr
:
2006 Opcode
= Mips::SRAV
;
2008 case Instruction::LShr
:
2009 Opcode
= Mips::SRLV
;
2013 emitInst(Opcode
, ResultReg
).addReg(Op0Reg
).addReg(Op1Reg
);
2014 updateValueMap(I
, ResultReg
);
2018 bool MipsFastISel::fastSelectInstruction(const Instruction
*I
) {
2019 switch (I
->getOpcode()) {
2022 case Instruction::Load
:
2023 return selectLoad(I
);
2024 case Instruction::Store
:
2025 return selectStore(I
);
2026 case Instruction::SDiv
:
2027 if (!selectBinaryOp(I
, ISD::SDIV
))
2028 return selectDivRem(I
, ISD::SDIV
);
2030 case Instruction::UDiv
:
2031 if (!selectBinaryOp(I
, ISD::UDIV
))
2032 return selectDivRem(I
, ISD::UDIV
);
2034 case Instruction::SRem
:
2035 if (!selectBinaryOp(I
, ISD::SREM
))
2036 return selectDivRem(I
, ISD::SREM
);
2038 case Instruction::URem
:
2039 if (!selectBinaryOp(I
, ISD::UREM
))
2040 return selectDivRem(I
, ISD::UREM
);
2042 case Instruction::Shl
:
2043 case Instruction::LShr
:
2044 case Instruction::AShr
:
2045 return selectShift(I
);
2046 case Instruction::And
:
2047 case Instruction::Or
:
2048 case Instruction::Xor
:
2049 return selectLogicalOp(I
);
2050 case Instruction::Br
:
2051 return selectBranch(I
);
2052 case Instruction::Ret
:
2053 return selectRet(I
);
2054 case Instruction::Trunc
:
2055 return selectTrunc(I
);
2056 case Instruction::ZExt
:
2057 case Instruction::SExt
:
2058 return selectIntExt(I
);
2059 case Instruction::FPTrunc
:
2060 return selectFPTrunc(I
);
2061 case Instruction::FPExt
:
2062 return selectFPExt(I
);
2063 case Instruction::FPToSI
:
2064 return selectFPToInt(I
, /*isSigned*/ true);
2065 case Instruction::FPToUI
:
2066 return selectFPToInt(I
, /*isSigned*/ false);
2067 case Instruction::ICmp
:
2068 case Instruction::FCmp
:
2069 return selectCmp(I
);
2070 case Instruction::Select
:
2071 return selectSelect(I
);
2076 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value
*V
,
2078 unsigned VReg
= getRegForValue(V
);
2081 MVT VMVT
= TLI
.getValueType(DL
, V
->getType(), true).getSimpleVT();
2083 if (VMVT
== MVT::i1
)
2086 if ((VMVT
== MVT::i8
) || (VMVT
== MVT::i16
)) {
2087 unsigned TempReg
= createResultReg(&Mips::GPR32RegClass
);
2088 if (!emitIntExt(VMVT
, VReg
, MVT::i32
, TempReg
, IsUnsigned
))
2095 void MipsFastISel::simplifyAddress(Address
&Addr
) {
2096 if (!isInt
<16>(Addr
.getOffset())) {
2098 materialize32BitInt(Addr
.getOffset(), &Mips::GPR32RegClass
);
2099 unsigned DestReg
= createResultReg(&Mips::GPR32RegClass
);
2100 emitInst(Mips::ADDu
, DestReg
).addReg(TempReg
).addReg(Addr
.getReg());
2101 Addr
.setReg(DestReg
);
2106 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode
,
2107 const TargetRegisterClass
*RC
,
2108 unsigned Op0
, bool Op0IsKill
,
2109 unsigned Op1
, bool Op1IsKill
) {
2110 // We treat the MUL instruction in a special way because it clobbers
2111 // the HI0 & LO0 registers. The TableGen definition of this instruction can
2112 // mark these registers only as implicitly defined. As a result, the
2113 // register allocator runs out of registers when this instruction is
2114 // followed by another instruction that defines the same registers too.
2115 // We can fix this by explicitly marking those registers as dead.
2116 if (MachineInstOpcode
== Mips::MUL
) {
2117 unsigned ResultReg
= createResultReg(RC
);
2118 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
2119 Op0
= constrainOperandRegClass(II
, Op0
, II
.getNumDefs());
2120 Op1
= constrainOperandRegClass(II
, Op1
, II
.getNumDefs() + 1);
2121 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, II
, ResultReg
)
2122 .addReg(Op0
, getKillRegState(Op0IsKill
))
2123 .addReg(Op1
, getKillRegState(Op1IsKill
))
2124 .addReg(Mips::HI0
, RegState::ImplicitDefine
| RegState::Dead
)
2125 .addReg(Mips::LO0
, RegState::ImplicitDefine
| RegState::Dead
);
2129 return FastISel::fastEmitInst_rr(MachineInstOpcode
, RC
, Op0
, Op0IsKill
, Op1
,
2135 FastISel
*Mips::createFastISel(FunctionLoweringInfo
&funcInfo
,
2136 const TargetLibraryInfo
*libInfo
) {
2137 return new MipsFastISel(funcInfo
, libInfo
);
2140 } // end namespace llvm